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ABSTRACT
Recent research has highlighted the need to improve patient satisfaction by reducing
perceived waiting times in hospitals. This study examines factors that are associ-
ated with waiting time estimation behaviour and how to control flow of patients
who overestimate waiting times. Using data from more than 250 patients, we test
the applicability of machine learning methods to understand under-, correct and
overestimation behaviour of waiting times in two emergency department areas. Our
attribute ranking and selection methods reveal that actual waiting time, clinical
attributes, and the service environment are among the top ranked and selected at-
tributes. The classification methods reveal that the precision to classify a patient
to the true outcome of overestimating waiting times reaches almost 70% in the first
waiting area. If a patient waits in a treatment room which is the second waiting area
under study, this precision level reaches almost 78%. We developed a discrete-event
simulation model which we linked with the machine learning models of each waiting
area. Our scenario analysis revealed that changing staffing patterns can lead to a
substantial drop-off in the number of patients overestimating waiting times. Our re-
sults can be employed to control waiting time perceptions and, potentially, increase
patient satisfaction.

KEYWORDS
Waiting Time Perceptions; machine Learning; attribute Selection; classification;
discrete-event simulation

1. Introduction

Research in behavioural operations management has highlighted the need to focus
on healthcare (Brailsford and Schmidt (2003); Fügener, Schiffels, and Kolisch (2017))
and the modelling of individuals’ perceptions (White (2016)). When patients access
systems of emergency care they are typically accompanied by waiting times – a result
from variations in arrivals and service times. Individuals, however, perceive waiting
times differently. Moreover, when patients are in need of emergency care services, they
are concerned about being served immediately (Welch (2009)).

To understand which factors are associated with under-, correct and overestimation
of waiting times in an emergency environment and to classify individuals’ under-,
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correct and overestimation behaviour is the aim of this study which is different from
the traditional objective of minimizing waiting time. Previous research has shown that
perceived waiting times are dependent on five dimensions (Welch (2009)):

(1) Empathy and attitude,
(2) information dispensation,
(3) technical competence (both technical skills and available technology),
(4) pain management and
(5) acceptable waiting times.

While our research is concerned with studying information dispensation by nurses
and acceptable waiting times, the main focus is to evaluate factors that are associated
with the under-, correct and overestimation of waiting times and how to manage flow
in the ED based on these factors.

We investigate factors that influence the behaviour of under-, correct and overesti-
mation of waiting times at a service encounter in a hospital by using machine learning
methods. We focus on achieving accurate classification of under-, correct and overesti-
mating waiting times in two subsequent waiting areas. We analyze patient data from
emergency department visits consisting of more than 250 records from a hospital in
southern Germany. Our results show that machine learning approaches can identify
attributes related to under-, correct and overestimation behaviour of patients’ waiting
times. The methods achieve up to 78% classification accuracy and when combined
with discrete-event simulation modelling, they can inform staffing decisions to reduce
the number of patients overestimating waiting times.

The remainder of the paper is structured as follows. Section 2 provides a survey of
relevant literature. Section 3 introduces the methods that are evaluated in this study.
The analysis of the performance of these methods is given in Section 4, followed by
concluding remarks in Section 5.

2. Literature Review

Recent research in behavioural healthcare operations management have addressed
problems such as biases in surgeons’ determination of uncertain surgery time leading
to inefficient usage of operating rooms (Fügener et al. (2017)), and the behavioural
impact of how queues are designed on human servers resulting in potentially longer
waiting lines (Shunko, Niederhoff, and Rosokha (2018)). Literature reviews on pa-
tient satisfaction in the emergency department are Boudreaux and O’Hea (2004) and
Welch (2009). With respect to waiting times, a survey on socio-demographic attributes
associated with waiting is provided by Landi, Ivaldi, and Testi (2018). Outside health-
care, an example to predict waiting times for the arrival of transportation services is
Sadat Zadeh, Anwar, and Basirat (2012).

In what follows, we review publications in which main factors that impact perceived
waiting times were discovered. We focus on recent journal articles published after 1995.

To obtain a greater insight into the nature of PWT and its relationship to pa-
tient satisfaction, Table 1(a) introduces research on waiting times broken down by the
following research fields and publication types:

• General services,
• internet services and
• ED services.
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General
services

Antonides, Verhoef, and
van Aalst (2002); Luo,
J. Liberatore, L. Nydick,
B. Chung, and Sloane
(2004)

Internet
services

Hong, Hess, and Hardin
(2013)

ED ser-
vices

Boudreaux and O’Hea
(2004); Hedges (2002);
Nanda et al. (2012);
Shaikh, Witting, Winters,
Brodeur, and Jerrard
(2013); Soremekun,
Takayesu, and Bohan
(2011); Thompson,
Yarnold, Adams, and
Spacone (1996); Thomp-
son, Yarnold, Williams,
and Adams (1996); Welch
(2009)

(a) Classification of Articles by Field and Pub-

lication Type

PWT is
related to
and impacts
satisfaction
strongly

Boudreaux and O’Hea (2004);
Soremekun et al. (2011); Thomp-
son, Yarnold, Williams, and
Adams (1996); Welch (2009)

Satisfaction
depends
more on
PWT than
AWT

Hedges (2002); Thompson,
Yarnold, Williams, and Adams
(1996)

Patients
inaccurately
estimate
AWT and
PWT

Thompson, Yarnold, Adams, and
Spacone (1996)

Distraction
shortens
PWT

Antonides et al. (2002); Nanda et
al. (2012); Shaikh et al. (2013);
Thompson, Yarnold, Williams, and
Adams (1996); Welch (2009)

Distraction
increases
PWT

Hong et al. (2013)

Process
reengineer-
ing impacts
PWT

Luo et al. (2004)

(b) Overview of Perception-related Outcomes
Table 1. Classification of Publications in the Field of Waiting Time Perceptions

Table 1(a) reveals that there are two relevant studies related to general services. An-
tonides et al. (2002) investigate the effects of the waiting environment with distraction
by music, TV and queue information on PWT. They disclose that overestimation of
waiting time is one crucial reason for an unsatisfying service perceived. Moreover, they
conclude that providing information about the remaining waiting time reduces over-
estimation and consequently increases customer satisfaction. Additionally, Luo et al.
(2004) discover the positive influence of changing the processes on AWT and PWT.

The internet services research area is the focus of Hong et al. (2013) who evaluate
online waiting time perceptions. Their study reveals that time-related visual content
shown to customers who wait for a download makes users perceive the download slower.

The acceptability of a time-tracker display is studied by Shaikh et al. (2013) who
conclude that patients prefer an ED in which the estimated wait time is displayed.
Another empirical study was conducted by Nanda et al. (2012) whose objective was
to analyze the effect of visual art on patients’ and visitors’ behaviour in the ED. They
found a significant reduction in restlessness, noise level, and people staring at other
people in the room. They conclude that visual art has positive effects on the ED
waiting experience.

Table 1(b) presents the results directly related to the customer’s perception by clus-
tering the findings into five groups. The majority of the selected articles is associated
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with PWT in the EDs of hospitals. For instance, Thompson, Yarnold, Williams, and
Adams (1996) interviewed the patients of a community hospital’s ED to determine the
effects of actual waiting time, perception of waiting time, information delivery, and
expressive quality on patient satisfaction. The authors identify PWT as one of the
main impacting factors on patient satisfaction. Soremekun et al. (2011) validate this
result and recommend an intense focus and improvement on the service perception.
With regard to patient satisfaction, Welch (2009) identifies the strongest correlation of
acceptable wait times and empathy. In accordance with Boudreaux and O’Hea (2004),
all the results show the strong impact of PWT on patients’ satisfaction.

Thompson, Yarnold, Williams, and Adams (1996) and Hedges (2002) find that the
effect of satisfaction depends more on PWT than on AWT. Also, an evaluation of the
accuracy of patients’ time estimation by Thompson, Yarnold, Adams, and Spacone
(1996) shows that on the one hand, the examined participants tend to overestimate
the period from triage until the first examination. On the other hand, they observe an
underestimation of the total amount of time spent in the ED.

In addition, there are distraction-related factors inducing changes of contentment.
Experimental studies prove that information about the remaining waiting time com-
municated by staff reduce the PWT (see e.g. Antonides et al. (2002)). Furthermore,
music, television or time tracker systems are widely recognized tools to improve the
well-being of patients in a waiting atmosphere (see e.g. Shaikh et al. (2013)).

In summary, PWT depends on various factors and is strongly related to patient sat-
isfaction. Therefore, the reduction of PWT is a promising variable to improve patient
satisfaction in the ED.

The approaches proposed in our paper can be categorized into and differentiated
from the literature on the management of perceived waiting times in emergency de-
partments as follows: First, with respect to the study design to find relations between
actual and perceived waiting times, the approach of Thompson, Yarnold, Adams,
and Spacone (1996) is similar. However, instead of asking patients 2-4 weeks after
their service experience in the Emergency Department (which was the study setting
in Thompson, Yarnold, Adams, and Spacone (1996)), we directly get feedback from
patients during the service process.

The second major difference in comparison to previous work is that we employ dif-
ferent attribute ranking and selection techniques to evaluate and select a concise set of
attributes that potentially explain the under-, correct and overestimation behaviour
of patient’s waiting times. Our work therefore differs from previous work because we
refrain from using regression models which underly the assumption on having inde-
pendent variables. Also, we model the problem as a three-class classification problem
because we want to characterize patients who are likely to under-, correctly or over-
estimate their waiting times.

The third major difference in comparison to previous work is that we evaluate
different classification techniques on a variety of metrics such as classification accuracy
and overestimation precision.

Finally, we develop a discrete-event simulation model of the ED under study and
link the under-, correct and overestimation of waiting time classification with the
model. By running a scenario analysis we can find out how the number of patients
who overestimate waiting times can be reduced.
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3. Methods

3.1. Machine Learning Methods

We provide a formal description of the classification problem of under-, correct and
underestimating waiting times. Let I denote a set of individuals (patients who enter
the emergency department) and W := {1, 2} denote the set of waiting areas, see
Figure 2 in Section 4. Let Ew denote the set of outcomes for waiting area w ∈ W
where

ei =

 0 if patient’s estimate waiting time < actual waiting time
1 if patient’s estimate waiting time = actual waiting time
2 otherwise

For our classification problem, we have three outcomes for each waiting area
Ew := {0, 1, 2} which means that a patient is either someone who under-, correctly
or overestimates waiting time. For each patient i ∈ I, we observe a set of attributes
Aw collected until the time point when he leaves waiting area w ∈ W. The patient’s
true outcome, ei ∈ Ew, is computed based on an indicator function of the actual waiting
time and the patient’s estimate. Let Va denote the set of possible values for attribute
a ∈ Aw and let vi,a ∈ Va denote the value of attribute a for patient i. We wish to
classify ei when patient i is a patient who under-, correctly or overestimates waiting
time given the patient’s values vi,a for each attribute a ∈ Aw and waiting area w ∈ W.
In this supervised learning problem, we assume the availability of labeled training data
from many other patients j ∈ I\i whose attribute values vj,a and outcomes ej (under-,
correct or overestimates) are known. This training data is used to learn a classification
model.

3.1.1. Attribute Ranking and Selection Techniques

Attribute ranking techniques provide a list of attributes sorted by decreasing attribute
quality. In contrast, attribute selection techniques select a classification-relevant subset
of attributes. In this paper, we will evaluate both attribute ranking and attribute
selection techniques.

3.1.1.1. Relief-F Attribute Ranking. Attribute ranking methods can be divided
into two broad categories: Statistical and entropy-based (Novaković (2016)). The
Relief-F algorithm (see Kononenko et al. Robnik-Šikonja and Kononenko (2003)) not
only provides a quick estimate of relevant attributes (Gartner, Kolisch, Neill, and Pad-
man (2015)), it also performed well in a setting where Naive Bayes (NB) was used
as a classification approach (Novaković (2016)). We will use NB in our experimental
analysis as well which is why evaluate Relief-F in combination with NB and other
classifiers. Another advantage is that Relief-F can handle multiple values in the class
attribute which we have because we take into account under-, correct or overestima-
tion of waiting time. The result is a quality measure of each attribute Qa which can
provide an attribute ranking.

In order to describe the algorithm we first define the “k-nearest hits” and “k-nearest
misses” for a sampled instance i ∈ I. Let the set of k-nearest hits Hi(k) ⊂ I \ i of
an instance i ∈ I contain at most k instances j ∈ I, j 6= i which have the same
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class value (e.g. overestimated waiting time) as instance i. More precisely, we choose
those instances with ej = ei which have the lowest diff i,j-values as defined by Eqs. (1)
and (2).

diff i,j =
∑
a∈A

diff i,j,a (1)

diff i,j,a =

{
0, if vi,a = vj,a
1, otherwise

(2)

Furthermore, for each class value e 6= ei, let the set of k-nearest missesMe,i(k) ⊂ I \ i
of instance i contain at most k instances j ∈ I, j 6= i. More precisely, we choose
those instances with ej = e which have the lowest diff i,j-values as defined by Eqs. (1)
and (2). Both the k-nearest hits and the k-nearest misses for each class value e ∈ E
are used by Equation (3) which computes the quality measure Qa for attribute a ∈ A.

Qa =
1

k · |I|
∑
i∈I

− ∑
h∈Hi(k)

diff i,h,a +
∑
e∈E\di

p(e)

1− p(ei)
∑

m∈Me,i(k)

diff i,m,a

 (3)

For each instance i ∈ I the k-nearest hits and k-nearest misses for each sampled
instance i ∈ I are selected and used in Equation (3). Then, the attributes with highest
values of the quality measure are considered most relevant for classification. A detailed
multi-class example is provided in Gartner (2015).

3.1.1.2. Markov Blanket Attribute Selection. With respect to attribute selec-
tion, we study Markov blanket (MB) which can be employed to model attribute-
dependencies, see Saeys, Inza, and Larranaga (2007). Since MB is not capable of
detecting redundant attributes, we evaluate Markov blanket attribute selection which
uses conditional independence relations between the class and all other attributes. A
Markov blanket is a specific Bayesian network that encodes this conditional indepen-
dence in a graph. In our study, we evaluate a Markov blanket (MB) search as devised
by Ramsey (2006).

3.1.1.3. Correlation-based Feature Selection. Another method to detect
attribute-dependencies is correlation-based feature selection (CFS), see Saeys et al.
(2007). It searches feature subsets according to the degree of redundancy among the
features. The goal is to eliminate irrelevant features (Khalid, Khalil, and Nasreen
(2014)) and the evaluation process aims to find subsets of features that are individ-
ually highly correlated with the class but have low inter-correlation. Intercorrelation
betweeen two nominal attributes is computed via the symmetrical uncertainty between
the attributes using conditional information entropies. In our case, the attribute sub-
set A∗w for waiting area w ∈ W is selected which maximizes the normalized sum of
conditional symmetrical uncertainties between each attribute and the class (Hall and
Holmes (2003)).
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3.1.2. Classification Techniques

A machine learning classifier learns information from a dataset of labeled training
examples. For each instance or individual, the true class is known to the classification
method. Now, having learned the classifier’s structure from the training examples,
the classifier is applied to a separate dataset of unlabeled test examples. The task
is to classify the true outcome of each individual patient which is unknown to the
classification method.

Many machine learning classifiers and attribute selection methods have been pub-
lished in the literature. Only few benchmarking studies have been performed on the
evaluation of combined attribute selection, ranking and classification methods. One of
these studies is Hall and Holmes (2003) who benchmarked Naive Bayes (NB), classi-
fication trees (also called decision trees) (DT), Bayesian networks (BN) and decision
rules. Furthermore, they combined the classifiers with CFS and Relief-F. This bench-
marking study motivated us for choosing the previously introduced attribute ranking
and selection methods as well as the classifiers which are introduced next.

3.1.2.1. Naive Bayes. For our first classifier, we first learn the prior probability
p(e) of each class value e ∈ Ew in waiting area w ∈ W from the training data. This can
be done by maximum likelihood estimation, see Gartner et al. (2015). Similarly, the
conditional probability p(vi,a|e) represents the relative frequency of training instances
that belong to class e ∈ Ew and for which vi,a = 1. Finally, the classifier assigns the
patient to class value e∗i for which the likelihood function is maximized.

3.1.2.2. Bayesian Networks. One limitation of Naive Bayes is that each patient’s
attribute is only dependent on the class attribute. In a Bayesian network, however,
conditional independence relations can be encoded by a graphical model in which at-
tributes are encoded as vertices and dependencies between attributes are encoded as
edges between vertices. When learning the conditional probabilities (e.g. using max-
imum likelihood) for each vertex, we must condition on the parents Πa of the given
attribute a in the network. This includes the class attribute and, similar to Naive
Bayes, we assign the patient to class e∗i that maximizes the posterior probability.

3.1.2.3. Classification Trees. Decision tree learners automatically learn a clas-
sification tree from labeled training data. There are various methods to learn the
structure of a classification tree from data: We use a decision tree learner which has
been investigated by Hall and Holmes (2003) in combination with attribute selection.
We employ this algorithm because we can control the over-fitting of the classification
tree as well as the tree size during the learning process using parameter optimization.

3.1.2.4. Decision Rules. Finally, a simple decision rule learner can be stated as
follows (Hall and Holmes (2003)): In the training set, we count how often a value of
an attribute occurred with respect to each class attribute value. For each value, we
create a mapping to the most frequent class. Now, for each instance in the testing set,
we assign the instance to the class which is described by the decision rule and the
observed attribute value.
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3.2. Patient Flow Modelling using Discrete-Event Simulation

The machine learning methods introduced in the previous subsection help us to iden-
tify relevant and non-redundant attributes that are associated with the under-, correct
and overestimation of patients’ waiting time. This can be important for the senior man-
agement of the ED if, for example, the ambiance turns out to be a relevant attribute
which the manager may immediately want to improve. Additional relevant and non-
redundant attribute may be the actual waiting time (as our experimental study will
reveal). As a consequence a metric to improve for a ED manager may be the reduction
of actual waiting time and, as a consequece, the number of patients who overestimate
waiting times. To this end, we followed Karnon et al. (2012)’s guide to develop a
discrete-event simulation model. The model is used to evaluate the perceived waiting
times as a function of different shift staffing decisions. The modelling approach and
arrival patterns have similarities to Crawford, Parikh, Kong, and Thakar (2013). Dif-
ferences are, however, that we evaluate waiting times and perceived waiting times for
staff rather than beds. Also our level of detail is higher since we track each patient’s
access time for each of the resources (staff and room). Figure 1 represents the patient
flow observed in the hospital’s ED.

Figure 1. Patient flow observed in the hospital’s ED
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The figure reveals that every patient first undergoes a registration in which the triage
level is determined. Afterwards, patients are assigned an examination room in which
they are seen by a nurse, physician or both. Then, if necessary, patients undergo
radiology diagnostics followed by a non-mandatory treatment. Finally, patients leave
the ED.

4. Experimental Investigation

In the following, we provide an experimental investigation of the presented methods.
We first give an overview of the data employed in our study, followed by a presentation
of the attribute selection results and an evaluation of the classification techniques. We
then show how we setup the DES and explain how we carried out our scenario analysis.
The section closes with a breakdown of the results based on different staffing patterns.

4.1. Data and Information Documented for Classifying the Estimation
Behaviour

Figure 2 shows the simplified patient flow at the ED of our collaborating hospital and
how we collected the data for our study.

Registration

and triage
A

Waiting

in

waiting

area (w1)

B

Waiting

in

treatment

room (w2)

C©

D Treatment E

Figure 2. Simplified patient flow at the ED of the collaborating hospital where the data collection points are
marked with (A)–(E)

In the ED of our collaborating hospital, patients undergo a registration process where
a nurse collects demographic information about the patient (data collection point
A). In addition, the registration nurse categorizes the patients using a triage system.
Afterwards, the patient waits in the waiting area (w1) until he/she is called by name
in order to enter the treatment room (w2). The time stamp when the patient is called
as well as the arrival time of the patient at the treatment room are documented (data
collection point B). In this room, the patient waits for the treatment by a physician,
nurse or both. The patient fills out our questionnaire (data collection point C). Once
the physician or nurse enter the treatment room, the time stamp is documented (data
collection point D). After the treatment, the patient fills out a second questionnaire in
order to collect data for the waiting time in the treatment room (data collection point
E). An overview of all attributes is shown in Table A1 while a summary statistics for
our data set is provided in Table 2(a).
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Table 2. Summary statistics (a) and #original and selected attributes (b)

wi Parameter n

1 # patients responded 228
2 # patients responded 176

1 # |{ei ∈ E1 : ei = 1}| 91
1 # |{ei ∈ E1 : ei = 2}| 80
1 # |{ei ∈ E1 : ei = 3}| 57

2 # |{ei ∈ E2 : ei = 1}| 35
2 # |{ei ∈ E2 : ei = 2}| 31
2 # |{ei ∈ E2 : ei = 3}| 110

(a)

wi original
#attributes

#selected attributes using

Relief-F MB CFS

1 21 11 3 6
2 25 11 2 4

(b)

The table reveals that in waiting area 1 and 2, the number of patients who responded
was 228 and 176, respectively. Of these patients, some only answered questions in area 1
while others only answered questions in area 2. This is why the total number of patients
sums up to more than 250. A more detailed view is provided in Figures 3(a)-(b). They
show the breakdown of how many patients answered the question of “How long do you
estimate your waiting time in the waiting area?” while intervals range from “0-2”, “3-
5”, “6-10”, “11-15”, “16-30”, “31-45”, “46-60”, “61-90”, “91-120”, “121-150”, “>150”
minutes encoded as integers from 1 to 11. We call this perceived waiting time (PWT)
and the same coding has been used for encoding the actual waiting time (AWT).

(a) (b)

Figure 3. Actual (AWT) and perceived waiting time (PWT) as responded by patients in the waiting
area w1 (a) and the treatment room w2 (b)

The figures show, for example, that values above the coloured diagonal in Figure 3(a)
sum up to 57 which is exactly the number of individuals we labeled as overestimators
(see Table 2(a)). Another observation in Figure 3(b) is that none of the patients waited
more than 90 minutes in waiting area 2 which is encoded by interval number 8.
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4.2. Attribute Ranking, Selection and Classification Results

4.2.1. Attribute Ranking Results

Table 3 provides the results of the attribute rankings where the nearest-neighbor pa-
rameter of the Relief-F algorithm is set to k = 10, as suggested by Robnik-Šikonja
and Kononenko (2003).

Table 3. Results of the top ten attributes determined by Relief-F for waiting area w1(a) and w2(b)

Rank Attribute name Qa

1 Waiting time in waiting
area w1

0.0369

2 How was your perception
on waiting time in this
area (w1)?

0.0357

3 While waiting, did you
look at your watch?

0.0095

4 Do you agree that pa-
tients who arrive after
you are treated before
you?

0.0088

5 Did you have company
while waiting (Friend,
relative)?

0.0086

6 Age 0.0080
7 The ambiance of the

waiting area is pleasant.
0.0077

8 The staff informed me
about my current waiting
situation.

0.0066

9 Type of admission 0.0045
10 Type of arrival 0.0033

11 Under-, correct and
overestimation of waiting
time in waiting area w1

(a)

Rank Attribute name Qa

1 Waiting time in waiting
area w2

0.0636

2 In this waiting area (w2) I
felt calm and unhurried.

0.0382

3 How was your perception
on waiting time in this area
(w2)?

0.0354

4 Treatment time 0.0302
5 While waiting, did you

look at your watch?
0.0288

6 How long do you estimate
your waiting time in wait-
ing area w1?

0.0144

7 The staff informed me
about my current waiting
situation.

0.0061

8 Type of admission 0.0058
9 Under-, correct and overes-

timation of waiting time in
waiting area w1

0.0054

10 Waiting time in waiting
area w1

0.0043

11 Under-, correct and overes-
timation of waiting time in
waiting area w2

(b)

Both attribute rankings, in waiting area w1 and w2, indicate that the attribute
“waiting time” and the “waiting time perception” are among the top three ranked
attributes. One explanation for this phenomenon is that waiting time perceptions
have a direct influence on the under-, correct and overestimation of waiting time
as our literature review revealed. Another important attribute as revealed by the
attribute ranking is whether or not the staff informed the patient about the waiting
situation. This is important because the direct implication of our study is that the
emergency department can control under-, correct and overestimation of waiting times
by informing the patient about the waiting situation. We expect this result because
it confirms previous studies such as Antonides et al. (2002), Hong et al. (2013) and
Thompson, Yarnold, Adams, and Spacone (1996).
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4.2.2. Attribute Selection Results

The results from the CFS attribute selection are shown in Table 4.

Table 4. CFS results for waiting area w1(a) and w2(b)

Attribute name

Triage
Waiting time in waiting area w1

In this waiting area (w1) I felt calm and
unhurried.
The staff informed me about my current
waiting situation.
How was your perception on waiting time
in waiting area (w1)?

(a)

Attribute name

Waiting time in waiting area w1

Waiting time in waiting area w2

How was your perception on waiting time
in this area (w2)?

(b)

The results reveal that, in waiting area 1, five attributes were selected. The CFS
results for waiting area w2 reveal only three relevant and non-redundant attributes.

Among the attributes selected by the algorithm of Ramsey (2006), with the con-
ditional independence tests at a significance level of 0.05 and search depth 1, the
attributes “Waiting time in waiting area w1” and “Did you occupy yourself with other
things while waiting in the waiting area?” were selected for waiting area w1. The se-
lection of the waiting time attribute is consistent with Relief-F and CFS. For waiting
area w2, only the attribute “Waiting time in waiting area w2” was selected. This is
included in CFS, too and exactly the top attribute in the Relief-F attribute ranking
for that waiting area.

Table 2(b) summarizes the attribute selection part where a comparison between
the original number of attributes and the number of selected attributes is provided
and broken down by waiting area. The original number of attributes used for waiting
area w1 comes from data collection point A, B, C and D . The original number of
attributes used for waiting area w2 has additional information from data collection E,
see Figure 2 and Table A1 in the appendix.

4.2.3. Parameter Optimization for the Decision Tree Learner

We performed a parameter optimization for the decision tree approach and varied the
minimum number of instances per leaf (MI) within the interval [2, 15] for w1 and w2.
The confidence factor (CF) is varied using the values 0.01 to 0.5 with 100 steps. The
parameter combination which results in the maximum accuracy on the testing set is
selected. Table 5 shows the results.
The results reveal that for waiting area w2, the confidence factors are higher as com-
pared to waiting area w1. Similarly, the number of instances per leaf for waiting area
w2 is greater than or equal to the number of instances per leaf for waiting area w1.

4.2.4. Classification Results for Waiting Area w1

All classifiers are assessed using the same performance indicators. The overall per-
formance is measured in terms of classification accuracy (proportion of correctly
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Table 5. Optimized confidence factors (a) and minimum instances per leaf (b) for the decision tree learner

broken down by waiting areas

Attribute selection method

wi w/o Relief-F MB CFS
1 0.07 0.13 0.38 0.19
2 0.43 0.41 0.46 0.37

(a)

Attribute selection method

wi w/o Relief-F MB CFS
1 2 2 2 2
2 4 10 2 3

(b)

classified patients) as well as precision (proportion of cases classified as belong-
ing to the true “underestimation” and “overestimation” outcome that are correctly
classified). The mathematical expression of how underestimation precision is cal-

culated is: TP (ew=1)
TP (ew=1)·FP (ew=1) . Similarly, overestimation precision is calculated as

TP (ew=2)
TP (ew=2)·FP (ew=2) . Finally, we report the area under the ROC curve of the “underesti-

mation” and “overestimation” outcome. For example, to calculate the overestimation
ROC area, we have to calculate the pairwise AUCs for outcome 0 and 1 as well as 0 and

2. For example, for outcome 0 and 1 this becomes AUC0,1 = 1
m·n

m∑
i=1

n∑
j=1

1pi>pj . Here,

i runs over all m data points with true label 1, and j runs over all n data points with
true label 0. pi and pj denote the probability score assigned by the classifier to data
point i and j, respectively. 1pi>pj is the indicator function: it outputs 1 iff pi > pj . Fi-
nally, we average across the two AUCs. All performance indicators are measured using
10-fold cross-validation and the training and test sets were separated randomly. We
chose to use accuracy, precision and area under the ROC because they are standard
metrics which have been used to benchmark supervised learning algorithms (Caruana
and Niculescu-Mizil (2006)).

Table 6(a) shows the results using overall accuracy as metric and reveals that at-
tribute selection can improve classification accuracy from 46.9% to 51.3%, comparing
the highest accuracies of all classifiers. A detailed analysis of the decision rule learner
revealed that the attribute “Waiting time in waiting area w1” was always chosen for
creating the decision rules. The decision tree branches which are linked with the wait-
ing time output of the discrete-event simulation model are as follows:

e∗i =



2 (overestimate) if wait time in w1 is 0 to 2 minutes
2 (overestimate) if wait time in w1 is 3 to 5 minutes
1 (correct estimate) if wait time in w1 is 6 to 10 minutes
2 (overestimate) if wait time in w1 is 11 to 15 minutes
1 (correct estimate) if wait time in w1 is 16 to 30 minutes
0 (underestimate) if wait time in w1 is 31 to 45 minutes
1 (correct estimate) if wait time in w1 is 46 to 60 minutes
1 (correct estimate) if wait time in w1 is 61 to 90 minutes
1 (correct estimate) if wait time in w1 is 91 to 120 minutes
0 (underestimate) if wait time in w1 is 121 to 150 minutes
1 (correct estimate) if wait time in w1 is more than 150 minutes

The results with underestimation precision as a metric, shown in Table 6(b) reveal
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that without attribute selection, classifying patients as ones who underestimate their
waiting time as true outcome (ei = 0, see Section 3) is 57.4% using BN. The results
with overestimation precision as a metric, shown in Table 6(c) reveal that with CFS
attribute selection, classifying patients as ones who overestimate their waiting time as
true outcome (ei = 2, see Section 3) is 69.7% using DT.

The results using the underestimation ROC area as metric come up to 72.4% us-
ing BN and CFS attribute selection (see Table 6(d)). Interestingly, using CFS can
boost the ROC area for all classification approaches not just compared to the results
without attribute selection but also with respect to Relief-F or MB. The results using
overestimation ROC area as metric, shown in Table 6(e) reveal that, again, with CFS
attribute selection, the ROC area can be increased.

14



Table 6. Overall accuracy (a), underestimation precision (b), overestimation precision (c), underestimation

ROC area (d) and overestimation ROC area (e) for waiting area w1.

Classifier Attribute selection method

w/o Relief-F MB CFS
NB 46.1 50.0 42.5 49.6
BN 46.9 49.6 42.5 49.1
DT 46.5 47.4 40.8 51.3
Rule 43.4 43.4 43.4 43.4

(a)

Classifier Attribute selection method

w/o Relief-F MB CFS
NB 56.7 55.7 44.6 54.6
BN 57.4 54.7 44.6 55.8
DT 48.9 51.3 43.9 51.5
Rule 44.3 44.3 44.3 44.3

(b)

Classifier Attribute selection method

w/o Relief-F MB CFS
NB 33.3 48.9 40.6 48.5
BN 35.1 53.7 39.4 48.5
DT 42.4 48.8 36.8 69.7
Rule 43.3 43.3 43.3 43.3

(c)

Classifier Attribute selection method

w/o Relief-F MB CFS
NB 64.5 66.8 58.4 72.0
BN 65.4 67.5 58.9 72.4
DT 64.6 65.6 59.8 67.3
Rule 57.7 57.7 57.7 57.7

(d)

Classifier Attribute selection method

w/o Relief-F MB CFS
NB 65.9 69.3 60.7 71.0
BN 65.8 69.8 61.1 71.2
DT 60.7 65.5 60.5 65.7
Rule 56.0 56.0 56.0 56.0

(e)
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4.2.5. Classification Results for the Treatment Room w2

Again, we will break down the results by our five evaluation metrics while all per-
formance indicators are measured using 10-fold cross-validation and the training and
test sets were separated randomly. Table 7(a) shows the results using overall accuracy
as metric and reveal that attribute selection can improve classification accuracy from
66.5% to 69.9%, comparing the highest accuracies of all classifiers. Again, analyzing
the decision rule learner in more detail revealed that now the attribute “Waiting time
in waiting area w2” was chosen. The branches of the decision tree which are relevant
for the connection with the actual waiting time output of the discrete-event simulation
model are as follows:

e∗i =



1 (correct estimate) if wait time in w2 is 0 to 2 minutes
0 (underestimate) if wait time in w2 is 3 to 5 minutes
2 (overestimate) if wait time in w2 is 6 to 10 minutes
2 (overestimate) if wait time in w2 is 11 to 15 minutes
0 (underestimate) if wait time in w2 is 16 to 30 minutes
1 (correct estimate) if wait time in w2 is 31 to 45 minutes
1 (correct estimate) if wait time in w2 is 46 to 60 minutes
0 (underestimate) if wait time in w2 is 61 to 90 minutes

The results with underestimation precision as a metric, shown in Table 7(b) reveal
that without attribute selection, classifying patients as ones who underestimate their
waiting time as true outcome (ei = 0, see Section 3) is 61.5% using DT. The results
with overestimation precision as a metric, shown in Table 7(c) reveal that without
attribute selection, classifying patients as ones who overestimate their waiting time as
true outcome (ei = 2, see Section 3) is 77.6% using Bayesian approaches.

The results using underestimation ROC area as a metric, shown in Table 7(d),
reveal that CFS can boost the area under the ROC curve to 85.1%. The results using
overestimation ROC area as metric, shown in Table 7(e) reveal that, similar to the
improved area under the ROC curve of the underestimation results, CFS boosts the
area under the ROC curve for overestimating waiting times.
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Table 7. Overall accuracy (a), underestimation precision (b), overestimation precision (c), underestimation

ROC area (d) and overestimation ROC area (e) for waiting area w2.

Classifier Attribute selection method

w/o Relief-F MB CFS
NB 66.5 65.3 65.3 68.2
BN 66.5 63.6 65.3 66.5
DT 65.9 64.2 62.5 69.9
Rule 61.4 62.5 65.9 65.9

(a)

Classifier Attribute selection method

w/o Relief-F MB CFS
NB 60.0 55.6 54.5 56.7
BN 60.0 53.6 54.5 53.3
DT 61.5 43.2 37.5 60.0
Rule 38.5 50.0 58.3 58.3

(b)

Classifier Attribute selection method

w/o Relief-F MB CFS
NB 77.6 74.4 66.3 73.7
BN 77.6 74.8 66.3 72.7
DT 74.6 73.1 64.2 73.3
Rule 64.2 64.8 66.7 66.7

(c)

Classifier Attribute selection method

w/o Relief-F MB CFS
NB 80.4 65.9 75.2 85.1
BN 81.1 66.2 75.6 85.0
DT 81.3 58.7 69.6 84.2
Rule 55.2 57.6 58.6 58.6

(d)

Classifier Attribute selection method

w/o Relief-F MB CFS
NB 69.4 75.4 44.2 72.9
BN 69.1 75.1 43.7 72.6
DT 66.5 73.6 42.5 58.5
Rule 49.7 51.3 52.7 52.7

(e)
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4.3. Simulation Model Setup, Validation and Results

We implemented a simulation model in Rockwell Arena (Wang, Guinet, Belaidi, and
Bescombes (2009)) which represents the patient flow from the collaborating hospital
shown in Figure 1 in Section 3.2. In the following, we will describe the parameters
of the arrival and service process. Also, simulation parameters such as the number of
replications are provided.

4.3.1. Arrival Process

The arrival pattern during one day is shown in Figure 4.

Figure 4. Patient arrivals broken down by time of day

The resource availabilities of medical staff is given in Table 8.

Nurses Surgeons Internists

Resource 1 0am - 0pm 0am - 0pm 0am - 0pm
Resource 2 8am - 0pm 4am - 8am 4am - 8am
Resource 3 8am - 4pm
Resource 4 1pm - 2:30pm

Table 8. Staff schedule

We carried out a data analysis in order to obtain distributions for the arriving
patients. All distributions and the distribution parameters were obtained using the
Kolmogorov-Smirnof test (Hartung, Elpelt, and Klösener (1999)). Table 9 provides
an overview of the distributions and their parameters for the triage assignment, X-
Ray and CT resource requirement. We broke these distributions down by surgical and
internal medicine patients.
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Parameter Surgical Internal medicine

ambulatory inpatient ambulatory inpatient

Triage DISC(0.11,3,1.0,1) DISC(0.4,4,1.0,2) DISC(0.33,3,1.0,1) DISC(0.61,4,1.0,2)
X-Ray DISC(0.53,0,1.0,1) DISC(0.4,0,1.0,1) DISC(0.87,0,1.0,1) DISC(0.37,0,1.0,1)
CT DISC(0.99,0,1.0,1) DISC(0.83,0,1.0,1) DISC(0.99,0,1.0,1) DISC(0.8,0,1.0,1)

Table 9. Distributions and their parameters for triage and radiology resources

For example, DISC(0.11,3,1.0,1) means that we have a discrete distribution in which
11% of the arriving ambulatory patients are assigned to triage category 3 while the
rest of the patients in this group are assigned to triage category 1. The results for
estimating the service time distributions are shown in Table 10.

Patient type Examinations

Nurse Physician

Surgical patient WEIB(0.494, 0.965) BETA(0.754, 1.62207)
Internal medicine patient 1.97*BETA(0.999, 2.09) BETA(1.02, 1.63319)

Table 10. Average examination durations [minutes]

For example, WEIB(0.494, 0.965) means that we have a scale of λ = 0.494 and a
shape of k = 0.965. Besides these parameters, we set the X-Ray and CT examination
durations to an ERLA(0.0391, 3) and 0.1+EXPO(0.2) distribution, respectively.

4.4. Replication Length, Number of Replications and Warmup Time

Having implemented the patient flow logic and having determined the distributions
for the arrivals and service durations, we now have to determine the following three
parameters for running the simulation experiments: Replication length, replication
number and warm up time. For the replication length we run 24 hours from 0:00
a.m. until 12:00 p.m. To determine the replication number Rθ for resource type θ based
on a sample standard deviation of the waiting time S = 50, samples for resource type

θ and a half-width of ε = 10%, we employed the following equation: Rθ ≥
(
zα

2
·S

ε

)
(Banks, Carson, Nelson, and Nicol (2001)). In doing so, the replication numbers come
up to Rroom = 414, Rphysician = 100 and RNurse = 168 for the room, physician and
nurse waiting times, respectively. We decided to use the maximum and rounded up to
a replication number of R∗ = 500.

4.5. Validation of the Simulation Model

The results of the simulation model validation are provided in Figure 5. The figure
reveals that the waiting time obtained by surveying patients in the hospital’s ED
and the ones reported from the simulation model correlate very well. On average,
the difference between the waiting time determined by simulation and the empirical
waiting times is approximately 5.0%.
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Figure 5. Simulation model validation

4.6. Scenario Analysis of Different Shift Schedules

To provide recommendations how patients who overestimate waiting times can be
reduced or balanced across the w1 and w2, we performed simulation runs with nine
different scenarios. The parameters changed are the personnel resources: Nurses, sur-
geons and internists. According to the collaborating hospital and because of their
system to schedule staff, these are the only feasible workforce changes. All scenarios
are provided by Table 11.

Scenario Nurses Surgeons Internists

Scenario 1 4pm - 10pm

Scenario 2a 8am - 4pm
Scenario 2b 8am - 4pm

Scenario 3a 12(noon) - 4pm 8am - 12(noon)
Scenario 3b 8am - 12(noon) 12(noon) - 4pm

Scenario 4a 12(noon) - 4pm
Scenario 4b 8am - 12(noon)

Combination 1 4pm - 10pm 12(noon) - 4pm
Combination 2 4pm - 10pm 12(noon) - 4pm 8am - 12(noon)

Table 11. Additional Personal Resources per Scenario

For example, in scenario 1, 2a and 2b, one additional employee is staffed for six and
eight hours for nurses and physicians, respectively. Similarly, 4a and 4b take one new
physician for a four hour shift into account. The other scenarios consider a multiple
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resource increase where combinations 1 and 2 combine scenarios previously introduced.
Combination 1 (C1) is composed of scenario 1 and 4a whereas combination 2 (C2)
covers the changes of option 1 and 3a.

Table 12 shows the simulation results where the total average waiting time, the
waiting time in each waiting area and the average number of patients who overstimate
waiting time as classified by the decision tree learner are reported and broken down
by each of the scenarios.

Avg. Waiting Time [h] Avg. # Overestimaters

Total w1 w2 w1 w2

Base case 0.3046 0.2469 0.0577 1.9 10.9

1 0.2289 0.1899 0.0389 2.0 10.9

2a 0.2054 0.1225 0.0828 1.4 23.1
2b 0.2438 0.1904 0.0533 1.4 12.8

3a 0.1901 0.1224 0.0676 1.4 19.6
3b 0.2291 0.1598 0.0692 1.2 18.6

4a 0.2190 0.1261 0.0928 1.4 32.3
4b 0.2668 0.2120 0.0547 1.4 12.8

C1 0.1583 0.1115 0.0467 1.8 10.9
C2 0.1277 0.1006 0.0270 2.2 6.6

Table 12. Changes to Base Case - Results

The figures reveal that scenario C2 reduces the actual waiting times from 0.3046 hours
to 0.1277 hours, on average. Also, waiting times in both areas drop substantially using
the staffing levels in this scenario. Another observation is that this scenario performs
best for reducing patients who overestimate waiting times in the treatment room.
However, if reducing the number of patients in the waiting area is the goal, then
scenario 3b performs better. A more detailed analysis of the comparison between
scenario 1 and the base case shows that adding more nurses does not substantially
change the waiting time overestimation in both areas. However, when adding more
human resources, the impact is that patients are pulled from the waiting area into the
rooms because patients are seen quicker. As a consequence, the average waiting time
in w2 may increase and thus overestimation of waiting time increases which is shown
in scenario 4a.

5. Summary and Conclusions

In this paper, we have evaluated attribute selection, classification techniques and
discrete-event simulation modelling to understand and influence patients’ behaviour
to under-, correctly and overestimate waiting times in an Emergency Department. We
have shown that the set of patient attributes can be reduced to a set of highly rele-
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vant ones. These attributes can be divided into two categories – those associated with
objectively collected data such as actual waiting time, and those based on subjective
information such as perceived waiting time, indicating the significance of behavioural
data in understanding and improving individuals’ services (White (2016)) provided
by clinicians vs. automated systems. Using the selected subset of attributes, we have
compared four different classification techniques on overall accuracy, precision and
ROC area for the true outcome under-, correctly and overestimating waiting times.
We broke down our analysis by focusing on two waiting areas. While precision for
overestimating waiting time is approximately 70% in the waiting area of the ED, the
precision of overestimating waiting time in the treatment room yields approximately
78%. Linking the decision tree learner with a discrete-event simulation model revealed
that not only actual waiting times can be evaluated using different staffing patterns
but also the number of patients who overestimate waiting times can be influenced and
ultimately reduced in the different waiting areas.

Our attribute selection results demonstrate that providing information for individ-
ual patients on their remaining waiting time is important. This could be implemented
into the emergency department’s computer system by a screen that automatically
shows and updates the estimate on the remaining waiting time. Another area of fu-
ture work is to incorporate additional behavioural, contextual and cognitive factors
into the set of attributes, machine learning and DES approaches.
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Appendix A. Attributes evaluated

Table A1 provides a detailed overview about all attributes available for our study.
The data was collected at the five data collection points shown in Figure 2. Two
questionnaires were created and used for data collection points C and E. The data
which was collected at point A was accessed through the IT-based hospital information
system. Physicians and nurses manually documented time stamps at point B and D.
In both waiting areas, clocks were removed; however, patients were allowed to wear
their watches. Note that for waiting area w2 we didn’t collect information about ‘The
contact with the staff in this waiting area was nice.’ because patients waiting in the
treatment room cannot interact with staff that is responsible for the management of
the waiting area. The same holds true for question/attribute: ‘The staff informed me
about my waiting situation.’ In addition, we have chosen not to collect data about ‘Did
you occupy yourself with other things while waiting in the treatment room?’ because
the patient fills out the questionnaire in that room and therefore, we expect biased
answers because of filling out our questionnaire.

Attribute Data type Distinct attribute
values or bins

Collected at data
collection point
(see Figure 2)
A B C D E

Age nominal 10 (e.g. 0–9.6 years) X
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Attribute Data type Distinct attribute
values or bins

Collected at data
collection point
(see Figure 2)
A B C D E

Gender nominal 2 (male, female) X
Health insurance type nominal 2 (private, statu-

tory)
X

Specialty nominal 2 (surgical, internal
medicine)

X

Triage level nominal 8 (e.g. 3 – urgent) X
Type of admission nominal 2 (outpatient, inpa-

tient)
X

Type of arrival nominal 2 (ambulance, walk-
in)

X

Weekday nominal 7 e.g. Monday X

Waiting time in waiting
area w1

nominal 11 (e.g. 0–2 minutes) X

Did you have company
while waiting in the wait-
ing area?

nominal 2 (yes or no) X

Did you look at your
watch while waiting in the
waiting area?

nominal 2 (yes or no) X

Did you occupy yourself
with other things while
waiting in the waiting
area?

nominal 2 (yes or no) X

Do you agree that pa-
tients who arrive after you
are treated before you?

nominal 2 (yes or no) X

How long do you estimate
your waiting time in wait-
ing area?

nominal 11 (e.g. 0–2 minutes) X

How was your perception
on waiting time in waiting
area (w1)?

nominal 5 (e.g. ‘very fast’) X

In the waiting area, I felt
calm and unhurried.

nominal 5 (e.g. completely
agree)

X

The ambiance in the wait-
ing area is pleasant.

nominal 5 (e.g. completely
agree)

X

The contact with the staff
in the waiting area was
nice.

nominal 5 (e.g. completely
agree)

X

The staff informed me
about my waiting situa-
tion.

nominal 5 (e.g. completely
agree)

X

Treatment time nominal 10 e.g. (0–5 minutes) X
Waiting time in the treat-
ment room

nominal 11 (e.g. 0–2 minutes) X

Did you look at your
watch while you were
waiting in the treatment
room?

nominal 2 (yes or no) X
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Attribute Data type Distinct attribute
values or bins

Collected at data
collection point
(see Figure 2)
A B C D E

How long do you estimate
your waiting time in the
treatment room?

nominal 11 (e.g. 0–2 minutes) X

How was your percep-
tion on waiting time in the
treatment room?

nominal 5 (e.g. very fast) X

In the treatment room, I
felt calm and unhurried.

nominal 5 (e.g. completely
agree)

X

Table A1.: Attributes assessed for classifying under-, correct and
overestimation of waiting time
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