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Why do nonlinearities matter? The repercussions of linear assumptions on the 

dynamic behaviour of assemble-to-order systems 

 

The hybrid assembly-to-order (ATO) supply chain, combining make-to-stock and make-to-order 

(MTS-MTO) production separated by a customer order decoupling point (CODP), is well-recognized 

in many sectors. However, the study of ATO systems is very limited from a system dynamics 

perspective, in particular for those common nonlinearities present in the real-world supply chain 

systems. Nonlinear effects play an important, sometimes a dominant role in supply chain systems. Our 

aim thereby is to assess the impact of nonlinearities on the dynamic performance of the hybrid ATO 

system structure, including non-negative returns and capacity limits. We interrogate a generic 

nonlinear system dynamic model as an illustration of a typical hybrid ATO system, and benchmark 

against the well-known Inventory and Order Based Production Control System archetype. By adopting 

nonlinear control engineering and simulation approaches, we reveal that being aware of the ATO 

system’s capacity and non-negative order constraints is very important, due to their significant impact 

on the system recovery speed and the CODP inventory level. Furthermore, a compromise between 

CODP inventory and capacity variations should also be evaluated, which is profoundly driven by the 

CODP inventory control policy. Future researches should consider the optimal trade-off design 

between CODP inventory and capacity as well as the exploration of delivery lead time dynamics. 

Keywords: System dynamics, control engineering, nonlinearities, bullwhip, personal computer assemble-to-

order systems, the IOBPCS family. 

 

1. Introduction 

Given the attractiveness of the assemble-to-order (ATO) strategy for companies, including 

increasing product variety, achieving quick response time and low cost, and benefiting the potential 

risk-pooling effect (Xiao, Chen, and Lee, 2012), academics and practitioners have become increasingly 

interested in analysing ATO systems. The ATO system is a hybrid production strategy that combines 

Make-to-stock (MTS) and Make-to-order (MTO) productions separated by a customer order 

decoupling point (CODP) (Naylor et al. 1999; Harrison et al. 2005) in the final assembly plant until 

the actual customized orders are received. This hybrid system is well-adopted by many manufacturing 

sectors, including personal computers (PC) (Katariya et al. 2014), semiconductors (Lin, Spiegler, and 

Naim, 2017), and printers (Tang and Tomlin 2008), to name but a few. From the stochastic modelling 

and analysis perspective, extensive academic studies can be found in the literature. The authors refer 

to Atan et al. (2017) for a comprehensive review.  

However, the study of ATO systems is very limited from a system dynamics perspective. 

System dynamics plays a critical role in influencing supply chain performance under the volatile 

conditions of the current business environment (Spiegler and Naim 2017). Dynamic characteristics, 

particularly the bullwhip effect (Lee, Padmanabhan, and Whang,1997), are considered to be the main 

sources of disruption in the business world (Christopher and Peck 2004). The bullwhip effect refers to 

a phenomenon in which low variations in demand cause significant changes in upstream production 

for suppliers, with associated costs such as the ramp down and ramp up of machines, hiring and firing 

of staff, and excessive inventory levels (Wang and Disney, 2016). The PC industry and its associated 

semiconductor sectors have suffered severely from capacity unevenness, or the bullwhip effect 

(Karabuk and Wu 2003; Gonçalves, Hines and Sterman 2005), due to the characteristics of high levels 

of stochasticity and nonlinearity (Wang and Rivera 2008). 



When confronted with system dynamics phenomenon such as bullwhip and inventory variance, 

the well-recognized inventory and order based production control system (IOBPCS) family, originally 

developed by Towill (1982), can be used, as the family models consist of general laws that represent 

many supply chain contexts (Lin et al. 2017), such as the well-known decision-making heuristic 

(Sterman 1989) that creates bullwhip (Lee, Padmanabhan, and Whang,1997), the order-up-to (OUT) 

policy (e.g. Wang et al. 2014) and remanufacturing systems (e.g. Zhou, Naim, and Disney, 2017). 

However, the IOBPCS family is traditionally used to represent MTS production systems, while limited 

effort has been made to model and analyse the dynamic behaviour of the ATO system. Furthermore, 

most IOBPCS based analytical studies assume that the system is completely linear, and thereby ignore 

those common nonlinearities present in the real-world supply chain systems, such as forbidden returns 

between suppliers and customers, capacity limits and shipment/inventory constraints, to name but a 

few. This has greatly limited the applicability of published results and has made it difficult to fully 

explain and describe oscillations caused by internal factors (Wang, Disney, and Wang, 2014). It has 

also been demonstrated that nonlinear effects play an important role in inventory systems, sometimes 

even a dominant role (Nagatani and Helbing, 2004). When linearity assumptions are removed complex 

dynamic behaviours are revealed. More importantly, oscillations generated internally by the system 

itself, rather than by the external environment, may arise.  

As a result, this paper addresses the literature gaps and aims to develop a generic system 

dynamics model of an ATO system, to determine the impact of inherent nonlinearities on dynamic 

performance. We use the PC sector, a typical industry where the ATO strategy has been well-

recognized and successfully implemented (Katariya et al. 2014), as an example to formulate the ATO 

model. Although the model is primarily based on the PC sector, it has general applicability to be easily 

adapted and extended to other sectors that employ an ATO strategy. Specifically, using combined 

control engineering and simulation approaches, we study the dynamic behaviour of the ATO system. 

Our contributions are twofold. First, we develop a dynamic model of ATO and investigate the impact 

of major control loops, including feedback inventory and feedforward forecasting policies, on the 

dynamic performance of ATO systems. Second, by adopting the nonlinear control engineering 

approach, namely the describing function method, we linearize the capacity and non-negative order 

constraints nonlinearities present in the ATO system, to determine the impact of nonlinearities on the 

dynamic performance. This offers analytical understanding about how the ATO system structure may 

characterise the dynamic oscillations and the possible strategy to avoid the poor dynamic behaviour, 

which would otherwise be missed if we relied only on linear assumptions.  

The rest of the paper is organised as follows. Section 2 gives a review of existing contributions 

and gaps, thus providing the motivation for the paper. Then using PC as an example, section 3 provides 

the model formulation for an ATO system by exploiting control block diagrams and associated 

difference equations. The IOBPCS family is used to benchmark the ATO model. The analysis of 

feedback and feedforward loops as well as the nonlinearities present in the ATO system can be found 

in Section 4. All findings and corresponding managerial implications are summarized in Section 5.  

2. Literature review 

2.1 Simulation studies of nonlinear supply chain dynamics 

Besides the impact of feedback loops and delays as the main sources of demand amplification 

as claimed by Forrester (1958), he also calls attention to the importance of considering nonlinear 

models to represent industrial and social processes. ‘Nonlinearity can introduce unexpected behaviour 

in a system’ (Forrester 1961), causing instability and uncertainty.  In supply chain system structures, 

nonlinearities can naturally occur through the existence of physical and economic constraints, for 

instance fixed and variable capacity constraints in the manufacturing and shipping processes, variable 

delays and variable control parameters (Spiegler et al. 2016a). 



Capacity and non-negative order constraints are two most common nonlinearities present in 

real-world supply chain systems and a number of simulation studies have analysed the impact of them. 

Regarding capacity constraints, Cannella, Ciancimino, and Márquez (2008) explored the relationship 

between constrained capacity and supply chain performance. Hussaina, Khan, and Sabir (2015) 

analysed the influence of capacity constraint and safety stock on the bullwhip effect in a two-tier supply 

chain by using Taguchi experiment. Ponte et al. (2017) investigated the impact of capacity limit on 

bullwhip and fill rate in an OUT-replenishment policy environment. The general conclusion derived 

in above study is that the capacitated supply chains may benefit from an improved dynamic 

performance as compared to unconstrained ones, due to capacity limit acts as a production smoothing 

filter. However, Cannella et al. (2018) found that the capacity may negatively influence the supply 

chain performance under a load-dependent lead time environment, i.e. lead times is modelled as a 

nonlinear function depending on the current work in progress (WIP) at the manufacturer and its 

capacity saturation limit and responsiveness (as the ability of the system in delivering the same product 

within a shorter lead time). 

Several studies focus on the impact of demand smoothing and information sharing under non-

negative order constraint supply chain systems, see Cannella, Ciancimino, and Framinan (2011), 

Cannella et al. (2014) and Syntetos et al. (2011). They highlighted the benefit of demand smoothing 

and information sharing in reducing supply chain dynamics, but non-negative order constraints are not 

studied in detail. Furthermore, Chatfield, and Pritchard (2013) and Dominguez et al. (2015) conducted 

simulation study regarding the impact of forbidden return policy on dynamic performance. The authors 

indicated that permitting returns significantly increases the bullwhip effect, and some other factors 

such as configuration of the supply chain network (serial vs. divergent) may play an important role in 

influencing the impact of non-negative order policy on supply chain dynamics (Dominguez et al. 2015). 

Despite many researchers offered deep understanding of the impact of nonlinearities on supply 

chain dynamics, only simulation methods have been recommended to analyses nonlinear supply chain 

models. However, simulating complex systems without having first done some preliminary 

mathematical analysis can be time intensive and lead to a trial-and-error approach that may hamper 

the system improvement process (Sarimveis et al. 2008, Lin et al. 2017). 

 

2.2. Control engineering studies of nonlinear supply chain dynamics  

Classic control theory techniques with feedback thinking and sufficient analytical tools are 

advantageous for analytically analysing supply chain dynamics (Sarimveis et al. 2008). The 

application of classic control theory in a production-distribution system can be traced back to Simon 

(1952). Through adopting classic control theory, Towill (1982) translated Coyle’s (1977) causal loops 

and presented an IOBPCS in a block diagram form. The IOBPCS family has been extensively studied 

within the context of the linear-based MTS supply chain systems. Topics include stability (e.g. 

Warburton et al. 2004; Wang, Disney, and Wang 2012), forecasting (e.g. Li, Disney, and Gaalman, 

2014) and supply chain resilience (e.g. Spiegler et al. 2012), to name but a few. However, linear 

assumptions are often criticized for failing to capture the nature of nonlinear attributes of the real 

supply chain systems with resource and physical constraints (Lin et al. 2017). Recent works that 

specifically address this concern by using nonlinear control engineering techniques are summarized in 

Table 1.  

 

 



Authors The type of 

system 

The 

assessment 

criteria 

Nonlinear 

control 

engineering 

method 

Key insights 

Jeong, Oh, 

and Kim 
(2010) 

MTS (Forrester 

model) 

Stability, 

bullwhip and 

inventory 

variance  
 

Matsubara time 

delay theorem; 

Small 

perturbation 
theory 

Explore the effect of different capacity 

levels on the factory’s production rate, 

unfilled orders. 

Wang and 

Disney 

(2012) and 

Wang, 

Disney, and 

Wang (2014) 

MTS  

(the order-up-to 

policy) 

 

Bullwhip and 

Inventory 

variance 

 

Eigenvalue 

methods 

Explore the stability boundaries of a 

piecewise linear inventory control system 

(non-negative order constraint) and identify 

a set of behaviours in the unstable region. 

Wang et al. 

(2015) 

MTS (the order-

up-to policy)   

Bullwhip 

 

Describing 

function 

Identify the effect of non-negative order 

nonlinearity on the bullwhip effect in 

responding sinusoid demand, and propose 

strategies (forecasting, low ordering 

frequency) to mitigate bullwhip effect. 

Spiegler et al. 

(2016a) 
 

MTS (Empirical 

UK grocery 
model) 

Bullwhip and 

Inventory 
variance 

 

Describing 

function 
 

Identify the influence of demand 

characteristics (frequency and amplitude) 
caused by shipment and truckload 

constraints on system dynamic behaviour, 

such as backlog, inventory and system’s 

resilience.  

Spiegler et al. 

(2016b) 

 

Forrester model 

(Forrester 1961) 

Bullwhip, 

inventory and 

shipment 

variance 

 

Taylor series 

expansion with 

small 

perturbation 

theory; 

Matsubara low 

order modelling 

(Matsubara 

1965) 

Propose a simplification technique to 

provide a better visualization and 

understand of the variable interactions in the 

Forrester’s model. also, the linearization 

approaches offer further insights due to the 

possible derivation of system’s transfer 

function and local stability boundaries. 

Wang and 
Gunasekaran 

(2017) 

MTS and 
remanufacturing 

Bullwhip and 
environmental 

dynamics 

Taylor series 
expansion with 

small 

perturbation 

theory 

Investigates the impact of production, 
environment, and demand variations on the 

dynamics and economic performance of 

sustainable supply chain systems. Their 

findings suggest that supply chain 

sustainability is essential to the continuous 

improvements of supply chain performance 

Spiegler and 

Naim (2017) 

MTS 

(APIOBPCS) 

Bullwhip, 

inventory 

variance and 

stability (Limit 

Cycle) 

 

Describing 

function 

Investigate the effect of non-negative order 

and shipment constraints on the dynamic 

performance of the APIOBPCS model. The 

phenomenon called ‘limit cycle’, triggered 

by a non-negative nonlinearity is also 

explored.  

This study ATO Bullwhip, 

inventory 

variance  

Describing 

function 

Analytically explore bullwhip and 

inventory variance in the nonlinear ATO 

system with capacity and non-negative 

order constraints 

Table 1. Summary of applying nonlinear control engineering approaches in studying supply chain dynamics 

Although recent studies contribute to the understanding of the effect of nonlinearities on the 

dynamic behaviour of the production-inventory system, there are several common limitations. Jeong, 

Oh, and Kim (2010) only use simulation to analyse the effect of different capacity constraints on the 

dynamics behaviour, despite efforts to linearize a part of the model. Also, most studies consider the 

impact of different nonlinearities on dynamic performance of the system individually. For instance, 



Wang and Disney (2012), Wang, Disney, and Wang (2014) and Wang et al. (2015)’s studies are limited 

to the analysis of the non-negative order constraint on the replenishment order, and Spiegler et al.’s 

(2016a, 2016b) analysis is limited to the capacity constraint. In particular, no previous analytical study 

has considered the impact of capacity and non-negative order constraints simultaneously when orders 

are placed to the supplier. Furthermore, all studies solely explore the dynamic performance of MTS-

based production control system by utilizing bullwhip and inventory variance as the main performance 

indicator, while, to our best knowledge, no previous work has analytically explored nonlinear ATO 

systems with capacity and non-negative constraints. 

2.3. ATO system dynamics  

From a system dynamics perspective, existing literature puts major emphasis on the dynamic 

modelling and analysis of CODP by developing and simulating the hybrid MTS-MTO model 

(Hedenstierna and Ng 2011; Choi, Narasimhan, and Kim, 2012; Wikner et al. 2017). Specifically, by 

decoupling generic FD (forecasting-driven) and CD (customer-driven) models, Hedenstierna and Ng 

(2011) evaluated the dynamic consequences of shifting the position of the CODP and found that the 

ideal position depends on the frequency of demand. However, their model is linear and lacks more 

realistic representations, such as capacity constraints and availability of material. Choi, Narasimhan, 

and Kim (2012) developed a system dynamics simulation model from Lee and Tang’s (1997) model 

and their experiences gained through a case study in a Korean automobile manufacturer. In contrast to 

Hedenstierna and Ng (2011), their model represents complex variable relationships, but their 

simulation results are limited to Korean global automobile companies. Wikner et al. (2017) 

conceptually developed a hybrid MTS-MTO model that can represent a typical ATO system by 

decoupling the customer orders at the final assembly plant. By using system dynamic simulation, they 

highlight the significant impact of capacity constraint at the downstream of CODP on backlog and 

CODP inventory dynamics, although the conceptual model does not explicitly consider the upstream 

capacity limit.  

Within the context of the PC sector, the focus of our study, limited effort has been made to 

study the dynamics of ATO systems. Berry and Towill (1992) developed causal loop diagrams to 

explain the ‘gaming’ that yields bullwhip in electronics supply chains, including semiconductor 

production, while Berry, Towill, and Wadsley (1994) undertook simulation modelling of a generic 

electronics industry supply chain to highlight the opportunities afforded by different supply chain 

reengineering strategies to mitigate bullwhip. However, their model did not explicitly represent the 

CODP and nonlinearities in the hybrid ATO system. Gonçalves, Hines, and Sterman (2015) developed 

a system dynamics simulation model to explore how market sales and production decisions interact to 

create unwanted production and inventory variances in the Intel hybrid ATO supply chain. Although 

these system dynamics simulations contribute to the representation of a real system by incorporating 

nonlinear components and complex structures, their trial-and-error approach limits the system 

improvement process. Lin, Spiegler, and Naim (2017) overcome such limitations by analytically 

exploring the Intel’s hybrid ATO model using the linear control engineering approach. The analytical 

insights including the stability region as well as the root causes of the bullwhip effect are derived and 

verified by simulation tests. However, their study is limited to a linear analysis, which cannot represent 

the realistic supply chain system. 

Overall, two main limitations are identified regarding the studies of the ATO system from 

system dynamics perspective. First, most studies do not consider the impact of nonlinearities, 

especially the capacity and non-negative order constraints, on the dynamics of the ATO system. 

Second, simulation is the primary choice for most studies and thereby gives little analytical insight or 

guidance in understanding the system control policies and structures to reduce supply chain dynamics. 

We aim to address these gaps by dynamic modelling and analysis of the nonlinear ATO system using 

PC supply chain as an example. 



3. Modelling the ATO system. 

3.1 The PC supply chain description 

As visualized in Figure 1, there are usually four major echelons for a PC company supply chain: 

component production (e.g. semiconductor fabrication), sub-assembly, final assembly and 

distribution/dealer (Berry, Towill, and Wadsley 1994; Naylor, Naim, and Berry 1999; Huang and Li 

2010; Katariya et al. 2014). From the material flow perspective, the component and sub-assembly 

echelons offer ‘commodities’ required by final PC final assembly, and the corresponding lead times is 

measured in terms of weeks. As the material flows downstream, production moves from automated 

production to highly manual operations. Final assembly of a PC is a largely manual process to allow 

quick changeovers and high levels of flexibility, with the corresponding lead times is measured in 

terms of days. The final products are either shipped to a number of the company owned distribution 

centres or directly to authorized dealers/final customers. 
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Figure 1. A general material and information flow of PC supply chains (Naylor, Naim, and Berry 1999). 

 

Regarding information flows, companies adopted the hybrid production planning and control 

strategy, i.e. the CODP is implemented in the final assembly echelon, which separates the downstream 

MTO and upstream MTS production and the whole supply chain is an ATO structure. The 

replenishment of downstream distribution and retailers is driven by actual customer orders, while the 

upstream production of CODP is based on a forecast generated via a global material logistics system 

that links all manufacturing units in the supply chain, which use the stock and forecast information 

from downstream echelons of CODP to generate a bill of materials. As a result, the design of the hybrid 

system balances customer responsiveness and cost efficiency. Note that such an ATO system structure 

illustrated by Figure 1 can be modified as a general one to be applied in other sectors by considering 

the location of CODP and the characteristic of pull and push planning. For instance, the semiconductor 

internal fabrication and final assembly has a similar ATO structure in which upstream wafer 

production uses long-term forecasting from end customer and downstream final assembly pull rate as 

the desired wafer start rate, while the downstream final assembly and distribution is directly pulled by 

end customer orders (Lin, Spiegler, and Naim 2017). 

 

 

 



3.2 Modelling the PC supply chain. 
The materials/information flows of a PC company’s supply chain is modelled at an aggregate 

level. The model is restricted to one supply chain player per echelon and this corresponds to the 

minimum number of echelons for players required to analyse its dynamic behaviour. The entire supply 

chain is modelled as a two-echelon system, i.e. a sub-assembly and final assembly system connected 

by CODP inventory to represent the typical hybrid ATO structure. The downstream distribution/sales 

and marketing echelons are not considered in this study, since the orders can be directly transferred to 

final assembly plant via on-line shopping. Also, the upstream component echelon is not considered 

due to the same ordering policy adopted in the sub-assembly echelon, i.e. MRP replenishment rule. 

All notations used in this paper are presented as follows: 
 

AINVAS: PC parts inventory at the final assembly plant 

AINVAS
*: Targeted PC parts inventory at the final assembly plant 

AINVSA: PC parts inventory at the sub-assembly plant 

AINVASadj: PC parts inventory adjustment at the final assembly plant 

AVCON: Averaged consumption rate 

BL: Backlog level 

BL*: Target backlog level 

BLADJ: Backlog adjustment 

CL: Capacity limit 

CONS: Customer demand rate 

COMRATEAS: Completion rate for final assembly 

COMRATESA: Completion rate for sub-assembly 

ORATEAS: Order rate for final assembly plant 

ORATESA: Order rate for sub-assembly plant 

S: Actual shipment 

S*: Desired shipment 

SMAX: Maximum shipment 

𝛕A: Time to smooth customer demand 

𝛕AS: Final assembly delay 

𝛕BL: Time to adjust backlog discrepancies 

𝛕I: Time to adjust raw inventory error at the final assembly plant 

𝛕DD: Desired order fulfilment delay (e.g. final assembly, order processing and delivery delay) 

𝛕SA：Sub-assembly delay 

𝛕SA’: Estimated sub-assembly delay, which is assumed as 𝛕SA
’= 𝛕SA, in line with John, Naim, and 

Towill (1994) 

WIP: Work-in-process inventory level for the sub-assembly system 

WIP*: Desired WIP 

WIPADJ: WIP error adjustment 

s: Laplace transform operator 

△T: Time interval between samples 

IOBPCS: Inventory and Order Based Production Control System 

VIOBPCS: Various Inventory and Order Based Production Control System 

APVIOBPCS: Automatic Pipeline and Various Inventory and Order Based Production Control 

System 

 

 

 

 

 



Modelling the final assembly echelon 

The final assembly plant can be described in terms of two inter-linked control structures (Berry, 

Towill and Wadsley 1994; Mason-Jones, Naylor and Towill 2000). The first structure focuses on the 

control of physical final assembly transformation under the pure order-driven strategy. The second is 

responsible for the replenishment of raw materials (PC parts) as the inputs (AINVAS) into the 

transformation process. To model the first control structure, the relationship between incoming orders 

and the replenishment of AINVAS should be captured. In most cases, the exogenous demand into the 

supply chain system begins when end customers decide the PC configurations with dealers. Dealers 

will electronically transmit orders to order desks in the company’s sales and marketing organizations, 

the order desks check the availability of PC parts stock in the decoupling point, i.e. the final assembly 

echelon. If all required AINVAS are available, confirmation of orders including expected delivery 

information is confirmed and the plant starts to the assembly and ships to customer by quoted lead 

times (𝛕DD). From the aggregate perspective, this is reflected by S* in each period. However, if AINVAS 

is insufficient, the final assembly plant can only assembly all PC parts they currently have on hand and 

this is reflected by SMAX.  

The first order lag approach (Sarimveis et al. 2008) can be used to model the MTO based final 

assembly process. Specifically, depending on the availability of AINVAS, the output of first order delay, 

i.e. S, is determined by  

                                                                S(t)=Min(S
*(t), SMAX(t))                                             (1) 

If required AINVAS are available for immediate final assembly, S=S*, the difference between 

inflow CONS and outflow S* is calculated as a measure of BL. i.e. a kind of work-in-progress orders, 

WIP (Wikner 2003): 
𝐵𝐿(𝑡) = 𝐵𝐿(𝑡 − 1) + 𝐶𝑂𝑁𝑆(𝑡) − 𝑆(𝑡)    (2) 

 

The output S* is the result of the fraction of WIP (1/τDD). In other words, τDD is the average 

delay of the production unit. As suggested by Atan et al. (2017), a fixed τDD is a realistic assumption 

due to high flexibility and reliable delivery time for the final assembly process. 

 

𝑆(𝑡) = S
*(t) =

BL(t)

τDD

     (3) 

 

Under such conditions, all incoming customized orders can be fulfilled by quoted τDD, that is, 

customers need to wait for physical lead times only. However, if insufficient AINVAS constrains S*, 

the final assembly can only ship SMAX estimated by current AINVAS and τDD.  

 

𝑆(𝑡) = 𝑆𝑀𝐴𝑋 =
𝐴𝐼𝑁𝑉𝐴𝑆(𝑡)

𝜏𝐷𝐷
   (4) 

 

The second inter-linked control structure considers the replenishment of AINVAS resulted by 

COMRATEAS. COMRATEAS is the result of delayed ORATEAS (transport delay between sub-

assembly and final assembly plant). A first order lag is used to model it (Sipahi and Delice 2010):  

COMRATEAS(t)=COMRATEAS(t-1)+𝑎(ORATEAS(t)-COMRATEAS(t-1))   (5) 

Where 𝑎 =
1

(1+
τAS
△T
)
  (Towill 1977) 

Where ORATEAS is determined by the minimum between desired Pull ORATEAS from the final 

assembly echelon and the feasible Push ORATESA from the sub-assembly echelon:  

ORATEAS(t) = Min(Pull ORATEAS(t), Push ORATESA(t))           (6) 



In other words, only smaller signals can pass the Min function as the feasible ORATEAS. If there 

are enough finished PC parts in the sub-assembly echelon, the customer’s orders pull the replenishment 

of AINVAS, otherwise the sub-assembly plant pushes all feasible AINVSA to meet the final assembly 

requirement as soon as possible. Pull ORATEAS aims to eliminate gaps for AINVAS and BL. More 

reliable S as a proxy is also used for deciding Pull ORATEAS and a non-negativity constraint is given 

to avoid negative order rate for the final assembly: 

Pull ORATEAS(t) = Max(0, AINVASadj(t)+S(t)+BLADJ(t))          (7) 

Where AINVASadj is the AINVAS feedback loop based on the discrepancies between AINVAS* and 

AINVAS adjusted by 𝛕I: 

AINVASadj(t)=
1

τ
I

· (AINVAS
* (t)-AINVAS(t))   (8) 

  AINVAS
*(t)=S(t)·τ

AS
 (9) 

and BLADJ is the backlog control loop adjusted by 𝛕BL: 

BLADJ(t)= 
1

τBL

· (BL(t)-BL*(t)) ,    BL*(t)=CONS(t)·τ
DD

                 (10) 

Usually the sub-assembler can supply PC parts according to the planned requirements to satisfy 

Pull ORATEAS. However, a loop exists to indicate an inability to meet demand. If part of the required 

parts stock is insufficient for immediate transport to the final assembly plant, a re-defined delivery date 

is given to end customers. This means the plant will delay the final assembly due to late arrive of 

required parts from the upstream sub-assembly plant. In this situation, the supplier submits their best 

can do commitment and push out all feasible AINVSA to meet the downstream requirement: 

Push ORATEAS(t)= AINVSA(t)                                                       (11) 

Modelling the sub-assembly echelon 

The upstream sub-assembly echelon operates as the MTS state driven by a forecast of customer 

demand for various PC configurations. The output from this process is a 12 months’ parts requirement 

generation instruction fed into upstream echelons. Also, each plant in the downstream echelons of 

CODP is responsible for feed backing their stock and order-in-process information, known as 

"coverage", to sub-assembly and component echelons. Once the instruction has been generated, the 

system automatically calculates how many sub-assembly and component part numbers are required 

and when they are required. 

As a result, the upstream echelons are a typical MRP-based ordering system and the well-

established APVIOBPCS (Wang et al. 2014) can be used to model the upstream sub-assembly system. 

Specifically, for each replenishment cycle, ORATESA is determined by: 

ORATESA(t)=Max(0,Min(
AVCON(t)+AINVSAadj(t)

+FWIPADJ(t),
CL

))      (12) 

AVCON(t) is the feedforward forecasting policy and well-recognized exponential smoothing can 

be adopted, although other forecasting methods such as moving average (Dejonckheere et al. 2002) 

and damped trend forecasting (Li et al. 2014) can be considered: 



AVCON(t)=AVCON(t-1)+c(CONS(t)-AVCON(t-1)), c=
1

1+
τA

△T

(13) 

AINVSAadj is the finished good inventory adjustment loop within the sub-assembly plant based on 

the discrepancies between AINVSA* and AINVSA: 

AINVSAadj(t)=
1

τAINV

· (AINVSA
*(t)-AINVSA(t))                              (14) 

Where AINVSA* is based on sub-assembly estimated lead time (𝛕SA’ = 𝛕SA) and pull ORATEAS, 

i.e. safety stock is calculated by the amount of PC parts as raw materials required by downstream final 

assembly and covered by averaged sub-assembly lead time: 

AINVSA
*(t)=τSA∙Pull ORATEAS(t)                                     (15) 

and AINVSA depends on the accumulation between the replenishment from COMRATESA and the 

actual depletion of ORATEAS (minimum between Pull and Push ORATEAS); 

AINVSA(t)=AINVSA(t-1)+COMRATESA(t)- ORATEAS(t)          (16) 

Also, the dynamic role of WIP inventory in the sub-assembly system is considered in an MRP 

ordering system, which can be interpreted as products queue at the detailed level. In line with John, 

Naim and Towill (1994)’s standard modelling approach, a fraction of WIP error (WIPADJ) is corrected 

based on the difference between WIP* and WIP: 

WIPADJ(t)=
1

τWIP

· (WIP*(t)-WIP(t))                          (17) 

Where WIP* depends on AVCON and 𝛕SA, and WIP is accumulative level between 

COMRATEMTS and ORATEMTS. Furthermore, a first order lag is used to model the physical sub-

assembly lead time, which can be interpreted as a production smoothing element representing how 

slowly the production units adapts to changes in ORATEAS (Wikner 2003):  

WIP*(t)=τ
SA

'

∙AVCON(t);  WIP(t)=WIP(t-1)+ORATE
SA
(t) - COMRATESA(t)  

COMRATESA(t)= COMRATESA(t-1)+c(ORATESA(t)-COMRATESA(t-1)),  c=
1

(1+
τSA

△T
)
 (18)     

Based on Equations (1)- (18), the entire ATO model is presented in Figure 2 in block diagram 

form, using the Laplace s domain. The model consists of basic elements such as flow, stock, decision 

policies, feedback and delays. Also, there existing two switches (final assembly and sub-assembly 

echelons) defined by Min functions that separate the system into different operational statuses 

depending on the feasible inventory, i.e. the AINVSA in sub-assembly echelon and the AINVAS in the 

final assembly system. Only one signal can be passed based on to the comparison between desired Pull 

and feasible Push, since the desired hybrid ATO system is only operated if there is enough inventory 

at each echelon. Having developed the model, it is important to verify the logic and correctness of the 

model (Sargent 2013). This verification process is undertaken via simulation on MatlabTM. Although 

we do not show the full verification results, part of the simulation analysis is reported in Table 2. The 

verification result shows the hybrid ATO model is logical and correct. 
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Figure 2. System dynamics model for the ATO supply chain. 
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Verification 

test 

Details  Verification process Verification results 

Family 

member and 

parameters  

Behaviour 

reproduction 

for cognate 

system and 

be 

consistent 
with system 

data and 

description 

1.Regarding the final assembly 

system, we use the similar Intel supply 

chain model (Lin et al. 2017) to 

reproduce its dynamic behaviour in 

responding a step demand increase by 

utilizing the same system parameter 
settings, i.e. τAS = τI = τBL = 2τDD = 4. 

2. For the sub-assembly system, order-

up-to policy (i.e. τSA=τA/2=8, τAINV= 

τWIP=1) is used to check whether the 

dynamic behaviour is consistent with 

Dejonckheere et al. (2003). 

1. Dynamic behaviour of the final assembly 

is consistent with the Intel hybrid supply 

chain model e.g. maximum 

overshoot/undershoot, rising time and setting 

time.  

2. The dynamic performance of the order-up-
to policy can be reproduced. 

Boundaries 

and 

Structure  

Include all 

important 

factors and 

be 

consistent 

with system 

description 

Related empirical works including 

Kapuscinski et al. (2004), Katariya et 

al. (2014) and Huang and Li (2010) 

are used to check the consistency 

regarding the system framework and 

important factors of the ATO supply 

chain. 

 

1. The ATO system dynamic model is 

consistent with empirical descriptions 

characterized by combined order- and 

forecasting-driven production, and material 

and information CODP. 

2. All important factors are included for the 

system dynamic model. Also,  

the model is cross-checked by corresponding 

Intel supply chain (Lin et al. 2017), 

APVIOBPCS and VIOBPCS archetypes 
(Edghill and Towill 1990; John et al. 1994; 

Dejonckheere et al. 2003). 

Extremities Model is 

logical for 

extreme 

values 

1. We check whether the dynamic 

performance of the final assembly 

system is consistent with the 

VIOBPCS archetype (Edghill and 

Towill 1990) if τBL = τDD = ∞  

2. For the supplier manufacturing part, 

we increased the value of τWIP, τAINV 

and τA to extreme conditions to see 

whether the system can generate the 

expected dynamic outcome. 

1. The dynamic behaviour of the final 

assembly system is consistent with 

corresponding performance in the original 

VIOBPCS if the backlog and shipment loops 

are removed. 

2. The extreme values of τA, τAINV, and τWIP 

will lead to the expected dynamic 

performance in responding to a step demand 

increase. For example, the infinite τAINV will 

remove the inventory feedback loop, which 

result in the permanent inventory drift in 
responding a step increase as expected. 

Table 2. The verification of the PC system dynamics model. 
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4. Dynamic analysis of the ATO system 

In this section the dynamics of the ATO system are analysed by using combined 

nonlinear/linear control engineering and system dynamics simulation. First, we analyse the completely 

linear system by assuming all nonlinearities are inactive in order to understand the impact of feedback 

and feedforward loops on the dynamic behaviour of the ATO system. This gives the fundamental 

dynamic insight of the ATO system regarding the adjustment of corresponding control on the dynamic 

behaviour of two inventory (AINVAS and AINVSA) and production capacity fluctuations (ORATESA). 

We then analyse the impact of nonlinearities present in the ATO system by classifying the 

nonlinearities and identifying appropriate simplification and linearization methods. The ‘filter’ 

demand input signals (Towill, Zhou, and Disney 2007), or sinusoidal input, evident in the PC industry 

(Lin, Spiegler, and Naim, 2017) is used to assess the dynamic performance of the ATO system. 

Analysing system dynamics models via the ‘filter lens’ or sinusoidal input allows important dynamic 

properties of the system to be investigated, including the natural frequency (ωn) and damping ratio (ζ). 

The former determines how fast the system’s output oscillates during the transient response, while the 

latter describes how oscillations in the system decay with time. Table 3 categorizes nonlinearities 

present in the ATO system and illustrates corresponding simplification/linearization methods adopted 

in this study. As a result of such simplification and linearization, the original ATO model can be 

simplified as a truly ATO state structure illustrated in Figure 2, including only capacity and non-

negative order nonlinearities. Its corresponding block diagram, based on simplification of multi-valued 

discontinuous nonlinearity (Table 3), is presented in Figure 3.  

 

Type of nonlinearity in this 

study 

Main characteristics Simplification/linearization methods  

Single-valued discontinuous 

nonlinearity: 
1) Non-negative order 

constraint i.e. Equation (7) and 

(12) 

2) Capacity constraint in the 

supplier manufacturing plant, 

i.e. Equation (12). 

Sharp changes in output values 

or gradients in relation to input 
(e.g. piecewise linear function). 

Single-valued nonlinearities are 

also called memory-less, which 

means that the output value does 

not depend on the history of the 

input (Spiegler et al. 2016a). 

1. The describing function method is used to 

linearize such nonlinearities in responding 
sinusoidal demand input. 

2. Characteristics equations analysis derived 

from linearized transfer function is 

conducted. System dynamic simulation is 

used for verification. 

Multi-valued discontinuous 

nonlinearity: 

1) Shipment constraint, i.e. 

Equation (1) 

2) CODP inventory constraint, 

i.e. Equation (6). 

In contrast to the single-value 

nonlinearity, the output value of 

multi-valued discontinuous 

nonlinearity does depend on the 

history of the input. e.g. changes 

in manufacturing strategies 
depending on foreign exchange 

rate directions. 

Two multi-valued nonlinearities (i.e. 

switches) govern different operational states 

of nonlinear ATO supply chains depending 

on the feasible AINVAS and AINVSA. 

However, we only analyse the truly ATO 

state by assuming:  

S = 𝑆∗ 
𝑂𝑅𝐴𝑇𝐸𝐴𝑆 = 𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝐴𝑆   

This scenario also fits the reality that PC 

supply chains maintain the ATO state by 

ensuring enough CODP inventory (Lin, 

Spiegler, and Naim, 2017).  

Table 3. Types of nonlinearities present in the ATO system and corresponding linearization and simplification method. 
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4.1. The impact of feedback and feedforward control on ATO system dynamics  

By assuming that all nonlinearities are inactive (i.e. negative orders are permitted and no CL) 

it is possible to formulate the transfer functions of AINVAS, AINVSA and ORATESA, i.e. two 

inventories and the supplier’s capacity adjustment, in relation to CONS can be derived as follows: 

 

𝐴𝐼𝑁𝑉𝐴𝑆
𝐶𝑂𝑁𝑆

=
(−𝜏ⅈ𝜏DD

2 𝑠2 + 𝜏BL𝑠(𝜏ⅈ + 𝜏AS) + 𝜏BL)(1 + 𝜏AS𝑠) 

(1 + τⅈ𝑠 + 𝜏ⅈ𝜏AS𝑠
2)(𝜏BL + 𝜏BL𝜏DD𝑠)

      (19) 

𝑂𝑅𝐴𝑇𝐸𝑆𝐴
𝐶𝑂𝑁𝑆

=

(1 + 𝜏SA) (
(1 + 𝜏𝐴𝑠)(1 + 𝜏AS𝑠)(𝜏BL + 𝜏ⅈ𝜏BL𝑠 + 𝜏AS𝜏BL𝑠 − 𝜏ⅈ𝜏DD

2 𝑠2)(1 + 𝜏SA𝑠)𝜏WIP

+𝑠𝜏AINV(1+ τⅈ𝑠(1 + 𝜏AS𝑠))𝜏BL(1 + 𝜏DD𝑠)(𝜏SA + 𝜏WIP) 
)

(1 + τⅈ𝑠 + 𝜏ⅈ𝜏AS𝑠
2)(𝜏BL + 𝜏BL𝜏DD𝑠)(1 + 𝜏𝐴𝑠)

(𝜏WIP + (𝜏AINV𝜏SA + 𝜏AINV𝜏WIP)𝑠 + 𝜏AINV𝜏SA𝜏WIP𝑠
2)

 (20) 

  

𝐴𝐼𝑁𝑉𝑆𝐴
𝐶𝑂𝑁𝑆

=
(

 
 
 

𝜏AINV𝑠(−𝜏AS(2 + 𝜏AS𝑠)𝜏BL + (1 + 𝜏ⅈ𝑠(1 + 𝜏AS𝑠))𝜏BL𝜏DD + 𝜏ⅈ𝑠(1 + 𝜏AS𝑠)𝜏DD
2 )𝜏SA

+(
𝜏AINV𝑠(−𝜏AS(2 + 𝜏AS𝑠)𝜏BL + (1 + 𝜏ⅈ𝑠(1 + 𝜏AS𝑠))𝜏BL𝜏DD + 𝜏ⅈ𝑠(1 + 𝜏AS𝑠)𝜏DD

2 )

−(−1 + 𝜏AINV𝑠)(1 + 𝜏AS𝑠)((1 + (𝜏ⅈ + 𝜏AS)𝑠)𝜏BL − 𝜏ⅈ𝜏DD
2 𝑠2)𝜏SA

) 𝜏WIP

−𝜏𝐴𝑠(1 + 𝜏AS𝑠)((1 + (𝜏ⅈ + 𝜏AS)𝑠)𝜏BL − 𝜏ⅈ𝜏DD
2 𝑠2)

(𝜏AINV𝜏SA + (𝜏AINV + (−1 + 𝜏AINV𝑠)𝜏SA)𝜏WIP) )

 
 
 

(1 + τⅈ𝑠 + 𝜏ⅈ𝜏AS𝑠
2)(𝜏BL + 𝜏BL𝜏DD𝑠)(1 + 𝜏𝐴𝑠)

(𝜏WIP + (𝜏AINV𝜏SA + 𝜏AINV𝜏WIP)𝑠 + 𝜏AINV𝜏SA𝜏WIP𝑠
2)

 (21) 

We exploit the Initial Value Theorem (IVT) and Final Value Theorem (FVT) to mathematically 

crosscheck the correctness of the transfer function, guide the appropriate initial condition required by 

a simulation and to understand the final steady state value of the dynamic response so as to help verify 

any simulation. Hence, the initial and final values of AINVAS, AINVSA, and ORATESA in responding 

to a unit step input are obtained.  

 

          𝑙𝑖𝑚
𝑠→∞

𝑠
𝐴𝐼𝑁𝑉𝐴𝑆
𝐶𝑂𝑁𝑆

= 0                   𝑙𝑖𝑚
𝑠→0

𝑠
𝐴𝐼𝑁𝑉𝐴𝑆
𝐷

= 𝜏AS     

 

       𝑙𝑖𝑚
𝑠→∞

𝑠
𝐴𝐼𝑁𝑉𝑆𝐴
𝐶𝑂𝑁𝑆

= 0                   𝑙𝑖𝑚
𝑠→0

𝑠
𝐴𝐼𝑁𝑉𝑆𝐴
𝐷

= 𝜏SA     

 

                                         𝑙𝑖𝑚
𝑠→∞

𝑠
𝑂𝑅𝐴𝑇𝐸𝑆𝐴
𝐶𝑂𝑁𝑆

= 0                 𝑙𝑖𝑚
𝑠→0

𝑠
𝑂𝑅𝐴𝑇𝐸𝑆𝐴
𝐶𝑂𝑁𝑆

= 1                         (22)   

 

As expected, the initial values of AINVAS , AINVSA and ORATESA are zero, similar to the results 

obtained by John, Naim and Towill (1994). The final value of the ORATESA for the upstream sub-

assembly system is, as expected, equal to demand, i.e. 1. The final value of the AINVSA and AINVAS  are 

determined by the coefficient 𝜏SA and 𝜏AS, i.e. the steady state of two inventory in responding a step 

demand equal to desired inventory level. Based on Equation (19) to (21), the final assembly system is 

characterised as a third-order polynomial, while a sixth-order polynomial describes the sub-

assembler’s manufacturing system. Also, there is a third-order polynomial, (1 + τⅈ𝑠 +
𝜏ⅈ𝜏AS𝑠

2)(𝜏BL + 𝜏BL𝜏DD𝑠), in both characteristic equations (CEs), which confirms that the dynamic 

behaviour of the final assembly system is not influenced by the sub-assembler manufacturing system, 

while the dynamic performance of the supplier manufacturing system can be partially manipulated by 

the final assembly control policies under the ATO system. We now assess the CEs of Equations (19) 

to (21) by obtaining the roots as follows: 
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𝑅1&2 = −
1

2𝜏𝐴𝑆
±
√𝜏ⅈ

2 − 4𝜏ⅈ𝜏AS
2𝜏ⅈ𝜏AS

, 𝑅3 = −
1

𝜏𝐴
, 𝑅4 = −

1

𝜏𝐷𝐷
 

 

𝑅5&6 = −
1

2
(
1

𝜏𝑆𝐴
+

1

𝜏𝑊𝐼𝑃
) ±

√−4𝜏AINV𝜏SA𝜏WIP
2 + (𝜏AINV𝜏SA + 𝜏AINV𝜏WIP)

2

2𝜏AINV𝜏SA𝜏WIP

    (23) 

 

Inspecting Equation (23): 

1. Given that the physical delays, 𝜏SA and 𝜏𝐴𝑆, are positive, the ATO state is permitted to be 

stable for any positive control policies, i.e. possible value of τA, τAINV , τWIP and τI. However, the 

system’s response will be continuously oscillatory if 𝜏𝑆𝐴 = −𝜏𝑊𝐼𝑃, that is, the 𝑅5&6 become purely 

imaginary with no real part. 

2. Three feedback inventory loops, AINVAS, AINVSA and WIP adjustment, may characterize 

oscillations of the ATO state if the square root part of 𝑅1&2  and 𝑅5&6  become negative, i.e. 𝜏𝐼
2 −

4𝜏𝐼𝜏𝐴𝑆 < 0  and −4𝜏AINV𝜏WIP
2 𝜏SA + (𝜏AINV𝜏WIP + 𝜏AINV𝜏SA)

2 < 0 . The corresponding CODP 

inventory-based control policies, 𝜏𝐼 ,  𝜏AINV  and 𝜏WIP , should be carefully adjusted to avoid the 

possible oscillatory system response.  

3. Given the sub-assembler manufacturing delay, 𝜏SA, and associated inventory adjustment 

time (𝜏WIP ) are longer than downstream transport acquisition delay  𝜏𝐴𝑆 , the real part of 𝑅5&6 , 

−
1

2
(
1

𝜏𝑆𝐴
+

1

𝜏𝑊𝐼𝑃
), is smaller than the real part of 𝑅1&2, i.e. −

1

2𝜏𝐴𝑆
. In other word, 𝑅5&6 are located in a 

closer position to the origin s plane comparing the location of 𝑅1&2. As a result, the upstream inventory 

feedback loops, and forecasting loop may dominate the dynamic behaviour of the ATO state. 

Particularly, inventory loop-based control policies, 𝜏AINV,  plays a key role in influencing the whole 

state’s oscillatory behaviour. 

To further understand the oscillation and system recovery properties, we derive the 𝜔𝑛 and 𝜁 of 

two second order polynomials,(1 + τⅈ𝑠 + 𝜏ⅈ𝜏AS𝑠
2) and(1 +

(𝜏AINV𝜏SA+𝜏AINV𝜏WIP)

𝜏WIP
𝑠 + 𝜏AINV𝜏SA𝑠

2): 

 

              𝜔𝑛1 = √
1

𝜏𝐴𝑆𝜏𝐼
          𝜁1 =

1

2
√ 
𝜏𝐼
𝜏𝐴𝑆
                  (24) 

              𝜔𝑛2 = √
1

𝜏AINV𝜏SA
,    𝜁2 =

(𝜏SA + 𝜏WIP)

2𝜏WIP
√
𝜏AINV
𝜏SA

 

 

For AINVAS, both 𝜔𝑛1 and 𝜁1 are determined by 𝜏𝐼 under physically fixed 𝜏𝐴𝑆, and 𝜏𝐼 has the 

reverse impact on nature frequency and damping ratio. The final assembly system’s response and 

inventory recovery speed will be slower as the increase of 𝜏𝐼, due to the decrease of 𝜔𝑛1. However, 

the increase of 𝜏𝐼  will give the larger value of damping ratio and lead to the corresponding more 

‘damped’ system with less oscillations. Also, 𝜔𝑛1 and 𝜁1 could lead to such impact on the dynamic 

behaviour of AINVSA and ORATESA at the subassembly site. Furthermore, 𝜏AINV and 𝜏SA negatively 

determine the value of natural frequency for the upstream supplier AINVSA feedback loop. The 

increase of their value will lead to slow system recovery speed to reach the steady state condition due 

to the decrease of value of 𝜔𝑛2. Moreover, 𝜏AINV  and 𝜏WIP have the reverse impact for 𝜁2.  

 

4.2. The impact of nonlinearities on ATO dynamic performance 

When capacity and non-negative order constraints are active in the ATO system, the dynamic 

behaviour becomes more complex. We now explore the impact of two nonlinearities separately in 

responding sinusoidal demand by using describing function methods. 

4.2.1. Linearization of capacity and non-negative order constraints at the subassembly echelon 
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In the linear system, upstream sub-assembly production capacity is assumed as unlimited and 

the order is permitted to be negative. This means that the sub-assembler can freely return the raw 

materials to their suppliers and any order rate received can be allocated for immediate production. 

These are unrealistic assumptions due to the expensive production line system, e.g. see Lin, Spiegler, 

and Naim (2017), and the forbidden return policy usually agreed between material suppliers and the 

sub-assembler manufacturers. So, both constraints should be considered when analysing the dynamics 

of the ATO system. We now linearize such nonlinearities before analysing their impact on the dynamic 

behaviour of the ATO system. Specifically, in an open-loop form of such nonlinearity, an input 

𝐷𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡)  

                             𝐷𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) = 𝐴 · cos(𝑤𝑡) + 𝐵                              (25) 

where A is the amplitude, B is the mean and w is the angular frequency (𝑤 =
2𝜋

𝑡
), will produce an 

output ORATESA(t) with the same frequency but different mean and amplitude. Figure 4 reports the 

main characteristics of this nonlinearity. The output ORATESA does not rely on the past value of the 

input DORATESA, but it varies depending on input’s actual status based on the upper and lower limit. 

ORATESA

DORATESA

CL

0

 

(a) Time series for DORATESA and ORATESA                            (b) The property of single-valued nonlinearity 

Figure 4. Asymmetric output saturation in relation to sinusoidal input DORATESA 

 Note that a fundamental requirement for the system is that CL must be at least larger than averaged 

demand due to the accumulative errors driven by the feedback integrator (1/s). In other word, the 

DORATESA will increase exponentially if manufacturing capacity is less than the averaged demand 

rate and the system will become unstable. Under the assumption, the output function, ORATESA, can 

be represented by three linear piecewise equations as follow: 

𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) = {
0                  𝑖𝑓     𝐷𝑂𝑅𝐴𝑇𝐸𝑆𝐴 ˂ 0

𝐷𝑂𝑅𝐴𝑇𝐸𝑆𝐴      𝑖𝑓    0 ˂ 𝐷𝑂𝑅𝐴𝑇𝐸𝑆𝐴 ˂ 𝐶𝐿
𝐶𝐿                 𝑖𝑓      𝐷𝑂𝑅𝐴𝑇𝐸𝑆𝐴 ˃ 𝐶𝐿

    (26) 

To analyse the discontinuous nonlinearities in the ATO system, the describing function method 

can be applied (Spiegler et al. 2016; Spiegler and Naim 2017). This method is a quasi-linear 

representation for a nonlinear element subjected to specific input signal forms such as Bias, Sinusoid 

and Gaussian process and system’s low-pass filter property (Vander and Wallace 1968). The principle 

advantage of using the describing function method is it enables the aid of analytically designing 

nonlinear systems. The basic idea is to replace the nonlinear component by a type of transfer function, 

or a gain derived from the effect of input (e.g. sinusoidal input). For an asymmetric saturation, as 

illustrated in Figure 5, DORATESA is smaller than zero or greater than CL, at least two terms need to 



18 
 

be identified: one term describes the change in amplitude (NA(CA)) in relation to the input amplitude 

and the other defines the change in mean (NB(CA)) in relation to the input mean. Furthermore, output 

phase angle (ϕ) in relation to the input angle may also be changed. 

Thereby given the input, i.e. Equation (25), the output ORATESA can be approximated to: 

𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) = 𝑁𝐴(𝐶𝐴) · 𝐴 · Cos(𝑤𝑡 + ϕ) + 𝑁𝐵(𝐶𝐴) · 𝐵                              (26) 

The Fourier series expansion can be applied to obtain NA(CA), NB(CA) and ϕ: 

𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) ≈ 𝑏0 + 𝑎1 cos(𝑤𝑡) + 𝑏1 sin(𝑤𝑡) + 𝑎2 cos(2𝑤𝑡) + 𝑏2 sin(2𝑤𝑡) +···

≈ 𝑏0 +∑(𝑎𝑛 cos(𝑛𝑤𝑡) +

∞

𝑛=1

𝑏𝑛 sin(𝑛𝑤𝑡))                                   (27) 

Where the Fourier coefficient can be determined by: 

𝑎𝑛 =
1

𝜋
∫  𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) cos(𝑛𝑤𝑡) 𝑑𝑤𝑡

𝜋

−𝜋

                 (28) 

𝑏𝑛 =
1

𝜋
∫  𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) sin(𝑛𝑤𝑡) 𝑑𝑤𝑡

𝜋

−𝜋

                 (29) 

𝑏0 =
1

2𝜋
∫  𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡)𝑑𝑤𝑡

𝜋

−𝜋

                            (30) 

and ORATESA is the piecewise linear function (Figure 6a): 

𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) =

{
 
 

 
 

0     −𝜋 < 𝑤𝑡 < −𝑟2
𝐴 · cos(𝑤𝑡) + 𝐵      −𝑟2 < 𝑤𝑡 < −𝑟1

𝐶𝐿    −𝑟1 < 𝑤𝑡 < 𝑟1
𝐴 · cos(𝑤𝑡) + 𝐵       𝑟1 < 𝑤𝑡 < 𝑟2

0      𝑟2 < 𝑤𝑡 < 𝜋

      ( 0 < 𝑟1 < 𝑟2 ≤ 𝜋)  (31) 

To approximate periodic series, only the first, or fundamental harmonic is needed and thereby 

we need to find the first order coefficient of Fourier series expansion demonstrated in Equation (28)-

(30). Note that such approximation is often useful for the symmetric system including only odd 

functions and thus high order harmonic can be effectively attenuated by the linear dynamic of the 

system, i.e. the property of low-pass filter. For the asymmetric system, as the focus of this study, the 

aid of simulation is recommended (Atherton, 1975) to verify the analytical results. We now obtain the 

first harmonic of the piecewise linear Equation (31): 

        𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) = 𝑏0 + 𝑎1 · cos(𝑤𝑡) + 𝑏1  · sin(𝑤𝑡) = 𝑏0 +√𝑎1
2 + 𝑏1

2 cos(𝑤𝑡 + ϕ)      (32)      

Where ϕ = arctan (
𝑏1 

𝑎1
) 

 By comparing Equation (26) and (32), we have the gain of the describing function as follows: 

𝑁𝐴(𝐶𝐴) =
√𝑎1

2 + 𝑏1
2 

𝐴
 and 𝑁𝐵(𝐶𝐴) =

𝑏0 

𝐵
      (33) 

Due to the property of such single-valued nonlinearity, there is no output phase shift in relation 

to input, that is, 𝑏1 = 0 and ϕ = 0. By calculating the Fourier coefficient 𝑎1 and 𝑏0 (MathematicaTM), 

the describing function gains are obtained as follow: 
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𝑁𝐴(𝐶𝐴) =
𝐴 · Cos(𝑟1) · Sin(𝑟1) + (2𝐵 + 𝐴 · Cos(𝑟2)) · Sin(𝑟2) − 𝐴 · 𝑟1 + 𝐴 · 𝑟2

𝐴 · 𝜋
       (34) 

𝑁𝐵(𝐶𝐴) =
𝐴 · (Sin(𝑟2) − Sin(𝑟1)) + 𝐴 · 𝑟1 · Cos(𝑟1) + 𝐵 · 𝑟2

𝐵 · 𝜋
      (35) 

Where 𝑟1 = Cos−1(
𝐶𝐿−𝐵

𝐴
) 𝑎𝑛𝑑  𝑟2 = Cos

−1(
−𝐵

𝐴
) and Equation (34) and (35) can be further 

simplified as: 

𝑁𝐴(𝐶𝐴) =
(CL − 𝐵) ∙ √1−

(CL − 𝐵)2

𝐴2
+ 𝐵 ∙ √1−

𝐵2

𝐴2
− 𝐴 ∙ cos−1 (

CL − 𝐵
𝐴

) + 𝐴 ∙ cos−1 (−
𝐵
𝐴
)

𝐴 ∙ 𝜋
     (36) 

𝑁𝐵(𝐶𝐴) =

𝐴 ∙ (√1 −
𝐵2

𝐴2
 − √1 −

(CL − 𝐵)2

𝐴2
 ) + 𝐴 ∙ (CL − 𝐵) cos−1 (

CL − 𝐵
𝐴

) + 𝐵 ∙ cos−1 (−
𝐵
𝐴
)

𝐵 ∙ 𝜋
  (37) 

 

Figure 5 gives the density plot for the value of NA as the increase of A from CL to 8CL, and 

the increase of B from 0.1 CL to CL. Depending on different value of A and B, NA(CA) ranges between 

0 and 1. Specifically, for a fixed B, NA(CA) appears to be decreasing in A and this implies that only a 

fraction of DORATESA will be manufactured due to the capacity and non-negative order constraints.  

However, the influence of B on amplitude gain depends on the relationship between A and CL. If A is 

larger than CL, B gives little influence on amplitude gain due to the dominant influence of A on the 

NA(CA). if A is located within 0 and CL, NA(CA) depends on both A and B. NA(CA) may equal to 1 (the 

system will behave as linear) if DORATESA do not exceed the constraint range, i.e. [0, CL], while only 

a fraction of DORATESA will be manufactured if NA(CA) <1.  

       

Figure 5. The density plot of NA(CA) based on A and B in relation to CL 

Overall amplitude of DORATESA play a major in influencing the value of NA(CA). This means 

the higher bullwhip, the less proportion of DORATESA will be manufactured. To explore how the 

relationship of A, B and CL influences the output mean gain, NB(CA), we differentiate Equation (37) 

with respect to A and yield the following expression: 
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𝑑𝑁𝐵(𝐶𝐴)
𝑑𝐴

=

√1−
𝐵2

𝐴2
−√1−

(CL − 𝐵)2

𝐴2

𝐵𝜋
     (38) 

Equation (38) shows that the zero gradient can be achieved if B =
1

2
CL and we obtain the 

corresponding value of NB(CA) 

         𝑁𝐵(𝐶𝐴)|𝐵=1
2
𝐶𝐿
=
Cos−1(−

CL
2𝐴) + Cos

−1(
CL
2𝐴)

𝜋
= 1     (39) 

So output mean gain, NB(CA), equals 1 irrelevant of input amplitude A if averaged input mean 

is half of CL, due to the fact that system has a symmetric saturation in this case, i.e. equal influence of 

upper capacity and nonnegative order constraints. Also, the increase of A leads to the increase of NB(CA) 

if B <
1

2
CL, while NB(CA) is monotonically decreasing in A if B >

1

2
CL. This means that if averaged 

input demand is less than half of CL, the non-negative order constraint gives more impact on NB(CA) 

than the corresponding capacity constraint and thereby NB(CA) decreases by the increase of A due to 

order rate reaching zero more often than hitting CL. However, if averaged input demand is larger than 

the half of CL, NB(CA) is monotonically decreasing in A because the impact of capacity constraint 

dominates the output mean gain comparing the corresponding non-negative order constraint. Such 

findings are consistent with Spiegler et al. (2016a; 2016b)’s separate investigation of the effect of 

capacity constraint and non-negative order constraints on output mean gain. Figure 6 demonstrates two 

examples how NB(CA) varies as the increase of A related to AL when B=0.2CL and B =0.8CL. 

 

Figure 6. The change of NB(CA) as the increase of A in relation AL when B=0.2CL (Left) and B=0.8CL (Right). 

4.2.2. Linearization of non-negative order constraints at the final assembly site 

In the linear ATO system, ORATEAS at the final assembly echelon is permitted to take negative 

values. It means that excess PC components at the final assembly plant can be freely returned to the 

sub-assembler site. This is an unrealistic assumption due to long geographical distance and 

export/import policies between the final assembly and their PC parts subassemblies. As a result, the 

non-negative order constraint should be put into the model to prevent the free inventory return from 

final assembly site to the supplier site. The main characteristics of non-negative nonlinearity is reported 

in Figure 7 and Equation (39) shows the piece linear function of ORATEAS: 

𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) = {
0                            𝑖𝑓     𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝐴𝑆  ˂ 0
𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝑆𝐴      𝑖𝑓     𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝑆𝐴 > 0     (39) 

Where  𝑃𝑢𝑙𝑙 𝑂𝑅𝐴𝑇𝐸𝑆𝐴(𝑡) = 𝐴1 · cos(𝑤𝑡) + 𝐵1   and 𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) can be approximated by  
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𝑂𝑅𝐴𝑇𝐸𝐴𝑆(𝑡) ≈ 𝑁𝐴(𝑁𝑂)𝐴1 · cos(𝑤𝑡 + ϕ) + 𝑁𝐵(𝑁𝑂)𝐵1        (40) 

ORATEAS

Pull ORATEAS

0

 

Figure 7. Main characteristics of non-negative order constraint at the downstream final assembly echelon. 

Where NA(NO) is the change in amplitude in relation to the input amplitude and NB(NO) is the 

change in mean in relation to the input mean under non-negative order constraint policy. Similar to the 

linearization of capacity and non-negative constraints for the sub-assembler production, the describing 

function method can be applied for linearizing such nonlinearity. The corresponding describing 

function gain can be derived as follows: 

𝑁𝐴(𝑁𝑂) =

𝐵 ∙ √1 −
𝐵2

𝐴2

𝐴 + Cos−1(−
𝐵
𝐴)

𝜋
     (41) 

𝑁𝐵(𝑁𝑂) =
𝐴 ∙ √1−

𝐵2

𝐴2
+𝐵 ∙ Cos−1(−

𝐵
𝐴)

𝐵 ∙ 𝜋
  (42) 

 

a) Amplitude gain                                                                        b) Mean gain                    

Figure 8. Terms of describing function for the non-negativity constraint. 

Figure 8 illustrates how the coefficients of the describing function vary as A1 increases for any 

B1 > 0. For values of A1 lower than B1, the system behaves as linear and output o(t) will be equal to 

the input do(t) corresponding to NA(NO) = 1 (Figure 8a). However, when A1 increases then only a 

fraction of this rate will actually be ordered corresponding to NA(NO) < 1. By inspecting Equation (41), 

we find that as Ado approaches infinity, NA1 approaches 0.5. So, the amplitude gain of the describing 

function can only vary from 0.5 to 1. On the other hand, the value of NB1 rises as A1 increases because 

the limit value of the order rate is at its minimum (Figure 8b). 
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4.2.3. Predicting the system’s dynamic behaviour  

Although two nonlinearities in the ATO system have different features, they both decrease their 

corresponding output amplitude gains (𝑁𝐴(𝐶𝐴) and 𝑁𝐴(𝑁𝑂) ) as the increase of input amplitude. Root 

locus techniques (Spiegler et al. 2016a; Spiegler and Naim 2017) can be used to predict how these 

nonlinearities affect the system responses. By replacing the  and  with the corresponding 

amplitude gains, 𝑁𝐴(𝐶𝐴) and 𝑁𝐴(𝑁𝑂), respectively, and using block diagram algebra, we obtain the new 

CEs and compare with CEs in linear ATO state based on Equation (19)-(21). 

𝐶𝐸𝑂𝐸𝑀: (𝜏BL + 𝜏DD𝜏BL𝑠)(𝑁𝐴(𝑁𝑂) + τⅈ𝑠+𝜏ⅈ𝜏AS𝑠
2)     (43) 

𝐶𝐸𝑠𝑢𝑝𝑝𝑙ⅈ𝑒𝑟 : 
 (1 + 𝜏𝐴𝑠)(𝜏BL + 𝜏DD𝜏BL𝑠)(𝑁𝐴(𝑁𝑂) + τⅈ𝑠+𝜏ⅈ𝜏AS𝑠

2)

(𝑁𝐴(𝐶𝐴)𝜏WIP + (𝜏AINV𝜏WIP + 𝜏AINV𝜏SA𝑁𝐴(𝐶𝐴))𝑠 + 𝜏AINV𝜏WIP𝜏SA𝑠
2)
     (44) 

The new 𝜔 and 𝜁 can be derived as follow: 

              𝜔𝑛1 = √
𝑁𝐴(𝑁𝑂)

𝜏𝐴𝑆𝜏𝐼
        𝜁1 =

1

2√
 

𝜏𝐼
𝜏𝐴𝑆𝑁𝐴(𝑁𝑂)

                  (45) 

              𝜔𝑛2 = √
𝑁𝐴(𝐶𝐴)

𝜏AINV𝜏SA
,    𝜁2 =

(𝑁𝐴(𝐶𝐴)𝜏SA + 𝜏WIP)

2𝜏WIP
√

𝜏AINV
𝜏SA𝑁𝐴(𝐶𝐴)

 

 

Regarding the downstream final assembly system, the incorporation of 𝑁𝐴(𝑁𝑂) (ranging between 

0.5 - 1) will result in a reverse impact on   𝜔𝑛1 and 𝜁1, that is, the decrease of  𝜔𝑛1 but increase 𝜁1 as 

the decrease of 𝑁𝐴(𝑁𝑂). This means the incorporation of non-negative order constraint at the final 

assembly   site leads to a ‘more damped’ system with less oscillations at the expense of slow system 

recovery speed. Also, as indicated by the Section 4.2.2, the 𝑁𝐵(𝑁𝑂) will increase as the increase of 

input demand amplitude. The dynamic response of upstream sub-assembler variables, however, are 

influenced by both nonlinearities. The decrease of output amplitude gain, 𝑁𝐴(𝐶𝐴), resulted from the 

capacity and non-negative order constraints, leads to the decrease of  𝜔𝑛2 and 𝜁2. This gives both 

slower and more oscillatory dynamic response of the ATO system. Note that depending on the 

relationship between mean of input demand and the half of capacity constraint (i.e. the dominant zone), 

the increase of demand amplitude may lead to the increase or decrease of 𝑁𝐵(𝑁𝑂).  

5. Numerical study 

In this section numerical simulation is conducted to test whether the analytical results derived 

from the linearized model (Section 4) hold under the nonlinear case. Specifically, the nonlinear hybrid 

ATO model (Figure 3), including capacity and non-negative order constraints, is used as the base 

simulation model and the numerical study is conducted via SimulinkTM
 (Matlab). We assume that the 

lead times ratio between 𝜏SA  and 𝜏AS  is 1:2 (i.e. 4 and 8 for transportation and component 

manufacturing delay). This assumption represents the long-term upstream subassembly manufacturing 

time, and relatively short time for component acquisition delay between supplier and the final assembly 

echelon.(Kumar and Craig; Katariya et al. 2014): 

𝜏SA= 2𝜏AS = 2𝜏I = 8𝜏DD = 8, 𝜏WIP = 16  𝜏AINV = 8 
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5.1 Feedback and feedforward control policy 

To test the impact of feedback and feedforward control loops (𝜏I, 𝜏A, 𝜏AINV) on bullwhip and 

CODP inventory variance analytically derived in Section 3.1, a unit step demand increase as the input 

is used due to its advantage of offering rich information for the dynamic behaviour of the system (John, 

Naim and Towill 1994). The recommended settings of both VIOBPCS and APVIOBPCS will be used 

as the initial design as illustrated above in Section 5, although we vary different control policies to 

understand the impact of each control policy on dynamic performance in the nonlinear environment 

(i.e. capacity limit is set as 2). All results are shown in Figure 9. 

 

 

Figure 9a. The impact of 𝜏I on AINVAS, AINVSA and ORATESA dynamic response. 

 
Figure 9b. The impact of 𝜏A on AINVSA and ORATESA dynamic response. 
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Figure 9c. The impact of 𝜏AINV on AINVSA and ORATESA dynamic response. 

 

In general, the simulation results support the analytical insights. The increase of 𝜏I lead to less 

oscillatory system response due to the increase of 𝜁1, at the expense of slower response of the ATO 

system (e.g. slow recovery of AINVAS, Figure 9a) driven by the decrease of 𝜔𝑛1. As a result, 𝜏I should 

be carefully adjusted due to the availability of AINVAS that directly relate to the customer service level, 

i.e. whether all incoming customized orders can be immediately final-assembled and shipped out. 

Similar to the effect of 𝜏I, the increase of 𝜏AINV benefit to the more ‘damped’ system compromised by 

slow system recovery due to the decrease of   𝜔𝑛2 and increase of 𝜁2. Furthermore, the simulation 

result supports the analytical result that 𝜏AINV significantly influences the dynamic behaviour of the 

ATO system, comparing the influence of 𝜏I and 𝜏A (Compare Figure 9a, 9b and 9c). Quick adjustment 

of 𝜏AINV leads to high bullwhip and significant oscillations, while long-term adjustment causes slow 

system recovery to reach the steady state condition. Thus, the upstream subassembly echelon should 

carefully tune their inventory policy to benefit the ATO system performance by reducing the cost of 

supply chain dynamics due to bullwhip and inventory variance. Note that compared to other control 

policies, the forecasting policy (𝜏A) has less impact on the dynamics of the ATO system. 

5.2. The impact of nonlinearities on ATO dynamic performance 

To test whether the analytical results of nonlinearities derived from the linearized model 

(Section 4.2) hold under the nonlinear model, the asymmetrical capacity and non-negative constraint 

zone is set as [0, 1]. i.e. the minimum value will not be less than 0 and the CL is 1. Specifically, as 

analytically derived from Section 4.2.1, the sinusoidal input amplitude directly influences the 

describing function gain, NA(CA) and NB(CA), of the sinusoidal output response at the sub-assembly plant 

under capacity and non-negative order constraints. Table 4 presents the comparison between analytical 

and simulation results of NA(CA). Input amplitudes ranging between 0.3 to 4 with 0.1rad/week 

frequency are used to examine the output amplitude gain change. Within reasonable error range, the 

simulation results support the analytical insights. 

𝑵𝑨(𝑪𝑨)simulation 

(analytical) results 

A=0.3 A=1 A=2 A=4 

B=0.2 

 

0.833 (0.890) 0.500 (0.574) 0.250 (0.311) 0.165 (0.158) 

B=0.5 

 

1 (1) 0.500 (0.608) 0.250 (0.314) 0.165 (0.158) 

B=0.8 

 

0.833 (0.890) 0.500 (0.574) 0.250 (0.311) 0.165 (0.158) 

Table 4. Comparison between simulation and analytical results. 
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Also, as highlighted by the analytical findings that the impact of input amplitude on mean gain 

(NB(CA) depends on the relationship between the average of input and the half of capacity limit, 

numerical simulation is implemented for test the analytical result shown in Table 5. The mean value 

of input demand is set 0.2, 0.5 (half) and 0.8 units to represent the different nonlinear dominated zones 

(non-negative order or capacity constraints). Input amplitudes ranging between CL to 5CL with 

0.1rad/week frequency are used to examine the output mean gain change. It can be concluded that the 

simulation results support the analytical insights. 

𝑵𝑩(𝑪𝑨) simulation 

results 

A=0.3 A=1 A=2 A=3 A=4 Summary 

B=0.2 

 

1.08 1.660 1.770 1.845 1.590 NB(CA) is larger than 1 and is 

monotonically increasing in A 

B=0.5 

 

1.021 0.986 0.996 1.002 0.1004 NB(CA)=1 within a reasonable error 

range 

B=0.8 

 

0.931 0.806  0.791 0.783 0.763 NB(CA) is monotonically decreasing 

in A and less than 1 

Table 5. Numerical simulation result for NB(CA) based on different input amplitude and mean. 

Furthermore, simulation is conducted to test analytical insights derived by Root locus 

techniques (Spiegler et al. 2016a; Spiegler and Naim 2017) regarding the prediction of the impact of 

nonlinearities on the system responses. Due to input frequency does not impact on the output gains of 

nonlinearities (the property of single-value discontinuous nonlinearities), CL=3 and sinusoidal demand 

pattern with mean=1, frequency = 3 rad/week and amplitudes = 5 is implemented for a better 

visualization. All results are shown in Figure 10. It should be noted that a mix of step increase and 

sinusoidal demand patterns are adopted with zero initial condition, which has the advantage of 

visualizing the impact of nonlinearities on ATO dynamics in responding to both types of  patterns 

simultaneously.  

 

Figure 10a. Linear and nonlinear AINVAS response (Final assembly non-negativity constraint only). 
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Figure 10b. Linear and nonlinear AINVSA response (sub-assembler’s nonlinearity only) 

Overall, the results support the analytical findings regarding transient behaviour. The 

incorporation of non-negative constraints at the final assemble echelon leads to less oscillations (with 

an increase in 𝜁1) but slow recovery speed (due to a decrease in 𝜔1𝑛). But it should be noted that the 

incorporation of such a nonlinearity increases the mean level of AINVAS. This may improve the 

dynamic performance of the sub-assembler internal system by reducing AINVSA but contradicts the 

final assembly member’s general objective, i.e. minimize inventory to reduce the risk of technological 

redundancy with ever shorter product life cycles of products entering the market. The sub-assembler’s 

constraints for both capacity and non-negative order, verified by simulation (Figure 10b), reduce the 

bullwhip (ORATESA), at the expense of slowing AINVSA recovery speed as well as increasing its mean 

level, driven by the decrease in 𝑁𝐴(𝑁𝑂) and an increase in 𝑁𝐵(𝑁𝑂). This finding is well-recognized in 

the literature. e.g. see Cannella, Ciancimino, and Marquez (2008); Nepal, Murat, and Chinnam (2012); 

Ponte et al. (2017). 

5.3. Sensitivity analysis  

In the dynamic analysis above, one of the fundamental assumptions is that there is no loss of 

product quality or assembly line efficiency, which is not realistic in a real-world ATO system. For 

example, in the semiconductor industry, the unit yield (the percentage of good chips for each assembly 

die), assembly line yield rate (the percentage of good wafers per total) and the line yield (the percentage 

of good die per fabricated wafers) are important quality and efficiency related parameters (Gonçalves, 

Hines, and Sterman 2015; Mönch, Fowler, and Mason 2013) in influencing the dynamic behaviour of 

the system. By undertaking a sensitivity analysis, it is possible to check on the dynamic performance 

due to possible changes in quality and efficiency, that is, the physical parameters that the control policy 

designer cannot directly influence or change.  

 Specifically, we incorporate two general parameters related to the quality and efficiency, YF 

(final assembly line efficiency, the percentage of shippable goods for each final assembly line) and YS 

(subassembly quality yield rate), into the original nonlinear ATO model (Figure 3), as presented in 

Figure 11. The perfect quality and efficiency values (YF= YS=1) are used as the baseline setting, and 

we vary the two parameters between 0.6 and 1. A step demand input is introduced, and all 

nonlinearities are temporarily removed to visualize the key dynamic propertiessuch as peak order 

overshoot (equivalent to bullwhip) and inventory variance. All results are presented in Figure 12.  

The simulation results show that the quality yield rate and line efficiency have a negative 

impact on the dynamics of the ATO system. Decreases in YF and YS significantly increase the bullwhip 

of ORATESA, while comparing the significant impact of YF on inventory variance, YS has much less 

influence on AINVSA, due to the safety stock setting of AINVSA, i.e. AINV*
SA is only driven by YF. 

To be more specific, the decrease of final assembly line efficiency, YF, indicates the requirement of 

higher level of finished AINVSA to satisfy the end customized orders, which result the increase of the 

safety stock needed in the subassembly site, AINV*
SA. This implies the importance of maintaining 

high final assembly line efficiency to not only ensure the customer service level, but also improve the 

dynamic performance of the whole ATO system to reduce supply chain dynamics related cost. 

Furthermore, as expected, the decrease of quality yield and efficiency may lead to the increase in final 

value of AINVSA and ORATESA to ensure the same customer service level (the final value of AINVSA 

depends solely on YF). This leads to excess inventory and hence corresponding increases in inventory 

holding costs. For example, the final value of ORATESA  in responding to a unit step demand increase 

under YS = 0.6 approximately equal to 1.67, i.e. 𝐹𝑉𝑂𝑅𝐴𝑇𝐸𝑆𝐴 =
1

0.6
≈ 1.67.  
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Figure 11. The incorporation of quality and efficiency parameters in the hybrid ATO state. 

 

Figure 12a. The impact of final assembly line efficiency (YL) parameters on the dynamics of the ATO system. 

 

Figure 12b. The impact of subassembly quality yield rate (YS) parameters on the dynamics of the ATO system. 
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6. Discussion and conclusion.  

In this paper we investigate the dynamic performance of the ATO system by using combined 

control engineering and system dynamic methods. Using a PC supply chain empirically reported by 

Berry, Towill and Wadsley (1994), Naylor, Naim and Berry (1999), Kapuscinski et al. (2004), Huang 

and Li (2010) and Katariya et al. (2014), as an example, a system dynamics model of ATO is developed 

and the IOBPCS family are used as the benchmark models. We explore the impact of major feedback 

and feedforward control loops, as well as nonlinearities present in the ATO system. The system 

dynamic simulation is adopted for testing and providing some further insights of the ATO dynamic 

property. All main findings and corresponding managerial implications are summarized in Table 6. 

We contribute to the analysis of the ATO system structure from the system dynamics 

perspective. We reveal the impact of nonlinearities on the dynamic performance of an ATO system. 

The describing function is used to linearize nonlinearities present in the ATO system so that analytical 

insights can be obtained. We highlight the fact that, depending on the mean and amplitude of the 

demand, the non-negative order and capacity constraints in the ATO system may occur and their 

significant impact on system dynamics performance should be carefully considered. Failing to monitor 

nonlinearities, as traditionally assumed by the linear studies (Lin et al. 2017), may result in unwanted 

dynamic performance and thus dramatically increase the operational cost. For instance, final 

assemblers may underestimate the mean level of inventory and overestimate the inventory recovery 

speed if the non-negative order constraint is ignored. Sub-assemblers, analogously, may suffer 

increased inventory cost (i.e. the consequence of increasing/decreasing in inventory level and recovery 

speed) if capacity and non-negative order constraints are not considered at their production site. These 

analytical results, verified by simulation, offer robust insights for practitioners to monitor and control 

nonlinearities present in their ATO system to improve system dynamics behavior. 

Furthermore, downstream final assembly inventory control policy impacts on the dynamic 

performance of both final assemblers and sub-assemblers, e.g. the quick recovery of inventory at the 

final assembly may benefits the customer service level for final assemblers but increase supply chain 

dynamics associated cost for the sub-assemblers due to exceed inventory variance and bullwhip. This 

highlights the importance of trade-off design and control in managing supply chain dynamics. 

Moreover, we found the forecasting policy may no longer play an important role in influencing 

dynamic behavior of the system, contradicting previous literature that assume linearity, such as a linear 

order-up-to system (Dejonckheere et al. 2002; Li, Disney and Gaalman, 2014). Note that quality yield 

and final assembly line efficiency also plays a substantial role in influencing the dynamic behavior of 

the ATO system. 

This study, however, is limited to the analysis of a hybrid ATO system and ignored the possible 

switch between different states due to insufficient CODP inventory. The investigation of 

corresponding delivery lead times dynamics resulted from the switch can be an extension of this study. 

Furthermore, due to the importance of maintaining ATO structures to ensure customer service level, 

further control policy trade-off design between capacity and CODP inventory should be considered to 

minimize the corresponding operational cost within the context of the PC sector.
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ATO system structure Analytical and simulation results Corresponding managerial implications 

Control loops Feedback loops 1. The ATO is stable for any positive value of 

τA, τAINV, τWIP and τI 
2.  𝜔𝑛1  and 𝜁1 are inversely proportional to 𝜏𝐼 
3.  𝜔𝑛2  and 𝜁2are inversely proportional to 𝜏AINV 

4. 𝜏AINV plays a dominant role in influencing the whole 

state’s oscillatory behaviour 

1. There is a need to consider the inventory policy of the downstream 

echelon to avoid excessive bullwhip and inventory variance and 

associated costs. Managers need to avoid too quick an inventory 

adjustment, defined by 𝜏𝐼.   
2. There is a trade-off in the sub-assembler between capacity and CODP 

inventory variance defined by 𝜏AINV. This policy parameter needs to be 

carefully selected due to its dominant influence on the dynamic 

behavior of the ATO system.  
3. The forecasting policy plays a substantively smaller role in 

influencing the dynamic performance of the ATO system in comparison 

to the other policies in the system, contrasting to previous studies that 

assumed linearity (Dejonckheere et al. 2002; Li, Disney and Gaalman, 

2014). 

Feedforward loops An increase in 𝜏A leads to a reduction in bullwhip 
(ORATESA variance) at the expense of increasing AINV-

SA variance, although the effect of 𝜏A is limited 

comparing feedback control loops 

Nonlinearities Linearization  𝑁𝐴(𝑁𝑂)  

and 

𝑁B(NO) 

1. The occurrence of non-negative order constraints at the 

final assembly site lead to a change in 𝑁𝐴(𝑁𝑂) ranging 

between 0.5 and 1 depending on the amplitude of input 

demand. 

2. 𝑁B(NO) increases as of demand amplitude increases 

1.Being aware of the impact of the system’s nonlinearities and constraints 

is very important for final assemblers. Depending on the demand 

amplitude, the non-negative order constraint at the final assembly plant 

may occur, such that  𝑁B(NO) will increase with demand amplitude, and 

this could lead to a significant increase in average inventory level, which 

increases total costs. 

 

2. Production managers at the subassembly site should carefully consider 

capacity utilization, i.e. should the mean of the orders received from the 

downstream final assembly exceed half of the maximum capacity, then 

the dominant impact on CODP inventory dynamics will be the capacity 

constraint rather than the non-negative order low boundary. Under such 

condition, 𝑁B(CA)  will increase with demand amplitude, leading to the 

decrease in average inventory level.  

 

In contrast, if the mean of the orders received is less than half of the 

maximum capacity then the non-negative order boundary dominates. 

This lead to the increase in average CODP inventory level at sub-

assemblers. Alternatively, if the mean of the orders received equals half 

of the maximum capacity then nonlinearities do not have impact on the 

averaged inventory level.  

𝑁𝐴(𝐶𝐴) 

and 

𝑁B(𝐶𝐴) 

1. 𝑁𝐴(𝐶𝐴) decreases and approaches 0 as input demand 

amplitude increases, triggered by the occurrence of 
capacity and non-negative order constraints at the sub-

assembler site. 

2. The change of 𝑁B(𝐶𝐴), however, depends on the 

relationship between mean of input (B) and 
1

2
CL. NB(CA) 

equals to 1 irrespective of input amplitude A if B=
1

2
CL. If 

B <
1

2
CL, an increase in A leads to an increase in NB(CA), 

while NB is monotonically decreasing in A if B >
1

2
CL 

The impact 

of 𝑁𝐴(𝑁𝑂)  

and 𝑁B(NO) 

 𝜔𝑛1 and 

𝜁1 
 

A decrease in 𝑁𝐴(𝑁𝑂)  will result in a decrease in  𝜔𝑛1  and 

an increase in  𝜁1.  
 

1. An increase in demand amplitude, which influences 𝑁𝐴(𝑁𝑂), will yield 

a system with lower bullwhip and inventory variance, although at the 

expense of a slower inventory recovery speed at the final assembly. The 
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The impact 

of 𝑁𝐴(𝐶𝐴) 

and 𝑁B(𝐶𝐴) 

𝜔𝑛2  and 

𝜁2 
The decrease of output amplitude gain, 𝑁𝐴(𝐶𝐴), resulting 

from the capacity and non-negative order constraints at 

the sub-assembler site, will lead to a decrease in  𝜔𝑛2 and 

𝜁2 

latter suggests a decrease in customer service level due to the increased 

probability of stock-out, in particular when the system’s steady state 

condition is disturbed by a sudden but a sustained demand increase. 

 

2. An increase in demand amplitude, which influences 𝑁𝐴(𝐶𝐴) , will 

decrease CODP inventory recovery speed at the subassembly, which also 

directly increases the stock-out probability of CODP inventory at the final 

assembly site. 

Quality and 

efficiency 

The impact 

of YF an YS 

 The decrease of YF and YS significantly increases 

bullwhip, or ORATESA variance, and YF also plays a key 

role in influencing the variance of AINVSA 

Final assembler should pay attention to their final assembly line 

efficiency, defined by YF, and the sub-assembler needs to consider yield 

losses, given by YS, since they not only directly relate to the customer 

service level, i.e. whether the total orders can be delivered within the 

quoted lead times, but also increase supply chain dynamics costs of the 

upstream supplier in the ATO system. 

Table 6. The summary of findings and managerial implications in this study. 
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