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ABSTRACT With the development of Internet, malware has become one of the most significant threats.

Recognizing specific types of malware is an important step towards effective removal. Malware visualization

is an important branch of malware static analysis techniques, where a piece of malware is turned into

an image for visualization and classification. Despite great success, it is still difficult to extract effective

texture feature representations for challenging datasets. Existing methods use global image features which

are sensitive to relative code locations. In this paper, we present a new learning framework to obtain more

discriminative and robust feature descriptors. The proposed method works with existing local descriptors

such as LBP (Local Binary Patterns) and dense SIFT (Scale-Invariant Feature Transform), by grouping them

into blocks and using a new bag-of-visual-words (BoVW) model to obtain robust features, which are more

flexible than global features and more robust than local features. We evaluate the proposed method on three

malware databases. Experimental results demonstrate that the obtained descriptors lead to state-of-the-art

classification performance.

INDEX TERMS malware visualization, image texture, feature descriptors, malware classification.

I. INTRODUCTION

Malware (e.g. viruses, worms and Trojan horses) has become

one of the most significant threats on the Internet. With the

help of generation tools, it becomes easy to generate new

malware, resulting in a very rapid increase in the number

of malware. AV test reported that around 81,598,221 new

malware samples were obtained in 2017, a 14% increase

compared to the previous year. Among all these malware

attacks, over 67% targeted Windows systems [1]. It has

caused serious threat. For example, the ransomware “Wan-

naCry” spread over 100 countries in the world and caused

damage of 8 billion US dollars. Furthermore, those new

variant malicious code files have similar behavior as benign

files, making them harder to be detected, which has posed a

significant challenge to anti-virus vendors. Although various

analysis techniques have been studied to deal with malware

variants, they are not sufficient to address increasing avoid-

ance techniques applied in malware. New analysis techniques

are still demanded to improve the analysis efficiency. Among

different techniques, malware visualization has recently been

proposed as an effective approach.

In this paper, we propose a new method that classifies

malware families using malware visualization. The method

transforms malware binary files to grayscale images. To

obtain discriminative features, we present a new learning

framework which is formulated as a multi-layered model

to characterize and analyze malware images using bag-of-

visual-words (BoVW). Starting from existing local descrip-

tors (LBP or dense SIFT), we group them into blocks and

build histograms. The extracted features are more flexible

than global features (e.g. GIST) and more robust than local

features. We evaluate the proposed method on three datasets,

which are all from the Windows platform. Experimental re-

sults demonstrate that the obtained descriptors are robust and

discriminative, which lead to state-of-the-art classification

performance, outperforming existing methods.

VOLUME , 1



Liu et al.: A New Learning Approach to Malware Classification using Discriminative Feature Extraction

The rest of the paper is organized as follows. Related work

is reviewed in Section 2. Section 3 gives an overview of our

learning framework. Section 4 conducts comparative exper-

iments on three datasets and analyzes the results. Finally,

conclusions are drawn in Section 5.

II. RELATED WORK

Various malware analysis and classification methods have

been proposed, including signature-based detection [2], [3],

behavior-based methods [4], [5], instruction frequency-based

methods [6]–[10], opcode-sequence based methods [11]–

[13], etc.

Among them, some techniques help analysts analyze mal-

ware with feature visualization. Based on the observation that

control flow information could be used to identify malware

variants, Cesare and Yang [14] developed a control flow

graph based malware classification method. Trinius et al. [15]

explored two visualization techniques, namely treemaps and

thread graphs, to visualize the behavior of malicious software

by abstracting in different levels the behavior captured in

controlled environments, with an aim to help human analysts.

Saxe et al. [16] presented a visual analytic approach to

analyze and visualize system calls shared among different

malware samples. Their system provides two visualization

user interfaces, namely a map-like interface showing the

overall similarity among samples, and a linked interface

to highlight both the similarities and differences between

selected samples. Hu et al. [17] developed a system to handle

a large number of malware samples efficiently. Each malware

sample is represented using their function-call graph, so that

finding similar malware samples from the database to a new

malware sample can be formulated as a graph matching

problem. They further developed an efficient algorithm for

searching in the graph database. These methods often use

graphs to represent malware, and/or provide high-level vi-

sualization of malware to assist analysts.

Conti et al. [18] put forward a method to classify raw

binary data into binary fragments of different primitive types

such as text, machine instructions, image data and audio data.

Nataraj et al. [19] did the pioneering work of using malware

visualization for malware analysis. It allows researchers to

understand the structures of malware binary files without

disassembling. In the paper, a malware binary is represented

as a vector of 8 bit unsigned integers, which is then organized

into a 2D array and visualized as a grayscale image by

treating integers as pixel intensities. In Nataraj’s method, it

obtains the image’s GIST descriptor, a global texture descrip-

tor, and classifies malware images using machine learning. It

obtains a high accuracy (0.98) on the dataset (25 families,

9,458 images). However, when applied to a larger malware

dataset (36 families, 12,278 images [20]), the accuracy is

not satisfactory (only 0.89). Inspired by Nataraj’s method,

Han et al. [25] proposed a new method by converting bi-

nary files into images and generating entropy graphs. The

method obtains malware images using the same approach

as Nataraj’s method and improves Nataraj’s classification

method by classifying malware families based on the entropy

graph similarity. They claim that their method is as good as

Nataraj’s method.

Although malware images look like usual grayscale im-

ages, they are fundamentally different. When the same code

appears in different sections of the malicious file, the overall

malware image will be changed. Simply using a global

texture descriptor as in [19] does not work well for malware

images, especially for those samples containing interference

information. Thus in this paper, we develop a new method

to obtain more robust descriptors in more challenging cases,

for example, when the malware samples are too similar in

different families or too different in the same family.

III. METHODOLOGY

In this paper, we propose a new framework for malware

classification based on malware visualization, where a piece

of malware is first converted into an image.

A. MALWARE VISUALIZATION

To turn a malware executable into an image, we first treat its

binary code as a sequence of 8-bit unsigned integers in the

range of 0 to 255 inclusive. Each value is directly interpreted

as the intensity of the pixel, where 0 is black and 255 is

white. The sequence is then structured into an 2D array to

form an image. Following Nataraj’s method, the width of

the image varies according to the binary file size [19]. Some

examples of malware images are shown in Figure 1. Those

are from Agent.fyi, Instantacess, Dialplatform and Fakerean

families from top left to bottom right. It can be seen that

images from the same family exhibit similarity. In this paper,

we use Nataraj’s method to visualize malware binary files

and propose a new method to extract effective texture feature

representations which achieves higher accuracy.

Figure 1: Examples of malware images.
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B. MULTI-LAYER LEARNING FRAMEWORK

After converting binary files into images, image-based de-

scriptors are used for classification. We first introduce the

symbols used as follows.

Suppose a training malware image set D = {dij} con-

tains images that belong to n families (i = 1, . . . , n, j =
1, 2, . . . , Ni where Ni is the number of malware images in

the ith malware family). Given a new malware image, the

problem is to classify it into its correct family. Let fij be

the image feature for dij , which can be global image features

(such as GIST descriptors) defined on the image as a whole,

or local features (such as LBP or dense SIFT) defined in

local neighborhoods around some pixels. Since variants of

the same malware family may have similar code appearing in

different locations, global features are unable to handle such

cases effectively. Local features are more robust in such cases

but can be more sensitive to small changes of code.

In this paper, we present a bag-of-visual-words (BoVW)

model, with the basic idea originally from the bag-of-words

(BoW) model in natural language processing. For the BoW

model, a dictionary is first built that contains all the words

(excluding stop words) from the collection of documents.

Each document is then compactly represented using a vector

with each element representing the number of times the

corresponding word appears in the document. The BoW

model greatly simplifies the representation, as neither the

order of words in the document, nor the contextual relation-

ships between words are taken into account. Although such

loss of information is most criticized for natural language

processing, we argue that in our problem of image-based

malware classification, ignoring the order of visual words

is indeed more beneficial, since it extracts useful malware

image features and handles the differences among variants of

the malware with interference information.

Thus we propose to use local features, along with a

new multi-layer learning framework based on bag-of-visual-

words (BoVW) to improve the robustness of malware image

features. The first layer is local feature extraction where ex-

isting local texture descriptors can be used. The second layer

is local feature descriptor grouping. The third layer extracts

representative features from groups in the second layer, and

the final layer produces the general feature representation of

the image. The pipeline is illustrated in Figure 2.

Layer 1 (Local Feature Extraction): Features represent

characteristics of texture images, such as frequent pattern

occurrences. Our framework works with different local fea-

tures. In this paper, we consider two typical features, namely

local binary patterns (LBP) and dense SIFT. We briefly

describe them below for completeness.

Definition 1: LBP (Local Binary Patterns) turns a local

center pixel grayscale value into a binary pattern that encodes

the relationship of the pixel with its local neighborhood. Each

neighboring pixel is set to 1 or 0 according to whether the

grayscale value of the pixel is larger than the value of the

central pixel [21]. For a given malware image dij , fij is a

collection of LBPc value for each center pixel c. LBPc is an

integer defined as

LBPc =

P−1
∑

p=0

s(gp − gc)2
p (1)

where gc and gp are the grayscale values of the center pixel

c and its pth neighbor, P is the number of neighboring pixels

and

s(x) =

{

1 if x ≥ 0,

0 if x < 0,

which provides a binary output (0 or 1). fij is a matrix, which

presents the local features.

fij =
T
⋃

t=1

LBPpt
(2)

where t = 1, 2, . . . , T , T is the number of patch centers and

pt is a patch center.

Our experiments show that the neighborhood radius and

number of neighbor pixels have little influence on malware

recognition. Thus, we choose radius R = 1 (i.e. 3 × 3
windows), comparing the grayscale value of the central pixel

with its 8 neighboring pixels. In this case P = 8, so

LBPc ∈ [0, 255].
Definition 2: Dense SIFT calculates a SIFT descriptor

determined by Lowe’s algorithm at every location [22]–

[24]. It collects features at each location and scale in an

image, which helps increases recognition accuracy. It splits

an image into small patches, and each patch is further spilt

into smaller bins. The feature is then computed as gradient

magnitude histograms in 8 orientations of bins. As the sliding

window moves, it computes gradient histograms of each local

neighborhood of the image. Finally, it obtains the image

feature descriptors using cascaded connection functions.

Layer 2 (Feature Grouping): Although direct use of global

features and local features can reflect overall structures of

malware images, sometimes, they may not be reliable or

robust. In malware code, the position of some code can be

changed and some nonsensical code is often added in the

files. Therefore, some distinctive local features, not necessar-

ily in the same location, can be essential for classification.

To make the features more robust, on the second layer,

we split an image into many blocks of features, with each

block containing m × m centers (m = 16 is used in our

experiments). Denote by xu,v the local feature at relative

position (u, v) in the block, the description for each feature

block X is given in Equation 3:

X =







x11 . . . x1m

...
...

...

xm1 . . . xmm






(3)

Denote by X = {Xi} the set of feature blocks.

Layer 3 (Representative Feature Selection): We cluster all

the feature blocks from all the training images into k centers

c̃i (i = 1, 2, . . . , k) using k-means clustering, which are

considered as visual words. This provides an effective way
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Family1 d12 d1N

F11 F12 F1N

d11 ······

·····

·

Family2 d22 d2N

F21 F22 F2N

d21 ······

······

Familyn dn2 dnN

Fn1 Fn2 FnN

dn1 ······

······

······

······Family1 ······ Family2 ······ Familyn

······

······

layer1

layer2

layer3

······

1 2 n

1 2 n

······

෥𝑐2෥𝑐1 ෥𝑐3 ෥𝑐𝑘

layer4

Family1 Family2 Familyn

1 2 3 …… k

2 1 25 …… 2

100 3 6 …… 35

…… …… …… …… ……
10 0 1 …… 25

1 2 3 …… k

4 21 5 …… 1

5 3 6 …… 75

…… …… …… …… ……
4 5 30 …… 5

1 2 3 …… k

4 1 5 …… 12

105 30 16 …… 3

…… …… …… …… ……
11 9 0 …… 4

······

Figure 2: A multi-layer feature extraction model.

to summarize block descriptors and suppress the impact of

noise and outliers in the feature space.

















x11 . . . x1m

...
...

...

xm1 . . . xmm

















⇒







c̃1
...

c̃k







Since we are only concerned with obtaining a representative

set of feature blocks, we randomly select a small subset

(0.5% in our experiments) of blocks for clustering. This

makes the computation much more efficient while maintain-

ing the performance.

Layer 4 (BoVW Feature Descriptor Representation). The

purpose of this layer is to obtain a robust feature represen-

tation for malware images, suppressing unreliable features.

Following a BoVW model, for each block Xi ∈ X in the

input image, we compute the Euclidean distance between

it and each cluster center c̃j . The center with the minimum

distance is selected and decides the cluster the block belongs

to. The histogram of all the chosen clusters forms the feature

vector v of the image:

v = hist(
⋃

Xi∈X

argminj ‖ c̃j −Xi ‖) (4)

where hist(·) is the histogram operator. v can be viewed

as a general feature descriptor and used for classification.

For a given test image, we apply Layers 1 and 2 to obtain

feature blocks, and Layer 4 to calculate the global feature

representation. Layer 3 is only needed in the training stage.

More precisely, taking LBP as local features, the proposed

method can be summarized by Algorithm 1 (one-off process

only needed for training) and Algorithm 2 (feature extraction

for an input image).

IV. EXPERIMENTS

To evaluate the performance of the multi-layer learning

framework, comprehensive comparisons are made with well-

known methods. Experiments are conducted on three mal-

ware image datasets: MalingA dataset used in Nataraj’s pa-

per [19], Nataraj’s malware album on his personal website [3]

(referred to as MalingB), and the malware dataset from the

CNCERT Labs. MalingA has 25 families and 9,458 malware

images. MalingB is larger, with 36 families and 12,278

malware images. The CNCERT dataset has 10 families and

15,000 malware binary files. Among these datasets, MalingA

and MalingB are provided directly as malware images, and

we convert malware binary files from the CNCERT dataset

to images. In this paper, the block size when building the

4 VOLUME ,
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Algorithm 1 (Training Stage, involving Layers 1-3): Obtain

the feature blocks X of training malware images dij from the

training set D, and work out the cluster centers {c̃k}.

Input: malware image training set D:

Output: features X with respect to training malware images

dij , and cluster centers {c̃k}.

for each i ∈ [1, n] do

//n : the number of malware families;

for each j ∈ [1, Ni] do

//Ni: the number of training examples for the ith

family;

Calculate local LBP features fij =
⋃

LBPpt
;

Split fij into blocks using an m×m grid, each is Xt;

Add Xt to the feature set X ;

end for

end for

Take a subset of X as X̃ ;

Work out cluster centers {c̃k} = Kmeans(X̃ )

Algorithm 2 (Feature Extraction Algorithm, involving Lay-

ers 1, 2 and 4): Calculate global feature vector v for an input

image.

Input: malware image it:
Output: the global feature v with respect to the histogram

of cluster numbers.

Use Layers 1 and 2 (see Algorithm 1) to obtain feature

blocks X .

Initialize the histogram h : ht = 0, t = 1, 2, . . . , k.

for Xj ∈ X do

j = argminj ‖ c̃k −Xj ‖
hj ⇐ hj + 1

end for

v = h∑
j
hj

BoVW model is 16× 16, i.e. m = 16.

A. EXPERIMENTAL RESULTS ON MALINGA

We first performed experiments on the same dataset (Ma-

lingA) as used in [19]. Nataraj’s method [19] extracts GIST

features of malware images, and uses a KNN (K-nearest

neighbor) classifier and a random forest (RF) classifier to

classify the test data. The GIST feature is a global feature

based on Gabor filters. Each malware image is split into a

4×4 grid, and it uses a steerable pyramid with 8 orientations

and 4 scales to obtain several filtered images. A feature is

obtained by computing the absolute average deviation of

transformed values from the mean within a small window of

the filtered images. The GIST features are then obtained by

cascade connection of those features.

To provide a fair comparison, we perform 10-fold cross

validation and randomly run the algorithms for 10 times

and report the average accuracy for classification of images

in the test set. Table 1 gives the results of GIST [19] and

the proposed method (multi-layer LBP using LBP as local

descriptors, block size 16 × 16). In this experiment, we set

the number of cluster centers k = 100. We also compare with

baseline LBP and Dense SIFT without our proposed block-

based multi-layer approach.

For KNN, we report the performance using KNN with

K = 2, and random forest with the number of trees ntrees set

to 25 as empirically these give better performance. According

to Table 1, for MalingA, using GIST [19] features obtains the

best accuracy of 0.98, which is identical to Nataraj’s reported

result [19]. Using the proposed method (multi-layer LBP

and multi-layer dense SIFT) in the same dataset, it can get

the best accuracy of 0.99 which is a little better than GIST

features, but reasonable given the accuracy is already high.

These methods also give similar performance with the RF

classifier.

B. EXPERIMENTAL RESULTS ON MALINGB

MalingB is a larger dataset with more malware images and

families. In order to compare the proposed method with

original global and local descriptors, we report the results

of the new BoVW model (multi-layer LBP and multi-layer

dense SIFT) as well as results using GIST [19], baseline LBP

and dense SIFT (as shown in definition 1 and definition 2).

The testing results are shown in Table 2. Again we set the

number of cluster centers k = 100, and the number of trees

for the random forest (RF) classifier to 25.

As can be seen, the performance of RF and KNN are

similar. The traditional GIST [19] feature in this case only

achieves 0.910 accuracy (KNN where K = 1) and 0.883

accuracy (RF where ntrees = 25). When we use local

features directly, the performance is similar with dense SIFT

producing slightly better result (0.936 for KNN with K = 1
and 0.926 for RF). On the contrary, our multi-layer method

performs much better, with multi-layer dense SIFT achieving

0.974 and multi-layer LBP achieving 0.970, which are much

better than GIST [19], dense SIFT and LBP. In addition, our

new method has got 0.966 accuracy using an RF classifier

which is also better than alternative methods. Comparing

Table 2 with Table 1, the results of GIST [19], dense

SIFT and LBP methods are not satisfactory on the MalingB

dataset whereas our new method has much more stable

performance. We further investigate why the existing global

method (GIST [19]) performs well on MalingA but poorly

on MalingB. We can find that malware files are sometimes of

substantially different file sizes and some malware images in

the same family may include different icons (e.g. the Benign

family as shown in Figure 3 (left)). Moreover, some malware

images in the same family have very different textures (e.g.

the Luder family as shown Figure 3 (right)). Those more

difficult cases are not included in MalingA but appear in other

more challenging datasets. That is why GIST [19], dense

SIFT and LBP features are worse than the proposed method.

For further analyzing the results, we perform the confusion

analysis in the following subsection.

VOLUME , 5



Liu et al.: A New Learning Approach to Malware Classification using Discriminative Feature Extraction

Table 1: Comparison of classification results on the MalingA dataset.

Classifier KNN (K = 2) RF (ntrees = 25)

GIST [19] 0.980 0.990

Dense SIFT 0.978 0.982

LBP 0.976 0.986

Multi-layer dense SIFT 0.990 0.987

Multi-layer LBP 0.981 0.989

Table 2: Comparison of classification results on the MalingB dataset.

Classifier KNN (K = 1) RF (ntrees = 25)

GIST [19] 0.910 0.883

Dense SIFT 0.936 0.926

LBP 0.877 0.901

Multi-layer dense SIFT 0.974 0.966

Multi-layer LBP 0.970 0.966

Table 3: Details of the MalingB-sub dataset.

family name image numbers

Autorun.K 95

Benign 365

Fakerean 381

Luder.B 509

Obfuscator.AD 142

Skintrim.N 80

Virut.A 133

Virut.AC 269

Virut.AK 571

Figure 3: Two examples of challenging malware families in MalingB.

C. CONFUSION ANALYSIS

To better analyze the behavior of different methods, we

first select 9 families, 2,545 malware images from MalingB

not included in MalingA to form a subset (which we call

MalingB-sub), as shown in Table 3. MalingB-sub includes

malware families that are more confusing.

We perform experiments using GIST [19] and multi-layer

LBP features with an RF classifier. The results with KNN

are similar, which are omitted to avoid repetition. In the

experiment, we perform 10-fold cross validation and ran-

domly run the algorithms for 10 times and report every

result and average accuracy using RF (ntrees = 25) in

Table 4. As can be seen, multi-layer LBP is much better than

GIST [19]. In order to show the confusion details, we give

the confusion matrix when it achieves the best result 0.914

using the GIST [19] feature, as shown in Table 5. We can find

that the most confusing families are the Benign family and

the Luder.B family. In addition, 11.8% instances of Virtut.A

family are misclassified into Virut.AK. There is also a 2.6%

error rate in the classification of the Fakerean family. In

comparison, the confusion matrix of the proposed method

with multi-layer LBP is shown in Table 6 when it achieves

0.945 accuracy. A comparison of Table 5 and Table 6 shows

that Fakerean and Virtut.A families are classified completely

correctly with the proposed method. The results of Benign

and Luder.B family classification are also improved, which

demonstrates the robustness of the proposed method.

D. COMPARISON WITH HAN’S METHOD

We also compare the proposed method with Han’s

method [25] using a random forest classifier with ntrees

set to 25. This method is based on Nataraj’s image-based

approach but uses entry graph based features instead. On

the MalingA dataset, it can get the accuracy 0.985 with

appropriate threshold value 0.75, which is consistent with

their paper and close to the performance of the proposed

method (0.99). When applied to more challenging MalingB

dataset, as shown in Table 7, the best classification accuracy

of Han’s method [25] is only 0.908 (with the threshold set to

0.75), which is clearly worse than our results.

E. EXPERIMENTAL RESULTS ON THE CNCERT

DATASET

The third dataset is from CNCERT Labs, which contains

a set of 10 families, 15,000 binary files and corresponding

assembly files. We turn the binary files into malware images

according to Narataj’s method [19]. In the experiment, we

compare GIST [19] with multi-layer LBP descriptor using

both a KNN classifier and an RF classifier. The results are

shown in Table 8. The method [19] achieves better per-

formance with the RF classifier, and the average accuracy

obtained is 0.929 (ntrees = 25). Our multi-layer LBP method

achieves better average accuracy of 0.935. The accuracy of

Han’s method is 0.901 [25] with the threshold value set to

0.75.

F. DISCUSSIONS ABOUT PARAMETER SETTINGS

We perform further experiments to analyze the performance

of the proposed method with different parameter settings. In

the second layer, the features need to be split into m × m
blocks, where the number of m is very important. If m is too
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Table 4: The classification performance on the MalingB-sub dataset.

Classifier RF (ntrees = 25)

No. 1 2 3 4 5 6 7 8 9 10 average accuracy

GIST [19] 0.914 0.886 0.910 0.867 0.906 0.882 0.906 0.894 0.906 0.89 0.896

Multi-layer LBP 0.951 0.948 0.95 0.953 0.949 0.938 0.95 0.949 0.952 0.947 0.9488

Table 5: The confusion matrix on MalingB-sub with the GIST [19] feature (accuracy = 0.914)

malware family Autorun.K Benign Fakerean Luder.B Obfuscator.AD Skintrim.N Virut.A Virut.AC Virut.AK

Autorun.K 1 0 0 0 0 0 0 0 0

Benign 0 0.667 0 0.303 0 0 0 0 0.03

Fakerean 0 0 0.974 0 0 0 0 0 0.026

Luder.B 0 0.102 0 0.837 0 0 0 0 0.061

Obfuscator.AD 0 0 0 0 1 0 0 0 0

Skintrim.N 0 0 0 0 0 1 0 0 0

Virut.A 0 0 0 0 0 0 0.882 0 0.118

Virut.AC 0 0 0 0 0 0 0 1 0

Virut.AK 0 0 0 0 0 0 0 0 1

Table 6: The confusion matrix on MalingB-sub with our multi-layer LBP feature (accuracy = 0.945)

malware family Autorun.K Benign Fakerean Luder.B Obfuscator.AD Skintrim.N Virut.A Virut.AC Virut.AK

Autorun.K 1 0 0 0 0 0 0 0 0

Benign 0 0.73 0 0.27 0 0 0 0.027 0.027

Fakerean 0 0 1 0 0 0 0 0 0

Luder.B 0 0.078 0 0.922 0 0 0 0 0

Obfuscator.AD 0 0 0 0 1 0 0 0 0

Skintrim.N 0 0 0 0 0 1 0 0 0

Virut.A 0 0 0 0 0 0 1 0 0

Virut.AC 0 0 0 0 0 0 0 1 0

Virut.AK 0 0 0 0 0 0 0 0 1

Table 7: Comparison of three methods on MailingB dataset

Method
Han’s method (with given threshold) Proposed method

Nataraj’s method (GIST [19])
0.5 0.75 0.8 0.9 Multi-layer SIFT Multi-layer LBP

Accuracy 0.763 0.908 0.882 0.796 0.966 0.966 0.910

Table 8: Classification results on the CNCERT dataset.

Classifier KNN (K = 2) RF (ntrees = 25)

GIST [19] 0.918 0.929

Dense SIFT 0.921 0.926

LBP 0.882 0.901

Multi-layer dense SIFT 0.938 0.930

Multi-layer LBP 0.932 0.935

Han [25] 0.901 (threshold=0.75)

small, the number of blocks is huge. Therefore it takes long

time to obtain the feature descriptors and cluster those blocks.

On the contrary if m is too big, the BoVM features are not as

robust. In the MailingB dataset, we use 8 × 8, 16 × 16 and

32 × 32 block sizes respectively (see Table 9). 8 × 8 blocks

are too small, and the images are split into many blocks. They

consume so much time to extract features that we have to stop

it after 5 days. 32× 32 blocks are too big, and the results are

poor. The results using 16× 16 blocks are better and used in

all the experiments.

We further analyze the performance of the RF classifier

w.r.t. its parameter. Figure 4 presents curves showing the

classification accuracies of the original method [19] and

our learning framework using different numbers of trees

in the Random Forest classifier on MalingB. We test 10,

15, 20 and 25 trees and show the average accuracies in

Figure 4. The blue curve presents the GIST method [19]

and the other curves present multi-layer LBP and multi-layer

dense SIFT respectively. It can be seen that the red and

green curves are consistently higher than the blue one, which

means that the multi-layer learning framework outperforms

the GISTmethod [19]. The performance is generally stable

with changing number of trees, and we use 25 trees for fairer

comparison as different methods work generally well.
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Table 9: Classification results using different window size on the MailingB dataset

classifier
KNN (K = 2) multi-layer LBP (ntrees = 25)

16× 16 32× 32 16× 16 32× 32

Multi-layer LBP 0.970 0.9054 0.966 0.9326

Figure 4: Classification accuracies of GIST [19] and the proposed method
with different setting (ntrees) using the RF classifier.

Using the proposed method, on the third layer, it needs

to cluster the feature blocks. For k-means clustering, the

number of clusters needs to be specified. We perform experi-

ments on the MalingB dataset with varying cluster number

k (see Figure 5). It shows four curves about multi-layer

dense SIFT classification using RF with 25 trees when the

number of clusters is chosen as 80, 100, 200 and 500. It

clearly demonstrates that the best performance is achieved

with k = 100, so this is used by default in our experiments.

Figure 5: The accuracies of multi-layer dense SIFT with different cluster
numbers.

G. DISCUSSION ABOUT SPLITTING STRATEGY

In Section III, the features are extracted firstly on the first

layer, which are then split into blocks on the second layer.

An alternative approach is to split images into blocks before

calculating LBP features. We test this and show compar-

ative results in Figure 6. The blue curve is according to

the multi-layer learning model in Section III (labeled as

“first_lbp_then_block”) and the blue one is the result of clas-

sification using the features obtained by switching the order

of the first two layers (labeled as “first_block_then_lbp”). It

clearly shows the benefit of performing LBP first, followed

by putting features into blocks.

Figure 6: The comparison of two multi-layer models

To investigate why this happens, according to the LBP

descriptor, there are some pixels on the border where feature

descriptors cannot be calculated. If we use the multi-layer

learning framework to obtain the features of each malware

image, the computed area is illustrated in Figure 7(left). If

we switch the steps of the first two layers, the pixels which

can be computed are shown in Figure 7(right), which contain

significant gaps between blocks with useful information. This

explains the significant performance drop in Figure 6. Since

dense SIFT uses a sliding window to compute all pixel

features, it does not suffer from this problem.

Figure 7: The analysis of two multi-layer models

V. CONCLUSION

In this paper, we propose a multi-layer learning framework

based on a bag-of-visual-words (BoVW) model to obtain

feature descriptors of malware images. The model can obtain

more robust features and achieve better classification accu-

racies even for more challenging datasets, compared with

other methods. One limitation of our method is its higher
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computational cost. In terms of time consumption, Han’s

method is faster than Nataraj’s method, which is further faster

than our method, because the proposed method needs to

split malware images into blocks and further cluster these

block features. For example, with our current unoptimized

code, it takes 3 days to perform the training and testing

on the entire MalingB dataset. In order to avoid malware

detection, malware authors may pack, obfuscate or encrypt

executables. If the malware execute files are packed, our

multi-layer learning framework will still produce consistent

results. However, if the malware is obfuscated or encrypted,

the proposed method can be interfered. We will resolve these

problems in the future.
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