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Abstract
From features to concepts: tracking the neural dynamics of visual perception

The visual system is thought to accomplish categorization through a series of hi-

erarchical feature extraction steps, ending with the formation of high-level cate-

gory representations in occipitotemporal cortex; however, recent evidence has chal-

lenged these assumptions. The experiments described in this thesis address the

question of categorization in face and scene perception using magnetoencephalog-

raphy and multivariate analysis methods.

The first three chapters investigate neural responses to emotional faces from

different perspectives, by varying their relevance to task. First, in a passive view-

ing paradigm, angry faces elicit differential patterns within 100 ms in visual cortex,

consistent with a threat-related bias in feedforward processing. The next chap-

ter looks at rapid face perception in the context of an expression discrimination

task which also manipulates subjective awareness. A neural response to faces, but

not expressions is detected outside awareness. Furthermore, neural patterns and

behavioural responses are shown to reflect both facial features and facial config-

uration. Finally, the third chapter employs emotional faces as distractors during

an orientation discrimination task, but finds no evidence of expression processing

outside of attention.

The fourth chapter focuses on natural scene perception, using a passive view-

ing paradigm to study the contribution of low-level features and high-level cat-

egories to MEG patterns. Multivariate analyses reveal a categorical response to

scenes emerging within 200 ms, despite ongoing processing of low-level features.

Together, these results suggest that feature-based coding of categories, opti-

mized for both stimulus relevance and task demands, underpins dynamic high-

level representations in the visual system. The findings highlight new avenues in

vision research, which may be best pursued by bridging the neural and behavioural

levels within a common computational framework.
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Chapter 1

General introduction

1.1 The puzzle of human vision

In daily life, we are hardly aware of the processes that lead to us perceiving, under-

standing, and acting upon what we perceive. Visual perception, though apparently

effortless, has turned out to be difficult to unravel or implement in artificial sys-

tems, although significant progress has been made in recent years. The immensity

of this task becomes apparent as soon as we consider the transformations involved:

from a virtually infinite set of possible light signals reflected by any given stimu-

lus across viewing conditions, to the accurate categorization of that stimulus (Cox,

2014).

This complex and variable visual information is captured by photoreceptor cells

in the retina, which transmit it to the visual system via ganglion cells in the optic

nerve. In the primary visual cortex (V1), these outputs are pooled by neurons with

highly selective receptive fields, tuned to local edges of specific orientations (Hubel

and Wiesel, 1962). This selectivity continues throughout the retinotopically orga-

nized extrastriate visual cortex (Bullier, 2001) with increasingly complex features,

and turns into a broader category selectivity in the ventral temporal cortex. This

is where a progression from “low-level” to “high-level” vision is commonly pro-

posed: while neurons in early visual areas respond to local visual features, ventral

stream areas are thought to encode a range of mid-level features or high-level cat-

egories, including colour, object category, object size, concepts, etc. (Grill-Spector

and Weiner, 2014). The computations performed in occipitotemporal cortex at this

later stage have been the subject of significant debate. Understanding whether
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FIGURE 1.1: Framework for understanding high-level vision ac-
cording to Marr’s schema, together with some proposed solutions.
The four types of representations are adapted from those suggested

by Bracci et al. (2017).

ventral areas represent visual features or abstract categories would help answer

broader questions about the role of modality-specific brain areas in the emergence

of conceptual knowledge (Bracci et al., 2017a), and ultimately about the interface

between sensory and semantic information, or between perception and cognition

(Beck, 2018).

1.1.1 Goals in high-level vision

The functions of the ventral visual stream have sometimes been framed accord-

ing to Marr’s threefold schema for understanding information processing systems

(Marr, 1982): its computational goals, the representations it employs, and their im-

plementation or neural substrates (Fairhall, 2014; Grill-Spector and Weiner, 2014).

However, little agreement has been reached on what the three elements might be

in the high-level visual system (Figure 1.1).

One of the most influential principles in human vision is that of a dual-pathway

architecture, consisting of two interacting ventral and dorsal visual streams. The

two systems are thought to perform visual processing for perception and action re-

spectively (Goodale and Milner, 1992), or to separately extract object identity and

spatial information (Ungerleider and Haxby, 1994). Within this framework, hier-

archical models of the ventral visual stream usually adopt an object recognition

perspective, whereby the goal of the system is categorization, understood as the

matching of stimulus representations to object representations stored in long-term
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memory (Bracci et al., 2017a). This can be achieved through an efficient and explicit

organization of category-specific neural representations, and through invariance to

visual and cross-exemplar variability. In this sense, the hierarchy of visual process-

ing has been described as an “untangling” of categories from the corresponding

visual features through a series of linear and non-linear operations (Grill-Spector

and Weiner, 2014; Rust and DiCarlo, 2010), with the stimulus being effectively “de-

coded” at the end of this process. This view has been reinforced in recent years

by the success of feedforward neural networks in solving object recognition tasks,

which showed that category selectivity can arise from a series of combinations of

visual features (Jozwik et al., 2016; Peelen and Downing, 2017).

However, it has been argued that an object recognition framework is an over-

simplification of what the visual system needs to accomplish, given the large vari-

ety of inputs and tasks we encounter daily (Cox, 2014; Peelen and Downing, 2017).

Object categories themselves are complex, ranging from taxonomic to functional

(Bracci et al., 2017a) and from specific to abstract (Edelman et al., 1998). Further-

more, such categories need to be adapted to specific behavioural goals (Groen et

al., 2017), and their representations will necessarily vary due to differences in rel-

evant features (Figure 1.2). In this sense, the processing of a scene in the ventral

visual stream will depend on whether the goal is navigation (e.g. detection of af-

fordances; Bonner and Epstein, 2017; Epstein, 2008), assessing social information

(body cues; Downing and Peelen, 2011), or recognizing somebody based on their

face (configural face processing; Freiwald et al., 2016). Rather than making a dis-

tinction between low-level features and high-level categories, it might be better to

investigate behaviourally relevant features during naturalistic tasks (Peelen and

Downing, 2017).

These perspectives highlight two different accounts of what the visual system

is optimized to accomplish: a purely visual category selectivity, where stimuli are

categorized in the visual system, but further assessment happens at later stages

of cognition (Kravitz et al., 2013), and a conceptual selectivity, influenced by pre-

vious knowledge and task demands and not restricted to visual features (Bracci

and Beeck, 2016; Kaiser et al., 2016). These accounts determine the types of neural

representations thought to support these goals in occipitotemporal cortex.
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FIGURE 1.2: In the progression from low-level features to high-level
representations, task and context can shape the type of features ex-
tracted and represented. Some examples of low-level features and

high-level behaviourally relevant representations are shown.

1.1.2 Features and categories in ventral stream representations

The presence of category-selective responses in the visual ventral stream has been

well-documented, starting with neuropsychological investigations (e.g. Sacchett

and Humphreys, 1992; Warrington and Shallice, 1984) and continuing with a wealth

of neuroimaging studies (e.g. Bell et al., 2009; Carlson et al., 2003; Haxby et al.,

2001; Hung et al., 2005; Kriegeskorte et al., 2008). However, visual features often

correlate with high-level categories and are not always controlled (Cox and Savoy,

2003). High-level visual areas have been shown to respond to low-level and mid-

level visual features (Andrews et al., 2015; Baldassi et al., 2013; Beeck et al., 2008;

Caldara et al., 2006; Haxby et al., 2000; Ishai et al., 1999; Long et al., 2018; Nasr and

Tootell, 2012; Nasr et al., 2014; Rajimehr et al., 2011; Rice et al., 2014; Woodhead et

al., 2011). Seemingly conflicting results showing both invariant category selectivity

and visual feature processing in the ventral stream can be resolved by adopting a

feature-based account of category coding (Bracci et al., 2017a). Evidence of over-

lapping visual and categorical representations (Hong et al., 2016; Ramkumar et al.,
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2016; Chapter 5) points to the role played by diagnostic visual features in the for-

mation of high-level representations.

A recent review (Bracci et al., 2017a) grouped hypotheses about the content of

such representations into four categories: low-level feature coding (exclusively vi-

sual), abstract category coding (exclusively high-level), diagnostic featural coding

(representations of features characteristic of categories), and feature-based categor-

ical coding (entailing both feature and category effects). The wealth of evidence

showing both visual and categorical representations in the ventral visual stream

suggests that the latter two are the most plausible hypotheses. Furthermore, assess-

ing the relationship between such representations and behavioural responses can

help uncover whether the categories are task-relevant (Carlson et al., 2013; Ritchie

and Carlson, 2016; Tong and Pratte, 2012), and whether behavioural goals influence

representations in the visual system.

1.1.3 The timing of categorization

This brings us to a related question: if high-level vision is a highly adaptable pro-

cess optimized to accomplish behavioural and categorization goals across a range

of viewing conditions and visual properties, how early does this optimization start?

The debate on the boundaries of perception and cognition (or so-called cog-

nitive penetrability; Newen and Vetter, 2017) can be reframed as a debate on top-

down influences on perception both within and outside of the visual system (Teufel

and Nanay, 2017). While classic models envisioned a feedforward information flow

converting features into high-level representations, more recent evidence has high-

lighted an important role of feedback connections at all stages of vision (Bar et al.,

2006; Bullier, 2001; Gilbert and Li, 2013; Lamme and Roelfsema, 2000). In contrast

with the hierarchical view, feedback connections have been shown to modulate

neuronal tuning and neuronal population dynamics according to object expecta-

tions, context and task-related changes (Gilbert and Li, 2013). Category knowledge

and learning shapes visual feature representations at the earliest stages of vision

(Folstein et al., 2014, 2015; Teufel, 2018).

What is more, the role of prior information in shaping perception is not limited

to top-down influences: constraints based on evolutionarily-relevant or naturally
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occurring stimuli can be placed on visual perception and affect the extraction of

relevant features (Teufel and Nanay, 2017). Evidence of categorical and contextual

effects on early vision ties in with a model of adaptable, feature-based category

coding in the visual system, optimized to create sparse representations guided by

stimulus relevance and current behavioural goals.

1.1.4 Neural substrates: towards information mapping

A computational model of high-level vision also requires an understanding of how

its algorithms and representations are implemented within the constraints of brain

structure (Grill-Spector and Weiner, 2014). Ideas about how the ventral stream

encodes category selectivity have changed in time from a modular view of func-

tionally specialized regions (e.g. Epstein and Kanwisher, 1998; Kanwisher et al.,

1997) to an information-based account of distributed representations (Kriegesko-

rte et al., 2007, 2008). It is thought that the separability of category-specific repre-

sentations is achieved at different spatial scales, through functional clustering of

neurons within columns, patches, regions and maps, and through topological fea-

tures that are consistent across subjects. Furthermore, overlapping representations

of different categories point to information integration as a mechanism to increase

efficiency (Grill-Spector and Weiner, 2014).

Given the high dimensionality of these representations (Haxby et al., 2011), they

can be approached either through model-based simplifications, or through data-

driven information mapping techniques that can uncover the underlying lower-

dimensional structures (Bracci et al., 2017a; Fairhall, 2014; Sussillo, 2014). At a

time when machine learning is ready to move from object recognition to natural

behaviour (Fairhall, 2014), we may be able to uncover the axes separating high-

level representations in the visual system by combining pattern recognition, rich

neuroimaging data, and careful experimental design for maximal interpretability.

1.2 Recording neural activity with MEG

In this thesis, the question of high-level vision (face and scene perception) is ad-

dressed by combining experimental designs that manipulate visual properties and
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behaviour with magnetoencephalography (MEG) and information mapping tech-

niques. Over the past decade, the application of pattern recognition to neuroimag-

ing has revolutionized the field (Haxby et al., 2001; Haxby et al., 2014; Kamitani

and Tong, 2005). Applying these methods to electrophysiological recordings (MEG,

EEG or intracranial EEG) has also become more and more common: the timing of

neural processes can provide a window into the underlying mechanisms, and in-

creasingly sophisticated multivariate techniques have been used to resolve their

temporal dynamics. This thesis focuses on the use of MEG to capture the complex

whole-brain dynamics of high-level perceptual processing, and on pattern recogni-

tion as a method of resolving them within a data-driven framework.

1.2.1 Neuronal generators and MEG instrumentation

MEG offers a non-invasive measure of the magnetic fields produced by electrical

currents in the brain. Although neural electric activity comprises both rapid ac-

tion potentials and slower synaptic potentials, intracellular post-synaptic poten-

tials generated at the apical dendrites of pyramidal neurons are thought to make

the largest contribution to MEG signals (Baillet et al., 2001; Hari and Salmelin, 2012;

Silva, 2010; Figure 1.3A). To be detectable with MEG, the firing of thousands of spa-

tially aligned neurons needs to synchronize, such that the superposition of neural

currents produces a measurable magnetic field (Baillet et al., 2001). Cortical pyra-

midal neurons are organized in palisades and perpendicular to the cortical surface

(Nunez and Silberstein, 2000), thus forming "open fields" (No, 1947) and behaving

as effective current dipoles (Silva, 2010). Thus, slower potentials generated at their

dendrites are more likely to contribute to the MEG signal than rapid action poten-

tials, which are unlikely to synchronize on a sufficient scale and whose magnetic

fields decay more rapidly with distance (Singh, 2006).

Magnetic fields generated by the brain are extremely weak (50-500 fT; Hämäläi-

nen et al., 1993). Although the first human MEG recording was made with a con-

ventional coil (Cohen, 1968), sensitive measurements of these weak fields require

superconducting quantum interference devices (SQUIDs; Cohen, 1972; Zimmer-

man et al., 1970). These are small coils which become superconducting when im-

mersed in liquid helium with a temperature of approximately -270°C (Singh, 2006).
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FIGURE 1.3: A. Generation of magnetic fields from the synchro-
nized activity of a pyramidal neuron population. The bottom pan-
els show source configurations as captured by MEG sensors, with
red and blue lines showing magnetic fields entering and exiting the
head respectively. Reproduced from Singh (2006). B. Field patterns
generated by a tangential source using an axial magnetometer or
a first-order axial gradiometer with a compensation coil. Adapted

from Singh (2006).



1.2. Recording neural activity with MEG 9

To detect the magnetic field over a larger area and relay it to the SQUIDs, flux

transformers are used, which consist of a pick-up coil (or magnetometer) and a

coupling coil (Vrba and Robinson, 2001). As external magnetic noise can prevent

the detection of weak neural magnetic fields, noise rejection strategies are used in

modern MEG systems, starting with the design of the pick-up coils. For example,

axial gradiometers use a pick-up coil together with a compensation coil wound

in the opposite direction (Figure 1.3B). This design takes advantage of the spa-

tial gradient of the magnetic field, which falls off rapidly with distance: variations

in the background field are measured by both coils and effectively cancelled out,

while signals of interest cause a larger change in the spatially closer pick-up coil

(Hämäläinen et al., 1993). More complex combinations of coils can improve noise

rejection performance (Singh, 2006). The CTF MEG system, used for MEG record-

ings described in this thesis, consists of 275 first-order axial gradiometers and 29

reference magnetometers, which are used to regress out additional noise in post-

processing and implement synthetic third-order gradiometers (Vrba and Robinson,

2001). Furthermore, all recordings are conducted inside a magnetically shielded

room (MSR) which attenuates environmental noise.

1.2.2 Strengths and challenges

Due to the different properties of electric and magnetic fields, MEG is thought to

be more sensitive than EEG to primary (intracellular) currents and less affected by

volume (extracellular) currents, whose magnetic fields tend to cancel out (Vrba and

Robinson, 2001). Moreover, MEG, unlike EEG, does not require a reference elec-

trode, and is less susceptible to muscle artefacts due to reduced volume conduc-

tion effects (Claus et al., 2012; Muthukumaraswamy, 2013). However, to generate

measurable magnetic fields outside the head, neuronal sources must be oriented

tangentially to the skull and not radially (Figure 1.3A). In practice, this is not a ma-

jor limitation of MEG, as radial sources located at the crests of gyri are thought to

form less than 5% of the cortical area. A more limiting factor is the lower sensitiv-

ity of MEG to deep sources, caused by the fact that magnetic fields decay rapidly

with distance (Hillebrand and Barnes, 2002). Recent research, however, has shown
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successful source localization of responses from deep structures such as the hip-

pocampus (e.g. Meyer et al., 2017).

Although MEG has excellent temporal resolution, the localization of sensor-

level responses can be more ambiguous. The inverse problem of MEG source local-

ization is ill-posed (Sarvas, 1987): given a magnetic field measured by MEG, there

is an infinite number of possible cortical source distributions that could have gen-

erated it. Though there are several methods of alleviating the inverse problem by

imposing prior constraints, source analyses in this thesis use a linearly constrained

minimum-variance (LCMV) beamforming approach (Hillebrand et al., 2005; Van

Veen et al., 1997). This method independently estimates a solution at each source

location in the brain by weighting the sensor-level measurements so as to increase

sensitivity to the location of interest, while minimizing interference from other lo-

cations. To achieve this, a forward model specifying the sensor pattern for each

active source (Mosher et al., 1999) is combined with the data covariance matrix.

The LCMV approach estimates a vectorial solution comprising all three possible

dipole orientations, which can be reduced to a scalar solution using Singular Value

Decomposition (SVD); both approaches have been used in this thesis.

Beamforming has a few advantages: it attenuates noise (Vrba, 2002), it does not

entail assumptions about the number of active sources (Robinson and Vrba, 1999),

and only assumes no strong temporal correlations between sources (Hillebrand et

al., 2005). Furthermore, although beamformer images can have a non-uniform spa-

tial resolution, they have been shown to resolve active sources with a resolution

between ~2-20 mm (Barnes et al., 2004).

In sum, MEG provides rich whole-head direct measurements of neural activity,

with excellent temporal and spectral resolution, and good source reconstruction

resolution despite inherent ambiguity. Furthermore, recent technological advances

signal a bright future for MEG. While currently SQUID sensors need to be placed

in a cryogenic dewar and are thus situated at a distance from the subject’s head,

optically-pumped magnetometers (OPMs) have been developed that can be placed

directly on the scalp, with the potential to significantly increase signal-to-noise ratio

(SNR) and spatial resolution in MEG (Boto et al., 2017, 2018; Iivanainen et al., 2017).
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FIGURE 1.4: A. Multivariate analysis framework from data collec-
tion to model evaluation. Note that some of the analyses in the final
step, such as RSA, can be performed independently of the others,
using distance metrics other than decodability. B. Summary of the

main strengths and challenges of MVPA analyses.

1.3 Machine learning for MEG

With high-density spatial sampling and millisecond-resolved temporal resolution,

MEG captures neural activity in rich, high-dimensional datasets that can pose an

analysis challenge, especially in the absence of fully standardized pipelines or prior

information about the phenomenon under study. As opposed to univariate statis-

tical methods which often rely on signal averaging, multivariate methods offer in-

creased sensitivity by exploiting information in distributed patterns, and can help

reveal underlying structure in such complex data. As such, they are increasingly

being adopted in the analysis of neuroimaging data, bringing new challenges along

with new insights.

Multivariate pattern analysis (MVPA) methods have been adopted from ma-

chine learning, where the focus is on training informationally greedy algorithms

to obtain accurate out-of-sample predictions for real-world applications. While

the prediction goal is also valid for some neuroscience applications (such as clini-

cal data), in most cases machine learning is applied to neuroimaging data with a

completely different goal: understanding the brain. This focus on interpretation
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(Hebart and Baker, 2017) changes the way in which we apply, constrain, and eval-

uate the algorithms, and will be discussed in more detail below.

Machine learning can be defined as a set of algorithms that automatically learn

to generalize from examples (Domingos, 2012). Two of the main categories of meth-

ods used in machine learning are supervised learning (in which the algorithm is

provided with labelled examples during training) and unsupervised learning (in

which an algorithm is used to uncover structure in unlabelled data). The latter is

most commonly used in neuroimaging for visualization and dimensionality reduc-

tion.

Multivariate analysis is usually performed using classification algorithms, which

constitute a subset of supervised learning methods, alongside regression. While in

neuroimaging regression is often used to predict neural time series based on the

design matrix, classifiers are used to predict the experimental conditions from neu-

ral patterns, thus reversing the direction of the inference (Pereira et al., 2009). More

specifically, classifiers predict the class (category) of previously unseen examples

(data points) based on the value of their features (e.g. sensor signal amplitudes).

To make their predictions, classifiers learn a number of parameters from a train-

ing dataset and create a model of the relationship between features and class labels.

To determine if the features contain information about data classes, the trained clas-

sifier is tested on new data and the out-of-sample generalization performance is

computed, most commonly in terms of accuracy (proportion correctly labelled ex-

amples in the test set). In the case of MEG data, a dataset could contain single trials

as examples, and magnetic field amplitudes at all MEG sensors as features. The

classifier might be trying to learn the relationship between MEG sensor patterns

and the type of visual stimulus presented to the subject, e.g. face or house.

A MEG multivariate analysis pipeline typically starts with data pre-processing

(Figure 1.4A). Dimensionality reduction is sometimes performed, which can en-

tail a subselection of sensors, sources or time windows, or data-driven methods

such as Principal Component Analysis (although see Goddard et al., 2017 for some

caveats). The choice of features can strongly affect the interpretability of the data,

including the spatiotemporal resolution and generalizability of the results.
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Other steps carried out aim to increase the SNR of the data, for example by aver-

aging subsets of trials, and to ensure balanced classes by subsampling the majority

class. Although pre-processing choices can affect the performance of the decoding

algorithm (Grootswagers et al., 2017), a high accuracy is not important in studies

using decoding for understanding brain function rather than prediction (Hebart

and Baker, 2017); rather, the presence of discriminating information is assessed

through statistical testing against the chance level. Since decoding accuracy is a rel-

ative measure of effect size, preventing cross-experiment comparisons, differences

in pre-processing choices across experiments (including in this thesis) can be con-

sidered less important than unbiased classifier testing, evaluation, and statistical

assessment.

Although decoding can be performed with a variety of algorithms, linear classi-

fiers are most commonly used in neuroimaging data analysis as a linear readout of

the data is biologically plausible and offers increased interpretability compared to

more complex algorithms (DeWit et al., 2016; Kriegeskorte and Kievit, 2013; Ritchie

and Carlson, 2016). Note that in cases in which the choice of algorithm or its hyper-

parameters need to be optimized for maximal prediction accuracy, this optimiza-

tion should be performed on a third independent subset of the data (validation set;

Lemm et al., 2011). However, for many neuroimaging applications, linear classi-

fiers with default hyperparameters are sufficiently powerful to reveal the presence

of decodable information.

1.3.1 The Support Vector Machine classifier

Throughout this thesis, a linear Support Vector Machine (SVM) classifier (Boser et

al., 1992) is used for binary decoding of MEG data. For datasets composed of n ex-

amples xi with label yi ∈ {−1, 1}, a linear classifier is based on a linear discriminant

function

f(x) = wTx + b (1.1)

where the dot product wTx = ∑i wixi, w is known as the weight vector, and

b is the bias. The sign of the discriminant function divides the dataset using the
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set of points x such that wTx + b = 0, which form a line in a 2D space, a plane in

a 3D space, and a hyperplane in higher dimensional spaces (Ben-Hur and Weston,

2010). This is known as the decision boundary and is also the basis of a linear SVM

(Figure 1.5).

A linear SVM finds the maximal margin hyperplane between two classes by

maximizing the distance between the decision boundary and the data points and

thus increasing its generalizability. For data that are not perfectly linearly separa-

ble, a soft-margin SVM is used, which allows the misclassification of some exam-

ples by introducing slack variables ξi. The trade-off between error rate and margin

size is controlled by a regularization parameter, the box constraint C, which penal-

izes misclassified examples (Noble, 2006).

The problem of maximizing the geometric margin 1/‖w‖ is equivalent to min-

imizing ‖w‖2. The optimization problem solved by SVMs in what is known as the

primal formulation is thus

minimize
w,b

1
2
‖w‖2 + C ∑

i
ξi (1.2)

This is known as an L1-SVM (which imposes a linear loss for margin-violating

examples), while an L2-SVM imposes a quadratic loss (a larger penalty), and differs

only in the regularization term, which is C
2 ∑i ξi. Both types of regularization have

been used in the analyses presented in this thesis.

Solving the primal optimization problem for large datasets would be computa-

tionally prohibitive, especially when mapping the data onto a higher-dimensional

space. SVM implements a sparse and more tractable solution by selecting a subset

of the examples xi located closest to the hyperplane, known as support vectors, for

whom the Lagrange multipliers αi > 0. This is known as the dual formulation, in

which the optimization problem becomes

maximize
α

n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

yiyjαiαj(xT
i xj),

s.t.
n

∑
i=1

yiαi = 0, 0 ≤ αi ≤ C

(1.3)
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FIGURE 1.5: Visualization of a soft-margin SVM applied to non-
linearly separable data in 2D. The classifier relies on support vectors
to maximize the margin, and includes a regularization parameter

that penalizes misclassified data points.

and the discriminant function becomes

f (x) =
n

∑
i=1

αiyi(xT
i x) + b. (1.4)

Note that in non-linear classifiers, the dot product xT
i x is replaced by a different

kernel function. For linear SVM, the weight vector can be recovered based on the

input examples:

w =
n

∑
i=1

yiαixi (1.5)

The in-built regularization and efficient handling of a large feature space (Nils-

son et al., 2006) make SVM a good approach for high-dimensional neuroimaging

datasets, and the weights associated with each feature, although not directly infor-

mative, can help uncover the spatial patterns underlying successful classification.

1.3.2 Cross-validation and statistical evaluation

To measure the prediction performance of a classifier, the trained model needs to be

tested on an independent dataset. Although this can be done by holding out part

of the data for testing, such a procedure does not exploit the full dataset, which

can be an issue given the small sample sizes common in neuroimaging. A more
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commonly used method is cross-validation, which involves splitting the dataset

into partitions (folds) and holding out each one of them for testing, while training

on the remaining data. The final accuracy is averaged across all folds.

Cross-validation involves a trade-off between bias and variance (underfitting

and overfitting), depending on the number of partitions. In leave-one-out cross-

validation, each example is used for testing a model trained on all other examples;

although this type of cross-validation is exhaustive, it is computationally expensive

and can lead to variable estimates (Lemm et al., 2011). In stratified k-fold cross-

validation, the data are randomly split into k folds (commonly 10 or 5), ensuring

balanced class representation in each fold, and classification accuracy is averaged

across folds. This can be a more efficient alternative (Pereira et al., 2009), and is the

method used for calculating classification accuracy in this thesis (Figure 1.6).

When using MVPA to make inferences about the brain, it is important to as-

sess the presence of decodable information against the null hypothesis, which pre-

dicts chance-level classification performance. Throughout this thesis, this is done

through randomization testing. The estimation of an empirical null distribution

is important given the often skewed distributions of accuracies in small datasets

(Jamalabadi et al., 2016), and has been shown to assess significance more reli-

ably than theoretical chance levels (Combrisson and Jerbi, 2015) or binomial tests

(Noirhomme et al., 2014). In the analyses that follow, label shuffling across training

and test sets was used to estimate null accuracy distributions and calculate p-values

(Figure 1.6).

1.3.3 Resolving temporal dynamics

In MEG MVPA studies and throughout this thesis, decoding is usually performed

in a time-resolved manner, allowing discriminating information about the exper-

imental conditions to be detected with high temporal accuracy and often earlier

than the typical evoked responses (Cichy et al., 2015; Grootswagers et al., 2017).

An alternative approach is cross-decoding across time points, by using each time

point for training a separate model and testing it on held-out data from every other

time point (King and Dehaene, 2014).
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This temporal generalization approach evaluates the temporal structure of neu-

ral representations: if responses are sustained, classifier models are expected to

generalize over time, while transient responses are characterized by rapidly chang-

ing classifier weights. It is thought that stable representations are associated with

conscious perception and recurrent processing (Dehaene, 2016; Mohsenzadeh et

al., 2018b), although trial-to-trial variability has been suggested as a potential al-

ternative explanation for the quick succession of temporal stages revealed by this

method (Vidaurre et al., 2018). Although the interpretability of resulting accuracies

depends on experimental design and potential confounds, this method exploits the

temporal resolution of MEG and sensitivity of MVPA to offer a putative link be-

tween brain mechanisms and perceptual processes (Chapter 3).

1.3.4 Uncovering spatial information

One of the main challenges in MVPA is source ambiguity, or recovering the spatial

patterns leading to successful decoding (Carlson et al., 2017; Naselaris, 2015; Tong

and Pratte, 2012). Although several approaches have been proposed and are ex-

plored in the experimental chapters of this thesis, they entail different assumptions

and pose interpretation challenges.

A main issue in exploring spatial correlates is choosing the right spatial scale. In

a whole-brain approach, large-scale distributed patterns may be exploited, which

can render the method more powerful; on the other hand, we may wonder if such

large-scale information from disparate regions can be used by the brain, or is solely

available to the experimenter (Carlson et al., 2017). Furthermore, whole-brain anal-

yses often suffer from the "curse of dimensionality" (Scott, 1992). The converse ap-

proach of decoding from regions of interest or searchlights (uniform patches across

the brain) entails the assumption that information is represented locally (Kragel

et al., 2018). Furthermore, information can sometimes be combined or segregated

suboptimally in such analyses, and the multiple tests conducted can also pose a

concern (Tong and Pratte, 2012). Comparing models at different spatial scales can

help resolve these differences, and prior information can elucidate source ambigu-

ities (Carlson et al., 2017).
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In MEG MVPA studies, most decoding analyses are implemented at the sen-

sor level, with few studies performing source-space decoding (e.g. Su et al., 2012).

Although sensor-space signals can be informative, they are less likely to be consis-

tent between participants and more prone to signal leakage (Zhang et al., 2016b).

On the other hand, source-space methods can decrease classification performance,

while also suffering from concerns of signal leakage and information spreading

(Gohel et al., 2018; Sato et al., 2018). Throughout this thesis, sensor-space classifi-

cation is employed as a benchmark for temporal information, while source-space

classification is used to investigate the spatial dynamics of decodable information.

Whole-brain approaches rely on feature weights to assess the contribution of

different sensors or sources to the decoding performance. However, classifiers can

exploit non-informative features in generating predictions, and their weights are

thus not directly interpretable. A procedure has been proposed to recover activa-

tion patterns from feature weights using the data covariance matrix (Haufe et al.,

2014), and this solution is implemented in Chapter 2. One main caveat when in-

terpreting weight-based maps is that inferences can only be made about a feature

relative to the others, since the weights are specific to the feature set used in de-

coding (Williams and Henson, 2018). To overcome this concern, the analysis in

Chapter 2 uses a dimensionality reduction method that creates unique and equally

weighted features for each of 84 ROIs across the brain; thus, the contribution of

each ROI can be evaluated using whole-brain relevance maps.

Other methods of mapping classification accuracy involve spatial selection of

sources. Searchlight methods (Kriegeskorte et al., 2006) originating in fMRI have

become widely used, due to their high spatial resolution and hypothesis-free cov-

erage of the whole brain. Although volumetric searchlights can inaccurately rep-

resent information as being uniformly distributed in the brain (Etzel et al., 2013),

this is less of a concern in MEG, where spatial maps do not have the resolution of

fMRI. For example, in Chapter 3, source activity is reconstructed using a 10 mm

grid and searchlight analysis is performed using clusters of neighbouring sources;

the additional smoothing introduced by the searchlight is not likely to be problem-

atic given the spatial resolution of MEG. However, MEG searchlight maps need to

be interpreted cautiously given the source ambiguity, spatial smoothing, and signal
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leakage concerns that can be compounded by the use of sensitive algorithms.

An alternative to searchlight approaches is decoding from functional ROIs (Chap-

ter 5). This can be less computationally expensive and allow for better cross-subject

and cross-study integration, as well as improving interpretability (Hillebrand et al.,

2012). However, different ROI sizes and potential SNR differences can make com-

parisons across regions difficult (Haynes, 2015).

Although source localization of information maps is challenging, similar inter-

pretation and reliability concerns are also inherent in univariate MEG source analy-

ses, as well as other neuroimaging methods. Combined with a sensor-level bench-

mark for the presence and temporal dynamics of an effect, the source-space decod-

ing analyses in this thesis contributed complementary information, suggesting that

when cross-modal investigations are not possible, MEG can offer a rich picture of

the spatiotemporal dynamics of high-level vision. Although source-space decoding

methods are still in their early stages, the range exemplified here suggests that dif-

ferent questions can be answered using different approaches, depending on prior

information and hypotheses. Finally, the source localization capabilities of MEG

MVPA are likely to rapidly improve given recent advances in machine learning al-

gorithms, together with a growing understanding of the challenges and caveats of

these methods in the context of neuroimaging, and technological advances such as

on-scalp MEG.

1.3.5 Characterizing patterns: Representational Similarity Analysis

Another difficulty in interpreting MVPA results lies in their representational ambi-

guity (Carlson et al., 2017; Naselaris, 2015), or the difficulty of understanding how

decodable information is represented in the brain. Explicit modeling approaches

can be employed alongside or instead of MVPA to tease apart the content of brain

representations (Naselaris, 2015; Poldrack, 2011). Although the concept of brain

representation is in itself ambiguous, it has been defined as a latent variable ex-

pressing shared variance between brain activity and outcome measures (Kragel et

al., 2018). Thus, investigations of representational structure work at a level with the

potential to link psychological constructs to neural substrates (Ritchie et al., 2017).
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FIGURE 1.7: Representational Similarity Analysis. Pairwise dis-
tances between stimulus responses are calculated in order to cre-
ate neural representational dissimilarity matrices (RDM), which are
compared to model dissimilarity matrices using Spearman’s rank

correlation.

A popular approach for investigating the content of neural patterns is represen-

tational similarity analysis (RSA; Kriegeskorte, 2011; Kriegeskorte and Kievit, 2013;

Kriegeskorte et al., 2008). The main appeal of this method is its ability to bring to-

gether measures from different modalities within a common representational space

in order to search for shared structure. Neural patterns from different modalities

can thus be combined and compared to models based on behaviour, physiology,

stimulus properties, machine learning, or theory. The variance explained by each

model can be quantified, compared to other models and evaluated against a noise

ceiling specifying the maximal possible performance (Nili et al., 2014).

RSA starts with the choice of a distance metric to capture the similarity struc-

ture in the data. Different metrics have been used, including Euclidean and Ma-

halanobis distances, decoding accuracies, and correlation distances, with recent

evaluations suggesting that cross-validated distances are the most reliable in the

presence of noise (Guggenmos et al., 2018). The choice of metric can impact how

well the underlying similarity structure is captured (Carlson et al., 2017). In MEG

RSA, the distance metric can be applied to trials corresponding to all pairs of stim-

ulus exemplars in order to obtain a neural representational dissimilarity matrix

(RDM; Figure 1.7). Next, model dissimilarity matrices are created quantifying the
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predicted pairwise distances between stimuli based on different hypotheses. For

example, if neural data encoded contrast, we might expect the neural RDM to cor-

relate highly with a model RDM quantifying differences in contrast between stim-

uli; while a high-level representation might correlate better with a binary model

dividing the stimulus set along category axes. Model RDMs are compared to the

neural data using a rank correlation, since a linear relationship cannot usually be

assumed when using non-invasive measures of neural patterns (Nili et al., 2014).

Although a simple correlation metric is used to assess the relationship between

complex representational spaces (Carlson et al., 2017), additional steps can be per-

formed to maximize the interpretability of RSA results. First, a noise ceiling can be

calculated to quantify the variance explained by the true model given the noise in

the data (Nili et al., 2014). To calculate a lower bound, subject-wise neural RDMs

are correlated to the average neural RDM across the remaining subjects, and an

average correlation coefficient is obtained using a leave-one-out procedure. Next,

subject-wise neural RDMs are correlated to the average neural RDM across all sub-

jects to obtain an upper bound of the noise ceiling. Since the former estimate un-

derfits the true correlation, while the latter overfits, the true model correlation is

expected to fall between the two bounds. Next, partial correlations can be used to

quantify the unique variance explained by models of interest after removing con-

founding models (e.g. Bonner and Epstein, 2017; Chapter 3, Chapter 5), and vari-

ance partitioning can help visualize the shared and unique variance contributed by

a group of models (e.g. Groen et al., 2018; Chapter 3).

Like decoding analyses, MEG RSA can also be performed with varying spa-

tiotemporal resolutions. While neural RDMs are often computed from the whole-

head MEG sensor patterns (e.g. Pantazis et al., 2017; Wardle et al., 2016), in this

thesis, space-varying RDMs are used to explore the progression of feature repre-

sentations across the visual system. In line with the MVPA analyses, both search-

light (Chapter 3) and functional ROI (Chapter 5) RSA mapping was performed. All

RSA analyses were conducted in source space, maximizing inter-subject correspon-

dence for a fixed-effects procedure, and statistical evaluation was performed using

randomization testing.
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1.3.6 Challenges in multivariate analysis

As multivariate methods for neuroimaging have increased in sophistication, there

has been a growing awareness of the caveats and challenges in their implementa-

tion (Figure 1.4B). These stem mainly from the transition between an activation-

based and an information-based framework, leading to difficulties in interpreting

results and eliminating confounds.

Decoding methods can tease apart distributed and overlapping patterns, and

exploit fine-scale information rather than averaging it. Despite the source ambigu-

ity discussed above, this leads to increased sensitivity in detecting effects (Haynes

and Rees, 2006; Tong and Pratte, 2012; Varoquaux and Thirion, 2014; Williams and

Henson, 2018). However, this sensitivity has two alternative explanations that are

not linked to neural activity. The first one is the switch from activation-based, di-

rectional tests to information-based tests that discard the direction of an effect and

only quantify the presence of information (Friston, 2009; Hebart and Baker, 2017;

Varoquaux and Thirion, 2014). Although this is not an issue in itself, group anal-

yses that average non-directional information metrics can speak only to the avail-

ability of discriminating information, unlike univariate analyses focusing on signal

increases. Furthermore, for experiments performing within-subject decoding (as

described in this thesis), it is important that potential confounding variables are

controlled at the subject level and not just at the group level, in order to avoid spu-

rious group effects (Todd et al., 2013).

The second potential explanation of an increased sensitivity is the contribution

of confounds to decoding performance. An often-cited example of this is the out-

come of the 2006 Pittsburgh Brain Competition (Tong and Pratte, 2012), where a

team achieved successful decoding of humorous scenes from fMRI signal in the

ventricles, likely due to stimulus-correlated head motion. Other types of confounds

can increase prediction accuracy, such as low-level differences in stimulus proper-

ties (Cox and Savoy, 2003). Since decoding accuracies can reflect differences in vari-

ability (noise) as well as means (signal), it is important to ensure that the variability

does not reflect unrelated confounds (Hebart and Baker, 2017). These concerns can



24 Chapter 1. General introduction

be alleviated by using controlled stimulus sets (where stimuli are matched along ir-

relevant dimensions or confounding properties are orthogonal to the properties of

interest; Bracci et al., 2017a), or by demonstrating cross-exemplar or cross-category

generalization (Kragel et al., 2018; Tong and Pratte, 2012). Confounding properties

can also be explicitly modelled in analyses like RSA, allowing them to be removed

from the analysis. All three of these approaches are used in the experimental chap-

ters of this thesis to maximize the interpretability of decoding and RSA results.

The final (and desired) source of increased MVPA sensitivity is the ability to

exploit multivariate patterns, including their covariance structure, in agreement

with a view of the brain as an information processing system employing population

coding (Ritchie et al., 2017). This leads us to the next challenge in MVPA analysis,

which is related to the interpretability of decoding results.

The biological plausibility of a linear readout of population codes (DeWit et al.,

2016; Kriegeskorte and Kievit, 2013) has led to assumptions that these represen-

tations are used by the brain, although this cannot be directly shown by MVPA

analyses (Carlson et al., 2017; Ritchie et al., 2017; Yamins and DiCarlo, 2016). Like

other neuroimaging methods, decoding is inherently correlational (Jonas and Kord-

ing, 2017; Poldrack, 2011). Avoiding non-linear transformations of the data or the

use of information likely to be inaccessible to the brain (i.e. combinations across

disparate regions) can improve plausibility, but cannot establish causality. Sim-

ilarly, the absence of decodable information cannot be interpreted as absence of

information within the neural population, since the relevant information could be

organized in ways inaccessible to decoding algorithms (Haynes, 2015).

To increase interpretability, it is often suggested that decoding results should

be linked to behaviour, as not all decodable information contributes to behavioural

responses (Grootswagers et al., 2018; Williams et al., 2007). In order to connect

neural representational spaces to psychological constructs, neural patterns can be

used to predict behaviour, for example within a RSA framework (Carlson et al.,

2017; Ritchie et al., 2017; Chapter 3).

An additional challenge in MVPA is navigating the trade-off between model

complexity and generalizability. Although linear classifiers are popular in neu-

roimaging due to the reasons described above, the recent success of deep neural
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networks (DNNs) offers an alternative computational model. Trading off accuracy

with complexity, DNNs have achieved near-human performance on object recog-

nition tasks (Kietzmann et al., 2017) through increasingly complex architectures

(e.g. Krizhevsky et al., 2012). In understanding the brain, simpler models provide

more knowledge and are more explicit than complex models (Turner et al., 2018);

for example, complex operations like the ones performed by DNNs could achieve

stimulus category predictions based on retinal patterns, in the absence of explicit

representations of category in the data (Kragel et al., 2018). On the other hand,

DNN layer activations have shown striking similarities with the human visual sys-

tem (Cichy et al., 2016; Groen et al., 2018; Yamins and DiCarlo, 2016; Chapter 5),

and their "black box" quality has been reduced by investigations of the features

they use to achieve category representations (e.g. Bonner and Epstein, 2018).

Opinions on the role of DNNs in cognitive neuroscience span a broad range

between viewing them as potential models with certain constraints (Scholte, 2018;

Turner et al., 2018) and viewing the brain itself as a DNN system, which internally

optimizes cost functions for specific problems (Marblestone et al., 2016). Although

part of this can be ascribed to a tendency to liken the brain to the computational

advance of the day, it is certain that DNNs have much to contribute as models

that can be optimized for biological plausibility and trained on specific tasks, thus

potentially overcoming the complexity challenge.

1.4 Investigating face and scene perception

Although the neural correlates of face perception have been reliably mapped, it

is still not well understood how the visual system efficiently represents informa-

tion, allowing us to recognize people and discern social cues at a glance. Similarly,

we effortlessly understand and navigate our environment, but there is significant

debate around the neural computations underpinning this ability. To address these

questions, the experiments in this thesis approach emotional face and natural scene

perception with the multivariate analysis tools described above.

Since the discovery of face-selective cells and brain areas (Gross, 2002; Kan-

wisher et al., 1997), the study of face perception has been marked by debate about
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the organization of neural face processing systems: modular or distributed, hor-

izontal or hierarchical (Haxby et al., 2001; Kanwisher, 2000). Face perception is

supported by a cortical network in the ventral visual cortex (Ishai, 2008), which

includes the occipital face area (OFA), fusiform face area (FFA), and the superior

temporal sulcus (STS). Although these regions show reliable signal increases in re-

sponse to faces, the type of face information they represent is still the subject of de-

bate. A classic model (Bruce and Young, 1986) proposed a template-matching view

of facial recognition, whereby several types of information are extracted from faces

and compared to stored structural codes. The suggestion made here, that identity

and expression information are separately extracted, was further developed within

a neuroanatomical framework (Haxby et al., 2000). This model entailed a core sys-

tem (extrastriate visual areas and OFA) relaying changeable face information (in-

cluding expression) to the STS, and invariant face features (including identity) to

the FFA. This core network was thought to communicate with an extended system

consisting of subcortical, parietal and anterior temporal structures.

However, other studies have shown that expression and identity are integrated

at an early stage (Calder and Young, 2005) or that expression is processed in the

FFA (Bernstein and Yovel, 2015). Thus, an alternative model suggests that the dis-

sociation between form and motion processing is what drives the distinction be-

tween the two pathways (Duchaine and Yovel, 2015; Pitcher et al., 2011). However,

evidence of parallel connections within the face network (Pyles et al., 2013) and

of interaction between the two streams (Fisher et al., 2016) suggests that the two

pathways are not functionally segregated. Furthermore, evidence of increasingly

invariant identity representations along the ventral stream point to a feature pro-

cessing hierarchy, similar to models discussed in section 1.1. On the other hand,

information appears to be integrated both locally and within larger-scale networks,

suggesting that both modular and distributed codes support face perception (Frei-

wald et al., 2016).

Efficient face processing is thought to be supported by coarse, feature-based

face detection followed by configural processing (Calder et al., 2000; Maurer et al.,

2002; Piepers and Robbins, 2012). This is associated with a holistic representation
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(Farah et al., 1998; Richler and Gauthier, 2014) which leads to much lower perfor-

mance in extracting information from inverted faces (Behrmann et al., 2014; Yin,

1969). It is thought that faces may be represented as points in a high-dimensional

"face space" based on feature axes (Leopold et al., 2001), and combining such a

model with electrophysiology and multivariate analysis has recently led to the re-

covery of a low-dimensional identity code in primates (Chang and Tsao, 2017).

The axes along which face features are represented could be matched to patterns

in face-selective areas, which may represent faces featurally or topologically (Hen-

riksson et al., 2015). However, it is possible that different codes or "face space" axes

govern the representation of different face dimensions, such as identity or expres-

sion, and that these may vary according to task effects. Differences in cytoarchi-

tecture between face-selective regions suggest that different computations may be

performed within each region (Grill-Spector et al., 2018); it is thus possible that ef-

ficient face processing relies on sparse featural representations implemented in a

modular fashion and rapidly accessible to distributed, large-scale systems.

The first three chapters of this thesis focus on emotional face perception. Emo-

tional cues are highly salient and recruit distinct systems in the face processing

network, with a putative direct subcortical thalamus-amygdala route thought to

rapidly relay coarse face information (Vuilleumier et al., 2003;Figure 1.8). How-

ever, it is unclear whether this pathway is emotion-specific (Garrido et al., 2012;

Garvert et al., 2014; McFadyen et al., 2017), or whether rapid expression percep-

tion is instead supported by rapid cortico-cortical loops (Liu and Ioannides, 2010;

Pessoa and Adolphs, 2010; Pourtois et al., 2013).

Although multivariate analyses have demonstrated rapid encoding of face iden-

tity (Davidesco et al., 2014; Nemrodov et al., 2016; Vida et al., 2017), expression

has been investigated to a lesser extent with such approaches (but see Cecotti et

al., 2017; Tsuchiya et al., 2008; Wegrzyn et al., 2015; Zhang et al., 2016a). In this

thesis, expression processing is explored using different task contexts, controlled

stimulus sets, and MEG MVPA analyses. Multivariate approaches can help resolve

disagreements on the timing of expression processing, as well as investigate its

spatiotemporal dynamics in a single, data-driven framework. Furthermore, model-

based approaches like RSA can directly test opposing hypotheses within a single
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FIGURE 1.8: Simplified visualization of the network relaying vi-
sual affective information from faces, loosely based on Figure 2 from
Pessoa, 2008. Red, blue and black arrows show feedforward, feed-
back and reciprocal connections respectively. The dashed line shows
the putative direct subcortical route to the amygdala. For simplic-
ity, not all connections are shown. LGN: lateral geniculate nucleus;
LPFC: lateral prefrontal cortex; OFC: orbitofrontal cortex; PUL: pul-

vinar;VC: visual cortex.

dataset in a spatiotemporally resolved manner, thus offering potential explanations

for previous conflicting findings (Chapter 3). Given the success of computer vi-

sion in achieving object recognition and its growing role in cognitive neuroscience

(VanRullen, 2017), it is likely that computational models for increasingly complex

and naturalistic tasks will become available. Face processing as implemented in

the ventral stream may both inform (Grill-Spector et al., 2018) and be informed by

such models, which could finally link psychological models of face perception with

representational axes in the brain.

At this point, it is important to mention a caveat to the approach to expres-

sion perception described in this thesis: although a vision-focused approach can

help uncover the computations transforming salient low-level features into expres-

sion representations, it is important to remember that such processes are part of

larger systems involved in emotion and social cognition. Using highly controlled,

static stimuli (as in all experiments reported here) can help isolate the phenomena

of interest (the extraction of salient visual cues), but not their social component
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(Teufel et al., 2013). Although here face perception is considered from an informa-

tion processing perspective, future studies can employ more complex stimulus and

experimental designs in order to compare social settings for expression processing

to purely visual settings.

The final chapter of this thesis investigates natural scene perception (Chapter 5).

Although not as salient as faces, scenes are ubiquitous in our daily life and we can

effortlessly extract their "gist" (Rousselet et al., 2005). A visual network has been

shown to preferentially respond to scenes (Dilks et al., 2013; Epstein, 2008; Ep-

stein and Kanwisher, 1998), including the parahippocampal place area (PPA), the

retrosplenial cortex (RSC), and the occipital place area (OPA). However, the rep-

resentational content of these areas remains the subject of debate, as contradictory

findings have shown them to encode low-level features (Nasr et al., 2011; Rajimehr

et al., 2011) or categorical dimensions (Schindler and Bartels, 2016; Walther et al.,

2009). In Chapter 5, a natural scene set varying along both low-level and high-level

axes is employed, and RSA analysis reveals temporally overlapping featural and

categorical representations in MEG patterns.

1.5 Aims of the thesis

Bringing together machine learning approaches and MEG recordings, this thesis

investigates high-level visual perception, specifically expression and scene percep-

tion. Exploring information and representation, rather than activation, is particu-

larly suitable in questions related to high-level vision (section 1.1), where we might

expect to find a link between psychological or behavioural representations and neu-

ral population coding. To maximize interpretability, information patterns are ex-

plored in space and time in order to investigate how temporal and representational

dynamics might change under different task conditions.

In the first three chapters, expression processing was addressed using controlled

stimulus sets containing happy, angry, and neutral faces, with different experi-

mental paradigms. In Chapter 2, participants passively viewed emotional faces

while performing a fixation cross colour change detection task. The spatiotemporal
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FIGURE 1.9: Thesis summary and main findings.

dynamics of expression processing were explored using sensor-level and source-

space decoding, revealing whole-brain time-resolved relevance maps. The results

of this experiment have been published as a peer-reviewed publication (Dima et

al., 2018b). In Chapter 3, participants performed a challenging expression discrim-

ination task with briefly presented targets, some of which were presented outside

awareness. Cross-exemplar and cross-time decoding was used to investigate tem-

poral dynamics, and RSA was performed to assess ventral representations and their

link to behaviour. The results of this chapter are available as a pre-print (Dima

and Singh, 2018) and have been submitted for publication. Finally, in Chapter 4,

emotional faces were presented as distractors during a covert spatial attention task

involving orientation discrimination. Expression processing outside attention was

assessed using both univariate and multivariate analyses of electrophysiological

components, broadband signals, and oscillatory activity.

The final chapter (Chapter 5) investigated natural scene perception using a pas-

sive viewing experimental paradigm identical to the one employed in Chapter 2.

The stimuli were natural and urban scenes filtered at two different spatial frequen-

cies or unfiltered. Using cross-decoding and RSA, representations of low-level fea-

tures and high-level categories were assessed in sensor and source space. The re-

sults of this chapter have been published as a peer-reviewed publication (Dima et

al., 2018a).
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Chapter 2

Emotional faces are differentiated

early in visual cortex

2.1 Abstract

Emotional faces are highly salient and are efficiently processed, but existing stud-

ies do not paint a consistent picture of the neural dynamics supporting this task. In

this chapter, we addressed this question by recording MEG data while participants

passively viewed a controlled set of emotional expressions and scrambled stimuli.

Using time-resolved decoding of sensor-level data, we show that responses to an-

gry faces can be discriminated from happy and neutral faces as early as 90 ms after

stimulus onset and only 10 ms later than faces can be discriminated from scram-

bled stimuli, even in the absence of differences in evoked responses. Time-resolved

relevance patterns in source space track expression-related information from the

visual cortex (100 ms) to higher-level temporal and frontal areas (200–500 ms). This

highlights a system optimised for rapid processing of emotional faces and prefer-

entially tuned to threat, consistent with the important evolutionary role played by

the rapid recognition of emotional cues. Furthermore, these results demonstrate

that the spatiotemporal dynamics of face perception can be efficiently resolved by

combining an information mapping approach with MEG sensor and source-level

analyses.
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2.2 Introduction

From an evolutionary perspective, it is easy to imagine why faces have a special

place in the visual system, and why expression may be a particularly relevant fea-

ture to extract from other people’s faces. Accordingly, the rapid extraction of emo-

tional cues from faces is well-documented (Pessoa and Adolphs, 2010; Vuilleumier,

2005). A particular advantage seems to be afforded to threat-related expressions of

fear and anger. Evidence from behavioural studies (Fox et al., 2000, 2002; Öhman et

al., 2001) and neuroimaging (Feldmann-Wüstefeld et al., 2011; Pichon et al., 2012;

Schupp et al., 2004) converges on the efficiency of threat detection, although the

degree of automaticity with which this is accomplished is still the subject of debate

(Koster et al., 2007; Mothes-Lasch et al., 2011; Pessoa, 2005).

The first part of this thesis discusses three experiments that approach emotional

face perception from different perspectives (Chapter 1). In this first chapter, we

focus on face perception under passive viewing and compare the results of an

univariate evoked response analysis with a multivariate machine learning-based

approach. We investigate whether emotional faces are decodable from MEG pat-

terns in the absence of task-specific processing, and we explore the spatiotempo-

ral dynamics of such an effect using an automated, whole-brain framework which

requires limited prior assumptions. This information mapping approach is poten-

tially more statistically powerful than univariate methods, and can thus help eluci-

date previous inconsistencies in electrophysiological research on evoked responses

to faces.

The neural mechanisms underpinning rapid expression perception are still not

well understood, as discussed in Chapter 1. Models postulating distinct expres-

sion and identity pathways (Haxby et al., 2000) have been challenged by evidence

of expression processing in the FFA (Bernstein and Yovel, 2015), suggesting that in-

formation is extracted from faces by distributed and interacting modules (Duchaine

and Yovel, 2015). A fast subcortical thalamus-amygdala route bypassing the visual

cortex is thought to transmit coarse face-related information (LeDoux and Brown,

2017; Morris et al., 1998), but its role in face perception is controversial (Krolak-

Salmon et al., 2004; Pessoa and Adolphs, 2011), including whether it is fear-specific
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(Méndez-Bértolo et al., 2016) or non-specific to expression (Garvert et al., 2014; Mc-

Fadyen et al., 2017). On the other hand, multiple fast cortical pathways forming

part of a feedforward and feedback mechanism consistute an equally plausible

mechanism for rapid expression perception (Liu and Ioannides, 2010; Pessoa and

Adolphs, 2010).

Furthermore, electrophysiological investigations of emotional face processing

in humans are not always in agreement on the temporal dynamics of expression

perception. Emotional modulations of the posterior P1 evoked response compo-

nent (~100 ms) are sometimes reported (Aguado et al., 2012; Eger et al., 2003; Hal-

gren et al., 2000; Pourtois et al., 2005), with other studies failing to find early ef-

fects (Balconi and Pozzoli, 2003; Frühholz et al., 2011; Krolak-Salmon et al., 2001;

Schupp et al., 2004). On the other hand, modulations of the N170 face-responsive

component (120-200 ms) are consistently reported (see Hinojosa et al., 2015 for a

meta-analysis).

These results point to relatively late effects, rather than the rapid differentiation

of expressions which would be expected based on their preferential detection. Fur-

thermore, categorization of other stimulus types has been detected relatively early

in the visual system using multivariate methods (Cauchoix et al., 2014; Davidesco

et al., 2014; Liu et al., 2009; Nemrodov et al., 2016; Vida et al., 2017). In this chapter,

we aimed to look beyond ERPs, using the multivariate methods discussed in Chap-

ter 1 to assess pattern differences in the processing of passively viewed emotional

faces.

Task demands and expectations can bias visual perception (Gilbert and Sigman,

2007; Kok et al., 2012), and differences have been shown between explicit and im-

plicit expression processing (Frühholz et al., 2011; Krolak-Salmon et al., 2001; Lange

et al., 2003). Here, we opted for a passive viewing paradigm with clearly presented

stimuli in order to investigate emotional face perception in the absence of an ex-

plicit task.

Using MVPA, we first interrogated the temporal dynamics underpinning ex-

pression perception, including discrimination between emotional and neutral ex-

pressions and between different emotions. Next, we applied a novel approach to

source-space decoding to track the brain regions encoding the emotional content
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of faces and their relative contribution over time. We were thus able to identify

early differences between responses to angry faces and happy/neutral faces within

100 ms of stimulus onset and we localized them to the visual cortex, while later

responses originated in higher-level temporal and frontal cortices. Our results sug-

gest that the perceptual bias towards threatening expressions begins with the early

stage of visual processing, despite a lack of significant differences in trial-averaged

event-related fields (ERFs).

2.3 Materials and Methods

2.3.1 Participants

The participants were 15 healthy volunteers (8 females, mean age 28, SD 7.63) with

normal or corrected-to-normal vision. All volunteers gave informed written con-

sent to participate in the study in accordance with The Code of Ethics of the World

Medical Association (Declaration of Helsinki). All procedures were approved by

the ethics committee of the School of Psychology, Cardiff University.

2.3.2 Stimuli

The stimulus set contained angry, happy, and neutral faces (15 male and female

faces per condition), as well as 15 scrambled control stimuli. The face images were

selected from the NimStim database (Tottenham et al., 2009), which includes both

closed-mouth (low arousal) and open-mouth (high arousal) versions of each emo-

tional expression; for this study, we selected closed-mouth neutral expressions,

open-mouth happy expressions, and a balanced set of closed-mouth and open-

mouth angry expressions, which accounted for the higher arousal associated with

angry faces. In practice, this stimulus selection enhances visual differences (i.e. in

terms of visible teeth) between the happy and neutral face sets.

The scrambled stimuli were noise images created by combining the average

Fourier amplitudes across stimuli with phase information from white noise images

of equal size (Perry and Singh, 2014).

All images were 506 x 560 pixels in size and were converted to grayscale (Fig-

ure 2.1). To ensure that global low-level properties were matched between stimuli,
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FIGURE 2.1: Experimental paradigm, with examples of one scram-
bled image and two face stimuli from the NimStim database, after

normalization of Fourier amplitudes.

the 2D Fourier amplitude spectrum of each image was set to the average across all

stimuli. This was done by calculating the average amplitude spectrum across im-

ages in the Fourier domain, and replacing individual amplitude spectra with the

average when performing the inverse transformation of each image.

2.3.3 Data Acquisition

All participants underwent a whole-head T1-weighted MRI scan on a General Elec-

tric 3 T MRI scanner using a 3D Fast Spoiled Gradient-Recalled-Echo (FSPGR) pulse

sequence in an oblique-axial orientation with 1 mm isotropic voxel resolution and

a field of view of 256 x 192 x 176 mm.

Whole-head MEG recordings were made using a 275-channel CTF axial gra-

diometer system at a sampling rate of 600 Hz. Three of the sensors were turned

off due to excessive sensor noise and an additional 29 reference channels were

recorded for noise rejection purposes. The data were collected in 2.5 s epochs cen-

tred around the stimulus onset. A continuous bipolar electrooculogram (EOG) was

recorded to aid in offline artefact rejection.

Stimuli were centrally presented on a gamma-corrected Mitsubishi Diamond

Pro 2070 CRT monitor with a refresh rate of 100 Hz and a screen resolution of 1024

x 768 pixels. Participants viewed the stimuli from a distance of 2.1 m at a visual

angle of 8.3°x 6.1°.

Participants underwent two scanning sessions with up to 5 minutes of break

in between. Each session comprised 360 trials, with the 15 images corresponding

to each condition presented six times in random order. On each trial, the stimulus
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was presented on a mean grey background for 1 s, followed by an interstimulus

interval with a duration selected at random from a uniform distribution between

600 and 900 ms (Figure 2.1). A white fixation cross was presented at the centre

of the screen throughout the experiment. Participants performed a change detec-

tion task to ensure maintained attention: the fixation cross turned red at the start

of a pseudorandom 10% of trials (during the inter-stimulus interval) and partici-

pants had to press a button using their right index finger in order to continue. The

paradigm was implemented using Matlab (The Mathworks, Natick, MA, USA) and

the Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).

Participants were seated upright while viewing the stimuli and electromagnetic

coils were attached to the nasion and pre-auricular points on the scalp to determine

head location. High-resolution digital photographs were used to verify the loca-

tions of the fiducial coils and co-register them with the participants’ structural MRI

scans. Head position was monitored continuously and head motion did not exceed

6.6 mm in any given session.

2.3.4 Data Analysis

Pre-processing

Prior to sensor-space analyses, the data were pre-processed using Matlab and the

FieldTrip toolbox (Oostenveld et al., 2011). Trials containing eye movement or

muscle artefacts were rejected after visual inspection. One participant was ex-

cluded due to excessive artefacts and analysis was performed on the remaining

14 subjects. Across the remaining subjects, the percentage of trials excluded did

not exceed 12.7% (mean 40 trials excluded across both sessions, SD 24.3), and the

number of trials excluded did not significantly differ between conditions (P =

0.86, F(2.2, 28.9) = 0.18).

To monitor head motion, the position of the three fiducial coils relative to a

fixed coordinate system on the dewar was continuously recorded during data ac-

quisition. Head motion was quantified as the maximum displacement (difference

in position between sample points) of the three coils during any given trial. Us-

ing this metric, we excluded trials with maximum motion of any individual coil in
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excess of 5 mm. To account for changes in head position, head coil position was

changed to the average position across trials for each dataset.

For sensor-space analyses, a 50 Hz comb filter was used to remove the mains

noise and its harmonics and baseline correction was applied using a time window

of 500 ms prior to stimulus onset.

Event-related field (ERF) analysis

We inspected event-related fields in order to examine differences between condi-

tions present in single-channel responses. The data were bandpass-filtered between

0.5 and 30 Hz using fourth-order IIR Butterworth filters. ERFs were realigned to a

common sensor position (Knösche, 2002) and averaged across subjects. We then

identified three time windows of interest based on local minima in the global field

power across all face conditions (Figure 2.3D; Perry and Singh, 2014): ~60-127 ms

(M100), 127-173 ms (M170), and 173-317 ms (M220). ERF responses were aver-

aged within each time window of interest. For each time window, we tested for

differences between trial-averaged responses to neutral and scrambled faces and

between emotional faces using a paired t-test and a repeated-measures ANOVA re-

spectively and randomization testing (5000 iterations, corrected using the maximal

statistic distribution across sensors).

MVPA pre-processing and feature selection

Sensor space: Prior to sensor-space MVPA analyses, the data were averaged in

groups of 5 trials to improve SNR (Grootswagers et al., 2017; Isik et al., 2014). The

number of observations was not significantly different between conditions (Angry:

33.6± 1.6; Happy: 33.4± 1.4; Neutral: 33.5± 1.1; Scrambled: 33.6± 1; F(3, 13) =

0.64, P = 0.59). To assess differences between responses to neutral and emotional

faces as well as between different emotional expressions, binary classification was

applied to all pairs of emotional conditions.

We assessed the presence, latency and coarse spatial location of expression-

specific information at the sensor level by performing within-subject time-resolved

classification on data from four anatomically defined sensor sets (occipital, tempo-

ral, parietal and frontocentral; Figure 2.6). MVPA was performed at each sampled
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time point (every ~1.67 ms) between 0.5 s pre-stimulus onset and 1 s post-stimulus

onset. Compared to a whole-brain approach, this method served to reduce the

number of features while also providing some spatial information.

To maximize the number of informative features used as input to the classifier,

we conducted an additional sensor-space MVPA analysis in which feature selection

was performed based on differences between faces and scrambled stimuli. This

ensured unbiased feature selection based on an orthogonal contrast and led to the

selection of sensors responding most strongly to faces, in order to maximize the

interpretability of our results.

To determine sensors responding differentially to faces and scrambled stimuli

we used a searchlight MVPA approach (Tsuchiya et al., 2008), whereby each MEG

channel and its neighbouring sensors, defined according to a Fieldtrip template

based on the CTF 275-sensor array configuration, were entered separately into the

MVPA analysis. Searchlights were defined to include only sensors directly con-

nected to the centroid according to the template, and searchlight size thus ranged

between 4 and 10 sensors (mean 7.36, SD 1.12). The analysis was performed us-

ing time windows of approximately 16 ms (10 sampled time points) and stratified

five-fold cross-validation was used to evaluate classification performance. Data

from the cluster centroids found to achieve above-chance decoding performance in

100% of participants (regardless of latency) were then entered into the three emo-

tional expression classification analyses (Figure 2.6B).

To ensure we captured informative sensors in the expression decoding analysis,

two additional feature selection methods based on the face vs scrambled contrast

were performed, yielding: (1) 15 sensors found to exhibit significant differences in

ERFs between faces and scrambled stimuli in any of the three time windows tested;

and (2) a combined set of 55 sensors identified through the MVPA and ERF-based

feature selection methods.

Source space: To move beyond the limitations of sensor-space spatial inference

in our MVPA analysis and alleviate concerns of signal leakage, head motion and

inter-individual variability (Zhang et al., 2016b), the data were projected into source



40 Chapter 2. Emotional faces are differentiated early in visual cortex

space using the linearly constrained minimum variance (LCMV) beamformer (Hille-

brand et al., 2005; Van Veen et al., 1997). Beamformer weights were normalized by

their vector norm to alleviate the depth bias of MEG source reconstruction (Hille-

brand et al., 2012). The participant’s MRI was used to define the source space with

an isotropic resolution of 6 mm and the output for each location was independently

derived as a weighted sum of all MEG sensor signals using the optimal source ori-

entation (Sekihara et al., 2004).

The data were projected into source space using trials from all conditions fil-

tered between 0.1 and 100 Hz to calculate the beamformer weights. A frequency

analysis was performed using the multitaper method based on Hanning tapers in

order to identify the peak virtual channel in each of 84 Automated Anatomical

Labeling (AAL; Tzourio-Mazoyer et al., 2002) atlas-based ROIs (excluding the cere-

bellum and some deep structures; see Figure 2.7A). The classifier input consisted of

the raw time-series for each of the 84 virtual sensors, baseline corrected and aver-

aged in groups of 5 trials to improve SNR. Decoding was performed per sampled

time point as in sensor space.

To assess whether the MVPA effect found at the source level was also present

in univariate responses when eliminating the issues associated with sensor-level

analyses, we also calculated evoked responses (trial averages) for the peak sources

in each of the 84 ROIs used in the MVPA source-space analysis, filtered between

0.5 and 30 Hz. These were subjected to statistical analysis using the time windows

identified at sensor level (2.3.4).

Classifier training and testing

A linear L1 soft-margin Support Vector Machine (SVM) classifier was implemented

in Matlab using the Machine Learning and Statistics Toolbox and the Bioinformatics

Toolbox (Mathworks, Inc.). Stratified five-fold cross-validation was implemented

for training and testing and data points were standardized using the mean and

standard deviation of the training set. The box constraint parameter c, which con-

trols the maximum penalty imposed on margin-violating observations, was set to

1.
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FIGURE 2.2: MPA analysis framework used in this chapter. Time-
resolved decoding was performed on (1) sensor-level data from a se-
lected subset (anatomical or data-driven), and (2) source-space data

from peak broadband sources in 84 AAL regions.

Computing relevance patterns in source space

For each decoding problem, participant and time point, the SVM model based on

source-space data was retrained on the full dataset to obtain the final model and

calculate the weight vector. The weight vector for a linear SVM is based on the La-

grange multipliers assigned to each data point (Chapter 1). To achieve interpretable

spatial patterns (Haynes, 2015), feature weights were transformed into relevance

patterns through multiplication by the data covariance matrix (Haufe et al., 2014).

This allowed us to dynamically and directly assess the relative importance of all

virtual electrodes used in source-space decoding, as each ROI was represented by

one feature and each decoding iteration was run on the whole brain.

Significance testing

To quantify classifier performance, we report average accuracies across subjects

(proportions of correctly classified cases), as well as F1 scores (harmonic means of

precision and sensitivity) and bias-corrected and accelerated bootstrap confidence

intervals using 1000 resampling iterations (Efron and Tibshirani, 1986; Efron, 1987).

Significance was assessed using randomization testing. For each individual

dataset, labels were shuffled 1000 times across the training and test sets to create
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an empirical null distribution and classification was performed on the randomized

data at the time point achieving the highest classification performance across sub-

jects on the real data. For searchlight classification, p-values were calculated for

each subject and combined to achieve a group map quantifying the proportion of

subjects achieving significance in each searchlight (Pereira and Botvinick, 2011).

For all other analyses, randomization was performed within-subject and empirical

null distributions were calculated in an identical manner as the observed statistic

(i.e. average accuracy over subjects).

To correct for multiple comparisons, we tested average accuracies against the

omnibus null hypothesis by thresholding using the maximum accuracy distribu-

tion (Nichols and Holmes, 2001; Singh et al., 2003). For classification on different

sensor sets, this was done by selecting the maximum average performance across

sensor sets to create a null empirical distribution. For searchlight classification,

p-values were thresholded using the maximum performance across sensor clus-

ters. For sensor-space classification based on feature selection and for source-space

classification, p-values were adjusted using the false discovery rate and cluster-

corrected across time. Permutation p-values were calculated taking the observed

statistic into account, using the conservative estimate p = (b + 1)/(m + 1), where b

is the number of simulated statistics greater than or equal to the observed statistic

and m is the number of simulations (Phipson and Smyth, 2010).

To identify the ROIs significantly contributing to decoding performance in source

space, permutation testing (5000 sign-flipping iterations) was applied to baselined

mean relevance patterns for each ROI and time window. P-values were corrected

for multiple comparisons using the maximum statistic distribution across ROIs,

and a further Bonferroni correction was applied to account for the multiple time

windows tested.

Control analyses

Decoding was also performed on the EOG timeseries to control for the possibil-

ity of eye movements driving decoding performance, and the impact of low-level

features was assessed by applying classifiers to image properties, specifically pixel

intensity levels and the spatial envelope obtained using the GIST descriptor (Oliva
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and Torralba, 2001). The latter consisted of 256 values for each image, obtained by

applying Gabor filters at different orientations and positions to extract the average

orientation energy. Although it was originally designed to capture scene proper-

ties and is perhaps less suited to extracting face information, the spatial envelope

is a holistic representation of low- and mid-level properties; it thus summarizes the

orientation information in our stimuli without extracting face-specific features that

would be expected to encode emotion and determine expression recognition.

2.4 Results

2.4.1 Evoked responses to faces

When assessing the effect of emotional expression on event-related fields (Fig-

ure 2.3A-D), we found no modulation of any of the three ERF components (F(2, 26) <

9.37, P > 0.061 across all three comparisons). Conversely, we found significant

differences between responses to faces and scrambled faces at the M170 latency

(t(13) > 5.43, P < 0.0078; maximum t(13) = 7.17, P = 0.0008) and at the M220 la-

tency (t(13) > 5.38, P < 0.0099; maximum t(13) = 6.54 , P = 0.0016). At the M100

latency, no differences survived correction for multiple comparisons (t(13) < 4.41,

P > 0.04).

Univariate responses at the source level showed a similar pattern (Figure 2.3E-

F). Statistical analysis of the ROI-averaged response revealed a significant differ-

ence between faces and scrambled stimuli only in the M170 window (P = 0.0012,

t(13) = 4.89; paired T-test and randomization testing using 5,000 iterations). Tests

performed at each ROI were inconclusive (P > 0.09, t(13) < 4.1). We note here that

the selection of one source per ROI and the number of comparisons performed are

likely to be the cause of these results. Furthermore, to assess differences in expres-

sion, we performed repeated-measures ANOVAs and randomization testing (5,000

iterations) on both ROI-averaged data and at each ROI separately using the same

three time windows of interest. Neither of these approaches revealed significant

results (P > 0.22, F(2, 26) < 1.58, and P > 0.25, F(2, 26) < 6.5 respectively).
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FIGURE 2.3: Evoked responses to faces and expressions. A. Sen-
sors exhibiting significant differences to faces compared to scram-
bled stimuli (marked with asterisks) at the M170 and M220 latencies
(P<0.01). B. Timecourses of the evoked responses to neutral faces
and scrambled stimuli from right occipital and temporal sensors av-
eraged across subjects (±SEM). C. Topographical distribution of the
grand average ERF amplitudes from all axial gradiometers across
the three face conditions. D. Global field power of the grand aver-
age ERF across all trials and for each condition. Shaded areas show
windows of interest in the ERF analysis. E-F. Grand average evoked
responses (±SEM) over 84 ROIs and all 14 subjects in source space.
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FIGURE 2.4: Sensor-space decoding of faces vs scrambled stimuli. A.
Time-resolved decoding accuracy for all searchlights. The black ver-
tical line marks the onset of above-chance decoding (80-110 ms). B.
Scatterplot of averaged accuracies across subjects (133-150 ms) for all
searchlight sizes, showing no relationship between searchlight size
and accuracy. C. As in A, but plotted on the MEG sensor layout and
averaged over 50 ms time windows. D. Proportion of participants
achieving above-chance decoding at each searchlight regardless of
latency. Sensors significant in all subjects and selected for further

analysis are marked with asterisks.

2.4.2 MVPA results: decoding faces and scrambled stimuli

A searchlight MVPA analysis was performed on the face vs scrambled decoding

problem to identify sensors of interest for emotional expression classification. Faces

were decoded above chance starting at ~80 ms at occipito-temporal sensors (Fig-

ure 2.4A). We thus identified a set of 40 occipito-temporal sensors achieving above-

chance decoding performance in all participants at any time point after stimulus

onset (Figure 2.4C). Note that although searchlights included neighbouring sensors

around a centroid and thus varied in size, there was no correlation between search-

light size and decoding accuracy (Pearson’s ρ = −0.059, P = 0.33; Figure 2.4B).

Source-space face decoding showed a similarly early onset (~100 ms), with

slightly lower decoding accuracies. Relevance patterns based on classifier weights

highlighted the visual cortex and fusiform gyrus between 100-200 ms post-stimulus

onset (coinciding with the M170 effects found in the ERF analysis; Figure 2.5).
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FIGURE 2.5: Source-space decoding of faces vs scrambled stimuli.
A. Decoding accuracy for the face vs scrambled problem in source
space with 95% CI and significant decoding time window (black
horizontal line, starting at 100 ms). B. Patterns derived from broad-
band source-space decoding of faces and scrambled stimuli for 8
key ROIs for the 0–500 ms time window after stimulus onset. C.
Whole-brain patterns averaged across 250 ms windows and plotted
on the semi-inflated MNI template brain. Bilateral ROI labels: CA:
calcarine cortex; CU: cuneus; LI: lingual gyrus; OS: occipital supe-
rior; OM: occipital medial; OI: occipital inferior; PC: precuneus; FG:

fusiform gyrus.

2.4.3 MVPA results: decoding emotional faces

Sensor space decoding

When using anatomically defined sensor sets to define the feature space, MEG data

from occipital sensors successfully discriminated angry and neutral faces (at 93 ms

post-stimulus onset), as well as angry and happy faces (at 113 ms post-stimulus

onset). The classification of happy and neutral faces was delayed and showed a

weaker effect, which reached significance for a brief time window at 278 ms. The

temporal sensor set successfully decoded angry vs neutral faces starting at 262 ms.

Other sensor sets did not achieve successful classification (Figure 2.6A). The max-

imum average accuracy across subjects was achieved in the occipital sensor set

decoding of angry vs neutral faces (65.39%, bootstrap 95% CI [60.83%, 69.51%];

Table 2.1).

Feature selection of sensors that successfully decoded faces vs scrambled stim-

uli marginally improved classification performance (Table 2.1) and led to above-

chance accuracy on all three binary classification problems, starting at ~100 ms for
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FIGURE 2.6: A. Accuracy traces averaged across participants for
each emotion classification problem and each of the four sensor sets
(shown in the left-hand plot). The vertical lines mark the stimulus
onset and the shaded areas depict 95% bootstrapped CIs. The hor-
izontal lines represent clusters of at least five significant timepoints
(FDR-corrected P<0.05). Significant decoding onset is marked with
vertical lines (at 100 ms for the angry vs. neutral/happy face decod-
ing using occipital sensors). Accuracy traces were smoothed with
a 10-point moving average for visualization only. The remaining
panels show time-resolved accuracies using: B. the sensor set based
on the searchlight feature selection method (shown in the left-hand
plot); C. the ERF-based sensor set; D. the joint sensor set (based on
both MVPA and ERF results). Different methods of feature selection

lead to similar results.
.
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angry faces and at ~200 ms for happy and neutral faces (Figure 2.4B). Using the

sensors exhibiting an ERF response to faces delayed the decoding onset to 175 ms

(maximum accuracy 61.68%, CI [58.68%, 64.93%]), highlighting the difference in

information content between evoked responses and multivariate patterns. Finally,

using the joint sensor set achieved similar results to occipital sensor decoding (de-

coding onset at 116 ms, maximum accuracy 65.59%, CI [60.97%, 69.5%]).

Source space decoding

We used 84 peak virtual electrodes in AAL atlas-based ROIs to perform whole-

brain decoding of emotional expression in source space. Angry faces were decod-

able from neutral faces at 155 ms and from happy faces at 300 ms, while happy and

neutral faces were less successfully decoded, with a non-significant peak at 363 ms.

Later onsets of significant effects in source space are likely to be due to the

whole-brain approach and the subsequently lower accuracies obtained in source

space. Accuracy may have been decreased by the higher number of features and

by our choice of one peak timecourse per ROI as input to the classification, which

may have filtered out informative signal. However, as optimizing accuracy was

not the main goal of this study, our method offers interpretability advantages, such

as the ability to assess the relative roles of different ROIs without the confound

of unequal ROI or feature vector sizes. Although feature selection could improve

classification performance, we decided against optimizing accuracy in favour of

deriving whole-brain maps from classifier weights.

Source-space relevance patterns

To assess ROI contributions to source-space decoding performance, classifier weights

were converted into relevance patterns and then averaged across subjects and over

time using 100 ms time windows. Relevance patterns attributed a key role to oc-

cipital regions within 200 ms of stimulus onset, with temporal and frontal regions

contributing information at later stages (Figure 2.7). This was confirmed by per-

mutation testing results, which highlighted the role of the right lingual gyrus in

discriminating angry and neutral faces within 200 ms (Figure 2.8). Information in

the left calcarine sulcus and inferior occipital gyrus (with a potential source in the
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FIGURE 2.7: A. Accuracy traces averaged across participants for
each emotion classification problem in source space using the 84
AAL atlas-based ROIs (shown in the left-hand plot). B. Broadband
relevance patterns derived from classifier weights in source space
for all three decoding problems, averaged across subjects and 100
ms time windows, baselined and normalized, mapped on the semi-
inflated MNI template brain (100-500 ms). Patterns show the relative

role of each ROI in decoding without statistical testing.
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FIGURE 2.8: Results obtained from randomization testing of the
relevance patterns shown in Figure 2.7 for each decoding problem
and time window between 100 and 500 ms. Highlighted ROIs were

assigned significant weights (P<0.05 corrected).

occipital face area) appeared to differentiate angry and happy faces, while areas

in the temporal, insular and inferior orbitofrontal cortices were involved at later

stages in all three classification problems.

2.4.4 Control analyses

For all three decoding problems, time-resolved decoding performed on the EOG

timeseries (using 25 time points from each of the two EOG channels as features)

achieved a maximum accuracy no higher than 50.9% (bootstrapped 95% CIs [47.75%,

52.6%]). Classification performed on the entire EOG timeseries did not exceed

52.49% (CI [48.6%, 56.3%]). This suggests that decoding results were unlikely to

be driven by eye movement artefacts.

Binary classification between conditions based on raw image properties (inten-

sity levels per pixel ranging between 0 and 1, mean 0.53, SD 0.16) was not signifi-

cantly above chance, although suggestive for one decoding problem (happy versus

neutral: 33% accuracy, P=0.9; angry versus neutral: 60% accuracy, P=0.24; and an-

gry versus happy: 70% accuracy, P=0.053, randomization testing).
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FIGURE 2.9: Decoding results obtained using: (1) the MEG occip-
ital sensor set at peak time point across subjects (MEG); (2) the
spatial envelope calculated using the GIST descriptor (GIST). Er-
ror bars represent bootstrap 95% CIs based on classification across
subjects/cross-validation iterations. The blue dashed line marks the
theoretical chance level (although note that the angry vs neutral
GIST-based classification does not exceed the empirically estimated

chance level). A: angry; H: happy; N: neutral.

Finally, we performed binary classification between pairs of emotional expres-

sion conditions, using the spatial envelope values calculated using the GIST de-

scriptor for each image. Two of the decoding problems were successfully solved

(happy versus neutral: 82.6% accuracy, P=0.0032, happy versus angry: 78.7%, accu-

racy, P=0.0062), while angry faces could not be decoded from neutral faces (55.67%

accuracy, P=0.33). This suggests that in our stimulus set, visual properties distin-

guish happy faces from neutral and angry faces (unsurprisingly, given the con-

sistency in happy expressions), while angry faces are not easily distinguishable

from neutral faces. These results stand in contrast to results from MEG decoding

(Figure 2.9), which follow an inverse pattern, with the highest accuracies obtained

when decoding angry and neutral faces.

Despite our efforts to match Fourier amplitudes between stimuli, low-level dif-

ferences between expressions remain that may contribute to the results and that can

be expected to play an important role in expression recognition. However, the con-

trol analyses suggest that our MEG results cannot be readily explained by global

differences in spatial envelope or pixel intensities. The increase in accuracy when

decoding angry faces from other expressions (~100 ms), while likely to be based on

low-level information associated to emotional expression, is not easily explained

by unrelated visual properties.
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TABLE 2.1: Expression decoding results in sensor and source space

Angry vs Neutral Occipital Temporal Parietal Frontocentral Selected Source space

Max accuracy 65.39% 63.68% 58.62% 57.52% 65.96% 61.13%

95% CI
60.83%, 58.91%, 56.20%, 52.28%, 62.03%, 57.41%,
69.51% 68.68% 61.59% 60.23% 69.11% 64.77%

Max F1 score 0.653 0.636 0.585 0.573 0.659 0.611
Peak time point 267 ms 388 ms 947 ms 618 ms 185 ms 376 ms
Decoding onset 93 ms 262 ms N/A N/A 113 ms 155 ms

Happy vs Neutral

Max accuracy 59.97% 58.23% 58.14% 57.30% 60.65% 58.98%

95% CI
55.11%, 55.37%, 54.36%, 53.32%, 57.05%, 56.31%,
65.27% 61.01% 63.28% 61.56% 65.22% 61.12%

Max F1 score 0.599 0.581 0.58 0.572 0.605 0.589
Peak time point 485 ms 315 ms 673 ms 637 ms 481 ms 363 ms
Decoding onset 278 ms N/A N/A N/A 205 ms N/A

Happy vs Angry

Max accuracy 62.83% 62.29% 57.97% 57.02% 64.03% 60.93%

95% CI
59.70%, 57.18%, 54.43%, 53.21%, 59.32%, 57.29%,
66.88% 65.60% 63.06% 60.55% 69.87% 64.91%

Max F1 score 0.628 0.621 0.578 0.568 0.639 0.609
Peak time point 332 ms 468 ms 465 ms 403 ms 313 ms 455ms
Decoding onset 113 ms N/A N/A N/A 98 ms 301 ms

2.5 Discussion

In this chapter, we used sensor-space and source-localized MEG data and data-

driven multivariate methods to explore the spatiotemporal dynamics of emotional

face processing. We report three main findings based on our analyses. First, the

emotional valence of faces (especially angry expressions) can be robustly decoded

based on data from occipito-temporal sensors, as well as whole-brain source-space

data. Second, information related to emotional face category is available as early as

90 ms post-stimulus onset, despite a lack of effects in trial-averaged ERFs. Third,

data-driven relevance maps link different stages in expression perception to vi-

sual cortex areas (early stages) and higher-level temporal and frontal cortices (later

stages).

2.5.1 Early processing of facial expressions

Although we found no modulation of trial-averaged ERF components by emotional

expression, our ERF analysis revealed a face response over temporal sensors at the

M170 and M220 latencies and no face-specific M100 component, in line with pre-

vious studies using matched control stimuli and similar designs (Perry and Singh,
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2014; Rossion and Caharel, 2011). On the other hand, an early occipito-temporal

response to faces at M100 latencies was revealed in the MVPA analysis. Together,

these results appear to point to different components in face processing – an early

occipital effect not present in the trial-averaged ERFs, and a later, mainly right-

lateralized temporal effect. Note that although the sensors contributing the most

information to the MVPA analysis are different to the sensors identified in ERF

analysis, the latter set of sensors do perform above chance when used in MVPA

analysis in a majority of subjects (Figure 2.6C); the increased heterogeneity can be

explained by lower cross-subject consistency at the sensor level of a late, higher-

level response.

Using MVPA, we were able to identify expression-related information at early

latencies in the sensor-level MEG data. Expression (angry and neutral/happy faces)

could be decoded at 93 ms and 113 ms respectively, only 10-30 ms later than faces

were decoded from scrambled stimuli, and earlier than latencies reported by previ-

ous ERP studies (even by those showing emotional modulation of P1; e.g. Aguado

et al., 2012). Such early latencies are consistent with neurophysiological investiga-

tions in primates: for example, multivariate analysis of local field potential (LFP)

data in monkeys has shown early categorisation of faces at 60-90 ms (Cauchoix et

al., 2012), while face-selective cells in primate temporal cortex respond to faces or

facial features at 80-100 ms (Hasselmo et al., 1989; Perrett et al., 1982). Our results

add to recent evidence of rapid visual categorization occurring during the early

stages of ventral stream visual processing (Cauchoix et al., 2016; Clarke et al., 2013)

and suggest that this extends beyond low-level properties. Moreover, we reveal

differences in patterns that can be detected in the absence of trial-averaged ERF

effects. Such differences, together with method heterogeneity, could explain previ-

ous mixed results in ERF studies, and speak to the sensitivity advantage of MVPA.

In light of this, similar MVPA approaches will be used in the next two chapters of

this thesis to answer more specific questions about the computations underpinning

expression processing.

On a different note, the lower performance and later onset of happy versus

neutral face decoding suggests a categorization advantage inherent in angry ex-

pressions. Angry faces were decoded from both happy and neutral faces almost
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simultaneously, suggesting a bias related to threat and not to emotion in general.

This points to a system preferentially responsive to threat, consistent with models

placing conflict resolution at the core of social interaction (Waal, 2000). Further-

more, the whole-brain, data-driven analysis pipeline employed here revealed this

bias without entailing assumptions about the temporal or spatial location of an ef-

fect.

2.5.2 Spatial patterns of expression-related information

We implemented an atlas-based approach to source-space decoding in order to

improve the interpretability of the resulting maps and to facilitate cross-modality

comparisons (Hillebrand et al., 2012). This approach has been successfully applied

to resting-state MEG studies (e.g. Brookes et al., 2016) and, together with the selec-

tion of a peak source per ROI, allowed us to increase the computation speed of our

whole-brain decoding analysis, while at the same time reducing data dimension-

ality and allowing for direct comparison between ROIs. The relevance patterns in

this study were stronger at time points corresponding to accuracy increases (start-

ing at ~100 ms), but we refrain from directly linking the two because we did not

optimize accuracy in this study.

When decoding angry and neutral/happy faces, early differential processing

was localized to the calcarine, lingual and inferior occipital ROIs, starting at ap-

proximately 100 ms post-stimulus onset (Figure 2.7). Other occipital ROIs showed

a weaker contribution to decoding, with patterns later spanning a range of tempo-

ral and frontal areas. Early patterns differentiating neutral and happy faces were

weaker (as confirmed by the lack of significant ROIs for this problem in the first

200 ms, and explained by the low decoding accuracy), but evolved similarly over

time (Figure 2.8). Strong patterns in the early visual cortex and the occipital face

area may be evidence of preferential threat processing based on coarse visual cues

which are rapidly decoded and forwarded to higher-level regions. Emotional mod-

ulation in the visual cortex has previously been reported (Fusar-Poli et al., 2009;

Herrmann et al., 2008; Padmala and Pessoa, 2008), and the current results suggest

that this effect occurs within 200 ms of face onset.
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The traditional model postulating different pathways for processing static facial

features (such as identity) and changeable features (such as expression; Bruce and

Young, 1986; Haxby et al., 2000) has been challenged by mounting evidence of in-

teraction between the two systems (Rivolta et al., 2016). Despite their coarse spatial

resolution, our results suggest that face-responsive areas, including those thought

to process identity, respond to emotional expression. The OFA/inferior occipital

gyrus appears to be involved at an early stage, while the fusiform gyrus and the

superior temporal ROIs (locations of the FFA and STS) are recruited at later time

points. These results are in line with previous fMRI MVPA studies demonstrat-

ing above-chance expression decoding in all face-selective regions (Wegrzyn et al.,

2015) and particularly in the FFA, STS and amygdala, in the absence of univariate

effects (Zhang et al., 2016a). Later time windows are characterized by patterns in

the insular, prefrontal and orbitofrontal cortices, previously associated with emo-

tional processing especially at the later stages of integration and evaluation (Chika-

zoe et al., 2014; Phan et al., 2002).

The timing of expression processing as evaluated with MEG MVPA can offer

indirect evidence of the hierarchy of the modules involved. In this chapter, the

short latencies of emotional face discrimination in visual cortex can be interpreted

as supporting a feedforward model of expression processing (Lohse et al., 2016;

Wang et al., 2016). Since we find the earliest differential effects in early visual cor-

tex (within 100 ms), this appears to be somewhat inconsistent with the preferential

relaying of expression information via the subcortical route to the amygdala (Pes-

soa and Adolphs, 2011), although subcortical structures were not directly investi-

gated here. However, the current data are not incompatible with the possibility of a

subcortical route with no preference to expression (Garvert et al., 2014; McFadyen

et al., 2017).

2.5.3 What does successful emotional face decoding tell us?

Naturalistic and high-level stimuli, although appropriate for linking perception to

cognitive processing, may give rise to ambiguities in interpretation. In this exper-

iment, Fourier amplitudes were matched across stimuli to the detriment of their
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naturalistic qualities. As emotional processing can encompass several distinct pro-

cesses, a passive viewing paradigm was employed to eliminate task-related or top-

down attention effects. Attentional effects would thus be expected to arise due to

emotional salience in a bottom-up fashion compatible with our results.

The matching of some low-level properties does not preclude the existence of

local differences between images that are likely to play a part in early decoding.

However, the fact that angry faces are decoded more successfully than happy/neutral

faces points to their relevance rather than to non-specific decoding based on low-

level properties; for example, happy faces could be expected to be successfully

decoded by a low-level classifier due to their consistent smiles, as suggested by

their successful decoding based on spatial envelope features. Furthermore, suc-

cessful classification based on sensors that discriminate between faces and scram-

bled stimuli adds to the evidence that our data do reflect face processing. It is likely

that local low-level properties play a part in decoding (especially in early time win-

dows and low-level visual areas); however, such properties can be viewed as in-

formative in the emergence of high-level categories. Thus, these results suggest

that behaviourally relevant (threat-related) low-level cues are detected and relayed

preferentially compared to benign emotional cues.

One limitation of this experiment is the fact that cross-exemplar decoding could

not be performed in order to assess classifier generalization to a novel set of stim-

uli, as the occurrence of each exemplar was not recorded in this paradigm. Thus,

there is a concern about the classifier potentially exploiting stimulus repetitions in

order to successfully classify the two categories. However, as repetition numbers

were balanced across conditions, we would expect this concern to affect all three

decoding problems equally. As the control analyses do not point to the angry faces

as more classifiable in terms of low-level properties, the successful decoding of an-

gry faces from MEG data is consistent with their behavioural relevance and not

with recognition of individual exemplars and stimulus properties. In subsequent

experiments described in Chapters 3 and 4, this concern was addressed using cross-

decoding of emotional expressions from MEG data. In Chapter 3 in particular, we

show remarkably similar temporal dynamics (decoding of both face presence and

expression at ~100 ms) using a cross-exemplar decoding approach, although the
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threat advantage characteristic appears to depend on task context.

Furthermore, the use of stimulus repetitions to achieve robust responses to a

limited stimulus set poses the concern of potential differences in repetition sup-

pression effects. Such effects have been shown to covary with a number of factors,

including time lag, task type, stimulus familiarity and valence (Morel et al., 2009).

In particular, a stronger repetition suppression effect was shown for fearful faces

than for neutral faces in both fMRI and MEG (Ishai et al., 2004; Ishai et al., 2006), al-

though this effect was only present for target faces that were the object of a working

memory task. On the other hand, repetition suppression was shown to be absent

for happy faces and reduced for angry faces as compared with neutral faces in an

fMRI study with an implicit paradigm (Suzuki et al., 2011). Such a pattern is in-

consistent with a large contribution of repetition suppression effects to the current

results. Furthermore, previous studies have shown differential repetition effects in

evoked response potentials, while evoked responses in the current data revealed

no differences between expressions.

Finally, despite the advantages of the information mapping approach, chal-

lenges remain in the interpretation of decoding results (Chapter 1). Although pat-

terns derived from classifier weights indicate the availability of decodable informa-

tion, it is difficult to assess the type of information used by the classifier or whether

this same information is functionally relevant. However, the results are validated

by existing models of emotional face processing, whereby large-scale differences in

spatial patterns over time may be elicited by different pathways involved in pro-

cessing neutral and emotional/ threat-related and benign stimuli. On the other

hand, the role played by individual ROIs in decoding can be interpreted as reflect-

ing differences in neuronal population activity, as suggested by fMRI, MEG and

electrophysiological investigations establishing correlations between face-selective

cell activity, the BOLD signal (Hasselmo et al., 1989; Tsao et al., 2006) and gamma

oscillations (Muthukumaraswamy and Singh, 2008; Perry, 2016; Perry and Singh,

2014). It is likely that different regions contribute different types of discriminating

information and further study is needed to tease apart the underlying neural activ-

ity. While the overlap in areas between classification problems and the distributed

nature of expression-related information hint at the existence of a core system that
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efficiently identifies and relays emotional cues, the spatial resolution of these data

is too coarse to make strong claims about the structure of this system.

The findings discussed here extend beyond successful decoding of emotional

stimuli to reveal a system optimised for rapid processing of emotional content in

faces and particularly tuned to angry expressions. Decoding timecourses and rele-

vance patterns indicate that affective information is rapidly relayed between early

visual cortex and higher-level areas involved in evaluation, suggesting that in a

passive viewing paradigm, behavioural relevance impacts the processing speed of

emotional expressions.

Many further questions arise from these conclusions. For example, if expres-

sions are decodable within 100 ms, how does presentation duration impact these

pattern differences? Are expressions decodable outside awareness? How does be-

havioural relevance impact these temporal dynamics when expression itself is the

object of behavioural goals, such as during an expression recognition task? These

questions are addressed in the next chapter of this thesis (Chapter 3), which em-

ploys rapid presentation of emotional expressions and an expression discrimina-

tion task to interrogate the neural representations of faces in the presence of limited

visual input.
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Chapter 3

Configural representations support

rapid face perception

3.1 Abstract

In the previous chapter, we focused on rapid implicit processing of emotional faces.

Here, we turn to an expression recognition paradigm in order to explore the link

between facial features, brain and behaviour. To investigate how this relationship

changes in challenging viewing conditions and outside awareness, we varied the

presentation duration of backward-masked facial expressions. The results indi-

cated that face perception was supported by a two-stage process, with the ventral

stream encoding facial features at an early stage and facial configuration at a later

stage. Reducing presentation time modulated this process: early responses were

transient, while featural and configural representations emerged later. These pat-

terns overlapped with representations of behaviour in ventral stream areas, point-

ing to their importance in extracting task-relevant information. Although both face

presence and expression were decodable from MEG data when stimuli were pre-

sented as briefly as 30 ms, only face presence could be decoded outside of subjective

awareness. These results highlight the efficient feature extraction performed in the

visual system in order to support rapid face categorization.
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3.2 Introduction

Behavioural goals are thought to heavily influence how we process and perceive

the world (Corbetta and Shulman, 2002; Gilbert and Sigman, 2007). Previous re-

search has highlighted the role of task goals in shaping object and scene processing

in the visual system (e.g. De Cesarei et al., 2018; Groen et al., 2018). Similarly, dif-

ferences in how emotional faces are processed in passive viewing, as opposed to

when they are the object of a task, have been frequently shown (Frühholz et al.,

2011; Kliemann et al., 2016; Krolak-Salmon et al., 2001; Lange et al., 2003).

In this chapter, we move from the passive viewing paradigm discussed in Chap-

ter 2 to a task involving explicit expression recognition. By manipulating the pre-

sentation duration of emotional face stimuli, we address three questions: (1) How

are emotional faces processed in challenging viewing conditions? (2) Are emotional

faces processed outside of subjective awareness? (3) How are behaviour and face

features represented in MEG responses?

The rapid, bottom-up processing of emotional expressions is thought to extend

to unconscious processing, although the extent and mechanisms of face percep-

tion outside of awareness are still not well understood. Using different methods

of rendering faces "invisible", such as binocular suppression or backward mask-

ing, many experiments have shown some degree of unconscious face processing,

demonstrated at the behavioural or neural levels (see Axelrod et al., 2015 for a re-

view). However, electrophysiological investigations paint a complex picture of the

underlying mechanisms: while many studies using binocular suppression have de-

tected evoked responses to invisible faces (Jiang et al., 2009; Sterzer et al., 2009),

other studies report no such effect, particularly when using backward masking

(Fisch et al., 2010; Navajas et al., 2013; Reiss and Hoffman, 2007; Rodriguez et al.,

2013), which is thought to disrupt re-entrant processing through conflicting input

from feedforward connections (Lamme et al., 2002).

Facial expression has been shown to modulate the early stages of visual percep-

tion (Chapter 2) and to elicit non-conscious responses in numerous studies (Tami-

etto and De Gelder, 2010). Evidence of "blindsight" (non-conscious perception de-

spite visual cortex lesions; e.g. Pegna et al., 2005) has led to considerable debate
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about the automaticity of emotion perception and the role of a subcortical route in

facilitating it (Pessoa, 2005; Pessoa et al., 2005b), with most of the evidence showing

a processing advantage for invisible fearful faces (e.g. Bertini et al., 2017; Jiang and

He, 2006; Williams et al., 2004). However, some studies show evidence against the

non-conscious processing of expression (Hedger et al., 2016; Schlossmacher et al.,

2017). Furthermore, it is unclear whether the advantage for fearful faces found in

many experiments generalizes to threat-related expressions, or is linked to char-

acteristic low-level properties (Hedger et al., 2015). This idea is reinforced by in-

consistent effects found for angry faces: while some experiments show evidence of

non-conscious perception of angry faces (e.g. Adams et al., 2010; Almeida et al.,

2013), other studies show no effect or even a disadvantage in the competition for

awareness (Gray et al., 2013; Hedger et al., 2015, 2016).

In addition, although evidence of rapid face processing points to highly efficient

feature extraction, the mechanisms supporting this are still the subject of debate. It

is widely believed that faces are perceived holistically, unlike other stimuli (Farah

et al., 1998; Richler and Gauthier, 2014); however, some behavioural goals, such as

identity recognition, are thought to rely on facial features and not on holistic per-

ception (Visconti Di Oleggio Castello et al., 2017). Classic models support a con-

figural model of face perception (Calder et al., 2000; Namdar et al., 2015), from the

detection of a first-order configuration (face features) to the perception of a second-

order configuration determined by relationships between features (Maurer et al.,

2002; Piepers and Robbins, 2012). Although classic paradigms like face inversion

or the composite face have shown how the highly specialized mechanisms for face

perception can break down in the presence of configural disruption (Behrmann et

al., 2014), the spatiotemporal dynamics of these processes remain less well under-

stood.

In this chapter, we varied stimulus duration to interrogate the neural repre-

sentations underpinning rapid face and expression perception, and we tracked

how they change in the presence of limited visual input. We then used multi-

variate methods to assess the presence of neural responses to faces presented out-

side of subjective awareness. We reliably detected a neural response to sublimi-

nal faces, but no expression modulation outside of awareness, although expression
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contributed to behavioural responses to invisible faces. Finally, we used represen-

tational similarity analysis (RSA) to tease apart the contributions of first-order and

second-order face configuration and to explore the link between behaviour and

ventral stream responses to faces. Together, these analyses highlight a face process-

ing system highly adaptable to both behavioural goals and challenging viewing

conditions.

3.3 Materials and Methods

3.3.1 Participants

The participants were 25 healthy volunteers (16 female, age range 19-42, mean age

25.6 ± 5.39). All volunteers gave written consent to participate in the study in ac-

cordance with The Code of Ethics of the World Medical Association (Declaration of

Helsinki). All procedures were approved by the ethics committee of the School of

Psychology, Cardiff University.

3.3.2 Stimuli

Stimuli were 20 faces with angry, neutral and happy expressions (10 female faces)

from the NimStim database (Tottenham et al., 2009). The eyes were aligned across

all faces using automated eye detection as implemented in the Matlab Computer

Vision System toolbox. An oval mask was used to crop the faces to a size of

378 × 252 pixels subtending 3.9 × 2.6 degrees of visual angle. All images were

converted to grayscale. Their spatial frequency was matched by specifying the ro-

tational average of the Fourier amplitude spectra as implemented in the SHINE

toolbox (Willenbockel et al., 2010), and Fourier amplitude spectra for all faces were

set to the average across the face set.

Masks and control stimuli were created by scrambling the phase of all face im-

ages in the Fourier domain (Perry and Singh, 2014). To ensure matched low-level

properties between face and control stimuli, pixel intensities were normalized be-

tween each image and its scrambled counterpart, using the minimum and maxi-

mum pixel intensity of the scrambled image.
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3.3.3 Experimental design

At the start of each trial, a white fixation cross was centrally presented on an iso-

luminant gray background. Its duration was pseudorandomly chosen from a uni-

form distribution between 1.3 and 1.6 s. A face stimulus was then centrally pre-

sented with a duration of either 10 ms, 30 ms or 150 ms; the stimulus was followed

by a phase-scrambled mask with a duration of 190 ms, 170 ms or 50 ms respectively

(for a constant total stimulus duration of 200 ms). In each block, 10 trials contained

no face; instead, a phase-scrambled control stimulus was flashed for 10 ms and

followed by another mask.

After a 500 ms delay intended to dissociate face perception from response prepa-

ration, participants had to correctly select the expression they had perceived out of

three alternatives presented on screen (Figure 3.3A). They had 1.5 seconds to make

a button press; if they were sure that no face had been presented, they could refrain

from responding. The mapping of the response buttons to emotional expressions

changed halfway through the experiment so as to ensure that emotional expression

processing would not be confounded by specific motor preparation effects.

Next, participants had to rate how clearly they had seen the face using a 3-

point scale starting from 0. They were instructed to only select 0 if no face had been

perceived, 1 if they had perceived a face but not clearly, and 2 if they had clearly

perceived the face. They had 2 seconds to make this response.

In each of four blocks, each face was presented once with each of the three

possible stimulus durations. We thus collected 80 trials per condition, except for

the control condition (containing scrambled faces) which only had 40 trials.

3.3.4 Data acquisition

All participants with one exception acquired a whole-head structural MRI on a 3T

General Electric or Siemens scanner using a 1 mm isotropic Fast Spoiled Gradient-

Recalled-Echo pulse sequence.

Whole-head MEG recordings were made using a 275-channel CTF axial gra-

diometer system at a sampling rate of 1200 Hz. Four of the sensors were turned off

due to excessive sensor noise. An additional 29 reference channels were recorded
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for noise rejection purposes and the primary sensors were analyzed as synthetic

third-order gradiometers (Vrba and Robinson, 2001).

Stimuli were presented using a ProPixx projector system (VPixx Technologies)

with a refresh rate set to 100 Hz. Images were projected to a screen with a resolution

of 1920 x 1080 pixels situated at a distance of 1.2 m from the participant. Recordings

were made in four blocks of approximately 15 minutes each, separated by short

breaks. The data were collected in 2.5 s epochs beginning 1 s prior to stimulus

onset.

Participants performed the task while sitting upright. To continuously moni-

tor head position relative to a fixed coordinate system on the dewar, electromag-

netic coils were attached to the nasion and pre-auricular points on the participants’

scalp. To help co-register the MEG data with the participants’ structural MRI scans,

the head shape of each subject was defined using an ANT Xensor digitizer (ANT

Neuro). An Eyelink 1000 eye-tracker system (SR Research) with a sampling rate of

1000 Hz was used to track the subjects’ right pupil and corneal reflex.

3.3.5 Behavioural analysis

The effect of stimulus duration and emotional expression on participants’ expres-

sion discrimination accuracy (percentage correct responses) was analyzed after ap-

plying a rationalized arcsine transformation (Studebaker, 1985) using a 3x3 repeated-

measures ANOVA with factors Duration (levels: 10 ms, 30 ms, and 150 ms) and

Expression (levels: angry, happy, and neutral).

3.3.6 Event-related field analysis

We assessed the presence of differences between conditions in event-related fields

(ERF). For the purposes of this analysis, MEG data were bandpass-filtered between

0.1 and 30 Hz and axial gradiometer event-related fields were averaged across sub-

jects to calculate the global field power across all trials and conditions. This allowed

us to determine three time windows of interest for evoked response component

analysis: 63-137 ms (M100), 137-203 ms (M170), and 203 – 306 ms (M220).
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FIGURE 3.1: MPA analysis framework used in this chapter. Tem-
poral dynamics were assessed using time-resolved and cross-time
(temporal generalization) decoding at the sensor level, while spatial
information was investigated using a searchlight approach in source

space.

Next, we averaged evoked response fields for each condition and subject within

the three time windows. We tested for differences between responses to faces and

scrambled stimuli, and between responses to different emotional expressions, us-

ing paired t-tests and repeated-measures ANOVAs respectively at each sensor and

time window. Significant sensors were determined using randomization testing

(5000 iterations) and corrected for multiple comparisons using the maximal statis-

tic distribution (α = 0.001 to correct for multiple tests).

3.3.7 MEG multivariate pattern analysis (MVPA)

To test for differences between conditions present in multivariate patterns, we used

a linear Support Vector Machine (SVM) classifier with L2 regularization and a box

constraint c = 1. The classifier was implemented in Matlab using LibLinear (Fan

et al., 2008) and the Statistics and Machine Learning Toolbox (Mathworks, Inc.).
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We performed binary classification on (1) responses to neutral faces versus scram-

bled stimuli (face decoding); (2) all three pairs of emotional expressions (expression

decoding).

For face decoding, time-resolved classification was performed separately for

each stimulus duration (Figure 3.1). To assess the presence of subjectively non-

conscious responses, the classification of faces presented for 10 ms was performed

after excluding any trials reported as containing a face. To ensure that decoding re-

sults were not biased by stimulus repetitions or recognition of face identities across

the training and test sets, cross-exemplar five-fold cross-validation was used to as-

sess classification performance: the classifier was trained on 16 of the 20 face iden-

tities and 8 of the 10 scrambled images, and tested on the remaining 4 faces and 2

scrambled exemplars.

To assess similarities between responses across stimulus duration conditions,

face cross-decoding was also performed, whereby a decoder was trained on 150 ms

faces and tested on 30 ms faces and viceversa. The analysis was repeated for all

pairs of conditions, using cross-exemplar cross-validation to ensure true general-

ization of responses; the resulting accuracies were averaged across the two train-

ing/testing directions, which led to similar results.

The temporal structure of face-related information was assessed through tem-

poral generalization decoding (King and Dehaene, 2014). Classifier models were

trained on each sampled time point between -0.1 and 0.7 s and tested on all time

points in order to evaluate the generalizability of neural patterns over time at each

stimulus duration. For this analysis, a cross-exemplar hold-out procedure was used

to speed up computation (the training and test sets each consisted of 10 face iden-

tities/5 scrambled exemplars).

For expression decoding, classification was separately applied to all pairs of

emotional expression conditions for each stimulus duration and perceptual aware-

ness rating. As low trial numbers were a limitation of the study design, we in-

creased the power of our analysis by also pooling together trials containing faces

shown for 30 ms and 150 ms (which were shown to share representations in the

cross-decoding analysis). Performance was evaluated using five-fold cross-exemplar

cross-validation.



68 Chapter 3. Configural representations support rapid face perception

To achieve equal class sizes in face decoding, face trials were randomly sub-

sampled (after cross-exemplar partitioning) to match the number of scrambled tri-

als. For expression classification, trial numbers did not significantly differ between

conditions after artefact rejection (F(1.92, 46.18) = 0.15, P = 0.85, η2 = 0.0062).

3.3.8 MEG sensor-level analyses

MEG data were analyzed using Matlab and the Fieldtrip toolbox. Prior to analysis,

trials containing excessive eye or muscle artefacts were excluded based on visual

inspection, as were trials exceeding 5 mm in head motion (quantified as the dis-

placement of any head coil between two sampled time points). Using eyetracker

information, we also excluded trials containing saccades and fixations away from

stimulus or blinks during stimulus presentation. A mean of 8.71% ±9.4% of trials

were excluded based on this procedure.

For all analyses, MEG data were downsampled to 300 Hz and baseline corrected

using the 500 ms before stimulus onset. A low-pass filter was applied at 100 Hz and

a 50 Hz comb filter was used to remove the mains noise and its harmonics.

To improve SNR (Grootswagers et al., 2017), each dataset was divided into 20

equal partitions and pseudo-trials were created by averaging the trials in each par-

tition. This procedure was repeated 10 times with random assignment of trials to

pseudo-trials and was performed separately for the training and test sets.

To improve data quality, we performed multivariate noise normalization (MNN;

Guggenmos et al., 2018). The time-resolved error covariance between sensors was

calculated based on the covariance matrix (Σ) of the training set (X) and used to

normalize both the training and test sets, in order to downweight MEG channels

with higher noise levels (Equation 3.1).

X∗ = Σ−
1
2 X (3.1)

In sensor-level MVPA analyses, all 271 MEG sensors were included as features

and decoding was performed for each sampled time point between -0.1 and 0.7 s

around stimulus onset.
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3.3.9 MEG source-space analyses

For source analyses, participants’ MRI was coregistered to the MEG data by mark-

ing the fiducial coil locations on the MRI and aligning the digitized head shape to

the MRI with Fieldtrip. Note that the participant who had not acquired an MRI

was excluded from source-space analyses. MEG data were projected into source

space using a vectorial LCMV beamformer (Van Veen et al., 1997). To reconstruct

activity at locations equivalent across participants, a template grid with a 10 mm

isotropic resolution was defined using the MNI template brain and was warped

to each participant’s anatomical MRI. The covariance matrix was calculated based

on the average of all trials across conditions bandpass-filtered between 0.1 and 100

Hz; this was then combined with a single-shell forward model to create an adap-

tive spatial filter, reconstructing each source as a weighted sum of all MEG sensor

signals (Hillebrand et al., 2005). To alleviate the depth bias in MEG source recon-

struction, beamformer weights were normalized by their vector norm (Hillebrand

et al., 2012).

To improve data quality, MNN was included in the source localization proce-

dure. As beamforming constructs a common filter based on pooled data (thus in-

troducing no condition-related bias), the error covariance was in this case also cal-

culated based on the pooled data. We then multiplied the normalized beamformer

filters by the error covariance matrix, ensuring that the filters downweighted sen-

sors with higher noise levels. The time-courses of virtual sensors were then recon-

structed at all locations in the brain by multiplying the sensor-level data by the

corresponding weighted filters. This resulted in three time-courses for each source,

containing each of the three dipole orientations, which were concatenated for use

in the MVPA analysis in order to maximize classification performance (Gohel et al.,

2018). Preprocessing (baseline correction and downsampling) was performed as

for sensor-level analyses.

A searchlight approach was used in source-space classification, whereby clus-

ters with a 10 mm radius were entered separately into the decoding analysis. To
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exclude sources outside the brain and in regions such as the cerebellum, we re-

stricted our searchlight analysis to 1256 sources included in the 90-region Auto-

mated Anatomical Clustering (AAL) atlas (Tzourio-Mazoyer et al., 2002). Given

the 10 mm resolution of our sourcemodel, this amounted to a maximum of 27

neighbouring sources being included as features (mean 26.9, median 27, SD 0.31).

Decoding of subliminal faces vs. scrambled stimuli was performed on 30 ms time

windows with a 3 ms overlap using the time windows identified in sensor-space

decoding in order to reduce computational cost.

We also performed supraliminal face decoding (150 ms faces vs. scrambled

stimuli) in order to identify a face-responsive ROI for use in the RSA analysis. This

was accomplished by identifying searchlights achieving a cross-subject accuracy

above the 99.5th percentile (P<0.005, 66 searchlights; Figure 3.2). To assess whether

this area also encoded expression-related information, source-space decoding of

expression was performed using a searchlight approach within this ROI.

3.3.10 Significance testing

We evaluated decoding performance using the averaged accuracy across subjects

(proportion correctly classified trials) and assessed its significance through ran-

domization testing (Jamalabadi et al., 2016; Nichols and Holmes, 2001; Noirhomme

et al., 2014).

For sensor-level decoding, we repeated the cross-exemplar decoding procedure

with 1,000 label shuffling iterations across the training and test sets. To speed up

computation, the null distribution was estimated based on the time point achieving

maximum overall accuracy in the MVPA analysis (Dima et al., 2018a). Observed

time-resolved accuracies were then compared to the group maps to calculate P-

values.

For whole-head sensor-space decoding, p-values were calculated using the max-

imal null distribution across tests (Nichols and Holmes, 2001; Singh et al., 2003) and

corrected with a false discovery rate of 0.05, and a threshold of at least 5 consecu-

tive significant time points was imposed. For temporal generalization decoding,

the maximal distribution was created across tests and time points, and contiguous

clusters of at least 52 time points were considered significant.
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To detect above-chance decoding in source space, we performed 100 random-

ization iterations for each source cluster and subject in order to minimize compu-

tational cost. We then randomly combined the individual randomized accuracies

into 103 whole-brain group maps (Stelzer et al., 2013). P-values were corrected

across time using a FDR correction and a minimal extent of three consecutive time

windows.

3.3.11 Representational Similarity Analysis (RSA)

Neural patterns and analysis framework

To interrogate the content of neural representations in space and time, we per-

formed Representational Similarity Analysis (RSA). For this analysis, MEG data

were source reconstructed as described above and trials were sorted according to

expression and face identity. RSA was performed separately for each stimulus du-

ration and only trials containing faces were included in the analysis.

To offset computational cost, a searchlight analysis was performed using oc-

cipitotemporal sources identified in face decoding, with a temporal resolution of

30 ms, as in the source-space decoding analysis. All three dipole orientations were

concatenated for each source. The exclusion of responses to scrambled stimuli from

the RSA ensured that feature selection was based on an orthogonal contrast (Fig-

ure 3.2).

To create MEG representational dissimilarity matrices (RDMs), we calculated

the squared cross-validated Euclidean distance between all pairs of face stimuli

(Guggenmos et al., 2018). Note that as the data were multivariately noise- nor-

malized, this is equivalent to the squared cross-validated Mahalanobis distance

(Walther et al., 2016). For each participant, the data were split into a training set

(the first 2 sessions) and a test set (the last 2 sessions). The two stimulus repeti-

tions contained in each set were averaged, and these were averaged across subjects

to create training and test sets. To compute the cross-validated Euclidean distance

between two stimulus patterns (X∗, Y∗), we calculated the dot products of pattern

differences based on the training set and the test set (Equation 3.2). This procedure
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has the advantage of increasing the reliability of distance estimates in the presence

of noise.

d2(X∗, Y∗) =
n

∑
i=1

(X∗i −Y∗i )train(X∗i −Y∗i )test (3.2)

The spatiotemporally resolved MEG RDMs were then correlated with several

model RDMs to assess the contribution of different features to neural representa-

tions. In an initial analysis, we calculated Spearman’s rank correlation coefficients

between each model RDM and the MEG RDM (Nili et al., 2014). To further investi-

gate the unique contribution of each model, we entered the significantly correlated

models based on visual features of the images into a partial correlation analysis,

where each model’s correlation to the MEG data was recalculated after partialling

out the contribution of the other models.

Note that a model based on behaviour, which was also represented in the MEG

data for all stimulus duration conditions, was not included in the partial correla-

tion analysis; the rationale is that we were interested in the contribution of each

visual property independently of the others, but we did not expect a unique con-

tribution of behaviour in the absence of expression-related visual properties, and

partialling out the behavioural model from the visual models would not be eas-

ily interpretable. Instead, we preferred to independently describe the correlations

between behaviour and visual models, brain and behaviour, and brain and visual

models, as the three main factors of interest in our analysis.

Model RDMs

We investigated the temporal dynamics of face perception by assessing the similar-

ity between MEG patterns and 9 models quantifying behaviour and facial/visual

properties (Figure 3.2).

To create behavioural model RDMs, we calculated the number of error responses

made by each participant to each stimulus and summed these up to create a cross-

subject behavioural RDM. For each stimulus duration, we created separate be-

havioural RDMs by calculating pairwise cross-validated Euclidean distances be-

tween error response patterns, using a cross-session training/test split as described
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TABLE 3.1: Action Units used to create a model RDM

AU Code Facial Action Coding System Name

AU01 Inner brow raiser
AU02 Outer brow raiser
AU04 Brow lowerer
AU06 Cheek raiser
AU09 Nose wrinkler
AU10 Upper lip raiser
AU12 Lip corner puller
AU14 Dimpler
AU15 Lip corner depressor
AU17 Chin raiser
AU20 Lip stretcher
AU25 Lips part

above.

To create a high-level identity model, we assigned distances of 0 to pairs of face

identities repeated across emotional expression conditions, and distances of 1 to

pairs of different face identities. We used a similar strategy to create high-level

emotional expression models. An all-versus-all model was created by assigning

distances of 0 to all faces belonging to the same emotional expression condition,

and distances of 1 to pairs of faces differing in emotion. We also tested a neutral-

versus-others model by assigning distances of 0 to all emotional faces (happy +

angry), and an angry-versus-others model by assigning distances of 0 to all benign

faces (happy + neutral).

To account for variability in expression that is not captured by such high-level

binary representations, we also tested a model based on Action Units. Action

Units quantify changes in expression by categorizing facial movements (Ekman

and Friesen, 1977). We used OpenFace (Baltrusaitis et al., 2016) to automatically

extract the intensity of 12 Action Units in our image set (Table 3.1), and we calcu-

lated pairwise Euclidean distances between these intensities for all pairs of faces in

our stimulus set to obtain an Action Unit RDM.

To create face configuration RDMs, we also used OpenFace (Baltrusaitis et al.,

2016) to automatically detect and label face landmarks. The software created 68 2D

landmarks for each face. We removed landmarks corresponding to the face out-

line and the 2 outermost eyebrow landmarks, to account for cases in which these
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landmarks were cropped out by the oval mask used in the MEG stimulus set. The

final landmark set consisted of 47 coordinates for 6 facial features (eyes, eyebrows,

nose, and mouth), which were visually inspected to ensure that they were correctly

marked. To capture feature-based (local) facial configuration, we calculated within-

feature pairwise Euclidean distances between landmarks (Figure 3.2C). To quantify

global face configuration, we calculated between-feature Euclidean distances (the

distances between each landmark and all landmarks belonging to different facial

features). Distances were then concatenated to create feature vectors describing

each face in terms of its local/global configuration, and Euclidean distances be-

tween them gave the final configural model RDMs. The local/global configura-

tions correspond to the first-order (isolated) and second-order (relational) features

in classic configural models of face perception (Diamond and Carey, 1986; Piepers

and Robbins, 2012).

Finally, a spatial envelope model was created in order to capture image char-

acteristics using the GIST descriptor (Oliva and Torralba, 2001). This procedure

extracted 512 values per image by applying a series of Gabor filters at different ori-

entations and positions, and thus quantified the average orientation energy at each

spatial frequency. To obtain the spatial envelope RDM, we calculated pairwise Eu-

clidean distances between all images using the GIST values.

Significance testing

To assess the significance of spatiotemporally resolved correlation maps, we used

a randomization approach (3.3.10). Model RDMs were shuffled 1,000 times and

correlations were recomputed for each of the 66 searchlights using the time win-

dow achieving the maximal correlation coefficient across models for each of the

stimulus duration conditions. Since negative correlations were not expected and

would not be easily interpretable, P-values were calculated using a one-sided test

(Furl et al., 2017). To correct for multiple comparisons, P-values were omnibus-

corrected by creating a maximal distribution of randomized correlation coefficients

across searchlights, models and conditions, and FDR and cluster-corrected across

timepoints (α = 0.05, thresholded at 3 consecutive time windows).
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FIGURE 3.2: RSA models. Models used in RSA analysis. A. Sources
included in the representational similarity analysis based on face
vs. scrambled classification results. P: posterior; A: anterior; L:
left; R: right. B. Model RDMs showing predicted distances be-
tween all pairs of stimuli (lower triangles). A:Angry; H: Happy;
N: neutral. Stimuli are sorted according to face identity. Upper
triangles show 2D multidimensional scaling (MDS) plots for each
model, which help visualize the distances between stimuli accord-
ing to each model. C. Model inter-correlations (Spearman’s ρ). D.
Metrics used to derive the local and global face configuration mod-
els. The left-hand panel shows automatically detected facial land-
marks for an example stimulus, while the other two panels depict
the pairwise Euclidean distances used to calculate the two model
RDMs. Behav: behavioural models; Expr: high-level expression
models (all-vs-all, neutral-vs-others, and angry-vs-others); Config:

face configuration models.
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FIGURE 3.3: Overview of the experimental paradigm and be-
havioural results. A. Stimuli were presented on screen for 150 ms,
30 ms, or 10 ms, and were followed by a 50 ms, 170 ms, or 190
ms scrambled mask. B-D. Confusion matrices mapping the average
proportion of trials receiving each of the possible responses (X-axis)
out of the trials belonging to each category (Y-axis). "No response"
trials were excluded for statistical analysis, but are shown here as
representing a "no face" (i.e. scrambled face) response. Note that
scrambled faces were only presented in the 10 ms condition. E. Per-
ceptual ratings for each stimulus duration summarized as average

proportion of trials.

Variance partitioning

To gain more insight into the relationship between behavioural responses, expres-

sion categories and face configuration models, we used a variance partitioning ap-

proach (Greene et al., 2016; Groen et al., 2018). For each stimulus duration condi-

tion, the corresponding behavioural RDM was entered into a hierarchical multiple

linear regression analysis, with three model RDMs as predictors: the two facial

configuration models and the most correlated high-level expression model (10 ms:

neutral-vs-others; 30 and 150 ms: angry-vs-others). These models were selected

to reduce the predictor space before performing variance partitioning. To quan-

tify the unique and shared variance contributed by each model, we calculated the

R2 value for every combination of predictors (i.e. all three models together, each

pair of models separately, and each model separately). The EulerAPE software was

used for visualization (Micallef and Rodgers, 2014; Figure 3.2).
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3.4 Results

3.4.1 Perception and behaviour

In order to assess the effects of stimulus duration and face expression on behaviour,

we calculated confusion matrices mapping the expression discrimination responses

to each stimulus category (Figure 3.3). We then performed a 3× 3 repeated-measures

ANOVA with factors Duration (levels: 10 ms, 30 ms, 150 ms) and Expression (lev-

els: angry, happy, neutral). As expected, stimulus duration had a strong effect on

expression discrimination performance, with average performance not exceeding

chance level at 10 ms (33.45%± 2.99) and rising well above chance at 30 and 150 ms

(78.62%± 2.11 and 91.83%± 1 respectively). This was reflected in a significant main

effect of duration in the ANOVA (P < 0.0001, F(1.21, 29.06) = 221.05, η2 = 0.9).

Face expression had a weak effect, with angry faces categorized less accurately than

both happy and neutral faces (P = 0.046, F(1.95, 46.71) = 3.33, η2 = 0.12), with no

significant interaction effect (P = 0.23, F(1.74, 41.83) = 1.53, η2 = 0.06).

Participants found the task challenging, as reflected in the perceptual aware-

ness ratings: 84.5% of the 10 ms trials were rated as not containing a face (Fig-

ure 3.3E). This suggests that participants were complying with the task with re-

spect to both expression discrimination and perceptual rating. Importantly, for

faces presented for 10 ms, there was no difference in accuracy between expressions

(P = 0.43, F(1.65, 39.5) = 0.8) or between any pair of cells in the confusion matrix

(P = 0.6, F(3.42, 82.07) = 0.64), suggesting that faces presented at this duration

were equally likely to be categorized as any expression. Note that the expression

discrimination task here was not a forced-choice task (participants could refrain

from responding) and these tests were performed on the small subset of 10 ms

trials that received a response; references to awareness in this chapter thus refer

exclusively to subjective awareness, as indicated by perceptual ratings.

3.4.2 Evoked responses to faces

We assessed the presence of a response to faces by contrasting neutral faces with

scrambled stimuli at each stimulus duration (Figure 3.4). For 150 ms faces, we

found significant differences at M170 latencies and M220 latencies (P < 0.0007, t(24) >
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FIGURE 3.4: ERF analysis results. A-D. Global field power aver-
aged across participants and trials for each stimulus duration con-
dition. Note decreasing M170 amplitudes with stimulus duration.
Left. Significant sensors in the face vs scrambled (no face) contrast
at M170 (137-203 ms) and M220 (203-306 ms) latencies (P<0.001 cor-

rected).

6.07), but no significant effects at M100 latencies surviving correction for multiple

comparisons. A significant, but smaller, cluster of right temporal sensors was also

found for 30 ms faces at M170 latencies (P < 0.0004, t(24) > 5.99). No conclusive

effects were found when contrasting faces presented for 10 ms with their scram-

bled counterparts, regardless of whether trials where a face was perceived were

excluded or not (P > 0.015, t(24) < 4.66 across comparisons), and no effect of emo-

tional expression was found at any of the stimulus durations (P > 0.06, F(2, 48) <

8.59). Several factors could explain the absence of emotional expression effects in

our ERF data: (1) stimuli were highly controlled for low-level properties, minimiz-

ing visually-driven differences in early time windows; (2) our time windows of

interest did not include late stages dominated by task-related processing of expres-

sion; (3) we performed a whole-brain analysis with a conservative correction for

multiple comparisons.

3.4.3 Spatiotemporal dynamics of face perception

To investigate face processing as a function of stimulus duration, we performed

within-subject decoding of responses to faces vs. scrambled stimuli. The analysis



3.4. Results 79

TABLE 3.2: Face decoding results

Sensor-space Source-space

150 ms 30 ms 10 ms 10 ms
Max % accuracy 82.3 76.8 56.8 59.62
SD (%) 13.6 14.18 9.3 8.35
Decoding onset (ms) 100 100 147 120-150

included three components: sensor-level time-resolved classification to evaluate

the progression of condition-related information; sensor-level temporal generaliza-

tion to assess the temporal structure of this information; and source-space decoding

to obtain spatial information about subliminal responses to faces (Figure 3.1).

Scrambled stimuli could be discriminated from faces presented for 150 and 30

ms as early as 100 ms, as reflected by above-chance decoding performance on the

MEG sensor set (Figure 3.5A). After the initial peak in performance, decoding accu-

racy decreased, but remained well above chance for the remainder of the decoding

time window. For faces presented for 10 ms and reported as not perceived, there

was only a weak increase in decoding performance, which reached significance at

147 ms and dropped back to chance level after ~350 ms (Table 3.2).

To assess how well face representations generalized across stimulus durations,

we repeated this analysis by training and testing on stimulus exemplars presented

for different amounts of time (Figure 3.5B). Decoding accuracy was high when

cross-decoding between 30 ms and 150 ms faces; interestingly, after an initial peak

(100-200 ms), performance decreased, and started increasing again after 300 ms,

suggesting that representations become more similar over time. On the other hand,

representations only generalized to 10 ms faces for a limited time window, with a

peak at M170 latencies.

Using temporal generalization decoding (King and Dehaene, 2014), we investi-

gated the temporal structure underpinning face decoding, and we found that this

changed with stimulus duration. For faces presented for 150 ms, successful tem-

poral generalization started at ~93 ms in a diagonal pattern suggestive of transient

representations, with more sustained representations (square patterns) arising at

M170 latencies and after 300 ms (Figure 3.5D-E). For 30 ms stimuli, a diagonal
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FIGURE 3.5: Face vs. scrambled decoding results. A. Sensor-space
time-resolved decoding accuracy for all stimulus durations. Ver-
tical bars mark above-chance decoding onset and horizontal lines
show significant time windows (P<0.05, corrected). B. Sensor-space
time-resolved cross-decoding for all pairs of stimulus durations. C.
Sources achieving above-chance decoding of 10 ms faces outside
awareness at M170 latencies (P<0.005, corrected). D. Sensor-space
temporal generalization accuracy and significant clusters (white
contours; P<0.05, corrected) for all stimulus durations. E. Signif-
icant temporal generalization clusters for all three stimulus dura-
tions, showing more sustained representations of faces presented for

150 ms (legend as in A).

generalization pattern started at ~110 ms after stimulus onset and sustained rep-

resentations only arose later (~400 ms). Face processing thus appears to be heavily

biased by stimulus presentation duration, with 30 ms faces failing to elicit a stable

representation at M170 latencies. For faces presented for 10 ms, only few transient

clusters survived correction for multiple comparisons, with the largest one occur-

ring after 200 ms.

Finally, we spatially localized the subliminal response to faces in source space

by performing whole-brain searchlight classification of 10 ms faces vs. scrambled

stimuli (N=24). Faces were successfully decoded in a right occipital area at M170 la-

tencies (Figure 3.5C), with a later stage associated with ventral patterns. Given the

disruption of recurrent processing through backward masking in this paradigm,

the occipital sources likely reflect the feedforward nature of this response.
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TABLE 3.3: Sensor-space expression decoding results

Stimulus duration

150 ms 30 ms 10 ms 30 + 150 ms
A-N H-N A-H A-N H-N A-H A-N H-N A-H A-N H-N A-H

Max % accuracy 61.9 63.1 60.76 57.79 58.49 58.12 56.62 55.86 55.87 60.48 60.21 59.74
SD (%) 8.57 6.78 9.34 10.91 9.92 10.38 10.88 9.11 13.66 9.04 10.52 13.41
Decoding onset (ms) 180 113 220 437 120 633 N/A N/A N/A 107 113 117

Perceptual rating

2 1 0 2 + 1
A-N H-N A-H A-N H-N A-H A-N H-N A-H A-N H-N A-H

Max % accuracy 59.55 62.54 64.03 56.56 56.88 56.63 57.64 55.32 56.01 60.43 62.25 60.24
SD (%) 12.24 11.6 10.82 12.1 13.63 13.21 14.46 10.24 12.47 11.95 12.07 12.25
Decoding onset (ms) 230 113 523 307 120 130 N/A N/A N/A 220 113 127

3.4.4 Temporal dynamics of expression perception

We performed sensor-level time-resolved decoding of all pairs of emotional ex-

pressions separately for each stimulus duration. The highest decoding perfor-

mance was achieved on late responses to expressions presented for 150 ms (Fig-

ure 3.6A). Expressions presented for 30 ms also achieved above-chance decoding,

although these effects were more transient. We also performed this analysis on

pooled datasets (faces presented for 30 and 150 ms), as the face cross-decoding anal-

ysis showed that responses generalized between these two categories (Figure 3.5B).

Complementary results were obtained using the pooled datasets (faces presented

for 30 and 150 ms), which revealed a multi-stage progression for all expressions,

with transient early decoding at M100 latencies and an increasing accuracy in late

time windows (Figure 3.6B). A source-space analysis revealed successful decoding

of all three pairs of expressions in occipitotemporal cortex, although angry faces

were associated with more sustained patterns in this ROI (Figure 3.7).

However, we found no above-chance performance when decoding 10 ms ex-

pressions. This finding is in line with other studies finding no evidence of expres-

sion processing outside awareness (Hedger et al., 2016; Koster et al., 2007; Pessoa

et al., 2006), and we explore potential reasons for this result in the discussion.

The temporal generalization analysis supported these findings, showing that

different stages entail different temporal dynamics: while early decoding was sup-

ported by limited diagonal clusters (suggestive of transient representations), rel-

atively more sustained responses emerged in later time windows (300-500 ms).

Stable representations emerged earlier when decoding angry vs neutral faces, as
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FIGURE 3.6: Expression decoding results. A. Time-resolved de-
coding accuracy for the three expression decoding problems and
the three stimulus durations (above) / perceptual awareness rat-
ings (below). White horizontal lines show significant time windows
(P<0.05, corrected). B. Time-resolved accuracy for the three expres-
sion decoding problems using the pooled datasets (above: durations

of 30 + 150 ms; below: perceptual ratings of 1 and 2).

FIGURE 3.7: Source-space decoding of expression (pooled datasets)
from searchlights in occipitotemporal cortex. Significant search-
lights are plotted (P<0.05, corrected) at approximate onset and offset

times.
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FIGURE 3.8: Temporal generalization patterns obtained using the
pooled datasets (30 + 150 ms).

suggested by the earlier emergence of contiguous clusters (Figure 3.8).

3.4.5 Face representations in occipitotemporal cortex

To interrogate the content of neural representations in space and time, we per-

formed representational similarity analysis (RSA) using a searchlight approach in

face-responsive cortex at the source level (Su et al., 2012). We investigated the tem-

poral dynamics of face perception by assessing the similarity between MEG pat-

terns and models quantifying behaviour, expression, identity and visual proper-

ties.

Occipitotemporal cortex encodes behavioural responses

To assess the link between behaviour and neural patterns, we calculated model

RDMs based on expression discrimination patterns across participants. Among

the other model RDMs tested, behavioural RDMs correlated most with the high-

level expression models (particularly the angry-vs-others model at 30 ms and 150

ms, Spearman’s ρ = 0.29 and ρ = 0.34). At 150 ms, the behavioural RDM also

correlated with the configural face models (ρ = 0.22 and ρ = 0.18). As expected

based on performance, behavioural RDMs at 10 ms did not correlate with the other

two (ρ = −0.05 and ρ = −0.09 respectively), while behavioural RDMs at 30 and

150 ms were positively correlated (ρ = 0.38; Figure 3.2B).

Based on these links, face configuration, together with facial expression, ap-

pears to partially explain behavioural responses. To more directly test this, we

performed a variance partitioning analysis, using hierarchical multiple regression

to quantify the unique and shared variance explained by facial configuration and
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FIGURE 3.9: Variance partitioning results, showing the contribu-
tions of expression and face configuration models to behavioural re-
sponses at each stimulus duration. Values represent % of the total

R2.

high-level expression models in behavioural responses (3.3.11). In the 10 ms condi-

tion, the neutral-vs-others model and the two configural models explained 25.1%

of the variance; in the 30 ms and 150 ms conditions, the angry-vs-others model and

the configural models explained up to 45.7% of the variance in behaviour. Further-

more, while the expression model contributed most of the variance, over 75% of

this variance was shared with the configural models. The unique contribution of

configural models increased with stimulus duration (from ~2% at 10 ms, to ~20%

at 150 ms). Together, these results point to the role of face configuration in driv-

ing high-level representations and behaviour. Note that for the 10 ms condition,

we were unable to decode expression from the MEG data; however, expression

and configuration explained a portion of the variance in behaviour, suggesting that

they may contribute to the subliminal response to faces.

Behavioural RDMs showed the strongest and most sustained correlations with

MEG patterns in ventral stream areas, including sources corresponding to the loca-

tion of the fusiform face area (FFA) and OFA (Figure 3.10). Behavioural representa-

tions evolved differently in time for the three stimulus durations. For 10 ms faces,

behaviour explained the data starting at 120 ms until the end of the analysis time

window. Representations emerged at similar latencies for 150 ms faces and reached

the noise ceiling before falling back to low ρ values at 400 ms. For 30 ms faces, cor-

relations were significant starting at 210 ms in a relatively focal right temporal area.

Patterns were more posterior for 10 ms faces and more extensive, including sources

corresponding to the OFA and FFA, for 150 ms faces.

The correlation time-courses suggest interesting differences in processing as
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FIGURE 3.10: Correlations between MEG patterns and behavioural
model RDMs for each stimulus condition duration (vertical
columns). The top panels show correlation time-courses averaged
across all significant searchlights; the noise ceiling is shown as a
dotted horizontal line and is only approached in the 150 ms condi-
tion. The cortical maps show significant correlation coefficients for
the first and last significant time windows (onset and offset times)
on the inflated template MNI brain. The hemisphere shown is indi-
cated with the letter R/L. Model RDMs are shown in the lower left

corner of each column.

a function of the information available: for clearly perceived faces, features rele-

vant in behaviour are extracted between 120-400 ms, while behavioural responses

for briefly presented faces appear to require sustained processing, as reflected by

behaviour-related correlations not dropping back to zero. These results are in line

with previous evidence of behavioural representations in ventral stream areas in

scene and object perception (e.g. Walther et al., 2009), and suggest that visual

feature processing, even at relatively early stages, is closely linked to behavioural

goals.

Configural face processing from featural to relational

The two face configuration models were also represented in the MEG patterns. In

the correlation analysis, the local and global configuration models explained rep-

resentations in partially overlapping areas of the ventral stream (corresponding to

the right FFA location), with local configuration representations arising earlier (at
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120 ms for 150 ms faces, and 300 ms for 30 ms faces). Our RSA method (3.3.11)

favoured sustained correlations over transient peaks; note that the global configu-

ration model correlation approached the noise ceiling during a transient time win-

dow at M170 latencies for both 150 ms and 30 ms faces, suggesting a contribution

of second-order characteristics, although this occurred later than first-order feature

representations (Figure 3.13). The partial correlation analysis revealed further dif-

ferences between conditions: for 150 ms faces, the local and global models made

unique contributions in explaining the data; conversely, for 30 ms faces we detected

no unique contributions, suggesting that the extraction of configural information

from faces occurs differently in the absence of sufficient information. None of the

models significantly correlated with MEG patterns elicited by 10 ms faces.

Note that although both internal (eyes, nose, mouth) and external (face shape,

hair) face features have been shown to contribute to neural responses to faces (Ax-

elrod, 2010), we focus here on internal features; for the purposes of this paper,

external features were excluded from the stimuli and we refer to the second-order

configuration of distances between internal features as "global configuration". In-

ternal features are relevant to the context of expression discrimination and have

been shown to be more reliable even in facial recognition contexts (e.g. Kemp et al.,

2016; Longmore et al., 2015).

Transient representations of visual and high-level models

Two other models elicited brief representations in the MEG data. For 150 ms faces,

the spatial envelope model explained left hemisphere occipital representations start-

ing at ~400 ms, suggesting sustained processing of visual features, potentially based

on feedback mechanisms.

For 30 ms faces, a high-level expression model (neutral-vs.-others) was repre-

sented in the MEG data starting at 300 ms (Figure 3.12). This can be speculatively

explained by the formation of task-related representations in the absence of suf-

ficient information. Note that when faces are clearly presented, only specific fa-

cial feature models are represented, while categorical models show no contribution

to occipitotemporal representations. On the contrary, when faces are briefly pre-

sented, the configural models do not contribute unique information, and only the
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FIGURE 3.11: Significant correlations between MEG patterns and
configural model RDMs. A: Correlation analysis results are signifi-
cant for the 150 ms and 30 ms conditions. B: Partial correlation re-
sults are significant for the 150 ms condition. Only right hemisphere
searchlights correlate with the configural models. Maps are shown

for the onset and offset times of significant correlation.
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high-level expression model is significant in the partial correlation analysis.

Although correlation coefficients between the models and neural data are gen-

erally low (maximum mean ρ = 0.23; Figure 3.13), the noise ceiling shows that the

maximal correlation possible with our data is also low (mean ρ = 0.21); this is not

surprising, considering the low ρ-values usually found in MEG RSA studies, and

the fact that our paradigm involved complex, high-level visual stimuli and a de-

manding task. In this case, the noise ceiling serves as a useful benchmark for the

explanatory power of our models. For example, the behavioural RDM reaches the

noise ceiling in the 150 ms condition, but not for briefer stimuli, suggesting that be-

havioural representations fully explain the data when stimuli are clearly perceived.

The local configuration model also shows good explanatory power at its earliest

stage, and the same is true for the global model for a brief time window. With time,

both models fall away from the noise ceiling, while other significant models also

fail to fully explain the data (Figure 3.13).

Given the complex face processing and task-related activity reflected by the

MEG patterns, it is not surprising that most models do not approach the noise ceil-

ing. In fact, the explanatory power of the configural models at early stages (100-200

ms) is striking, as is the strength of behavioural representations in ventral stream

within 400 ms. Furthermore, the initial peak in performance of the behavioural

model overlaps with the peak of the local configuration model. Together with the

shared variance between configuration, expression and behaviour shown in the

variance partitioning analysis (Figure 3.9D), this points to the role played by fa-

cial configuration in the extraction of emotional cues essential in the expression

discrimination task.

3.5 Discussion

In this chapter, we investigated how face representations in MEG sensor-level and

source-space patterns vary with expression and with stimulus presentation dura-

tion. Using MVPA, we found a response to faces presented for 10 ms occurring at

M170 latencies outside of subjective awareness, but no such response to expression.

Furthermore, neural responses became more transient when presentation time was
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FIGURE 3.12: Significant correlations between: (1) MEG patterns for
the 150 ms condition and the spatial envelope model RDM (top); (2)
MEG patterns for the 30 ms condition and the high-level neutral-vs-
others model (bottom). Only left hemisphere searchlights correlate
with the two models. Maps are shown for the onset time of signif-
icant correlation, as clusters are sustained until offset (top: 0.54 s,

bottom: 0.36 s).

FIGURE 3.13: Correlation time-courses obtained in the RSA analy-
sis. All significant searchlights are plotted separately against a noise

ceiling averaged across significant searchlights.
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reduced. Finally, we showed that behaviour and face configuration drive represen-

tations in face-responsive occipitotemporal cortex, with temporal dynamics vary-

ing as a function of stimulus duration.

3.5.1 Face and expression processing with limited visual input

When decoding faces and scrambled stimuli, we found early effects for 150 ms and

30 ms faces (~100 ms), as well as above-chance decoding of 10 ms faces shown

outside of subjective awareness (140 - 350 ms), in line with previous studies show-

ing evidence of face perception outside of awareness (Axelrod et al., 2015). Fur-

thermore, temporal representations underpinning classification performance var-

ied with stimulus duration: for 150 ms faces, a sustained representation emerged

at M170 latencies which was absent for 30 ms faces. This suggests that clearly pre-

sented faces are perceived through a multi-stage process, while disrupted recurrent

processing leads to delayed stable representations.

Conscious perception may be supported by temporally stable representations,

while processing of stimuli outside subjective awareness may require a sequence

of transient stages (Dehaene, 2016). Since above-chance decoding of 10 ms faces is

transient in the current study, temporal generalization reveals only few transient

clusters along the diagonal. On the other hand, the patterns differentiating 30 ms

and 150 ms faces suggest that longer stimulus durations elicit an earlier stable rep-

resentation, reflective of conscious perception and likely to be supported by recur-

rent processes. It has previously been suggested that faster stimulus presentation

leads to more transient representations (Mohsenzadeh et al., 2018b); however, since

the backward masking procedure used here disrupts the formation of a stable rep-

resentation by entering the visual stream, it is unclear whether different methods

of preventing awareness would lead to the same results.

Alternative explanations are possible when interpreting temporal generaliza-

tion patterns. First, SNR decreases as a function of stimulus duration, and this

could lead to lower accuracies and less sustained representations. However, we

find that the most striking difference in temporal generalization patterns occurs at

M170 latencies, which is the time window exhibiting comparable decoding accura-

cies between 150 ms and 30 ms faces. Thus, the transient patterns characterizing
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M170 responses for rapidly presented faces are more likely to reflect a change in

temporal dynamics. Second, it has been suggested that the transience of neural

states can be overestimated in temporal generalization decoding due to trial-to-

trial variability in effect onsets (Vidaurre et al., 2018); but since the conditions we

are comparing differ only in stimulus duration, the progression from sustained to

transient observed here is unlikely to be explained by differences in onset variabil-

ity.

Information supporting face decoding outside of subjective awareness was lo-

calized mainly to occipital cortex in our searchlight source-space decoding analy-

sis (Figure 3.5C). Given the suppression of sustained neural activity in backward

masking, the early stages of this response can be attributed to either purely feedfor-

ward activity, or to feedback connections, which have been shown to target V1 at

early stages of recurrent processing (Mohsenzadeh et al., 2018b; Wyatte et al., 2014).

If backward masking truly disrupts recurrent processing when associated with a

lack of visual awareness (Boehler et al., 2008; Lamme et al., 2002), a feedforward

pattern (or one based on local recurrent circuits) is the most likely explanation. Fur-

thermore, the fact that we detect a response to faces, and not to expression, suggests

that two different stages of identification and categorization may be supported by

qualitatively different mechanisms. It is still the subject of debate whether feedfor-

ward processing can support categorization (DiCarlo et al., 2012; Howe, 2017), and

our results support the idea that some degree of recurrent processing is necessary

(Lamme and Roelfsema, 2000; Maguire and Howe, 2016).

Note that the spatial resolution of MEG prevents us from drawing strong con-

clusions on the origin of this response to faces. Furthermore, recent observations

have been made about concerns of information spreading in source-space MVPA

analyses of MEG data, potentially overestimating the spatial extent of effects (Sato

et al., 2018). In this chapter, we restricted our source-space decoding analysis to lo-

calizing effects identified at the sensor level, and we applied randomization testing

with an omnibus threshold in order to avoid spurious effects (3.3.10) and to allevi-

ate the trade-off between maximizing information and reducing false positives.

All expressions presented for at least 30 ms were decodable from MEG data. In

Chapter 2, we found early above-chance decoding of angry expressions compared
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to happy and neutral faces. In the present chapter, we show early decoding of both

face and expression (~100 ms), with only a slight advantage for angry expressions

(107 ms; Table 3.3), suggesting a contribution of task-related effects to early visual

processing. Furthermore, it is important to note that all analyses described here

were performed across facial identity and that stimuli were controlled in terms of

low-level properties. The MEG decoding results thus support the idea that ex-

pression categorization begins at the early stages of visual perception with rapid

processing of emotional cues.

On the other hand, behavioural responses to angry faces were less accurate than

those to happy and neutral faces, a finding that stands in contrast to the advantage

in decoding angry faces from MEG data found in Chapter 2. It is difficult, however,

to directly compare the results of the two chapters, given the different paradigms

employed, including different stimulus sets and presentation durations. For ex-

ample, previous research suggests that angry faces may require longer presenta-

tion times to be successfully categorized by participants, compared to happy and

neutral faces (Du and Martinez, 2013). The lower performance in categorizing an-

gry faces might also be explained by their variability, as they included both open-

mouth and closed-mouth expressions, some of which may have been more difficult

to categorize. However, this disadvantage is not reflected in MEG decoding results,

which show comparable discriminability of all pairs of expressions based on neu-

ral patterns. Furthermore, the evidence for the behavioural effect is not particularly

convincing (P = 0.046, η2 = 0.12). Further research including more extensive angry

face sets is needed to assess the generalizability of this finding.

3.5.2 Expression and awareness

In this experiment, we measured subjective visual awareness using a perceptual

awareness scale. Subjective and objective measures of awareness both have their

strengths and limitations; although subjective measures pose a criterion problem

(Szczepanowski and Pessoa, 2007), objective measures (such as performance on a

forced-choice task) may reflect unconscious processing (Lau, 2008; Song and Yao,

2016; Wierzchoń et al., 2014). We restricted our experiment to subjective awareness,

shown to be effectively captured by perceptual awareness scales, particularly when
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employed after discrimination tasks (Sandberg et al., 2010; Wierzchoń et al., 2014).

Here, the discrimination task was used to verify subjects’ compliance and assess

the presence of potential expression biases in responses given to subliminal faces.

It is not surprising that we detected a subliminal response to faces outside of

subjective awareness, considering the wealth of evidence on non-conscious face

processing (Axelrod et al., 2015). However, in terms of non-conscious expression

processing, the results are mixed. Despite the absence of a subliminal expression

effect in MEG responses, behavioural data suggest that expression (specifically,

a model differentiating between emotional and neutral stimuli) explains approx-

imately one quarter of the variance in behavioural responses given to faces pre-

sented for 10 ms. This effect is not revealed by the analysis of individual perfor-

mance on the task, suggesting that model-based approaches to the analysis of be-

havioural responses can provide additional information. With the caveat that low

numbers of trials were included in this analysis, the fact that cross-subject patterns

of response reflected shared variance between the models based on expression, fa-

cial features and facial configuration points to a certain degree of expression pro-

cessing taking place outside of subjective awareness.

The absence of a subliminal expression effect in the neural data may be ex-

plained by three main aspects in the study design and analysis: (1) stimuli were

normalized in terms of low-level properties, minimizing the detection of visual

differences at early stages of perception; (2) we used a cross-identity classification

approach, ensuring that we investigate categorical differences; (3) we used a very

short stimulus presentation time, reducing the amount of information available to

the visual system and limiting the possibility of residual awareness. Although ab-

sence of evidence cannot be taken as evidence of absence, we were able to detect

a subliminal response to faces despite a lower number of scrambled trials, as well

as expression effects to faces presented for longer than 10 ms (using similarly sized

datasets). As the MVPA framework and the analysis pipeline were chosen to max-

imize signal and statistical power, it is likely that this result reflects a true absence

of an effect in the MEG data.
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3.5.3 Ventral stream representations of behaviour and face configuration

To understand the representations underlying our decoding results, we investi-

gated the similarity between MEG patterns and models based on behavioural per-

formance, as well as facial expression, identity, configuration, and spatial envelope.

We found that ventral stream areas encoded sustained and extensive behavioural

representations starting at 120 ms after stimulus onset (Figure 3.10). This suggests

that the features extracted in face-responsive cortex are relevant in behavioural

decision-making, similarly to evidence found in higher-level object and scene per-

ception (Bankson et al., 2018; Cohen et al., 2017; Groen et al., 2018; Walther et al.,

2009) and in line with previous studies showing that the perceptual similarity of

faces is represented in neural patterns (Furl et al., 2017; Said et al., 2018).

Moreover, we found representations of face configuration in ventral stream ar-

eas, with first-order features being represented earlier and followed by second-

order features. Facial configuration has long been thought to play an important

part in identity and expression perception (Calder et al., 2000), and in our RSA

analysis the configural models show some of the strongest contributions among

the nine models tested. In fact, we show that with the exception of a brief time

window, no "categorical" representations, as quantified by the high-level models,

are formed in occipitotemporal cortex; instead, configural representations appear

to overlap with representations of behaviour, suggesting that it is face configura-

tion that drives expression-selective responses in ventral stream areas and guides

behaviour. This is also supported by the successful decoding of expression from

occipitotemporal cortex.

The contribution of local features prior to the global configuration model adds

to evidence suggesting that emotional face perception is supported by the process-

ing of diagnostic features, such as the eyes and mouth (Fox and Damjanovic, 2006;

Wegrzyn et al., 2017). Recent studies have shown that the recognition of famil-

iar faces may not rely on holistic face processing, but on specific features (Mohr

et al., 2018; Visconti Di Oleggio Castello et al., 2017), and it has been suggested that

responses in face-selective areas such as the OFA may represent faces in terms of

topological maps or feature-based models (Henriksson et al., 2015). Particularly for
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expression perception, feature-based processing provides an efficient mechanism

for the rapid extraction of visual cues essential in human interaction, as reflected

by the ability of the Action Unit coding system to quantify facial expressions (Ek-

man and Friesen, 1977; Srinivasan et al., 2016). However, we note that the Action

Unit model RDM assessed here did not significantly correlate with the MEG pat-

terns, probably due to the static and brief nature of our stimuli.

Previous studies have shown differential modulation of ERP components by

first-order and second-order face configuration. Some studies have shown the P1

and N170 components to encode the former only (e.g. Mercure et al., 2008; Zion-

Golumbic and Bentin, 2007), while others have also shown effects of second-order

configuration at N170 latencies (Eimer et al., 2011). Furthermore, fMRI studies have

reported a division of labour in the face-selective network, with the FFA thought

to play a special role in representing both types of configural information (Golarai

et al., 2015; Liu and Ioannides, 2010). Recently, it has been suggested that featural

and configural processing of even non-face objects elicit face-like responses in the

OFA and FFA (Zachariou et al., 2018). Here, we combined the strengths of source-

localized MEG data and the RSA framework to tease apart the two models using

a single stimulus set. The searchlight RSA analysis revealed that the two models

overlap spatially in a right ventral stream area potentially corresponding to the

FFA, but are dissociated temporally: for 150 ms faces, representations switch from

first-order to second-order at ~300 ms after stimulus onset, bridging previous fMRI

and electrophysiological findings.

Furthermore, this two-stage process appears to depend on the amount of infor-

mation available to the visual system. For 150 ms faces, local and global configura-

tion models make unique, temporally distinct contributions to explaining the data,

as shown in the partial correlation analysis. For 30 ms faces, no unique variance is

explained by the two models; furthermore, representations are temporally overlap-

ping in the correlation analysis and occur after 300 ms (Figure 3.11). This comple-

ments our sensor-level temporal generalization findings: 30 ms faces are processed

through a series of transient coding steps at early stages and a stable representation

is formed after 300 ms, when both first-order and second-order features are repre-

sented. On the other hand, for 150 ms faces, a two-stage process takes place, with
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an initial stable representation emerging at M170 latencies and supported mainly

by first-order features, and a later representation after 300 ms encoding second-

order configuration. Feature representations thus appear to be linked to the late

emergence of stable representatons, thought to be reflective of recurrent processing

and categorization (Mohsenzadeh et al., 2018b; Tang and Kreiman, 2017). Impor-

tantly, this idea is supported by spatially and temporally overlapping behavioural

representations in ventral stream areas.

Together, these findings constitute a stepping stone towards a better under-

standing of high-level representations in face perception. While binary categor-

ical models can estimate high-level representations and task-related processing,

the code supporting visual perception is likely to be better understood in terms

of behavioural goals and the visual features supporting them. We show that face-

responsive cortex dynamically encodes facial configuration starting with first-order

features, and that this supports behavioural representations when participants are

performing an expression discrimination task. Furthermore, we show that the cas-

cade of processing stages changes with stimulus duration, pointing to the adapt-

ability of the face processing system in achieving goals when visual input is lim-

ited. Finally, although we find evidence of a subliminal neural response to faces,

we only detect a subliminal response to expression at the behavioural level using a

variance partitioning approach. These results bridge findings from previous fMRI

and electrophysiological research, revealing the spatiotemporal structure of face

representations in human occipitotemporal cortex.

Although they highlight the remarkable adaptability of the visual system in

the presence of limited visual input, the findings described in this chapter depend

on the explicit processing of expression. In fact, faces are the object of undivided

attention both here and in Chapter 2, regardless of the nature of the task. Limit-

ing visual information or presenting participants with an orthogonal task do not

address the "automaticity" of expression perception from the perspective of atten-

tional resources: what happens when other stimuli compete for our attention?

Evidence of automatic prioritization of emotional faces suggests that even when
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presented as distractors, expression-related cues are processed and impact both be-

havioural performance and neural responses (Del Zotto and Pegna, 2015; Vuilleu-

mier, 2005). However, whether this is truly automatic or depends on the allocation

of attention to competing stimuli is the subject of debate (Chen et al., 2016; Pessoa

et al., 2002a; Pessoa, 2005; Pessoa et al., 2002b). In the next chapter, we address

this question by presenting emotional faces as distractors in an unrelated task with

varying levels of difficulty.
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Chapter 4

Emotional face distractors do not

capture attention

4.1 Abstract

After evaluating implicit and explicit face perception in previous chapters, the

present chapter addresses the processing of emotional face distractors. Previous re-

search suggests that emotional faces are salient enough to be processed even when

our attention is engaged elsewhere, but it is still unclear whether this depends on

the availability of attentional resources. To address this, we manipulated the dif-

ficulty of a grating orientation discrimination task and used a covert spatial atten-

tion paradigm to orient attention away from emotional expressions presented as

distractors. We investigated expression-related effects in evoked responses, alpha-

band activity, and broadband patterns using both univariate and multivariate anal-

yses, but found no evidence of expression processing regardless of task difficulty.

This result adds to negative findings that have fueled a longstanding debate, and

complements results from Chapter 3 highlighting the importance of task demands

in face perception.
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4.2 Introduction

In Chapter 3, MEG responses to rapidly presented expressions were not detected

when faces were presented outside awareness, despite the presence of a subliminal

response to faces. In this final chapter on face perception, we address the related

question of whether the salience of emotional faces can affect top-down attention

when faces are irrelevant to the task at hand.

The bottom-up capture of attention by emotional faces has been well- docu-

mented in behavioural and neuroimaging studies (Carretié, 2014; Mohanty and

Sussman, 2013), with much of the evidence supporting a threat advantage hypoth-

esis (Huang et al., 2011; Öhman et al., 2001). To achieve this, the amygdala and or-

bitofrontal cortex are thought to modulate visual processing at early stages (Lim et

al., 2009). The enhanced processing of emotional stimuli observed both in implicit

and explicit viewing conditions offers a potential explanation for their salience and

its resistance to top-down suppression (Vuilleumier, 2005).

Even when irrelevant or detrimental to the task at hand, emotional faces have

been shown to elicit distinct effects, from "popping out" in visual search tasks (Öh-

man et al., 2001) to interfering with behavioural performance (Hodsoll et al., 2011;

Pichon et al., 2012). Expression is thought to interact with attention in an additive or

competitive fashion, depending on its role in the task being performed (Feldmann-

Wüstefeld et al., 2011; Fenker et al., 2010; Holmes et al., 2005; Huang et al., 2011;

Ikeda et al., 2013; Weymar et al., 2011). In spatial attention tasks, faces presented

peripherally capture attention (Calvo et al., 2014; Eimer, 2000; Müsch et al., 2016;

Stefanics et al., 2012). These results support an automatic view of emotional face

perception (Vuilleumier, 2005), whereby expression is processed in the absence of

task-related goals, cognitive resources or awareness (Moors and De Houwer, 2006).

However, discrepant findings from behavioural and neuroimaging research point

to a more complex interaction between emotion and attention. Studies including

emotional faces as distractors during a demanding task have found no expression-

specific processing (Chen et al., 2016; Devue and Grimshaw, 2017; Holmes et al.,

2003; Koster et al., 2007; Pessoa et al., 2002a,b, 2003; Puls and Rothermund, 2018;

Silvert et al., 2007). Other studies show attenuation of affective responses in the
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presence of high cognitive load (Morawetz et al., 2010; Pessoa et al., 2005a; Sassi

et al., 2014). These results support the idea that the "automaticity" of expression

processing depends on cognitive load, consistent with a model postulating limited

resources in selective attention (Lavie, 2005).

It has also been suggested that timing dissociates emotional and attentional ef-

fects, with emotional salience reflected in an early (pre-attentive) response, and

top-down attention reflected in later signals (Inuggi et al., 2014; Liu and Ioannides,

2010; Pourtois et al., 2010); however, such effects have also been explained through

insufficient cognitive load (Pessoa, 2010), and given the different tasks and modal-

ities used across studies, it is difficult to support any one conclusion.

Although most findings are not directly comparable, this body of research sug-

gests that many factors may underpin the interplay between attention and emotion:

cognitive load and relevance to task may lead to the suppression of emotional stim-

uli (Oliveira et al., 2013), while individual differences (e.g. in trait anxiety) or face

saliency may help override this suppression (Straube et al., 2011).

In this chapter, we investigated the impact of cognitive load on the perception of

emotional faces presented as distractors in a covert spatial attention task. This type

of task is particularly suited for our question because distractor faces are presented

concurrently with target stimuli, and because markers of spatial attention such as

alpha desynchronization (Diepen et al., 2016) and the N2pc electrophysiological

component (Eimer, 1996) have been well-documented.

Participants viewed bilateral stimulus displays composed of emotional faces

and target gratings whose orientation they had to identify. By obtaining individ-

ual detection thresholds, we manipulated task difficulty across two blocks. We

assessed the impact of emotional distractors on behavioural performance and neu-

ral patterns, including evoked responses, broadband signals, and attention-related

neural markers. We expected that multivariate methods will help uncover expression-

related modulations outside attention that may not be reflected in evoked responses,

and that these will vary with cognitive load.
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4.3 Materials and Methods

4.3.1 Participants

Twenty-eight healthy volunteers took part in the study (16 female, age range 19-

42, mean age 21.78 ±4.7). Written consent was obtained from all participants in

accordance with The Declaration of Helsinki, and procedures were approved by

the local ethics commitee at the School of Psychology, Cardiff University. Three

participants were excluded due to excessive eye movements during the task and all

analyses reported were conducted using data from the remaining 25 participants.

4.3.2 Stimuli

The experimental paradigm involved a spatial attention task with gratings as target

stimuli and faces as distractor stimuli. Twenty faces with angry, neutral and happy

expressions from the NimStim database (Tottenham et al., 2009) were used as dis-

tractor stimuli (10 female faces, same stimulus set as in Chapter 3). Face images

were pre-processed and matched in terms of low-level properties as in Chapter 3.

Target stimuli were sine wave gratings with a spatial frequency of 4.8 cycles/degree

of visual angle and a phase of 1.57 radians. The gratings were equal in size and

shape to the face stimuli and were randomly oriented to the left or right by an

angle of 60 degrees (for a low difficulty level) or a variable angle individually cal-

culated for each participant (for a high difficulty level). The orientation distribution

of gratings appearing contralaterally to each type of emotional face did not signif-

icantly differ (proportion of right-oriented gratings for each emotional condition:

mean 50% ± 3.6%, F(1.64,39.32)=2.76, P=0.085).

4.3.3 Experimental design

MEG data were recorded while participants performed a grating orientation dis-

crimination task requiring them to correctly identify whether target gratings were

tilted to the right or left (Figure 4.1).

Each trial commenced with a centrally presented white fixation cross with a

duration pseudorandomly chosen from a uniform distribution between 1.1 and 2

s. A cue then replaced the fixation cross, instructing participants to attend either to
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FIGURE 4.1: Overview of the experimental paradigm and be-
havioural results. A. Target stimuli (gratings) and distractors (emo-
tional faces) were presented bilaterally, after a cue indicating the
target hemifield. B. Participants performed worse in the difficult
block (left), but distractor expression did not modulate performance
(right). Individual data points are colour-coded according to block
difficulty. Boxplots indicate across-participant medians and in-

terquartile ranges.
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the left or right hemifield. To avoid working memory effects and lapses in atten-

tion and to ensure correct orienting of attention during stimulus presentation, the

cue was present on screen until stimulus presentation (Gitelman et al., 1999). The

cue duration (1s) ensured predictability of the stimulus, which has been shown

to enhance behavioural performance (Nobre, 2001), as well as allowing sufficient

time for microsaccades towards the cued location to return to baseline (Engbert and

Kliegl, 2003).

Stimulus displays consisted of a grating presented in the cued hemifield and a

face distractor presented in the opposite hemifield. The stimuli were presented for

250 ms on a black background approximately 2.04°visual angle to the left and right

of the centre of the fixation cross; they were followed by white noise masks shown

for ~33 ms in order to prevent aftereffects. The fixation cross remained on screen

for 500 ms in order to ensure the dissociation of motor responses from stimulus

processing. Participants were then cued by a question mark to make a left/right

button press response with their right hand. The paradigm was implemented using

Matlab and the Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 2007; Pelli,

1997).

Participants underwent two blocks consisting of two 10-minute sessions each:

an easy block (where gratings were always tilted at a 60°angle, with an expected

performance close to 100%), and a difficult block (where grating angles were indi-

vidually determined for each participant, with an expected performance of ~70%).

The order of the blocks was counterbalanced across participants and the diffi-

cult block was always preceded by an adaptive staircase procedure performed in

the MEG in order to ensure orientation discrimination threshold accuracy (Perry,

2016). The staircase design was similar to the experimental task, but included no

faces, and converged on a threshold of 52% correct orientation discrimination us-

ing a one-up one-down design with a fixed step size and a ratio of 0.87 between

down/up step sizes (García-Pérez, 2001). The staircase started with a grating an-

gle of 3.4°and was constrained to a minimum possible angle of 0.01°. Thirty-five

reversals were required for completion of the staircase and the mean of the final 20

reversals was used to determine the discrimination threshold. In order to maintain

subjects’ attention during the high difficulty block and to ensure that they found it
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challenging, but not impossible, we used three different angles in equal proportions

during the difficult block: the threshold angle, 80% of the threshold and 120% of

the threshold. This ensured that at least one third of the gratings were consistently

identifiable, allowing us to minimize learning effects and loss of attention.

4.3.4 Data acquisition

A whole-head structural MRI was acquired for all participants on a General Electric

or Siemens 3 Tesla MRI scanner using a 1 mm isotropic Fast Spoiled Gradient-

Recalled-Echo pulse sequence in an oblique-axial orientation.

Whole-head MEG recordings were made using a 275-channel CTF axial gra-

diometer system at a sampling rate of 1200 Hz. Three of the sensors were turned off

due to excessive sensor noise. An additional 29 reference channels were recorded

for noise rejection purposes and the primary sensors were analysed as synthetic

third-order gradiometers (Vrba and Robinson, 2001).

Stimuli were presented on a black background using a ProPixx system with a

refresh rate of 120 Hz and a screen resolution of 1920 x 1080 pixels situated at a

distance of 1.2 m from the participants. Participants were seated upright while

viewing the stimuli and their head position was continuously monitored using

electromagnetic coils attached to the nasion and pre-auricular points on the scalp.

Participants’ head shape was recorded using an ANT Xensor digitizer to aid in

co-registration of fiducial locations to the structural MRI scans.

Recordings consisted of four ten-minute blocks (180 trials each) separated by

a few minutes’ break, with two blocks for each difficulty level. Throughout the

experiment, each face image was presented 6 times in each hemifield.

4.3.5 Behavioural data analysis

Behavioural performance was quantified in terms of accuracy (percentage correct

trials out of the trials that received a response). Individual accuracies were sub-

jected to a rationalized arcsine transformation (Studebaker, 1985) before being en-

tered into a 2x3 repeated-measures ANOVA with factors Difficulty (levels: easy and

difficult) and Expression (levels: angry, happy, neutral).
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4.3.6 Eye gaze data analysis

The participants’ right pupil and corneal reflex were tracked using an Eyelink 1000

eye-tracker system with a sampling rate of 1000 Hz. The camera was situated at

a distance of 1.2 m in front of the participant. At the start of the experiment, the

system was calibrated using a 9-point calibration grid; to account for changes in

head position, the eye-tracker was recalibrated after every break.

Vertical and horizontal eye gaze positions were recorded based on pupil posi-

tion and were analyzed offline using EEGLAB (Delorme and Makeig, 2004), EYE-

EEG (Dimigen et al., 2011), and custom Matlab scripts. To assist in rejecting MEG

trials, we identified eyetracker trials containing a saccade or fixation to either hemi-

field during stimulus presentation. To perform statistical analysis, eye gaze data

were averaged first within the time window of stimulus presentation, and then

across trials and sessions within each difficulty block. Vertical and horizontal eye

gaze data were averaged prior to performing a 2 x 3 ANOVA to assess the impact of

difficulty and distractor expression. We found no significant effect of task difficulty

(F(1, 23) = 1.5, P = 0.23), no effect of expression (F(1.72, 39.67) = 1.13, P = 0.33)

or interaction effect (F(1.7, 39.13) = 0.33, P = 0.68).

4.3.7 MEG data preprocessing

MEG data were preprocessed using Matlab and the Fieldtrip toolbox (Oostenveld

et al., 2011). Trials containing eye movement and muscle artefacts were rejected

after visual inspection; trials containing head motion in excess of 5 mm were also

excluded from analysis. We used the eye-tracker data to detect and exclude trials

containing fixations or saccades to the stimuli in either hemifield, thus ensuring

that only trials where covert attention was truly employed were included in the

analysis. This led to a mean of 17.32% ± 14.89% of trials being rejected across par-

ticipants. Head coil position for each dataset was set to the average across all trials.

To assess the encoding of expression-related information outside attention, we

analyzed (1) evoked responses, (2) broadband MEG signals, and (3) alpha-band

MEG signals, which have been shown to index covert spatial attention (Kelly et

al., 2005). For all analyses, MEG data was preprocessed similarly to methods from
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previous multivariate investigations of covert spatial attention (e.g. Gerven et al.,

2009; Roijendijk et al., 2013). Trials were low-pass filtered at 100 Hz, de-meaned

and downsampled to 300 Hz, with an additional comb filter applied to eliminate

the mains noise and its harmonics.

4.3.8 ERF analysis

For evoked response analyses, the data were bandpass-filtered between 0.5 and 30

Hz and axial gradiometer ERFs were converted into planar representations. Differ-

ences elicited by stimulus lateralization were assessed across 100 ms time windows

using paired t-tests at each sensor and omnibus-corrected randomization testing

(5000 iterations). Differences in distractor expression processing were evaluated

using repeated-measures ANOVAs with randomization testing separately for each

face lateralization condition and difficulty level.

To assess potential effects of distractor expression on markers of spatial atten-

tion, we investigated the N2PC component (Eimer, 1996) by calculating responses

from right occipital and left occipital axial gradiometers to contralaterally and ipsi-

laterally presented targets. Responses were averaged separately for each distractor

expression, and the ipsilateral average ERFs were subtracted from the contralateral

ERF. We then compared this difference wave across expressions using repeated-

measures ANOVAs with randomization testing at each 100 ms time window.

4.3.9 Alpha modulation

Alpha-band frequency analysis was performed using a Hanning taper method cen-

tred on 10 Hz with a 2 Hz smoothing to effectively obtain a frequency band between

8 and 12 Hz (Bahramisharif et al., 2012). The analysis spanned a time window start-

ing 500 ms after cue onset and ending 800 ms after target onset (1.3 s), minimizing

potential eye movement artifacts (Engbert and Kliegl, 2003). Sliding windows of

150 ms with 50 ms overlap ensured that at least one complete oscillatory cycle was

included at each frequency. To obtain interpretable spatial patterns, axial gradiome-

ter data were transformed into planar representations (Bastiaansen and Knösche,

2000).
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The alpha-band power spectra were averaged over time and used to calculate

the sensor-wise alpha modulation (Horschig et al., 2015; Roijendijk et al., 2013) for

each participant by contrasting the alpha power for targets presented in the right

hemifield (αR) with the power for targets shown on the left (αL).

αmod =
αR − αL

αR + αL
(4.1)

The strength of the alpha modulation was statistically assessed for the two dif-

ficulty levels using one-sample t-tests against a mean of zero and randomization

testing (1000 iterations), with cluster correction for multiple comparisons (cluster-

forming α = 0.05, cluster α = 0.025). Pairwise t-tests were similarly conducted to

assess any effects of expression on alpha modulation.

Although we focused on alpha-band activity, previous studies have also shown

spatial attention modulations (Koelewijn et al., 2013; Magazzini and Singh, 2017),

as well as emotional face distractor effects (Müsch et al., 2016) in the gamma band.

To assess this possibility, we performed a similar analysis using a frequency band

centered on 70 Hz with 10 Hz smoothing, in order to reproduce the 60-80 Hz fre-

quency band reported in Müsch et al., 2016. Preprocessing, gamma modulation

computation, and statistical testing were performed as for the alpha band.

4.3.10 Decoding analyses

Broadband decoding

To assess the differential processing of unattended facial expressions in broadband

MEG signals, we performed a time-resolved decoding analysis using anatomically

defined sensor sets. Given the nature of the paradigm, the analysis was performed

separately for faces presented in the right and left visual field, and for sensor sets in

the right and left hemisphere (Figure 4.2). To ensure that informative signals were

included, a pooled analysis was also performed combining right and left occipital

responses contralateral or ipsilateral to the face stimuli. Binary pairwise decod-

ing of expression was performed as described in Chapter 3 in terms of temporal

resolution, trial averaging, multivariate noise normalization, and cross-exemplar

five-fold cross-validation.



110 Chapter 4. Emotional face distractors do not capture attention

FIGURE 4.2: Overview of the MVPA analysis in this chapter. Classi-
fication was performed on 10 anatomically defined sensor sets and
on alpha-band power spectra. As no above-chance decoding results
were obtained in sensor space, no source-space decoding was per-

formed.

To assess classification performance, accuracies were recomputed using 100

label-shuffling iterations for each participant, decoding problem, difficulty level

and stimulus lateralization condition, using the sensor set and time point obtaining

the maximum accuracy across subjects (Dima et al., 2018a). P-values were thresh-

olded against the maximal distribution across tests (Nichols and Holmes, 2001;

Singh et al., 2003) and a further FDR correction (q=0.05) was applied across time

points.

Alpha-band decoding

To assess whether the alpha desynchronization in this experiment was a reliable

index of covert attention (Bahramisharif et al., 2012; Tonin et al., 2012; Treder et

al., 2011), we also performed multivariate decoding of stimulus laterality based

on single-trial power spectra (Figure 4.2): (1) averaged across the analysis win-

dow; (2) averaged across the cueing period; (3) time-resolved, using time win-

dows of 150 ms. Classification accuracies were assessed using randomization test-

ing within-subject (following previous research on covert attention decoding, e.g.

Bahramisharif et al., 2012).
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Next, we performed emotional expression decoding based on alpha-band power

spectra to assess potential effects of distractor expression on the strength of al-

pha desynchronization in our spatial attention task. Expression decoding was

performed separately for each time window and evaluated using five-fold cross-

validation. Two analyses were performed on feature sets including either all MEG

sensors, or sensors showing significant alpha power modulation. Trials were split

according to the face hemifield or pooled (Figure 4.5A). To reduce computational

cost, 100 label-shuffling iterations were conducted to assess statistical significance;

we ensured that the null distribution was conservatively estimated by conducting

omnibus thresholding across all tests and setting the alpha level to 0.01 (i.e., no

randomized accuracies were allowed to surpass the observed accuracy).

Finally, emotional expression decoding was similarly conducted using the gamma

power spectra across the MEG sensor set.

4.3.11 Bayesian statistics

Since most of the above tests revealed no significant expression-related effects, we

sought to estimate the strength of the evidence in favour of the null hypothesis by

comparing null hypothesis testing results with their Bayesian counterparts. As our

original hypothesis entailed an advantage for angry faces in escaping attentional

suppression, we focused on the comparison between angry and neutral faces for

the purposes of this follow-up analysis. To reduce the number of comparisons per-

formed, we obtained summary measures for each of the signals of interest (grand

average ERFs, the N2PC difference wave, and alpha modulation), and compared

these across participants using (1) paired t-tests and (2) Bayesian t-tests, imple-

mented in JASP (Version 0.9; https://jasp-stats.org/) using the Summary Stats

module (Ly et al., 2018). In all analyses, we used a zero-centered Cauchy distribu-

tion with a default scale of 0.707 as the default prior distribution of the population

effect size.

The summary measures subject to this analysis were obtained as follows: for

evoked response analysis, we averaged responses from (1) occipital, parietal and

temporal sensors and (2) sensors found to significantly encode target lateraliza-

tion, across a time window between 100 and 400 ms (to ensure the capture of any
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face-specific responses); for the N2PC component, the difference wave obtained

by subtracting the ipsilateral-to-target response from the one contralateral to target

was averaged across the 200-400 ms time window (Eimer, 1996); for alpha-band

activity, averaging was performed across sensors exhibiting significant alpha mod-

ulation.

4.4 Results

4.4.1 Behavioural results

The difference in performance across participants between the easy and difficult

tasks suggested that the difficulty manipulation was effective (95% and 77% accu-

racy respectively; Figure 4.1B). A 2x3 repeated measures ANOVA with factors Dif-

ficulty and Expression on rationalized arcsine-transformed accuracies revealed a sig-

nificant effect of the difficulty manipulation on performance (F(1, 24) = 85.8, P =

2.14× 10−9, η2 = 0.78). No effect of emotional expression or interaction effect was

found (F(1.72, 41.38) = 0.91, P = 0.4, η2 = 0.04; F(1.97, 47.4) = 0.45, P = 0.64, η2 =

0.02; Figure 4.1C).

There was no effect of difficulty or emotional expression on eye gaze data aver-

aged across the stimulus presentation duration (F(1, 23) = 1.5, P = 0.23; F(1.72, 39.67) =

1.13, P = 0.33; and F(1.7, 39.13) = 0.34, P = 0.68).

4.4.2 No distractor effects in evoked responses

We found evidence of stimulus lateralization effects (target right vs target left) re-

flected in evoked responses (Figure 4.3), with significant effects starting at ~150 ms

(minimum P=0.0008, maximum t(24) = 5.7). We found no effect of expression across

face lateralization conditions and difficulty levels after correction for the number

of tests conducted, although there was an effect approaching significance at one

left occipital sensor (ML032) for faces presented in the right hemisphere (P=0.037,

F(2,48)=10.04, ~225 ms).

To assess potential effects of distractor expression on markers of spatial atten-

tion, we also investigated the N2PC component (Eimer, 1996) by calculating re-

sponses from right occipital and left occipital MEG sensors to contralaterally and
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FIGURE 4.3: Evoked response results. A. Easy block: grand average
difference ERF between trials with a right hemifield target and tri-
als with a left hemifield target. Sensors exhibiting significant differ-
ences between right and left hemifield targets are highlighted with
asterisks. B. As in A for the difficult block. C. Global field power
across planar gradiometers and subjects, plotted against a 500 ms

pre-stimulus baseline for trials from each condition.

ipsilaterally presented targets (Figure 4.4). No significant effect of expression was

found across the two difficulty levels (P>0.09, F(2,48)<2.55).

4.4.3 Alpha power and stimulus laterality

To assess the effects of spatial attention on alpha activity, we calculated the alpha

modulation for each channel (contrasting alpha activity for trials with a target in the

right hemifield with those with a target in the left hemifield; Figure 4.5A). During

the easy block, alpha modulation reached a maximum of 0.22 across all subjects in

a right occipital cluster (P = 0.02), with two clusters obtained during the difficult

block (maximum modulation 0.25, minimum P = 0.004).

When decoding target laterality from the average alpha activity across the en-

tire analysis time window during the easy and difficult blocks, we found above-

chance classification in 13 and 17 subjects respectively. However, when decoding

across the cue period, the success rate was markedly decreased, with above-chance

accuracy in 5/6 subjects out of 25 (Figure 4.5D). This points to inconsistent subject-

wise responses despite the group-level effect found, as well as to a potential role
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FIGURE 4.5: Alpha modulation. A. Sensor maps of alpha modu-
lation (target-right minus target-left) in each block, with significant
sensors highlighted (P<0.05, corrected). B. Decoding the laterality of
stimulus presentation from alpha modulation values. Time-resolved
average accuracy traces are shown, with horizontal bars indicating
significance (width corresponds to the number of significant sub-
jects). C. Decoding the laterality of stimulus presentation from the
average alpha modulation values across the decoding time window.
Subject-wise accuracies are shown as individual data points, with
significant subjects outlined in black. D As in C, for the cue time
window. Note that fewer subjects achieve above-chance decoding

(only 5/6 out of 25).
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FIGURE 4.6: Alpha-band decoding results using the whole MEG
sensor set. A. Time-resolved accuracy traces averaged across sub-
jects for faces presented in the right visual field (RVF) or the left
(LVF) during the easy block. Shaded areas represent ±SEM. B. As
in B, for the difficult block. C. Decoding results using the pooled

dataset (faces presented in both hemifields).

played by visual differences associated with the two lateralization conditions. In-

deed, time-resolved decoding using 150 ms time windows shows that only few

subjects achieve above-chance accuracy prior to stimulus onset, with a sharp in-

crease in accuracy at ~100 ms and the highest proportion of significant subjects at

200 ms (21 and 24 out of 25 respectively).

Although alpha activity shows the expected laterality effects during our spa-

tial attention task, consistent with results from previous investigations, the study

design does not allow us to isolate covert spatial attention during stimulus presen-

tation. However, we may ask whether these stimulus laterality effects are affected

by distractor facial expression, irrespective of whether this effect is mediated by

attention or visual properties. Expression decoding based on alpha-band power

spectra (Figure 4.6) does not rise above chance in any of the subjects, regardless of

the hemisphere or difficulty level (maximum accuracy across subjects: 54.09% on

the MEG sensor set; 55.4% using feature selection). Thus, while alpha-band activ-

ity clearly reflects target laterality, it is not modulated by distractor expression even
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FIGURE 4.7: Sensor maps of gamma modulation (target-right minus
target-left) in each block.

when the competing task is not cognitively demanding.

Finally, a similar analysis of gamma-band activity revealed no significant effects

of target laterality as reflected in the gamma modulation Figure 4.7, despite a weak

lateralized pattern observed in the difficult block. Decoding of emotional expres-

sion using the gamma-band power spectra did not achieve accuracies over 54.79%

across all tests.

4.4.4 Distractor expression is not decodable from broadband signals

To assess potential differential processing of unattended emotional expressions,

we also performed a time-resolved decoding analysis in sensor space (Figure 4.8).

We found no above-chance decoding of expression in any of the 10 sensor sets

used in the analysis, regardless of the expressions being decoded, the difficulty

level, or the face lateralization condition (mean accuracy across subjects, time and

tests 50.07%± 2.34, range 40.55-58.86%). Pooled decoding analyses of occipital re-

sponses contralateral and ipsilateral to the face stimuli also failed to rise above

chance level (mean accuracy 50.29%± 2.22, range 42.71-58.78%).

4.4.5 Evidence of absence: Bayesian results

We conducted follow-up frequentist and Bayesian paired t-tests on responses to

angry and neutral distractors using summary measures of the evoked responses,

N2PC, and alpha modulation, in order to quantify the amount of evidence pro-

vided by the data. Across 12 tests conducted (Table 4.1), we found moderate or

strong evidence for the null hypothesis in 9 tests, and only anecdotal evidence (as

labelled in JASP) for the alternative hypothesis in the remaining 3 tests. Note that
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FIGURE 4.8: Expression decoding using anatomically defined sen-
sor sets. Accuracies were averaged using 100 ms time windows and
plotted on topographic maps for each decoding problem and face
lateralization condition separately. The main plots show results for
the 100-200 ms time window, with smaller plots showing similar re-
sults for the following time window (200-300 ms). The results shown

here are not above the empirically estimated chance level.

in 2 of these latter tests, the effect was in the opposite direction to the one predicted,

and all p-values were relatively high (P> 0.02 uncorrected).

Furthermore, tests conducted on responses from the difficult blocks tended

to provided stronger evidence in support of the null hyposis (BF01 > 4 in 4 in-

stances), while responses from easy blocks tended to provide less conclusive ev-

idence (BF01 > 4 in a single test). This could be construed as indirect evidence

for the effect of increasing cognitive load in eliminating responses to emotional

distractors. Combined with the absence of evidence in our more comprehensive

frequentist univariate and multivariate analyses, these results validate the absence

of differential MEG responses to distractor expression during this task, especially

when task difficulty is increased.

4.5 Discussion

In this chapter, we employed a covert spatial attention task with two levels of dif-

ficulty in order to investigate the effects of peripherally presented emotional face

distractors. Based on a wealth of evidence on the ability of emotional expressions to

capture attention (section 4.2), we expected to find expression-related differences in

neural patterns and potentially in behavioural responses. Based on more nuanced

models of expression as subject to attentional resource limits (Oliveira et al., 2013),

we expected any such effects to decrease or disappear with increasing cognitive
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TABLE 4.1: Frequentist and Bayesian t-tests: angry vs neutral dis-
tractors

t(24) P BF10 BF01 95% CI Evidence

ERF: occipital, parietal, temporal

Easy
Right -2.28 0.03 1.84 0.54 -0.81, -0.02 H1, anecdotal
Left 0.76 0.45 0.28 3.62 -0.23, 0.51 H0, moderate

Difficult
Right -0.38 0.7 0.23 4.43 -0.44, 0.29 H0, strong
Left 0.13 0.89 0.21 4.71 -0.34, 0.39 H0, strong

ERF: sensor selection

Easy
Right -2.53 0.02 2.9 0.34 -0.88, -0.05 H1, anecdotal
Left -0.1 0.92 0.21 4.72 -0.38, 0.35 H0, strong

Difficult
Right 0.54 0.6 0.24 4.16 -0.28, 0.46 H0, moderate
Left 2.44 0.02 2.45 0.41 0.04, 0.85 H1, anecdotal

N2PC component

Easy 0.88 0.38 0.3 3.35 -0.21, 0.53 H0, moderate
Difficult 0.79 0.44 0.28 3.57 -0.23, 0.51 H0, moderate

Alpha modulation
Easy 1.17 0.25 -0.39 2.56 -0.16, 0.58 H0, moderate
Difficult -0.047 0.96 0.21 4.74 -0.38, 0.36 H0, strong

load. Contrary to expectations, we found no robust differences in distractor ex-

pression processing, as assessed through a range of different methods.

Although the task was relatively challenging, we found evidence that it oper-

ated as expected at all levels: behavioural performance decreased with task diffi-

culty in most subjects (Figure 4.1), eye gaze data did not show any difficulty-related

differences, and neural data reflected stimulus lateralization and the expected al-

pha desynchronization contralateral to target (Figure 4.5).

However, none of these measures were affected by distractor expression, whether

analyzed using traditional statistical methods (group ERF analysis) or multivariate

methods at the sensor level. (Note that we did not perform source space analyses

here, consistent with our approach of using sensor-space decoding as a benchmark

for the presence of an effect before exploring its spatial correlates using source-

space decoding.)
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4.5.1 Threatening stimuli and spatial attention

Attention is thought to help us make sense of the world by suppressing irrelevant

information. However, stimuli with high intrinsic saliency are thought to elicit au-

tomatic responses, although different models postulate different degrees of auto-

maticity (Vuilleumier and Righart, 2012). Even when processing of emotional stim-

uli is enhanced during an unrelated task, these effects are not immune from task-

related top-down effects, suggesting that rather than bypassing attention, emotion

serves as a facilitator. Mounting evidence supports a view of emotional saliency

as automatic (in the sense of rapid and involuntary), but subject to suppression by

competitive stimuli. Our results support this view: while in Chapter 2 we find an

early threat-related response in passive viewing, in the current chapter we find no

evidence of expression processing when attention is oriented away from the faces.

Although unexpected, the absence of an effect is not inconsistent with previous

research. Investigations using demanding tasks have found no evidence of expres-

sion processing outside attention (Chen et al., 2016; Eimer et al., 2003; Koster et al.,

2007; Pessoa et al., 2003; Silvert et al., 2007), suggesting that positive results may

be driven by a low cognitive load. In the current study, the peripheral and rapid

stimulus presentation ensured that even during the easy block, attentional shifts to

distractors would be difficult to make without affecting performance on task. While

we expected cognitive load to be sufficiently low during the easy block (as reflected

in the high performance across participants), other factors, such as motivation and

engagement with the task, may have minimized distractor effects.

Some previous studies involving spatial attention tasks have found enhanced

processing of emotional unattended faces. However, much of the evidence involves

fearful faces (Bishop et al., 2004; Müsch et al., 2016; Pourtois et al., 2006; Stefanics

et al., 2012; Vuilleumier et al., 2001), with less consistent evidence for angry faces in

cued paradigms (Mohanty et al., 2009; Santesso et al., 2008, but see Ewbank et al.,

2009). Although some behavioural studies have found rapid orienting towards or

slower disengagement from angry faces (Belopolsky et al., 2011; Calvo et al., 2006),

other studies have only found effects in high anxiety individuals (Bradley et al.,
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2000; Fox et al., 2008). Thus, evidence on the processing of angry faces outside at-

tention is inconclusive. What is more, much of the positive evidence for unattended

expression perception focuses on amygdala responses, which may be specific to

fearful faces or more difficult to detect with our current MEG sensor-level analy-

ses. Moreover, many of the experiments reporting expression processing outside

attention used tasks in which target features overlapped with irrelevant features

(facial expression). A low degree of conjunction between relevant and irrelevant

features, as in this chapter, has been shown to degrade irrelevant feature represen-

tations (Vaziri-Pashkam and Xu, 2017).

Furthermore, strict normalization of low-level visual features across our stimu-

lus set meant that perceptual differences were less likely to attract attention. It has

been suggested in a previous study that peripheral faces attract attention through

visual features such as their smiles, rather than affective features (Calvo et al., 2014).

Such effects may have been reduced by our stimulus normalization procedure, to-

gether with the rapid presentation and masking procedure employed.

Note, however, that the face set used in this chapter is identical to the set used

in Chapter 3. With a presentation time as brief as 150 ms, we were able to show

expression-specific effects starting at ~100 ms when faces were the object of a task.

Here, stimuli were presented for 100 ms longer (albeit peripherally), yet failed to

elicit any differential responses when attention was directed towards the opposite

hemifield.

A threshold model has been proposed to explain such results (Carretié, 2014),

whereby different individual and stimulus-specific factors decide whether an emo-

tional stimulus reaches the required threshold to trigger an exogenous attention

effect during a concurrent task. Heterogeneous results from previous studies have

started to uncover such potential modulatory factors, but a more systematic evalu-

ation of the conditions necessary for the processing of unattended emotional faces

is needed.

Models postulating pre-attentive automatic processing of emotional faces (Pour-

tois et al., 2010) are also compatible with the current results. Given that the cueing

paradigm required attention to be oriented away from the face hemifield prior to

stimulus presentation, it can be argued that the required pre-attentive processing
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could not take place, as opposed to other paradigms involving face primes (e.g.

Müsch et al., 2016) or dot-probe tasks (Santesso et al., 2008). Just as in the case

of awareness manipulations (Chapter 3), different spatial attention paradigms can

have different effects on stimulus processing. However, the results presented here

add to the negative evidence that has cast doubt on the automaticity of expres-

sion processing. Our use of a simple perceptual task coupled with concurrently

presented, visually matched faces seems to suggest that, when other factors are

controlled, expression does not exogenously capture attention.

4.5.2 Limitations and future directions

Some specific aspects of the experimental design employed here make it difficult

to draw strong conclusions from these results. Although we find the expected ef-

fects due to target lateralization, it is difficult to investigate face processing in the

absence of a control condition consisting of scrambled distractors or no distractors;

it is possible that a face-related exogenous attention effect takes precedence over

any expression-specific processing, as we have found in Chapter 3 in the case of

limited awareness. Future studies could explicitly investigate the possibility that

face detection is automatic, with the extraction of specific features from faces being

influenced by behavioural goals and other factors.

Furthermore, although our analyses of evoked responses, broadband patterns,

and alpha-band spectra converge in showing no emotional modulations, expression-

related effects may be otherwise represented in the brain or difficult to detect in our

current sample. Although group-level analyses included 25 subjects, it is possible

that multivariate analyses would have benefitted from larger numbers of trials, as

these analyses are performed within-subject. However, such limitations have not

precluded successful decoding of expression in previous, similarly designed exper-

iments. Furthermore, Bayesian analysis results suggest that the data reflect some

evidence in favour of the null hypothesis, especially during the difficult block, sug-

gesting that this particular task successfully suppressed distractor expression pro-

cessing.

The results are in line with the conclusions of Chapter 3 concerning the im-

portant role played by behavioural goals in shaping face feature representations in
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MEG patterns. In future research, manipulating the object and difficulty of the task

while keeping stimuli constant might help shed light on the role of endogenous

attention in suppressing emotional saliency.

This chapter concludes the part of this thesis dedicated to face perception. To-

gether, the three chapters offer three different perspectives on emotional face per-

ception and converge in pointing out the importance of context and behaviour. In

Chapter 2, we saw that passive viewing of emotional faces leads to a threat ad-

vantage in terms of neural processing; in Chapter 3, an expression discrimination

task elicited early processing of all expressions; and in the present chapter, focus

on a concurrent task eliminated any expression-related effects on neural patterns.

Together, these results highlight both the "special" nature of face and expression

processing, and the adaptability of the visual system in extracting and relaying the

most contextually relevant features.

For the final chapter, we turn to a different type of stimuli whose recognition

is essential in everyday life, and investigate the extraction of visual features and

formation of categorical representations in natural scene perception.
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Chapter 5

From features to categories in

natural scene perception

5.1 Abstract

Previous chapters discussed how face information is efficiently detected by a highly

optimized visual system. This chapter addresses a different, but related question:

in navigating our enviroment, how do we efficiently extract information from vi-

sual cues? With recent studies painting a complex picture of the neural represen-

tations supporting natural scene perception, it is still not well understood how the

brain accomplishes the transition between the visual features of our environment

and the high-level representations of human cognition. Here, we addressed this us-

ing a controlled stimulus set composed of natural scenes from different categories

(natural, urban and scrambled) filtered at different spatial frequencies. To investi-

gate the emergence of categorical responses in a task-free setting, we collected MEG

data while participants passively viewed the stimuli. Cross-decoding and repre-

sentational similarity analyses showed that categorical representations emerge in

human visual cortex at ~180 ms and are linked to spatial frequency processing.

Furthermore, dorsal and ventral stream areas encoded overlapping representations

of low and high-level layer activations extracted from a convolutional neural net-

work. These results suggest that neural patterns from extrastriate visual cortex

switch from low-level to categorical representations within 200 ms, highlighting

the rapid cascade of processing stages essential in human visual perception.
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5.2 Introduction

The previous chapters explored the spatiotemporal dynamics of emotional face

perception under different tasks using multivariate approaches. This chapter ad-

dresses a different domain in visual perception and shows how similar machine

learning methods can resolve MEG responses to passively viewed natural scenes.

Such stimuli have the advantage of being naturalistic, while exhibiting specific im-

age properties that make them good candidates in disentangling the contribution

of visual properties to neural patterns. Furthermore, computational approaches

have been applied more often to responses to natural scenes than faces, leading to

a growing understanding of the complex sequence of processing stages enabling

scene categorization. In this chapter, we investigate featural and categorical rep-

resentations of scenes in a passive viewing paradigm, and we combine representa-

tional similarity analysis with predictions from a feedforward convolutional neural

network in order to test the hierarchy of these representations.

Classic models of natural vision predict a succession of stages transforming

low-level properties into categorical representations (VanRullen and Thorpe, 2001;

Yamins and DiCarlo, 2016). During natural scene perception, the primary visual

cortex processes low-level stimulus properties, while extrastriate and scene-selective

areas are associated with mid-level and high-level properties. Categorical, invari-

ant representations of scene category are considered the final stage of abstraction

(Felleman and Van Essen, 1991; Ungerleider and Haxby, 1994). Scene-selective

brain regions such as the parahippocampal place area (PPA), the retrosplenial cor-

tex (RSC), and the occipital place area (OPA) are often thought to represent such

categories (Walther et al., 2009) and have been found to respond to high-level stim-

uli in controlled experiments (Schindler and Bartels, 2016; Walther et al., 2011).

However, this model has been challenged by evidence of low- and mid-level

features being processed in scene-selective areas (Kauffmann et al., 2015b; Kravitz

et al., 2011; Nasr and Tootell, 2012; Nasr et al., 2014; Rajimehr et al., 2011; Watson

et al., 2014; Watson et al., 2016). Studies of temporal dynamics have found over-

lapping signatures of low-level and high-level representations (Groen et al., 2013;

Harel et al., 2016), suggesting co-occurring and co-localized visual and categorical
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processing (Ramkumar et al., 2016). Such evidence casts doubt on the hierarchical

model and on the usefulness of the distinction between low-level and high-level

properties (Groen et al., 2017).

In particular, spatial frequency is thought to play an important part in natural

scene perception, with low spatial frequencies mediating an initial rapid parsing

of visual features in a “coarse-to-fine” sequence (Kauffmann et al., 2015a). Its role

in the processing speed of different features, as well as evidence of its contribution

to neural responses in scene-selective areas (Rajimehr et al., 2011), makes spatial

frequency a particularly suitable candidate feature for teasing apart the temporal

dynamics of low and high-level natural scene processing.

Recent neuroimaging studies of scene perception have used multivariate pat-

tern analysis (MVPA) to highlight the links between low-level processing and be-

havioural goals (Ramkumar et al., 2016; Watson et al., 2014). In particular, Ramku-

mar et al. (2016) showed successful decoding of scene gist from MEG data and

linked decoding performance to spatial envelope properties, as well as behaviour

in a categorization task.

Here, we aimed to dissociate the role of low-level and high-level properties in

natural scene perception, in the absence of behavioural goals that may influence

visual processing (Groen et al., 2017). In order to do so, we recorded MEG data

while participants passively viewed a controlled stimulus set composed of scenes

and scrambled stimuli filtered at different spatial frequencies. Thus, we were able

to contrast responses to scenes with responses to matched control stimuli, as well

as to assess the presence of a categorical response to scenes invariant to spatial

frequency manipulations.

Similarly to previous chapters, we used multivariate pattern analysis and repre-

sentational similarity analysis to explore representations of scene category in space

and time and to assess their relationship to low-level properties. We successfully

decoded scene category from MEG responses in the absence of an explicit cate-

gorization task, and a cross-frequency decoding analysis suggested that this effect

is driven by low spatial frequency features at ~170 ms post-stimulus onset. We

also show that categorical representations arise in extrastriate visual cortex within
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FIGURE 5.1: The complete scene set used in the experiment (left), to-
gether with examples of filtered stimuli from each condition (right,
A). B and C show average Fourier and frequency spectra for each

condition.

200 ms, while at the same time representations in posterior cingulate cortex cor-

relate with the high-level layers of a deep convolutional neural network (CNN).

Together, our results suggest that scene perception relies on low spatial frequency

features to create a categorical representation in visual cortex.

5.3 Methods

5.3.1 Participants

Nineteen participants took part in the MEG experiment (10 females, mean age 27,

SD 4.8), and fourteen in a control behavioural experiment (13 females, mean age 26,

SD 4.4). All participants were healthy, right-handed and had normal or corrected-

to-normal vision (based on self-report). Written consent was obtained in accor-

dance with The Code of Ethics of the World Medical Association (Declaration of

Helsinki). All procedures were approved by the ethics committee of the School of

Psychology, Cardiff University.
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5.3.2 Stimuli

Stimuli (Figure 5.1) were 20 natural scenes (fields, mountains, forests, lakes and

seascapes) and 20 urban scenes (office buildings, houses, city skylines and street

views) from the SUN database (Xiao et al., 2010). Stimuli were 800 × 600 pixels in

size, subtending 8.6× 6.4 degrees of visual angle.

All the images were converted to grayscale. Using the SHINE toolbox (Willen-

bockel et al., 2010), luminance and contrast were normalized to the mean luminance

and SD of the image set. Spatial frequency was matched across stimuli by equating

the rotational average of the Fourier amplitude spectra (the energy at each spatial

frequency across orientations).

To assess the similarity of image amplitude spectra between categories, we cal-

culated pairwise Pearson’s correlation coefficients based on pixel intensity values

between all images (mean correlation coefficient 0.14, SD 0.27, minimum-maximum

range 1.33). Next, we performed an equivalence test (two one-sided tests; Lakens,

2017) in order to compare within-category correlation coefficients from both con-

ditions (i.e., pairwise correlation coefficients between each image and each of the

19 images belonging to the same category) to between-category correlation coeffi-

cients (i.e., pairwise correlation coeffients between each image and each of the 20

images belonging to the other category). We assumed correlation coefficients to be

similar if the difference between them fell within the [-0.1, 0.1] equivalence interval

(Cohen, 1992). Within-category and between-category correlation coefficients were

found to be equivalent (P1 = 5.3× 10−11, P2 = 2.4× 10−4, 90% CI [-0.0025, 0.063]).

To obtain low spatial frequency (LSF) and high spatial frequency (HSF) stim-

uli, we applied a low-pass Gaussian filter with a cutoff frequency of 3 cycles per

degree (25.8 cycles per image) and a high-pass filter with a cutoff of 6 cycles per

degree (51.6 cycles per image). Root mean square (RMS) contrast (standard devia-

tion of pixel intensities divided by their mean) was only normalized within and not

across spatial frequency conditions, in order to maintain the characteristic contrast

distribution typical of natural scenes, which has been shown to influence responses

to spatial frequency in the visual system (Field, 1987; Kauffmann et al., 2015a,b).

To produce control stimuli, we scrambled the phase of the images in the Fourier
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domain, ensuring equivalent Fourier amplitude spectra across the original and

scrambled images (Perry and Singh, 2014). For each spatial frequency condition,

we randomly selected 10 of the 20 phase-scrambled images for use in the experi-

ment in order to maintain an equal number of stimuli across conditions (natural,

urban and scrambled). The final stimulus set contained 180 images (filtered and

unfiltered scenes and scrambled stimuli; Figure 5.1).

5.3.3 Behavioural experiment

Design and data collection

To assess potential differences in the recognizability of different scenes, participants

in the behavioural experiment viewed the stimuli and were asked to categorize

them as fast as possible. The design of the behavioural experiment was similar to

the MEG experiment, but included a practice phase (10 trials) before each block.

Participants underwent two blocks in which they had to judge whether stimuli

were scenes or scrambled stimuli, or whether scene stimuli were natural or urban

respectively. Blocks were separated by a few minutes’ break and their order was

counterbalanced across subjects.

Images were presented on an ASUS VG248QE LCD monitor with a resolution of

1920 x 1080 pixels and a refresh rate of 60 Hz. Participants were required to make a

keyboard response (using the keys J and K, whose meanings were counterbalanced

across subjects), as soon as each image appeared on screen. We recorded responses

and reaction times using Matlab and the Psychophysics Toolbox.

Data analysis

To assess the effect of spatial frequency filtering on performance in the categoriza-

tion task, one-way repeated-measures ANOVAs were performed on individual ac-

curacies (after performing a rationalized arcsine transformation; Studebaker, 1985)

and on mean log-transformed reaction times for each categorization task (four tests

with a Bonferroni-adjusted α = 0.0125). Significant effects were followed up with

post-hoc Bonferroni-corrected paired t-tests.
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5.3.4 MEG data acquisition

For source reconstruction purposes, in all participants, we acquired whole-head

structural MRI scans on a General Electric 3 T MRI scanner using a 1 mm isotropic

Fast Spoiled Gradient-Recalled-Echo pulse sequence in an oblique-axial orienta-

tion.

Whole-head MEG recordings were made using a 275-channel CTF axial gra-

diometer system at a sampling rate of 1200 Hz. Three of the sensors were turned off

due to excessive sensor noise. An additional 29 reference channels were recorded

for noise rejection purposes; this allowed the primary sensors to be analysed as

synthetic third-order gradiometers using a linear combination of the weighted ref-

erence sensors (Vrba and Robinson, 2001).

Stimuli were centrally presented on a grey background using a gamma-corrected

Mitsubishu Diamond Pro 2070 CRT monitor with a refresh rate of 100 Hz and a

screen resolution of 1024 × 768 pixels situated at a distance of 2.1 m from the par-

ticipants. There were 9 conditions (natural scenes, urban scenes and scrambled

scenes filtered at low frequency, high frequency or unfiltered). Each image was

presented 4 times, amounting to 80 trials per condition. Participants underwent

two recording sessions separated by a few minutes’ break.

The data were collected in 2.5 s epochs centred around the stimulus onset. Stim-

uli were presented on screen for 1 s and were followed by a fixation cross for a vary-

ing ISI chosen pseudorandomly from a uniform distribution between 0.6 and 0.9 s.

Participants were instructed to press a button whenever the fixation cross changed

colour during the ISI. The paradigm was implemented using Matlab and the Psy-

chophysics Toolbox and was adapted from the experimental paradigm described

in Chapter 1.

Participants were seated upright during the experiment and electromagnetic

coils attached to the nasion and pre-auricular points on the scalp were used to con-

tinuously monitor their head position. For co-registration with the structural MRI

scans, high-resolution digital photographs of the coil positions were acquired.
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5.3.5 MEG analyses

The data were pre-processed using Matlab and the FieldTrip toolbox. Trials con-

taining excessive eye or muscle-related artefacts were excluded based on visual

inspection. Condition information was not available during artefact rejection, and

there was no significant difference in the proportion of trials rejected between con-

ditions (F(1.5,27.09)=3.33,P= 0.063, 3 × 3 ANOVA). To account for head motion, we

excluded trials with maximum motion of any individual fiducial coil in excess of

5 mm. To account for potential changes in the participants’ head position over time,

head coil position relative to the dewar was changed to the average position across

all trials. Prior to all analyses, the data were downsampled to 600 Hz, baseline cor-

rected using a time window of 500 ms prior to stimulus onset, and a 50 Hz comb

filter was used to remove the mains noise and its harmonics.

To test for scene-selective responses present in the event-related fields (ERFs),

MEG data were bandpass-filtered between 0.5 and 30 Hz. Axial gradiometer ERFs

were realigned to a common sensor position (Knösche, 2002) and averaged across

subjects. Based on local minima in the global field power across all trials (Figure

5A), we identified three time windows of interest (Perry and Singh, 2014): 84-143

ms, 143-343 ms, and 343-401 ms. For each time window, we tested for differences

between responses to unfiltered (broadband) scenes and scrambled stimuli at all

MEG sensors, using paired t-tests and randomization testing (5000 iterations, cor-

rected for multiple comparisons using the maximal statistic distribution).

Prior to sensor-space MVPA analyses, the data were bandpass-filtered between

0.5 and 100 Hz. To test for differences between conditions present in single trials,

a linear L1 Support Vector Machine (SVM) classifier was applied to sensor-level

data. The classifier was implemented in Matlab using the Statistics and Machine

Learning Toolbox and the Bioinformatics Toolbox.
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FIGURE 5.2: MPA analysis framework used in this chapter. A.
Time-resolved decoding was performed on (1) sensor-level data
from four anatomical subsets, and (2) source-space data, using an
anatomically informed searchlight approach. B. Sensor-space anal-
ysis pipeline in terms of the stimulus sets used in decoding. Note
that in cross-decoding each stimulus set acted in turns as a train-
ing and test set, with resulting accuracies averaged across the two
cases. Cross-exemplar five-fold cross-validation was performed for

all analyses.
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5.3.6 Decoding responses to unfiltered scenes

Sensor-space MVPA

A first MVPA analysis (Figure 5.2) was performed on responses to unfiltered stim-

uli using single-trial data from four anatomically defined sensor sets (occipital, tem-

poral, parietal and fronto-central). Binary time-resolved classification was applied

to broadband scenes and scrambled stimuli, as well as broadband natural and ur-

ban scenes. As the former problem entailed unequal class sizes, majority class trials

were randomly sub-sampled.

The classifier was applied to each time point between 0.5 s pre-stimulus onset

and 1 s post-stimulus onset after resampling the data to 600 Hz, thus giving a tem-

poral resolution of ~1.6 ms. Feature vectors were standardized using the mean and

standard deviation of the training set. To evaluate classifier performance within

subjects, we used cross-exemplar five-fold cross-validation, whereby the classifier

was iteratively trained on trials corresponding to 16 of the 20 stimuli from each

condition and tested on the remaining 4 stimuli. This ensured that classification

performance was not driven by responses to particular visual features repeated

across the training and test sets, whilst achieving balanced training and test sets

and reducing variability in classification performance.

Source-space MVPA

To perform classification in source space, data in all trials regardless of condition

were bandpass-filtered between 0.5 and 100 Hz. We used the FSL Brain Extraction

Tool (Smith, 2002) to extract the brain surface from the participants’ structural MRI

scans and we projected the data into source space using the LCMV beamformer

(Van Veen et al., 1997). The forward model (a single-shell sphere) was combined

with the data covariance matrix (Hillebrand et al., 2005) to obtain the spatial filter.

We defined the source space using a template grid with a resolution of 10 mm that

was warped to each participant’s MRI in order to ensure equivalence of sources

across participants. For each voxel, we independently derived the output as a

weighted sum of all MEG sensor signals.
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The decoding analysis was performed using an anatomically informed search-

light approach based on the AAL atlas (Tzourio-Mazoyer et al., 2002). For each sub-

ject, time-resolved classification with cross-exemplar cross-validation as described

above was performed iteratively using the timecourses of sources from each AAL

region of interest (ROI), excluding the cerebellum and some deep structures. We

chose this approach to reduce computational cost, to improve interpretability across

studies and modalities (Hillebrand et al., 2012), and to overcome some of the caveats

of traditional searchlight analyses, which assume that information is uniformly dis-

tributed in the brain (Etzel et al., 2013).

5.3.7 Using MVPA to evaluate the role of spatial frequency

To maximize the amount of informative features input to the classifier, we per-

formed the next MVPA analyses using the occipital sensor set, which achieved

the best classification performance in the broadband scene vs scrambled decod-

ing problem. This ensured minimal overlap between the decoding problem used

in feature selection and the follow-up analyses (Figure 5.2).

Decoding responses to filtered stimuli

Despite the use of matched control stimuli, successful decoding of unfiltered scenes

does not allow us to disentangle low-level and high-level responses, as differences

in local low-level properties cannot be ruled out. Thus, to assess the role played

by spatial frequency, we performed scene category decoding (scenes vs scrambled

stimuli and natural vs urban scenes) within each spatial frequency condition (HSF

and LSF) using the occipital sensor set and cross-exemplar cross-validation.

Cross-decoding

Next, we aimed to test whether scene category representations generalized across

spatial frequency categories. To this aim, we trained and tested sensor-space scene

category classifiers across different spatial frequency conditions. The analysis was

repeated for all three condition pairs using five-fold cross-exemplar cross-validation,
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with each set of stimuli acting as a training set and as a test set in turns and the final

accuracy averaged across the two cases (Figure 5.2B).

In this analysis, classifier performance was interpreted as an index of the simi-

larity of scene-specific responses across spatial frequency manipulations. Success-

ful decoding across LSF and HSF stimuli would indicate a truly spatial frequency-

independent categorical distinction, as there are no overlapping spatial frequencies

across the two sets. On the other hand, cross-decoding across unfiltered and LSF

or HSF scenes would allow us to detect any spatial frequency preference in the

encoding of scene-specific information.

The fact that RMS contrast was not normalized across spatial frequency condi-

tions introduced a potential confound in this analysis. This was not an issue when

training and testing within one spatial frequency condition (as RMS contrast was

normalized across stimulus categories within each spatial frequency condition).

However, both local and global amplitude characteristics were similar between

broadband and LSF scenes due to the 1/f amplitude spectrum of natural scenes

discussed above; this posed a specific concern to the cross-decoding of broadband

and LSF scenes. This issue was addressed by conducting cross-exemplar cross-

validation. Normalization of low-level features within training and test sets en-

sured that global contrast characteristics would not be exploited in classification,

while testing on novel exemplars ensured that the classifier would not simply "rec-

ognize" local features (including contrast) unaffected by the spatial frequency ma-

nipulation. This does not preclude the existence of local characteristics that distin-

guish scenes from scrambled stimuli; however, such characteristics can be expected

to be informative in the emergence of a high-level response.

Significance testing

Averaged accuracy across subjects (proportion correctly classified trials) was used

to quantify decoding performance, and the significance of classifier accuracy was

assessed through randomization testing (Nichols and Holmes, 2001; Noirhomme

et al., 2014). To this end, 1000 randomization iterations were performed for each

subject, whereby class labels were shuffled across the training and test sets before

recomputing classification accuracy. The null distribution was estimated based on
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the time point achieving maximum overall accuracy in the MVPA analysis. For

time-resolved sensor-space decoding analyses, P-values (α = 0.01) were omnibus-

corrected using the maximum accuracy across all tests performed (Nichols and

Holmes, 2001; Singh et al., 2003), and cluster-corrected across time. To determine

95% confidence intervals around decoding onset latencies, individual decoding ac-

curacies were bootstrapped 1000 times with replacement, and differences in onset

latencies were tested using a Wilcoxon signed-rank test. For searchlight decoding

in sensor and source space, P-values (α = 0.001) were thresholded using the max-

imum accuracy across sensor clusters/ROIs and cluster-corrected across time.

5.3.8 Representational Similarity Analysis (RSA)

In order to evaluate low and high-level representations of stimuli in our data,

we assessed correlations between representational dissimilarity matrices (RDMs)

based on temporally and spatially resolved MEG patterns and two sets of models:

(1) explicit feature-based models (based on either stimulus properties or stimulus

categories), and (2) models extracted from the layers of a deep CNN (Figure 5.3).

The second analysis was performed to assess whether evaluating an explicitly hi-

erarchical set of models would support our initial conclusions.

Feature-based models

In order to assess the contributions of low-level features and categorical distinc-

tions, we evaluated four model RDMs based on stimulus properties (Figure 5.3).

Visual features were assessed using two models: a low-level model based on spa-

tial frequency, and a mid-level model reflecting the spatial envelope of the images.

The former was based on pairwise Euclidean distances between the spatial fre-

quency spectra of the images; the latter was computed using the GIST descriptor

(Oliva and Torralba, 2001), which applies a series of Gabor filters at different ori-

entations and positions in order to extract 512 values for each image. These values

represent the average orientation energy at each spatial frequency and position and

were used to compute pairwise Euclidean distances.

For high-level representations, we used a category-based and an identity-based

model. In the former model, all scenes within a category (such as urban scenes)



5.3. Methods 139

FIGURE 5.3: RSA analysis framework used in this chapter. Time-
resolved neural dissimilarity matrices were created for each AAL
region and compared to two sets of model dissimilarity matrices,
based on either image features or CNN layer activations. Note that
8 models were obtained from CNN layers, but some of these were
highly correlated and are only shown as thumbnails (see Figure 5.5).
Randomization testing was used to create time-resolved representa-
tional brain maps showing the unique contribution of each model to

the neural patterns.

were assigned a distance of 0, while scrambled stimuli and scenes were assigned a

maximal distance of 1, and distances between different categories of scenes (natural

and urban) were set to 0.5. The scene identity model assigned dissimilarity values

of 1 to all pairs of natural scenes regardless of category (while all scrambled stimuli

were deemed maximally similar). For both models, these values were constant

across spatial frequency manipulations.

CNN-based models

To more directly assess the hierarchical processing of our stimulus set in the vi-

sual system, we tested a second set of models based on the layers of a feedfor-

ward CNN. Using Matlab and the Neural Network Toolbox, we extracted features

from an eight-layer CNN pre-trained using the Caffe framework (Jia et al., 2014)

on the Places database, which consists of 2.5 million images from 205 scene cate-

gories (Zhou et al., 2014). The neural network was a well-established AlexNet CNN

(Krizhevsky et al., 2012) with five convolutional layers and three fully-connected

http://caffe.berkeley-vision.org/
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FIGURE 5.4: Convolutional neural network architecture and perfor-
mance. A. The CNN architecture used for model RDM generation.
B. Accuracy obtained using features from each of the 8 CNN lay-
ers for the two decoding problems (5-fold cross-validation). Conv:

convolutional; FC: fully connected.

layers (Figure 5.4A). This network architecture has been shown to perform well in

explaining object and scene representations in the visual system (e.g. Cichy et al.,

2016; Rajaei et al., 2018). We extracted network activations from the last stage of

each CNN layer for each image in our stimulus set, and we calculated pairwise

Euclidean distances between the feature vectors to obtain eight CNN-based RDMs

(Figure 5.3). To assess how well scene categories were represented by these fea-

tures, we also performed cross-validated binary classification (scene vs scrambled

and urban vs natural images) using layer activations, and found high decoding

accuracies in all layers (>70%; Figure 5.4B).

RSA analysis framework

In order to assess correlations between model RDMs and neural patterns, MEG

data were pre-processed and projected into source space as described above. Neu-

ral patterns were computed using source timecourses within each AAL-based ROI

for each 16 ms time window after stimulus onset in order to decrease computational

cost. Responses to repeated stimuli were averaged within and across subjects and
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the Euclidean distance between each pair of stimuli was computed to create neural

RDMs.

For each ROI and time window, we computed Spearman’s rank partial corre-

lation coefficients between the neural dissimilarity matrix and each of the feature-

based models and CNN-based models (Nili et al., 2014). This allowed us to quan-

tify the unique contribution of each model, while controlling for correlations be-

tween models. In order to evaluate the impact of RMS contrast on both low-level

and high-level category processing, the feature-based analysis was repeated with

the RMS contrast-based RDM partialled out. For the purposes of this analysis, RMS

contrast was defined as the standard deviation of pixel intensity values divided by

mean intensity across each image (Scholte et al., 2009), and the contrast-based RDM

consisted of pairwise Euclidean distances between stimulus RMS contrast values

(Figure 5.12B).

The significance of the correlation coefficients was assessed through random-

ization testing, by shuffling the stimulus labels and recomputing the partial cor-

relations 100 times for each ROI and time window. We used a one-sided test, as

negative correlations between distance matrices were not expected and would be

difficult to interpret (Furl et al., 2017). P-values obtained were thresholded using

the maximum correlation coefficient across time points and the alpha was set to

0.01 to account for the number of models tested. This method only highlighted

correlations that were stronger than all those in the empirical null distribution.

To assess the maximum possible correlation given the noise in the data, we

used guidelines suggested by Nili et al. (2014). We computed an upper bound

of the noise ceiling by correlating the average neural RDM across subjects to each

individual’s neural RDM for each ROI and time window (overfitting and thus over-

estimating the true model correlation), and a lower bound by correlating each indi-

vidual’s RDM to the average of the remaining 18 subjects’ RDMs (underfitting and

thus underestimating the correlation).

5.3.9 Eye gaze data collection and analysis

An SMI iView X eyetracker system (SensoMotoric Instruments) with a sampling

rate of 250 Hz was used to track the subjects’ right pupil and corneal reflection
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FIGURE 5.5: Correlations between all model RDMs. RDMs based
on convolutional layers and fully connected layers of the CNN are

highly correlated.

during the MEG recordings. The camera was located in front of the participant at

a distance of 120 cm. The system was calibrated using a 9-point calibration grid

at the start of each session, and was recalibrated between sessions to account for

changes in head position during the break.

Eye-tracker data was analyzed using Matlab, EEGLAB (Delorme and Makeig,

2004), and EYE-EEG (Dimigen et al., 2011). Vertical and horizontal eye gaze posi-

tions were recorded based on pupil position and were compared offline in order

to assess differences between eye movement patterns across scene categories. Af-

ter selecting time windows corresponding to the stimulus presentation (1 s post-

stimulus onset), portions of missing eye-tracker data corresponding to blinks were

reconstructed using linear interpolation prior to statistical analysis. Trials deviat-

ing from the mean by more than 2 standard deviations were excluded. We calcu-

lated the grand means, medians and standard deviations of eye gaze position for

each condition and participant and tested for differences using two-way repeated

measures ANOVAs with factors Category (levels natural, urban, and scrambled) and

Frequency (levels LSF, broadband, and HSF). P-values were corrected for six compar-

isons (three tests on horizontal and vertical eye gaze data). No significant differ-

ences were found for either of the two factors (F(2, 36) < 2.57, P > 0.09 (Category);

F(2, 36) < 2.32, P > 0.11 (Frequency); F(4, 72) < 2.55, P > 0.04, α = 0.0083).
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Next, we performed MVPA to test whether scene categories could be differen-

tiated using single-trial eye gaze data. Gaze position values for the entire stimulus

duration were entered as features in an initial analysis, while a subsequent analysis

used time windows of 40 ms to check for time-resolved effects. Binary classification

was performed on all six pairs of scene category conditions (scenes vs scrambled

stimuli and natural vs urban scenes, for each spatial frequency condition). Accu-

racy did not exceed 51.98% (SD 6.08%) across participants for any of the 6 pairs of

conditions tested. Time-resolved MVPA led to similar results (maximum accuracy

over time and classification problems 53.69%, SD 5.94%).

5.4 Results

5.4.1 Behavioural categorization results

Participants were asked to categorize stimuli as scenes/scrambled and natural/urban

respectively. Performance was high on both tasks (mean accuracy 95.27%, SD

5.63%, and 94.46%, SD 3.56% respectively; Figure 5.6) and ranged between 90.47%

and 98.45% across all conditions. We evaluated differences in performance and re-

action time between spatial frequency conditions using one-way repeated ANOVAs.

Recognition performance did not significantly differ for scenes filtered at differ-

ent spatial frequencies when participants had to make urban/natural judgements

(F(1.78, 23.09) = 0.15, P = 0.83, η2 = 0.01). However, a significant difference

was found when participants categorized stimuli as scenes or scrambled stimuli

(F(1.47, 19.09) = 15.44, P = 0.0002, η2 = 0.54), with LSF images categorized sig-

nificantly less accurately than broadband (t(13) = 3.08, P = 0.008, 95% CI [1.17,

24.43]) and HSF images (t(13) = 6.03, P = 4.24× 10−5, 95% CI [9.48, 25.94]).

Responses were slightly slower on the scene vs scrambled task (mean raw RT

537 ms, SD 54 ms, versus 506 ms, SD 61 ms on the natural vs urban task). A one-

way repeated measures ANOVA on mean log-transformed reaction times revealed

a significant effect of frequency for the scene vs scrambled task (F(1.75, 22.77) =

48.62, P = 1.4× 10−8, η2 = 0.79), with Bonferroni-corrected follow-up tests reveal-

ing significantly slower reaction times for LSF images compared to both broadband

images (t(13) = 8.37, P = 1.3× 10−6, 95% CI [0.07, 0.15] and HSF images (t(13) =
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FIGURE 5.6: Categorization performance and mean reaction times
for the 14 participants in the behavioural experiment, represented
separately for each of the spatial frequency conditions used in the

experiment.

6.92, P = 10−5, 95% CI [0.05, 0.12]). A smaller effect was found for the natural vs

urban task (F(1.71, 22.25) = 6.11, P = 0.01, η2 = 0.32), with slower reaction times

for LSF than HSF images revealed in follow-up tests (t(13) = 3.06, P = 0.009,

95% CI [0.01, 0.06]). Despite the effect reported here, we note that performance was

above 90% on all conditions, suggesting high scene recognizability regardless of

spatial frequency filtering.

5.5 Evoked responses to scenes

To test for scene-selective responses present in the event-related fields (ERF), we

assessed differences between conditions at all MEG sensors in three time windows

of interest (84-143 ms, 143-343 ms, and 343-401 ms), using paired t-tests and ran-

domization testing.

The largest amplitudes in response to scenes in this dataset were found over

occipital and temporal sensors (Figure 5.7). Significant differences in the response

to scenes and scrambled scenes were found over temporal sensors (343-401 ms;

P < 0.01, t(18) > 4.72). At the P2 latency, differences were present between scenes

and scrambled stimuli at two occipital sensors, but they failed to survive correc-

tion for multiple comparisons (143-343 ms; P > 0.034, t(18) < 4.4). No signifi-

cant differences between scenes and scrambled scenes were found at the P1 latency
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(P > 0.4, t(18) < 2.81).

5.5.1 Decoding responses to unfiltered scene categories

Sensor-space decoding

To evaluate differences in neural responses between stimulus categories, we per-

formed time-resolved decoding of responses to scenes vs scrambled stimuli and

natural vs urban scenes using anatomically defined sensor sets. Above-chance de-

coding performance was achieved using the occipital sensor set starting at 172 ms

and 105 ms post-stimulus onset respectively (Figure 5.8). This effect was tran-

sient for both decoding problems; the return to chance level could reflect the ab-

sence of late task-related processing in our passive viewing paradigm. There was

a significant difference between onset latencies for the two decoding problems

(Z = 26.46, P < 0.001, 95% CI [13, 97] ms]), likely to reflect earlier decoding

of systematic low-level differences between urban and natural stimuli (for exam-

ple in terms of cardinal orientations). Classification on the parietal sensor set also

achieved significance after 318 ms for the scene vs scrambled decoding problem,

suggesting more sustained scene processing along the dorsal stream (Table 5.1).

Source-space decoding

To spatially localize the effects revealed by sensor-space MVPA, we moved into

source space and performed MVPA analysis of scene category processing using vir-

tual source timecourses obtained through LCMV beamforming and an AAL atlas-

based ROI searchlight approach.

Accuracies obtained in source space were comparable to sensor space perfor-

mance (Table 5.1). Above-chance decoding was achieved for both problems in cal-

carine cortex (105 and 215 ms respectively) and along the dorsal stream for the

scene versus scrambled decoding problem ( 230 ms; Figure 5.9).
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FIGURE 5.7: A. Butterfly plot of amplitudes over all trials and all
sensors (black) overlaid by the global field power for all trials (red).
Local minima in the GFP plot were used to determine windows of
interest in the ERF analysis (the shaded gray rectangles represent
different time windows). B. Sensors exhibiting significant differ-
ences in the response to scenes vs scrambled scenes. C. Grand aver-
age ERF amplitudes in response to unfiltered scenes. D. Difference
ERF between responses to unfiltered scenes and scrambled stimuli,
based on the grand average axial gradient fields. E. Grand aver-
age global field power for each spatial frequency condition, showing

lower amplitude responses to HSF stimuli.
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FIGURE 5.8: Unfiltered scene categories: time-resolved decoding
accuracy traces (±SEM) obtained using different sensor sets for
both decoding problems. Accuracies were averaged across subjects
and smoothed with a five-point moving average for visualization
only. Horizontal lines show above-chance decoding performance

(P<0.01 corrected).

TABLE 5.1: Scene decoding results in sensor and source space

Scene vs Scrambled Occipital Temporal Parietal Frontocentral Source space

Max accuracy 56.07% 53.93% 56.12% 52.93% 57.41%

95% CI
53.21%, 51.14%, 53.24%, 50.79%, 54.4%,
60.59% 57.4% 59.21% 55.78% 60%

Max sensitivity 58.95% 56.9% 58.38% 54.73% 69.8%
Max specificity 54.96% 53.58% 55.54% 53.34% 57.07%
Decoding onset 172 ms N/A 318 ms N/A 215 ms
95% CI 145-215 ms N/A 83-423 ms N/A 173-223 ms

Natural vs Urban

Max accuracy 56.56% 54.55% 54.65% 54.18% 55.91%

95% CI
53.84%, 52.13%, 51.62%, 51.61%, 53.55%,
59.67% 56.94% 57.91%, 56.63% 58.49%

Max sensitivity 57.03% 55.3% 55.07% 52% 55.25%
Max specificity 58.2% 55.72% 56.79% 56.39% 74.06%
Decoding onset 105 ms N/A N/A N/A 105 ms
95% CI 102-146 ms N/A N/A N/A 102-232 ms
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FIGURE 5.9: Unfiltered scene categories: ROIs achieving signifi-
cant decoding performance across subjects in the searchlight source-

space MVPA analysis (P<0.001, cluster-corrected across time).

5.5.2 From low-level to categorical representations

Within-frequency decoding

To assess spatial frequency preferences in the processing of natural scenes, we per-

formed within-spatial frequency and cross-spatial frequency classification using

occipital sensor-level MEG responses. Only HSF stimuli achieved above-chance

decoding performance in within-spatial frequency classification (Table 5.2). Classi-

fication accuracy reached significance at 175 ms post-stimulus onset for the scene vs

scrambled decoding problem, and briefly at 183 ms for the urban vs natural scene

decoding problem (Figure 5.10), thus following a similar timecourse to the decod-

ing of unfiltered scenes.

Cross-frequency decoding

We performed cross-frequency decoding to evaluate the generalizability of scene

responses across spatial frequencies. This allowed us to assess, for example, whether

a decoder trained to classify scenes on a set of LSF stimuli could generalize to a set

of HSF stimuli and vice versa.

We were unable to detect a truly high-level response (i.e., above-chance gener-

alization across LSF and HSF stimulus sets). Successful cross-decoding was only

achieved when classifying between scenes and scrambled stimuli across LSF and

broadband stimulus sets (Figure 5.10) starting at ~168 ms after stimulus onset.

Contrast-related asymmetries in SNR pose a potential concern to this analy-

sis (we note lower signal amplitudes in response to high spatial frequency, low
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TABLE 5.2: The role of spatial frequency in scene category decoding

Within-frequency Cross-frequency
Scene vs Scrambled LSF HSF LSF - HSF HSF - Broadband LSF - Broadband

Max accuracy 54.63% 56.43% 53% 53.42% 55.3%

95% CI
52.24%, 54.41%, 51.51%, 51.96%, 53.65%,
58.73% 58.23% 55.7% 54.75% 57.94%

Max sensitivity 54.47% 55.85% 53.76% 56.66% 56.22%
Max specificity 56.95% 57.31% 54.97% 54.57% 54.97%
Decoding onset N/A 175 ms N/A N/A 168 ms
95% CI N/A 133-208 ms N/A N/A 165-177 ms

Natural vs Urban

Max accuracy 53.17% 54.97% 52.82% 53.29% 52.91%

95% CI
49.06%, 51.41%, 51.56%, 51.73%, 50.89%,
56.59% 59.41% 54.57% 55.2% 54.62%

Max sensitivity 54.82% 56.38% 54.33% 53.69% 52.58%
Max specificity 55.15% 56.38% 55.75% 56.95% 57.31%
Decoding onset N/A 183 ms N/A N/A N/A
95% CI N/A 183-282 N/A N/A N/A

contrast stimuli; see Figure 5.7E). However, when decoding scenes from scram-

bled stimuli within each spatial frequency condition, higher accuracy was achieved

on the HSF stimulus set than the higher contrast LSF set (Figure 5.10), suggesting

that discriminating information is present at high spatial frequencies despite lower

SNR. The lower recognizability of LSF scenes (as shown in the behavioural experi-

ment) may explain the lower accuracies obtained in their classification.

Despite this, cross-decoding results suggest that responses to unfiltered scenes

are based on LSF features within 200 ms of stimulus onset. Successful cross-decoding

points to a similarly structured multidimensional feature space across conditions,

allowing successful generalization of the classifier decision boundary (Grootswa-

gers et al., 2017). In our case, comparable results are achieved in both directions

of training and testing, suggesting that despite lower classification rates within the

LSF stimulus set, LSF features play an important role in natural scene perception.

Although HSF features appear to contain information discriminating scenes from

scrambled stimuli, it is more likely that these are associated with low-level percep-

tion, as they fail to generalize to broadband scene representations. Together, the

MVPA analyses describe natural scene perception as a multi-stage process, with

different spatial frequencies playing different roles in the encoding of information

in visual cortex.
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FIGURE 5.10: The role of spatial frequency: Time-resolved decoding
accuracies (±SEM) for both decoding problems using the occipital
sensor set. Left: decoding within spatial frequency (HSF and LSF);
Right: cross-decoding across the broadband and LSF stimulus sets.
Above-chance decoding time windows are marked with horizontal

lines (P<0.01 corrected).

Low-level and categorical representations in visual cortex

We interrogated the structure of neural representations using two RSA analyses.

First, we performed RSA to test for partial correlations between MEG responses to

scenes and four models guided by low-level properties or high-level category dis-

tinctions between stimuli. Neural patterns correlated most often and significantly

with the spatial frequency-based model (maximum correlation ρ = 0.24, P < 0.01;

Figure 5.11), with a few ROIs (shown below) showing significant correlations with

the spatial envelope and scene category models (maximum ρ = 0.18 and ρ = 0.14

respectively, P < 0.01). No correlations with the scene identity model reached sig-

nificance after correction for multiple comparisons (ρ < 0.16, P > 0.039).

The spatiotemporal evolution of different scene representations is shown in Fig-

ure 5.11B. Before 150 ms, responses in early visual areas such as the lingual gyrus

and calcarine cortex significantly correlated with the spatial frequency model, with

correlations extending parietally and temporally later (150–250 ms). Interestingly,

responses in posterior cingulate, temporal and extrastriate ROIs, where we might
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expect selective responses to scenes, correlated with the spatial frequency RDM at

relatively late time points. These included areas identified in the MVPA analysis as

supporting scene decoding.

Spatial envelope correlations were less represented in this dataset than reported

by others (Ramkumar et al., 2016; Rice et al., 2014) and recruited occipito-parietal

areas at ~210 ms. Interestingly, these correlations appeared later than those with

the scene category model, suggesting overlapping processing of low-, mid- and

high-level properties in the visual system (Ramkumar et al., 2016).

While the scene identity model did not predict MEG patterns, the scene cate-

gory model correlated with responses in the visual cortex at ~180 ms post-stimulus

onset. We note that correlations with the spatial frequency and the spatial envelope

RDMs were partialled out of this analysis; it is thus likely that these correlations re-

flect true categorical differences in perception. This stage in processing coincides

with the emergence of an occipital LSF scene response in the cross-decoding anal-

ysis (Figure 5.10).

After excluding the contribution of the RMS contrast-based RDM from the par-

tial correlation analysis, the spatial frequency sensitivity revealed earlier was di-

minished. This is in line with previous reports suggesting that spatial frequency

processing is dependent on the amplitude spectrum (Andrews et al., 2010; Kauff-

mann et al., 2015a). RMS contrast also appeared to impact spatial envelope cor-

relations, which arose later in this analysis (Figure 5.12). Interestingly, significant

correlations with the category-based model occurred at the same timepoints and in

the same ROIs as in the previous analysis, reinforcing the idea that this is a truly

high-level response.

While the correlation coefficients are relatively low, with a maximum of 5.7% of

the variance explained by the spatial frequency model, the noise estimate suggests

that the maximum correlation detectable in our data is low (mean lower and upper

bound estimates across time and ROIs of ρ = 0.038 and ρ = 0.25 respectively).

These values are comparable with previous RSA results obtained with similar data

(Cichy et al., 2016; Wardle et al., 2016), but higher SNR data (e.g. larger trial num-

bers) would be desirable to increase sensitivity (Nili et al., 2014)).
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FIGURE 5.11: Unfolding of feature-based model representations. A.
Number of ROIs significantly correlated with either of the feature-
based models over time. B. Summary view of the ROIs significantly
correlated with either of the feature-based models over time, over-
laid on the MNI template brain (P<0.01 corrected). For bilateral
ROIs, one hemisphere is shown for clarity. C. Example of correla-
tion time-course (in steps of ~16 ms) for the two visual cortex ROIs
showing category-related representations. The gray shaded areas
represent the noise ceiling, delineated by upper and lower bounds
in black. The upper bound was calculated by correlating the aver-
age neural RDM across subjects to each individual’s neural RDM,
while the lower bound was obtained by correlating each individ-
ual’s RDM to the average of the remaining 18 subjects’ RDMs. 95%
confidence intervals on the noise ceiling bounds are represented in
dark gray. The horizontal lines show significant correlations arising
when the correlation coefficient overlaps with the noise estimate, as

expected (P<0.01 corrected).
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FIGURE 5.12: Unfolding of feature-based model representations af-
ter partialling out correlations with RMS contrast. A. Number of
ROIs significantly correlated with either of the feature-based mod-
els over time after partialling out the RMS contrast-based model. B.
The RMS contrast-based model RDM. C. Summary view of the ROIs
significantly correlated with either of the feature-based models over
time, overlaid on the MNI template brain (P<0.01 corrected). Note
that scene category correlations remain virtually unchanged. D. Ex-
ample of correlation time-course for the two ROIs after partialling

out RMS contrast.
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Overlapping representations of CNN-based models

We performed a second analysis using model RDMs based on layers of a feedfor-

ward deep neural network to assess the hierarchy of scene representations in the

visual system. Unsurprisingly given the high correlations between layer-specific

RDMs (Figure 5.5), only three layers achieved sustained significant partial correla-

tions with the neural patterns: the second convolutional layer (starting at ~80 ms),

the first convolutional layer (starting at ~150 ms), and the seventh fully connected

layer (~180–200 ms).

In line with the results reported above, these representations were temporally

overlapping both in visual cortex and higher-level cortices Figure 5.13). Interest-

ingly, the high-level layer RDM was represented at the same time points as the

categorical representations discussed above, but in higher-level areas including the

posterior cingulate cortex. This highlights the potential of deep neural networks

as a model that can explain representations in scene-selective cortex (as shown

by recent fMRI work linking OPA patterns with CNN features: Bonner and Ep-

stein, 2018); however, at ~180–200 ms, both the low-level and high-level CNN lay-

ers make significant unique contributions to explaining the variance in these ROIs.

Note also that the high-level CNN RDM is correlated to the low-level feature mod-

els (Figure 5.5) and is more dependent on stimulus visual properties than the cat-

egorical models tested in the previous analysis. Thus, CNN-based representations

paint a complementary picture to the feature-based models, while providing ad-

ditional evidence against a low-to-high hierarchy of scene processing in the visual

system.

5.6 Discussion

Using natural and urban scene stimuli filtered at different spatial frequencies, we

tracked the spatiotemporal dynamics of scene perception and tested for low-level

and high-level representations of scenes using MEG. We report three main findings

based on these analyses.
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FIGURE 5.13: Unfolding of CNN-based model representations. A.
Number of ROIs significantly correlated with either of the CNN-
based models over time. B. Summary view of the ROIs significantly
correlated with either of the CNN-based models over time.C. Time-
course of correlations with CNN-based models in bilateral posterior

cingulate cortex.



156 Chapter 5. From features to categories in natural scene perception

First, we used MVPA to reveal early (~100 ms) scene processing in the visual

cortex. Brain areas along the dorsal and ventral streams encoded information dis-

criminating scenes from scrambled stimuli, while scene category was decodable

mainly in visuoparietal cortex.

Second, we used a cross-decoding procedure with independent training and

test sets to show the emergence of a response to scenes encoded at low spatial

frequencies within 200 ms post-stimulus onset.

Finally, time-resolved RSA results revealed a high-level representation of scene

category arising in extrastriate visual cortex at ~180 ms. Both low-level and high-

level brain areas contained spatial frequency representations, although these were

shown to be dependent on RMS contrast. Furthermore, representations based on

layers of a feedforward neural network correlated with patterns in visual and higher-

level regions in a temporally overlapping fashion, adding to the evidence of non-

hierarchical processing of natural scenes.

5.6.1 Temporal dynamics of scene processing

To date, there has not been extensive electrophysiological research into the tempo-

ral dynamics of natural scene processing. Previous studies have isolated responses

to scenes by contrasting different types of scenes (Bastin et al., 2013; Cichy et al.,

2016; Groen et al., 2013; Groen et al., 2016), or scenes and faces (Rivolta et al., 2012;

Sato et al., 1999) or objects (Harel et al., 2016); however, to our knowledge, no pre-

vious M/EEG study has used matched control stimuli, which are common in the

fMRI literature on natural scenes.

While an early scene-specific event-related field (ERF) component has been re-

ported (M100p: Rivolta et al., 2012), other studies report only late effects (after

200 ms; Groen et al., 2016; Harel et al., 2016; Sato et al., 1999). An MVPA study of

natural scenes identified an early low-level response (100 ms) as well as a later sig-

nal associated with spatial layout (250 ms; Cichy et al., 2016). Here, we also report

evidence of multiple stages in scene processing.

Although no early ERF differences are present in this dataset (possibly due to

the matched control stimuli used; Figure 5.7), the MVPA approach revealed single-

trial differences starting at ~100 ms for natural vs urban scenes, and at ~170 ms for
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scenes vs scrambled stimuli. Classification of natural and urban scenes rose above

chance significantly earlier than scene vs scrambled decoding; the occipital origin

of this effect suggests a potential contribution of low-level systematic differences

between stimulus categories. Successful cross-decoding occurred at similar time

points and appeared to reflect a response to scenes based on LSF features, which

may be reflected in the simultaneous significant correlations of neural patterns with

a scene category model (Figure 5.11). Information about scene category appeared to

also be encoded in HSF features at the same time, although this did not generalize

across stimulus categories. This response may thus reflect low-level differences

encoded at high frequencies and is in line with previous studies showing evidence

of responses to HSF images in scene-selective cortex (Berman et al., 2017). Together,

these results point to divergent processing of features encoded at different spatial

frequencies.

Interestingly, only the extrastriate visual cortex and an area in orbitofrontal cor-

tex showed correlations with categorical scene representations, while the right tem-

poral lobe contained persistent representations of spatial frequency and contrast

(Figure 5.11; Figure 5.12). This suggests that visual features may play a part in

driving responses in scene-selective areas. This is also supported by overlapping

representations of low-level and high-level CNN layer models in areas such as pos-

terior cingulate cortex. On the other hand, categorical responses beyond these areas

may be differently represented or may be dependent on behavioural categorization

goals.

5.6.2 Mapping scene-selective responses

Extensive fMRI research has mapped responses to natural scenes to the visual cor-

tex, OPA, PPA and RSC (e.g. Nasr et al., 2011; Walther et al., 2009). Here, we used

MEG source-space MVPA to detect brain regions responding differently to scenes

and scrambled stimuli, or natural and urban scenes respectively. We found dif-

ferentiating information in visual and parietal cortex when decoding scenes and

scrambled stimuli, with more focal patterns discriminating between natural and

urban scenes. While the lower sensitivity of MEG to deep sources makes it chal-

lenging to detect responses in areas like the PPA, the sources reported here are in
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line with previous research reporting occipito-parietal sources of electrophysiolog-

ical scene-responsive components (Groen et al., 2016; Rivolta et al., 2012).

Furthermore, the RSA mapping of correlations between neural responses and

models based on low-level properties or categorical representations showed no

classic low-to-high-level dissociation in the visual system. For example, spatial

envelope correlations were strongest in occipito-parietal cortex at approximately

230 ms post-stimulus onset, similarly to previously reported correlations with MEG

data (Ramkumar et al., 2016), and occurred later than categorical representations.

Although not an exhaustive descriptor of scene properties, the spatial envelope

model was chosen due to strong evidence that the GIST descriptor accurately rep-

resents global scene properties including naturalness, openness, and texture, which

match representations in the human visual system (Oliva and Torralba, 2001; Rice

et al., 2014; Watson et al., 2017). Significant correlations in parietal areas suggest

that scene-specific dorsal stream areas highlighted in the MVPA analysis may rely

on image statistics. Finally, neural network representations explained posterior cin-

gulate responses in a temporally and spatially overlapping manner, reinforcing the

idea of a complex relationship between visual features and categorical representa-

tions.

Spatial frequency and RMS contrast

When contrast was not removed from the RSA analysis, spatial frequency-related

representations emerged early (within 100 ms) in the primary visual cortex and ex-

tended along the dorsal stream (~160 ms) and later along the ventral stream, as

well as parietal and cingulate areas (~200 ms). Despite the limited spatial resolu-

tion of MEG and of our ROI-based analysis, we note that correlations were strong

in parahippocampal, parietal, cingulate, and inferior occipital areas corresponding

to the reported locations of the PPA, RSC and OPA (Figure 5.11). However, when

we controlled for RMS contrast, spatial frequency representations only remained

strong in visual cortex (~120 ms) and, later, in high-level areas (orbitofrontal and

temporal areas; Figure 5.12). This is in line with previous reports showing spatial

frequency processing in scene-selective areas (e.g. Nasr et al., 2014; Watson et al.,
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2014; Watson et al., 2016, as well as studies suggesting that such effects are depen-

dent on the frequency-specific amplitude spectrum characteristic of natural scenes

(Kauffmann et al., 2015a).

Spatial frequency has been previously shown to have a stronger effect on scene

recognition than independent contrast manipulation, but the interaction between

RMS contrast and spatial frequency elicits the strongest behavioural effects (Kauff-

mann et al., 2015a). The distribution of contrast across spatial frequency follows

a neurobiologically and behaviourally relevant pattern (Andrews et al., 2010; Bex

et al., 2009; Guyader et al., 2004), and was maintained in the present study so as to

avoid introducing irregularities in the amplitude spectra that would modify natu-

ral visual processing strategies. Importantly, contrast did not vary across high-level

stimulus categories and only correlated with spatial frequency, ensuring that rep-

resentations revealed in the MVPA and RSA analyses are contrast-independent.

Categorical representations

In our RSA analysis, category-related representations appeared relatively late in

visual cortex, and could be speculatively linked to feedback mechanisms (Peyrin

et al., 2010). The proximity of the ROIs to the transverse occipital sulcus suggests

the OPA as a potential source of categorical representations.

The emergence of categorical representations at ~180–200 ms post-stimulus on-

set coincides with previous reports of reaction times in human categorization of

natural scenes. Some studies of gist perception report reaction times of at least

250 ms (Rousselet et al., 2005), but studies involving rapid categorization of scenes

as natural or man-made interestingly report median reaction times of approxi-

mately 200 ms (Crouzet et al., 2012; Joubert et al., 2007). Our data show that at ap-

proximately 180 ms the categorical model supersedes the spatial frequency model

in visual cortex, while low-level features are simultaneously processed in higher-

level areas.

CNN layer representations

Previous research has highlighted the potential of CNNs as powerful models in

explaining representations in object- and scene-selective cortex (Groen et al., 2018;
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Güçlü and Gerven, 2014; Khaligh-Razavi and Kriegeskorte, 2014; Yamins and Di-

Carlo, 2016), while an improving understanding of the feature representations em-

ployed by CNNs may in turn shed light on the mechanisms underpinning this link

(Bonner and Epstein, 2018). In the current study, we extracted layer-specific rep-

resentations in order to evaluate whether cortical patterns follow the hierarchy of

a CNN. We found that high-level CNN representations occurred at the same time

as the categorical representations discussed above (and coincided with successful

decoding performance in the MVPA analysis). CNN-based models correlated sig-

nificantly with areas along the dorsal stream, as well as higher-level areas such as

the cingulate cortex, with convolutional and fully-connected layers contributing

unique information to explaining temporally overlapping cortical patterns.

It is important to reiterate that in both MVPA and RSA analyses, lack of decod-

able information or significant correlations does not constitute evidence of absence,

as information may be otherwise represented in the neural data. However, by com-

paring multiple models, we provide evidence of the evolution of neural represen-

tations in time and space. While the RSA analysis of neural network representa-

tions does not match a simple hierachical view of scene processing, it highlights

CNN features as good candidate models in explaining scene-selective cortex rep-

resentations, in line with previous research (Greene and Hansen, 2018; Seeliger et

al., 2017; Yamins et al., 2014). On the other hand, the feature-based RSA analysis

sees categorical representations arise independently of spatial frequency, RMS con-

trast, spatial envelope and scene identity, which, unlike the spatial frequency and

contrast-based representations, do not involve V1. While early differences in our

MVPA analysis may be driven by local low-level differences between scene cate-

gories, the RSA analysis points to a later categorical response, simultaneous with

the response to low spatial frequencies identified in our cross-decoding analysis.

5.6.3 What’s in a category?

A growing body of work suggests that low-level properties play an important part

at all stages of processing in the emergence of category-specific representations

(Groen et al., 2017). Thus, MVPA analysis results can be difficult to interpret. Even

though the stimuli used in our experiment were normalized in terms of contrast



5.6. Discussion 161

and spatial frequency, a number of properties remain that may differentiate be-

tween any two categories, such as the number of edges or the spatial envelope.

While it is to be expected that differences in visual properties underpin any differ-

ences in high-level representations, assessing the role of low-level properties can

help elucidate the source of pattern differences found in our study. Thus, the cross-

decoding and RSA analyses provide additional evidence of a categorical stage in

natural scene perception and help differentiate this from the earlier, visually driven

response revealed by MVPA.

The passive viewing paradigm employed here approached natural viewing con-

ditions and ensured that category effects were not driven by task-related process-

ing, while still controlling for low-level confounds. In the absence of a catego-

rization task, we failed to detect a truly high-level response in our cross-decoding

analysis (i.e., generalization across low and high frequency stimuli; Figure 5.10).

However, the scene-specific response revealed in the decoding analysis generalized

across unfiltered and LSF stimuli within 200 ms, suggesting that low frequency cues

encode scene-specific information at later stages of scene processing. Future stud-

ies could apply a cross-decoding procedure to data collected using a categorization

task in order to investigate the presence of a frequency-invariant response.

Furthermore, we note that failure to achieve above-chance decoding perfor-

mance in LSF decoding or cross-decoding does not preclude the existence of dif-

ferential responses that are otherwise represented in the brain, or that the current

study design did not detect. However, the current results are informative in com-

paring conditions and linking the decodability of stimulus categories to spatial fre-

quency information, thus pointing to preferences in spatial frequency processing

that may underpin the rapid perception of natural scenes.

Although the repetition of a limited set of stimuli across different spatial fre-

quencies has advantages in terms of controlling for low-level properties, this also

poses the concern of stimuli being recognizable between spatial frequency condi-

tions, thus potentially affecting the category differences observed here. However,

the fact that we were unable to cross-decode LSF and HSF scenes suggests that such

a recognition response could not have significantly contributed to decoding results.

Furthermore, such recognition would be expected to affect all conditions equally
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(given the stimulus randomization procedure), and would therefore not explain

the spatial frequency-specific effects reported here. Finally, we included a scene

identity model RDM in our feature-based RSA analysis to assess the recognition

of individual scenes across spatial frequency conditions and found no significant

correlations with the neural patterns. However, future studies could alleviate this

concern by including a larger number of stimuli.

Scene perception is understood as involving a coarse-to-fine processing sequence

using both low spatial frequency cues (rapidly processed and allowing for parsing

of global structure) and high frequency information (which is relayed more slowly

to high-level areas; Kauffmann et al., 2014). The results described in this chapter

link the processing of low frequency cues to the formation of categorical represen-

tations, supporting previous reports of coarse visual analysis as rapid and crucial

to gist perception (Kauffmann et al., 2017; Peyrin et al., 2010; Schyns and Oliva,

1994). On the other hand, HSF representations of scenes do not generalize to un-

filtered stimuli, suggesting that they may encode low-level differences rather than

a categorical response. However, the presence of such a response may reflect HSF

representations previously found in visual and scene-selective areas (Berman et al.,

2017; Walther et al., 2011).

Behavioural results obtained through a separate experiment revealed that scenes

filtered at low spatial frequencies are more difficult to distinguish from scrambled

stimuli than unfiltered or highpass-filtered scenes. This difference was reflected

in the lower decodability of LSF scenes from scrambled stimuli. Low-frequency

scenes thus appear to be more similar to their scrambled counterparts; interest-

ingly, the similarity in contrast between low-frequency and unfiltered scenes does

not provide a categorization or decoding advantage.

However, the difference between the categorization task in the behavioural ex-

periment, with its speed/accuracy tradeoff, and the passive viewing paradigm

used in the MEG, means that behavioural results need to be interpreted cautiously.

The high behavioural performance across participants (over 90%) suggests that de-

spite these differences, stimuli were generally recognizable across categories.

Challenging ideas of a low-to-high-level hierarchy in the visual system, recent
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studies have emphasized the role of low-level properties in scene-selective percep-

tion, while at the same time suggesting that categorical distinctions play an impor-

tant role in behavioural decision-making (Rice et al., 2014; Watson et al., 2016). Such

distinctions may emerge from image features and are not "explained away" by low-

level properties (Groen et al., 2017; Watson et al., 2017). This chapter takes a step

further in explaining how high-level representations arise from the processing of vi-

sual features. The RSA and cross-decoding results suggest that spatial frequency is

relevant in scene perception, with low-frequency features carrying the information

identifying natural scenes as such. Within 200 ms, human visual cortex patterns

switch from a low-level representation of stimuli to a categorical representation

independent of spatial frequency, contrast and spatial envelope. Furthermore, a

convolutional neural network explains representations in visual and cingulate cor-

tex, with high-level layers being represented within 200 ms. These representations

arise in the absence of a task, highlighting the remarkable efficiency with which

features are extracted from our environment.

The account of visual perception emerging from these results is thus comple-

mentary to the conclusions drawn from experiments involving emotional faces in

previous chapters. Categorization of highly relevant stimuli is reflected by neural

patterns even when this is not the object of a task (Chapter 2), while behavioural

goals can impact the spatiotemporal dynamics of visual processing (Chapter 3).

Rather than linearly transforming features into concepts, the visual system enables

human cognition by performing relevance-based selection of cues from the earliest

stages of perception, based on both current behavioural goals, and the evolutionar-

ily adaptive salience of faces and places.
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Chapter 6

General discussion

This thesis investigated expression and scene perception with MEG and multivari-

ate analysis tools. Information mapping techniques revealed the spatiotemporal

dynamics of perceptual processing, starting with category-related biases at the ear-

liest stages of vision. Three of the main ideas about high-level vision suggested

by these findings are highlighted below and are discussed in more detail in the

following sections:

1. Although the chapters on face perception highlight the rapid processing of

faces and expressions, there is no evidence of an expression-related MEG re-

sponse outside awareness and attention. However, expression explains some

of the variance in behavioural responses made outside awareness.

2. Categorical divisions in the ventral visual system are likely to be explained by

feature-based representations linking stimulus properties and behavioural/

conceptual constructs.

3. The temporal and representational dynamics underpinning categorization

adapt to task demands and viewing conditions, maximizing efficiency in line

with behavioural goals.

6.1 Summary of the findings

The first three chapters of this thesis offer complementary perspectives on expres-

sion processing. In Chapter 2, using a passive-viewing paradigm, an early differ-

ential response to angry faces compared to happy and neutral faces, originating in
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the visual cortex, was found and is likely to represent a modulation of the feedfor-

ward response due to emotional salience. In contrast, when using an explicit ex-

pression discrimination task, Chapter 3 found early expression-specific processing

regardless of valence. Neural patterns in the occipitotemporal cortex encoded face

configuration and correlated with behavioural responses; furthermore, the tem-

poral dynamics of feature processing varied with face presentation duration. Fi-

nally, a MEG response to faces presented outside of awareness was detected, but

no such response was found to subliminal expressions, despite the presence of a be-

havioural effect. Similarly, Chapter 4 found no responses to expression outside of

attention, when emotional faces were presented as distractors during an orientation

discrimination task. This did not depend on task difficulty, suggesting that emo-

tional faces were not differentially processed when covert attention was directed to

the opposite hemifield.

In the final chapter, responses to natural scenes were evaluated during passive

viewing. Low-level visual features and scene categories were processed in a tem-

porally overlapping fashion, with a categorical response to scenes emerging at ~180

ms in the extrastriate visual cortex.

6.2 Categorical responses in passive viewing

Two chapters in the thesis investigated category-related responses in passive view-

ing. Chapter 2 investigated MEG responses to facial expressions and scrambled

stimuli, while Chapter 5 assessed the role of spatial frequency and scene category

in natural scene perception.

Despite the lack of a categorization task, both chapters show that stimulus cat-

egory biases visual processing. In Chapter 2, angry expressions elicit early differ-

ential patterns (within 100 ms) in visual cortex, suggesting a role for bottom-up

emotional salience in passive viewing. In Chapter 5, categorical effects in scene

perception emerge at ~180 ms, in line with other reports on scene categorization

(De Cesarei et al., 2018; Mohsenzadeh et al., 2018a; Ramkumar et al., 2016). In the

absence of a task, this highlights a system optimized for extracting category-related

information. However, temporally overlapping representations of low-level and
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high-level information suggest a more complex interplay between features and cat-

egories.

Although in Chapter 2 no analyses of representational content could be con-

ducted, the controlled stimulus set and inverse pattern of effects observed in con-

trol analyses validates the results as likely to reflect early bottom-up processing of

salient cues. This account is supported by the source-space analysis, linking early

effects to visual cortex activity and later stages to temporal and frontal regions. In

future studies, it would be interesting to test whether the features supporting ex-

pression processing under passive viewing are different from the features extracted

during an expression discrimination task (Chapter 3).

6.3 Expression processing outside awareness and attention

In Chapter 3 and Chapter 4, participants viewed the same controlled set of emo-

tional face stimuli under different task conditions: a rapid expression discrimina-

tion task with some targets shown outside subjective awareness, and a covert spa-

tial attention task in which emotional faces acted as distractors. While all emotional

expressions were differentially processed as early as ~100 ms when they were the

object of a task, no evidence of differential neural responses to expression process-

ing was found outside of awareness and attention.

In line with results from Chapter 2, Chapter 3 showed early expression pro-

cessing (~100 ms). This effect emerged only 10-20 ms later than face processing,

suggesting that the extraction of features involved in expression detection occurs

at the early stages of vision. Furthermore, although the two experiments cannot be

directly compared, performing an expression-related task ensured early differen-

tial processing of all three expressions, as opposed to the passive viewing context

of Chapter 2.

In Chapter 3, expression perception was associated with the extraction of face

features and configuration in the ventral strean, when successfully represented

(within awareness). Furthermore, a face detection response localized to occipital

and ventral areas was found outside awareness. This supports a multi-stage ac-

count of face perception, with separable face detection and analysis mechanisms,
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despite the near-simultaneous decoding latencies of faces and expressions found

within awareness. Face detection may rely on coarse, rapidly extracted contrast

structure that is specific to faces without containing any detail (Sinha, 2002).

Although no such response was found to expressions presented outside aware-

ness, expression explained a non-negligible portion of the variance in behaviour.

This suggests that the processing of expression outside awareness is supported by

qualitatively different neural mechanisms. For example, it is important to note that

these data may have been suboptimal for the detection of a subcortical response,

especially if a response to expression outside awareness were to recruit the amyg-

dala via a subcortical route. A possible effect might have been too weak to be

detected in a whole-brain analysis, especially in deep structures, and the spatial

analysis focused on the ventral visual stream specifically, which only represented

face information within awareness.

Finally, in Chapter 4, no evidence of expression processing outside attention

was found with an identical set of face stimuli, presented as distractors during an

orientation discrimination task. Although in this chapter the hypothesis of an in-

tact face detection response could not be tested, the results are in line with reports

suggesting that expression perception requires attention, or at least sufficient atten-

tional resources (Chen et al., 2016; Devue and Grimshaw, 2017; Puls and Rother-

mund, 2018).

Together, these results highlight the importance of both bottom-up and top-

down influences in expression processing, and suggest that the visual system is

highly adaptable to different viewing conditions and behavioural goals. The pat-

tern of results across the three chapters on face perception highlights above all the

highly dynamic nature of the visual system, and its amenability to both endoge-

nous and exogenous factors.
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6.4 Axes in representational space

Decoding analyses typically assess the presence of discriminating information in

neural patterns, while cross-decoding and temporal generalization approaches in-

vestigate their invariance to irrelevant features and their temporal structure. How-

ever, a different approach is needed in order to evaluate the type of information

encoded in these patterns, especially when different stimulus properties may cor-

relate with their category (Chapter 1). In Chapter 3 and Chapter 5, conflicting hy-

potheses about the featural or categorical nature of MEG patterns were tested using

RSA.

In any model-testing approach, one of the main challenges is restricting the pos-

sible model space, while at the same time exploring possible alternatives and con-

founds. To balance hypothesis testing and data-driven exploration (Kriegeskorte

and Kievit, 2013), it is important to test a range of models based on prior infor-

mation and qualitatively different theories. Comparing models and linking them

to behaviour can help refine hypotheses and pinpoint properties essential in rep-

resentation across the visual stream. In the RSA analyses described here, different

featural and categorical models based on previous findings are compared, together

with properties orthogonal to the categories of interest.

In Chapter 3, a set of 9 models was tested using a spatiotemporal searchlight

approach in occipitotemporal cortex, including a first-order and second-order face

configuration model (Diamond and Carey, 1986), spatial envelope, and expression

and identity models. The time-resolved approach revealed a sequence of stages in

face configuration processing with the potential to explain previous conflicting ac-

counts; it also highlighted the dynamic adaptability of such processes to changes

in visual input, and their link to behavioural responses. These results support the

idea of featural coding of face category in the ventral stream (Bracci et al., 2017a)

undergoing continuous optimization in response to behavioural goals, context and

stimulus properties. In this chapter, the behavioural model was particularly in-

formative in assessing the relevance of both neural patterns and stimulus features.

Establishing a link between behaviour and neural representations can suggest that
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the latter are actively used in processing (Carlson et al., 2017), and is thus an im-

portant step when studying task-related processes.

A similar picture emerges from the results of Chapter 5, which contradict strictly

hierarchical models for visual processing. Ongoing low-level feature processing

appears to underscore categorical representations in both visual and temporal ar-

eas. Furthermore, directly testing hierarchical feature representations using layer

activations from a DNN reveals additional evidence: although high-level layers are

represented mainly in posterior cingulate patterns, and later than low-level layers

(~200 ms), low-level layers elicit temporally overlapping correlations with patterns

in both visual and higher-level brain areas.

Although models based on stimulus properties and those based on a DNN

represent the stimuli in different ways, the best performing among both sets ex-

plain similar amounts of variance and reach the noise ceiling. This highlights, once

again, the importance of building plausible models, informed by theory, biology,

behaviour, or previous findings, and reminds us of the correlational nature of ev-

idence in neuroimaging analyses. In this case, both approaches have their advan-

tages, and their convergence might ultimately prove to hold the most explanatory

power. Models based on stimulus properties are simple and understandable, have

direct counterparts in behaviour and psychological concepts, and can point us in

the right direction when evaluating opposing hypotheses about the level of abstrac-

tion employed by neural coding in the visual system. On the other hand, DNNs

could inform our hypotheses with new and efficient representations of the data

along category axes. Although at the moment this possibility is limited by the com-

plexity and biological implausibility of DNNs in their current form, architectures

inspired from neural circuits and optimization of DNNs using naturalistic stim-

uli and tasks could alleviate this problem. Furthermore, a better understanding of

the operations performed by DNNs and which of these could be implemented by

neural codes would help the two approaches converge.

Uncovering the axes of representational spaces in the brain is a difficult prob-

lem, in part due to the large number of possible solutions; however, this can be

allievated by approaches like RSA, based on abstracting to a level of representa-

tion where hypotheses become testable, and by computational models bringing
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together advances in computer vision and biological constraints.

6.5 Towards dynamic representations

Selection mechanisms are essential in visual processing, given the complexity of

visual input: an exhaustive analysis of the environment would be inefficient. Vi-

sual perception can thus be seen as a type of perceptual decision-making (Seger

and Peterson, 2013), with both bottom-up and top-down modulations contributing

to visual analysis. In line with this view, one of the main ideas emerging consis-

tently from all chapters is that of a dynamic, efficient, and adaptable visual system,

which both detects evolutionarily relevant cues in the environment, and optimizes

its responses in accordance with behavioural goals. In Chapter 2 and Chapter 5, we

see evidence of the former in the early expression-related biases and the emergence

of categorical responses in the absence of a task. Conversely, in Chapter 3 and

Chapter 4, we see top-down effects impact expression processing and temporal dy-

namics change in order to accomplish the same goal under different conditions.

In keeping with recent discussions of how top-down factors shape perception at all

stages (Gilbert and Li, 2013), these results suggest that the search for a neural repre-

sentational code may have been made more difficult by its dynamic characteristics.

The classic view of visual recognition as a hierarchical process implemented

in the ventral stream (DiCarlo et al., 2012) has recently been challenged by stud-

ies demonstrating how task demands change stimulus representations (Bracci et

al., 2017b; Erez and Duncan, 2015; Hebart et al., 2018; Nastase et al., 2017; Vaziri-

Pashkam and Xu, 2017). Although ventral stream representations are thought to

be less affected by task demands (Bracci and Beeck, 2016; Vaziri-Pashkam and Xu,

2017), few studies have investigated the temporal dynamics of these effects. In

Chapter 3, changes in available visual information are reflected in the temporal dy-

namics of ventral feature representations more prominently than in their spatial

extent; this highlights the importance of studying such processes with high tempo-

ral resolution. Furthermore, evidence of changing information content within the

same cortical areas (Vida et al., 2017, Chapter 3, Chapter 5) points to the dynamic

nature of neural representations, likely to be supported by activation patterns that
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rapidly change in response to feedforward and feedback information. As the re-

sults in this thesis seem to suggest, combining task manipulations with controlled

visual stimuli and time-resolved multivariate techniques is likely to reveal a com-

plex picture of the adaptable neural code supporting high-level vision.

6.6 Conclusions and future directions

6.6.1 Multivariate analyses

This thesis demonstrated the strength of multivariate analysis approaches in track-

ing the dynamics of perceptual processing, and showed how source-space decod-

ing and model testing approaches can tease apart different ideas about neural rep-

resentations. From the outset, multivariate methods were used not for prediction,

but for interpretation (Hebart and Baker, 2017), and analysis choices were made to

maximize interpretability. Combining sensor-level with source-space approaches

offered complementary information about the spatiotemporal correlates of visual

perception; cross-exemplar decoding captured categorical responses; cross-decoding

across time and conditions tested the invariance of these responses; and finally, ran-

domization testing assessed the presence of information against an empirical null

distribution. Using controlled experimental designs and stimulus sets was also es-

sential in maximizing the interpretability of these results.

The experiments in this thesis highlight the need to account for low-level prop-

erties and other irrelevant features that may covary with the category of interest, es-

pecially when using sensitive multivariate methods. Methods like RSA permit the

explicit modelling of features that might be contributing to the signal. However, the

selection of appropriate control models can be challenging, as both feature-based

and computational models have been used as proxies for low-level features. In

Chapter 3 and Chapter 5, a feature-based approach evaluates the unique variance

explained by different stimulus properties. An advantage of this approach is that

the timecourse and spatial extent of low-level features such as contrast is relatively

well-predicted by existing knowledge, which makes them suitable controls; this

makes results easier to evaluate than when using less explicit computational mod-

els. Furthermore, throughout the thesis, a stimulus normalization approach is used
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in addition to feature modelling. For example, in Chapter 3, the alignment, crop-

ping, contrast matching and Fourier amplitude normalization of the faces leave

only variance in local features uncontrolled. Although the best approach depends

on the aims of each study and the trade-off between naturalistic and controlled

stimuli, such considerations are particularly important when employing multivari-

ate methods.

Furthermore, in most analyses, no assumptions were made about the timing or

localization of an effect, and any ROI selection was performed using data-driven

approaches (e.g. by localizing responses to faces). Together, spatiotemporally-

resolved decoding and RSA analyses comprehensively described both the dynam-

ics of visual perception and their representational content. Although not a standard

approach, performing space-resolved RSA of MEG data takes advantage of the lo-

calization capabilities of MEG and can be a good alternative to cross-modality RSA.

In this thesis, data-driven analyses successfully resolved perceptual processing in

space and time and linked it to computational models and behaviour. As large-

scale, collaborative, cross-modal datasets become more and more common, data-

driven tools can help make sense of rich information and reveal shared patterns

(Baillet, 2017; Smith and Nichols, 2018).

Given the rapid progress of analysis methods and the high dimensionality of

MEG datasets, there are many possible choices in the multivariate analysis of MEG

data. It is only recently that methodological studies have started to uncover the

strengths and weaknesses of some commonly used metrics and approaches (Guggen-

mos et al., 2018; Sato et al., 2018). Future work will use simulated data and the

dataset described in Chapter 5 to quantitatively assess the impact of using differ-

ent analysis pipelines, particularly in source-space decoding. As methods are be-

ing improved, the interpretability and versatility of multivariate analyses will also

increase; for example, cross-exemplar decoding, cross-validation, and noise nor-

malization procedures are becoming widely adopted, improving the reliability of

decoding results.
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6.6.2 Clinical relevance

One of the most appealing characteristics of multivariate methods is their potential

to offer a sensitive, automated and individual-specific marker of neural processing.

As such, decoding methods have been widely implemented in brain-computer in-

terfacing (Horschig et al., 2015), neurofeedback (Okazaki et al., 2015), and in clinical

research (Lu et al., 2013). Although this thesis focused on decoding for understand-

ing brain function in healthy populations, there is a potential for expanding this

work for clinical research. For example, Chapter 3 shows rapid decoding of ex-

pressions presented as briefly as 150 ms; such a rapid presentation paradigm can

be implemented in patient populations to investigate the neural markers associ-

ated with differences in expression discrimination ability (e.g. Clark and Mcintosh,

2008; Kohler et al., 2011; Riwkes et al., 2015). Future work will focus on establish-

ing the potential of within-subject information metrics such as decoding accuracy

in quantifying individual differences, and look at assessing this in patient popula-

tions.

6.6.3 Future directions

Methodological advances in machine learning, technological advances like on-scalp

MEG, and the increase in large-scale collaborations and data sharing signal an ex-

citing time in cognitive neuroscience. Together, these factors can increase the sen-

sitivity and spatiotemporal resolution of non-invasive measures of neural activity.

At the same time, hypothesis-generating computational models may link neural,

psychological, and behavioural levels of analysis within one framework, in which

the building blocks of perceptual processing are representations emerging within

dynamic neural circuits.

As we move from a hierarchical, object recognition framework of high-level vi-

sion to a dynamic model of feature-based representations, finding the right model

will require a combination of experimental designs testing the boundaries of this

adaptability, and computational tools optimized for specific goals. The successful

implementation of object recognition in artificial systems suggests that an under-

standing of vision is not out of reach for modern computational models; however,



6.6. Conclusions and future directions 175

the dynamic aspect of brain computations, which is increasingly highlighted as

important for an efficient and sparse neural coding strategy, is missing in most ma-

chine learning algorithms (VanRullen, 2017). Starting with naturalistic task-based

optimization, or adopting theoretical neuroscience frameworks such as predictive

coding (Hassabis et al., 2017; Rawlinson and Kowadlo, 2017), might be some ways

of increasing the biological plausibility of machine learning algorithms. In turn,

this could open the way to tackling problems beyond object recognition: cognition,

emotion and social perception could be integrated within an information process-

ing framework. Although we are far from an understanding of vision in Marr’s

terms, machine learning offers a new testing ground for potential strategies em-

ployed by the brain to achieve successful, task-relevant visual categorization.
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