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Abstract

The global linear stability of the family of rotating boundary
layers (that includes discs and cones) is reviewed. Using a
velocity-vorticity form of the linearised Navier-Stokes equa-
tions, disturbance evolution is impulsively excited for a vari-
ety of flow geometries and perturbation parameter settings. For
azimuthal mode numbers below a fixed threshold value, distur-
bance development is dominated by convectively unstable char-
acteristics, even though the flow might be locally absolutely un-
stable. As the azimuthal mode number is increased to larger
values a form of global linear instability emerges that is charac-
terised by a faster than exponential temporal growth. However,
this is only observed when the azimuthal mode number is taken
to be significantly greater than the conditions necessary for the
onset of absolute instability to occur.

Introduction

The flow that develops above an infinite rotating-disc has long
been used as a model to study three-dimensional stability and
transition mechanisms. A boundary layer forms when a rigid
disc of infinite radius rotates at a constant angular velocity be-
neath an otherwise still incompressible fluid. This particular
rotating flow was first modelled by von Kármán [1] and has
since been studied using theoretical, numerical and experimen-
tal methods [2]. Gregory et al [3] undertook physical experi-
ments on the rotating-disc and observed co-rotating vortices on
the disc surface, which are better known as stationary crossflow.
Similar observations were made by Kobayashi and co-workers
[4, 5, 6] on the surfaces of rotating-cones.

More recently, studies have focused on the connection between
local and global linear stability properties and the behaviour
of disturbances as they develop in the spatial-temporal plane.
The reason for this is largely due to the discovery by Lingwood
[7] that for large enough parameter settings the rotating-disc is
locally unstable to an absolute form of disturbance; a critical
Reynolds number Rea = 507.3 and an azimuthal mode num-
ber na = 68. Absolute instability was identified following the
coalescence of the crossflow instability and a spatially damped
mode [8], whereby the basic state was simplified using a par-
allel flow approximation that neglects radial variations. Since
Lingwood’s discovery, absolute instability has been identified
in many other rotating flow systems using local stability the-
ory that applies a similar parallel flow assumption. These in-
clude the boundary layers that develop on rotating-spheres and
rotating-cones [9, 10].

Davies and Carpenter [11] undertook the first study on the
global linear stability characteristics of the rotating-disc bound-
ary layer, where the radial dependence of the von Kármán flow
was retained. Disturbance development was numerically sim-
ulated using a velocity-vorticity formulation [12] that is fully
consistent with the linearised Navier-Stokes equations. Per-
turbations were impulsively excited through a linearisation of

the no-slip condition and formed wavepackets in the spatial-
temporal plane. It was shown, for parameter settings near the
onset of absolute instability, that the radial dependence of the
basic state brought about a stabilisation effect. Temporal de-
cay was observed about all radial locations and azimuthal mode
numbers considered. Thus, local absolute instability was not
found to give rise to any globally unstable modes. Instead
disturbances were characterised by a convectively unstable re-
sponse.

The global stability of rotating boundary layers was extended
by Thomas and Davies [13, 14, 15, 16] to include the effects
of flow control mechanisms that were locally stabilising; mass
suction through the disc surface and an axial magnetic field.
Remarkably the introduction of the control mechanisms estab-
lished a form of global instability that was identified by a faster
than exponential temporal growth. Disturbances were found
to grow about all radial positions and for all azimuthal mode
numbers modelled. It was originally speculated that the locally
stabilising control device was somehow responsible for gener-
ating globally unstable behaviour. However, this theory was
eventually dismissed by Thomas and Davies [17] following a
more thorough investigation of the infinite rotating-disc bound-
ary layer.

Due to the availability of greater computational resources,
Thomas and Davies [17] were able to undertake a more thor-
ough global linear stability investigation of the infinite rotating-
disc boundary layer than what was feasible in the earlier study
by Davies and Carpenter [11]. Disturbance evolution was nu-
merically simulated for an extensive range of perturbation pa-
rameter settings. For large enough azimuthal mode numbers,
the same form of strong temporal growth was found to develop
in the unmodified rotating-disc as that observed in the earlier
studies that included flow control [14, 15]. However, globally
unstable characteristics were only realised for azimuthal mode
numbers greater than the critical conditions for absolute insta-
bility. Thus, local absolute instability in the infinite rotating-
disc boundary layer [7] can excite a form of global linear in-
stability (albeit one without a fixed global frequency) but only
when the azimuthal mode number is taken to be sufficiently
large.

More recently, Thomas and Davies [18] extended their global
linear stability study to encompass the family of rotating-cone
boundary layers that develop in an otherwise still fluid. Results
were qualitatively similar to those obtained on the rotating-disc
and a change in global behaviour (stable to unstable) was again
realised for azimuthal mode numbers greater than those condi-
tions necessary for the onset of absolute instability.

Davies and co-workers [13, 14, 17] were able to provide an ex-
planation for the change in global behaviour by coupling so-
lutions of the linearised Ginzburg-Landau equation [19] with
numerical simulation results. Depending on the precise balance
in the radial variations in the temporal growth rate and matching



shifts in frequency, it was possible for the flow to remain glob-
ally stable or become unstable. Using this approach, Thomas
and Davies [17, 18] were able to predict, to a reasonable degree
of accuracy, the azimuthal mode number needed to bring about
a change in the global response.

Hence, the local-global stability of the infinite rotating-disc and
the system of rotating-cone boundary layers can be described
using the scenario outlined by Huerre and Monkewitz [20]; lo-
cal absolute instability is a necessary but not sufficient condition
for globally unstable behaviour to occur. Much like many other
studies on global instability in spatially varying flows [21], self
sustained oscillations are possible once the extent of local abso-
lute instability achieves a threshold size.

In the subsequent section, the governing equations for generat-
ing the undisturbed flow and simulating perturbation evolution
are described in the context of a rotating-cone in a still fluid. Re-
sults are then presented that compare the differences in global
behaviour as the azimuthal mode number is increased to larger
values.

Formulation

Basic State

A rigid cone with a half-angle ψ and cross-sectional radius
r∗ = x∗ sinψ, rotates with a constant angular frequency Λ∗ in
an otherwise still fluid. In orthogonal curvilinear coordinates
{x∗,θ,z∗}, the streamwise and wall-normal directions are as-
sumed to be semi-infinite; 0 ≤ x∗ < ∞ and 0 ≤ z∗ < ∞. Further,
as the cone rotates within a fixed frame of reference, the Cori-
olis force terms are omitted from all governing equations. The
non-dimensional representation of the undisturbed flow is de-
fined as

UB(x,z,ψ) =
(

xsinψ
Re

F(z),
xsinψ

Re
G(z),

1
Re

H(z)
)
, (1)

where the Reynolds number

Re =
x∗oΛ∗δ∗ sinψ

ν∗
=

x∗o sinψ
δ∗

= xo sinψ, (2)

for some reference streamwise position xo. The wall-normal
functions F,G,H are obtained by solving the following system
of differential equations

(F2 −G2)sinψ+F ′H = F ′′, (3a)

2FGsinψ+G′H = G′′, (3b)

2F sinψ+H ′ = 0, (3c)

where a prime denotes differentiation with respect to z. This
particular system of equations is similar to that derived by von
Kármán [1] for the rotating-disc boundary layer, in the instance
that ψ= 90o. Equations (3a-3c) are solved subject to the bound-
ary conditions on the cone surface

F = G−1 = H = 0 on z = 0 (3d)

and the freestream conditions

F → 0, G → 0 as z → ∞. (3e)

Perturbation Equations

Total velocity and vorticity fields are respectively defined as

U = UB +u, Ω = ΩB +ω,

for UB given by (1), ΩB = ∇×UB and linearised perturbations
of the form

{u,ω}= {û, ω̂}einθ, (4)

for an integer valued azimuthal mode numbers n. Disturbance
development is then numerically simulated using a velocity-
vorticity formulation that is fully equivalent to the linearised
Navier-Stokes equations [12, 18]. The system of governing
equations comprises the streamwise and azimuthal components
of the vorticity transport equation in curvilinear coordinates and
the matching wall-normal component of the Poisson equation.
Perturbations are then impulsively excited through a linearisa-
tion of the no-slip boundary condition, which establishes distur-
bances that take the form of wavepackets that initially comprise
a wide range of frequencies.

Disturbance Development

The change in global behaviour as the azimuthal mode number
is raised to larger values is illustrated by numerically simulat-
ing disturbance evolution in a rotating-cone boundary layer with
a half-angle ψ = 40o. Two perturbations are generated using
an impulse centred about x f = 675 (Re = 434), for azimuthal
mode numbers n = 40 and 60. These conditions correspond to
disturbances that are respectively absolutely unstable (xa ≈ 622
for n = 40) and marginally absolutely unstable (x f ≈ 668 for
n = 60) when the parallel flow approximation is enforced.

Figure 1: Spatial-temporal disturbance development on a
rotating-cone with a half-angle ψ = 40o, for an impulse cen-
tred about x f = 675 (Re = 434). (a) Azimuthal mode number
n = 40; (b) n = 60.

Figure 1 displays the development of the corresponding distur-
bances to the genuine non-parallel flow as wavepackets in the



spatial-temporal plane. Contours of the azimuthal vorticity at
the wall have been drawn using a natural logarithm scaling and
normalised about time t/T = 0.2, where T = 2πRe. The lead-
ing edges of the two wavepackets convect downstream (to the
right) with approximately the same positive non-zero velocity.
However, the trailing edges display very contrasting features.
The trailing edge associated with n = 40 convects upstream (to
the left) for a very small period of time, but eventually reverses
direction and propagates downstream. Meanwhile, for n = 60,
the trailing-edge propagates upstream for the entire time period
shown, with what appears to be an increasing velocity. Thus,
a change in the global response is realised as the azimuthal
mode number is increased; global instability develops for the
larger azimuthal mode number n, while convective processes
and global stability prevails for the lower valued n.
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Figure 2: Temporal frequencies fr and growth rates fi as func-
tions of time for those disturbances plotted in figure 1. (a,b)
n= 40; (c,d) n= 60. The temporal development is plotted about
the impulse centre for calculations based on the non-parallel
(solid) and parallel flows (dashed).

Temporal frequencies fr and growth rates fi matching to those
disturbances illustrated in figure 1 are depicted in figure 2. So-
lutions were obtained via the complex-valued quantity

f =
iRe
A

∂A
∂t

, (5)

where A is some measure of the disturbance evolution. Re-
sults are plotted about the impulse centre x f = 675 for solutions
based on the parallel (dashed lines) and non-parallel flows (solid
lines). The two sets of frequencies and growth rates correspond-
ing to the non-parallel flow are found to vary with time, with lit-
tle to suggest that a fixed global mode will be achieved at very
large time. Moreover, temporal growth rates (figures 2(b,d))

further emphasize that there is a change in the global behaviour
as the azimuthal mode number is raised to larger values. For
n = 40, the growth rate fi is only positive over the time pe-
riod 0.5 ≤ t/T ≤ 1, and for larger time a negative and decreas-
ing growth rate is observed. This is despite the fact that this
particular mode number is strongly locally absolutely unstable
for the impulse centred about x f = 675 ( fi ≈ 0.2 for the par-
allel flow). For the larger azimuthal mode number n = 60, the
growth rate increases for the entire time duration shown, achiev-
ing a positive value shortly after the first period of rotation.
Thus, a form of global instability is generated that is charac-
terised by a faster than exponential temporal growth. Hence,
non-parallelism brings about a stabilising effect for lower val-
ued n and a destabilising effect for sufficiently large n.

Figure 3 plots neutral stability curves for local absolute instabil-
ity in the {Re,n}-plane. Neutral curves are plotted for cone half-
angles ψ = 20o through to ψ = 90o at ten unit intervals. Addi-
tionally, circular markers indicate the critical azimuthal mode
numbers nc for the emergence of global instability; for smaller
valued n globally stable behaviour prevails, while for larger val-
ued n disturbances are expected to display globally unstable
characteristics. These calculations were obtained by Thomas
and Davies [17, 18] following an extensive numerical study and
by utilising solutions of the linearised Ginzburg-Landau equa-
tion [19]. In all instances considered, the size of nc suggested as
being necessary for global linear instability to occur is greater
than the conditions for critical absolute instability. However, it
is worth noting that the high n modes only appear about very
large streamwise positions (Reynolds numbers) that are typi-
cally greater than the experimental observations for the onset of
laminar-turbulent transition. Thus, it is expected that the tran-
sition process in the rotating-disc and -cone boundary layers is
still governed by the lower valued n convective instabilities [17].
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Figure 3: Neutral stability curves for local absolute instabil-
ity, for cone half angles ψ ∈ [200 : 10o : 90o] [7, 10]. Circular
markers indicate the azimuthal mode number required to estab-
lish globally unstable behaviour as predicted by Thomas and
Davies [17, 18].

Concluding Remarks

The local-global stability of rotating boundary layers has been
reviewed. Recent studies by Thomas and Davies [17, 18] have
shown that linear disturbances can become globally unstable,
but only when the azimuthal mode number is taken to be signif-
icantly greater than the conditions for the onset of local absolute
instability.



Furthermore, we anticipate that similar characteristics will be
found in many other rotating boundary layers. Including, but
not limited to, Ekman layers, B odewadt layers and rotating-
spheres.
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