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We propose a novel method to test the consistency of the multipole moments of compact binary systems
with the predictions of general relativity (GR). Themultipolemoments of a compact binary system, known in
terms of symmetric and trace-free tensors, are used to calculate the gravitational waveforms from compact
binaries within the post-Newtonian (PN) formalism. For nonspinning compact binaries, we derive the
gravitational wave phasing formula, in the frequency domain, parametrizing each PN order term in terms of
the multipole moments which contribute to that order. Using GWobservations, this parametrized multipolar
phasing would allow us to derive the bounds on possible departures from the multipole structure of GR and
hence constrain the parameter space of alternative theories of gravity. We compute the projected accuracies
with which the second-generation ground-based detectors, such as the Advanced Laser Interferometer
Gravitational-wave Observatory (LIGO), the third-generation detectors such as the Einstein Telescope and
CosmicExplorer, aswell as the space-based detector Laser Interferometer SpaceAntenna (LISA)will be able
to measure these multipole parameters.We find that while Advanced LIGO canmeasure the first two or three
multipole coefficients with good accuracy, Cosmic Explorer and the Einstein Telescope may be able to
measure the first four multipole coefficients which enter the phasing formula. Intermediate-mass-ratio
inspirals, with mass ratios of several tens, in the frequency band of the planned space-based LISA mission
should be able to measure all seven multipole coefficients which appear in the 3.5PN phasing formula. Our
finding highlights the importance of this class of sources for probing the strong-field gravity regime. The
proposed test will facilitate the first probe of the multipolar structure of Einstein’s general relativity.
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I. INTRODUCTION

The discovery of binary black holes [1–4] and binary
neutron stars [5] byAdvancedLIGO [6] andAdvancedVirgo
[7] have been ground breaking for several reasons. Among
the most important aspects of these discoveries is the
unprecedented opportunity they have provided to study
the behavior of gravity in the highly nonlinear and dynamical
regime associated with the merger of two black holes (BHs)
or two neutron stars (see Refs. [8,9] for reviews). The

gravitational wave (GW) observations have put stringent
constraints on the allowed parameter space of alternative
theories of gravity by different methods [3,10,11]. They
include the parametrized tests of post-Newtonian theory
[12–18], bounding the mass of the putative graviton and
dispersion of GWs [19,20], testing consistency between the
inspiral and ringdown regimes of the coalescence [21] and
the time delay between the GWand electromagnetic signals
[22]. Furthermore, the bounds obtained from these tests have
been translated into bounds on the free parameters of certain
specific theories of gravity [23].
With improved sensitivities of Advanced LIGO andVirgo

in the upcoming observing runs, the development of third-
generation detectors such as the Einstein Telescope (ET) [24]
and Cosmic Explorer (CE) [25] and the approval of funding
for the space-based mission LISA [26], the field of
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gravitational astronomy promises to deliver exciting science
returns. In addition to stellar-mass compact binaries, future
ground-based detectors, such as ET and CE, can detect
intermediate-mass black holes with a total mass of several
hundreds of solar masses. Such observations will not only
confirm the existence of BHs in this mass range (see
Refs. [27,28] for reviews), but also facilitate several new
probes of fundamental physics via studying their dynamics
[29–32]. Someof themost prominent, among these, are those
using intermediate-mass-ratio inspirals, which will last
longer (compared to the equal-mass binaries), and hence
are an accurate probe of the compact binary dynamics and the
BH nature of the central compact object [31,33].
The space-based LISA mission, on the other hand, will

be sensitive to millihertz GWs produced by inspirals
and the merger of supermassive BH binaries in the mass
range ∼104–107 M⊙. These sources may also have a large
diversity in their mass ratios ranging from comparable mass
(mass ratio ≲10) and intermediate mass ratios (mass ratio
≳100) to extreme mass ratios (mass ratio ≳106) where a
stellar mass BH spirals into the central supermassive BH
with several millions of solar masses [34,35]. This diversity
together with the sensitivity in the low-frequency window
makes LISA a very efficient probe of possible deviations
from general relativity (GR) in different regimes of dynam-
ics (see Refs. [8,36–38] for reviews).
Setting stringent limits on possible departures from GR

as well as constraining the parameter space of exotic
compact objects that can mimic the properties of BHs
[39–46], are among the principle science goals of the next-
generation detectors. They should also be able to detect any
new physics, or modifications to GR, if present.
Formulating new methods to carry out such tests is crucial

in order to efficiently extract the physics from GWobserva-
tions. The dynamics of a compact binary system is conven-
tionally divided into the adiabatic inspiral, rapid merger and
fast ringdown phases. During the inspiral phase the orbital
time scale is much smaller than the radiation backreaction
time scale. The post-Newtonian (PN) approximation to GR
has proved to be a very effective method to describe the
inspiral phase of a compact binary of comparable masses
[47]. A description of the highly nonlinear phase of the
merger of two compact objects needs numerical solutions to
Einstein’s equations [48]. The ringdown radiation of GWs by
themerger remnant, can bemodeled within the framework of
BHperturbation theory [49]. In alternative theories of gravity,
the dynamics of the compact binary during these phases of
evolution could be quite different from that predicted by GR.
Hence observingGWs is thebestway to probe thepresence of
non-GR physics associated with this phenomenon.
One of the most generic tests of the binary dynamics has

been the measurement of the PN coefficients of the GW
phasing formula [12–16,50,51]. This test captures a pos-
sible departure from GR by measuring the PN coefficients
in the phase evolution of the GW signal. In addition to the

source physics, the different PN terms in the phase
evolution contain information about different nonlinear
interactions the wave undergoes as it propagates from
the source to the detector. Hence the predictions for these
effects in an alternative theory of gravity could be very
different from that of GR, which is what is being tested
using the parametrized tests of PN theory.
In this work, we go one step further and propose a novel

way to test the multipolar structure of the gravitational field
of a compact binary as it evolves through the adiabatic
inspiral phase. The multipole moments of the compact
binary (and interactions between them), are responsible for
the various physical effects we see at different PN orders.
By measuring these effects we can constrain the multipolar
structure of the system. The GW phase and frequency
evolution is obtained from the energy flux of GWs and the
conserved orbital energy by using the energy balance
argument, which equates the GW energy flux F to the
decrease in the binding energy Eorb of the binary [52]

F ¼ −
d
dt

Eorb: ð1:1Þ

In an alternative theory of gravity, one or more multipole
moments of a binary system may be different from those of
GR. For instance, in Ref. [53], the authors discuss how an
effective-field-theory-based approach can be used to go
beyond Einstein’s gravity by introducing additional terms
to the GR Lagrangian which are higher-order operators
constructed out of the Riemann tensor, but suppressed by
appropriate scales comparable to the curvature of the compact
binaries. They find that such generic modifications will lead
to multipole moments of compact binaries that are different
from GR. Our proposed method aims to constrain such
generic extensions ofGRby directlymeasuring themultipole
moments of the compact binaries through GWobservations.
In this work, we assume that the conserved orbital

energy of the binary is the same as in GR and modify
the gravitational wave flux by deforming the multipole
moments which contribute to it by employing the multi-
polar post-Minkowskian formalism [47,52]. We then reder-
ive the GW phase and its frequency evolution (sometimes
referred to as the phasing formula) explicitly in terms of the
various deformed multipole moments. (In the Appendix we
provide a more general expression for the phasing where
the conserved energy is also deformed at different PN
orders, in addition to the multipole moments of the source.)
We use this parametrized multipolar phasing formula to
measure possible deviations from GR and discuss the level
of bounds we can expect from the current and next-
generation ground-based GW detectors, as well as the
space-based LISA detector. We obtain the measurement
accuracy of the system’s physical parameters and the
deformation of the multipole moments using the semi-
analytical Fisher information matrix [54,55]. These results
are validated for several configurations of the binary system
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by Markov chain Monte Carlo (MCMC) sampling of the
likelihood function using the emcee [56] algorithm.
We find that Advanced LIGO-like detectors can con-

strain at most two of the leading multipoles, while a third-
generation detector, such as ET or CE, can set constraints
on as many as four of the leading multipoles. The space-
based LISA detector will have the ability to set good limits
on all seven multipole moments that contribute to the
3.5PN phasing formula, making it a very accurate probe of
the highly nonlinear dynamics of compact binaries.
The organization of the paper is as follows. In Sec. II we

describe the basic formalism to obtain the parametrized
multipolar GW phasing formula. In Sec. III we briefly
explain the two parameter estimation schemes (Fisher
information matrix and Bayesian inference) used in our
analysis, followed by Sec. IV where we discuss the results
we obtain for various ground-based and space-based
detectors. Section V summarizes the paper and lists some
of the follow-ups we are pursuing.

II. PARAMETRIZED MULTIPOLAR
GRAVITATIONAL WAVE PHASING

The two-body problem in GR can be solved perturba-
tively using PN theory in the adiabatic regime, where the
orbital time scale is much smaller than the radiation
backreaction time scale (see Ref. [47] for a review). The
PN theory has given us several useful insights about various
facets of the two-body dynamics and the resulting gravi-
tational radiation.
In the multipolar post-Minkowskian (MPM) formalism

[52,57–67], the important quantities such as the gravita-
tional waveform, and the energy and angular momentum
fluxes can be expressed using a combination of the post-
Minkowskian approximation (expansion in powers of G,
Newton’s gravitational constant, valid throughout the
spacetime for weakly gravitating sources), PN expansions
(an expansion in 1=c that is valid for slowly moving and
weakly gravitating sources and applicable in the near zone
of the source) and the multipole expansion of the gravi-
tational field valid over the entire region exterior to the
source. The coefficients of post-Minkowskian expansion
and the multipole moments of the source can be further
expanded as a PN series. The multipole expansion of the
gravitational field plays a central role in the analytical
treatment of the two-body problem as it significantly helps
to handle the nonlinearities of Einstein’s equations.
TheMPMformalism relates the radiation content in the far

zone (at the detector) to the stress-energy tensor of the source.
The quantities in the far zone are described by mass- and
current-type radiative multipole moments fUL; VLg
whereas the properties of the source are completely described
by the mass- and current-type source multipole moments
fIL; JLg and the four gauge moments fWL;XL; YL; ZLg all
of which are the moments of the relativistic mass and current
densities expressed as functionals of the stress-energy

pseudotensor of the source and gravitational fields.
However, in GR, there is further gauge freedom to reduce
this set of six source moments to a set of two “canonical”
multipole moments fML; SLg. The relations connecting
these two sets of multipole moments can be found in
Eqs. (97) and (98) of Ref. [47]. Furthermore, the mass-
and current-type radiative multipole moments fUL; VLg
admit closed-form expressions in terms of fML; SLg.
The source and the canonical multipole moments are

usually expressed using the basis of symmetric trace-free
tensors [68]. The relationships between the radiative- and
source-type multipole moments incorporate the various
nonlinear interactions between the various multipoles, such
as tails [52,69,70], tails of tails [71], tail square [72],
memory [73–76], …, as the wave propagates from the
source to the detector (see Ref. [47] for more details).
For quasicircular inspirals, the PN expressions for the

orbital energy and the energy flux, together with the energy
balance argument is used in the computation of the GW
phasing formula at any PN order [52,67,77,78]. The PN
terms in the phasing formula, hence, explicitly encode the
information about the multipolar structure of the gravita-
tional field of the two-body dynamics.
In this work, we separately keep track of the contribu-

tions from various radiative multipole moments to the GW
flux allowing us to derive a parametrized multipolar
gravitational wave flux and phasing formula, thereby
permitting tests of the multipolar structure of the PN
approximation to GR. We first rederive the phasing formula
for nonspinning compact binaries moving in quasicircular
orbits up to 3.5PN order. The computation is described in
the next section. Before we proceed, we clarify that in our
notation the first post-Newtonian (1PN) correction would
refer to corrections of order v2=c2, where v ¼ ðπmfÞ1=3 is
the characteristic orbital velocity of the binary,m is the total
mass of the binary and f is the orbital frequency.

A. The multipolar structure of the energy flux

The multipole expansion of the energy flux within the
MPM formalism schematically reads as [52,57]

F ¼
X
l

�
αl
cl−2

Uð1Þ
L Uð1Þ

L þ βl
cl
Vð1Þ
L Vð1Þ

L

�
; ð2:1Þ

where αl, βl are known real numbers and UL, VL are mass-
and current-type radiative multipole moments with l
indices; the superscript (1) denotes the first time derivative
of the multipoles. The UL and VL can be rewritten in terms
of the source multipole moments as

UL ¼ MðlÞ
L þ Nonlinear interaction terms; ð2:2Þ

VL ¼ SðlÞL þ Nonlinear interaction terms; ð2:3Þ
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where the right-hand side involves the lth time derivative of
the mass- and current-type source multipole moments and
nonlinear interactions between the various multipoles due
to the propagation of the wave in the curved spacetime of
the source (see Refs. [63,65,71,72] for details). The various
types of interactions can be decomposed as follows [52,65]:

F ¼ F inst þ F tail þ F tail2 þ F tailðtailÞ: ð2:4Þ
As opposed to F inst (a contribution that depends on the
dynamics of the binary at the purely retarded instant of
time, referred to as instantaneous terms), the last three
contributions F tail, F tail2 and F tailðtailÞ contain nonlinear
multipolar interactions in the flux [71] that depend on the
dynamical history of the system, and are referred to as
hereditary contributions.
In an alternative theory of gravity, the multipole moments

may not be the same as in GR; if the mass- and current-type
radiativemultipolemoments deviate from theirGRvalues by
a fractional amount δUL and δVL, i.e., UL → UGR

L þ δUL

and VL → VGR
L þ δVL, then we can parametrize such

deviations in the multipoles by considering the scalings

UL → μlUL; VL → ϵlVL; ð2:5Þ
where the parameters μl ¼ 1þ δUL=UGR

L and ϵl ¼
1þ δVL=VGR

L are equal to unity in GR.
We first recompute the GW flux from nonspinning

binaries moving in a quasicircular orbit up to 3.5PN order
with the above scaling using the prescription outlined in
Refs. [52,64,65,67]. With the parametrizations introduced
above, the computation of the energy flux would proceed

similarly to that in GR but the contributions from every
radiative multipole are now separately kept track of.
In order to calculate the fluxes up to the required PN

order, we need to compute the time derivatives of the
multipole moments as can be seen from Eqs. (2.1)–(2.3).
These are computed by using the equations of motion of the
compact binary for quasicircular orbits given by [65,79]

dv
dt

¼ −ω2x; ð2:6Þ

where the expression for ω, the angular frequency of the
binary, up to 3PN order is given by [66,78–83]

ω2 ¼ Gm
r3

�
1þ ½−3þ ν�γ þ

�
6þ 41

4
νþ ν2

�
γ2

þ
�
−10þ

�
22 ln

�
r
r00

�
þ 41π2

64
−
75707

840

�
ν

þ 19

2
ν2 þ ν3

�
γ3 þOðγ4Þ

�
; ð2:7Þ

where γ ¼ Gm=rc2 is a PN parameter, and r00 is a gauge-
dependent length scale which does not appear when
observables, such as the energy flux, are expressed in
terms of gauge-independent variables.
The hereditary terms are calculated using the prescrip-

tions given in Refs. [52,65,70,84] for tails, Ref. [71] for
tails of tails and Ref. [72] for the tail square. The complete
expression for the energy flux F in terms of the scaled
multipoles is given as

F ¼ 32

5

c5v10

G
ν2μ22

�
1þ v2

�
−
107

21
þ 55

21
νþ μ̂23

�
1367

1008
−
1367

252
ν

�
þ ϵ̂2

2

�
1

36
−
ν

9

��
þ 4πv3 þ v4

�
4784

1323
−
87691

5292
ν

þ 5851

1323
ν2 þ μ̂23

�
−
32807

3024
þ 3515

72
ν−

8201

378
ν2
�
þ μ̂24

�
8965

3969
−
17930

1323
νþ 8965

441
ν2
�
þ ϵ̂2

2

�
−

17

504
þ 11

63
ν−

10

63
ν2
�

þ ϵ̂3
2

�
5

63
−
10

21
νþ 5

7
ν2
��

þ πv5
�
−
428

21
þ 178

21
νþ μ̂23

�
16403

2016
−
16403

504
ν

�
þ ϵ̂2

2

�
1

18
−
2

9
ν

��

þ v6
�
99210071

1091475
þ 16π2

3
−
1712

105
γE −

856

105
log½16v2� þ

�
1650941

349272
þ 41π2

48

�
ν−

669017

19404
ν2 þ 255110

43659
ν3

þ μ̂23

�
7345

297
−
30103159

199584
νþ 10994153

49896
ν2 −

45311

891
ν3
�
þ μ̂24

�
−
1063093

43659
þ 20977942

130977
ν−

12978200

43659
ν2 þ 1568095

14553
ν3
�

þ μ̂25

�
1002569

249480
−
1002569

31185
νþ 1002569

12474
ν2 −

2005138

31185
ν3
�
þ ϵ̂22

�
−

2215

254016
−
13567

63504
νþ 65687

63504
ν2 −

853ν3

5292

�

þ ϵ̂3
2

�
−
193

567
þ 1304

567
ν−

2540

567
ν2 þ 365

189
ν3
�
þ ϵ̂4

2

�
5741

35280
−
5741

4410
νþ 5741

1764
ν2 −

5741

2205
ν3
��

þ πv7
�
19136

1323
−
144449

2646
νþ 33389

2646
ν2 þ μ̂23

�
−
98417

1512
þ 55457

192
ν−

344447

3024
ν2
�
þ μ̂24

�
23900

1323
−
47800

441
νþ 23900

147
ν2
�

þ ϵ̂2
2

�
−

17

252
þ 9

28
ν−

13

63
ν2
�
þ ϵ̂3

2

�
20

63
−
40

21
νþ 20

7
ν2
���

; ð2:8Þ
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where μ̂l ¼ μl=μ2, ϵ̂l ¼ ϵl=μ2, Euler constant,
γE ¼ 0.577216, and ν is the symmetric mass ratio defined
as the ratio of the reduced mass μ to the total massm. As an
algebraic check of the result, we recover the GR results of
Ref. [65] in the limit μl → 1, ϵl → 1.

B. Conservative dynamics of the binary

A model for the conservative dynamics of the binary is
also required to compute the phase evolution of the system.
This enters the phasing formula in two ways. First, the
equation of motion of the binary [79] in the center-of-mass
frame is required to compute the derivatives of the multi-
pole moments while calculating the energy flux. Second,
the expression for the 3PN orbital energy [78,79] is
necessary to compute the equation of energy balance to
obtain the phase evolution [see Eqs. (2.13)–(2.14) below].
As the computation of the radiative multipole moments
requires two or more derivative operations, they are
implicitly sensitive to the equation of motion. Hence,
formally, a constraint on the deformation of the radiative
multipole moment does take into account a potential
deviation in the equation of motion from the predictions
of GR.
Here however we assume that the conserved energy is

the same as in GR. This assumption is motivated by
practical considerations. We could have taken a more
generic approach by deforming the PN coefficients in
the equation of motion and conserved energy as well.
As the former is degenerate with the definition of radiative
multipole moments, one would need to consider a para-
metrized expression for the conserved energy which will
give us a phasing formula with four additional parameters
corresponding to the different PN orders in the expression
for the conserved energy. A simultaneous estimation of
these parameters with the multipole coefficients would
significantly degrade the resulting bounds and may not
yield meaningful constraints. However, in the Appendix,
we present a parametrized phasing formula where in
addition to the multipole coefficients, various PN-order
terms in the conserved 3PN energy expression are also
deformed [see Eq. (A2) below]. Interestingly, as can be
seen from Eq. (A2), if there is a modification to the
conservative dynamics, they will be fully degenerate with
at least one of the multipole coefficients appearing at the
same order. Due to this degeneracy, such modifications will
be detected by this test as modifications to “effective”
multipole moments. Further, this degeneracy is not acci-
dental. It can be shown that by differentiating the expres-
sion for the conserved energy, one can derive the energy
flux by systematically accounting for the equation of
motion, including radiation reaction terms [85,86]. We
are, therefore, confident that the power of the proposed test
is not diminished by this assumption. The conserved energy
(per unit mass) up to 3PN order is given by [66,78–83]

EðvÞ ¼−
1

2
νv2

�
1−

�
3

4
þ 1

12
ν

�
v2−

�
27

8
−
19

8
νþ 1

24
ν2
�
v4

−
�
675

64
−
�
34445

576
−
205

96
π2
�
νþ 155

96
ν2

þ 35

5184
ν3
�
v6
�
: ð2:9Þ

Using the expressions for the modified flux and the orbital
energy we next proceed to compute the phase evolution of
the compact binary.

C. Computation of the parametrized multipolar
phasing formula

With the parametrized multipolar flux and the energy
expressions, we compute the 3.5PN, nonspinning, fre-
quency-domain phasing formula following the standard
prescription [87,88] by employing the stationary phase
approximation (SPA) [89]. Consider a GW signal of the
form

hðtÞ ¼ AðtÞ cosϕðtÞ: ð2:10Þ

The Fourier transform of the signal will involve an
integrand whose amplitude is slowly varying and whose
phase is rapidly oscillating. In the SPA, the dominant
contributions to this integral come from the vicinity of
the stationary points of its phase [87]. As a result
the frequency-domain gravitational waveform may be
expressed as

h̃SPAðfÞ ¼ AðtfÞffiffiffiffiffiffiffiffiffiffiffi
_FðtfÞ

q ei½ψfðtfÞ−π=4�; ð2:11Þ

ψfðtÞ ¼ 2πft − ϕðtÞ; ð2:12Þ
where tf can be obtained by solving dψfðtÞ=dtjtf ¼ 0, FðtÞ
is the gravitational wave frequency and at t ¼ tf the GW
frequency coincides with the Fourier variable f. More
explicitly,

tf ¼ tref þm
Z

vref

vf

E0ðvÞ
F ðvÞ dv; ð2:13Þ

ψfðtfÞ¼2πftref−ϕrefþ2

Z
vref

vf

ðv3f−v3ÞE
0ðvÞ

F ðvÞdv; ð2:14Þ

where E0ðvÞ is the derivative of the binding energy of the
system expressed in terms of the PN expansion parameter
v. Expanding the factor in the integrand in Eq. (2.14) as a
PN series and truncating up to 3.5PN order, we obtain the
3.5PN-accurate TaylorF2 phasing formula.
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Following the very same procedure, but using Eq. (2.8)
to be the parametrized flux, F , together with the leading
quadrupolar order amplitude (related to the Newtonian GW
polarizations), we derive the standard restricted PN wave-
form in the frequency domain, which reads as

h̃ðfÞ ¼ Aμ2f−7=6eiψðfÞ; ð2:15Þ

where ψðfÞ is the parametrized multipolar phasing,
A ¼ M5=6

c =
ffiffiffiffiffi
30

p
π2=3DL; Mc ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5

and DL are the chirp mass and luminosity distance,
respectively, and m1, m2 denote the component masses
of the binary. Note the presence of μ2 in the GWamplitude;
this is due to the mass quadrupole that contributes to the
amplitude at the leading PN order. If we incorporate the
higher-order PN terms in the GW polarizations [75,90,91],
higher-order multipoles will enter the GW amplitude
as well.
Finally the expression for the 3.5PN frequency-domain

phasing ψðfÞ is given by,

ψðfÞ ¼ 2πftc −
π

4
−ϕc þ

3

128v5μ22ν

�
1þ v2

�
1510

189
−
130

21
νþ μ̂23

�
−
6835

2268
þ 6835

567
ν

�
þ ϵ̂2

2

�
−

5

81
þ 20

81
ν

��

− 16πv3 þ v4
�
242245

5292
þ 4525

5292
νþ 145445

5292
ν2 þ μ̂3

2

�
−
66095

7056
þ 170935

3024
ν−

403405

5292
ν2
�

þ μ̂3
2ϵ̂2

2

�
6835

9072
−
6835

1134
νþ 6835ν2

567
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: ð2:16Þ

This parametrized multipolar phasing formula consti-
tutes one of the most important results of the paper and
forms the basis for the analysis which follows.

D. Multipole structure of the post-Newtonian
phasing formula

We summarize in Table I the multipole structure of the
PN phasing formula based on Eq. (2.16). The various
multipoles which contribute to the different PN phasing
terms are listed. The main features are as follows. As we go
to higher PN orders, in addition to the higher-order multi-
poles making an appearance, higher-order PN corrections
to the lower-order multipoles also contribute. For example,
the mass quadrupole and its corrections (terms proportional
to μ2) appear at every PN order starting from 0PN. The
1.5PN and 3PN log terms contain only μ2 and are due to the
leading-order tail effect [70] and tails-of-tails effect [71],
respectively. The 3PN nonlogarithmic term contains all
seven multipole coefficients.
Due to the aforementioned structure, it is evident that if

one of the multipole moments is different from GR, it is
likely to affect the phasing coefficients at more than one PN
order. For instance, a deviation in μ2 could result in a
dephasing of each of the PN phasing coefficients. There are
seven independent multipole coefficients which determine
eight PN coefficients. The eight equations which relate the
phasing terms to the multipoles are inadequate to extract all

seven multipoles. This is because three of the eight
equations relate the PN coefficients only to μ2, and another
two relate the 1PN and 2.5PN logarithmic terms to a set of
three multipole coefficients fμ2; μ3; ϵ2g. It turns out that, in
principle, by independently measuring the eight PN coef-
ficients, we can measure all of the multipoles except μ5 and
ϵ4. It is well known that measuring all eight phasing
coefficients together provides very bad bounds [12,13].
The version of the parametrized tests of post-Newtonian
theory, where we vary only one parameter at a time [13,16],
cannot be mapped to the multipole coefficients, as varying
multipole moments will cause more than one PN order to
change, which conflicts with the original assumption.
Though mapping the space of PN coefficients to that of

the multipole coefficients is not possible, it is possible
to relate the multipole deformations to that of the para-
metrized test. If, for instance, μ2 is different from GR,
it can lead to dephasing in one or more of the PN phasing
terms depending on what the correction is to the mass
quadrupole at different PN orders. Based on the multipolar
structure, this motivates us to perform parametrized tests
of PN theory while varying simultaneously certain PN
coefficients.1

III. PARAMETER ESTIMATION OF THE
MULTIPOLE COEFFICIENTS

In this section, we will set up the parameter estimation
problem to measure the multipolar coefficients and present
our forecasts for Advanced LIGO, the Einstein Telescope,
Cosmic Explorer and LISA. Using the frequency-domain
gravitational waveform, we study how well the current and
future generations of GW detectors can probe the multipolar
structure of GR. To quantify this, we derive the projected
accuracies with which various multipole moments may be
measured for various detector configurations by using
standard parameter estimation techniques. Following the
philosophy of Refs. [12,15,16], while computing the errors
we consider the deviation of only one multipole at a time.
An ideal testwouldhavebeenwhereall the coefficients are

varied at the same time, but this would lead to almost no
meaningful constraints because of the strong degeneracies
among different coefficients. The proposed test, however,

TABLE I. Summary of the multipolar structure of the PN
phasing formula. The contributions of various multipoles to
different phasing coefficients and their frequency dependences
are tabulated. Following the definitions introduced in the paper,
μl are associated to the deformations of mass-type multipole
moments and ϵl refer to the deformations of current-type multi-
pole moments.

PN order Frequency dependences Multipole coefficients

0 PN f−5=3 μ2
1 PN f−1 μ2, μ3, ϵ2
1.5 PN f−2=3 μ2
2 PN f−1=3 μ2, μ3, μ4, ϵ2, ϵ3
2.5 PN log log f μ2, μ3, ϵ2
3 PN f1=3 μ2, μ3, μ4, μ5, ϵ2, ϵ3, ϵ4
3 PN log f1=3 log f μ2
3.5 PN f2=3 μ2, μ3, μ4, ϵ2, ϵ3

1We thank Archisman Ghosh for pointing out this possibility
to us.
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would not affect our ability to detect a potential deviation
because in the multipole structure, a deviation of more than
onemultipole coefficientwould invariably showup in the set
oftestsperformedbyvaryingonecoefficientatatime[15–18].
We first use the Fisher information matrix approach to

derive the errors on the multipole coefficients. The Fisher
matrix is a useful semianalytic method which uses a
quadratic fit to the log-likelihood function to derive the
1σ error bars on the parameters of the signal [54,55,92,93].
Given a GW signal h̃ðf; θ⃗Þ, which is described by the set of
parameters θ⃗, the Fisher information matrix is defined as

Γmn ¼ hh̃m; h̃ni; ð3:1Þ

where h̃m ¼ ∂h̃ðf; θ⃗Þ=∂θm, and the angular bracket,
h…;…i, denotes the noise-weighted inner product
defined by

ha; bi ¼ 2

Z
fhigh

flow

aðfÞb�ðfÞ þ a�ðfÞbðfÞ
ShðfÞ

df: ð3:2Þ

Here ShðfÞ is the one-sided noise power spectral density
(PSD) of the detector and ½flow; fhigh� are the lower and
upper limits of integration. The variance-covariance matrix
is defined by the inverse of the Fisher matrix,

Cmn ¼ ðΓ−1Þmn;

where the diagonal components, Cmm, are the variances of
θm. The 1σ errors on θm are, therefore, given as

σm ¼
ffiffiffiffiffiffiffiffiffi
Cmm

p
: ð3:3Þ

Since Fisher-matrix-based estimates are only reliable in
the high signal-to-noise ratio limit [92,94,95], we spot check
representative cases for consistency,with estimates based on
a Bayesian inference algorithm that uses anMCMCmethod
to sample the likelihood function. This method is not limited
by the quadratic approximation to the log-likelihood and
hence is considered to be a more reliable estimate of
measurement accuraciesonemighthave in a real experiment.
In thismethodwecompute theprobabilitydistribution for the
parameters implied by a signal hðtÞ buried in the Gaussian
noise dðtÞ ¼ hðtÞ þ nðtÞ while incorporating our prior
assumptions about the probability distribution for the
parameters. Bayes’ rule states that the probability distribu-
tion for a set of model parameters θ⃗ implied by data d is

pðθ⃗jdÞ ¼ pðdjθ⃗Þpðθ⃗Þ
pðdÞ ; ð3:4Þ

where pðdjθ⃗Þ is called the likelihood function, which gives
theprobabilityofobservingdatadgiven themodelparameter
θ⃗, defined as

pðdjθ⃗Þ ¼ exp

�
−
1

2

Z
fhigh

flow

jd̃ðfÞ − h̃ðf; θ⃗Þj2
ShðfÞ

df

�
; ð3:5Þ

where d̃ðfÞ and h̃ðf; θ⃗Þ are theFourier transformsofdðtÞ and
hðtÞ, respectively. pðθ⃗Þ is the prior probability distribution
of parameters θ⃗ andpðdÞ is anoverall normalization constant
known as the evidence,

pðdÞ ¼
Z

pðdjθ⃗Þpðθ⃗Þdθ⃗: ð3:6Þ

In this paper, we use a uniform prior on all the parameters we
are interested in and use the PYTHON-basedMCMC sampler
EMCEE [56] to sample the likelihood surface and get the
posterior distribution for all the parameters.
We use the noise PSDs of advanced LIGO (aLIGO),

Cosmic Explorer-wide band (CE-wb) [25], and Einstein
Telescope-D (ET-D) [96] as representatives of the current
and next generations of ground-based GW interferometers
and LISA. We use the noise PSD given in Ref. [96] for
ET-D, analytical fits of PSDs given in Refs. [97,98] for
aLIGO and LISA respectively, and the following fit for the
CE-wb noise PSD:

ShðfÞ ¼ 5.62× 10−51þ 6.69×10−50f−0.125þ 7.80× 10−31

f20

þ 4.35× 10−43

f6
þ 1.63× 10−53fþ 2.44×10−56f2

þ 5.45× 10−66f5 Hz−1; ð3:7Þ

where f is in units of Hz. We compute the Fisher matrix
(or likelihood in the Bayesian framework) considering
the signal to be described by the set of parameters
flnA; lnMc; ln ν; tc;ϕcg and the additional parameter μl
or ϵl. In order to compute the inner product using Eq. (3.2),
we assume flow to be 20, 1, 5 and 10−4 Hz for the aLIGO,
ET-D, CE-wb and LISA noise PSDs respectively. We
choose fhigh to be the frequency at the last stable circular
orbit of a Schwarzschild BH with a total mass m given by
fLSO ¼ 1=ðπm63=2Þ for the aLIGO, ET-D and CE-wb noise
PSDs. For LISA, we choose the upper cutoff frequency to
be the minimum of ½0.1; fLSO�. Additionally, LISA being a
triangular shaped detector we multiply our gravitational
waveform by a factor of

ffiffiffi
3

p
=2 while calculating the Fisher

matrix for LISA.
All of the parameter estimations for aLIGO, CE-wb and

LISA, that we carry out here, assume detections of the
signals with a single detector, whereas for ET-D, due to its
triangular shape, we consider the noise PSD to be enhanced
roughly by a factor of 1.5. As our aim is to estimate the
intrinsic parameters of the signal, which directly affect the
binary dynamics, the single detector estimates are good
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enough for our purposes and a network of detectors may
improve it by the square root of the number of detectors.
Hence the reported errors are likely to give rough, but
conservative, estimates of the expected accuracies with
which the multipole coefficients may be estimated.

IV. RESULTS AND DISCUSSION

In this section, we report the 1σ measurement errors on
the multipole coefficients introduced in the previous
section, obtained using the Fisher matrix as well as
Bayesian analysis and discuss their implications.
Our results for the four different detector configurations

are presented in Figs. 1, 3 and 5 which show the errors on
the various multipole coefficients μl, ϵl for aLIGO, ET-D,
CE-wb and LISA, respectively. For all of these estimates
we consider the sources at fixed distances. In addition to the
intrinsic parameters there are four more (angular) param-
eters that are needed to completely specify the gravitational
waveform. More specifically one needs two angles to
define the location of the source on the sky and another
two angles to specify the orientation of the orbital plane
with respect to the detector plane [8]. Since we are using a
pattern-averaged waveform [87] (i.e., a waveform averaged
over all four angles), the luminosity distance can be thought
of as an effective distance which we assume to be 100 Mpc
for aLIGO, ET-D and CE-wb, and 3 Gpc for LISA. For
aLIGO, ET-D and CE-wb, we explore the bounds for the
binaries with a total mass in the range ½1; 70� M⊙ and for
LISA detections in the range ½105; 107� M⊙.

A. Advanced LIGO

In Fig. 1 we show the projected 1-σ errors on the three
leading-order multipole moments, μ2, μ3 and ϵ2, as a
function of the total mass of the binary for the aLIGO
noise PSD using the Fisher matrix. Different curves are
for different mass ratios: q ¼ m1=m2 ¼ 1.2 (red), 2 (cyan)
and 5 (blue). For the multipole coefficients considered,

low-mass systems obtain the smallest errors and hence the
tightest constraints. This is expected as low-mass systems
live longer in the detector band and have a larger number of
cycles, thereby allowing us to measure the parameters very
well. The bounds on μ3 and ϵ2, associated with the mass
octupole and current quadrupole, increase monotonically
with the total mass of the system for a given mass ratio.
However, the bounds on μ2 show a local minimum in the
intermediate-mass regime for smaller mass ratios. This is
because, unlike other multipole parameters, μ2 appears both
in the amplitude and the phase of the signal. The derivative
of the waveform with respect to μ2 has contributions from
both the amplitude and phase. Schematically, the Fisher
matrix element is given by

Γμ2μ2 ∼
Z

fhigh

flow

A2f−7=3

ShðfÞ
ð1þ μ22ψ

02Þdf; ð4:1Þ

where ψ 0 ¼ ∂ψ=∂μ2. As the inverse of this term domi-
nantly determines the error on μ2, the local minimum is a
result of the trade-off between the contributions from the
amplitude and the phase of the waveform. Interestingly,
as we go to higher mass ratios, this feature disappears
resulting in a monotonically increasing curve (such as
for q ¼ 5).
We find that the mass multipole moments μ2 and μ3 are

much better estimated as compared to the current multipole
moment ϵ2. Another important feature is that the bounds μ3
and ϵ2 are worse for equal-mass binaries. The mass octu-
pole and current quadrupole are odd-parity multipole
moments (unlike, say, the mass quadrupole which is even).2

Every odd-parity multipole moment comes with a mass
asymmetry factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
that vanishes in the equal-mass

limit, and hence the errors diverge. Consequently, the

FIG. 1. Projected 1σ errors on μ2, μ3 and ϵ2 as functions of the total mass for the aLIGO noise PSD. Results from Bayesian analysis
using MCMC sampling are given as dots showing good agreement. All the sources are considered to be at a fixed luminosity distance of
100 Mpc.

2Mass-type multipoles with even l and current-type moments
with odd l are considered “even” and odd-l mass multipoles and
even-l current moments are “odd.”

TESTING THE MULTIPOLE STRUCTURE OF COMPACT … PHYS. REV. D 98, 124033 (2018)

124033-9



Fisher matrix becomes badly conditioned and the precision
with which we recover these parameters appears to become
very poor, but this is an artifact of the Fisher matrix.
In order to cross-check the validity of the Fisher-matrix-

based estimates, we performed a Bayesian analysis to find
the posterior distribution of the three multipole parameters,
for the same systems as in the Fisher matrix analysis.
Moreover we considered a flat prior probability distribution
for all six parameters flnA;Mc; ν; tc;ϕc; μl or ϵlg in a

large enough range around their respective injection values.
Given the large number of iterations, once the MCMC
chains are stabilized, we find good agreements with the
Fisher estimates as in the case of μ3 for q ¼ 2 and 5, shown
in Fig. 1. As an example, we present our results from the
MCMC analysis for μ3 with m ¼ 5 M⊙ and q ¼ 2, in the
corner plots in Fig. 2. In Fig. 1 we see that the 1σ errors in
μ3 from the Fisher analysis agree very well with the MCMC
results for q ¼ 2 and 5. We did not find such an agreement

FIG. 2. The posterior distributions of all six parameters flnA; tc;ϕc;Mc; ν; μ3g and their corresponding contour plots obtained from
the MCMC experiments (see Sec. III for details) for a compact binary system at a distance of 100 Mpc with q ¼ 2,m ¼ 5 M⊙ using the
noise PSD of aLIGO. The darker shaded regions in the posterior distributions as well as in the contour plots show the 1σ bounds on the
respective parameters.
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for q ¼ 1.2. We suspect that this is because for comparable-
mass systems the likelihood function, defined in Eq. (3.5),
becomes shallow and it is computationally very difficult to
find its maximum given a finite number of iterations. As a
result, the MCMC chains did not converge and 1σ bounds
cannot be trusted for such cases. We find the nonconver-
gence of MCMC chains for all of the cases of μ2 and ϵ2 and
hencewe do not show those results in Fig. 1. To summarize,
our findings indicate that one can only measure μ2 and μ3
with a good enough accuracy using aLIGO detectors.

B. Third-generation detectors

Third-generation detectors such as CE-wb (and ET-D)
can place much better bounds on μ2, μ3 and ϵ2 compared to
aLIGO. Additionally, they can also measure μ4 with
reasonable accuracy, as shown by the darker (and lighter)
shaded curves in Fig. 3. The bounds on μ2, μ3 and ϵ2 show
similar trends as in the case of aLIGO except the accuracy
of the parameter estimation is much better overall. For a
few cases in low-mass regime, μ2 and μ4 are better
estimated for comparable-mass binaries (i.e., q ¼ 1.2).
We also find that the bounds (represented by the lighter
shaded curves in Fig. 3) obtained by using the ET-D noise
PSD are even better than the bounds from CE-wb, though
the other features are more or less similar for both of
the detectors. This improvement in the precision of

measurements is due to two reasons. The triangular shape
of ET-D enhances the sensitivity roughly by a factor of 1.5
and its sensitivity is much better than CE-wb in the low-
frequency region.
For a few representative cases, we compute the errors in

μ2, ϵ2 and μ3 using Bayesian analysis and the results are
shown as dots with the same color in Fig. 3. The MCMC
results are in good agreement with the Fisher matrix results.
Unlike the aLIGO PSD, for CE-wb the MCMC chains
converge quickly in the case of μ2 and ϵ2 because of the
high signal-to-noise ratios, which naturally lead to high
likelihood values. As a result, it becomes relatively easier
for the sampler to find the global maximum of the like-
lihood function in relatively fewer iterations. We also show
an example corner plot for the CE-wb PSD with q ¼ 2,
m ¼ 10 M⊙ in Fig. 4.

C. Laser Interferometer Space Antenna

In this section, we discuss the projected errors on various
multipole coefficients for the LISA detector. Here we
consider four different mass ratios: q ¼ 1.2 (red), 2 (cyan),
10 (blue) and 50 (green). The first three are representatives
of comparable-mass systems, while q ¼ 50 refers to the
intermediate-mass-ratio systems. We do not consider here
the extreme-mass-ratio systems; the analysis of these
systems needs phasing information at much higher PN

FIG. 3. Dark shaded curves correspond to the projected 1σ error bars on μ2, μ3, μ4 and ϵ2 using the proposed CE-wb noise PSD as a
function of the total mass, where as lighter shades denote the bounds obtained using the ET-D noise PSD. All the sources are considered
to be at a fixed luminosity distance of 3 Gpc. The higher-order multipole moments such as μ4 and ϵ2 cannot be measured well using
aLIGO and hence it may be a unique science goal of the third-generation detectors.
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orders such as in Ref. [99] which is beyond the scope of the
present work. Moreover, in such systems, the motion of the
smaller BH around the central compact object is expected
to help us understand the multipolar structure of the central
object and test its BH nature [33]. This is quite different
from our objective here which is to use GWobservations to
understand the multipole structure of the gravitational field
of the two-body problem in GR. The q ¼ 50 case, in fact,
falls in between these two classes and hence has a cleaner
interpretation in our framework.

In Fig. 5 we show the projected bounds from the
observations of supermassive BH mergers detectable by
the space-based LISA observatory. The error estimates for
multipole moments with LISA are similar to that of CE-wb
for mass ratios q ¼ 1.2, 2. For q ¼ 10 all the parameters
except ϵ4 are estimated very well. For q ¼ 50, we find that
LISA will be able to measure all seven multipole coef-
ficients with good accuracy. It is not entirely clear whether
the PN model is accurate enough for the detection and
parameter estimation of supermassive binary BHs with

FIG. 4. The posterior distributions of all six parameters flnA; tc;ϕc;Mc; ν; μ3g and their corresponding contour plots obtained from
the MCMC experiments (see Sec. III for details) for a compact binary system at a distance of 100Mpc with q ¼ 2,m ¼ 10 M⊙ using the
noise PSD of CE-wb. The darker shaded region in the posterior distributions as well as in the contour plots shows the 1σ bounds on the
respective parameters.
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q ¼ 50, for which the number of GW cycles could be an
order of magnitude higher than it is for equal-mass
configurations. However our findings are important as
they point to the huge potential such systems have for
fundamental physics.
To summarize, we find, in general, that even-parity

multipoles (i.e., μ2 and μ4) are better measured when the
binary constituents are of equal or comparable masses,
whereas the odd multipoles (i.e., μ3, μ5, ϵ2 and ϵ3) are
better measured when the binary has mass asymmetry.
This is because the even multipoles are proportional to the
symmetric mass ratio ν, whereas the odd ones are propor-
tional to the mass asymmetry

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
, which identically

vanishes for equal-mass systems [see, e.g., Eq. (4.4)
of Ref. [52]].

V. SUMMARY AND FUTURE DIRECTIONS

We have proposed a novel way to test for possible
deviations from GR using GW observations from compact
binaries by probing the multipolar structure of the GW
phasing in any alternative theories of gravity. We computed
a parametrized multipolar GW phasing formula that can be
used to probe potential deviations from the multipolar
structure of GR. Using the Fisher information matrix and
Bayesian parameter estimation, we predicted the accuracies
with which the multipole coefficients could be measured
from GW observations with present and future detectors.
We found that the space mission LISA, currently under
development, can measure all the multipoles of the compact
binary system. Hence this will be among the unique
fundamental science goals LISA can achieve.

FIG. 5. Projected constraints on various multipole coefficients using LISA sensitivity, as a function of the total mass of the binary. All
the sources are considered to be at a fixed luminosity distance of 3 Gpc. LISA can measure all seven multipoles which contribute to the
phasing and hence will be able to place extremely stringent bounds on the multipoles of the compact binary gravitational field.
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In deriving the parametrized multipolar phasing formula,
we have assumed that the conservative dynamics of the
binary follow the predictions of GR. In the Appendix, we
provide a phasing formula where we also deform the PN
terms in the orbital energy of the binary. This should be
seen as a first step towards a more complete parametrized
phasing where we separate the conservative and dissipative
contributions to the phasing. A systematic revisit of the
problem starting from the foundations of PN theory as
applied to the compact binary is needed to obtain a
complete phasing formula parametrizing uniquely the
conservative and dissipative sectors in the phasing formula.
We postpone this for a follow-up work.
The present results using nonspinning waveforms should

be considered to be a proof-of-principle demonstration, to
be followed up with a more realistic waveform that
accounts for spin effects, effects of orbital eccentricity
and higher modes. The incorporation of the proposed test in
the framework of the effective one-body formalism [100] is
also among the future directions we plan to pursue. There
are ongoing efforts to implement this method in the
framework of LALINFERENCE [101] so that it can be
applied to the compact binaries detected by advanced
LIGO and Virgo detectors.
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APPENDIX: FREQUENCY-DOMAIN PHASING
FORMULA ALLOWING FOR THE

DEFORMATION OF CONSERVATIVE
DYNAMICS

The binding energy parametrized at each PN order by
four different constants fα0;α1; α2; α3g used in the com-
putation of parametrized GW phasing considering devia-
tions in the conserved energy (mentioned in Sec. II B), is
given by
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The resulting phase is quoted below:

ψðfÞ ¼ 2πftc −
π

4
−ϕc þ

3α0
128v5μ22ν

�
1þ v2

�
2140

189
−
1100

189
ν−

α1
α0

�
10

3
þ 10

27
ν

�
þ μ̂23

�
−
6835

2268
þ 6835

567
ν

�
þ ϵ̂2

2

�
−

5

81
þ 20

81
ν

��

− 16πv3 þ v4
�
295630

1323
−
267745

2646
νþ 32240

1323
ν2þ α1

α0

�
−
535

7
þ 1940

63
νþ 275

63
ν2
�
þ α2
α0

�
−
405

4
þ 285

4
ν−

5

4
ν2
�

þ μ̂3
2

�
−
104815

3528
þ 8545

63
ν−

29630

441
ν2þ α1

α0

�
6835

336
−
34175

432
ν−

6835

756
ν2
��

þ μ̂3
2ϵ̂2

2

�
6835

9072
−
6835

1134
νþ 6835ν2

567

�

þ μ̂43

�
9343445

508032
−
9343445

63504
νþ 9343445

31752
ν2
�
þ μ̂24

�
−
89650

3969
þ 179300

1323
ν−

89650

441
ν2
�
þ ϵ̂2

2

�
−
1885

756
þ 695

63
ν

−
800

189
ν2þ α1

α0

�
5

12
−
175

108
ν−

5

27
ν2
��

þ ϵ̂2
4

�
5

648
−

5

81
νþ 10

81
ν2
�
þ ϵ̂3

2

�
−
50

63
þ 100

21
ν−

50

7
ν2
��

þ πv5
�
3 log

�
v

vLSO

�
þ 1

��
80

189
½214− 131ν�− 80α1

27α0
½9þ ν�− 9115

756
μ̂23½1− 4ν�− 20

27
ϵ̂2

2½1− 4ν�
�

þ v6
�
36847016

509355
−
640

3
π2 −

6848

21
γE −

6848

21
log½4v� þ

�
28398155

67914
þ 205

12
π2
�
ν−

563225

3773
ν2þ 3928700

305613
ν3

SHILPA KASTHA et al. PHYS. REV. D 98, 124033 (2018)

124033-14



þ α1
α0

�
295630

441
−
1818445

7938
νþ 312575

7938
ν2 þ 32240

3969
ν3
�
þ α2
α0

�
14445

14
−
8795

7
νþ 8105

21
ν2 −

275

42
ν3
�

þ α3
α0

�
3375

4
þ
�
−
172225

36
þ 1025

6
π2
�
νþ 775

6
ν2 þ 175

324
ν3
�
þ μ̂23

�
732782515

3667356
−
1061322545

1222452
νþ 1027073335

3667356
ν2

−
15723035

916839
ν3 þ α1

α0

�
−
104815

1176
þ 4201865

10584
ν−

206855

1323
ν2 −

29630

1323
ν3
�
þ α2
α0

�
−
61515

224
þ 868045

672
ν−

1565215

2016
ν2

þ 6835

504
ν3
��

þ μ̂23ϵ̂2
2

�
−
1742995

190512
þ 1045805

13608
ν−

2091650

11907
ν2 þ 697310

11907
ν3 þ α1

α0

�
6835

3024
−
485285

27216
νþ 116195

3402
ν2

þ 6835

1701
ν3
��

þ μ̂23ϵ̂2
4

�
6835

108864
−
6835

9072
νþ 6835

2268
ν2 −

6835

1701
ν3
�
þ μ̂23ϵ̂3

2

�
−
34175

7938
þ 170875

3969
ν−

375925

2646
ν2

þ 68350

441
ν3
�
þ μ̂23μ̂

2
4

�
−
61275775

500094
þ 306378875

250047
ν−

674033525

166698
ν2 þ 122551550

27783
ν3
�
þ μ̂43

�
140055985

5334336

−
1148286835

5334336
νþ 307950925

666792
ν2 −

27838955

333396
ν3 þ α1

α0

�
9343445

169344
−
663384595

1524096
νþ 158838565

190512
ν2 þ 9343445

95256
ν3
��

þ μ̂43ϵ̂2
2

�
9343445

3048192
−
9343445

254016
νþ 9343445

63504
ν2 −

9343445

47628
ν3
�
þ μ̂63

�
12772489315

256048128
−
12772489315

21337344
ν

þ 12772489315

5334336
ν2 −

12772489315

4000752
ν3
�
þ μ̂24

�
−
24426860

916839
þ 62508560

305613
ν−

12980600

33957
ν2 þ 286700

11319
ν3

þ α1
α0

�
−
89650

1323
þ 4751450

11907
ν−

2241250

3969
ν2 −

89650

1323
ν3
��

þ μ̂24ϵ̂2
2

�
−
89650

35721
þ 896500

35721
ν−

986150

11907
ν2 þ 358600ν3

3969

�

þ μ̂25

�
1002569

12474
−
4010276

6237
νþ 10025690

6237
ν2 −

8020552

6237
ν3
�
þ ϵ̂2

2

�
6134935

190512
−
2353285

15876
νþ 550075

6804
ν2 −

150845

11907
ν3

þ α1
α0

�
−
1885

252
þ 73175

2268
ν−

1705

189
ν2 −

800

567
ν3
�
þ α2
α0

�
−
45

8
þ 635

24
ν−

1145

72
ν2 þ 5

18
ν3
��

þ ϵ̂2
2ϵ̂3

2

�
−

50

567
þ 500

567
ν−

550

189
ν2 þ 200

63
ν3
�
þ ϵ̂2

4

�
−

25

126
þ 3775

2268
ν−

2150

567
ν2 þ 100

81
ν3

þ α1
α0

�
5

216
−

355

1944
νþ 85

243
ν2 þ 10

243
ν3
��

þ ϵ̂2
6

�
5

11664
−

5

972
νþ 5

243
ν2 −

20

729
ν3
�
þ ϵ̂3

2

�
37180

3969
−
235640

3969
ν

þ 420200

3969
ν2 −

47900

1323
ν3 þ α1

α0

�
−
50

21
þ 2650

189
ν−

1250

63
ν2 −

50

21
ν3
��

þ ϵ̂4
2

�
5741

1764
−
11482

441
νþ 28705

441
ν2 −

22964

441
ν3
��

þ πv7
�
2365040

1323
−
1300930

1323
νþ 400930

1323
ν2 þ α1

α0

�
−
4280

7
þ 19300

63
νþ 2620

63
ν2
�
þ α2
α0

ð−810þ 570ν− 10ν2Þ

þ μ̂23

�
−
69905

588
þ 191495

336
ν−

73995

196
ν2 þ α1

α0

�
9115

112
−
45575

144
ν−

9115

252
ν2
��

þ μ̂23ϵ̂2
2

�
54685

9072
−
54685

1134
νþ 54685

567
ν2
�

þ μ̂43

�
6835

254016
−

6835

31752
νþ 6835

15876
ν2
�
þ μ̂24

�
−

400

3969
þ 800

1323
ν−

400

441
ν2
�
þ ϵ̂2

2

�
−
1885

63
þ 2815

21
ν−

3620

63
ν2

þ α1
α0

�
5−

175

9
ν−

20

9
ν2
��

þ ϵ̂3
2

�
−
400

63
þ 800

21
ν−

400

7
ν2
�
þ ϵ̂2

4

�
10

81
−
80

81
νþ 160

81
ν2
���

: ðA2Þ

The GW phasing for compact binaries can be repre-
sented by various PN approximants depending on the
different ways in which they treat the energy and flux
functions. We refer the reader to Refs. [88,102] for a
detailed discussion of these various approximants. We

provide the input functions required for the computation
of the phasing for TaylorT2, TaylorT3 and TaylorT4 in a
MATHEMATICA file (supl-Multipole.m) which serves as the
Supplemental Material to this paper [103]. We closely
follow the notations of Ref. [88] in this file.
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