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a b s t r a c t  
 
Hydrogen is considered one of the most promising energy vectors in order to match the current energy and 

environmental issues. Bioethanol steam reforming is a sound oppor-tunity and close to the industrialization 

considering an integrated biorefinery concept. MgAl2O4 was selected as a stable support, with improved 

activity, selectivity and stability due to negligible acidity. Increasing the Ni loading from 1.5 to 10 wt% over 

MgAl2O4 improved the conversion of ethanol as well as the yield of hydrogen, while the carbon deposition 

and yield of byproducts decreased. 

 
Small acidity characterised the samples, attributed exclusively to the Ni active phase. This prevented 

extensive catalyst coking due to ethylene formation and subsequent polymerisation. Consequently, small coke 

amount was found on the spent catalysts, mainly amorphous, allowing rather easy regeneration. 

 
DRIFT analysis of adsorbed ethanol at variable temperature evidenced the in-termediates of reaction and 

their evolution with temperature, allowing to suggest the main reaction paths. Acetaldehyde was found as 

intermediate, rapidly evolving to reformate. Among the possible evolution paths of acetaldehyde, the 

oxidation to acetate and car-bonate species (likely stabilised by the support) was preferred with respect to 

decompo-sition to methane and CO. This is reflected in the products distribution evidenced through activity 

testing. 
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Introduction  
 
Increasing attention is focused on hydrogen as a clean energy vector, 

because its oxidation is highly exothermal and the only product is water 

[1]. Despite the huge potential benefits, the use of hydrogen is currently 

limited by the insufficient capacity of hydrogen storage technologies and 

by the safety issues related with its storage and transportation under mild 

conditions [2]. Furthermore, nowadays 47% of global hydrogen is 

produced from natural gas, 30% from oil, 19% from coal and the 

remaining fraction via water electrolysis [3]; therefore, ca. 96% of 

hydrogen derives from the conversion of fossil re-sources, which means a 

net co-production of CO2. New sour-ces and new processes are needed to 

produce hydrogen in a sustainable way. 

 

 

Ethanol steam reforming (ESR) has received considerable attention, 

because ethanol is mainly obtained by renewable sources [4], it is simple 

to store, handle and transport because of its low volatility and toxicity [5]. 

This process could be industrially advantageous, ideally yielding 6 mol of 

H2 per mole of ethanol reacted. A major drawback is the endo-thermicity 

of the reaction, so for process intensification the lowest admissible 

temperature should be searched. In addi-tion, at low temperature (below 

500 C), side reactions that yield alternative products such as acetic acid, 

acetaldehyde and ethylene are favored. These byproducts compete for 

hydrogen atoms, thus lowering the overall H2 yield [6,7] and can also be 

related to catalyst deactivation. 

 

 

It is well known that both the active phase and the support play a key 

role in determining the productivity and selectivity of the reaction, 

because different catalysts induce different pathways for H2 production 

[5,8,9]. Several metal-based cat-alysts [4,10e17] have been proposed for 

the steam reforming of alcohols. Nickel is particularly attractive because 

of its high activity and selectivity in breaking CeC bonds and its lower 

cost if compared with noble metals. It also catalyzes the water-gas shift 

reaction [18,19], improving H2 yield and its subsequent purification from 

CO. However, other challenges related to metal sintering and coke 

deposition are still open. From these points of view, the choice of the 

support is crucial. Indeed, the cooperation between the support and the 

metal is fundamental to stabilize the active phase, increase its dispersion 

and decrease the rate of coke formation [20e22]. 

 

 

The general reaction scheme is the following: 

 

CH3CH2OH(g) þ H2O(g) / 2 CO(g) þ 4H2(g)  

DH298 C ¼ þ256 kJ/mol (1) 
 

which couples with the water gas shift (WGS) reaction, which is 

slightly exothermic 

 

2 CO
(g) 

þ
 
2H

2
O

(g) $ 
2 CO

2(g) 
þ

 
2H

2(g) (2) 
to yield ideally 6 mol of hydrogen per mole of ethanol.  

CH3CH2OH(g) þ 3H2O(g) / 2 CO2(g) þ 6H2(g)  

DH298 C ¼ þ174 kJ/mol (3) 

 

However, these reactions are not particularly descriptive of the real 

steam reforming process, which actually occurs through various 

intermediates. The possible reactions through which ethanol reforming 

can occur, individually or concurrently, are very numerous and depend on 

catalyst formulation [22e24]. The main ones are the following: 

 
 

C2Н5ΟН(g) / CΟ(g) þ CH4(g) þ Н2(g), DН
0

298 ¼ 49 kJ/mol (4) 

C2Н5ΟН(g) $ Н2(g) þ CH3CHO(g), DН
0

298 ¼ 69 kJ/mol (5) 

CH3CHO(g) / CH4(g) þ CO(g), DН
0

298 ¼  19 kJ/mol (6) 

CH3CHO(g) / ½ CH3COCH3(g) þ ½ CO(g) þ ½ H2(g),  

DН0
298 ¼ 2.8 kJ/mol (7) 

C2Н5ΟН(g) $ C2H4(g) þ Н2O(g), DН
0

298 ¼ 45 kJ/mol (8) 

CO(g) þ 3Н2(g) $ CH4(g) þ Н2O(g), DН
0
298 ¼  205 kJ/mol (9) 

2CΟ(g) $ C(s) þ CO2(g), DН
0
298 ¼  171.5 kJ/mol (10) 

C2H4(g) //// Coke (11) 

 

In this study, MgAl2O4 was employed as support for Ni-based 

catalysts. Mg-Al mixed oxide supported Ni catalysts showed high activity 

in terms of H2 productivity and catalyst stability compared to nickel 

catalysts supported on pure ox-ides [25]. MgAl2O4 was chosen due to the 

following factors: (i) it is a slightly basic material, (ii) it exhibits moderate 

acidic and basic site strength and density, (iii) it limits the promotion of 

reactions (8) and (11), thus, minimises coke formation and therefore 

enhances catalyst stability [26]. For example, Katheria et al. investigated 

this spinel as support for nickel during methane steam reforming, 

revealing a strong depen-dence of catalyst activity on the synthetic 

conditions. In particular, an increase of methane conversion was attributed 

to a higher metal dispersion and lower active metal particle size of the 

catalyst obtained by the reported washcoating synthesis technique on 

FeCr-alloy [27]. 

 

 

Therefore, in this manuscript we investigated a series of Ni/MgAl2O4 

catalysts with different Ni loading and prepared with an ultrasound 

assisted technique to achieve high sur-face area and, thus, metal 

dispersion. Ethanol Steam Reforming (ESR) tests were carried out in a 

continuous bench scale reactor operated at 625 C, 500 C and 400 C, 

especially focusing on low temperatures for this application, for pro-cess 

intensification. A critical value of ethanol/water molar feed ratio was used 

(1:3 mol/mol) as stressing condition to monitor catalyst deactivation. 

Rival data in the literature (vide infra) are indeed collected at higher 

water/ethanol ratio. The effect of metal loading on activity and hydrogen 

selectivity was investigated, together with possible deacti-vating 

phenomena. Finally, DRIFTS analysis allowed to evi-dence the 

intermediates and their evolution with reaction temperature as a support to 

discriminate between different reaction paths. 



 
 
 

 
Experimental section  
 
Catalysts preparation 

 

MgAl2O4 was prepared as follows. 150 ml of a solution of 1.9 M HCl and 

16 g of CTABr (Trimethylcetylammonium bromide) were mixed under 

magnetic stirring at 40 C to a solution of 300 ml of ethanol in which 123 g 

of aluminium isopropoxide and 13 g of Mg(OCH2CH3)2 were dissolved. 

Part of the MgAl2O4 was dried at 110 C and calcined at 650 C for 3 h 

under static air. The active phase was added to the support through the co-

precipitation method under high power ultrasound irradia-tion using an 

Ultrasonic processors VC750 Sonics and Mate-rials, 20 KHz with a 

diameter tip of 13 mm. For the synthesis 100 mL of a NH4HCO3 1 M 

solution were dropped, under ul-trasound irradiation for 1 h A at 50% of 

Amplitude, to a diluted solution of nickel acetate-MgAl2O4, in the desired 

concentra-tion in order to obtain 1.5 wt% Ni/MgAl2O4 (M1), 5 wt% Ni/ 

MgAl2O4 (M2) and 10 wt% Ni/MgAl2O4 (M3) loading. The pre-cipitates 

were dried and calcined at 500 C for 3 h under static air. 

 
 
 

 
Catalysts characterization 

 
XRD data were collected at ambient temperature with a PANanalytical 

X'PertPRO X-ray diffractometer using Cu Ka radiation and operated at 40 

kV and 30 mA. X-ray diffraction patterns were recorded between 2q ¼ 

10e80 at a step size of 0.017 . The crystallite size was calculated by the 

Scherrer equation: 

 
 

Kl 

DðnmÞ ¼ L cos q   
where D is the mean size of the crystalline domains, K is a dimensionless 

shape factor, with a typical value of about 0.9, l is the X-ray wavelength, 

Cu Ka radiation ¼ 0.154059 nm; L is the line broadening at half the 

maximum intensity (FWHM), q is the Bragg angle (in degrees). 

 
X-ray photoelectron spectra (XPS) were recorded though a K-

Alpha™þ X-ray Photoelectron Spectrometer (XPS) System using a 

monochromatic Al Ka X-ray source. X-ray source (75e150W) and 

analyser pass energies were 160 eV (for survey scans) or 40 eV (for 

detailed scans). 
 

The morphology was examined by Field Emission Gun Electron 

Scanning Microscopy (FE-SEM) through a LEO 1525 ZEISS instrument. 

Elemental composition was determined using a combined Bruker Quantax 

EDS. Transmission Electron Micrographs (TEM) were collected on the 

fresh and spent samples using a Philips 208 Transmission Electron Micro-

scope. The samples were prepared by putting one drop of an ethanol 

dispersion of the catalysts on a copper grid, pre-coated with a Formvar 

film and dried in air. 

 
Adsorption/desorption isotherms were collected at liquid nitrogen 

temperature ( 196 C) using a Micromeritics ASAP 2020 instrument. 

Surface area was calculated on the basis of the Brunauer, Emmet and 

Teller equation (BET), while the pores size distribution was determined 

by the BJH method, applied to the N2 desorption branch of the isotherm. 

Prior to the analysis the samples were outgassed at 300 C for 24 h. 

 

 

NH3-TPD was carried out using a Quantachrome ChemBET 

TPR/TPD chemisorption analyser with a TCD, following a method 

including four main steps. During the pre-treatment, 50 mg of sample 

were heated at 15 C/min up to 130 C during 1 h in a flow of He (80 

ml/min), followed by adsorption of ammonia at room temperature for 20 

min to ensure satura-tion. Then, the physisorbed ammonia was removed at 

100 C (1 h, 15 C/min) in He flow. The last step was the desorption of 

chemisorbed ammonia by heating up to 800 C (at 10 C/min) in He 

monitoring the desorption with a TCD at attenuation 1 and current 180 

mV. 

 
Temperature Programmed Reduction (TPR) measurements were 

performed by placing the catalyst in a quartz reactor and heating by 10 

C/min from r.t. to 800 C in a 10 vol% H2/N2 gas stream flowing at 40 

ml/min. TPO (Temperature Programmed Oxidation) measurements were 

performed placing the spent catalysts in a quartz reactor. The temperature 

was increased at a rate of 10 C/min from r.t. to 800 C in a 10 vol% O2/He 

gas stream (40 ml/min) and the data obtained were elaborated by the 

Origin Pro 8.5 software. 

 
DRIFTS analysis was performed with a Bruker Tensor 27 

spectrometer fitted with a HgCdTe (MCT) detector, a Harrick Praying 

Mantis HVC-DRP-4 cell equipped with two ZnSe win-dows and operated 

with OPUS software. The DRIFTS cell included gas inlet and outlet ports 

that have the capability to heat and cool the sample. This technique was 

applied to study the interaction of ethanol with the catalysts. The sample 

was heated to 120 C under 20 ml/min of N2 for 30 min, in order to 

eliminate any physisorbed molecule on the material, after that time an IR 

background spectra was collected. Afterwards, ethanol was supplied until 

saturation (around 20 min). Then N2 flow was continued until adsorbed 

ethanol was evacuated. When the DRIFT spectra were not changing, the 

temperature was increased to 200 C for 30 min and the resulting spectra 

recorded. This last step was repeated for other temperatures (i.e. 300, 400 

and 500 C). The data are reported as absorbance. Each spectrum 

represents an average of 64 scans collected with a spectral resolution of 2 

cm 1. In the reported spectra, a positive peak intensity indicates an 

increase of population of a given species, whereas a negative deflection 

shows a loss of the same. 

 
 

 
Micro-Raman sampling was made by an OLYMPUS micro-scope 

(model BX40) connected to an ISA Jobin-Yvon model TRIAX320 single 

monochromator, with a resolution of 1 cm 1. The source of excitation was 

a Melles Griot 25LHP925 He-Ne laser that was used in single line 

excitation mode at l ¼ 632.8 nm. The power focused on the samples was 

always less than 2 mW. The scattered Raman photons were detected by a 

liquid-nitrogen cooled charge coupled device (CCD, Jobin-Yvon mod. 

Spectrum One). 

 

 
Activity testing 

 
Activity tests were run through a continuous micropilot plant constituted 

by an Incoloy 800 downflow reactor (internal diameter 0.9 cm and length 

40 cm), heated by an electric oven. The reactor temperature was 

controlled by an Eurotherm 3204 TIC. The catalysts were pressed, ground 

and sieved into 0.15e0.25 mm particles and 0.5 g of catalyst were loaded 

into the reactor after dilution 1:3 (vol/vol) with SiC of the same 



 
 
particle size. Catalyst activation was accomplished by feeding 50 ml/min 

of a 20 vol% H2/N2 gas mixture at 625 C for 1 h. During activity testing 

0.017 ml/min of a 3:1 (mol/mol) water/ ethanol liquid mixture were fed to 

the reactor by means of a Hitachi, mod. L7100, HPLC pump, added with 

50 ml/min of N2, used as internal standard, and 174 ml/min of He. The 

liquid mixture was vaporized in the hot inlet of the reactor before reaching 

the catalyst bed. Such dilution of the feed stream allowed to keep the 

reactants mixture in the vapour phase even at zero conversion at the 

reactor outlet. The activity tests were carried out at atmospheric pressure, 

with a Gas Hourly Space Velocity (GHSV) of 2700 h 1 (referred to the 

water/ ethanol gaseous mixture), corresponding to ca. 1000 g min/ mol, at 

625, 500 and 400 C. The testing sequence was pro-grammed from the 

highest temperature to the lowest, in order to avoid possible deactivation 

by coking of the samples and structural changes of the catalyst. The test 

duration does not allow to fully assess stability, however, as for an 

internal comparison, the monitoring of coke accumulation for a fixed 

reaction time is still a valid measure of catalyst stability. Therefore, the 

testing sequence was on purpose from the highest temperature to the 

lowest in order to progressively accumulate coke (when relevant), 

accumulation that is favored at low temperature since the carbon 

gasification ac-tivity is poor. 

 
 
 

 
Analysis of out-flowing gas was performed by a gas chro-matograph 

(Agilent, mod. 7980A) equipped with two columns connected in series 

(Poraplot Q and Molecular Sieves) with a thermal conductivity detector 

(TCD), properly calibrated for the detection of ethanol, acetaldehyde, 

acetone, acetic acid, water, ethylene, CO, CO2 and H2. Repeated analyses 

of the effluent gas were carried out every hour and the duration of every 

test at each temperature was 8 h-on-stream to reach steady-state 

conditions. The raw data, expressed as mol/min of each species 

outflowing from the reactor, have been elab-orated as detailed elsewhere 

[26,28]. Material balance on C-containing products was used as first hand 

indicator to eval-uate coke deposition. 
 
 
 
 

 
Results and discussion 

 
Catalyst characterization 

 
X-ray diffraction patterns of the fresh catalysts are shown in Fig. 1. In all 

the cases, broad diffraction peaks corresponding to MgAl2O4 (2q ¼ 

19.03, 31.3, 36.8, 44.8, 55.6, 59.4 and 65.2 de-grees), NiO (2q ¼ 43.3, 

37.3, 62.9 degrees) and metallic Ni (2q ¼ 77 degrees) were detected [28]. 

The Figure shows well-defined and large peaks, which demonstrate well-

dispersed particles with uniform size and good crystallinity. Peak 

broadening testifies the presence of very small crystal size, which is 

important for the present application to ensure Ni resistance towards the 

accumulation of subsurface carbides, which are precursors of C nanotubes 

[29e35]. 

 

Table 1 shows the crystallite size (D), calculated using the Scherrer 

equation. 
 

The specific surface area of the samples is also shown in Table 1. The 

impregnation leads to a very slight decrease of surface area while 

increasing Ni loading (238e228 m2/g). Small 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 e Diffraction patterns of fresh catalysts.  
 

 

 

Table 1 e Crystal size calculated through the Scherrer  
equation and specific surface area (SSA) from BET 

analysis.  

 Sample Particles 2q FWHM D (nm) SSA (m2/g) 

 1.5% Ni fresh Ni 76 0.4 24.9 238 

  NiO 63 1.6 5.8  

 5% Ni fresh Ni 76 0.4 24.9 228 

  NiO 63 1.5 6.1  

 10% Ni fresh Ni 76 0.3 33.2 228 

  NiO 63 1.4 6.6  
       

 

 

crystal size and high surface area are formed thanks to the optimized 

preparation procedure, assisted by ultrasounds. The Ni particle size does 

not vary very much with increasing Ni loading. It remains almost 

unchanged when passing from 1.5 to 5 wt%, whereas it increases from ca. 

25 to ca. 33 nm when further doubling the Ni loading. The residual NiO 

particles are even smaller with slightly increasing size with increasing 

metal amount. This supports the ability of the support and the preparation 

method in keeping sufficiently dispersed the active phase, which does not 

coalesce in bigger particles event at highly increasing loading. 

 

 

The X-ray photoelectron spectroscopy (XPS) results are summarized 

in Table 2 as relative atomic percentage. The results on the fresh samples 

show a linear decrease of NiO with a decrease of nominal Ni wt% and at 

the same time an increase of Ni(OH)2 on the surface. Fig. 2 shows the 

deconvo-lution of Ni2p3/2 for all the samples. Ni2p peak has signifi-

cantly split spin-orbit components and Ni metal spectrum has a complex 

shape. In the spectra are visible the specific energy binding ascribable to 

Ni metal (852.6 eV), NiO (853.7 eV) and Ni(OH)2 (855.6 eV) [36,37]. 

 

 

Different oxidation states of Ni were also visible in the XRD patterns 

(Fig. 1), in agreement with XPS data. In the 10 wt% Ni/ MgAl2O4 spent 

sample a low amount of metallic Ni was also present. We observed that 

the surface composition of the spinel changed for 10 wt% Ni/MgAl2O4. 

This could be explained by the substitution of Ni for Mg in the spinel 

structure. NiAl2O4 could form predominantly at the surface, so both Ni 

and Al exposure increases with respect to the sample 



  
 

 

Table 2 e XPS of the fresh catalysts.    
Catalyst Name Pos FWHM  

 

 
The fresh catalysts were constituted by rather uniform oxide particles, 

ca. 25e45 nm, with a homogeneous distribu-tion of the active phase over 

it (Figs. 3 and 4). 
 

1.5% Ni O 1s 530.86 3.32 48.67   

 C 1s 284.86 3.01 2.4  Activity tests 
 Ni 2p 855.86 3.5 0.66   

 Mg 2s 88.86 4.14 13.55  
The results of catalytic testing at 625  C are summarized in  Al 2p 74.86 2.89 34.71  

  

Table 3 and Fig. 5. Ethanol conversion was 86% for sample       

5% Ni O 1s 532.08 3.32 47.27 
 1.5 wt% Ni, while increased with increasing Ni content. 
 

Indeed, samples 5 wt% Ni and 10 wt% Ni led to full ethanol  C 1s 285.08 3.37 2.84  

 Ni 2p 856.08 4.11 1.14  conversion with the highest H2  productivity. Increasing Ni 

 Mg 2s 89.08 4.08 13.61  loading also improved the productivity of H2 due to higher 
 Al 2p 75.08 2.93 35.18  activity for the water gas shift reaction (lower CO/CO2 ratio)       

10% Ni O 1s 531.86 3.42 43.29 
 and  decreased  selectivity  to  CH4  (Fig.  6).  Ethylene  was 
 

observed at the lowest Ni content, only, due to insufficient  
C 1s 284.86 2.85 2.66 

 
  

activity for the further reforming of this intermediate. Low Ni  Ni 2p 855.86 4.32 3.05  
   

 Mg 2s 88.86 4.13 9.22  loading is characterised by insufficient activity for CeC bond 

 Al 2p 74.86 3.09 41.78  cleavage, leaving indeed unreacted ethanol and unconverted 
      

ethylene.       

      Sample 1.5 wt% Ni proved also insufficiently stable, since 

5 wt% Ni/MgAl2O4.  The incorporation of Ni in the support ethanol conversion started decreasing after 450 min-on- 
surface increases its dispersion even for high metal loading. stream and the selectivity to acetaldehyde increased simul- 
       
This is typically desirable to improve resistance to the for- taneously (Fig. 5). On the contrary, samples 5 wt% Ni and 10 wt 
 

mation of C nanotubes over Ni particles, as already mentioned % Ni were stable for the whole duration of the test, with 
 

above.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2 e XPS spectra deconvolution of Ni2p3/2 for catalysts 1.5 wt% (a), 5 wt% (b) and 10 wt% (c) Ni/MgAl2O4. 

 Atom % 



       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3 e FE-SEM images for catalysts Ni/MgAl2O4 1.5 wt%, fresh (a), 1.5 wt%, after reaction (b), 5 wt% after reaction (c) and 10 wt% after reaction 

(d).  
 

 
negligible selectivity to acetaldehyde, confirming the better stability of 

these samples. 
 

When the catalytic performance of the samples was eval-uated at 500 

C the same trend of activity versus Ni loading was confirmed, but the 

catalysts were generally much less active than at higher temperature 

(Table 4). A lower CO/CO2 ratio was obtained irrespectively of the 

sample due to the thermodynamically favored equilibrium of the water 

gas shift reaction at lower temperature. Catalyst activity at this tem-

perature was insufficient to fully convert byproducts, e.g. acetone and 

acetaldehyde, and, as a matter of fact, ethylene was the main product of 

the reaction. 

 
A further decrease of the operating temperature, the only sample 

maintaining a (limited) activity for ESR was 10 wt% Ni (Table 5). The 

main products were ethylene and acetaldehyde, with a non negligible 

fraction of acetone, especially at low Ni loading. 

 

TPD of preadsorbed NH3 

 
In previous studies we have shown the essential role of acidic sites for 

facilitating the formation of ethylene and affecting hydrogen productivity. 

The acidity of the catalysts was eval-uated and compared by temperature 

programmed desorption of ammonia (NH3-TPD). The strength of the acid 

sites was estimated according to the intensity and temperature of the NH3 

desorption peak. The acid strength can be classified as weak (150e250 C), 

medium (250e420 C) and strong (420e750 C) according to the 

temperature range of ammonia release. Fig. 7 shows the results of the 

analysis. Negligible ammonia adsorption was achieved for the bare 

support and 

 

 
for sample Ni 1.5 wt%. By contrast, for Ni 5 wt% three desorption peaks 

were evident at 370, 504 and 660 C, while for Ni 10 wt% three at 416, 

630 and 756 C indicating the presence of both medium and strong acid 

sites, with increasing amount and strength with increasing Ni loading 

(increasing ammonia desorption temperature and peak intensity). Hence, 

acidity was mainly ascribed to Ni and not to the basic support. This 

acidity is the responsible factor of promoting ethanol dehy-dration to 

ethylene and the somehow stronger acidity observed at the highest Ni 

loading can explain the deactiva-tion of the 10 wt% Ni catalyst even at the 

highest temperature; if C accumulates over Ni particles their activity for 

ESR and in general for CeC bond cleavage decreases. The increase of 

acid sites influenced the deposition of carbon which increased 

proportionally with nickel loading, as shown in the TPO chart (vide infra). 

 
 
 

 
DRIFTS analysis of ethanol adorption/desorption 

 
To get insight on the possible surface species responsible for the activity 

and selectivity adsorption/desorption studies of ethanol were carried out in 

the temperature range 110e400 C. Fig. 8 shows the resulting DRIFTS 

spectra of the samples, which were interpreted on the basis of the relevant 

literature as for bands assignment [38e40]. The spectra correspond to the 

adsorption of ethanol at 400 C. The observed small band at 1249 cm 1 

corresponds to the OH bending (d) mode of un-dissociated adsorbed 

ethanol. The negative band near 3740 cm 1 is due to the interaction of the 

free surface OH groups with the adsorbed molecules. The sharpness of the 

latter band and the absence of broad absorption between 3000 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4 e TEM images of the catalysts Ni/MgAl2O4 1.5 wt%, (a ¼ fresh, d ¼ spent), 5 wt% (b ¼ fresh, e ¼ spent) and 10 wt% (c ¼ fresh, f ¼ spent). 
 
 

 

and 3500 cm 1 indicate that this species should be chem-isorbed through 

the oxygen lone pair, rather than being H bonded. The complex absorption 

found in the region 2800 2400 cm 1 (unusually strong) is associated with 

this  
 
 

Table 3 e Results of ESR activity testing at 625 C.    
1.5 wt% Ni 5 wt% Ni 10 wt% Ni   

C2H5OH conversion (%) 86 ± 3 100 100  
C balance (%) 107 ± 3 93 ± 3 98.4 ± 0.7 

H2 productivity 0.57 ± 0.05 1.18 ± 0.06 1.23 ± 0.04 

(mol/min kgcat)     

CO/CO2 7.0 ± 0.3 1.05 ± 0.12 1.18 ± 0.13 

Sel. CH4 (%) 6.9 ± 0.4 1.40 ± 0.09 0.79 ± 0.02 

Sel. CH3CHO (%) 2.8 ± 0.8 0 ± 0 1.7 ± 0.4 

Sel. CH3COCH3 (%) 2.4 ± 0.6 0 ± 0 0 ± 0 

Sel. CH2CH2 (%) 40.8 ± 1.1 0 ± 0 0 ± 0 

Yield H2 1.8 ± 0.2 3.8 ± 0.2 3.87 ± 0.13 

(mol H2 out/mol C2H5OH in)      

 
 
 
species and is likely due to a Fermi resonance of the overtone of the OH d 

vibration mode with the CH stretching (n), sym-metric (s) and asymmetric 

(as) modes, found at 2967, 2924, and 2879 cm 1 (CH3 nas, CH2 nas and 

CH3 ns). At high temperature (Fig. 9), some new bands appeared at 1332, 

1415, and 1476 cm 1 (the last two being very broad). These bands may be 

assigned to the vibrational modes of acetate species (CH3 d, OCO ns, and 

OCO nas, respectively) [41,42], confirming the acetaldehyde formation 

upon ethanol dehydrogenation as first step of the reforming path. 

 

 

The broadening of the band at 1476 cm 1 and the apparent complexity 

of both main components suggest that carbonate species, responsible for 

bands in the same region, should also form. Their appearance is caused by 

the formation of CO2 derived by the ethanol reforming, which remains 

adsorbed as carbonate on the basic support used. The shoulder around 

1631 cm 1 may be assigned to the CeO stretching of acetal-dehyde, which 

may be rapidly oxidized to acetate species. These results are in agreement 

with the catalytic data 



       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 5 e Ethanol conversion (blue circles) and acetaldehyde selectivity (green squares) of 1.5% Ni/MgAl2O4 at 625 C. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the Web version of this article.)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6 e Trends of hydrogen productivity, methane selectivity and CO/CO2 ratio at different Ni loading and temperature.  
 

 
obtained at lower temperature where one of the intermediates detected 

was acetaldehyde. Often, acetaldehyde is not detec-ted in the products 

distribution due to its rapid evolution by further oxidation or 

decomposition to CO and CH4. 
 

DRIFTS experiments also highlighted the formation of ac-etates, 

based on the bands at 1332 and 1415 cm 1 [43]. The 

 

 
spectral profile of sample 10 wt% Ni (Fig. 9) shows a reduction of bands 

intensity of CHx during the temperature increase, with a corresponding 

increase of the carbonate ones. Also, the formation of a shoulder at ca. 

1700 cm 1, appearing at 300 C and increasing at higher temperature is 

related to oxidized C species, such as carbonyls and carboxylic groups. 

This 



   

Table 4 e Results of ESR activity testing at 500 C.  
 1.5 wt% Ni 5 wt% Ni 10 wt% Ni  

C2H5OH conversion (%) 100 100   100  
C balance (%) 90 ± 2 85.4 ± 0.2 92 ± 2  

H2 productivity 0 ± 0 0.181 ± 0.014 0.61 ± 0.02  

(mol/min kgcat)       

CO/CO2 1.0 ± 0.2 1.0 ± 0.2 1.0 ± 0.2  

Sel. CH4 (%) 0.26 ± 0.02 0.42 ± 0.04 1.69 ± 0.12  

Sel. CH3CHO (%) 8.9 ± 0.5 2.37 ± 0.07 0 ± 0  

Sel. CH3COCH3 (%) 1.41 ± 0.07 2.48 ± 0.07 3.2 ± 0.3  

Sel. CH2CH2 (%) 77 ± 3 66.03 ± 0.18 41.2 ± 0.9  

Yield H2 0 ± 0 0.58 ± 0.05 1.91 ± 0.06  

(mol H2 out/mol C2H5OH in)       

Table 5 e Results of ESR activity testing at 400 C. 
C.      Fig. 8 e DRIFT spectra after adsorption of ethanol at 400 

 1.5 wt% Ni 5 wt% Ni 10 wt% Ni  

C2H5OH conversion (%) 57 ± 4 87.67 ± 0.14 100  
C balance (%) 95.5 ± 0.8 89 ± 6  89 ± 3  

H2 productivity 0 ± 0 0 ± 0  0.169 ± 0.010  

(mol/min kgcat)       

CO/CO2 0 ± 0 1.0 ± 0.5 0 ± 0  

Sel. CH4 (%) 0 ± 0 0 ± 0  1.6 ± 0.3  

Sel. CH3CHO (%) 4.8 ± 1.0 4.8 ± 0.3 8.2 ± 0.4  

Sel. CH3COCH3 (%) 19.3 ± 1.2 10.5 ± 1.0 2.9 ± 0.9  

Sel. CH2CH2 (%) 68.0 ± 1.0 74 ± 3  63.6 ± 1.3  

Yield H2 0 ± 0 0 ± 0  0.53 ± 0.03  

(mol H2 out/mol C2H5OH in)        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7 e NH3-TPD of the different samples. Ni loading increasing 

from bottom to upper curve.  

 
supports the oxidative evolution of acetaldehyde over the present 

catalysts, rather than its decomposition. It should be underlined that 

acetaldehyde formation by dehydrogenation of ethanol is catalyzed by Ni 

active sites, which remain active for this reaction even when possible coke 

accumulation oc-curs over it. The CeC bond cleavage, mediated by the 

same active sites, becomes inactive after encapsulating coking oc-curs, 

thus leading to increasing presence of unconverted acetaldehyde in the 

products distribution. This latter is indeed a fingerprint of the formation of 

encapsulating coke. 

 
 
 
 
 
 

 

Fig. 9 e DRIFTS spectra of ethanol adsorption on 10 wt% Ni/ MgAl2O4 

at different temperature.  
 
 
 
 

The higher activity of the 10 wt% Ni sample is here testified by the 

increased intensity of the bands of the more oxidized species (acetates, 

carbonates) with respect to the CHx bands. 

 
Temperature programmed reduction (TPR) 

 
Temperature programmed reduction profiles are presented in Fig. 10. 

Each positive peak represents the consumption of H2. The highest is the 

reduction temperature, the hardest the reducibility of that species. The 

TPR for 10 wt% Ni/MgAl2O4 shows a main, broad reduction feature 

between 300 and 400 C, representing the reduction of NiO. A small 

shoulder at higher temperature can represent a fraction of Ni2þ as 

aluminate. The TPR profile of sample 5 wt% Ni presents a peak around 

250 C which suggests the presence of Ni2þ species very similar in nature, 

but in lower amount than 10 wt% Ni, in agreement with XPS data. 

Additionally, a low temperature peak appeared, due to NiO poorly 

interacting with the support (for instance bigger particles) and is present 

also at the lowest Ni loading. 



  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10 e TPR profiles of the three catalysts.  

 
From these data, one can conclude that at the selected activation 

temperature NiO species are fully reduced to metallic Ni. Very similar 

NiO species are present in all sam-ples, when the chosen reduction 

temperature was between 300 and 400 C. These are accompanied by low 

temperature reduction features in the case of 1.5 wt% Ni and 5 wt% Ni, 

almost undetectable for the highest Ni loading, which showed the most 

uniform NiO particles. 

 
 
Characterization of the spent samples 

 
The TPO analyses were carried out on the spent catalysts, to quantify both 

the nature (amorphous or ordered C, depending on the oxidation 

temperature) and their amount. The profiles show that C oxidation 

occurred at ca. 370 C for sample 1.5% Ni/MgAl2O4 and 10% 

Ni/MgAl2O4 likely corresponding to amorphous carbon on Ni particles, 

while at ca. 538 C for catalyst 5% Ni/MgAl2O4 (Fig. 11). This higher 

oxidation tem-perature and lower intensity can be ascribed to more struc-

tured C, such as the presence of graphitic layers. The quantification of C 

deposition is also reported in Table 6. The presence of structured C 

deposits is also confirmed by TEM and FE-SEM analysis, which evidence 

the presence of C  

 

Table 6 e Mass of carbon per mass of spent catalyst expressed 

as %. 
 

Sample C wt% 
  

1.5% Ni/MgAl2O4 6.58 

5% Ni/MgAl2O4 5.29 

10% Ni/MgAl2O4 14.86 

 
 
nanotubes (Figs. 3 and 4) and by micro-RAMAN spectroscopy (Fig. 12). 

The latter presents for each sample the typical D and G bands usually 

found in the presence of multiwalled C nanotubes, with higher intensity 

for the highest Ni content. 

 
General discussion 

 
Based on the negligible acidity of the support, the ethanol dehydration 

features are attributed only to Ni Lewis acidity. However, under the 

present conditions, limited effect of Ni coking was observed in the case of 

the lowest and highest Ni loading for different reasons. The amorphous 

coke charac-terizing both catalysts likely formed due to ethanol dehydra-

tion to ethylene during low temperature testing (400 C). Reactivity for 

dehydration was quite limited due to small acidity (TPD of ammonia) in 

the case of 1.5 wt% Ni, whereas it was higher for 10 wt% Ni in virtue of 

its higher acidity, due to Ni particles. This form of coking is much more 

limited at higher reaction temperature due to consecutive reforming of the 

ethylene formed (if any), as testified by the products dis-tribution. 

Furthermore, it can be tuned by increasing the water amount in the feed 

and is reversible by periodic regeneration of the catalyst. Even if higher 

acidity of 10 wt% Ni could lead to higher ethylene formation, its higher 

CeC bond cleavage ac-tivity improved its further conversion to reformate. 

 
 

 
On the other hand, the higher coke oxidation temperature observed in 

the case of 5 wt% Ni suggests a more structured carbon, usually in form 

of nanotubes. This implies a more critical failure of the catalyst, which 

brings to reactor fouling and to the physical detachment of the active 

phase from the support surface. This (limited) coke formation can be 

favored by NiO species poorly interacting with the support, likely being 

bigger particles, represented by the low temperature 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 11 e TPO profile of Ni catalysts. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 12 e Micro-RAMAN spectra of used catalysts (last testing 

temperature ¼ 400 C). 



  
 

 
reduction feature in TPR analysis. The incorporation of part of Ni in the 

spinel phase for 10 wt% Ni observed by XPS and XRD analysis may 

improve its overall dispersion (even at such a high loading), thus 

preventing the formation of bigger Ni particles as in the case of 5 wt% Ni. 

The latter are involved in the formation of C nanotubes as previously 

discussed. These results confirm the effect of Ni dispersion, of its particle 

size and the interaction with the support in limiting the coking activity. 

This point has been already discussed in the litera-ture 

[12e17,29,30,44e46]. 

 

On the basis of all the considerations above reported, 10 wt  

% Ni/MgAl2O4 represents an active and stable catalyst when 
 
tested at 625 C. This operating temperature is lower than that usually 

applied to this reaction, in light of process intensifi-cation. The absence of 

intrinsic acidity of the support limits the deactivation phenomena by 

coking due to ethanol dehy-dration paths. However, a limited contribution 

to acidity is also attributed to Ni itself, increasing with Ni loading. Unfor-

tunately, the catalyst with low Ni loading, favorable from the point of 

view of low Ni acidity and low coking rate, was insufficiently active for 

steam reforming, due to insufficient CeC bond cleavage activity. 

 

 

On the other hand, the support plays a significant role in this reaction 

by contributing to steam activation, forming activated OH species and 

ensuring their mobility towards the active Ni particles to provide 

oxidizing moieties. 
 

DRIFT analysis allowed to investigate and get insight into possible 

reaction mechanisms. The first reaction step seems the formation of 

acetaldehyde through ethanol dehydroge-nation. This intermediate may 

decompose to methane and CO or further oxidise to carbonate, acetate and 

in general car-boxylic species. The latter path seems favored over the pre-

sent catalysts based on DRIFT analysis and on the very limited 

concentration of methane in the products distribution. This evolution 

mechanism of acetaldehyde may be favored by the 

 

basic character of the support, which stabilizes acidic func-tions such as 

carboxylic acids and CO2. 
 

As a general comparison with similar catalysts, Aupetre et al. [47] 

reported a RheNi/MgAl2O4 catalyst leading to 100% ethanol conversion 

with 4.41 mol H2/mol of ethanol, at 700 C, GHSV ¼ 13,400 h 1, with a 

more favorable water/ethanol ratio of 4 mol/mol than the stoichiometric 

ration here used. 
 

Similarly, Olivares et al. [48] reported almost full ethanol conversion 

and ca. 4.7 mol H2/mol of ethanol, over a Ni/ MgAl2O4eCeO2 catalyst at 

650 C, W/F ¼ 49 g min/mol, with a water/ethanol ratio of 5 mol/mol. 

 

Szijjarto et al. [49] reported a kinetic study on Ni(Co,Ce)/ MgAl2O4 

with almost full ethanol conversion and ca. 55% H2  
yield, at 400 C, W/F ¼ 1333 g min/mol, with a water/ethanol ratio of 9 

mol/mol. Accordingly, the present samples showed competitive with what 

reported in the literature. Indeed, comparable activity and hydrogen 

productivity was achieved without the addition of a noble/rare metals, by 

using a lower water/ethanol ratio and at relatively low temperature. 
 
 

 

 

Conclusions 

 

A series of Ni-based catalysts supported over MgAl2O4 have been 

prepared with small Ni crystallite size and high surface 

 

 

area thanks to an ultrasound assisted synthesis. Sufficiently dispersed Ni 

particles were obtained even at high Ni loading. The catalysts showed 

limited acidity, essentially due to the presence of Ni, acidity increasing 

with its loading, responsible of the ethanol dehydration to ethylene at low 

temperature. Ethylene can be further reformed provided that sufficiently 

active Ni species are present, such as in the case of 10 wt% Ni. 

 

Acetaldehyde was found as intermediate by DRIFT anal-ysis, formed 

by ethanol dehydrogenation and further reformed. Its evolution follows an 

oxidative path rather than decomposition. 

 

Coking of these samples was in general very limited, due to small 

acidity, which limits one of the possible coking modes, i.e. ethylene 

polymerisation. Some amorphous coke was found on the catalysts with 

the lowest and highest Ni loading, whereas the 5 wt% Ni sample was 

characterised by more structured carbon, which can be more critical as for 

regeneration. 

 

Overall, 10 wt% Ni/MgAl2O4 proved active and sufficiently stable 

catalyst at 625 C and even at 500 C to represent a promising candidate for 

further optimisation of the process parameters. 
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