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Abstract. In this paper, we propose a multi-step textural feature ex-
traction and classification method, which utilizes the feature learning
ability of Convolutional Neural Networks (CNN) to extract a set of low
level primitive filter kernels, extracts spatial information using clustering
and Local Binary Patterns (LBP) and then generalizes the discriminative
power by forming a histogram based descriptor. It integrates the concept
of hierarchical texton mining and data driven kernel learning into a uni-
form framework. The proposed method is applied to a practical medical
diagnosis problem of classifying different stages of Age-Related Macular
Degeneration (AMD) using a dataset comprising long-wavelength Op-
tical Coherence Tomography (OCT) images of the choroid. The results
demonstrate the feasibility of our method for classifying different AMD
stages using the textural information of the choroidal region.

1 Introduction

AMD is a progressive eye disease which is the leading cause of vision loss in the
developed world [9]. It is a progressive disease; partial vision loss is minimal at
an early stage but it can develop to one of two end stages: dry (geographic atro-
phy) or wet (neovascular AMD) [16]. Early and accurate diagnosis with effective
treatment can prevent developing into an irreversible AMD stage and minimize
the damage to retina layer and choroidal region. Fig. 1 shows examples of the
choroid OCT images in different AMD categories. It is our hypothesis that the
pathological progression of AMD has an effect on the shape and texture of the
choroidal region due to changes in the choroidal vascular structure and this infor-
mation is embedded in the OCT images. However, this hypothesis has not been
fully studied due to the fact that the images obtained at the choroidal regions
are very noisy and exhibit large variations from patient to patient. Acquiring
a large cohort of patient data with labeled choroidal region is also a challenge,
see examples in Fig. 1. As the first step towards automated diagnosis, in this
work we study the feasibility of applying texture analysis to AMD classifica-
tion using only choroidal regions. Texture analysis is an important problem in
computer vision with applications in surface defection discovery [21], segmenta-
tion [8], and image-based medical diagnosis [1]. It involves extracting features



from an image, based on its textural appearance, which can then be used for
classification. Hand-crafted features are designed for the specific problem which
highlight the discriminative pattern for visual recognition task. For example,
Gabor filter banks have been successfully used in medical imaging [3, 15] out-
performing other methods by extracting impulse responses from different scales
and orientations. There are similarities between its feature descriptors and the
stimulation mechanism of human visual system [4].

Fig. 1. Examples of choroidal OCT scans for healthy, early AMD and wet AMD.

Priya et al. [13] proposed a machine learning approach for classifying AMD
using color retinal photographs, where the hand-crafted features were extracted,
such as retinal vessel density and average retinal vessel thickness. In [17] the ab-
normality measurements of Retinal Pigment Epithelium (RPE) layer, bubbles in
Retinal Nerve Fiber Layer (RNFL) complex region and outer RNFL region near
RPE layer were used to construct a binary discriminative model that classifies
the images into AMD and Diabetic Macular Edema (DME). Farsiu et al. [7]
used the thickness measurement of RPE Drusen Complex (RPEDC) and Total
Retina (TR) as features to build a generalized linear model for AMD classifica-
tion. Similarly, Koprowski et al. [10] proposed a random forests based method to
classify choroidal OCT images into predefined clinical conditions by extracting
high level features, such as number of detected objects and average position of



the centre of gravity, from low level texture information. These high level features
heavily rely on high quality detection and segmentation results of blood vessel
and other anatomical structures, which normally requires extra human resource.
[2] uses hand crafted Gabor filters for feature extraction with machine learning
techniques being used to classify stages of AMD. Designing hand-crafted filters
is a time consuming and challenging task. More often than not, such techniques
do not adapt well with data and also can not readily be implemented when in-
put images are of inconsistent size and shape. There are three major difficulties
of applying traditional hand-crafted filters to AMD classification problem using
choroidal OCT images. Firstly, variations of local textural appearance within
the choroid are very subtle and nearly random in high frequency bands, while
such variations change across slices in low frequency bands, i.e. designing feature
extractors that are able to capture the representative patterns is a non-trivial
task. Secondly, pathological effects of AMD are not homogenous in the choroidal
regions. Textural features are thus highly non-uniform. Thirdly, the choroid sec-
tions are irregular in size and shape across different subjects resulting in feature
descriptors of arbitrary length.

Current advances in Deep Neural Networks (DNN) demonstrate superior
performances in visual recognition tasks. These methods have shown effective in
joint end-to-end learning for both feature representation and decision making. In
this paper, we present a hierarchical texton mining method in order to classify
choroidal OCTs. CNNs are used to learn low level textural features, which are
then generalized as textons. The local binary patterns (LBPs) of generalized tex-
tons represent the spatial distribution of the primitive textural information and
create higher level feature descriptors. Given these automatically extracted tex-
ton descriptors, the OCT choroidal images are then classified into three AMD
disease stages of increasing severity. Our major contributions are two fold as
follows: (1) We combine hierarchical texton learning with data driven kernel
learning. Textural feature mining is a hierarchical process that involves from the
low level primitive feature extraction to mid level cognitive representation and
high level generalization. The primitive pattern generally is subtle and difficult
to hand-craft whereas in our work we propose an automatic method that learns
those image level patterns through a supervision task which can then be fur-
ther generalized with a clustering method to retain the commonality. For the
mid-level feature, we believe that the spatial arrangement of those learned at
low level textons reflects the localized structural information, therefore LBPs
are used. Furthermore, the distribution of the LBP response is computed to
represent the distribution over the whole region of interest which allows gener-
alization for the classification task. (2) We present an AMD dataset consisting
of 75 scans split into 3 pathological categories, each with 25 patients. Long-
wavelength OCT imaging technique that produces the scans, and the annotation
of the choroidal regions. The experimental results show it is possible to classify
AMD into different stages for individual patients using the textural informa-
tion from the choroidal regions in OCT. The rest of the paper is organized as
follows: Section 2 presents our proposed method for data driven filter training,



feature extraction, texton generalization, and classification; Section 3 presents
and discusses the dataset and experimental results. Our concluding remarks and
discussions on future work are presented in Section 4.

2 Proposed Method

Mining discriminative feature descriptors is the key component of designing an
efficient visual recognition model for AMD stage classification using choroidal
OCT images. The primitive low-level features are automatically learned using
a CNN, where the convolutional filter kernels are learned via a supervised dis-
criminative training procedure. The textons can then be inferred by clustering
the image responses of learned filter kernels, where the cluster centers form the
texton dictionary. The spatial distribution of mined textons is extracted us-
ing LBPs. Patch-based local textural features are then generalized to regional
feature descriptors using histograms over the Region of Interest (RoI), which
provide high level features as a representation of the local distribution of the
LBPs. Supervised classification is then carried out using a range of machine
learning techniques to classify input images into different AMD stages based on
the texton feature descriptors that are mined hierarchically.

2.1 Data Driven Primitive Textural Feature

CNNs combine both feature representation mining and supervised discrimina-
tive learning into a unified end-to-end training framework, which has been widely
adopted in recent years and produced some of the top results for many machine
vision problems [11, 14, 18]. The convolutional filter kernels that are learned
through the supervised training procedure can be considered as discriminative
features and can be generalized further. In this work, a CNN is used to hier-
archically learn textural features in a texton mining framework and the CNN
kernels produce low level data driven textural features. In convolutional layers,
a bank of locally receptive filters convolve across the input image to form vi-
sual evidences for prediction layers at the forward pass stage. At the backward
pass stage, these filters are automatically optimized via back-propagating the
prediction error that is calculated in the previous round of forward pass. Fully
connected layers are also included in the network, where all nodes from one layer
are connected to all nodes in the next with weightings updated in the same way.
This allows pertinent localized features to be more easily identified.

Fig. 2 and Table 1 show the architecture details of the proposed CNN. Due
to the irregular shape of the choroidal region (see Fig. 1), it is difficult to extract
large local patches without including other structures. As such, the local patches
with size of 48×48 pixels are cropped randomly from the choroidal regions with
overlap. In order to interpret the low level textural features learned through
the discriminative task, only one convolutional layer is used. The networks that
are used for natural image recognition tasks generally have smaller kernel sizes,
such as 3×3, as natural images have much sharper corners and higher contrast



compared to medical imaging. In our case, 40 filter kernels with size of 9×9 are
used in order to identify the discriminative patterns in low frequency bands.

Table 1. The parameters of the proposed CNN architecture.

No Type Parameter

0 Input 48×48×3 images scaled to [0,1]

1 Conv. 40 9×9 filters with stride 1

2 ReLU Rectified linear unit

3 F.C. Fully connected with 128 outputs

4 ReLU Rectified linear unit

5 F.C. Fully connected with 128 outputs

6 ReLU Rectified linear unit

7 F.C. Fully connected with 3 outputs

8 Softmax Softmax probability for multi-classes

Fig. 2. The network architecture of the proposed CNN.

2.2 Spatial Texton Descriptor

In this work, we introduce additional steps to explore both statistical and spa-
tial distribution of the primitive texture feature that are produced from CNN.
Fig. 3 shows the examples of learned filter kernels from the convolutional layer.
The bank of learned filters are, in turn, convolved across the images of the ex-
tracted choroidal regions. Convolving the filters across the images is a form of
linear filtering which produces a map of filter responses of the same dimension as
the image. The texture is modeled by the distribution of filter responses, these
can be represented by textons (cluster centers) which can be used to create a
texture model [20]. K-Means clustering is used to develop the set of textons,



Fig. 3. Examples of self-learned filter kernels using CNN.

which can be used to label all filter responses with each observation assigned
to the partition with the closest mean. The textons group the textural features
into a compact representation via examining the statistical distribution of filter
response, which removes the subtle variations at high frequency bands. These
textons are more robust than the raw filter responses. However, for OCT retina
image (See Fig. 1), the primitive texture appearances of choroidal region learned
from CNN are rather noisy and do not well form structural patterns (See Fig. 3).
In order to overcome this difficulty, the spatial distribution of these mined tex-
tons is introduced which represents the patterns of local arrangement of mined
texton. In the spatial domain, the local correlation of those textons can be fur-
ther genealized in a hierarchical manner, which are more representative and
informative for classification task. In this work, LBPs are used to represent the
spatial distribution of textons. Spatial features look for texture elements, known
as texture primitives, which are extracted to create a representation that maps
their regional locations. It looks for regular or repeated patterns of texture el-
ements in the image, and learn spatial information by comparing each pixel to
its neighbors and assigning each a binary value [12]. In this work, a texture unit
is the central value in a 3×3 neighborhood and is represented by the 8 elements
that surround it. Each is assigned a binary value with the centre pixel acting
as a threshold and are multiplied by predefined weightings based on the pixel
location. The results of the eight neighboring pixels are summed and this value
is assigned to the texture unit. A value for each pixel is calculated meaning the
response output has the same dimensions as the input.



2.3 Regional Texton Generalization

As the CNNs are trained only on relatively small patches extracted from the
choroidal regions, a higher level descriptor is required to make predictions on
image level. We thus convolve the learned CNN filters across the entire choroidal
regions. Note that this is different to conventional texton learning, where ker-
nel filters are pre-defined and static. The kernels in our method is data driven
and dynamic. It is also worth noting that the choroidal regions vary in size and
shape, cf. Fig 1, which leads to varied length of LBP feature vectors. In order to
train discriminative classifiers, it is desirable to obtain feature vectors of uniform
length. Thus, a regional texton generalization is carried out via computing the
histogram of LBP feature vectors of the annotated region. The histogram based
descriptors produce a representation of the distribution of responses which also
improves the generalization ability. For each of the filters a histogram is calcu-
lated with each LBP response being grouped into one of 59 bins depending on its
value. The number of bins was calculated using the formula P×(P−1)+3 where
P is the number of neighbors, 8. The histogram descriptor is calculated for each
of the different filters independently, and the results are concatenated to produce
one feature vector for each image. Fig. 4 shows examples of histogram descriptors
of different AMD classes produced by the top 3 filter kernels. In Fig. 4, it is clear
that the differences between 3 AMD classes are distinct, although healthy and
early AMD classes show some similarities between the histogram distribution.
This is consistent with the clinical interpretation as visual appearance change is
more gradual between healthy and early than between early and wet.

2.4 Supervised Classification

To evaluate the discriminative power of proposed regional texton descriptors,
both two classifiers are employed to distinguish different AMD stages, such as:
Neural Networks (NN), and Random Forests (RF). The traditional fully con-
nected NN is used in this work to build a supervised classifier using the mined
texton feature descriptor. RF is an ensemble method which combines a number
of weak classifiers to create an accurate predictive model. It averages the results
of multiple decision trees, each of which consists of a set of recursive binary
splits with leaf nodes assigning a probability of the training sample belonging
to each class. The variable importances are evaluated during the training pro-
cess through permutation, which ranks the discriminative power of learned filter
kernels.

3 Experimental Result

3.1 Dataset

The dataset consists of 25 healthy eye scans from the control group, and 50
scans from AMD patients classified into one of two categories: early AMD and



Fig. 4. Examples of texton descriptors of different AMD classes from top 3 filter
kernels.

wet AMD. Therefore, for each category the dataset contains 25 eye scans. In or-
der to obtain high quality images, the long-wavelength (1040nm) OCT imaging
technique is used to provide sufficient light penetration into the choroid struc-
ture. For each eye, a volume of 512×1024×512 pixels is produced. Each eye has
its axial eye length (AEL) measured, and the images were scaled accordingly;
this was done to control for errors in image scaling [19]. All samples were col-
lected by the same operator and classified by three experienced optometrists into
the pathological categories. Classifications were made by examining the shape
and appearance of the retina based on an adapted version of an accepted and
widely used clinical classification system. We take these classifications to be the
ground truth. In preprocessing, for each eye, the outline of the choroidal region
was manually labelled on every tenth slice, hence the dataset consisted of over
3,800 labelled slices. Automatic image segmentation has had useful applications
in medical applications [5, 6], but we chose manual segmentation for accuracy
and consistency. Fig. 5 shows examples of labelled OCT scans of the three cat-
egories. From each image the closed curve created by the labels was extracted
leaving just the choroidal layer for each slice.

3.2 Evaluation

The CNN was trained with weight decay of 5 × 10−4, a batch size of 128 and
was trained for 20 epochs with learning rates logarithmically spaced vectors
between 10−2 and 10−5. Patches of consistent dimension are extracted from



Fig. 5. Examples of labelled OCT scans for each of the three classes with visible signs
of pathology within the retina.

the slices to train the network. Ten patches of 48×48 pixels are extracted from
each annotated slice, providing over 500 patches per eye. Each patch is given
the same classification as the slice to which it belongs. K-means clustering was
computed using 10 cluster centres. LBP used a neighbourhood of 8 pixels for
value calculations. The number of bins for the histogram of LBP responses is
calculated as (P ×(P −1)+3), where P is the number of of neighbours, resulting
in 59 bins. A histogram is calculated for each of the 40 filters with the results
concatenated to produce a feature vector of 2360 values for each image. Then
each of the classifiers were applied independently. The random forest consisted of
50 random decision trees, and the neural networks contained two hidden layers
with 200 and 40 nodes respectively. For each method of validation the training
and testing process was iterated 10 times with the demonstrated results the
combination of these.

To perform AMD classification, 10-fold and 2-fold cross validations were used.
For N-fold cross validation the whole dataset was split into N randomly sampled,
evenly sized groups with an equal numbers of slices from each eye. One subset
was held for testing whilst the other nine were used for training. This training set
was used for learning the filters in the CNN and to train the classifiers. Table 2
shows the result of using the kernel feature learned through CNN only, where
on average 33.6% and 33.3% are achieved for 10-fold and 2-fold respectively,
where the classification is dominated by the control group, and the prediction
is nearly selected by random. Therefore, it strongly suggests that using the fea-



ture learned from CNN only is unable to distinguish between different stages of
AMD. Table 3 shows the results of 10-fold classification for three classifiers. NNs
and RFs achieved correct classification accuracies of 78.5% and 87.8% respec-
tively. There was a significant difference between the accuracy achieved using
NNs as the classifier compared to RFs. NNs perform well when learning hier-
archical structures of features directly from the raw input image. However, we
develop the feature descriptors through learned filters, spatial descriptors and
histograms. As such, discriminative models which find a separation boundary be-
tween classes can be expected to outperform generalization models. The results
of 2-fold cross validation of our proposed method are summarized in Table 4,
where the respective prediction accuracies for the NNs and RFs were 75.0% and
85.2% . The accuracy was expected to decline across all classifiers due to the
relative decrease in the size of the training set. However, a similar pattern occurs
in which using the random forest as a classifier produces greater accuracy than
the neural network. The hierarchical texton mining produces a more compact
feature descriptor which enables a separable boundary to be found. In addition,
the distinct accuracy differences between Tables 3, 4 and Table 2 show that the
proposed feature descriptor improves the discriminative power by a large margin.
From feature selection perspective, the primitive filter kernels shown in Fig. 3 is
rather noisy and tends to appear random, however, in Fig. 4, the distributions
of their responses are far more discriminative. The results suggest the feasibility
of our approach for detecting textural changes in the choroid from which stages
of AMD can be classified.

Table 2. Confusion matrix of 10-fold and 2-fold CNN without proposed texton

generalization (%)

Healthy Early AMD Wet AMD

10-fold

Healthy 80.7 80.0 80.4

Early AMD 19.2 20.0 19.4
Wet AMD 0.06 0 0.20

2-fold

Healthy 100 100 100

Early AMD 0 0 0
Wet AMD 0 0 0

4 Conclusions

In this paper we propose a machine learning approach for the classification of
the stages of AMD using the textural appearance of OCT choroidal images. In
traditional texture recognition techniques, hand-picked feature extractors such
as Gabor filters or wavelets are used for feature extraction with the resultant
feature descriptor being passed directly onto machine learning classifiers. This



Table 3. Confusion matrices of 10-fold cross validation with the proposed feature

descriptors (%)

Healthy Early AMD Wet AMD Avg.

NN

Healthy 74.3 14.6 10.2
78.5Early AMD 16.3 78.2 6.8

Wet AMD 9.4 7.1 83.0

RFC

Healthy 84.2 8.2 4.6
87.8Early AMD 9.9 87.5 3.5

Wet AMD 5.8 4.3 91.8

Table 4. Confusion matrices of 2-fold cross validation with the proposed feature

descriptors (%)

Healthy Early AMD Wet AMD Avg.

NN

Healthy 65.4 19.1 11.3
75.0Early AMD 22.5 75.8 4.8

Wet AMD 12.1 5.1 83.9

RFC

Healthy 81.9 10.4 6.2
85.2Early AMD 10.7 84.2 4.4

Wet AMD 7.5 5.4 89.4

study presents a method of texture recognition using learnable feature extrac-
tors rather than hand-picked ones. The spatial arrangement of the features are
also learned and used for classification. A CNN is used to automatically train
the filters to be used for feature extraction rather than using predefined filters.
This allows the development of a set of filters which are best suited to the data
rather than having to make assumptions about what features exist and choosing
filters accordingly. The set of learned filters are convolved across the input im-
ages to produce a map of responses, where the textons can be further mined via
clustering. The spatial arrangement of the features are examined using cluster-
ing and LBPs. Histograms are computed from the resultant output to produce
the feature descriptors. These are passed onto the machine learning techniques
for supervised classification. The method, applied on an OCT dataset to distin-
guish between different stages of AMD, produced promising quantitative results
demonstrating its feasibility. Future work includes establishing a much larger pa-
tient dataset to study performance of the proposed method on leave one patient
out prediction and classification.
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