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Abstract

This thesis is an investigation into the modelling of compressible viscoelastic fluids. It can

be divided into two parts: (i) the development of continuum models for compressible and

nonisothermal viscoelastic fluids using the generalised bracket method and (ii) the numerical

modelling of compressible viscoelastic flows using a stabilised finite element method.

We introduce the generalised bracket method, a mathematical framework for deriving sys-

tems of transport equations for viscoelastic fluids based on an energy/entropy formulation.

We then derive nonisothermal and compressible generalisations of the Oldroyd-B, Giesekus

and FENE-P constitutive equations. The Mackay-Phillips (MP) class of dissipative models

for Boger fluids is developed within the bracket framework, complimenting the class of phe-

nomenological models that already exist in the literature. Advantages of the MP models are

their generality and consistency with the laws of thermodynamics.

A Taylor-Galerkin finite element scheme is used as a basis for numerical simulations of com-

pressible and nonisothermal viscoelastic flow. Numerical predictions for four 2D benchmark

problems: lid-driven cavity flow, natural convection, eccentric Taylor-Couette flow and ax-

isymmetric flow past a sphere are presented. In each case numerical comparisons with both

empirical and numerical data from the literature are presented and discussed. Numerical

drag predictions for the FENE-P-MP model are presented, displaying good agreement with

both numerical and experimental data for the drag behaviour of Boger fluids.
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Chapter 1

Introduction

1.1 Viscoelasticity

Viscoelasticity is a property of rheological or ‘flowing’ materials. As implied by the name,

it describes substances that display both viscous and elastic responses to deformation. Ex-

amples of viscoelastic fluids are crude oil, molten plastics, blood, toothpaste and sham-

poo. Unlike Newtonian fluids, viscoelastic fluids exhibit behaviour such as the Barius effect,

Weissenberg effect and, in many industrial applications, display shear-thinning and strain-

hardening/softening. Macroscopic phenomena observed in polymeric fluids arise because of

the elastic response to deformation of large molecular chains suspended within the fluid.

The ability to derive mathematical models that can adequately describe the physical be-

haviour of viscoelastic fluids is essential to the advancement of the automotive, polymer and

food processing industries since experimental methods for optimising industrial applications

of viscoelastic fluids are often prohibitively expensive. Moreover, many of these applications

are conducted under conditions where large gradients in pressure and temperature occur

and therefore the ability to accurately predict flow under non-isothermal conditions is also

important.
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1.2 Motivation for this Thesis

Over the last 70 years many significant contributions to the study and characterization of

a vast collection of polymeric materials have been made. However, theoretical advances in

modelling non-isothermal viscoelastic fluids have developed at a more gradual pace.

A plethora of constitutive equations for modelling viscoelastic fluids under incompressible

and isothermal conditions exist in the literature. However, derivation of suitable models

for compressible and nonisothermal flow problems have received far less attention [13]. In

many numerical investigations bespoke rheological models are crafted to suit specific flow

problems and therefore are not applicable to more general problems. In polymer processing

applications, such as injection modelling and high-speed extrusion, the pressure and flow rate

may be large. Furthermore polymer melt flow generally happens at high temperatures where

flow parameters and dynamics are a direct result of thermodynamic relationships between

state variables. Hence, compressible and nonisothermal effects within the viscoelastic regime

may become important and influence resulting flow phenomena. The governing equations

for modelling viscoelastic flow are highly nonlinear, often requiring sophisticated numerical

methods to solve and considerations of compressibility and temperature variation introduce

further complications to an already difficult modelling problem.

Unfortunately, it is not sufficient only to possess knowledge of how the material properties

depend on temperature since in many processing applications such as injection moulding,

film blowing and wire coating, significant temperature gradients perpendicular to the flow

direction arise due to viscous heating. The spatial variation of the material parameters re-

quires a more sophisticated modelling approach than simply time-temperature superposition

in order to describe the flow of polymeric liquids more generally. Thus it is necessary to de-

velop a set of evolution equations that are fully non-isothermal and universally valid. This is

a formidable mathematical modelling challenge and this thesis is a contribution to the body

of literature tackling this problem.
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1.3 Historical Overview

Early work to account for temperature dependence of data used the principle of time-

temperature superposition [75] to superimpose mechanical property data at different temper-

atures by means of an experimentally determined shift factor. This was based on extensive

experimental evidence of creep and recovery in polymeric liquids and allowed data obtained

at one temperature to be used to infer those at another. Of course, this is an empiricism

that is not universally valid. Nevertheless, the approach works well for many liquids over a

wide range of temperatures. The assumption here is that temperature is a control variable

and that a given experiment is performed under isothermal conditions.

Coleman and Noll [20, 21] introduced the concept of a simple fluid in which the stress tensor

and heat flux vector at a given material point are expressed as functions of the history of these

quantities with diminishing influence as one travels into the past. In this theory the stress

tensor and heat flux vector fields of the simple fluid depend on functionals of the deformation

gradient and temperature, which are required to satisfy certain continuity and smoothness

conditions in order to facilitate mathematical analysis. The complexity of the functionals

has meant that the approach has only been implemented in the simplest of situations and so

its applicability has been rather limited – for example, to linear viscoelasticity. Its restriction

to fluids with fading memory also means that the theory excludes Newtonian fluids [77] and

all models that explicitly contain a solvent viscosity since the Newtonian fluid is recovered

as the relaxation time tends to zero.

Marucci [61] developed a kinetic model for non-isothermal polymeric solutions based on

Hookean dumbbell theory. The spring factor in this non-isothermal theory is assumed to

vary linearly with temperature. Gupta and Metzner [40] noted that the additional term in the

constitutive equation that accounts for non-isothermal effects has the wrong sign compared

with experimental data. They suggested a correction to the model in which the constant

stiffness parameter is replaced by a variable stiffness parameter which decays algebraically

as temperature increases.

Using an empirical dependence of viscosity on temperature the resulting constitutive equation
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was used as the basis for numerical simulations by Luo and Tanner [59] and McClelland and

Finlayson [62] of film blowing and extrusion, respectively. Wiest [93] extended these ideas

to the Rouse model and generalized them to models with a discrete spectrum of relaxation

times. However, the resulting constitutive equations are restricted to fluids with a low

degree of elasticity which means that they are not particularly suitable for use in many

polymer processing situations in which elastic effects are just as important as thermal effects.

Sugeng et al. [84] proposed a non-isothermal generalization of the PTT constitutive equation.

However, it is restricted to incompressible fluids and suffers from the difficulty in modelling

spatial temperature variations in the kinetic theory.

1.4 About this Thesis

This thesis aims to be comprehensive in its approach, covering both theoretical and compu-

tational aspects of modelling compressible and nonisothermal viscoelastic fluids. The first

part of this thesis (Chapters 2 and 3) is concerned with the derivation of thermodynamically

consistent mechanical models for non-Newtonian fluids using the generalised bracket method

(or generalised bracket formalism). Compressible and nonisothermal generalisations of the

Oldroyd-B and FENE-P models are derived and presented. The main contribution in these

chapters will be the derivation of a thermodynamically consistent strain-hardening model

for Boger fluids. The aim of this approach is to derive a model capture the relative drag

enhancement displayed by Boger fluids (Garduño et al [34]) whilst also being applicable to

compressible and nonisothermal flows.

The second part (Chapters 4 - 7) focusses on the numerical modelling of weakly-compressible

viscoelastic flow. We address the challenge that arises when computing viscoelastic flows,

namely the high Weissenberg number problem, by using a stabilised Taylor-Galerkin finite

element method. Computational results for a range of benchmark problems are presented

and the combined effects of compressibility and fluid elasticity are assessed.

9



1.4.1 Outline

In Chapter 2 we introduce the generalised bracket formulation and derive the general

equations governing nonisothermal and compressible viscoelastic flow. In this formulation

the Hamiltonian and Helmholtz free energy are presented as the fundamental quantities used

to consistently model transport in viscoelastic fluids.

In Chapter 3 we use the formulation introduced in Chapter 2 to derive compressible forms

of the Oldroyd-B, Giesekus and FENE-P models. A new constitutive equations (FENE-P-

MP) for modelling Boger fluids is derived. The viscometric behaviour of the derived models

is also presented.

In Chapter 4 we introduce the numerical methods that are used to solve the systems of

governing equations derived in Chapter 3. The governing equations are nondimensionalised

and an equation of state coupling pressure, density and temperature is introduced into the

formulation.

In Chapter 5 we present numerical results for the lid-driven cavity and natural convection

problems. Both are examples of flows with recirculation within a (simple) unit square ge-

ometry and are used to benchmark the numerical scheme. Furthermore, we investigate the

combined effects of viscoelasticity and compressibility, comparing results to those available

in the literature.

In Chapter 6 we present results for the eccentric Taylor-Couette flow of an extended White-

Metzner (EWM) and FENE-P-MP model. Numerical results obtained using those models

are compared to those available in the literature.

In Chapter 7 drag predictions for the flow past a sphere of an (i) Oldroyd-B fluid and (ii)

FENE-P-MP fluid are presented along with comparisons to results from the literature.

Finally in Chapter 8 we present the conclusions from the investigation and discuss avenues

future work.
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Chapter 2

The Generalised Bracket Formulation

In this chapter we introduce the generalised bracket formulation (GBF) formalism for de-

riving models for transport in viscoelastic fluids. Sec. 2.1-2.3 provides a summary of the

literature on the generalised bracket by Beris & Edwards [8, 29] detailing the theory of equi-

librium, nonequilibrium thermodynamics and the bracket description of fluid flow. In Sec.

2.4 we derive an energy balance law based on the general set of governing equations for mass,

momentum, entropy and conformation stress. In Sec. 2.5 we introduce Hulsen’s thermody-

namic admissibility criteria for constitutive laws derived using the generalised bracket. The

key points of the generalised bracket method are summarised in Sec. 2.6.

2.1 The Generalised Bracket Formulation: Overview

The continuum mechanics description of fluid dynamics involves modelling fluids based upon

separate conservation principles. Hamilton’s formulation of Newtonian mechanics provides

an alternative method for deriving sets of governing equations for transport in fluids [43]. A

fluid system, Ω, at time t can be characterised by a set of state variables

{ρ(x, t),m(x, t), s(x, t),C(x, t)} (2.1.1)

where x ∈ Ω and t > 0. Here ρ is the density, m := ρu is the momentum, s is the entropy and
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C is the conformation stress tensor. The most common approach to continuum mechanics

is to derive evolution equations for each of the variables separately, basing each governing

equation on a distinct conservation law. In the generalised bracket method conservation laws

for all state variables are derived directly from the first and second laws of thermodynamics

using a single equation. The fundamental quantity used in the bracket formulation is the

Hamiltonian or total energy, given by

H =

∫
Ω

h(ρ,u, s,C) dΩ =

∫
Ω

[K(ρ,u) + û(ρ, s) + w(C)] dΩ (2.1.2)

In the absence of any field potential the total energy, h, is divided into three parts: kinetic

energy, K, internal energy, û, and elastic energy, w, where u is the velocity field.

To model dissipative phenomena such as viscosity or relaxation, one has to consider the

effects of mechanical degradation. Temporal evolution of the system depends on the energy

available to be converted into mechanical work. Therefore, when modelling dissipative pro-

cesses within the bracket formulation the total energy (Hamiltonian) is replaced by the total

available energy or Helmholtz free energy

A =

∫
Ω

[
K(ρ,u) + w(C) + û(ρ, s)− s(ρ,C)T

]
dΩ (2.1.3)

where T is the absolute temperature defined T = ∂h
∂s

. The central principle that underpins the

generalised bracket method is that the dynamics of an arbitrary functional, F , are governed

by the evolution equation
dF

dt
= {[F,A]}, (2.1.4)

where {[·, ·]} is the generalised bracket and A is the Helmholtz free energy of the system, Ω.

The generalised bracket is itself composed of two sub-brackets

{[F,A]} = {F,A}+ [F,A]. (2.1.5)

The first bracket, {·, ·}, is the Poisson bracket which describes the conservative dynamics
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of the system. The Poisson bracket has been used in descriptions of particle systems since

the development of Hamiltonian mechanics [43]. The Poisson bracket for continuous media

was developed by Morrisson and Greene [64] as well as Dzyaloshinskii and Volovick [28].

Later developments were introduced by Beris & Edwards [29]. The second bracket [·, ·]

describes the nonequilibrium dynamics, specifically viscous dissipation, stress relaxation and

non-affine motion. The theory of the dissipative Hamiltonian dynamics was first introduced

by Grmela [37] and developed by Kaufman [49] and Morrison [65]. The first application of

the dissipative bracket to rheology was done by Grmela [38].

2.2 Equilibrium Thermodynamics: The Poisson Bracket

To introduce the generalised bracket formulation, we begin by considering the dynamics of

non-dissipative systems. A reversible process is one in which the system remains in a state

of maximum entropy. In practice, completely reversible processes are impossible, however

just in the same way as one is first introduced to classical mechanics using ‘ideal’ conditions

(i.e. no friction/ air resistance etc), in order to develop the theory we need to understand

non-dissipative phenomena. Let Ω be the domain occupied by a fluid and F is an observable

(functional) defined over the state variables on Ω,

F = F (ρ(x, t),m(x, t), s(x, t),C(x, t)). (2.2.1)

Then the fundamental equation governing non-dissipative fluid transport is given by

dF

dt
= {F,A}, (2.2.2)

where A is the Helmholtz free energy. The bracket {·, ·} is anti-commutative, distributive

and satisfies the Jacobi identity. Importantly, if any function, φ is constant over phase space

then {f, φ} = 0 for any f . The Poisson Bracket in Lagrangian coordinates is derived by

taking the limit as N → ∞ of the expression for the Poisson bracket for N particles (see

(A.1.3)) and can be written
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{F,A}L =

∫
Ω

[
δF

δΓ

δA

δΠ
− δF

δΠ

δA

δΓ

]
d3r, (2.2.3)

where Γ(r, t) and Π(r, t) are the Lagrangian position and momentum vector fields, respec-

tively [8]. Assume that for a viscoelastic medium the observable F is a function of the state

variables we wish to model, specifically ρ(x, t), m(x, t) := ρu(x, t), s(x, t) and C(x, t). Use

of a chain rule expansion yields

dF

dt
=

∫
Ω

[
δF

δρ

∂ρ

∂t
+
δF

δm
· ∂m

∂t
+
δF

δs

∂s

∂t
+
δF

δC
:
∂C

∂t

]
dΩ. (2.2.4)

In order to obtain working equations, Eq. (2.2.3) must be expressed using a (Cartesian)

fixed coordinate frame. An expansion of derivative terms in Eq. (2.2.3) yields

δF

δΓi
=

∫
Ω

[
δF

δρ

δρ

δΓi
+

δF

δmj

δmj

δΓi
+
δF

δs

δs

δΓi
+

δF

δCkj

δCkj
δΓi

]
dΩ, (2.2.5)

δF

δΠi

=

∫
Ω

[
δF

δρ

δρ

δΠi

+
δF

δmj

δmj

δΠi

+
δF

δs

δs

δΠi

+
δF

δCkj

δCkj
δΠi

]
dΩ. (2.2.6)

Substituting Eq. (2.2.5) and Eq. (2.2.6) into Eq. (2.2.3) and applying integration by parts

utilizing the no-slip boundary conditions on ∂Ω, the Eulerian form of the continuous bracket

is derived.
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{F,A}E =−
∫

Ω′

[
δF

δρ
∇j

(
ρ
δA

δmj

)
− δA

δρ
∇j

(
ρ
δF

δmj

)]
dΩ

−
∫

Ω′

[
δF

δmk

∇j

(
mk

δA

δmj

)
− δA

δmk

∇j

(
mk

δA

δmj

)]
dΩ

−
∫

Ω′

[
δF

δs
∇j

(
s
δA

δmj

)
− δA

δs
∇j

(
s
δF

δmj

)]
dΩ

−
∫

Ω′

[
δF

δCij
∇k

(
Cij

δA

δmk

)
− δA

δCij
∇k

(
Cij

δF

δmk

)]
dΩ

−
∫

Ω′
Cki

[
δA

δCij
∇k

(
δF

δmj

)
− δF

δCij
∇k

(
δA

δmj

)]
dΩ

−
∫

Ω′
Ckj

[
δA

δCij
∇k

(
δF

δmi

)
− δF

δCij
∇k

(
δA

δmi

)]
dΩ

(2.2.7)

Substituting (2.2.4) and (2.2.7) into Eq. (2.2.2) general dynamic equations for ρ, ρu, s and

C can be established by comparing coefficients in the expansion1. In order to complete

the process however, one must establish an expression for the energy functional (Hamiltoni-

an/Helmholtz free energy) in terms of the dynamic variables that have been specified. The

simplest form of this expression is obtained through a decomposition of energy into kinetic

and stored/potential energy. In the absence of potential fields (gravity/electromagnetism)

the Helmholtz free energy can be categorised into two parts: kinetic and internal energy.

Beris and Edwards [8] include further discussion of field energy potential terms that can be

modelled relatively easily using this method. Classical forms of the expressions for K and û

are used. Taking derivatives of Eq. (2.1.3) we obtain

δA

δm
=

m

ρ
= u

δA

δs
= T

δA

δρ
=

m ·m
2ρ

+
∂û

∂ρ

(2.2.8)

1 For a detailed derivation of Eq. (2.2.7) please see Appendix A (Sec. A.2.3) or alternatively Beris and
Edwards [8] p.87-165.
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The Volterra derivative of the Hamiltonian with respect to the conformation tensor, C,

is dependent on the expression for elastic energy, w, that is chosen. Substituting these

expressions into (2.2.7) and comparing coefficients we obtain the system of equations for

non-dissipative compressible viscoelastic flow

∂ρ

∂t
= −∇ · (ρu)

∂s

∂t
= −∇ · (su)

ρ
∂u

∂t
= −∇p− ρu · ∇u + 2∇ ·

(
C · ∂A

∂C

)
∂C

∂t
= −∇ · (uC) +∇u ·C + C · ∇uT

(2.2.9)

Pressure is automatically defined as a function of the dynamic variables and derivatives of

the internal energy function

p := ρ
∂û

∂ρ
+ s

∂û

∂s
+ C :

∂û

∂C
− û. (2.2.10)

The first three equations in (2.2.9) represent the conservation of mass, entropy (for non-

dissipative processes) and momentum (in the absence of diffusion). The non-dissipative

description of fluid motion contains no viscous or relaxation terms, hence the viscous stress

tensor and relaxation terms in the conformation tensor equation do not appear. Another

significant feature of the continuous Poisson bracket is that the material and upper convected

derivatives are the natural time derivatives that arise in the derivation of the balance law for

u and C, respectively. The last equation in (2.2.9) is equivalent to the vanishing Truesdell

derivative of C, hence material objectivity is satisfied from the outset.

The system of equations (2.2.9) is adequate for describing compressible fluids such as liquid

helium, plasmas and other superfluids that exhibit no dissipative phenomena (viscosity/re-

laxation). A limitation to the applicability of the Poisson bracket is that it can only describe

conservative transport phenomena [8]. In order to adequately model non-equilibrium phe-

nomena such as viscosity and relaxation, Eq. (2.2.2) will have to be modified to include an
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additional term.

2.3 Non-Equilibrium Thermodynamics and the Gen-

eralized Bracket

Around the same time that Hamiltonian mathematics was being developed, mathematicians

and physicists were starting to make some headway into understanding irreversible processes.

Informally, a reversible process is one that if you could film in action, the footage of it played

in reverse is a physical possibility. For example a ball rolling along a smooth (frictionless) flat

surface or a spacecraft far away from a gravitational field travelling at a constant velocity.

The time reversal of these situations is a physical possibility (another name for this condition

is T-symmetry). An irreversible process is one in which time reversal is an impossibility. A

ball rolling on a rough surface is a good example of an irreversible thermodynamic process.

The ball will be slowed to a halt with the time taken depending on the coefficient of friction

between the ball and the surface. The time reversed scenario would show the impossible

situation of a ball accelerating from rest due to ‘anti-friction’ with no real forces acting on

it. All real life processes are irreversible i.e. dissipate mechanical energy in some way and

it is impossible to reach 100% efficiency. This consideration significantly reduces the total

number of possible ways in which a system can behave.

In Section 2.2 we considered the dynamics of continuous media in which the entropy is

conserved and the mechanical energy remains constant over time. For real processes however

the mechanical energy degrades at a rate proportional to the rate of increase of entropy.

This means that our conservation law for entropy has to be generalised to account for non-

decreasing entropy. For the generalized bracket we must also ensure that dH/dt = 0. Using

Eq. (2.2.2) we can show that

dH

dt
= {H,H}+ [H,H] = 0 =⇒ [H,H] = 0.
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In order to satisfy the second law of thermodynamics, the entropy functional

S =

∫
Ω

sdΩ,

must satisfy
dS

dt
= {S,H}+ [S,H] ≥ 0,

which in turn means [S,H] ≥ 0 as {S,H} = 0. Throughout this thesis we will use the

standard Marrucci definition of the entropy functional

S(ρ,C, T ) =

∫
Ω

αρkbT

2
log det

(
KC

kbT

)
dΩ, (2.3.1)

where α is the mass fraction, kb is the Boltzmann constant, K is the spring constant (for

further explanation of the expression for entropy see Beris and Edwards [8] p.224). Further-

more, the total mass

M≡
∫

Ω

ρdΩ,

is conserved, even whilst including dissipative effects, therefore

dM
dt

= {M, H}+ [M, H] = 0,

meaning [M, H] = 0. Given two observables, F and G operating on Ω, the most general

form of the dissipation bracket, obeying the first and second laws of thermodynamics, is

given by

[F,G] =

∫
Ω

[
Ξ

(
L

[
δF

δω
,∇δF

δω

]
;
δG

δω
;
δG

δω

)
− 1

T

δF

δs
Ξ

(
L

[
δG

δω
,∇ δG

δwω

]
;
δG

δω
;
δG

δω

)]
dΩ, (2.3.2)

where ω = (ρ,m, s,C) is a vector containing the dynamic variables, L[·] denotes that Ξ is

linear with respect to its arguments and Ξ is given by

Ξ = Σi,j

[
Âij

δF

δωi

δG

δωj
+B̂ijk

δF

δωi
∇k

(
δG

δωj

)
+Ĉijk∇k

(
δF

δωi

)
δG

δωj
+D̂ijkl∇k

δF

δωi
∇l

δG

δωj

]
. (2.3.3)
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Eq. (2.3.2) represents the most general expression for a dissipation bracket consistent with

the first and second laws of thermodynamics. In Eq. (2.3.3), Âij, B̂ijk, Ĉijk, D̂ijkl are

phenomenological coefficient matrices, which depend on the dynamic variables of the system.

Beris and Edwards [8] discuss the general forms that these coefficient matrices take when

used for modelling a range of fluids and composite rheological materials. Most well-known

viscoelastic models can be derived by specifying a non-zero form for each phenomenological

tensor. Using an alternative factorisation of the terms in Eq. (2.3.3) we can show that for a

general viscoelastic fluid the dissipation bracket takes the form

[F,A] =−
∫

Ω

Qijkl∇i

(
δF

δmj

)
∇k

(
δA

δml

)
dΩ

+

∫
Ω

1

T

δF

δs
Qijkl∇i

(
δA

δmj

)
∇k

(
δA

δml

)
dΩ

−
∫

Ω

Λijkl
δF

δCij

δA

δCkl
dΩ

+

∫
Ω

1

T

δF

δs
Λijkl

δA

δCij

δA

δCkl
dΩ

−
∫

Ω

Lijkl

(
∇i

δF

δmj

δA

δCkl
−∇i

δA

δmj

δF

δCkl

)
dΩ

−
∫

Ω

αij∇i

(
δF

δs

)
∇k

(
δA

δs

)
dΩ

+

∫
Ω

1

T

δF

δs
αij∇i

(
δA

δs

)
∇k

(
δA

δs

)
dΩ,

(2.3.4)

where Λ and Q are fourth-order relaxation and viscosity tensors, respectively, L represents

non-affine interactions between the velocity gradient and conformation tensor fields and α is

the thermal conductivity matrix (see Sec. 2.4). The forms that the three dissipative tensors

can take vary significantly due to the limited number of assumptions used in this formulation.

Most importantly Λ, Q and L have to satisfy the Onsager reciprocal relations and frame

indifference principles. In practice this means that the coefficients of Λ are functions of the
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principle invariants of C (see [8] p.264-272), the coefficients of Q are positive constants (see

Beris and Edwards [8] p.184) and the coefficients of L are functions of the invariants of C

and ∇u [56].

The generalised bracket for modelling transport in nonisothermal and compressible viscoelas-

tic fluids is obtained by adding Eq. (2.3.4) to Eq. (2.2.7):
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{[F,A]} =−
∫

Ω

[
δF

δρ
∇j

(
ρ
δA

δmj

)
− δA

δρ
∇j

(
ρ
δF

δmj

)]
dΩ

−
∫

Ω

[
δF

δmk

∇j

(
mk

δA

δmj

)
− δA

δmk

∇j

(
mk

δA

δmj

)]
dΩ

−
∫

Ω

[
δF

δρ
∇j

(
s
δA

δmj

)
− δA

δs
∇j

(
s
δF

δmj

)]
dΩ

−
∫

Ω

[
δF

δCij
∇k

(
Cik

δA

δmk

)
− δA

δCij
∇k

(
Cij

δF

δmk

)]
dΩ

−
∫

Ω

Cki

[
δA

δCij
∇k

(
δF

δmj

)
− δF

δCij
∇k

(
δA

δmj

)]
dΩ

−
∫

Ω

Cki

[
δA

δCij
∇k

(
δF

δmj

)
− δF

δCij
∇k

(
δA

δmj

)]
dΩ

−
∫

Ω

Qijkl∇i

(
δF

δmj

)
∇k

(
δA

δml

)
dΩ

+

∫
Ω

1

T

δF

δs
Qijkl∇i

(
δA

δmj

)
∇k

(
δA

δml

)
dΩ

−
∫

Ω

Λijkl
δF

δCij

δA

δCkl
dΩ

+

∫
Ω

1

T

δF

δs
Λijkl

δA

δCij

δA

δCkl
dΩ

−
∫

Ω

Lijkl

(
∇i

δF

δMj

δA

δCkl
−∇i

δA

δMj

δF

δCkl

)
dΩ

−
∫

Ω

αij∇i

(
δF

δs

)
∇k

(
δA

δs

)
dΩ

+

∫
Ω

1

T

δF

δs
αij∇i

(
δA

δs

)
∇k

(
δA

δs

)
dΩ.

(2.3.5)

Expanding the left-hand side of Eq. (2.1.4) using the chain rule and then comparing like

terms with the right-hand side of Eq. (2.3.4) and Eq. (2.2.7) we obtain the differential form

of the governing equations for the state variables
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∂ρ

∂t
+∇ · (ρu) = 0 (2.3.6)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · T (2.3.7)

∂s

∂t
+∇ · (su) =

1

T
Q ::

(
∇u⊗∇u

)
+

1

T
∇ · (αT∇T ) +

1

T
Λ ::

(
δA

δC
⊗ δA

δC

)
(2.3.8)

O
C +(∇ · u)C = −Λ :

δA

δC
+ L : ∇u, (2.3.9)

with T given by

T = Q : ∇u + 2
δA

δC
·C + 2L :

δA

δC
, (2.3.10)

where we define

A :: B =
∑
i,j,k,l

AijklBijkl C⊗D = CijDkl

a · b =
∑
k

akbk

The pressure is defined in terms of the internal energy

p = −û+ ρ
∂û

∂ρ
+ s

∂û

∂s
+ C :

∂û

∂C
(2.3.11)

Eq. (2.3.6)-(2.3.10) is the general set of governing equations from which specific viscoelastic

fluid models can be derived by specifying a form of the Helmholtz free energy and tensors

Λ, Q and L (for further discussion of the general governing equations see [8] p.328-335).

2.4 The Energy Balance Equation

We can now derive an energy balance equation using Eq. (2.3.6)-(2.3.9). The time derivative

of the Helmholtz free energy is given by
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∂a

∂t
=

∂

∂t

(
ρ

2
u · u + â(ρ, s,C)

)
. (2.4.1)

Taking derivatives of â w.r.t. t yields

∂â(ρ, s,C)

∂t
=
∂â

∂ρ

∂ρ

∂t
+
∂â

∂s

∂s

∂t
+
∂â

∂C
:
∂C

∂t
. (2.4.2)

It can be shown via substitution of Eq. (2.3.6)-(2.3.9) into Eq. (2.4.2), that in the absence

of external thermal energy potential, the equation for internal energy is given by

Dâ

Dt
+ (∇ · u)â = ∇ · q + σ̂ : ∇u, (2.4.3)

where

σ̂ = T− L · δA
δC
− p(∇ · u), (2.4.4)

and q = −α∇T . For a more detailed derivation of Eq. (2.4.3) see Sec. (A.4). The thermal

conductivity matrix, α, is a function of the conformation stress, to the extent dictated by

the Cayley-Hamilton theorem (see [8] p.331)

α = a1I + a2C + a3C ·C, (2.4.5)

where scalar coefficients a1, a2 and a3 are, in general, functions of the invariants of the

conformation stress [8]. To ensure non-negative entropy production the following conditions

must hold:

a1 ≥ 0, a2 + a3 ≥ 0. (2.4.6)

The body of theoretical and experimental work suggests thermal conductivity in polymeric

fluids is anisotropic under flowing conditions [8, 41]. Experiments on cross-linked elastomers

show a significant enhancement in thermal conductivity in the direction of stretch for natural

rubber subjected to uniaxial elongation (Tautz [85]). Moreover, Cocci and Picot [19] showed

that, for polymeric liquids, thermal conductivity in the direction of strain of the macro-
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molecule was much higher than perpendicular to it. For dilute polymer solutions Van den

Brule and Slikkerveer[87] defined a1 as the anisotropic thermal conductivity of the solvent

and ai i ∈ {2, 3} are given by

a2 =
3ζ

2m
αρkb, a3 = 0, (2.4.7)

where m is the mass of the polymer and ζ is the friction coefficient. A detailed review of the

theory behind the derivation of the energy equation was given by Dressler et al. [25] with a

discussion of the thermal coefficient matrix on p.124.

In order to avoid complicating the analysis, in the benchmark problems considered in Chap-

ters 5-7 we will assume that the heat condition is purely isotropic i.e.

a1 = κ, a2 = 0 a3 = 0. (2.4.8)

It is understood that this assumption does limit the applicability of results to polymeric

fluids where strong nonisotropic thermal conductivity is observed and future work should

consider this as a major area of development.

2.5 Thermodynamic Consistency and Hulsen’s Theo-

rem

Within the context of the generalised bracket theory the governing equation of the confor-

mation tensor takes the form

O
C +(∇ · u)C = f̂1(C)I + f̂2(C)C + f̂3(C)C2, (2.5.1)

where f̂i(C) i ∈ {1, 2, 3} are general functions of the invariants of C. Hulsen examined the

mathematical behaviour of the conformation tensor obeying (2.5.1) and provides us with a

condition ensuring the consistency of our model.
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Theorem 2.5.1 (Hulsen [46]) Given that c satisfies the differential equation given by

(2.5.1) and c(x,0) is positive definite. Then if f̂1(c) > 0 and ∇u finite, c remains posi-

tive definite for all t > 0.

To invoke Hulsen’s theorem it is sufficient to analyse the behaviour of f̂1(C) for positive

definite C (further discussion on Hulsen’s theorem and analysis of the conformation tensor

is given on p.279 [8] and Hulsen’s 1990 paper on conformation tensor theory [46]).

2.6 Summary

We have presented the theory behind the generalised bracket method for deriving viscoelastic

fluid models, detailing the theory behind the Poisson bracket (Sec. 2.2) and dissipative

bracket (Sec. 2.3). The generalised bracket framework (GBF) formalism is modular and can

be summarised 3 steps

• Module 1: Choose variables that characterise the state of the system, i.e mass density,

ρ, momentum, m = ρu, entropy, s and conformation stress C. It is at this stage that

the continuum approximation is made.

• Module 2: Choose a form of the energy and entropy (or Helmholtz free energy)

functional. Throughout this thesis we use the standard Marrucci entropy (Eq. (2.3.1)).

The constitutive equation depends on the elastic strain energy and entropy functionals.

We consider both linear and nonlinear strain energy formulations when developing the

various models detailed in the next Chapter.

• Module 3: Choose the form of the phenomenological tensors in the dissipative bracket,

ensuring that the dissipative tensors satisfy the Onsager reciprocal relations and the

resulting constitutive equation satisfies Hulsen’s theorem. In this thesis we make use

of the ‘non-affine’ tensor (Beris and Edwards) to derive a new model for Boger fluids.

These three modules provide a framework for deriving thermodynamically consistent models

for transport in viscoelastic fluids. In the next chapter we will present a range of constitutive
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models for nonisothermal and compressible viscoelastic fluids derived using the generalised

bracket framework.
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Chapter 3

Compressible and Nonisothermal

Models Based on the Generalised

Bracket Method

In this Chapter we present a range of viscoelastic models using the generalised bracket frame-

work. In Sec. 3.1.1 we derive general forms of the Maxwell and Oldroyd-B models. Sec. 3.2

presents a constitutive model derived using strain energy for hyperelastic materials formu-

lation and Sec. 3.2.2 presents a derivation of the Leonov model. In Sec. 3.3.1 a generalised

bracket method derived FENE-P model is presented. The most important contribution in

this chapter is in Sec. 3.3.2, where we present the FENE-P-MP constitutive model for

Boger fluids. FENE-P-MP is a generalised bracket method derived model analogous to the

swanINNF(q)-FENE-P model by Garduño, Tamaddon-Jahromi & Webster [34, 35] making

it a suitable candidate for modelling dilute polymer solutions in high pressure/strain-rate

flows.
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3.1 Maxwell-Type Models

3.1.1 The Compressible Oldroyd-B Model

Maxwell-type fluids can be modelled within the generalised bracket framework. First of

all, it is necessary to specify the form of the Helmholtz free energy. Given a Helmholtz

free energy of the form (2.1.2) the system of equations for mass, momentum, entropy and

constitutive law are given by Eq. (2.3.6)-(2.3.9). For an Oldroyd-B fluid the extra stress

tensor is assumed to comprise polymeric and solvent contributions. In order to capture these

two contributions, nonzero forms of Λ and Q need to be specified [8].

3.1.2 Isothermal Compressible Oldroyd B Model

In the first instance we consider the isothermal case where the fluid parameters (viscosities,

relaxation time) are assumed to be independent of temperature. The components of the

relaxation tensor are given by

Λijkl =
1

2nKλ2

(δjlCik + δjkCil + δilCjk + δikCjl) +
2

3αK

(
1

λ0

− 1

λ2

)
δijCkl (3.1.1)

where λ0 = λ0(T ) and λ2 = λ2(T ) are the relaxation times of the fluid. Essentially λ0 and

λ2 represent the trace and the traceless stress relaxation time, respectively. n is the number

density of the polymers and K is the spring constant. The expression for Λ given by Eq.

(3.1.1) satisfies the Onsager reciprocal relations and is positive definite for all positive defi-

nite C. For the purposes of this thesis we will only consider fluids characterised by a single

relaxation time i.e. λ0 = λ2 = λ. Several experiments such as dynamic oscillatory shear have

shown that polymeric fluids often display a spectra of relaxation times. Therefore the as-

sumption of a single relaxation time characterising a polymeric fluid system results in models

that poorly approximate actual material functions. However, it is a necessary assumption

required in order to obtain PDEs that can be easily used for computing viscoelastic flow in

complex geometries.
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Furthermore, Eq. (3.1.1) is one of many forms that Λ can take. The only strict requirement

is that the equation for the conformation tensor ensures C(x, t) is positive definite ∀t > 0.

We have chosen this form as it is one of the simpler expressions for relaxation. In reality both

the viscosity and relaxation time of a fluid will be functions of pressure and temperature

with relationships being uniquely determined for each specific material.

The most general form of the viscosity tensor is given by

Qijkl = µs(δikδjl + δilδjk) + ηs(δikδjl − δilδjk) + κ′sδijδkl (3.1.2)

To satisfy frame indifference (principle of objectivity), ηs has to be set to zero so that

Qijkl = µs(δikδjl + δilδjk) + κ′sδijδkl (3.1.3)

where µs = µs(T ) is the shear viscosity and κ′s = κ′s(T ) = κs(T ) − 2
3
µs(T ) is the ‘second

viscosity’. Using κ′s instead of the bulk viscosity κs permits the separation of gradient and

divergence free terms in the Newtonian viscosity.

Eq. (3.1.3) provides the most general form of a fourth order viscosity tensor that satisfies

the principle of frame indifference and the Onsager reciprocal relations [8]. The subscript

‘s’ denotes that Q is normally associated with the viscosity of the solvent (Newtonian)

component of the fluid. We define the general elastic modulus

G =
µp
λ
, (3.1.4)

where µp is the polymeric viscosity and λ is the relaxation time. Another definition for G

that is often used in the literature is

G = nkbT, (3.1.5)

where kb is the Boltzmann constant and T is the temperature. The number density, n, is

defined as the mass fraction of the polymers and can be defined in terms of the mass density
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as n = αρ, where α is a measure of the degree of elasticity per unit mass of the polymeric fluid

([25] p.129/130). It must also be noted that the ability to linearly decompose the stress into

viscous terms (dependent on µs and ∇u) and elastic terms (dependent on C) is a non-trivial

assumption. The Helmholtz free energy density is given by the sum of the kinetic and internal

energy (elastic strain energy, chemical potential etc.) less a degradation term proportional

to the Boltzmann entropy and temperature (for more details on the relationship between

the Hamiltonian and Helmholtz free energy and relationships between the derivatives of the

two functionals see [8])

A[ρ, ρu, s, T,C] =

∫
Ω

a(ρ, ρu, T,C) dΩ =

∫
Ω

(
ρu · ρu

2ρ
+ â(ρ, T,C)

)
dΩ (3.1.6)

where

â(ρ, s, T,C) = a0(ρ, T ) + w(C)− s(ρ, T,C)T (3.1.7)

For a Maxwell fluid the elastic strain energy is given by

w(C) =
αK

2
(trC− 3) (3.1.8)

Substituting (3.1.8) and (2.3.1) into (3.1.7) we obtain.

â = â0(ρ, T ) +
αK

2
(trC− 3)− αρkbT

2
log det

(
CK

ρkbT

)
(3.1.9)

The additional term, â0(ρ, T ), in Eq. (3.1.9) represents the Helmholtz free energy density

for the fluid in the ‘rest’ state (i.e. not depending on C) of a fluid. Here we have also used α

to represent the fraction of mass density represented by the polymeric constituent (αρ being

the ‘elasticity density’). It then follows that

δA

δC
=
αK

2
I− αρkbT

2
C−1 (3.1.10)
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Substituting (3.1.10) and (3.1.1) into (2.3.9) we can write

Λ :
δA

δC
=

1

λ
C− 1

λ

αρkbT

K
I , (3.1.11)

thus obtaining a dynamic equation for the conformation tensor

O
C +(∇ · u)C = −1

λ

(
C− G

αK
I

)
(3.1.12)

Note that in the limit as λ→∞ we have

lim
λ→∞

Λ :
δA

δC
= 0 (3.1.13)

which leaves us with the equation for an elastic solid

O
C +(∇ · u)C = 0 (3.1.14)

Additionally the expression for T is given by

T = (2µsD + κ′s(∇ · u)I) + αKC−GI (3.1.15)

Rearranging this equation to make C the subject gives

C =
1

αρK
T− 1

αρK
(2µsD + κ′s(∇ · u)I) +

kbT

K
I (3.1.16)

with upper convected derivative given by

O
C=

1

αρK

O
T −

1

αρK
(2µs

O
D −2κ′s(∇ · u)D)− 2

kbT

K
D (3.1.17)

where D = 1
2
(∇u +∇uT ). Substituting Eq. (3.1.16) and Eq. (3.1.17) into Eq. (3.1.12) we
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obtain(
1

λ
+ (∇ · u)

)
T+

O
T = 2((G0 − κ′s(∇ · u))D + µs

O
D) + (∇ · u)(2µsD + (κ′s(∇ · u)−G0)I)

+
2µs
λ

D +

[
κ′s
λ

(∇ · u) +
G0

αKλ

]
I

(3.1.18)

which can be written in the form

T + λ(
O
T +(∇ · u)T) =2µsD + 2µpD + κ′s(∇ · u)− 2κ′sλ(∇ · u)D

+ 2λµs(∇ · u)D + 2λµs
O
D

− µp(∇ · u)I + λ(∇ · u)2I

(3.1.19)

where we have used the fact that G = αρkbT = µp/λ.

Eq. (3.1.19) represents the most general form of constitutive equation for a compressible

Oldroyd-B fluid with a single relaxation time. However, this equation is not in a form that

can be used in any practical sense to obtain numerical approximations to viscoelastic flow

problems. In order to reduce the equations to a more tractable form we now decompose the

total extra stress T into solvent and polymeric contributions T = τ s + τ p where τ s and τ p

satisfy the equations

τ s = 2µsD + κ′s(∇ · u)I

λ
O
τ p +(1 + λ(∇ · u))τ p = 2µp

(
D− 1

2
(∇ · u)I

)
(3.1.20)

It can be shown that the expressions in (3.1.20) satisfy (3.1.19) exactly. When the incom-

pressibility condition (∇ · u = 0) is imposed we recover the incompressible form of the
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Oldroyd-B constitutive law given by

τ s = 2µsD

λ
O
τ p +τ p = 2µpD

(3.1.21)

Eq. (3.1.20) represents a the constitutive equation for an isothermal compressible Oldroyd-

B fluid with relaxation time independent of C. The system given by Eq. (2.3.6)-(2.3.10) is

also capable of modelling viscoelastic fluids with a spectrum of relaxation times. We now

consider the extension of Eq. (3.1.20) to the nonisothermal case when the fluid parameters

are functions of temperature.

3.1.3 Nonisothermal Compressible Oldroyd B Model

Suppose that the fluid parameters are temperature dependent. The components of the

relaxation tensor are given by

Λijkl =
1

2αρK(T )λ(T )
(δjlCik + δjkCil + δilCjk + δikCjl) (3.1.22)

The relaxation tensor with components given by (3.1.22) was initially proposed by Dresler

et. al [25]. Likewise the components of the viscous dissipation tensor are given by

Qijkl = µs(T )(δikδjl + δilδjk) + κ′s(T )δijδkl (3.1.23)

where κ′s(T ) = κs(T )− 2
3
µs(T ). Equation (2.3.10) becomes

T = 2µs(T )D + κ′s(T )(∇ · u)I + αρK(T )C− αρkbT I (3.1.24)

Taking the upper-convected derivative of the polymeric stress

τ p = αρK(T )C−G(T )I (3.1.25)
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yields

O
τ p= α

Dρ

Dt
K(T )C + αρ

DK(T )

Dt
C + αρK(T )

O
C −DG

Dt
I + 2G(T )D (3.1.26)

which contains additional terms due to the non-constant temperature and spring constant.

Rearranging Eq. (3.1.25) and (3.1.26) and eliminating C results in the constitutive equation

λ(T )
O
τ p +

[
1 + λ(T )

(
∇ · u− D lnK(T )

Dt

)]
τ p = G(T )λ(T )

[
2D +

(
D lnK(T )

Dt
− D ln(T )

Dt

)
I

]

τ s = 2µs(T )

(
D− 1

3
(∇ · u)I

)
+ κ(T )(∇ · u)I

(3.1.27)

Eq. (3.1.27) provides the most general form of the non-isothermal compressible Oldroyd-

B constitutive equation for a fluid defined by a single relaxation time1. The functional

dependence of the viscosity and spring constant are determined experimentally and are

dependent on the particular polymer melt/solution under consideration. In the case of

incompressible and isothermal flow the model reduces to Eq. (3.1.21). This model differs

from the models proposed by Belblidia et al. [13] and Dressler et al. [25] in that additional

compressible terms appear on the right-hand side of the polymeric stress equation.

It must be noted that (3.1.27) is not the only form that a compressible extension of the

Oldroyd-B model can take. There is some discussion in the literature about additional

terms in the phenomenological tensors that may exist (see [8] p.331). However, it is clear

that by use of the generalised bracket method the constitutive model represented by (3.1.27)

is thermodynamically admissible. Furthermore, in the incompressible limit we obtain an

equivalent model to that proposed by Dressler et al. [25] derived using the GENERIC

formalism.

The bracket formulation enables us to ensure consistency with thermodynamic principles

when extending governing equations for viscoelastic/non-Newtonian fluids to account for

1A full derivation of the compressible and nonisothermal Maxwell-model is given in Sec. A.3
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compressible flow [8, 13]. The major advantage of this approach however lies in its ability to

capture a much wider range of stress-strain relations based on the Hamiltonian/Helmholtz

free energy. The Oldroyd-B model is derived from a (linear) Hookean strain energy model

(Eq. (3.1.8)).

3.1.4 The Giesekus Model

The Giesekus model was first developed within the context of network theory for continua

(see [8] p.252). In this model, the effect on a given dumbbell due to the presence of the

confining interactions with the other dumbbells. The drag coefficient ζ = 4Kλ is replaced

by a “mobility tensor”

ζ−1 =
1

ζ

(
(1− α̂)I + α̂

K

kbT
C

)
(3.1.28)

where α̂ is an empirical constant which lies within the range 0 ≤ α̂ ≤ 1. Noting that

1/(2nKλ) = 2/(nζ) the phenomenological tensor, Λ, is then adapted to the form

Λijkl =
2

nζ

[
4(1− α̂)Cikδjl + α̂

4nK

G0

CikCjl

]
(3.1.29)

which includes higher order correction terms. Note that (3.1.29) still satisfies the Onsager

reciprocal relations and thus fits into the class of thermodynamically permissible phenomeno-

logical tensors. Eq. (3.1.29) can be substituted into Eq. (2.3.9) to obtain

O
Cij= −

4kbT

ζ

(
(1− α̂)δik + α̂

K

kbT
Cik

)(
K

kbT
Ckj − δkj

)
(3.1.30)

The factor K/kbT is nondimensional and so Eq. (3.1.30) can be written in terms of the new

variable C̃ = K
kbT

C.

kbT

K

O

C̃ij= −
4kbT

ζ

(
(1− α̂)δik + α̂C̃ik

)(
C̃kj − δkj

)
(3.1.31)

The polymeric stress is given by

35



τ p = C−GI (3.1.32)

Taking the upper convected derivative of Eq. (3.1.32)

O
τ p=

O
C +2GD (3.1.33)

Substituting Eq. (3.1.33) and (3.1.32) into (3.1.31) we arrive at the Giesekus constitutive

law

τ p + λ1
O
τ p +α̂

λ1

µp
τ 2
p = 2µpD (3.1.34)

A compressible form of the Giesekus constitutive relation can also be derived within the

generalised bracket framework using the same strain energy formulation and phenomenolog-

ical tensor. If we include the compressible terms in the conformation tensor equation (Eq.

(3.1.31)) it becomes

O
C +(∇ · u)C = −4kbT

ζ

(
(1− α̂)I + α̂

K

kbT
C

)(
K

kbT
C− I

)
(3.1.35)

Substitution of (3.1.33) and (3.1.32) results in the compressible form of the Giesekus model

given by

τ p + λ1(
O
τ p +(∇ · u)τ p) + α̂

λ1

µp
τ 2
p = 2µp

(
D− 1

2
(∇ · u)I

)
(3.1.36)

Note that, similar to the compressible form of the Oldroyd-B model (Eq. (3.1.20)) compress-

ible terms exist on both the left- and right-hand side of the equation. In the next section

we will look at a range of more complicated elastic strain energy models and the connection

between strain energy formulae for hyperelastic rubber-like solids and nonlinear viscoelastic

fluid constitutive laws.
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3.1.5 The Extended White-Metzner Model

In an attempt to account for the spectra of relaxation times observed in real polymeric fluids,

phenomenological models with non constant relaxation time are often used in the literature.

The extended White-Metzner (EWM) model, proposed by Souvaliotis and Beris [81] is the

generalised bracket derived variable relaxation time model, similar in form the WM model.

However, the EWM model retains an important advantage of the WM model in that it

can accurately predict the viscosity and first normal stress difference of any polymeric fluid

in a simple shear flow using only a single relaxation time [36]. Furthermore, it guarantees

both the evolutionary character of the flow field and non-negative entropy production by the

fluid. Specifically, the relaxation time is chosen to a power law of the first invariant of the

conformation stress

λ(T,C) = λ0

(
1

3

K

kbT
trC

)γ

(3.1.37)

where γ ≥ 0 is a power law index (not to be confused with the viscometric shear rate, γ̇).

The polymeric viscosity is also of the form (3.1.37) as the since they are directly proportional

via the elastic modulus (see Eq. (3.1.4)). The relaxation tensor is given by

Λijkl =
1

2αρK(T )λ0

(
1

3

K

kbT
trC

)−γ
(δjlCik + δjkCil + δilCjk + δikCjl) (3.1.38)

where K(T )trC > 0 since C is positive definite and K(T ) > 0. Substitution of (3.1.38) into

(2.3.9) yields the constitutive relation

τ p + λ(T,C)(
O
τ p +(∇ · u)τ p) = 2µp(T,C)D (3.1.39)

Eq. (3.1.39) reduces to the isothermal UCM model when γ = 0.
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3.2 Hyperelastic Strain Energy Models

In this section we present a brief discussion of some of the elastic energy models used fre-

quently used in the literature on finite strain theory. One of the more appealing charac-

teristics of the generalised bracket method is that it provides a framework that enables

the derivation of continuum models of viscoelastic fluids by utilising elastic energy density

formula for hyperelastic materials.

Deriving constitutive laws from strain-energy models ensures that the accuracy of the pre-

dictions made by the viscoelastic fluid model directly reflects the applicability of the strain-

energy model to the material being modelled. However, a large number of the elastic energy

models used in finite strain are themselves phenomenological, one must take care to ensure

that the various admissibility criteria in the generalised bracket method are satisfied. An-

other difficulty with modelling fluids using finite strain energy models is that there is no

guarantee that a closed form expression can be obtained from the outset.

In order to proceed let us consider the following. The elastic energy component of the

Hamiltonian for a viscoelastic material is a function of the invariants of the conformation

tensor i.e.

W (C) =

∫
Ω

w(I1(C), I2(C), I3(C)) dΩ (3.2.1)

where Ik(C) (k ∈ {1, 2, 3}) are the principal invariants of C. Hyperelastic materials undergo

large elastic deformations relative to their reference configuration and are also characterised

by a nonlinear relationship between the stress and strain. We now present constitutive

models for viscoelastic fluids derived using nonlinear expressions for W in Eq. (3.2.1).

3.2.1 Compressible Mooney-Rivlin Type Model

So far we have discussed compressible viscoelastic models based on elastic strain energy

density functions for Hookean-spring like materials. However, the literature on finite strain

theory is rich with elastic strain energy density functions [26] for modelling the behaviour
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of rubber like polymeric materials. For both the UCM and Oldroyd-B models the elastic

potential energy is that of a neo-Hookean material i.e. W (C) = µ̂
2
(I1(C)−3) where µ̂ = αρK

is the stiffness parameter of the material.

Consider a fluid whose polymeric constituent behaves like a Mooney-Rivlin material i.e.

instead of a strain energy directly proportional to I1(C) the strain energy depends on all

three principal invariants

w(C) =
µ1

2

(
I1(C)

I3(C)
1
3

− 3

)
+
µ2

2

(
I2(C)

I3(C)
2
3

− 3

)
+ κ′p(I3(C)1/2 − 1)2 (3.2.2)

where µ1 and µ2 are parameters to be determined empirically. The first and second terms are

associated with the stiffness of the polymeric constituent and the third term is a compressible

term associated with the bulk viscosity. It is easy to verify that if I3(C) = det C = 1, µ2 = 0

and µ1 = αρK, then Eq. (3.2.2) reduces to the strain energy for a Maxwell material. Taking

the derivative of the Helmholtz free energy functional, with elastic strain energy defined by

(3.2.2) we obtain

δA

δC
= −

(
κ′p(I

1/2
3 − I3) +

µ1I1

6I
4/3
3

+
µ2I2

3I
5/3
3

+
G(T )

2

)
C−1 +

(
µ1

2I
1/3
3

+
µ2I1

2I
2/3
3

)
I− µ2

2I
2/3
3

C (3.2.3)

which we write in the form

δA

δC
= g1(C)C−1 + g2(C)I + g3(C)C

where

g1(C) = −

(
κ′p(I

1/2
3 − I3) +

µ1I1

6I
4/3
3

+
µ2I2

3I
5/3
3

+
αρkbT

2

)

g2(C) =

(
µ1

2I
1/3
3

+
µ2I1

2I
2/3
3

)
g3(C) = − µ2

2I
2/3
3

(3.2.4)
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Using the expression given by Eq. (3.2.3) for the energy derivative and Eq. (3.1.1) for the

relaxation we obtain

Λ :
δW

δC
=

2

αK

(
1

λ0

g1(C) +
1

3

(
1

λ0

− 1

λ2

)[
g2(C)I1(C) + g3(C)(I1(C)− 2I2(C))

])
I

+
2

λ2αK
g2(C)C

+
2

λ2αK
g3(C)C2

(3.2.5)

where we have used the fact that trC2 = I1(C)−2I2(C). Consider once more the case when

relaxation is described via a single relaxation time, λ. In this case Eq. (3.2.5) reduces to

Λ :
δW

δC
=

2

λαK
g1(C)I +

2

λαK
g2(C)C +

2

λαK
g3(C)C2

= a1(C)I + a2(C)C + a3(C)C2

(3.2.6)

By Hulsen’s theorem the physical admissibility of the model depends on the behaviour of

a1(C) = 2
αK
g1(C). Substituting our strain energy expression into Eq. (2.3.9) and Eq.

(2.3.10) the governing equations for conformation tensor and stress can be expressed

O
C +(∇ · u)C = − 1

λαK
τ p (3.2.7)

where

T = 2µsD + κs(∇ · u)I + τ p

τ p = 2g1(C)I + 2g2(C)C + 2g3(C)C2
(3.2.8)

Due to the additional complications introduced when g3 6= 0 the hyperelastic model cannot be

reduced further (i.e. C cannot be eliminated). However further constraints on µ1 and µ2 exist

in order to ensure τ p is zero when C is at equilibrium. Using the Cayley-Hamilton Theorem,

it can be shown that the right-hand side of the dynamic equation for the conformation tensor

40



can be written in the form

Λ :
δW

δC
= −(α0 + α2α

2
01)I + (α1 + 2α01α2)C− α2C

2 (3.2.9)

where αi are functions of the invariants of C (and also functions of gi(C)) [8]. The parameter

α01 is specifically chosen to be the ratio α0/α1 so that C = α01I at equilibrium [8] i.e.

O
C +(∇ · u)C = 0 when C = α01I (3.2.10)

3.2.2 The Leonov Model

Leonov [55] designed single conformation tensor type fluid in order to model thermoplastics.

Leonov proposed his model based on an alternative view on the state of stress within a

viscoelastic fluid. The elastic strain deformation is not measured from a fixed and equal-for-

all-points (global) relaxed state, but one that evolves with the fluid as it deforms. One

can adjust the rate at which the rest state “follows” the flow so that in the limit where it

doesn’t follow the deformation (remains fixed) you have a perfect elastic material and in

the limit where the rest state is identical to the deformed state we recover the model for a

Newtonian fluid. It should be noted that in Leonov’s derivation he identified C = ρc with

the finger deformation tensor. In this work we define it as a normalised and averaged dyadic

product of the end-to-end distance vector of the elastic chain molecules (see [8] p.213-216).

However, this is not something that needs to be investigated in any detail for the purposes

of this work as both definitions represent the state of elastic strain in the material and are

interchangeably used in the literature [8].

As before we specify a (Helmholtz free) strain energy density functional for the viscoelastic

fluid occupying Ω. In Leonov’s derivation the elastic strain energy was not specified but

rather written as a general function w(a1, a−1) where

a1 =
I1(C)

I3(C)1/3
a−1 = I−1I

1/3
3 , (3.2.11)
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I1 = trC, I−1 =
I2

I3

. (3.2.12)

In this particular derivation of the model we will consider the case where W is a general

linear function of a1 and a−1 and w = 0 when C = GI as to permit the derivatives of w to

be the simplest possible non-trivial functions

w(a1, a−1) =
µ1

2
(a1 − 3) +

µ2

2
(a−1 − 3). (3.2.13)

Proceeding in the same manner as before, computing the functional derivatives for A

δA

δC
=
µ1

2

∂

∂C
(I1(C)I3(C)−1/3) +

µ2

2

∂

∂C
(I1(C)I3(C)−2/3)− αρkbT

2

∂

∂C
log

(
det

(
CK

ρkbT

))

which can be written in the form

δA

δC
=

(
µ1

2I
1/3
3

+
µ2I1

2I
2/3
3

)
I−

(
µ2

2I
2/3
3

)
C−

(
µ1I1

6I
1/3
3

+
µ2I1

3I
2/3
3

+
αkbT

2

)
C−1 (3.2.14)

The fourth order tensor Λ takes the form

Λijkl =
2

Gλ
(CilCkj + CikCjl)−

4

3G0λ
ClkCij (3.2.15)

For further information on the mechanism used to derive the form of the phenomenological

tensors see Beris & Edwards p.266-269 [8]. Substituting Eq. (3.2.14) and Eq. (3.2.15) into

the expression for the conformation tensor equation in Eq. (2.3.9) we obtain

λ(
O
C +∇ · uC) = µ1

(
I1

3
C−C2

)
+ µ2

(
I− I2

3I3

C

)
(3.2.16)

which can be rearranged to give the Leonov equation for the conformation tensor

λ
O
C +λ(∇ · u)C =

µ2

G
I +

1

G

[
µ1
I1

3
− µ2

I2

3I3

]
C− µ1

G
C2 (3.2.17)
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Thermodynamic consistency conditions are met if we ensure that µ1, µ2 and the spring con-

stant G are all non-negative. The Leonov model is an example of the class of viscoelastic

models where the coefficients on the right-hand side of Eq. (2.5.1) are nonlinear functions of

the invariants of C. In the next section we will discuss nonlinear dumbbell models. Specif-

ically ‘finitely extendible’ dumbbell models that capture the polymeric responses for Boger

fluids at large extension/shear rates.

3.3 Elastic Dumbbell Models Based on Nonlinear Spring

Force Laws

3.3.1 FENE-P, FENE-CR Models

Linearly elastic dumbbells corresponding to the Hookean model of chain-chain conformations

yield UCM/Oldroyd-B models. However linear elastic models perform poorly at predicting

the behaviour of viscoelastic flows at high deformation rates. As the magnitude of the

end-to-end distance vector, Q, approaches the length of the fully extended chain, b, the

elastic response deviates drastically from that of a Hookean spring. The Finitely Extended

Nonlinear Elastic (FENE) Dumbbell model was developed in the early 1980s [9] in order to

model the increased spring force at the full chain length limit. The spring force between two

connected beads in a dumbbell reads

F (Q) =
K

1− Q·Q
b2

Q (3.3.1)

where K is the characteristic (small-strain) spring constant. In the limit as b → ∞ it

is possible to derive a constitutive equation for the polymeric stress without the need of

a closure approximation [52, 69]. For finite values of b it is impossible to derive a single

constitutive equation equivalent to FENE theory. The closed form approximation to the

model, FENE-P, proposed by Peterlin[52], averages the response of the dumbbells reducing

the description of the elastic material to a single conformation tensor. All of the information
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is contained within the outer product Q ⊗ Q. To obtain a closed form expression for the

polymeric strain a self-consistent pre-averaging approximation is used. For simple 2-bead

models the conformation tensor can be defined as the second moment

Cij =

∫
QiQjΨ dR ≡ 〈QiQj〉 (3.3.2)

the angular brackets denote the configuration space average 〈·〉 =
∫
·Ψ dR, where Ψ is the

distribution function (for more detail on the theory behind the distribution function used

see [8] p.236-242). As a result the spring force can then be written in terms of the second

moment, 〈QQ〉.

F (Q) =
K

1− 〈Q2〉
b2

Q =
K

1− trc
b2

Q (3.3.3)

This averaging process reduces the description of polymeric behaviour to the conformation

tensor level. To generate the FENE-P model we require the strain energy density function

to take the form

w(ρ,C) = −
∫

Ω

[
1

2
αρKb2 ln

(
1− trC

b2

)]
dΩ (3.3.4)

The Helmholtz free energy is then given by the expression

A =

∫
Ω

a0(ρ, T ) + w(ρ,C)− αρkbT

2
ln

(
det

[
CK

ρkbT

])
dΩ (3.3.5)

Note that Eq.(3.3.4) is also known as the GENT model in the finite strain theory literature

[45]. A further discussion of this and similar strain energy models for hyperelastic solids is

given in Section 3.2. Taking the derivative of Eq. (3.3.4) we obtain

δw

δC
=

1

2
αρKf(trC)I (3.3.6)

where f(trC) is defined by
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f(trC) =
1

1− trC
b(T )2

(3.3.7)

The relaxation tensor remains the same as for the Oldroyd-B model (Eq. (3.1.1))

Λ :
δA

C
=

1

λ
f(trC)C− G

λK(T )
I (3.3.8)

Substituting Eq. (3.3.8) into Eq.(2.3.9), the evolution equation for the conformation tensor

can be written in the form

O
C +(∇ · u)C = −1

λ

[
f(trC)C− kbT

K(T )
I

]
which can be simplified to

λ
O
C +λ(∇ · u)C +

[
f(trC)C− kbT

K(T )
I

]
= 0 (3.3.9)

The solvent and polymeric stresses are given by

τ s = 2µsD

τ p = G(f(trC)C− I)
(3.3.10)

We can eliminate C to obtain a closed form constitutive equation

Zτ p + λτ p − λ

(
τ p +GI

)
D lnZ

Dt
= 2µpD (3.3.11)

where

Z = 1 +
3

b

(
1 +

1

3G
trτ p

)
FENE-P performs relatively well as a polymer model for extensional flow problems [52][8][69].

FENE-CR is a variant of a closed form FENE model which can be obtained by modifying
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Eq. (3.3.10) to

τ s = 2µsD

τ p = Gf(trC)(C− I)
(3.3.12)

where the function f(trC) now multiplies both C and I in the constitutive equation. The

closure of the FENE constitutive model represented by Eq. (3.3.12) has the advantage

of ensuring that τ p = 0 when C = I. Although beneficial this is not thermodynamically

necessary (see [8] p.246) and modifications can be made to f(trC) to achieve the same result.

Further discussion of the appropriate forms of the dissipative bracket required to obtain Eq.

(3.3.12) can be found in [8] p.242-246, although it is the author’s understanding that we are

unable to obtain Eq. (3.3.12) using both the standard Marrucci entropy (Eq. (2.3.1)) and

strain energy given by Eq. (3.3.4).

3.3.2 The FENE-P-MP Model: Compressible Nonisothermal Dis-

sipative Model

Recently, a new class of models has been proposed that predicts shear-thinning and ex-

tensional strain-hardening with the aim of reproducing computationally the levels of drag

enhancement that are measured experimentally for the flow of Boger fluids past a sphere.

Garduño et al. [34] proposed a new hybrid dissipative model based on a combination of

FENE and White-Metzner models. An extensional viscosity that is strain-hardening was

found to be a crucial component in the modelling. The viscosity ratio was also found to be

an important factor for Boger fluids. The hybrid models were termed swanINNF(q). How-

ever, the proposed models are ad-hoc since they were developed to predict certain behaviour

by modifying existing models through the inclusion of additional terms without properly

addressing the underlying physics. This in turn makes it very difficult to generalise the new

constitutive equations to compressible and nonisothemral flows. In this section we present

the Mackay-Phillips class of dissipative viscoelastic models. Similar to the swanINNF(q)
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class a viscoelastic model base is required. In our case the base model depends on the strain

energy density function, relaxation and dissipation tensors. The additional terms in the

constitutive equation are derived using a nonzero L tensor as a source term in the bracket

formulation. As a result we are able to derive models with similar rheological properties to

swanINNF(q) whilst ensuring thermodynamic consistency and thus allowing generalisation

to the modelling of nonisothermal compressible viscoelastic fluids.

In order to make quantitative comparisons with results in the literature we have chosen to

present the Mackay-Phillips modification of the FENE-P model (FENE-P-MP). However,

the Mackay-Phillips modification can be done to all viscoelastic constitutive equations that

can be derived using the generalised bracket method. The resulting constitutive law is similar

to swanINNFM(q)-FENE-P model of Garduño et al. [34]. Additional terms appear in the

formulation as a result of being derived using the generalised bracket method and, although

the additional terms do not play a significant role in viscometric flows, they may become

important when predicting complex flows in 2D and 3D.

The strain energy for finitely extensible dumbbells is replaced by the nonlinear equation

W (C) =

∫
Ω

−nK(T )b(T )2

2T
ln

(
1− trC

b(T )2

)
dΩ (3.3.13)

where b is the square of the maximum extension of the dumbbell, which is taken to be

temperature dependent. The Helmholtz free energy is given by

A =

∫
Ω

[
a0(ρ, T )− αρK(T )b(T )2

2T
ln

(
1− trC

b(T )

)
− αρkbT

2
ln(det C)

]
dΩ (3.3.14)

The last term is the expression for the Boltzmann entropy. The expressions for Λ and

Q remain the same as for the Maxwell models (Eq. (3.1.22) and (3.1.23)). Consider the

following nonzero expression for the non-affine tensor, L,

Lijkl =
ψ(ε̇)

2

{
Cikδjl + Cilδjk + Cjkδil + Cjlδik

}
(3.3.15)

47



where

ψ(ε̇) =
φ(ε̇)− 1

2
, φ(ε̇) = cosh(λD ε̇) (3.3.16)

and

ε̇ = 3I3(D)/I2(D) (3.3.17)

is the generalised extension rate. The tensor L, associated with non-affine motion (stick/slip)

within the system, is a crucial ingredient in enabling the model to capture both shear-

thinning and strain-hardening behaviour. Through modelling in this way we are able to

deduce that strain-hardening effects in the fluid are the result of nonlinear interactions

between the conformation tensor and velocity gradient fields. Specifically, polymer chains

‘stick’ with respect to the solvent around them due to polymer chain entanglement. It can

also be noted that for, small values of ε̇, φ can be approximated by taking the truncated

Taylor expansion

cosh(λD ε̇) ≈ 1 +
(λD ε̇)

2

2
(3.3.18)

The evolution equation for the conformation tensor is given by

λ(T )

[
O
C +(∇ · u)C

]
= −

[
f(trC)C− G(T )

αρK(T )
I

]
+ λ(T )ψ(ε̇)[C · D + D ·C] (3.3.19)

and the expression for the extra stress is

T = 2µs(T )D + κ′(T )(∇ · u)I +
φ(ε̇)µp(T )

λ(T )
(f(trC)C−G(T )I) (3.3.20)

Note that, unlike the Oldroyd-B/UCM model this expression is nonlinear in C. The governing

equations in terms of the solvent and polymeric contributions to the extra stress T are given
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by

τ s = 2µs(T )D + κ′s(T )(∇ · u)I

(Z + λ(T )∇ · u)τ p + λ(T )
O
τ p − λ(T )

(
τ p +G(T )I

)
D lnZ

Dt

−λ(T )ψ(ε̇)[τ p · D + D · τ p] = 2φ(ε̇)µp(T )

(
(ψ(ε̇) + 1)D− 1

2
(∇ · u)I

) (3.3.21)

where

Z = 1 +
3

b(T )

(
1 +

1

3G(T )
trτ p

)
The constitutive equations represented by Eq. (3.3.21) is the bracket generated equivalent

of the swanINNFM(q)-FENE-P base model. The key difference between the two models

is that, by using a non zero L tensor, the additional terms in the constitutive equation

can be justified in a manner consistent with the microscopic model outlined in Chapter 2.

Additionally, when λD = 0 (φ = 1) we recover the nonisothermal FENE-P constitutive

equation.

Eq. (3.3.21) is nonlinear in τ p making analytical solutions very difficult to obtain for non-

trivial flow problems. Models such as (3.3.21) are among the class of strong thermody-

namically consistent models. By insisting that the fluid parameters such as viscosity and

relaxation time are not directly dependent on the rate-of-strain tensor, but rather indirectly

by use of the stick/slip tensor, we ensure that the models satisfy both thermodynamic (i.e.

corresponding to a non-negative entropy production) and mathematical (i.e. giving rise to

evolutionary governing equations) admissibility criteria [8]. Leygue et al. [56] used a nonzero

L tensor to model polymer-chain entanglement and so modelling strain-hardening in this way

suggests that polymer-polymer entanglement may be the mechanism behind the observed

drag behaviour. However, as Boger fluids are dilute we assume that polymer-polymer inter-

action has a negligible effect on the flow. The observed strain-hardening might be due to

other nonlinear elastic behaviour which can only be approximated when using the modelling

assumptions of the generalised bracket method. As with any model for viscoelastic fluids
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there are limitations that must be discussed. The main concern is that the definition of the

generalised extension rate as defined by Eq. (3.3.17) is unsuitable for 3D planar extension

flows as independence of strain-rate in one axis results in I3(D) = 0. However a solution can

be found by using a 2D approximation and instead using the equation

ε̇ = 6
DxxDyy − D2

xy

D2
xx + D2

yy + 2D2
xy

, (3.3.22)

assuming 2D flow independent of the z-direction. In chapters 4 we present numerical schemes

for solving the constitutive equations derived in this chapter for benchmark viscoelastic flow

problems. However, first we will present the viscometric data of the models presented thus

far.
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3.4 Viscometric Behaviour

When investigating a particular constitutive model of a viscoelastic fluid, it important to

look at its behaviour under simple types of flow, where the velocity field is known. From

these we can compare characteristic behaviour of models.

3.4.1 Shear/Extensional Viscosities & Normal Stress Differences

Shear Viscosity

The shear viscosity (or shear-rate dependent viscosity), η(γ̇), is given by the ratio of the

shear stress to the shear rate

ηshear(γ̇) =
σxy(t)

γ̇
. (3.4.1)

where

γ̇ =
∂u

∂y
(3.4.2)

is the shear rate with units s−1. For a Newtonian fluid the shear viscosity is simply the

constant dynamic viscosity of the fluid

σxy(t) = η0γ̇xy. (3.4.3)

For non-Newtonian fluids in general, this is replaced by

σxy(t) = ηshear(γ̇)γ̇xy, (3.4.4)

where ηshear(γ̇) is the apparent shear viscosity and γ̇ = |γ̇xy| is the shear rate. We define the

zero-shear viscosity, η0, and infinite-shear viscosity, η∞ are the viscosities at the limit of γ̇

tending to 0 and ∞, respectively. Many Non-Newtonian fluids display shear thinning where

ηshear(γ̇) < η0 when γ̇ > 0. We nondimensionalise the shear viscosity using so that
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ηshear(γ̇)→ ηshear(γ̇)

µ0

, (3.4.5)

where µ0 = µp + µs is the total (zero-shear) viscosity.

Normal Stresses

The first and second normal stress differences are so-called viscometric functions that are

associated with non-Newtonian behaviour

σxx − σyy = N1(γ̇),

σyy − σzz = N2(γ̇).
(3.4.6)

We nondimensionalise the normal stresses using the total viscosity and relaxation time

N1(γ̇)→ λN1(γ̇)

µ0

, N2(γ̇)→ λN2(γ̇)

µ0

, (3.4.7)

Extensional Viscosity

The extensional viscosity is given by the ratio of first normal stress difference to extension

rate, ε̇ (with units s−1)

ηext(ε̇) =
N1(γ̇)

ε̇
=
σxx − σyy

ε̇
(3.4.8)

which can be thought of as fluid’s resistance to extensional deformation. The total viscosity,

µ0, is used to scale the extensional viscosity results

ηext(ε̇)→
ηext(ε̇)

µ0

, (3.4.9)
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3.4.2 Viscometric Functions for the Oldroyd-B fluid

Steady Simple Shear

For steady simple shear flow u = (u, v, w) = (γ̇xyy, 0, 0) we are able to reduce the constitutive

laws for viscoelastic fluids to a system of algebraic equations. For the Oldroyd-B fluid

specifically we can solve the equations directly to obtain

τ pxx = 2µpλγ̇
2

τ pxy = µ0γ̇

τ pyy = 0 = τ pzz

(3.4.10)

where µ0 = µp + µs. As displayed in Fig. 3.1 an Oldroyd-B fluid displays constant shear

viscosity, a quadratic first normal stress difference and a zero second normal stress difference.

Uniaxial Extension

Consider uniaxial extensional flow u = (ε̇x,− ε̇
2
y,− ε̇

2
z) where ε̇ is the (constant) extensional

rate. For an Oldroyd-B fluid we are able to solve the equations directly to obtain

λτ̇ pxx + τ pxx − 2λε̇τ pxx = 2µpε̇

λτ̇ pxy + τ pxy −
λε̇

2
τ pxy = 0

λτ̇ pyy + τ pyy + λε̇τ pyy = −µpε̇

λτ̇ pzz + τ pzz + λε̇τ pzz = −µpε̇

(3.4.11)

In the steady-state
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(a) (b)

(c)

Figure 3.1: (a) Shear viscosity, (b) first and (c) second normal stress difference for an
Oldroyd-B fluid. µp/µ0 = 0.5, µs/µ0 = 0.5, λ = 1s.

τ pxx = 2µpε̇
1

1− 2λε̇

τ pxy = 0

τ pyy = τ pzz = −µpε̇
1

1 + λε̇

(3.4.12)

with extensional viscosity
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ηext = 2µp
1

1− 2λε̇
+ µp

1

1 + λε̇
(3.4.13)

The extensional viscosity blows up at ε̇ = 1
2λ

as shown in Fig. 3.2. This is of course an

unphysical prediction and as a result the Oldroyd-B model can perform poorly when applied

to extensional flow problems.

Figure 3.2: Extensional viscosity of the Oldroyd-B fluid, µs/µ0 = µp/µ0 = 0.5, λ = 1s.
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3.4.3 Viscometric Functions for a Giesekus Fluid

Steady Simple Shear

For the Giesekus model, the constitutive equation is given by Eq. (3.1.34) can be reduced

to a system of equations

τ pxx − 2λγ̇τ pxy +
λα

µp
(τ pxxτ

p
xx + τ pxyτ

p
xy) = 0

τ pxy − λγ̇τ pyy +
λα

µp
(τ pxxτ

p
xy + τ pxyτ

p
yy) = µpγ̇

τ pyy +
λα

µp
(τ pyyτ

p
yy + τ pxyτ

p
xy) = 0

τ pzz +
λα

µp
(τ pzzτ

p
zz) = 0

(3.4.14)

As shown in Fig. 3.3 the Giesekus fluid displays increasing shear thinning as α is increased

and a first normal that is sub-quadratic and decreasing with α. The second normal stress

difference also decreases with α.

Uniaxial extension

Substituting u into Eq. (3.1.34) we obtain the following set of algebraic equations.

τ pxx − 2λ1ε̇τ
p
xx +

λα

µp
(τ pxxτ

p
xx + τ pxyτ

p
xy) = 2µpε̇

τ pxy −
λ1ε̇

2
τ pxy +

λα

µp
(τ pxxτ

p
xy + τ pxyτ

p
yy) = 0

τ pyy + λ1ε̇τ
p
yy +

λα

µp
(τ pyyτ

p
yy + τ pxyτ

p
xy) = −µpε̇

τ pzz + λ1ε̇τ
p
zz +

λα

µp
(τ pzzτ

p
zz) = −µpε̇

(3.4.15)

We observe that the Giesekus model does not suffer from the same blow-up issue as the

Oldroyd-B model does and predicts finite extensional viscosity
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(a) (b)

(c)

Figure 3.3: (Nondimensionalised) shear viscosity, ηshear(γ̇), first normal stress N1(γ̇) (left)
and log scale (right) for steady shear flow, λ = 1s, µp/µ0 = 0.5, µs/µ0 = 0.5.

3.4.4 Viscometric Functions for a FENE-P Fluid

Steady Simple Shear

Substituting u into the steady-state form of Eq. (3.3.10) we obtain the following system
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Figure 3.4: Extensional viscosity of the Giesekus fluid µs/µ0 = µp/µ0 = 0.5

− 2λγ̇Cxy + f(trC)Cxx − 1 = 0

− λγ̇Cxy + f(trC)Cxy = 0

− λγ̇Cyy + f(trC)Cyy − 1 = 0

− λγ̇Czz + f(trC)Czz − 1 = 0

(3.4.16)

and

τ pxx =
µp
λ

(f(trC)Cxx − 1)

τ pxy =
µp
λ
f(trC)Cxy

τ pyy =
µp
λ

(f(trC)Cyy − 1)

(3.4.17)

Similar to the Oldroyd-b model (and unlike Giesekus model) the second normal stress dif-

ference is identically zero. Another important thing to note is that the zero-shear limit of

the viscosity and first normal stress difference increases with b.

58



(a) (b)

(c)

Figure 3.5: (a) Shear viscosity, (b) first and (c) second normal stress difference for an FENE-
P fluid, µs/µ0 = 0.5, µp/µ0 = 0.5, λ = 1s.

Uniaxial Extension

Substituting u into Eq. (3.3.10) we obtain the following set of equations for the polymeric

stress, τ p
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λĊxx − 2λε̇Cxy + f(trC)Cxx − 1 = 0

λĊxy −
λε̇

2
Cxy + f(trC)Cxy = 0

λĊyy + λε̇Cyy + f(trC)Cyy − 1 = 0

λĊzz + λε̇Czz + f(trC)Czz − 1 = 0

(3.4.18)

(a) (b)

Figure 3.6: Extensional viscosity of the FENE-P fluid: (a) loglog scale b = 20, 50, 80 and (b)
comparison with Oldroyd-B.for b = 5, 10, 20.

Then the polymeric stress is given by τ p = µ/λ[f(trC)C−I]. Fig. 3.6 shows the extensional

viscosity for different values of b.

3.4.5 Viscometric Functions for a FENE-P-MP Fluid

Steady Simple Shear

The FENE-P-MP model displays the same shear viscosity and normal stresses as φ(ε̇) = 0

for steady-simple shear and the FENE-P-MP reduces to the FENE-P model and so the

ηshear(γ̇), N1(γ̇) and N2(γ̇) are identical and are displayed in Fig. 3.5.
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Uniaxial extension

By substituting u into (3.3.21) we obtain the following system of equations

Zτxx − 2ε̇ψ(ε̇)λτxx − 2φ(ε̇)ψ(ε̇)µpε̇ = 0

Zτxy −
ε̇

2
ψ(ε̇)λτxy = 0

Zτyy + ε̇ψ(ε̇)λτyy + φ(ε̇)ψ(ε̇)µpε̇ = 0

Zτzz + ε̇ψ(ε̇)λτzz + φ(ε̇)ψ(ε̇)µpε̇ = 0

(3.4.19)

where

Z = 1 +
3

b

(
1 +

λ

3φ(ε̇)µp
τ p

)
(3.4.20)

Figure 3.7: Extensional viscosity for the FENE-P-MP model b = 20, 50, 80, µp/µ0 = 0.5,
µs/µ0 = 0.5, λD = 0.05

Fig. 3.7 shows the behaviour of ηe for different values of b with λD = 0.05. Even at small

values the dissipation parameter has a significant effect on the extensional viscosity. After

an initial increase when 10−1 ≤ λε̇ ≤ 100 a secondary increase in viscosity is observed when

λε̇ > 101. There are, of course limits on the applicability of this models to flows with very high

extension rates. Whilst secondary increases in extensional viscosities are observed in Boger
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(a) (b)

(c)

Figure 3.8: Extensional viscosity for the FENE-P-MP model showing the effect of the dissi-
pation parameter λD (a) b = 20, (b) b = 10, (c) b = 5, µp/µ0 = 0.5, µs/µ0 = 0.5, λ = 1s

fluids, the FENE-P-MP extensional behaviour may indeed overshoot observed extensional

viscosities in Boger fluids. However, as pointed out by Garduño, Tahmaddon-Jahromi and

Webster the additional extensional viscosity effects of the dissipation parameter, λD, are

necessary for capturing drag behaviour of Boger fluid flow past a sphere [34, 35] (see Chapter

7).
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3.5 Summary

Models derived using the generalised bracket formulation have been presented. By substitu-

tion of the derivatives of specific Helmholtz free energy and dissipative tensor formulations

we have derived generalised forms of the Oldroyd-B and Giesekus models. We have also

explored nonlinear functions for the elastic energy, using a Mooney-Rivlin type nonlinear

strain energy formulation to derive the Leonov model.

The main contribution from this chapter has been the derivation of the FENE-P-MP model

(Eq. (3.3.21)) which provides an alternative to the swanINNF(q)-FENE-P model by Garduño

and Webster [34, 35]. This should be a welcome contribution to the literature as it begins

to bridge the gap between theoretical framework of the generalised bracket method with the

predictive power of the phenomenological swanINNF(q) class of models. It also presents the

models in a more general form allowing for the application of these constitutive equations to

compressible and nonisothermal flow problems. Furthermore, the fact that the dissipative

models similar to swanINNF(q) can be derived within the generalised bracket formulation

testifies to the broad range viscoelastic constitutive equations that fit within the framework.
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Chapter 4

Numerical Method

In chapters 2 and 3 we presented thermodynamically consistent models for viscoelastic flu-

ids, derived using the generalised bracket method. For most nontrivial 2D flows, appropriate

numerical methods need to be used to obtain accurate solutions over a range of fluid param-

eter inputs. The most popular methods for simulating viscoelastic flows are finite volume

(FVM), finite element (FEM) and spectral element (SEM) methods. The ultimate goal of

these numerical methods is to discretise the problem in both space and time so that the

governing system of PDEs can be converted into to a system of algebraic equations. These

can then be solved efficiently via available numerical linear algebra techniques.

The finite element method is one of the most popular tools for numerically simulating vis-

coelastic flows in enclosed geometries. However, the method also presents several numerical

difficulties. The constitutive equation is highly nonlinear, with convective and deformation

terms that may lead to both local and global oscillations in the numerical approximation.

Furthermore, even in the case of smooth solutions it is necessary to satisfy additional com-

patibility conditions between the velocity and stress interpolation in order to control velocity

gradients. Very few elements satisfy these compatibility requirements for velocity-pressure

and stress-velocity.

The numerical method presented in this chapter will be used to solve the benchmark 2D flow

problems presented in chapters 5, 6 and 7.In Sec. 4.1 we nondimensionalise the general set of

64



governing equations (Eq. (2.3.6)-(2.3.10)), introducing the Weissenberg, Mach and Reynolds

numbers. In Sec. 4.2 we introduce the Taylor-Galerkin temporal discretisation followed by

the spatial discretisation (FEM) and weak formulation of the governing equations in Sec.

4.3 and 4.4 respectively. In Sec. 4.5 we motivate the use of numerical stabilisation methods

by discussing the high Weissenberg number problem. In Sec. 4.6 we introduce the specific

stabilisation methods we will use. The discretised system of equations, algebraic solution

methods and implementation are presented in Sections 4.7, 4.8 and 4.9 respectively.

A convergence test for the stabilised numerical scheme is then presented in Sec. 4.10 followed

by a summary of the chapter in Sec. 4.11.

4.1 Nondimensionalisation of the Governing Equations

Several fluid parameters appear in the formulation of constitutive models when using the

generalised bracket method. Nondimensionalisation is required to reduce the number of

parameters in order to make the analysis of the equations easier. For compressible viscoelastic

flows three important parameters are the Reynolds number, a measure of the flow inertia,

the Mach number, a measure of the flow compressibility, and the Weissenberg number, a

measure of the flow elasticity defined

Re =
ρ0UL

µ0

, We =
λ0U

L
,Ma =

U

c0

(4.1.1)

where L is a characteristic length, U ia a characteristic velocity, µ0 the zero shear total

viscosity, λ0 the relaxation time and c0 is the compression wave propagation speed of the

fluid. For the benchmark problems considered in chapters 5, 6 and 7, we only consider flows

at low Mach number (Ma < 0.2), where the assumption of weak compressibility is justified

[51, 90]. As such, we can make the following assumptions: First, the equation of state

coupling density, pressure and temperature is well-approximated by a linear anisothermal

model
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∂p

∂ρ
= c2

0

(
1 + α̃

T − T0

T0

)
(4.1.2)

where α̃ is a nonisothermal parameter (see Bollada & Phillips [12] for further discussion on

the applicability of (4.1.2)).

Secondly, the contribution rate of change of internal energy, u = u(ρ, T ) is dominated by the

rate of change of temperature rather than density i.e Du
Dt

∣∣∣
ρ
� Du

Dt

∣∣∣
T

which means that the

energy equation can be simplified

Du(ρ, T )

Dt
= ρCp

DT

Dt
+
Du

Dt

∣∣∣
T
≈ ρCp

DT

Dt
(4.1.3)

Thus the energy equation becomes an equation governing temperature evolution within the

fluid (see [25] p.122 for further discussion of the approximation given by (4.1.3)). The general

set of governing equations are then given by

ρ
Du

Dt
= −∇p+ µs

(
∇2u +

1

3
∇(∇ · u)

)
+∇ · τ p + F

∂ρ

∂t
+∇ · (ρu) = 0

τ p = g1(C, I)

C + λ(
O
C +(∇ · u)C) + g2(C,D) = I

ρCp
DT

Dt
= −∇ · q + T : ∇u− p∇ · u

∂p

∂ρ
= c2

0

(
1 + α̃

T − T0

T0

)
(4.1.4)

where

q = −κ∇T (4.1.5)

and functions g1 and g2 are determined by the model, specifically w(C), Λ and L. For

example, in the case of Maxwell-type fluids g1 takes the form
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g1(C, I) = G

(
K(T )

kbT
C− I

)
(4.1.6)

where G = µp(T )/λ(T ). Note that in applications of Maxwell-type fluids in the following

chapters it is implicitly assumed that K(T ) = kbT so that we ensure g1 = 0 when C = I. The

relaxation time, solvent and polymeric viscosity are functionally dependent on temperature.

We use the viscosity model given by Wiest and Phan-Thien [94]

µp(T ) = µp,0 exp(−Ap,0(T − T0)/(Th − T0)) (4.1.7)

where A0 is the activation energy. In order to be consistent with Eq. (3.1.4) and (3.1.5) we

define the relaxation time

λ(T ) = λ0
exp(−Ap,0(T − T0)/(Th − T0))T0

T
(4.1.8)

In Chapter 6 we also consider the extended White-Metzner model (Souvaliotis and Beris [81]),

where the relaxation time and polymeric viscosity explicitly depend both on the conformation

stress and temperature λ = λ(C, T ), µp = µp(C, T ).

To scale the state variables in governing equations, we introduce the dimensionless variables

u∗ =
u

U
x∗ =

x

L
ρ∗ =

ρ

ρ0

t∗ =
tU

L
p∗ =

pL

µ0U
θ =

T − T0

Th − T0

τ ∗p =
Lτ p
µ0U

∇∗ = L∇

(4.1.9)

where Th−T0 is the temperature scale of the flow. Using Eq. (4.1.9) we define the following
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nondimensional groups:

Re =
ρ0UL

µ0

We =
λU

L

Ma =
U

c0

βv = µs/µ0

Di =
κ

ρ0CvUL
Vh =

Uµ0

ρ0CvL(Th − T0)

(4.1.10)

In addition to the parameters defined in Eq. (4.1.1) we have also introduced two new

nondimensional parameters that appear in the energy balance equation: the diffusion number

Di, and the viscous heating number, Vh. The nondimensional expression for the polymeric

viscosity is given by

µp(T )

µ0
s + µ0

p

= (1− βv)ψ̂(θ) (4.1.11)

and for the relaxation

λ(T )U

L
= Weψ̃(θ) (4.1.12)

where

ψ̂(θ) = exp(−A0θ) ψ̃(θ) = exp(−A0θ)[θ(Th − T0)/T0 + 1] (4.1.13)

We have used the fact that

λ0

(
T0

T

)
= λ0

([
Th − T0

T0

]
θ + 1

)
Substituting Eq. (4.1.10) into (4.1.4) and dropping the ∗ notation, the governing equations
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can then be written in nondimensional form

Reρ
Du

Dt
= −∇p+

[
βv

(
∇2u +

1

3
∇(∇ · u)

)
+∇ · τ p

]
+ F

∂ρ

∂t
+∇ · (ρu) = 0

τ p = g1(C, I)

C +Weψ̃(θ)(
O
C +(∇ · u)C) + g2(C,D) = I

ρ
Dθ

Dt
= ∇ · q̃ + Vh(T : ∇u− p∇ · u)

∂ρ

∂p
=

Ma2

Re(1 + α̃θ)

(4.1.14)

For the incompressible case (∇ · u = 0), ρ = ρ0, the governing equations take the form

Re
Du

Dt
= −∇p+

[
βv∇2u +∇ · τ p

]
+ F

∇ · u = 0

Dθ

Dt
= ∇ · q̃ + VhT : ∇u

τ p = g1(C, I)

C +Weψ̃(θ)
O
C +g2(C,∇u) = I

(4.1.15)

The nondimensional form of the heat flux vector, q is given by

q̃ = Di∇θ (4.1.16)

Note: Alternative variable scaling and definitions of nondimensional parameters are used

in Sec. 5.3. A description of the alternative nondimensionalisation is given in Sec. 5.3.4.

Furthermore, the equations presented here are for reference so that the numerical scheme

can be explained. For each of the three benchmark problems further assumptions apply and

are stated when used.
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4.2 Temporal Discretisation: Taylor-Galerkin Meth-

ods

Taylor-Galerkin methods were initially developed for solving convective transport problems

for which the governing equations are hyperbolic [69]. The motivation for Taylor Galerkin

methods is the desire to derive high-order accurate time-stepping schemes which can be used

in conjunction with spatial discretisation methods. To demonstrate the ideas behind this

method consider the following prototypical convective transport problem: Let φ = φ(x),

x ∈ [a, b], a, b ∈ R be a scalar function satisfying

∂φ

∂t
+ u

∂φ

∂x
= 0 (4.2.1)

where u is constant. Assuming φ is sufficiently differentiable in time the Taylor expansion

up to second order is given by

φn+1 = φn + ∆t
∂φn

∂t
+

∆t2

2

∂2φn

∂t2
+O(∆t2) (4.2.2)

φn+1 − φn

∆t
+ u

∂φn

∂x
= 0 First Order Approximation (Forward Euler) (4.2.3)

φn+1 − φn

∆t
+ u

∂φn+1

∂x
= 0 First Order Approximation (Backward Euler) (4.2.4)

If we include the second order term, Eq. 4.2.2 can be rearranged to give

∂φn

∂t
=
φn+1 − φn

∆t
− ∆t

2

∂2φn

∂t2
+O(∆t2) (4.2.5)

Using Eq. (4.2.1) into we can show that ∂
∂t

= −u ∂
∂t

. Therefore we can derive the second-order

approximation

φn+1 − φn

∆t
+ u

∂φn

∂x
− ∆tu2

2

∂2φn

∂x2
= 0 (4.2.6)
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The second-order explicit scheme (4.2.6) can be rewritten as a predictor-corrector pair [69].

Thus an equivalent approximation to (4.2.1) is given by

φn+ 1
2 − φn

∆t/2
= −u∂φ

n

∂x
(4.2.7)

φn+1 − φn

∆t
= −u∂φ

n+ 1
2

∂x
(4.2.8)

Rearranging Eq. (4.2.7) to make φn+ 1
2 the subject and then substituting into Eq. (4.2.8)

we obtain Eq. (4.2.6). At each stage of the two-step scheme φn+1/2 and φn+1 can then

be solved spatially using a suitable spatial discretisation method. Higher order accurate

Taylor-Galerkin time-marching schemes can be derived by including more terms in the Taylor

expansion.

4.2.1 A Taylor Galerkin Scheme for Computing Viscous flow

The first scheme presented is the Taylor-Galerkin temporal discretisation for a viscous New-

tonian fluid. In this scheme the convective (nonlinear) terms are explicitly calculated using

similar steps to Equations (4.2.7) and (4.2.8). The pressure is then determined by combining

the Taylor-Galerkin steps with Chorin’s projection method. The resulting scheme is given

by

Step 1a Re

(
un+ 1

2 − un

∆t/2

)
= ∇2un −Reun · ∇un −∇pn

Step 1b Re

(
u∗ − un

∆t

)
=

1

2
∇2un −Reun+ 1

2 · ∇un+ 1
2 −∇pn

Step 2 ∇2(pn+1 − pn) =
Re

∆t
∇ · u∗

Step 3 Re

(
un+1 − u∗

∆t

)
= −1

2
∇(pn+1 − pn) +

1

2
∇2un+1

(4.2.9)
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Incompressibility is enforced in Step 2. Furthermore, body force terms can also be introduced

explicitly (at time t = tn) in steps 1a and 1b. Webster et. al [89] proposed the following

modification to the two-step Taylor Galerkin pressure-correction algorithm in order to model

unsteady flow of weakly compressible Newtonian fluids

Step 1a Reρn

(
un+ 1

2 − un

∆t/2

)
=

(
∇2un +

1

3
∇(∇ · un)

)
−Reρnun · ∇un −∇pn

Step 1b Reρn

(
u∗ − un

∆t

)
=

1

2

(
∇2un +

1

3
∇(∇ · un)

)
−Reρun+ 1

2 · ∇un+ 1
2 −∇pn

Step 2
Ma2

Re(1 + α̃θn)

pn+1 − pn

∆t
=

∆t

2
∇2(pn+1 − pn)−∇ · (ρnu∗)

Step 3 Reρn

(
un+1 − u∗

∆t

)
= −1

2
∇(pn+1 − pn) +

1

2

(
∇2un+1 +

1

3
∇(∇ · un+1)

)

Step 4 Reρn+1 = Reρn +
Ma2

Re(1 + α̃θn)
(pn+1 − pn)

(4.2.10)

4.2.2 Taylor Galerkin Scheme for Computing Viscoelastic Flow

Taylor Galerkin methods are suitable for numerically simulating compressible and viscoelas-

tic flow due to their efficiency in treating equations of an evolutionary hyperbolic type [69].

In this section we propose an extension of the procedure developed by Belblidia et al. [50, 51]

for nonisothermal weakly compressible viscoelastic fluids described by the governing equa-

tions Eq. (4.1.14). In the case of incompressible viscoelastic flow the two-step scheme can

be written
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Step 1a Re

(
un+ 1

2 − un

∆t/2

)
= βv∇2un −Reun · ∇un +∇ · τ np −∇pn

Step 1b Re

(
u∗ − un

∆t

)
=

1

2
βv∇2un −Reun+ 1

2 · ∇un+ 1
2 +

1

2
∇ · τ np −∇pn

Step 1c
We(Cn+ 1

2 −Cn)

∆t/2
= [I−C−We(u · ∇C−C∇u +∇uT ·C)− g2(C,∇u)]n

Step 1d
θn+ 1

2 − θn

∆t/2
= ∇ · qn − un · ∇θn + Vhσ

n : ∇un

Step 2 ∇2(pn+1 − pn) =
Re

∆t
∇ · u∗

Step 3 Re

(
un+1 − u∗

∆t

)
= −1

2
∇(pn+1 − pn) +

1

2
βv∇2un+1 +

1

2
∇ ·Cn+1

Step 4
We(Cn+1 −Cn)

∆t
+ Cn+1 = I− [We(u · ∇C−C∇u +∇uT ·C) + g2(C,∇u)]n+ 1

2

Step 5
θn+1 − θn

∆t
= ∇ · qn+1 − un+ 1

2 · ∇θn+ 1
2 + Vhσ

n+ 1
2 : ∇un+ 1

2

(4.2.11)

where τ np = 1−βv
We

(Cn − I) =: g1(Cn, I). In addition to the steps outlined for the Newto-

nian fluid the scheme for the incompressible viscoelastic fluid contains two fractional steps

for solving the constitutive equation. Moreover the two-step Taylor-Galerkin algorithm for

computing nonisothermal and (weakly) compressible viscoelastic flow is given by
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Step 1a Reρn

(
un+ 1

2 − un

∆t/2

)
= βv

(
∇2un +

1

3
∇(∇ · un)

)
−Reun · ∇un +∇ · τ np −∇pn

Step 1b
Weψ̃(θ)(Cn+ 1

2 −Cn)

∆t/2
= [I−C−We(u · ∇C−C∇u +∇uTC +∇ · uC)− g2(C,∇u)]n

Step 1c
θn+ 1

2 − θn

∆t/2
= Di∇2θn − un · ∇θn + Vhσ

n : ∇un − pn∇ · un

Step 2 Reρn

(
u∗ − un

∆t

)
=

1

2
βv

(
∇2un +

1

3
∇(∇ · un)

)
−Reun+ 1

2 · ∇un+ 1
2 +∇ · τ n+ 1

2
p −∇pn

Step 3
Ma2

Re(1 + α̃θn)

pn+1 − pn

∆t
=

∆t

2
∇2(pn+1 − pn)−∇ · (ρnu∗)

Step 4 ρn+1 = ρn +Ma2(pn+1 − pn)

Step 5 Reρn

(
un+1 − u∗

∆t

)
= −1

2
∇(pn+1 − pn) +

1

2
βv

(
∇2un +

1

3
∇(∇ · un)

)

Step 6
Weψ̃(θ)(Cn+1 −Cn)

∆t
+ Cn+1 = [I−We(u · ∇C−C · ∇u +∇uT ·C + (∇ · u)C)

− g2(C,∇u)]n+ 1
2

Step 7
θn+1 − θn

∆t
= Di∇2θn+1 − un+ 1

2 · ∇θn+ 1
2 + Vhσ

n+ 1
2 : ∇un+ 1

2 − pn∇ · un

(4.2.12)

where D̂ = D− 1
2
(∇ · u)I. Eq. (4.2.12) represents a second-order (in time) discretisation for

the system of equations for weakly compressible viscoelastic flow (Eq. (4.1.14)).

4.3 Variational Formulation

In order to write the weak form of the problem, we should introduce some notation. The

space of square integrable functions in a domain, Ω, is denoted L2(Ω) and the space of

functions whose derivatives are square integrable is given by H1(Ω). We define the function

spaces for the velocity pressure and stress as follows
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V =

{
v ∈ H1(Ω)2

}

V0 =

{
v ∈ H1(Ω)2 : v = 0 on ∂Ω

}

Q =

{
q ∈ H1(Ω)

}

Z =

{
R = [Rij], i, j ∈ {1, 2}, Rij ∈ H1(Ω), Rij = Rji

}
(4.3.1)

4.3.1 Incompressible Viscoelastic Flow

We obtain the weak formulation of the time discretised problem as follows: Multiply the

momentum balance, mass balance and constitutive equations (4.2.11) by v ∈ V , q, r ∈ Q

and R ∈ Z, respectively and integrate over Ω. The weak formulation of Eq. 4.2.11 is as

follows: Find un+1,un ∈ V , pn+1, pn, θn+1, θn ∈ V and Cn+1,Cn ∈ Z such that

75



Re

∫
Ω

un+ 1
2 − un

∆t/2
· v dΩ =− βv

∫
Ω

∇un : ∇v dΩ−
∫

Ω

un · ∇un · v dΩ−
∫

Ω

τ np : ∇v dΩ

−
∫

Ω

∇pn · v dΩ

Re

∫
Ω

u∗ − un

∆t
· v dΩ =− 1

2
βv

∫
Ω

∇un · ∇v dΩ−
∫

Ω

un+ 1
2 · ∇un+ 1

2 · v dΩ− 1

2

∫
Ω

τ np : ∇v dΩ

−
∫

Ω

∇pn · v dΩ ∀v ∈ V

We

∫
Ω

cn+ 1
2 − cn

∆t/2
: R dΩ =−

∫
Ω

τ np : R dΩ +

∫
Ω

I : R dΩ

−We

∫
Ω

(u · ∇c− c∇u +∇uTc)n : R dΩ ∀R ∈ Z

We

∫
Ω

cn+1 − cn

∆t
: R dΩ =−

∫
Ω

cn+1 : R dΩ +

∫
Ω

I : R dΩ

−We

∫
Ω

(u · ∇c− c∇u +∇uTc)]n+ 1
2 : R dΩ ∀R ∈ Z∫

Ω

∇(pn+1 − pn) · ∇q dΩ =
1

∆t

∫
Ω

u∗ · ∇q dΩ ∀q ∈ Q

Re

∫
Ω

un+1 − u∗

∆t
· v dΩ =

1

2
βv

∫
Ω

∇un+1 : ∇v dΩ− 1

2

∫
Ω

cn+1 : ∇v dΩ

− 1

2

∫
Ω

(∇pn+1 −∇pn) · v dΩ ∀v ∈ V∫
Ω

θn+ 1
2 − θn

∆t/2
r dΩ =−Di

∫
Ω

∇θn · ∇r dΩ−
∫

Ω

un · ∇θnr dΩ

+ Vh

∫
Ω

[σn : ∇un]r dΩ ∀v ∈ V∫
Ω

θn+1 − θn

∆t
r dΩ =−Di

∫
Ω

∇θn+1 · ∇r dΩ−
∫

Ω

un+ 1
2 · ∇θn+ 1

2 r dΩ

+ Vh

∫
Ω

[σn+ 1
2 : ∇un+ 1

2 ]r dΩ ∀r ∈ Q

(4.3.2)

4.3.2 Weakly Compressible Flow

The weak formulation of Eq. 4.2.11 is as follows: Find un+1,un ∈ V , pn+1, pn, θn+1, θn ∈ V

and Cn+1,Cn ∈ Z such that
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Re

∫
Ω

ρn
un+ 1

2 − un

∆t/2
· v dΩ =− βv

(∫
Ω

∇un : ∇v dΩ +
1

3

∫
Ω

(∇ · un)(∇ · v) dΩ

)
−Re

∫
Ω

un · ∇un · v dΩ−
∫

Ω

τ np : ∇v dΩ−
∫

Ω

∇pn · v dΩ ∀v ∈ V

We

∫
Ω

ψ̃(θ)
cn+ 1

2 − cn

∆t/2
: R dΩ =−

∫
Ω

cn : R dΩ +

∫
Ω

I : R dΩ

−We

∫
Ω

ψ̃(θ)(u · ∇c− c∇u +∇uTc +∇ · uc)n : R dΩ ∀R ∈ Z∫
Ω

ρn
θn+ 1

2 − θn

∆t/2
r dΩ =−Di

∫
Ω

∇θn · ∇r dΩ−
∫

Ω

un · ∇θnr dΩ

+ Vh

∫
Ω

[σn : ∇un]r dΩ ∀v ∈ V

Re

∫
Ω

ρn
u∗ − un

∆t
· v dΩ =− 1

2
βv

(∫
Ω

∇un : ∇v dΩ +
1

3

∫
Ω

(∇ · un)(∇ · v) dΩ

)
−
∫

Ω

un+ 1
2 · ∇un+ 1

2 · v dΩ− 1

2

∫
Ω

τ np : ∇v dΩ

−
∫

Ω

∇pn · v dΩ ∀v ∈ V

We

∫
Ω

ψ̃(θ)
cn+1 − cn

∆t
: R dΩ =−

∫
Ω

cn+1 : R dΩ +

∫
Ω

I : R dΩ

−We

∫
Ω

ψ̃(θ)(u · ∇c− c∇u +∇uTc +∇ · uc)]n+ 1
2 : R dΩ ∀R ∈ Z∫

Ω

Ma2

Re(1 + α̃θn)∆t
(pn+1 − pn)q dΩ +

∫
Ω

∆t

2
∇(pn+1 − pn) · ∇q dΩ

= Re

(∫
Ω

ρn∇ · u∗q dΩ +

∫
Ω

∇ρn · u∗q dΩ

)
∀q ∈ Q

Re

∫
Ω

ρn
un+1 − u∗

∆t
· v dΩ =− 1

2
βv

(∫
Ω

∇un+1 : ∇v dΩ +
1

3

∫
Ω

(∇ · un+1)(∇ · v) dΩ

)
− 1

2

∫
Ω

τ n+1
p : ∇v dΩ− 1

2

∫
Ω

(∇pn+1 −∇pn) · v dΩ ∀v ∈ V∫
Ω

ρn
θn+1 − θn

∆t
r dΩ =−Di

∫
Ω

∇θn+1 · ∇r dΩ−
∫

Ω

un+ 1
2 · ∇θn+ 1

2 r dΩ

+ Vh

∫
Ω

[σn+ 1
2 : ∇un+ 1

2 ]r dΩ ∀r ∈ Q

(4.3.3)
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4.4 Spatial Discretisation: FEM

4.4.1 The Finite Element Method: A Brief Overview

Since the dawn of numerical computing, the finite element method has become an increas-

ingly useful technique that has been widely used by engineers. The first textbooks on FEM

were published in the 1970s and several popular texts have been published since. Courant

[22] is usually credited with having first published the finite element method in an appendix

of a paper focussed on Ritz-Rayleigh methods.

Using the definition formulated by Ciarlet [18] we define a finite element as a triple (K,Σ, P )

where

• K ⊂ Rn is the element domain with Lipschitz continuous boundary ∂K

• Σ is a finite set of linear forms over C∞(K). The set Σ is said to be the degrees of

freedom of the finite element

• P is the set of nodal variables (basis or dual of Σ)

The first step in the finite element method is to derive the variational form of the PDE,

which consists of bilinear and linear forms:

a(u, v) = L(v) ∀v ∈ V (4.4.1)

where u is being solved for and v is a test function. The domain, Ω, over which we wish

to solve the PDE is meshed using a shape function K. On each element functions are

represented via the coefficients of basis Σ, or degrees of freedom (dof). A set of algebraic

equations are then formed by evaluating Eq. (4.4.1) on each degree of freedom (interpolation

point) i.e. a(φi, ψj) and L(ψj) have to be evaluated for each φi, ψj ∈ P . PDEs solved using

FEM require boundary conditions. These can either be strong, such as Dirichlet boundary

conditions which fix some of the coefficients eliminating the corresponding equations, or

weak, such as Neumann conditions that are assembled through the variational form.

Implementing the finite element method can be summarised using the following algorithm
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1) Derive the variational formulation of governing equation

2) Formulate mesh

3) Create degrees of freedom (dof) on mesh

4) Evaluate a(i, j) = L(j) for i, j ∈ dofs (generate linear system of equations)

5) Apply Dirichlet boundary conditions

6) Perform algebraic solve

4.4.2 Galerkin Finite Element Discretisation of the Governing

Equations

Under the considerations outlined in Sec. 4.4.1 we can construct conforming finite element

spaces Vh ⊂ V , Qh ⊂ Q and Zh ⊂ Z in the usual manner. These discrete function spaces are

chosen so that they satisfy the Ladyzhenskaya–Babuška–Brezzi (LBB) or inf-sup condition.

The LBB condition is necessary and sufficient for guaranteeing the well posedness of solutions

of the discrete problem. The velocity, pressure and stress spaces are subject to the following

compatibility conditions

inf
qh∈Qh

sup
vh∈Vh

(qh,∇ · vh)
||qh||Qh

||v||Vh
> β1 > 0 (4.4.2)

inf
vh∈Vh

sup
τp∈Zh

(Rh,D(vh))

||Rh||Zh
||vh||Vh

> β2 > 0 (4.4.3)

Numerous types of finite element basis functions exist in the literature. However, one of

the difficulties in solving the governing equations for viscoelastic flow is finding compatible

basis functions for the pressure velocity and stress in order to satisfy the LBB condition. In

this thesis we will restrict ourselves to three types of compatible finite elements suitable for

modelling viscoelastic flow; namely P1 piecewise linear continuous Lagrangian elements for

pressure, density and temperature, P2 piecewise quadratic for velocity and P1 discontinuous
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Lagrangian elements for stress. In the implementation of DEVSS stabilisation (see Sec.

4.6.1) we will make use of the space of discontinuous functions over Ω constructed using P0

elements.

(a) (b)

(c)

Figure 4.1: (a) Piecewise linear P1, (b) piecewise quadratic P2 and (c) piecewise constant
P0 elements
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4.5 The High Weissenberg Number Problem (HWNP)

When trying to numerically solve hyperbolic constitutive equations such as UCM and Oldroyd-

B, most of the standard polynomial interpolation methods fail to converge for frustratingly

low Weissenberg numbers. Further examination reveals that the cause of numerical diver-

gence is due to growing spurious oscillations brought about by dominating advection terms.

To demonstrate this problem, consider the following 1D example

∂φ

∂t
+ a(x)

∂φ

∂x
− b(x)φ =

1

We
φ (4.5.1)

where a(x), b(x) > 0 with boundary condition φ(0, t) = 1. This equation represents a field

that is convected with velocity a(x) and grows exponentially at a rate b(x) −We−1. Here

a(x) represents the velocity field u, and b(x) plays the role of the velocity gradient ∇u in

the UCM/Oldroyd-B equation. The solution to (4.5.1) is given by

φ(x) =

∫ 0

x

exp

(
b(s)−We−1

a(s)

)
ds (4.5.2)

We can solve (4.5.1) numerically using the explicit scheme

φn+1
j − φnj

∆t
= −aj

φnj − φnj−1

∆x
+ bjφ

n
j +

1

We
φnj (4.5.3)

where aj = a(xj) and bj = b(xj).

φn+1
j =

[
1− ∆taj

∆x
+ ∆t

(
bj −

1

We

)]
φnj +

aj∆t

∆x
φnj−1 (4.5.4)

It is clear that the numerical solution blows up unless the terms in the rectangular parenthesis

are less than unity in magnitude i.e.

∆t

[
aj
∆x
− bj +

1

We

]
≥ 0 (4.5.5)

which in turn implies that either We < 1/bj or
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∆x ≤ aj
bj −We−1

(4.5.6)

This condition holds at each interpolation point xj. This stability criterion can be inter-

preted as follows: the spatial profile φ(x, t) is exponential, therefore every convection scheme

based on polynomial interpolation of the fluxes underestimates the flux at the right edge of

every computational cell [31]. This failure to balance the convective term with the multi-

plicative growth rate leads to numerical blow-up. Suitably accurate discretisation schemes

and stabilisation methods are required in order to obtain solutions over a wider range of We

and are outlined in the following sections.

4.6 Stabilisation

4.6.1 DEVSS and DEVSS-G

The Discrete Elastic Viscous Stress Splitting (DEVSS) scheme introduced by Guénette and

Fortin [39] does not require a change of variables and can be implemented at the weak

formulation stage of the discretisation.

Incompressible Flow

In the case where ∇ · u = 0, the momentum equation can be expressed in the form

Re
Du

Dt
+∇p+ γu(∇2u−∇ ·D) + β∇2u−∇ · τ p = 0

D− (∇u +∇uT ) = 0

(4.6.1)

where γu is the DEVSS stabilisation parameter. At the continuous level, it is clear that

the term in red is equal to zero because ∇ ·D = ∇2u. This is not true when the solution

space for D is lower order than that of the derivative space for the velocity solution, u. As

a result, in regions of high deformation rate where stress gradients are largest the DEVSS
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term stabilises the solution.

Compressible Flow

In compressible flow we propose the following extension to the DEVSS formulation (4.6.1)

ρ
Du

Dt
+∇p+ γu

(
∇2u +

1

3
∇(∇ · u)−∇ ·D

)
+ βv

(
∇2u +

1

3
∇(∇ · u)

)
−∇ · τ p = 0

D−

(
∇u +∇uT − 2

3
(∇ · u)I

)
= 0

(4.6.2)

In both cases τ p is determined by the constitutive equation.

4.6.2 Streamline Upwinding - SU and SUPG

As outlined in section 4.5, spurious oscillations generated by use of central difference methods

or Galerkin finite elements for advection dominated equations are an unwelcome nuisance.

In order to combat this problem Brooks & Hughes [14] developed the so-called streamlined-

upwind/Petrov-Galerkin (SUPG) formulation. A 1D model example to demonstrate the

SUPG method is given in the next section.

SUPG Example 1D

Consider the advection-diffusion equation

−εu′′(x) + bu′(x) = 0 x ∈ [0, 1]

u(0) = 1, u(1) = 0
(4.6.3)

The exact solution of this problem is given by ue(x) = (eb/ε − ebx/ε)/(eb/ε − 1). Let
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V = {v ∈ H1(0, 1) : v(0) = 1, v(1) = 0}

W = H1
0 (0, 1)

(4.6.4)

The weak form of (4.6.3) is: Find u ∈ V such that

ε〈u′, v′〉+ b〈u′, v〉 = 0, ∀v ∈ W (4.6.5)

where

〈a, b〉 =

∫ 1

0

ab dx (4.6.6)

Define a(u, v) = ε〈u′, v′〉 + b〈u′, v〉, the weak form can be rewritten: Find u ∈ V such that

a(u, v) = 0 for all v ∈ W . If we approximate the solution using piecewise linear functions

uh(x) =
N∑
i=1

Uiφi(x) (4.6.7)

and choose the test function according to

vh(x) = φj(x) j = 1, . . . , N (4.6.8)

then the solution to (4.6.5) can be approximated by the solution of the linear system of

equations

AU = 0 (4.6.9)

where

Aij = a(φj, φi) (4.6.10)

and
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A =
ε

h



2 −1 + γ
2

0 · · · 0

−1− γ
2

2 −1 + γ
2

· · · ...

0 −1− γ
2

2
. . . 0

...
. . . . . . −1 + γ

2

0 · · · 0 −1− γ
2

2


(4.6.11)

For the SUPG method, the test function, vk is replaced by

ṽk = vk + hkv
′
k (4.6.12)

The SUPG stabilised formulation of (4.6.5) is: : Find u ∈ V such that

a(uk, ṽk) = 0, ∀v ∈ W (4.6.13)

The discrete problem can then be written

ÃU = 0 (4.6.14)

(a) (b)

Figure 4.2: Finite element/difference solution to the problem. (a) unstabilised and (b) SUPG
stabilised. b = 60, ε = 0.1, h = 0.0125
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As seen in Fig. 4.2 (a) if ε = 0 or ε
hb

falls below some critical size then the problem is advection

dominated and the finite element/difference approximation to the solution develops spurious

oscillations. This always occurs unless unless the exact solution is globally smooth [10].

However, when the SUPG weighted test functions are used in the formulation the oscillations

are suppressed. Figure 4.2 (b) shows the SUPG stabilised solution.

SUPG For Viscoelastic Flows

For 2D or 3D viscoelastic flow problems the weak formulation of the constitutive equation

(4.1.14) using SUPG weighted test functions can be written

∫
Ω

(
Ch +We(

O
Ch +(∇ · uh)Ch) + g2(Ch,Dh)− I

)
: R̃h dΩ = 0 (4.6.15)

where R̃ is the augmented test function defined by

R̃h = Rh + |h| uh
|uh|
· ∇R (4.6.16)

where |h| is the cell diameter of the finite element. The first application of streamlined-

upwind methods to viscoelastic flows was performed by Marchal & Crochet [60] in 1987.

The authors used both the SUPG method and streamlined upwind (SU) method for the

stress, however, they found that the consistent SUPG integration of the constitutive equation

produced errors in the calculation of stick-slip flow and flow through an abrupt contraction.

Crochet and Legat [23] concluded that the failure of SUPG to prevent numerical breakdown

was due to errors occurring at the sharp corners within the flow. They substantiated this

claim by illustrating that SUPG method was both stable and accurate for solving UCM flows

around a sphere and through a corrugated tube.

For problems with smooth boundaries both high order accuracy and stability for the stress

solution can be obtained. For problems with singularities the augmented test function, R̃,

collapses to the standard Galerkin test function near the boundary and spurious oscillations

will occur. A review of the SUPG method for viscoelastic flows can be found by Phillips and
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Owens [69] p.177-182.

4.6.3 Log Conformation Tensor Representation

The most significant development concerning the HWNP is the development of the log-

conformation tensor representation proposed by Fattal & Kupfermen [30, 31]. Some of the

difficulties associated with exponential stress profiles can be remedied by solving for the

(matrix) logarithm of the conformation tensor, log(C) (recall that any symmetric positive-

definite (SPD) matrix can be diagonalized, A = RΛRT , and that logA = R log ΛRT ).

Moreover positivity of the conformation tensor is guaranteed by a formulation based on

log C. For incompressible flow the following theorem holds

Theorem 4.6.1 Let u be a divergence-free velocity field and let C be the positive-definite

conformation tensor. Then, ∇u can be (locally) decomposed as

∇u = Ω +B +NC−1 (4.6.17)

where Ω(∇u,C) and N(∇u,C) are anti-symmetric pure rotations and B is symmetric, trace-

less and commutes with the conformation tensor C.

We can then show that if C satisfies a constitutive equation of the form (4.1.15), and g2 is

dependent on C only , then ψ := log C satisfies the equation

We

(
∂ψ

∂t
+ (u · ∇)ψ − (ψΩ− Ωψ)− 2B

)
+ e−ψ(g2(eψ)− I) = 0 (4.6.18)

where Ω is the anti-symmetric part of∇u defined in Theorem 4.6.1 and B = 1
2
(∇u+∇uT ) =:

D (for further details see Fattal and Kupferman [30]). The improvement in numerical stability

for finite element method solutions to Eq. (4.6.18) allows for much higher Weissenberg

numbers to be attained.

The development of a log-conformation tensor representation for compressible viscoelastic

flows is (unfortunately) outside the scope of this thesis. A future development aimed at
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improving the numerical scheme outlined in Sec. 4.7 is the extension of the log-conformation

tensor representation to compressible flows. Due to the difficulties presented by removing

the divergence free condition for u, this is by no means an easy task as analogues of the

various tensors used in the decomposition of the velocity gradient will have to be derived

and this remains an open problem.

4.6.4 Orthogonal Projection Stabilisation

In recent years, projection based stabilisation techniques have been considered as a compu-

tationally efficient means of treating the high Weissenberg instability [16, 88]. Consider the

explicit Euler time discretisation of the general constitutive equation in (4.1.14)

We(Cn+1 −Cn)

∆t
= [I−C−WeF(u,C)− g(∇u,C)]n (4.6.19)

where F is given by

F(u,C) = u · ∇C−C∇u +∇uTC + (∇ · u)C (4.6.20)

and g is model dependent. If we define Z as the suitable function space for C, the weak

formulation can than be written in terms of an inner product

We

∆t
〈Cn+1 −Cn,R〉 = 〈[I−C−WeF(u,C)]n − g(∇u,C),R〉 ∀R ∈ Z (4.6.21)

The discrete approximation of (4.6.21) can be written in the form

We

∆t
〈Cn+1

k −Cn
k ,R〉 = 〈[I−Ck −WeF(uk,Ck)− g(∇uk,Ck)]

n,R〉 ∀Rk ∈ Zk (4.6.22)

where uk ≈ u on some element k ∈ T (see next section for details of the discrete solution

spaces used). Local projection stabilisation for the discrete problem can be described as

follows: Let Pk be the L2 projection onto an appropriate finite element space, either of

88



velocity, elastic stress or pressure without boundary conditions. Let P⊥k = I − Pk be the

orthogonal projection, where I is the identity mapping, i.e.

P⊥(uk) =

∫
Ω

(uk − ûk) · vk dΩ ∀vk ∈ V (4.6.23)

where ûk is the L2 projection of u onto a lower order function space (for further details on

the fluctuation operator, P⊥(·) see Castillo et al. [3] and Ganesan et al. [33]). To stabilise

the computations of the conformation stress we add the numerical diffusion term

Sτp(C,R) =

NP∑
k∈T

hk〈c1κk∇C,∇R〉+

NP∑
k∈T

hk〈c2κk∇ ·C,∇ ·R〉 (4.6.24)

to the right-hand side of (4.6.22) where κk is the scalar fluctuation operator defined by

κn+1
k =

∣∣∣∣∣
∣∣∣∣∣P⊥

[
We

∆t
(Cn+1

k −Cn
k) + Cn

h +WeFn(∇uk,Ck) + g(∇unk ,C
n
k)− I

]∣∣∣∣∣
∣∣∣∣∣ (4.6.25)

and c1, c2 are user chosen parameters. It is clear that, in the elements where Cn
k satisfies the

discretised form of the constitutive equation, κk = 0. Thus the stabilised formulation of the

discrete problem (4.6.22) can be written

We

∆t
〈Cn+1

k −Cn
k ,R〉+ Sn+1

τp
= 〈[I−Ck −WeF(uk,Ck)− g(∇u),C)]n,R〉 ∀Rk ∈ Zk

(4.6.26)

4.7 Bilinear Forms and Discretised Systems

4.7.1 Incompressible Flow

Eq. (4.3.2) can be expressed using bilinear forms as follows: For a given (u0
h, D

0
H), p0 and

τ 0
p,h, find (uh, Dh)

n+ 1
2 ∈ Vh×Zd,h, τ

n+ 1
2

p ∈ Zh, θn+ 1
2 ∈ Qh, (uh, D)∗h ∈ Vh×Zd,h, pn+1

h ∈ Qh,

(uh, Dh)
n+1 ∈ Vh ×Zh,τ n+1

p ∈ Zh and θn+1
h ∈ Qh such that
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Re

(
u
n+ 1

2
h − unh
∆t/2

,vh

)
+ γu

(
a(u

n+ 1
2

h ,vh)− c(Dn+ 1
2

h ,vh)

)
=− βva(unh,vh)−Reb(unh; unh,vh)

+ c(τ np,h,vh)− d(pnh,vh) ∀vh ∈ Vh

(Dn+ 1
2

h , R̂h)− e(u
n+ 1

2
h ,Rh) =0 ∀Rh ∈ Zd,h

We

(
C
n+ 1

2
h −Cn

h

∆t/2
,Rh

)
+ Sτp(C

n+ 1
2

h ,Rh) =− (cnh,Rh) + (I,Rh)

−Wef(unh; Cn
p,h,Rh) ∀Rh ∈ Zh(

θ
n+ 1

2
h − θnh

∆t/2
, rh

)
=g(qnh, r)−m(unh; θnh , rh)

+ Vhn(βv; u
n
h; τ np,h, rh) ∀rh ∈ Qh

Re

(
u∗h − unh

∆t
,vh

)
+ γu

(
a(u∗,v)− c(D∗h,vh)

)
=− βv

2
a(unh,vh)−Reb(u

n+ 1
2

h ; u
n+ 1

2
h ,vh)

+ c(τ
n+ 1

2
p,h ,vh)− d(pnh,vh) ∀vh ∈ Vh

(D∗h,Rh)− e(u∗h,Rh) =0 ∀Rh ∈ Zd,h

g(pn+1 − pn, q) =
Re

∆t
d(q,u∗) ∀qh ∈ Qh

Re

(
un+1
h − u∗h

∆t
,vh

)
+ γu

(
a(un+1

h ,vh)− c(Dn+1
h ,vh)

)
+
βv
2

a(un+1
h ,vh) = −1

2
d(pn+1

h − pnh,vh) ∀vh ∈ Vh

(Dn+1
h ,Rh)− e(un+1

h ,Rh) = 0 ∀Rh ∈ Zd,h

We

(
Cn+1
h −Cn

h

∆t
,Rh

)
+ Sτp(Cn

h,Rh) =− (Cn+1
h : R̂h) + (I,Rh)

−Wef(u
n+ 1

2
h ; C

n+ 1
2

h ,Rh) ∀Rh ∈ Zh(
θn+1
h − θnh

∆t
, rh

)
=g(qn, rh)−m(u

n+ 1
2

h ; θ
n+ 1

2
h , rh)

+ Vhn(βv; u
n+ 1

2
h ; τ

n+ 1
2

h , rh) ∀rh ∈ Qh

(4.7.1)

where
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(u,v) =

∫
Ω

u · v dΩ (τ ,R) =

∫
Ω

τ : R dΩ

a(u,v) =

∫
Ω

∇u : ∇v dΩ b(û; u,v) =

∫
Ω

û · ∇u · v dΩ

c(τ ,v) =

∫
Ω

∇ · τ · v dΩ = −
∫

Ω

τ : ∇v dΩ

d(p,v) =

∫
Ω

∇p · v dΩ = −
∫

Ω

p∇ · v dΩ

e(u,R) =

∫
Ω

1

2
(∇u +∇uT ) : R dΩ

f(u; τ ,R) =

∫
Ω

(u · ∇τ − τ · ∇uT −∇u · τ ) : R dΩ

g(p, q) =

∫
Ω

∇p · ∇q dΩ

(4.7.2)

The DEVSS stabilisation terms are highlighted in red and Sτp(C,R) is the Orthogonal

projection stabilisation term defined in Eq. (4.6.24). The exact formulation, including

nondimensional parameters used is dependent on (i) the scaling used and (ii) parameter

dependence on temperature. In the benchmark problems presented in Chapters 5 and 6

variations of the scheme (4.7.1) are used to solve for velocity, stress, pressure and tempera-

ture, all of which have the same underlying structure.

Let {φi}, i = 1, . . . NV , {ζk}, k = 1, . . . NQ, and {ξr}, r = 1, . . . NZ , be the basis functions for

Vh, Qh and Zh, respectively, and let ζ, φ and ξ be scalar, vector and tensor basis functions,

respectively. The discrete solution functions are given by

unh(x, y) =

NV∑
j=1

Un
jφj(x, y) pnh(x, y) =

NQ∑
j=1

P n
j ζj(x, y)

Cn
p,h(x, y) =

NZ∑
j=1

Tn
j ξj(x, y) Dn

h(x, y) =

NZ∑
j=1

Dn
j ξj(x, y)

θnh(x, y) =

NQT∑
j=1

θ̂nj ζj(x, y)

(4.7.3)
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where Un
j , j = 1, . . . NV , Pn

j , θ̂nj , j = 1, . . . NQ and Tn
j , ..., s = 1, . . . NV are the nodal values

of the dependent variables at time-step t = tn. For each j, P n
j , Un

j and Tn
j are a real-valued

scalars. Since unh and τp
n
h represent vector and tensor valued functions respectively, we can

define Û
n

jv ∈ R2 for each jv ∈ {1, . . . , Nv/2}, and T̂
n

jz ∈ R2×2 jz ∈ {1, . . . , NZ/4} so that

Un
jφj(x, y) = Ûk,n

jv
φkj (x, y)

Tn
j ξj(x, y) = T̂ kl,njz

ξklj (x, y) k, l ∈ {1, 2}
(4.7.4)

For example, Un
1 = Û1,n

1v , Un
2 = Û2,n

1v , Un
3 = Û1,n

2v , Un
4 = Û2,n

2v etc. The same system is used to

label the tensor basis functions so Tn
1 = T̂ 11,n

1v , Tn
2 = T̂ 12,n

1z , Tn
3 = T̂ 21,n

1z , Tn
4 = T̂ 22,n

1z . Using

this notation will aid with explaining how the various matrices are constructed. Setting

vh = φi, qh = ζk and ψh = ξr and substituting (4.7.3) into (4.7.1) generates a system of

linear algebraic equations:

Velocity Half-Step

NV∑
j=1

[2Re(φj,φi) + ∆t[γu(a(φj,φi))− e(φj, ξr)]]U
n+ 1

2
j + ∆t

NZ∑
j=1

[(ξj, ξk)− c(ξj,φi)]D
n+ 1

2
j

=

NV∑
j=1

[2Re(φj,φi)−∆t[βa(φj,φi) +Reb(unh;φj,φi)]]U
n
j + ∆t

NZ∑
j=1

c(ξj,φi)T
n
j

−∆t

NQ∑
j=1

d(ζj,φi)P
n
j

(4.7.5)

Stress Half-Step

2We

NZ∑
j=1

(ξj, ξi)T
n+ 1

2
j +

NZ∑
j=1

s(ξj, ξi) =(2We−∆t)

NZ∑
j=1

(ξj, ξi)T
n
j +

NV∑
j=1

(φj, ξi)

−We∆t

NQ∑
j=1

f(unh; ξj, ξi)T
n
j

(4.7.6)
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Predictor Step

NV∑
j=1

[Re(φj,φi) + ∆t[γu(a(φj,φi))− e(φj, ξr)]]U
∗
j + ∆t

NZ∑
j=1

[(ξj, ξk)− c(ξj,φi)]D
∗
j

=

NV∑
j=1

[Re(φj,φi)−∆t
β

2
a(φj,φi)U

n
j −∆tRe

NV∑
j=1

b(u
n+ 1

2
h ;φj,φi)U

n+ 1
2

j + ∆t

NZ∑
j=1

c(ξj,φi)T
n+ 1

2
j

−∆t

NQ∑
j=1

d(ζj,φi)P
n
j

(4.7.7)

Pressure Correction

NQ∑
j=1

g(ζj, ζi)P
n+1
j =

NQ∑
j=1

g(ζj, ζi)P
n
j +

Re

∆t

NV∑
j=1

d(φj, ζi)U
n
j (4.7.8)

Velocity Full Step

NV∑
j=1

[Re(φj,φi) + ∆t
β

2
(a(φj,φi))]U

n+1
j =

NV∑
j=1

[Re(φj,φi)−∆t
1

2

NQ∑
j=1

d(ζj,φi)(P
n+1
j −Pn

j )

(4.7.9)

Stress Full Step

(We+ ∆t)

NZ∑
j=1

(ξj, ξi)T
n+1
j =We

NZ∑
j=1

(ξj, ξi)T
n
j +

NV∑
j=1

(φj, ξi)

−We∆t

NQ∑
j=1

f(unh; ξj, ξi)T
n
j

(4.7.10)

Eq. (4.7.5)-(4.7.10) can be expressed in matrix form as the following set of matrix equations:

2ReMV + ∆tγvA −∆tγvC

−∆tE ∆tMZ

Un+ 1
2

Dn+ 1
2

 =

F̃u

1

0

 (4.7.11)
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where F̃ is the right-hand side of (4.7.5)

2WeMZTn+ 1
2 + S

n+1/2
1 = [(2We−∆t)MZ −WeFn]Tn + 2(1− βv)EUn (4.7.12)

ReMV + ∆tγvA −∆tγvC

−∆tE ∆tMZ

U∗

D∗

 =

F̃u

2

0

 (4.7.13)

GP n+1 = GP n +
Re

∆t
DTU∗ (4.7.14)

ReMV + ∆tγvA −∆tγvC

−∆tE ∆tMZ

Un+1

Dn+1

 =

F̃n

3

0

 (4.7.15)

(We+ ∆t)MZTn+1 + Sn+1
1 = [WeMZ −WeFn+ 1

2 ]Tn + 2(1− βv)EUn+ 1
2 (4.7.16)

where
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MV
ij = (φj,φi) =

∫
Ω

φj · φi dΩ

MZ
ij = (ξj, ξi) =

∫
Ω

ξj : ξi dΩ

MQ
ij = (ζj, ζi) =

∫
Ω

ζjζi dΩ

Aij = a(φj,φi) =

∫
Ω

∇φj : ∇φi dΩ

Bn
ij = b(ûn;φj,φi) =

∫
Ω

ûn · ∇φj · φi dΩ

Cij = c(ξj,φi) = −
∫

Ω

ξj : ∇φi dΩ

Dij = d(ζj,φi) =

∫
Ω

∇ζj · φi dΩ = −
∫

Ω

ζj∇ · φi dΩ

Eij = e(φj, ξi) =

∫
Ω

1

2
(∇φj +∇φTj ) : ξi dΩ

Fij = f(u; ξj, ξi) =

∫
Ω

(u · ∇ξj − ξj · ∇uT −∇u · ξj) : ξi dΩ

Gij = g(ζj, ζi) =

∫
Ω

∇ζj · ∇ζi dΩ

Mij = m(u; ζj, ζi) =

∫
Ω

φj · ∇θr dΩ

Ni = n(βv; u; τ p, ζi) =

∫
Ω

[(βvD + τ p) : ∇u]ζi dΩ

(4.7.17)

F̃u

i i = 1, 2, 3 is the right-hand side of Eq. (4.7.5), (4.7.7) and (4.7.9), respectively. The

orthogonal projection stabilisation matrix is given by

Sij = s(ξj, ξi) (4.7.18)

Equations (4.7.11)-(4.7.16) represent the fully discretised form of the governing equations

(4.1.15).
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4.7.2 Compressible Flow

Eq. (4.3.3) can be expressed using bilinear forms as follows: For a given (u0
h,D

0
h), ρ

0
h p

0
h

and C0
h, find (uh,Dh)

n+ 1
2 ∈ Vh × Zd,h, C

n+ 1
2

h ∈ Zh, (θ
n+ 1

2
h ,Θn+ 1

2 ) ∈ Qh, (u,D)∗ ∈ V × Z,

pn+1
h ∈ Qh, ρn+1

h ∈ Qh, (uh,Dh)
n+1 ∈ Vh ×Z,Cn+1

h ∈ Zh and θn+1
h ∈ Qh such that

(4.3.3) can be expressed using bilinear forms

Re

(
ρnh

u
n+ 1

2
h − unh
∆t/2

,vh

)
+ γu

(
â(u

n+ 1
2

h ,vh)− c(D
n+ 1

2
h ,vh)

)
=− βvâ(unh,vh)− b(unh; unh,vh)− c(τ np,h,v)

− d(pnh,vh) ∀vh ∈ V([
Dh −

1

2

(
∇uh +∇uTh −

2

3
(∇ · uh)I

)]n+ 1
2

, R̂h

)
= 0 ∀Rh ∈ Zd,h

We

(
C
n+ 1

2
h −Cn

h

∆t/2
, R̂h

)
= −(Cn

h, R̂h)+(I, R̂)

−Wef(unh; Cn
h,Rh) ∀Rh ∈ Zh

Re

(
ρnh

u∗h − unh
∆t

,vh

)
+ γu

(
â(u∗h,vh)− c(D∗h,vh)

)
=− βv

2
a(unh,vh)− b(u

n+ 1
2

h ; u
n+ 1

2
h ,vh)

− c(τ
n+ 1

2
h ,vh)− d(pnh,vh) ∀vh ∈ Vh([

Dh −
1

2

(
∇uh +∇uTh −

2

3
(∇ · uh)I

)]∗
, R̂h

)
=0 ∀Rh ∈ Zd,h

We

(
Cn+1
h −Cn

h

∆t
, R̂h

)
=− (Cn+1

h : R) + (I, R̂h)

−Wef(u
n+ 1

2
h ; C

n+ 1
2

h , R̂h) ∀Rh ∈ Zh

Ma2

Re∆t
(ϑn(pn+1

h − pnh), qh) +
∆t

2
g(pn+1

h − pnh, qh) =−

(
h1(ρnh; u∗h, qh) + h2(ρnh; u∗h, qh)

)
∀qh ∈ Qh

Re

(
ρnh

un+1
h − u∗h

∆t
,vh

)
+ γu

(
â(un+1

h ,vh)− c(Dn+1
h ,vh)

)
=− βv

2
a(unh,vh) +

1

2
d(pn+1

h − pnh,vh) ∀vh ∈ Vh([
Dh −

1

2

(
∇uh +∇uTh −

2

3
(∇ · uh)I

)]n+1

,Rh

)
= 0 ∀Rh ∈ Zd,h

(4.7.19)
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where we adapt some of the definitions of bilinear forms used in Eq. (4.7.1) to account for

the extra compressible terms. The bilinear form â is defined

â(u,v) =

∫
Ω

∇u : ∇v dΩ +
1

3

∫
Ω

(∇ · u)(∇ · v) dΩ (4.7.20)

and we define three new bilinear forms d̂, h1 and h2 such that

h1(ρn; u∗, q) =

∫
Ω

ρn∇ · u∗q dΩ h2(ρn; u∗, q) =

∫
Ω

∇ρn · uq dΩ

d̂(p, r) = −
∫

Ω

(∇ · p)r dΩ =

∫
Ω

p · ∇r dΩ

(4.7.21)

Additionally ϑ is defined

ϑn =
1

1 + α̃θn
(4.7.22)

In the momentum equation usual inner product (·, ·) is replaced by a weighted inner product

(ρn·, ·).

Velocity Half-Step

NV∑
j=1

[2Re(φj,φi) + ∆t[γu(â(φj,φi))− ê(φj, ξr)]]U
n+ 1

2
j + ∆t

NZ∑
j=1

[(ξj, ξk)− c(ξj,φi)]D
n+ 1

2
j

=

NV∑
j=1

[2Re(φj,φi)−∆t[βa(φj,φi) +Reb(unh;φj,φi)]]U
n
j + ∆t

NZ∑
j=1

c(ξj,φi)T
n
j

−∆t

NQ∑
j=1

d(ζj,φi)P
n
j

(4.7.23)
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Stress Half-Step

2We

NZ∑
j=1

(ξj, ξi)T
n+ 1

2
j =(2We−∆t)

NZ∑
j=1

(ξj, ξi)T
n
j +

NV∑
j=1

(φj, ξi)

−We∆t

NQ∑
j=1

f(unh; ξj, ξi)T
n
j

(4.7.24)

Predictor Step

NV∑
j=1

[Re(φj,φi) + ∆t[γu(a(φj,φi))− ê(φj, ξr)]]U
∗
j + ∆t

NZ∑
j=1

[(ξj, ξk)− c(ξj,φi)]D
∗
j

=

NV∑
j=1

[Re(φj,φi)−∆t
β

2
â(φj,φi)U

n
j −∆tRe

NV∑
j=1

b(u
n+ 1

2
h ;φj,φi)U

n+ 1
2

j + ∆t

NZ∑
j=1

c(ξj,φi)T
n+ 1

2
j

−∆t

NQ∑
j=1

d(ζj,φi)P
n
j

(4.7.25)

Pressure Correction

NQ∑
j=1

[
Ma2

∆t
(ϑnζj, ζi) +

∆t

2
g(ζj, ζi)

]
P n+1
j =

NQ∑
j=1

[
Ma2

∆t
(ζj, ζi) +

∆t

2
g(ζj, ζi)

]
P n
j

−
NV∑
j=1

[h1(ρnh;φj, ζi) + h2(ρnh;φj, ζi)]U
∗
j

(4.7.26)

Velocity Full Step

NV∑
j=1

[Re(φj,φi) + ∆t
β

2
(â(φj,φi))]U

n+1
j =

NV∑
j=1

[Re(φj,φi)−∆t
1

2

NQ∑
j=1

d(ζj,φi)(P
n+1
j −Pn

j )

(4.7.27)
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Stress Full Step

(We+ ∆t)

NZ∑
j=1

(ξj, ξi)T
n+1
j =We

NZ∑
j=1

(ξj, ξi)T
n
j +

NV∑
j=1

(φj, ξi)

−We∆t

NQ∑
j=1

f(unh; ξj, ξi)T
n
j

(4.7.28)

Eq. (4.7.23)-(4.7.28) can be expressed in matrix form as the following set of matrix equations:

2ReMV + ∆tγvA −∆tγvC

−∆tÊ ∆tMZ

Un+ 1
2

Dn+ 1
2

 =

F̃u

1

0

 (4.7.29)

2WeMZTn+ 1
2 = [(2We−∆t)MZ −WeF̂

n
]Tn + Î (4.7.30)

ReMV + ∆tγvA −∆tγvC

−∆tÊ ∆tMZ

U∗

D∗

 =

F̃u

2

0

 (4.7.31)

(
Ma2

∆t
MQ

ϑ +
∆t

2
G

)
P n+1 =

(
Ma2

∆t
MQ

ϑ +
∆t

2
G

)
P n −

(
H1,ρ + H2,ρ

)
U∗ (4.7.32)

ReMV + ∆tγvA −∆tγvC

−∆tÊ ∆tMZ

Un+1

Dn+1

 =

F̃n

3

0

 (4.7.33)

(We+ ∆t)MZTn+ 1
2 = [WeMZ −WeF̂

n+ 1
2 ]Tn+ 1

2 + Î (4.7.34)

where F̃u

i i = 1, 2, 3 is the right-hand side of (4.7.23), (4.7.25) and (4.7.27), respectively. In

addition to the matrices defined in equations (4.7.17) additional matrices for the compressible

scheme are defined as follows:
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Êij = e(φj, ξi) =

∫
Ω

1

2
(∇φj +∇φTj ) : ξi dΩ

F̂ij = f(u; ξj, ξi) =

∫
Ω

(φl · ∇ξj − ξj · ∇φTl −∇φl · ξj +∇ · uξj) : ξi dΩ

Gij = g(ζj, ζi) =

∫
Ω

∇ζj · ∇ζi dΩ

H
ρnh ,1
ij = h1(ρnh;φj, ζi) =

∫
Ω

ρnh,jζj∇ · φjζi dΩ

H
ρnh ,2
ij = h2(ρnh;φj, ζi) =

∫
Ω

∇ζj · ∇ζi dΩ

(4.7.35)

4.8 Solving the Discretised System

4.8.1 The Conjugate Gradient Method

The conjugate gradient (CG) method is a fast and efficient iterative method for solving

symmetric linear systems of equations. It was first derived and introduced by Hestenes and

Stiefel in 1952 as part of a generalisation of a class of iterative algorithms for linear systems

including Gaussian elimination [44]. Finding the solution, x, to the system Ax = b can be

thought of as the minimisation of the unary quadratic form

f(x) =
1

2
xTAx− bTx + γ (4.8.1)

where γ is a constant vector. The gradient of f is given by

∇f(x) = Ax− b (4.8.2)

Symmetric positive definiteness ensures that f is convex and thus has a unique minimum.

It follows that

x minimiser of f ⇐⇒ ∇f(x) = 0 ⇐⇒ Ax = b (4.8.3)

When the eigenvalues of A lie within distinct clustered groups CG converges extremely
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rapidly, often in fewer than n steps. The Krylov subspace of dimension of order n is given

by

Kn = span{b, Ab, . . . , An−1b} (4.8.4)

The conjugate method is the archetype of a Krylov space solver: an orthogonal projection

method which satisfies a minimality condition. CG generates a sequence of vectors xn ∈ Kn
that converges to the solution of the linear system Ax = b. The aim is to minimize the

energy norm of the error vector e = xk − x denoted ||e||A, where ||.||A is the energy norm

defined

||e||A =
√

eTAe (4.8.5)

Ensuring A-orthogonality of vectors vk = xk−xk−1 guarantees that the minimum is achieved

in at most n-steps.

The Conjugate Gradient (CG) Algorithm

1) Choose initial guess x0 and compute r0 = b− Ax0. Set p0 = r0

2) For k = 1, 2, 3, . . . , compute

αk = ||rk−1||2/pTk−1Apk−1

xk = xk−1 + αkpk−1

rk = rk−1 − αkpk−1

βk = ||rk||2/||rk−1||2

pk = rk + βkpk−1

(4.8.6)

Until ||b− Axn|| is below some tolerance

The step length αn is chosen so that rn is orthogonal to rn−1. It can then be shown (by in-

duction) that successive residuals generated at each step of the conjugate gradient algorithm
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are orthogonal to all previous residuals in the sequence

rTnrj = 0, j < n (4.8.7)

Additionally the search directions, pn, are A-conjugate

pTnApj = 0, j < n (4.8.8)

4.8.2 Preconditioners For The CG Algorithm

The rate of convergence of the CG method depends on the size of the condition number,

κ(A) (definition given in [63] p.493). If the eigenvalues of A are not close to one another

then CG converges slowly. Convergence speed can be improved by way of preconditioning

the system with a suitable nonsingular matrix P−1. Preconditioners are chosen such that

the resulting system,

P−1Ax = P−1b (4.8.9)

is better suited for the CG algorithm. The precondtioner matrix, P is usually chosen to be

an approximation to A, albeit one easier to invert, with P−1A having eigenvalues clustered

close to unity.

The Preconditioned Conjugate Gradient (CG) Algorithm

1) Choose initial guess x0 and compute r0 = b−Ax0.

2) Solve Pz0 = r0. Set p0 = z0.
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3) For k = 1, 2, 3, . . . , compute

αk = rTk−1zn−1/p
T
k−1Apk−1

xk = xk−1 + αkpk−1

rk = rk−1 − αkApk−1

zk = P−1rk

βk = ||rk||2/||rk−1||2

pk = rk + βkpk−1

(4.8.10)

Until ||b− Axk|| is below some tolerance.

4.9 Implementation Using FEniCS

FEniCS is an open-source (LGPLv3) computing platform enabling straightforward imple-

mentation of the finite element method. The FEniCS Python/C++ interface allows different

ways to access the core functionality, ranging from low-level to very high-level access [27].

Finite element meshes can be created using Mesh.h tools along with a large variety of finite

element basis functions. Codes are written using Unified Form Language (UFL) [27] allowing

the user to easily translate the weak formulation into Python/C++ syntax which then call

FEniCS routines to assemble local and global linear systems. The resulting global systems

are then solved using CG routines available from PETSc libraries. Having both high level

functionality and allowing the user access to more fine-grained control of the solution process

reduces the lines of code required to implement the numerical scheme.

4.10 Convergence Test for Numerical Scheme

We now present a convergence test for the two-step Taylor-Galerkin finite element scheme for

incompressible (4.2.11) and compressible (4.2.12) algorithms for computations of viscoelastic

103



flow. Artificial body force terms are added to the momentum and constitutive equations such

that the exact solution of the velocity, stress and pressure are given by

ux(x, y, t) = xf(t) (4.10.1)

uy(x, y, t) = −yf(t) (4.10.2)

p(x, y, t) = constant (4.10.3)

Cxx(x, y, t) = xf(t) + 1 (4.10.4)

Cxy(x, y, t) = (x+ y)f(t) (4.10.5)

τyy(x, y, t) = yf(t) + 1 (4.10.6)

where f(t) is a smooth time-dependent function given by

f(t) = exp(−t) sin(2πt) (4.10.7)

It is clear that equations (4.10.1)-(4.10.6) do not satisfy the momentum equation and Oldroyd-

B constitutive law. Forcing terms are required in order to ensure zero residual between the

left and right hand sides. The body force terms are given by

Fu = Re

(
∂u

∂t
+ u · ∇u

)
+∇p−∇ · τ − β∇2u (4.10.8)

Fτ = τ +We

(
∂τ

∂t
+ u · ∇τ −∇u · τ − τ · ∇uT

)
− (1− β)(∇u +∇uT ) (4.10.9)

We use the manufactured solutions to measure the convergence rate of the proposed nu-

merical schemes for both incompressible and compressible flow. The computational error is

evaluated in velocity, stress, pressure and temperature by considering the L2 and H1 norms

in space and l∞ and l2 norms in time. Use of these norms gives a sense of spatial and

temporal accuracy of the solutions. The definition of the norms we consider are given by
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||eu||0,∞ = sup
n=1,2,..N

||ue(tn)− uh(tn)||L2(Ω)

||eu||0,0 =

(∫ T

0

||ue(tn)− uh(tn)||2L2(Ω)

)1/2

||eu||1,∞ = sup
n=1,2,..N

||ue(tn)− uh(tn)||H1(Ω)

||eu||1,0 =

(∫ T

0

||ue(tn)− uh(tn)||2H1(Ω)

)1/2

(4.10.10)

At each level of mesh refinement the governing equations are solved with Re = 0.5, We =

0.25, βv = 0.75, ∆t = h2. The stabilisation parameters are chosen to be c1 = 0.1, c2 = 0.05

and DEVSS stabilisation coefficient is γu = 0.5. The time-step is chosen as to ensure CFL

conditions are met.

4.10.1 Incompressible Taylor-Galerkin Numerical Scheme

We first present the convergence of the incompressible Taylor-Galerkin numerical scheme

(4.2.11).

Figures 4.3(a)-(c) show that the incompressible scheme demonstrates the desired convergence

rate.

4.10.2 Compressible & Nonisothermal Taylor-Galerkin Scheme

For the compressible scheme, in addition to the exact solution given by (4.10.1)-(4.10.6) we

require two additional prescribed solutions for density and temperature

ρ(x, y) = 1

T (x, y, t) = (x+ y)f(t)
(4.10.11)

In simulations the pressure and density are chosen so that they satisfy the equation state.
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(a) (b)

(c)

Figure 4.3: Convergence test for incompressible flow numerical scheme ((4.2.11)) (a) u, (b)
p and (c) τ p = (1− βv)/We(C− I) .

The additional body force term for the temperature equation is given by

Fθ =
∂T

∂t
+ u · ∇T −Di∇2T − σ : ∇u (4.10.12)

Figures 4.4 (a)-(d) show the convergence for the compressible numerical scheme. The con-

vergence rate for the velocity is the fastest and demonstrates the smallest error for a given

norm. Both (4.2.11) and (4.2.12) display the expected rate of convergence in velocity, pres-

sure, stress and temperature as well good agreement with the exact solution.
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(a) (b)

(c) (d)

Figure 4.4: Convergence test for compressible flow numerical scheme ((4.2.12)) (a) u, (b) p,
(c) τ p = (1− βv)/We(C− I) and (d) θ.

4.11 Summary

The numerical method for computing incompressible and compressible viscoelastic flow has

been introduced. The governing equations are discretised temporally using a Taylor-Galerkin

time marching scheme. At each stage the solutions are approximated spatially using Taylor-

Hood elements for velocity and pressure and piecewise linear discontinuous elements for

conformation stress. To stabilise the computations the DEVSS formulation is used and

orthogonal projection terms are included in the weak formulation. For computations of
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weakly compressible flow the original forms of the DEVSS formulation have been adapted to

provide control over the additional divergence terms in the momentum and stress equations.

The resulting solution method for solving the governing equations are coded in Python and

mesh generation, local and global matrix assembly are automated using FEniCS/DOLFIN

finite element tools. Finally, the stabilised Taylor-Galerkin/finite element scheme for (both

incompressible and compressible) show the expected rate of convergence.
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Chapter 5

Flows in the Unit Square

5.1 Introduction

In this chapter we consider two benchmark CFD problems with the same physical domain.

The flow of a compressible Oldroyd-B fluid is analysed so that comparisons between the

incompressible and weakly compressible schemes can be made. In Section 5.2 a solution to

the lid-driven cavity flow problem is presented. In Section 5.3 we present an investigation

into the buoyancy-driven flow between flat plates (natural convection flow). In both sections

the domain, mesh and numerical method are described and solutions for both incompressible

and compressible flow are analysed and compared to results from the literature.

5.2 Lid Driven Cavity Flow

Viscoelastic fluids exhibit qualitatively different behaviour to Newtonian fluids under the

same flow conditions. Examples of this can be seen in phenomena such as rod-climbing, the

Barius effect, siphoning and secondary flows. The difference in behaviour is due to the fact

that stress in a viscoelastic fluid is dependent on the strain history, and not solely on the

current strain.

The compressibility of the flow is characterised by the flow Mach number, Ma = U/c0.
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A Mach number of zero corresponds to an incompressible flow. In many applications of

both Newtonian and non-Newtonian flows, Mach number effects are often ignored. However

in the processing of polymeric fluids, compression and expansion due to heat/pressure are

phenomena that need to be well understood and controlled. Despite this fact the importance

of compressibility in non-Newtonian flows has received little coverage in the literature to date.

In this section, we consider the flow of an Oldroyd-B fluid in a lid-driven cavity. The lid driven

cavity problem is one of the benchmark problems in both Newtonian and non-Newtonian

fluid mechanics used to analyse the performance of numerical solution schemes. The 2D

geometry, interesting flow behaviour and the plentiful supply of numerical predictions in the

literature make it an ideal test problem to study the efficiency of new numerical schemes.

We will investigate numerical solutions to both compressible and incompressible Oldroyd-B

flow using the Taylor-Galerkin finite element schemes outlined in Chapter 4.

5.2.1 Historical Overview of the Lid Driven Cavity Problem

Viscoelastic flows are present in a wide range of modern day industrial applications of com-

plex fluids. Examples include food production, oil recovery, drug delivery, ink-jet printing,

injection moulding and polymer processing. Physical experiments are often costly and im-

practical and therefore theoretical and computational analysis of viscoelastic flow is a vital

tool in the improvement of these industrial processes. Several models exist for viscoelastic

fluids such as Oldroyd-B, Giesekus, PTT, FENE-P, FENE-CR. The inherent sophistication

of the mathematical models mean that numerical methods are required to obtain solutions

to viscoelastic flow problems. Even in simple geometries viscoelastic flows exhibit complex

behaviour including transient flow patterns and complex secondary flows [88]. Numerical

simulations are a cheap alternative to physical experiments and enable us to make flow pre-

dictions that would otherwise be impossible to obtain. Since the 1970s improvements have

been made to both the accuracy and computational efficiency of numerical simulations of

polymeric fluids. The main contributing factor to this improvement is the increase in com-

puter processing power. However, several hurdles have been overcome in both modelling and
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numerical analysis.

A large percentage of the literature on non-Newtonian flow is limited to incompressible and

isothermal problems. Well-known predictor-corrector schemes such as Chorin’s projection

method rely on the divergence-free velocity field condition in order to update the velocity

at each time step. However enforcing the incompressibility condition results in the pressure

becoming a Lagrange multiplier and therefore any thermodynamic information about the

pressure is lost [13]. In industrial polymer processing operations, such as injection moulding

and high-speed extrusion, pressure, flow rate and temperature variation may be large. Hence,

compressibility effects within the viscoelastic regime may become important and influence

resulting flow phenomena. The difference between incompressible and compressible flows is

determined by the propagation speed of longitudinal waves, c, which couples density with

pressure via an equation of state. For incompressible fluids the speed of sound is infinite

whereas for compressible fluids the speed is finite. In recent years some work has been done

to develop numerical schemes for compressible flow. Keshtiban and Webster [50] developed

a Taylor-Galerkin scheme and used it to successfully obtain solutions to several benchmark

problems for viscoelastic flow.

Numerical investigations of fluid transport problems involve finding solutions to coupled sys-

tems of equations governing momentum, density, pressure and extra-stress (state variables).

In the case of Newtonian flow, the extra-stress can be expressed as a linear function of the

rate of strain tensor. For viscoelastic flow the extra-stress tensor satisfies its own governing

equation (constitutive law) and cannot be eliminated by direct substitution. Furthermore,

if the fluid is assumed to be incompressible the density is constant and can be parametrised.

In the more general case fluid density is governed by the conservation of mass equation and

an equation of state. Detailed theoretical analysis of the laws governing compressible &

nonisothermal viscoelastic fluid transport have been undertaken by Beris & Edwards [8, 29]

and Bollada & Phillips [13].

A major difficulty for all numerical simulations of viscoelastic flow is the so-called high Weis-

senberg number problem (HWNP) (see Sec. 4.5), which is the failure of numerical schemes
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to attain mesh converged solutions to even simple flow problems. Consistent viscoelastic

models capturing time dependent relaxation effects use objective derivatives in the consti-

tutive equations, such as the upper convected derivative (
O·). At high Weissenberg numbers,

the presence of deformation terms in these derivatives result in steep exponential profiles

that are not well captured by polynomial interpolation functions. Errors resulting from the

failure to properly balance deformation with convection leads to convergence failure for most

numerical solution schemes unless further stabilisation techniques are employed. In order to

overcome these challenges, several stabilisation methods have been proposed.

A commonly used technique for combatting the spurious oscillations that arise due to

the advection-dominated constitutive equation is the Streamline Upwind Petrov Galerkin

(SUPG) method of Brooks and Hughes [14] (see Sec. 4.6.2). SUPG was first implemented

to stabilise Oldroyd-B flow calculations by Marchal and Crochet [60]. A similar technique

was used by Guénette and Fortin [39] for the analysis of PTT fluids. Another stabilisation

widely used is Elastic Viscous Stress Splitting (EVSS), first proposed by Rajanopalan et al.

[76]. EVSS was successful in stabilising finite element method solutions to flow between ec-

centrically rotating cylinders, a benchmark problem greatly affected by the high Weissenberg

number problem due to sharp velocity gradients arising in the narrow gap (see Section 6.2 for

more details). Subsequently a variety of similar methods have been developed such as Dis-

crete Elastic Viscous Stress Splitting (DEVSS) [39], Explicitly Elliptic Momentum Equation

(EEME) [76], DEVSS-G [15] and Discontinuous Galerkin (DG) methods [32]. A large volume

of literature concerning stabilised finite element methods for viscoelastic flow can be found.

In most cases, finite element methods are stabilised by adding (artificial) mesh-dependent

terms to the standard Galerkin approximation equation.

Fattal and Kupferman introduced the log-conformation representation (LCR) method, in

which the constitutive equation is reformulated as an equation for the logarithm of the con-

formation matrix. Using log-conformation representation ensures the stress tensor remains

symmetric positive during computations. Similar techniques have been proposed such as the

square-root conformation tensor formulation (SRCR), proposed by Balci et al. [2], and the
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kernel conformation tensor formulation, proposed by Alfonso et al. [1].

In recent years further advancements have been made in overcoming the HWNP for finite

element approximations of Oldroyd-B flow. Venkatesan and Ganesan [88] developed a three-

field formulation based on one-level Local Projection Stabilisation (LPS) when investigating

Oldroyd-B flow in a wide channel. Using enriched approximation spaces and control terms

in order to stabilise the constitutive and momentum equations they were able to compute

solutions to the benchmark problems flow past a sphere and lid-driven cavity flow for a wide

range of Reynolds and Weissenberg numbers.

In this section we consider the flow of both an incompressible (Ma = 0) and compress-

ible (Ma > 0) Oldroyd-B fluid in the unit square (the so called lid-driven cavity problem).

The temporal solution scheme implemented is the second-order Taylor-Galerkin pressure-

correction scheme detailed in Chapter 4.Numerical results for incompressible flow will be

used to benchmark the Taylor-Galerkin pressure correction scheme. Compressible flow dy-

namics are then analysed over a range of Reynolds, Weissenberg and Mach numbers. Mach

numbers in the range 0.001 ≤ Ma ≤ 0.1 are considered. Computations are stabilised us-

ing DEVSS and orthogonal projection stabilisation with the traditional DEVSS formulation

being adapted in order to account for the compressible terms in the strain-rate tensor.

The numerical scheme is implemented on a single CPU desktop using for the coarse meshed

approximation and advanced supercomputer RAVEN for the fine mesh. Packages from the

FEniCS/DOLFIN finite element library are used in order to build the meshes and spatially

discretise the stabilised equations at each time-step. The resulting linear systems of equations

are then solved using PETSc Krylov Solver.

5.2.2 Domain & Mesh

The fluid is contained in a square cavity Ω = [0, 1] × [0, 1], bounded by solid walls with

the top boundary moving in a rightward direction. The boundary is denoted by ∂Ω with

∂Ω = ∂Ω1 ∪ ∂Ω2. ∂Ωi, i ∈ {1, 2} are subsets of the boundary, ∂Ω1 representing the moving

lid (top boundary), and ∂Ω2 the no-slip boundary. Fig. 5.1 illustrates the problem geometry.
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Figure 5.1: Geometry of the 2D lid driven cavity problem

Viscoelastic fluids cannot sustain steep deformations near the upper corners and therefore

the lid velocity needs to be regularised such that∇u vanishes at (0, 1) and (1, 1). Accordingly

we use the velocity profile proposed by Venkatesan & Ganesan [88]

ux(x, 1, t) = 8[1 + tanh(8(t− 0.5))]x2(1− x)2 uy(x, 1, t) = 0 (5.2.1)

The velocity is ramped so that u ≈ (0, 0) when t = 0. We also impose that τ pij = 0 for

i, j = {1, 2}. The average velocity of the lid, Û , is given by

Û =

∫ 1

0

ux(x, 1, t) dx =
4

15
[1 + tanh(8(t− 0.5))]→ 8

15
as t→∞ (5.2.2)
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Sousa et al. [80] showed that the use of this regularisation significantly reduces the strength of

the main recirculation region. In order to better mimic the unregularized problem, weaker

regularisations can be used so that the fluid is moving at maximum velocity on a larger

percentage of the wall.

Finite Element Mesh

(a) M1 (b) M2

(c) M3 (d) M4

Figure 5.2: Lid driven cavity: Finite element meshes M1 to M4.
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Mesh Cells hmin hmax DoF (p) DoF (u) DoF (C) time/iteration

M1 3535 0.011091 0.039751 1854 14484 21726 0.94

M2 7813 0.007575 0.026512 4069 31900 47850 2.36

M3 13889 0.005321 0.019885 7118 56248 84372 4.36

M4 31024 0.003617 0.013257 15836 125390 188085 7.24

Table 5.1: Lid driven cavity flow: Mesh characteristics M1-M4

The domain, Ω is decomposed into triangular elements. Fig. 5.2 shows meshes M1 to M4

and Table 5.1 gives the mesh characteristics. The refinement method used is similar to the

technique used by Venkastesan and Ganesan [88] where the cells with centres within 0.05/L

of the boundary are divided in two by connecting the mid-point of the longest side to the

opposite vertex. The cell adjacent to the refined element is also subdivided in the same way

to prevent the creation of a hanging node.

5.2.3 Stabilisation

For simulations of both incompressible and compressible flow we use DEVSS (Sec. 4.6.1)

with γu = 1 − βv and orthogonal projection stabilisation (Sec. 4.6.4) with c1 = 0.05 and

c2 = 0.01.

5.2.4 Incompressible Flow

In the first instance we consider the incompressible flow of an Oldroyd-B fluid (Eq. (3.1.21)).

The nondimensionalised governing equations are given by Eq. (4.1.15) with

g1(C, I) =
1− βv
We

(C− I) g2(C,∇u) = 0 (5.2.3)

and the temporal solution scheme (4.2.11). The fully discretised numerical scheme is given

by Eq. (4.7.11)-(4.7.16). The flow behaviour is analysed for Re = 0 (inertia-free) up to

Re = 50 and 0 ≤ We ≤ 1.0. All simulations other than the grid independence test are

solved on the medium refined mesh M3.

116



5.2.5 Weakly Compressible Viscoelastic Lid Driven Cavity Prob-

lem

For the weakly compressible flow of an Oldroyd-B fluid the governing equations are given by

Eq. (4.1.14) with g1 and g2 given by Eq. (5.2.3). We implement the numerical scheme in Sec.

4.7.2. The flow behaviour is examined for Mach numbers ranging from Ma = 0.001 − 0.1

(c0 = 10− 1000 for U = 1). A Mach number of 0.1 may have significant compressible effects

whereas a flow with Ma = 0.001 (or c0 = 1000m/s for our experiments) behaves effectively

as an incompressible fluid. The values of Re and We will be kept the same range as for

incompressible flow simulations to allow for quantitative comparison of the compressible

effects. Furthermore, for the lid-driven cavity the effects due to temperature gradients in

the flow are small in comparison to the impact of the moving lid. As such we will only

consider the isothermal equations (setting θ = 0) compressible effects on the flow alone can

be investigated (the full nonisothermal model is considered in both Sec. 5.3 and Chapter 6).

5.2.6 Results and Discussion

The flow profiles, stress components, elastic and kinetic energy profiles are presented and

analysed. A grid dependency test must be done in order demonstrate that the solutions

are mesh convergent. Another common technique employed to analyse the rheological be-

haviour of polymeric/solvent fluids is the analysis of the energy profile of the flow. For both

compressible and incompressible flow the kinetic and elastic energies are given by:

Ekinetic =
1

2

∫
Ω

ρu · udΩ (5.2.4)

Eelastic =

∫
Ω

tr(C)dΩ (5.2.5)

For incompressible flow the (nondimensonalised) density is equal to 1. However, in the case of

compressible flow the density has to be evaluated at every point in the computational domain

and therefore cannot be factorised out of the integral. The stream function is defined by
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ψ(x, y, t) =

∫ P

A

u dy − v dx (5.2.6)

where A and P are points with coordinates (x, y). Alternatively ψ satisfies the differential

equation

∇2ψ =
∂u

∂y
− ∂v

∂x
(5.2.7)

where

u = (u, v) =

(
∂ψ

∂y
,−∂ψ

∂x

)
(5.2.8)

The stream function is used to measure both the strength and location of the eye of recir-

culation in the flow.

Mesh Convergence

First we compare the kinetic and elastic energy profiles for the meshes shown in Fig. 5.2 in

order to demonstrate the mesh convergence of the solution. The grid independence test is

assurance that the solution is independent of the approximation space used in the numerical

scheme. Fig. 5.3 shows the steady state mesh grid values and the relative size of the

fluctuation operator, κ where we have defined

κ =

(∫
Ω

|κh|2dΩ

)1/2

(5.2.9)

and

||τ || =

(∫
Ω

|τ̂h|2dΩ

)1/2

(5.2.10)

where τ̂h =
τxx,h+τxy,h+τyy,h

3

Furthermore, Figure 5.4 shows the mesh convergence of the solution for Re = 1, Ma = 0.001

and We = 0.5 for the compressible flow problem. We observe that the results tend to a

118



constant value as the number of interpolation points increases.

(a)

Figure 5.3: Lid driven cavity flow: (a) Comparison of κ and ||τ || (a) and (b) plot of κ at
t = 2.0 (Re = 0, We = 0.5, βv = 0.5.)

(a) (b)

Figure 5.4: Lid-driven Cavity Flow: Mesh convergence test, kinetic (a) and elastic (b) energy
profiles for meshes M1-M4 (We = 0.5, Re = 1.0)

Figures 5.4 (a) and (b) show that the error control terms are much smaller in L2(Ω) norm

than the stress and localised to the region near the top boundary.
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(a) (D−∇u)xx/||Dxx|| (b) (D−∇u)xy/||Dxy||

(c) (D−∇u)yy/||Dyy||

Figure 5.5: Lid-driven cavity flow: DEVSS numerical diffusion

Incompressible Flow

The results generated using the scheme outlined in Section 4.7.1 agree with results in the

literature [31, 80, 88]. Steady state isostreams for We = 0.5, Re = 0 are displayed in Fig. 5.6

and velocity components are shown in Fig. 5.7. There is a significant build-up of viscoelastic

stress in the region near the upper right corner at the re-entry point of the flow, pushing the

eye of rotation to the left. Table 5.2.6 shows that results for location and minimum value

of the stream function are in good agreement with results in the literature [16, 70, 80, 88].

Figure 5.5 shows the regions of the domain where DEVSS stabilisation terms are largest.
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Figure 5.6: Lid driven cavity flow: isostreams at t = 10.0. Re = 0, We = 0.5 at t = 5.0.

Figure 5.7: Lid driven cavity flow: (a) ux and (b) uy We = 0.5, β = 0.5, Re = 0 at t = 10.0
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The regions of the flow where DEVSS stabilisation additions to the approximation equation

are most significant are along the top boundary.

Reference ψmin xmin ymin

Current work -0.0692665 0.486 0.800

Venkatesan et. al. [88] -0.0697739 0.470 0.798

Pan et. al. [70] -0.0700056 0.469 0.798

Sousa et. al. [80] - 0.467 0.801

Castillo et. al.[16] - 0.470 0.800

Table 5.2: Incompressible lid driven cavity flow: Comparison of minimum value of stream
function and its location with results in the literature for We = 0.5. (Table reference [88])

Compressible Flow

Figure 5.8: Lid-driven cavity Flow: (a) kinetic and (b) elastic energy for We ∈
{0.1, 0.2, 0.3, 0.4, 0.5} and Re = 5 and Ma = 0.01

Simulations for the compressible flow were generated for Ma = 0.001, 0.01, 0.1. At these

Mach numbers little distinguishes the qualitative behaviour of flow from the incompressible

case but quantitative comparisons of kinetic, elastic energy, centre of rotation and minimum

value of the stream function. Lower Mach numbers were tested but simulations of the lid-

driven cavity produced significant errors in the density approximation.
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The three components of steady-state viscoelastic extra-stress profiles are shown in Figure

5.10. The stress component τxx has a boundary layer along the upper boundary whilst τxy

and τyy display large gradients in the upper right-hand corner. It is also observed that the

symmetry of the flow is broken due to elastic effects. This is due to the asymmetry of the

normal stress values. The eye of the recirculation region shifts upstream. However, this

trend is weakened when the Reynolds number is increased above zero.

Figure 5.9 shows the kinetic and elastic energy profiles of the flow for different Ma. As is

the case for incompressible flow, the steady state kinetic energy of the fluid is reduced as the

Weissenberg number is increased and stored elastic energy is significantly increased. Varying

the Mach number in the range 0 ≤ Ma ≤ 0.1 doesn’t change the underlying behaviour.

However, when the Mach number reaches 0.1 unstable behaviour in the flow persists for the

first few seconds altering the kinetic energy profile (shown in Fig. 5.14).

Figure 5.9: Lid-driven cavity Flow: (a) kinetic and (b) elastic energy for Ma ∈
{0.001, 0.01, 0.1}, Re = 1 and We = 0.3

The underlying qualitative behaviour of the flow is the same for both the compressible and

incompressible case. The Weissenberg number is the largest contributing factor to the energy

profile. The kinetic energy grows as the lid accelerates, reaching a peak between t = 0.5 and

t = 1.5 before falling to a steady state value. The elastic energy grows reaching a plateau

proportional to the Weissenberg number. The Weissenberg number has little impact on the

peak kinetic energy, which remains close to the steady state value for the Newtonian case.
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(a) τxx (b) τxy

(c) τyy

Figure 5.10: Lid driven cavity flow : (a) τxx, (b) τxy, (c) τyy We = 0.5, β = 0.5, Re = 1,
Ma = 0.01.

Compressibility does have a noticeable impact on the kinetic and elastic energy profiles.

Increasing Ma increases the peak and steady-state kinetic energy and also increases the

elastic energy. Figure 5.14 shows the steady state value of the kinetic and elastic energy

increasing with Mach number.
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(a) (b)

Figure 5.11: Lid-driven cavity Flow: Kinetic and elastic energy for We ∈
{0.1, 0.2, 0.3, 0.4, 0.5} and Re = 1 and Ma = 0.01

(a) τyy (b) τyy

Figure 5.12: Lid-driven cavity Flow: Cross-section of velocity components for We ∈
{0.1, 0.2, 0.3, 0.4, 0.5} and Re = 1 and Ma = 0.01

Ma ψmin xmin ymin

0.001 -0.06428 0.48621 0.81236

0.01 -0.05998 0.48923 0.82663

0.1 -0.05316 0.49112 0.8353
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Table 5.3: Compressible lid-driven cavity flow: Dependence of the minimum value of stream
function on Ma for Re = 1, We = 0.5 Ma = 0.01− 0.1

Without inertia the recirculation vortex in the flow is symmetrical about the line x = 0.5 if

the fluid is Newtonian. Elastic effects cause this symmetry to be broken. As the Weissenberg

number is increased the location of the eye moves progressively away from the centre in the

direction opposite to the movement of the lid.

(a) (b)

Figure 5.13: Lid-driven cavity flow: The stream function for (a) We = 0.1 and (b) We = 0.5
(Re = 0 and Ma = 0.01)

The kinetic energy is unaffected by changes in Ma and the elastic energy is decreased as Ma

is increased meaning viscoelasticity and compressibility have opposite effects on the elastic

energy. However at low Mach numbers the results are close to those for incompressible flow.

The minimum value of the stream function is the measure used for quantitative comparisons

with investigations in the literature. For inertia-less Newtonian flow the eye of rotation

remains in a central location. As the Weissenberg number increases the location of the

minimum of the stream function shifts leftward and the symmetry of the flow is progressively

broken. However, as the Reynolds number is increased, the eye of rotation shifts back

towards the centre line x = 0.5. Increased compressibility also causes the eye of rotation to

shift toward the centre line although the effect is relatively small at low Mach numbers.
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(a) (b)

Figure 5.14: Lid-driven cavity flow: Compressible flow kinetic (a) and elastic (b) energy
profiles We ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and Re = 5 and Ma = 0.1

Ma/We 0.1 0.25 0.5 0.75 1.0

0.001 -0.081305 -0.071771 -0.064276 -0.048152 -0.04250580

0.01 -0.081209 -0.0709576 -0.05998 -0.044981 -0.03763765

0.1 -0.081122 -0.069468 -0.053160 - -

Table 5.4: Compressible lid driven cavity flow: Comparison of ψmin for We ∈
{0.1, 0.25, 0.5, 0.75, 1.0}, Re = 0 Ma ∈ {0.001, 0.01, 0.1}, t = 15.

Ma/We 0.1 0.25 0.5 0.75 1.0

0.001 (0.4922,0.8255) (0.4897,0.8206) (0.4842,0.8123) (0.4806,0.8116) (0.4746,0.8095)

0.01 (0.4927,0.8255) (0.4902,0.8205) (0.4862,0.8266) (0.4816,0.81) (0.4760,)

0.1 (0.4931,0.8265) (0.4917,0.82) (0.4811,0.8353) - -

Table 5.5: Compressible lid driven cavity flow: Comparison of ψmin location for different
Weissenberg numbers Re = 0 Ma ∈ {0.001, 0.01, 0.1}, t = 15.
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Ma/Re 1 5 10 25 50

0.001 -0.06428 -0.06226 -0.059243 -0.058138 -0.057459626

0.01 -0.05998 -0.062233 -0.059233 -0.058118 -0.05741772

0.1 -0.05316 -0.05298 -0.05265 - -

Table 5.6: Compressible lid-driven cavity flow: Comparison of ψmin for different Reynolds
numbers, We = 0.5 Ma ∈ {0.001, 0.01, 0.1}, t = 15.

Ma/Re 0 5 10 25 50

0.001 (0.486205,0.81236) (0.48862,0.7866) (0.4903,0.7686) (0.4916,0.7458) (0.4955,0.7215)

0.01 (0.48923,0.82663) (0.4905,0.7925) (0.4915,0.7726) (0.4918,0.7425) (0.4925,0.7495)

0.1 (0.49112,0.8353) (0.4918,0.8236) (0.4925,0.8056) - -

Table 5.7: Compressible lid-driven cavity flow: Comparison of ψmin location for different
Mach numbers We = 0.5, βv = 0.5 Ma ∈ {0.001, 0.01, 0.1}, t = 15.

Compressibility has far less of an impact on the strength and location of the eye of rotation

than relaxation time. However, to the extent that it does affect the flow, the results show

that it weakens the symmetry-breaking effects of relaxation. Tables 5.4-5.6 show the values

and minimum locations of the stream function. In the cases Re = 25 and Re = 50 for

Ma = 0.1 the eye of rotation did not reach a steady-state value.

5.3 Natural Convection Flow of an Oldroyd-B Fluid

Nonisothermal flows are of significant interest to both science and industrial manufacturing.

Examples of these flows can be found in nuclear reactor systems, geological flows, fire control,

polymer processing applications and food production and more. In these cases sufficiently

good models for the transport of heat energy need to be coupled with the momentum and

constitutive laws to predict flow behaviour.

This section will be organised as follows: A historical overview and literature survey of

natural convection flow problem is given in Sec. 5.3.1. A description of the domain and finite
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element mesh will be given in Section 5.3.2. The governing equations for the incompressible

and compressible models will be given in Sections 5.3.4 and 5.3.5, respectively. In both cases

the dimensional and nondimensional forms of the equations will be presented along with a

description of the nondimensional parameters such as the Rayleigh, Ra, and Prandtl, Pr,

numbers. Sections 5.3.4 and 5.3.5 will also cover the weak formulation of the governing

equations. Stabilisation techniques for the Galerkin finite element method will be discussed

in Section 5.3.3, specifically an adaptation of the DEVSS stabilisation described in section

4.6.1. The computational results are then presented in Sec. 5.3.6.

5.3.1 Historical Overview of the Natural Convection Flow Prob-

lem

Modern developments in the understanding of buoyancy driven flows came in the period just

after the Second World War [68]. However, it took nearly two decades before a satisfactory

description of the problem was discovered and accurate computational models started to

appear.

Nonisothermal convection flows are difficult to model because of the complex coupling be-

tween the momentum and thermal fields. These types of problems are classified as either

forced convection, where the flow is generated by some external pump or fan, or as natural

convection, where the flow is a result of density gradients within the flow. Buoyancy-driven

flows are either categorised as external (free convection) or internal (natural convection)

[68]. The earliest work on natural convection in a completely enclosed geometry was done

by Lewis [82], who performed an investigation into ‘foam-like’ insulating materials consisting

of gas-filled cells dispersed throughout a solid material. Heat transfer through gas layers in

rectangular geometries composed of adiabatic horizontal walls and was first investigated by

Batchelor [4, 68]. It was shown that the flow regime within the cavity was dependent on the

height to width ratio L/D and the Rayleigh number [4]. For low values of Ra the investiga-

tion concluded that conduction was the dominant mode of heat transfer. In the asymptotic

limit, L/D →∞, conduction was also found to be the only means of heat transport.
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The first comprehensive study into this class of flow problems was undertaken by Ostrach

[66]. It was also pointed out by Ostrach [67] that internal convection flow problems are

more complex than external convection flows. The reason for this is that the boundary layer

forms an enclosed region around the core of the flow. In turn the flow is dependent on the

boundary layer and vice versa. At large Rayleigh numbers the interaction between the two

results in the onset of turbulence [68].

With the development of numerical computing methods, simulation of 2D flows in enclosed

geometries such as natural convection have become a frequent topic of research papers in

applied mathematics. The vast majority of the literature consists of studies of Newtonian

flow at Rayleigh numbers ranging from 103−107, where the solutions provide good predictions

of low viscosity/large length scale buoyancy-driven flows. However, the literature on non-

Newtonian convective heat flow problems is sparse with very few publications considering

fully viscoelastic models. An investigation into power law fluids by Kim et. al [48] found

that heat transfer was intensified as the power-law index is increased. An experimental study

by Pittman et. al [74] showed that the rheological properties of a fluid are a significant

determining factor for its thermal convective properties.

In this investigation we consider the problem of buoyancy driven flow of an Oldroyd-B fluid

in a square cavity whose vertical sides are kept at (different) constant temperatures (Dirichlet

boundary conditions) and whose horizontal sides are partially insulated (Neumann boundary

conditions). Governing equations for both incompressible and weakly compressible flows are

analysed. For the incompressible problem, the Boussinesq approximation is used to describe

the buoyancy forces.

5.3.2 Domain & Mesh

The domain for the problem is identical to that of the lid-driven cavity (outlined in Sec.

5.2.2). In the case of natural convection flow the regions of Ω with the largest shear rates,

and thus largest discontinuities in the finite element approximations of ∇u are closest to

the boundary Γ. A uniform mesh is generated by dividing the unit square into N equally
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spaced intervals and triangulating using either left or right diagonals of each square. A node

positioned at (xi, yi) in the uniform mesh is mapped to (ξi, ηi) using the following equations

ξi =
1

2
(1− cos(πxi))

ηi = y

(5.3.1)

(a) (b)

Figure 5.15: Uniform (a) vs non-uniform (b) 64 × 64 (M2) mesh over Ω = [0, L] × [0, L],
L = 1

Mapping the location of the element vertices using Eq. (5.3.1) concentrates the interpolation

points close to the left and right walls. Characteristics of the different meshes used are given

in Table 5.8.

Mesh Cells hmin hmax DoF (p) DoF ([u,D]) DoF (τ p) DoF (θ)

M1 4608 0.02086 0.03877 2401 60290 28227 2401

M2 8192 0.01564 0.02909 4225 107010 49923 4225

M3 12800 0.01251 0.02327 6561 167042 77763 6561

M4 18432 0.010420 0.019394 9409 240386 111747 9409

Table 5.8: Natural convection flow: characteristics of the finite element meshes - coarse (M1)
to fine (M4)
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Mesh time/iteration (s)

M1 1.812

M2 3.372

M3 6.152

M4 9.504

Table 5.9: Natural convection flow: CPU run time per iteration (timestep) on coarse (M1)
to fine (M4) meshes

The time/iteration is the mean of time taken per timestep loop when the compressible

solution scheme (see Sec. 5.3.5) is implemented on a single CPU desktop.

5.3.3 Stabilisation

Just as in Section 5.2.3 we use a combination of DEVSS and local projection stabilisation.

For all computations the stabilisation parameters are chosen to be γu = 1− βv, c1− 0.1 and

c2 = 0.05

5.3.4 Incompressible Flow w/ Boussinesq Approximation

For natural convection flow an alternative scaling is used as we now have to consider a body

force in the governing equations.

Governing Equations & Boundary Conditions

In the first case we investigate the incompressible flow problem. Invoking the Boussinesq

approximation, thermophysical properties of the fluid are assumed to be constant (i.e. no

equation of state coupling pressure, density and temperature required). The density is

assumed to have linear dependence on temperature and the compressible effects are contained

within the body force term by using the

ρ = ρ0(1− β(T − Tc)) (5.3.2)
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where ρ0 is the density at a reference temperature Tc. By invoking the Boussinesq approx-

imation we are also able to fully couple the momentum and temperature equations. The

governing system of equations are given by (4.1.4) with an additional body force term added

to the right-hand side of the momentum equation. We impose the divergence-free velocity

condition and therefore the governing system can be written

∇ · u = 0

Du

Dt
= −1

ρ
∇p+ ν∇2u +

1

ρ
∇ · τ p + gβ(T − Tc)k

τ p = g1(C, I)

C + λ(T )(
O
C +(∇ · u)C) + g2(C,D) = I

ρCp
DT

Dt
= −∇ · q + T : ∇u

(5.3.3)

where ν = µ/ρ0is the kinematic viscosity and k = (0,−1). As discussed in Sec. 2.4 the form

of q is dependent on the thermal conductivity matrix, α. We will assume that the thermal

conductivity is isotropic, therefore

q = −κ∇T (5.3.4)

Furthermore the constitutive equation we consider is the Oldroyd-B model

g1 =
1− βv
We

(C− I) g2 = 0 (5.3.5)

The boundary conditions for the problem are given by

u(t, x, 0) = u(t, x, L) = 0 = u(t, 0, y) = u(t, L, y)

T (t, 0, y) = Tl(t) T (t, L, y) = Tc

∂T

∂t
(t, x, L) = hT

(5.3.6)

where Tl(t) and Tc are temperatures at the hot (left) and cold (right) walls, respectively. The
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left wall is heated from an initial temperature T0 to Th using a smooth ramping function

Tl(t) = T0 +
1

2
(Th − T0)(1 + tanh(8(t− 0.5))) (5.3.7)

Throughout these simulations we will set

T0 = 300K Th = 350K (5.3.8)

The appropriate parameter scalings required for nondimensionalisation in natural convection

flow differ from those outlined in Sec. 4.1. This is because the thermal diffusivity, defined

α =
κ

ρCp
(5.3.9)

is much more important than the dynamic viscosity in determining the flow behaviour. Using

the following change of variables

x∗ =
x

L
, y∗ =

y

L
, u∗ =

uL

α

p∗ =
pL2

ρα2
, C∗ = C

L2

ραν
, t∗ = t

α

L2

θ =
T − Tc
Th − Tc

(5.3.10)

The governing equations are given by

Substituting (5.3.10) into (5.3.3) results in the following dimensionless set of governing equa-

tions

∇ · u = 0

Du

Dt
= −∇p+ Pr[βv∇2u +∇ · τ p] +RaPrθk

C +We
O
C = I

Dθ

Dt
= ∇2θ + VhTn : ∇u

(5.3.11)
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where ∗ notation has been dropped. The respective boundary conditions are given by

u(t, x, 0) = u(t, x, 1) = 0 = u(t, 0, y) = u(t, 1, y)

θ(t, 0, y) = θh(t) θ(t, 1, y) = 1

∂θ

∂n
(t, x, 1) = Biθ

(5.3.12)

where the dimensionless groups are given by

Ra =
L3βg

να
(Th − Tc), P r =

ν

α

We =
λα

L2
, Vh =

α2µ

(Th − Tc)κL2
, Bi =

Lhc
κ

(5.3.13)

and hc is the heat transfer coefficient. The Rayleigh number is the nondimensional number

associated with the convection in the fluid. Beyond a critical value, heat transfer in a fluid is

dominated by convection. We choose the boundary condition for the hot wall Γ3 to smoothly

increase from θ = 0 up to θ = 1 when 0 ≤ t ≤ 1.

Solution Method

As in Section 5.2.4, the discrete finite element spaces are chosen so that LBB conditions

are satisfied. This means Taylor-Hood elements for velocity and pressure, discontinuous

piecewise linear elements for stress and continuous linear elements for temperature. The

resulting systems of algebraic equations are given by

Velocity Half-Step
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NV∑
j=1

[2(φj,φi) + ∆t[γu(a(φj,φi))− e(φj, ξr)]]U
n+ 1

2
j + ∆t

NZ∑
j=1

[(ξj, ξk)− c(ξj,φi)]D
n+ 1

2
j

=

NV∑
j=1

[2(φj,φi)−∆t[Prβa(φj,φi) + b(unh;φj,φi)]]U
n
j + Pr∆t

NZ∑
j=1

c(ξj,φi)T
n
j

−∆t

NQ∑
j=1

d(ζj,φi)P
n
j +RaPr

NV∑
j=1

(ζj,φi)θiki

(5.3.14)

Stress Half-Step

2We

NZ∑
j=1

(ξj, ξi)T
n+ 1

2
j +

NZ∑
j=1

s(ξj, ξi) =(2We−∆t)

NZ∑
j=1

(ξj, ξi)T
n
j +

NV∑
j=1

(φj, ξi)

−We∆t

NQ∑
j=1

f(unh; ξj, ξi)T
n
j

(5.3.15)

Temperature Half-Step

NQ∑
j=1

[2(ζj, ζi) + ∆t[d(ζj,φi)]θ
n+ 1

2
j =

NV∑
j=1

[2(ζj, ζi)−∆t[g(ζj, ζi)]]θ
n
j + ∆t

NZ∑
j=1

n(unh; Cn
p,hξj, ζi)

(5.3.16)

Predictor Step
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NV∑
j=1

[(φj,φi) + Pr∆t[γu(a(φj,φi))− e(φj, ξr)]]U
∗
j + ∆t

NZ∑
j=1

[(ξj, ξk)− c(ξj,φi)]D
∗
j

=

NV∑
j=1

[(φj,φi)− Pr∆t
β

2
a(φj,φi)U

n
j −∆t

NV∑
j=1

b(u
n+ 1

2
h ;φj,φi)U

n+ 1
2

j + Pr∆t

NZ∑
j=1

c(ξj,φi)T
n+ 1

2
j

−∆t

NQ∑
j=1

d(ζj,φi)P
n
j +RaPr

NV∑
j=1

(ζj,φi)θiF
g
i

(5.3.17)

Pressure Correction

NQ∑
j=1

g(ζj, ζi)P
n+1
j =

NQ∑
j=1

g(ζj, ζi)P
n
j +

1

∆t

NV∑
j=1

d(φj, ζi)U
n
j (5.3.18)

Velocity Full Step

NV∑
j=1

[(φj,φi) + ∆tPr
β

2
(a(φj,φi))]U

n+1
j =

NV∑
j=1

[(φj,φi)−
∆t

2

NQ∑
j=1

d(ζj,φi)(P
n+1
j −Pn

j )

(5.3.19)

Stress Full Step

(We+ ∆t)

NZ∑
j=1

(ξj, ξi)T
n+1
j =We

NZ∑
j=1

(ξj, ξi)T
n
j +

NV∑
j=1

(φj, ξi)

−We∆t

NQ∑
j=1

f(unh; ξj, ξi)T
n
j

(5.3.20)

Temperature Full Step
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NQ∑
j=1

[(ζj, ζi) + ∆t[d(ζj,φi)]θ
n+ 1

2
j =

NV∑
j=1

[(ζj, ζi)−∆t[g(ζj, ζi)]]θ
n
j + ∆t

NZ∑
j=1

n(unh; τ np,hξj, ζi)

(5.3.21)

where ki = −1 + (−1)i. The bilinear forms are defined in in Eq. (4.7.2) with the additional

bilinear forms in the temperature update steps given by

(θ, r) =

∫
Ω

θr dΩ

m(u, θ, r) =

∫
Ω

u · ∇θr dΩ

n(βv; u; τ p, r) =

∫
Ω

[(βvD + τ p) : ∇u]r dΩ

(5.3.22)

Eq. (5.3.14)-(5.3.21) can be expressed in matrix form as the following set of matrix equations:

MV + ∆tPrβvA −∆tγvC
Z

−∆tE ∆tMZ

Un+ 1
2

Dn+ 1
2

 =

F̃u

1

0

 (5.3.23)

2WeMZTn+ 1
2 + S

n+1/2
1 = [(2We−∆t)MZ −WeFn]Tn + Î (5.3.24)

(MQ + ∆tAQ)θn+ 1
2 = F̃ θ

2 (5.3.25)

MV + ∆tPrβvA
V −∆tγvC

Z

−∆tEV ∆tMZ

U∗

D∗

 =

F̃u

2

0

 (5.3.26)

GQP n+1 = GQP n +
1

∆t
DTU∗ (5.3.27)

MV + ∆tPrβvA
V −∆tγvC

Z

−∆tEV ∆tMZ

Un+1

Dn+1

 =

F̃u

3

0

 (5.3.28)
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(We+ ∆t)MZTn+1 + Sn+1
1 = [WeMZ −WeFn+ 1

2 ]Tn+ 1
2 + Î (5.3.29)

(MQ + ∆tAQ)θn+1 = F̃ θ

2 (5.3.30)

139



5.3.5 Weakly Compressible Flow

We now consider buoyancy-driven flow using a weakly compressible variable density formu-

lation. The motivation behind using this method is to circumvent the use of the Boussinesq

approximation. In doing so we can permit a larger range of density and temperature varia-

tion within the flow. The incompressibility constraint is relaxed and consider the full set of

governing equations given by Eq. (4.1.14). We use the equation of state given by Eq. (4.1.2)

to couple density, pressure and temperature.

Governing Equations & Discretisation

In order to fully couple the momentum and energy conservation laws we need an equation of

state relating density and temperature. Implicit in the weakly compressible Taylor Galerkin

scheme is the relation between density and pressure

p+B = Bρm (5.3.31)

This isothermal equation of state is empirically derived and is suitable for polymer melts

and solutions and other liquids under the linear approximation (m = 1). In that case

∂p

∂ρ
=

(B + p)m

ρ
= c2

0 (5.3.32)

In the linear case we effectively use the relationship

p = c2
0(ρ)−B (5.3.33)

where c0 is the speed of sound. The nonisothermal extension to this equation is defining

ρ = ρ̃
β̂0

β̂1 + β̂2T
(5.3.34)

where βi i ∈ {1, 2, 3} are parameters to be determined empirically.

140



So the equation of state is extended to

p = c2
0ρ

(
β̂0

β̂1 + β̂2T

)
−B (5.3.35)

and can be written in the form

∂p

∂ρ
= c2

0

(
β̂0

β̂1 + β̂2T

)
(5.3.36)

The dimensional governing equations are given by

ρ
Du

Dt
= −∇p+ µs(T )

(
∇2u +

1

3
∇(∇ · u)

)
+∇ · τ p + gρk

∂ρ

∂t
+∇ · (ρu) = 0

τ p =
µp(T )

λ(T )
(C− I)

C + λ(T )(
O
C +(∇ · u)C) = I

ρCp
DT

Dt
= −∇ · q + T : ∇u− p∇ · u

∂p

∂ρ
= c2

0

(
β̂0

β̂1 + β̂2T

)

(5.3.37)

with boundary conditions

u(t, x, 0) = u(t, x, L) = 0 = u(t, 0, y) = u(t, L, y)

T (t, 0, y) = Th(t) T (t, L, y) = Tc T (t, x, 0) = Tc + (1− x/L)(Th − Tc)
∂T

∂t
(t, x, L) = hcT

(5.3.38)

We use the same nondimensionalisation parameters for length, velocity, stress and temper-

ature as the incompressible case (defined in Eq. (5.3.10)) along with the additional nondi-

mensional density ρ∗ = ρ
ρ0

. Substituting nondimensional variables into (5.3.37) results in a
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parametrised set of governing equations for the weakly compressible viscoelastic fluid.

The set of governing equations for the nonisothermal compressible system is therefore be

given by

ρ
Du

Dt
= −∇p+ Pr

[
β

(
∇2u +

1

3
∇(∇ · u)

)
+∇ · τ p

]
+RaPrρ̃

β0

β1 + β2θ
k

∂ρ

∂ρ
+∇ · (ρu) = 0

C +Weψ̃(θ)(
O
C +(∇ · u)C) = I

ρ
Dθ

Dt
= ∇2θ + Vh1T : ∇u− Vh2p∇ · u

∂ρ

∂p
= Ma2

(
α̂1 + α̂2θ

)
(5.3.39)

where

Ra =
L3g

να
(Th − Tc), P r =

ν

α
, We =

λ0α

L2
, Ma =

α

c0L

Vh1 =
α2µ

(Th − Tc)κL2
, Vh2 =

α3ρ0

(Th − Tc)κL2

(5.3.40)

and

α̂1 =
β̂1 + T0

β̂0

α̂2 =
β̂2

β̂0

(5.3.41)

We also define ν = µ/ρ0 and α = κ
ρ0Cp

. The quantity Vh1 represents the usual viscous heating

coefficient and Vh2 is the parameter that describes the heat contributed by expansion.

5.3.6 Results & Discussion

Mesh Convergence

First we assess mesh convergence by comparing the kinetic energy profiles for meshes M1-

M4. Figure 5.16 shows the mesh convergence properties of the numerical solution when

We = 0.25 and βv = 0.5.
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(a) (b)

Figure 5.16: Natural convection flow: (a) kinetic and (b) elastic energy profile for meshes
M1, M2, M3 and M4. We = 0.25, βv = 0.5 and Ra = 103 ∆t = h2

min

Figure 5.16 shows the kinetic energy (calculated using Eq. (5.2.4)) of the flow for We = 0.25

and βv = 0.5 for meshes M1-M4. Numerical experiments for the following sections are all

performed using mesh M3.

Incompressible Flow

The numerical predictions for incompressible Oldroyd-B flow are shown in Figures 5.17-

5.23. As t increases from 0 the temperature of the left wall increases, resulting in thermal

disequilibrium and a (clockwise) circular flow is induced. As a result the kinetic energy

rapidly increases as the flow starts reaching a peak between t = 0 and t = 1 before reducing

to a steady-state level. Elasticity has no significant effect on the maximum value of the kinetic

energy but the steady-state kinetic energy/maximum flow speed decreases with Weissenberg

number. The elastic energy increases from zero reaching a steady-state before t = 5 with the

steady-state value increasing with Weissenberg number. The results presented would suggest

that viscoelastic fluids could be useful in limiting heat transfer in flows where convection is

the dominant mode of heat transfer. However the Rayleigh numbers considered (Ra ≤ 104)

means that the scope of this research is limited to highly viscous flows over small length

scales. Further work should be done to investigate the effect of relaxation time on flows
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with larger Rayleigh numbers. A suggested experiment could be tracking heat flow for a

range of solvent liquids with and without polymer additives in a similar manner to Pittman

et. al [74]. The dramatic change in kinetic energy predicted in this work would suggest a

substantial difference in flow rate between polymeric and non-polymeric fluids.

(a) (b)

Figure 5.17: Natural convection flow: Long term kinetic and elastic energy profiles We ∈
{0.1, 0.25, 0.5, 1.0, 2.0}; βv = and Ra = 103

(a) (b)

Figure 5.18: Natural convection flow: Pressure field Ra = 1000, Pr = 1.0, We = 0.1,
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(a) (b)

Figure 5.19: Natural convection flow: Temperature solutions at t = 1.5, Ra = 1000, Pr =
0.1, We = 0.1

Figure 5.20: Natural convection flow: Velocity field for Ra = 1000, Pr = 1.0, We = 1.0,
t = 1.5

Weakly Compressible Flow

Unfortunately, we were unable to obtain valid results for the compressible flow problem

and solution scheme outlined in Sec. 5.3.5. Despite using both DEVSS and orthogonal

projection stabilisation (see Sec. 4.6, the region near the left wall displays considerable

variations in temperature and density over short length scales and numerical blowup cannot
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Figure 5.21: Natural convection flow: Pressure field Ra = 10000, Pr = 1.0, We = 0.5.

Figure 5.22: Natural convection flow: Plots of T = Tc + θ(Th− Tc), Th = 350K, Tc = 300K.
Ra = 10000, Pr = 1.0, We = 1.0, t = 1.5

be avoided. Although this is disappointing result, this is at least a starting point for future

work. Subsequent investigations should concern finding more suitable stabilisation methods

for problems of buoyancy driven weakly compressible viscoelastic flows, comparing the results

to those obtained when the Boussinesq approximation is invoked.

Viscoelasticity and Heat Transfer

The Weissenberg number has a significant impact on the speed of the flow and, as a result,

the temperature distribution of the fluid in both the steady and unsteady state. Two metrics
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We\Ra 102 103 2× 103 5× 103 104

0 1.5664 7.315 9.365 13.569 18.256
0.1 0.8663 2.624 3.568 4.211 5.545
0.25 0.6842 2.235 3.144 3.464 4.101
0.5 0.41824 1.43 2.001 2.336 3.266
1.0 0.27299 1.036 1.563 1.803 3.001
2.0 0.19033 0.7822 1.233 1.633 -

Table 5.10: Natural convection flow: steady-state values of max|u|, Pr = 2, βv = 0.5.

We\Ra 102 103 2× 103 5× 103 104

0 1.1011 1.1574 1.3422 1.8554 2.2852
0.1 1.0952 1.1102 1.1823 1.4024 1.7852
0.25 1.0565 1.0824 1.1211 1.2566 1.5472
0.5 1.0319 1.0556 1.0688 1.0998 1.2997
1.0 1.0224 1.0423 1.0511 1.0787 1.1152
2.0 1.0169 1.0282 1.0422 1.0657 1.1011

Table 5.11: Natural convection flow: steady-state values of N̄u, Pr = 2, βv = 0.5.

are used to measure the rate of heat transfer. The first is the average Nusselt number defined

N̄u =

∫ 1

0

∂T

∂n
(0, y) dy, (5.3.42)

which measures overall heat transfer. An approximation of the normal derivative on the hot

wall in Eq. (5.3.42) is made using the approximation

∂T

∂n
(0, y) =

T (h0,y, y)− T (0, y)

h0,y

(5.3.43)

where h0,y is the length of the cell adjacent to the left boundary in the x-direction. The

second measurement considered is the steady-state maximum flow speed. Each is calculated

for different We and Ra with Pr and other parameters fixed.

As We is increased the steady-state flow speed is reduced. Table 5.10 shows the maximum

flow speed attained for various Ra and We. the maximum flow speed increases with Rayleigh

number and decreases as We is increased. Furthermore, Tab. 5.11 shows the value of N̄u
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Figure 5.23: Natural convection Flow: Steady-state T = Tc + θ(Th − Tc), Th = 350K,
Tc = 300K We = 0 (a) and We = 1.0 (b) and Ra = 103

over the same range of Ra and We. Whilst N̄u increases with Ra, the elasticity parameter

counteracts this effect in a strong way. For example, at Ra = 104 N̄u = 2.28 for Newtonian

flow (We = 0). This reduces to N̄u = 1.1011 when We = 2.0 Fig. 5.23 shows the effect on

steady-state temperature of We at Ra = 103. Although further numerical study is required

these trends would suggest that elasticity has a negative effect on the capacity of a fluid to

transfer heat via convection, especially for flows at low Rayleigh numbers.
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∆t\Ra 102 103 104 105 106 107

0.000125 Stable Stable Stable 0.492 0.4 DNC
0.00025 Stable Stable Stable 0.492 0.38 DNC
0.0005 Stable Stable Stable 0.472 0.36 DNC
0.001 Stable Stable Stable* 0.456 0.265 DNC
0.002 Stable Stable 0.871 0.448 0.264 DNC
0.004 Stable Stable 0.830 0.448 0.266 DNC
0.008 Stable Stable 0.731 0.416 0.268 DNC
0.016 Stable Stable 0.672 0.38 0.248 DNC
0.032 Stable Stable 0.608 0.32 0.256 DNC
0.064 Stable 1.024 0.64 0.384 0.288 DNC

Table 5.12: Stability of the numerical scheme: timestep size vs Rayleigh number on mesh
M3; We = 0.5, βv = 0.5

Stability of Numerical Scheme

The convergence properties of the numerical scheme are heavily dependent on the choice of

timestep, ∆t. Despite using semi-implicit formulation and suitable non-uniform mesh refine-

ment, Taylor-Galerkin/Finite Element methods fail to converge for Ra ≥ 105 at even modest

Weissenberg numbers (Pr = 1). We conclude that unless improvements in the stabilisation

methods are made, the Taylor-Galerkin finite element numerical scheme is limited for flows

up to We = 2.0 and Ra ≈ 104.

Table 5.12 shows the convergence properties of the numerical scheme for varying choices of

∆t and Ra. The number in the table indicate the time at which numerical blowup occurs.

When Ra = 107 the solution failed to converge in the first time-iteration independent of the

choice of ∆t.

5.4 Summary

In this chapter we have presented solutions to benchmark problems of 2D flows of Oldroyd-B

fluids in a unit square. The Taylor-Galerkin finite element scheme has performed relatively

well compared to similar schemes in the literature over the range of Re and We outlined

and the results presented are in good agreement with results from similar studies in the
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literature.

5.4.1 Lid-Driven cavity

The results for incompressible flow are in good agreement with results by Venkatesan et. al

[88] and Castillo [16]. Numerical simulations of weakly compressible Oldroyd-B lid-driven

cavity flow is new territory and there are no results in the literature (known to the author)

with which to compare the results from Sec. 5.2.6. The scheme demonstrated good stability

characteristics for 0.001 < Ma < 0.1 and results for very low Mach numbers were close to the

incompressible results. Compressibility reduces the magnitude of φmin, but otherwise does

not have a significant impact on the qualitative behaviour of the flow. Future work should

focus on obtaining numerically stable solutions for a larger range of Mach and Weissenberg

numbers (i.e. Ma > 0.1 and We > 2.0). At larger Weissenberg numbers fluid compressibility

may have a more significant impact on the flow behaviour.

5.4.2 Natural Convection Flow

For the Double Glazing Problem, future work should focus on analysing the impact of vis-

coelasticity on flow stability, which would require simulations at higher Rayleigh numbers.

The reduction in kinetic energy by relaxation effects implies, at least intuitively, that vis-

coelastic fluids exhibit a strong potential for increasing the critical Rayleigh number of the

flow. However, the finite element numerical scheme did not perform well for Ra > 104 for

modest values of We. Future work should focus on the implementation of alternative nu-

merical schemes, such as SEM or FVM that could potentially be able to produce results over

a wider range of parameter values.

Furthermore, another major disappointment is that the compressible flow solver did not yield

results. Future work should revisit the problem as the author feels that important insights

can be gained by comparing the Boussinesq approximation and the equation of state as a

model for buoyancy driven flow.
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Chapter 6

Flow between Eccentrically Rotating

Cylinders

6.1 Introduction

In this chapter, we use the numerical scheme presented in Chapter 4 to numerically simu-

late the flow between eccentrically rotating cylinders. We compare the predictions of two

thermodynamically derived models: the extended White Metzner (EWM) model and the

FENE-P-MP model. In Sec. 6.2 a review of the literature on eccentrically rotating cylinders

is presented. The domain and boundary conditions are presented in Sec. 6.3. In Sec. 6.4 the

numerical scheme for incompressible flow is benchmarked and results are compared to those

from the literature. In Sec. 6.5.2 we present the compressible constitutive models for EWM

and FENE-P-MP models. A discussion of the parameter values used in the compressible

flow simulations is also given. The results are then presented in Sec 6.5.4 and a summary is

given in Sec. 6.6.
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6.2 Literature Survey

Lubricants reduce wear and vibration in bearing systems by preventing contact between

moving parts. The physical characteristics of lubricants are a crucial determining factor

in the performance and longevity of lubricated systems such as car engines and axles. As

a consequence lubrication theory is of particular interest to the automotive industry. The

flow between eccentrically rotating cylinders is of particular interest in the mathematical

modelling of journal bearing lubrication [69] since it is an idealised problem that retains

important elements of the engineering problem.

Journal bearing systems are an intricate part of a large number of industrial and commercial

mechanical devices. The working temperature of bearing systems can vary widely within the

flow and has a huge impact on performance of the system overall [57]. Thermal analysis of

dynamically loaded bearings (journal bearings) is an invaluable tool in the design of bearing

systems and lubricants [57]. Polymers are added to mineral oils to make multi-grade oils.

This was originally done to weaken the dependence of viscosity on temperature [69]. The

addition of elastic polymer chains in Newtonian lubricants results in a viscoelastic mixture.

The effect of viscoelastic relaxation on the journal bearing has been a subject of interest in

many investigations. Real journal bearing systems operate at high rates of rotation where

the flow Mach number is large enough to be in a weakly compressible regime. Furthermore,

the compressibility of a lubricant has been shown to play a significant role in the load bearing

capacity of a journal bearing [12].

From a mathematical standpoint, the flow between eccentrically rotating cylinders is an

attractive benchmark problem because of its closed geometry, free from sharp boundaries

[69]. Several comprehensive numerical investigations of the statically and dynamically loaded

bearing problem have been performed by Phillips, Bollada and Davies [11, 13, 12, 42, 57, 69],

and is a commonly visited benchmark problem in CFD. Phillips and Roberts [73] showed

that, at high eccentricities the predicted reaction forces exerted on the journal by a UCM

fluid during rotation are significantly larger than for Newtonian fluids.

Beris et al. [6, 7] calculated the flow between eccentrically rotating cylinders for UCM
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and PTT fluids using spectral/finite element methods. Davies and Li [24] investigated

the effects of temperature-thinning and pressure-thickening using an incompressible White-

Metzner model. They found that, at high eccentricities, pressure-thickening dominates the

viscosity behaviour due to the enormous pressure gradients generated across the narrow gap

region of the flow [24].

The first comprehensive study into the effect of fluid compressibility in Newtonian lubricants

in journal bearing systems was performed by Bollada and Phillips [11]. In their investiga-

tion they used a log-density formulation, in which the governing equations for mass and

momentum were re written in terms of log-density and then solved using a semi-Lagrangian

discretisation in time and spectral elements in space. The numerical results showed that

even at Mach numbers as low as 0.02 compressibility had a significant effect on the resultant

load.

Despite these findings, only a small percentage of papers in the literature has considered the

fully nonisothermal and compressible problem. To the author’s knowledge, no investigations

have been undertaken assessing the numerical predictions of compressible, nonisothermal

and viscoelastic flows between eccentrically rotating cylinders.

This section will focus solely on the statically loaded bearing problem in which a cylinder,

radius RJ rotates under a time dependent load inside a cylindrical container with radius

RB (RB − RJ > 0). The centre of the journal is fixed at a distance, e, to the left of the

centre of the bearing. The concentric configuration of this problem (e = 0) is known as

the Taylor-Couette problem, which is one of the classical problems in fluid mechanics. For

a Newtonian fluid, Taylor [86] showed that the purely azimuthal shearing flow that occurs

at low speeds becomes unstable as the inertial forces increase. The flow then becomes fully

3D with steady toroidal roll cells forming. As a consequence, an upper limit exists to the

Reynolds number if the assumption of 2D flow is to be used, which is given by the Taylor

number

Ta = 2Re2

(
RB −RJ

RJ

)
(6.2.1)
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where RB is the bearing radius, RJ is the journal radius and Re is the Reynolds number.

Figure 6.1: Taylor-Couette Problem. At lower Reynolds numbers the flow is steady and
azimuthal. The laminar flow state is circular Couette flow (Image: Magasjukur2, Wikipedia).

We will analyse the flow predictions of two thermodynamically consistent viscoelastic models;

the extended White-Metzner model and the FENE-P-MP model. Both models predict shear-

thinning and the numerical results will provide an opportunity to compare predictions of the

FENE-P-MP to those in the literature for the EWM model. In Sec. 6.4 we compute the

flow predictions of the incompressible Oldroyd-B fluid within a tightly fitting journal bearing

cavity. This is so that we can benchmark the results for journal bearing load and torque

against those given by Phillips, Davies and Li [42, 69, 73]. In Sec. 6.5 the compressible flow of

an (i) extended White-Metzner and (ii) FENE-P-MP fluid in a loosely fitting journal bearing

cavity is analysed. In each case the governing equations are discretised and solved using

Taylor-Galerkin/finite element schemes outlined in Sec. 4.2. Measurements of the reaction

forces and torque on the rotating journal are assessed for 0 ≤ We ≤ 2.0, 10 ≤ Re ≤ 100 and

0 ≤Ma ≤ 0.1.
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6.3 Computational Domain and Boundary Conditions

The computational domain is defined as follows:

Ω = {(x, y) : x2 + y2 ≤ R2
B ∧ (x− e)2 + y2 ≥ R2

J} (6.3.1)

Using a long bearing approximation and the assumption that Ta < Tacrit the flow is modelled

as 2D. The fluid occupies the region Ω between the two cylinders with boundaries.

ΓJ = {(x, y) : x2 + y2 = R2
J} ΓB = {(x, y) : x2 + y2 = R2

B} (6.3.2)

y

x

R_J

R_B

Bearing

Journal

e

w

Figure 6.2: Journal Bearing Problem: Schematic diagram of Ω.
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where e is the eccentricity. Fig. 6.2 gives a schematic diagram of the computational domain.

On the journal we impose no-slip Dirichlet boundary conditions for the velocity and constant

temperature

u =
φ(t)√
x2 + y2

(y,−x), T = T0

on ΓJ where

φ(t) =
ω

2
(1 + tanh(8(t− 0.5))) (6.3.3)

and ω is the journal’s angular rotation rate (rad/s). On ΓB we impose no-slip conditions for

the velocity and Neumann conditions for the temperature

u = 0,
∂T

∂n
= −Bi

hc
T

where hc is the characteristic thickness and the Biot number, Bi, is a nondimensional measure

of the heat transfer at the outward facing boundary of the journal bearing. The eccentricity

ratio, ε, and relative thickness, υ, are defined

ε =
e

RB −RJ

υ =
RB −RJ

RJ

(6.3.4)

6.4 Incompressible Oldroyd-B Flow

In order to benchmark the numerical scheme we first consider the flow of an incompressible

Oldroyd-B. Numerical results obtained using the scheme presented in Sec 4.7.1 are compared

with those from the literature.

The finite element mesh used is shown in Fig. 6.3.
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Figure 6.3: Finite element mesh of Ω for the incompressible problem. RJ = 0.03125m,
RB = 0.03129m, ε = 0.75, υ = 0.00128, cells= 3448, DoF= 216272

6.4.1 Governing Equations & Solution Method

In order to make a direct numerical comparison with the study by Li et al. [58] we compute

the flow behaviour using the dimensional form of the governing equations. The governing

equations of mass, momentum, temperature and extra stress are given by (4.1.4) with

g1(C, I) =
µp
λ

(C− I) g2(C,∇u) = 0 (6.4.1)

Additionally we assume that the flow is incompressible and isothermal i.e. ∇ · u = 0,

λ(T ) = λ and µp(T ) = µp. To solve the governing equations we use the numerical scheme

outlined in Sec. 4.7.1 with ∆t = h2
min, c1 = 0.1, c2 = 0.05 and γu = 1− βv.

6.4.2 Results & Comparisons with Long Bearing Theory

Analytical solutions for the journal bearing problem can be obtained by invoking the lubri-

cation approximation. In the thin bearing approximation c = (RB−RJ)� RB the pressure

field obeys Reynolds’ equation

p = p0 +
6µωR2

J

c2

εsin θ(2 + ε cos θ)

(2 + ε2)(1 + ε cos θ)2
(6.4.2)
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Fy =
12πµωnR3

Jε
2

[c2(1− ε2)(2 + ε2)]
1
2

C =
2πµωnR3

J

c(1− ε2)
1
2

+
Fye

2
(6.4.3)

where n > 1 is the ratio of the length of the bearing to its diameter [58, 69]. This allows

us to calculate the load and torque explicitly as a function of the viscosity, rotation speed

and eccentricity. The solutions are generated using the nondimensionalised scheme and so

dimensional factors are required in order to compare with predictions from the literature.

Load and torque action on the bearing by fluid are calculated using the pressure, velocity

and stress using the following formula

F =

Fx
Fy

 =

{
L3

µ0U

}∫
ΓJ

σ · n dS (6.4.4)

C =

{
L4

µ0U

}∫
ΓJ

nT · σ · t dS (6.4.5)

where the characteristic length and velocity are given by

L = RJ U = ωRJ (6.4.6)

Current work SEM (Li [58]) LBT Current Work SEM (Li [58]) LBT

ε Fy Fy Fy C C C

0.7 0.23× 104 0.21× 104 0.22× 104 0.84× 100 0.82× 100 0.84× 100

0.8 0.28× 104 0.27× 104 0.28× 104 0.11× 101 0.11× 101 0.11× 101

0.9 0.37× 104 0.4× 104 0.41× 104 0.15× 101 0.16× 101 0.16× 101

0.95 0.52× 104 0.56× 104 0.59× 104 0.19× 101 0.23× 101 0.23× 101

Table 6.1: Comparison of long bearing theory and SEM numerical results to TG finite
element computed solutions for Newtonian flow;ω = 25 rad/s, µp = 0 = λ, µs = 5×10−3Pa.s.
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λ1 Fx Fy C

0.0 0.0 38.20 0.77760

1.0× 10−3 1.9750 38.192 0.77756

1.0× 10−2 1.9760 38.190 0.77752

1.0× 10−1 1.9765 38.17 0.7741

5.0× 10−1 1.980 35.41 0.7200

Table 6.2: Load and torque values for a range of relaxation times (ω = 25 rad/s, µs = µp =
2.5× 10−3Pa.s, t = 10s)

Tables 6.1 and 6.2 show the results for F and C comparing the numerical scheme in Sec.

4.7.1 to both long bearing theory and numerical results from the literature. The difference

between the LBT and numerical results for high eccentricities is almost certainly due to

errors in the velocity solution in the narrow gap that occur as the two boundaries become

closer. The large velocity gradients across the narrow gap may lead to significant differences

between the theoretical result and the velocities computed on each cell. Despite this, for

ε < 0.9 the results demonstrate good agreement with the theory and numerical results in the

literature. In the next section we analyse the numerical predictions for weakly compressible

and nonisothermal flow.

6.5 Weakly Compressible and Nonisothermal Viscoelas-

tic Flow

We now consider the flow of a compressible viscoelastic fluid between eccentrically rotating

cylinders. The two suitable models chosen for the simulations are the extended White-

Metzner (Eq. (3.1.39)) and FENE-P-MP (Eq. (3.3.21)).
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(a) (b)

(c)

Figure 6.4: Finite element meshes for the flow between eccentrically rotating cylinders: (a)
Coarse mesh (M1), (b) medium (M2) and (c) refined (M3)

6.5.1 Geometrical Data & Fluid Parameters

Mesh Cells hmin hmax DoF (p) DoF ((u,D)) DoF (C)

M1 4466 0.01446 0.09855 2745 33310 29868

M2 5704 0.01086 0.07136 3364 41976 37296

M3 11930 0.00883 0.04536 6447 85558 74652

Table 6.3: Flow between eccentrically rotating cylinders: Mesh characteristics M1-M3.

In order establish a clear relationship between the effects of viscoelasticity and compressibility
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we fix the geometry of the journal bearing as well as most of the fluid parameters. We can

then analyse the effect of two important variables: the journal rotation rate, ω, and the

relaxation time, λ.

Parameter Value (S.I. Units)

RJ 4× 10−2 m

RB 5× 10−2 m

e 8× 10−3 m

ω 100− 1000 rad/s

ρ 8.2× 102 kg/m3

µs 1.25× 10−2 Pa s

µ0
p 1.25× 10−2 Pa s

µ∞p 1.25× 10−3 Pa s

µ0 2.5× 10−2Pa s

λ0 0− 10−3s

c0 1500m/s

Cv 1.75× 103J/K

K0 5× 10−10

κ 0.14W/mK

T0 300K

Th 350K

Table 6.4: Geometrical data and fluid parameters

Table 6.4 gives the values of the parameters used in the simulations. The fluid density and

viscosity are chosen to be that of 15W40 engine oil (data from Anton Paar Ltd). The journal

bearing of radii 4cm (journal) and 5cm (bearing) are chosen so that the numerical results can

be verifiable using a practical experiment. Furthermore the eccentricity is fixed at ε = 0.8

as this was near the upper limit of the range of ε where the incompressible scheme produced

reliable results. The scalings used for this problem are as follows:
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L = RJ , U = ωRJ ,

Re =
ρ0UL

µ0

, We =
λ0U

L
, Ma = U/c0,

Di =
κ

ρ0CvUL
, Vh =

Uµ0

ρ0CvL(Th − T0)
,

βs = µ0
s/µ

0,

(6.5.1)

We can reduce the large number of nondimensional variables by fixing all fluid and ex-

perimental parameters to those given in Table 6.4. In this case Re and Ma are directly

proportional to the angular frequency of the bearing, ω, and We is proportional to ωλ0

Nondimensional Parameter Value

Re 50− 400

We 0− 2.0

Ma Re× 10−4

ε 0.8

υ 0.2

Di 1
625
×Re−1

Vh 1.06× 10−6 ×Re

Bi 0.2

βs 0.5

B 0.1

k −2

Table 6.5: Nondimensional parameters

With the speed of sound, zero-shear viscosity and density for the fluid fixed, the Mach number

is directly proportional to the Reynolds number. Furthermore the Weissenberg number is

directly proportional to the product of angular frequency and relaxation time. Both the

diffusion number, Di, and viscous heating number, Vh, are small with the latter almost

negligible.
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6.5.2 Governing Equations & Boundary Conditions

The Extended White Metzner (EWM) Model

The generalisation of the Oldroyd-B model to capture variable relaxation time was proposed

by White & Metzner [91]. The extended White Metzner (EWM) model [81] (Eq. (3.1.39)) is a

thermodynamically derived constitutive equation with variable relaxation time. Importantly

the dependence of λ on the conformation tensor and not the strain-rate and pressure avoids

the potential loss of evolutionarity that can occur with the White-Metzner model ([8] p.230).

The polymeric viscosity and relaxation time depend on both temperature and conformation

stress. The nondimensional form of the EWM model is given by (4.1.14) with

g1 =
(1− βv)ψ̂p(C, θ)
Weψ̃p(C, θ)

(C− I) g2 = 0 (6.5.2)

Combining both the EWM stress-thinning and temperature dependence we obtain the fol-

lowing functions for the viscosity and relaxation time alternative to Eq. (4.1.11)-(4.1.12)

ψ̂p(C, θ) = exp(−Ap,0θ)×
1

2
I1(C)k (6.5.3)

and

ψ̃p(C, θ) = exp(−Ap,0θ)[θ/θs + 1]× 1

2
I1(C)k (6.5.4)

where we define

θs = T0/(Th − T0)

and k is a power law index.

Note: the coefficient of 1/2 appears in the 2D formulation to ensure that ψ = 1 when C = I

and θ = 0. For the 3D case the coefficient is 1/3 as presented in the literature [36, 81]. The

values of the various parameters used in the simulations of the EWM model are given in

Table 6.6.
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Nondimensional Parameter Value

βv 0.5

Ap,0 0.1

θs 6

k −0.7

Table 6.6: Nondimensional parameters in the viscosity relations for the EWM model.

FENE-P-MP Model

For simulations of the FENE-P-MP model we use (4.1.14) with

g1(C, I) =
(1− βv)ψ̂(C, θ)

Weψ̃(C, θ)
(f(trC)C− I)

g2(C,D) = (f(trC)− 1)C +Weψ̃p(C, θ)ψ(ε̇)[C · D + D ·C]

(6.5.5)

with

f(trC) =
b2

b2 − trC
(6.5.6)

6.5.3 Discretisation & Solution Method

To solve the governing set of equations we use the numerical scheme outlined in Sec. 4.7.2.

Throughout the computations we use DEVSS (Sec. 4.6.1) and LPS (Sec. 4.6.4) with γu =

1− βv, c1 = 0.1, c2 = 0.05.

6.5.4 Results & Discussion

The key measurements of the efficiency and effectiveness of a journal bearing lubricant are

the torque and resultant load forces on the journal. Pressure dominates the forces around

the journal. In the numerical simulation of an incompressible Newtonian fluid the pressure

is perfectly anti-symmetric about the narrow gap [11, 69]. When either the Weissenberg
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or Mach number is non-zero, this asymmetry is broken leading to an inevitable non-zero

component of force in the x direction. The resultant force, F, and torque, C, acting on the

journal are calculated from the solution of the pressure, velocity and stress by using

F =

Fx
Fy

 =

∫
ΓJ

σ · n dS (6.5.7)

C =

∫
ΓJ

nT · σ · t dS (6.5.8)

where

σ = −pI + 2βvD + τ p (6.5.9)

The ratio of the magnitude of horizontal and vertical forces, denoted by χ, can be used as a

measurement of rotational stability [12]

χ =

∣∣∣∣∣FxFy
∣∣∣∣∣ (6.5.10)

We say that we have stability when χ→∞ and increasing instability when χ→ 0.

Mesh Convergence

First we compare the kinetic, elastic energy and torque for the different meshes shown in

Fig. 6.4 in order to verify the independence of the numerical solution’s on the mesh being

used.

Figure 6.6 shows the convergence behaviour of the kinetic, elastic energy and torque with

meshes M1, M2 and M3 for We = 0.25. We observe that the kinetic, elastic energy and

torque tend to a constant value as the number of interpolation points increase.

Extended White Metzner Model

We now present the results for the EWM flow. As the journal begins to rotate a film of fluid

close to the journal rotates in the same direction. The flow in the wider gap recirculates
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F

F_x

F_y

Figure 6.5: Journal bearing problem: Resultant force acting on the journal calculated using
σ.

with the centre of rotation just above the centre-line. The recirculation region occupies the

majority of Ω, suggesting a mechanism for efficiency in that the journal does not drag all

the fluid around when the rotation is eccentric [12]. The kinetic energy grows as the flow

accelerates, reaches a maximum as the journal reaches its maximum speed, and then reduces

significantly as the elastic energy grows. Similar to the lid-driven cavity and natural con-

vection flows, the steady-state kinetic energy decreases as the Weissenberg number increases

whilst the elastic energy grows.

Reference ψmax

Current work 0.0602

Germann et al. [36] 0.0627

Table 6.7: Flow between eccentrically rotating cylinders: Comparison of maximum value of
stream function: βv = 0 (γu = 1), ε = 0.8, υ = 1 We = 1.0, k = −0.7.

Table 6.7 compares the results from this work to those produced by Germann et al. [36].

Note that for this specific simulation we set ε = 0.8 and υ = 1 and not the values provided

in Table 6.5.
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(a) (b)

(c)

Figure 6.6: Flow between eccentrically rotating cylinders: (a) Kinetic , (b) elastic energy
and (c) torque (EWM model), Re = 50 We = 0.1, Ma = 0.001

Figures 6.7-6.10 give a sample of the numerical simulation results. The flow recirculates

in the region away from the journal with the strength of the recirculation increasing with

Weissenberg number. For We > 0, a large build up of elastic stress occurs in the narrow

gap. Crucially, the stress components are all asymmetric, with high values in the narrow

gap resulting in a non-zero force component Fx.

Figures 6.8 (a) and (b) show the steady state temperature profile for journal bearing. The

temperature of the fluid is maximum near the journal and in the region around the nar-

row gap. With an increase in eccentricity or zero shear fluid viscosity the viscous heating
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(a) (b)

Figure 6.7: Flow between eccentrically rotating cylinders: (a) Lubricant isostreams and (b)
stream function for extended White-Metzner fluid: We = 1.0 Re = 50 Ma = 10−4Re.

(a) (b)

Figure 6.8: Flow between eccentrically rotating cylinders: Steady-state temperature profile
for extended White-Metzner Fluid (a) We = 0.5 and (b) We = 1.0 (Re = 200 and Ma =
0.02)

parameter, Vh would also increase and the impact on temperature may be more significant.

Tables 6.8-6.9 show the values of the stability factor for various We, Re, Ma. There is a

positive relationship between compressibility and stability. for Mach numbers in the range

0 ≤ Ma ≤ 0.05 the stability factor shows a clear positive trend with Mach number. Fluid

relaxation has a much larger impact on the stability factor. From We from 0.1 − 0.5 the
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(a) (b)

Figure 6.9: Flow between eccentrically rotating cylinders: (a) Steady-state p and (b) ∇ · u
for extended White-Metzner model (Re = 100, We = 0.5 and Ma = 0.01)

stability factor increases from ≈ 0.1 to 4.23 (Re = 50) before decreasing. The cause of

the reduction is that the, for Weissenberg numbers above 0.5 the direction of the vertical

component of the resultant force reverses direction during the transient phase of the flow.

Ma\We 0 0.1 0.25 0.5 1.0

0.001 0.315 0.358 2.862 7.492 5.212

0.01 0.364 0.392 2.916 7.893 5.411

0.1 0.392 0.510 3.521 10.920 7.633

Table 6.8: Flow between eccentrically rotating cylinders: Values of the stability factor, χ,
for the extended White-Metzner fluid. Re = 104Ma.

A trend observed is that the stability of the system increases with Weissenberg number

Re\We 0 0.1 0.25 0.5 1.0

25 0.0261 0.0576 2.324 6.0208 4.214

50 0.0490 0.2227 3.384 8.227 4.894

100 0.0825 0.584 5.245 10.612 6.245

200 0.1162 0.788 6.945 36.62 -
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(a) (b)

(c)

Figure 6.10: Flow between eccentrically rotating cylinders: Steady-state polymeric stress
profile (a) τ xx (b) τ xy and (c) τ yy for extended White-Metzner fluid (t = 10, We = 0.2,
Re = 50 and Ma = 0.02).

Table 6.9: Flow between eccentrically rotating cylinders: Values of the stability factor, χ,
Ma = 10−4Re (small), We ∈ {0, 0.1, 0.25, 0.5, 1.0} k = −0.7.

FENE-P-MP Model

Figure 6.18 and Table 6.10 shows a sample of results for the FENE-P-MP model. The

dissipation parameter, λD, has a very significant impact on the journal torque, C. At

Re = 50, We = 0.5 we see that the steady-state value of Fy is reduced considerably by from
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(a) (b)

(c)

Figure 6.11: Flow between eccentrically rotating cylinders: Steady-state polymeric stress
profile τ xx (a) τ xy (b) τ yy (c) extended White-Metzner fluid (t = 10, We = 1.0, Re = 50
and Ma = 0.02)

λD = 0 to λD = 0.2 and at the same time the value of Fx is increased. As a result the

stability factor rises from χ = 0.81 to 21.25.

λD\We 0 0.1 0.25 0.5

0 0.0494 1.256 3.384 8.227

0.1 2.325 3.64 4.4758 15.698

0.2 6.69 10.256 24.608 -
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(a) (b)

Figure 6.12: Flow between eccentrically rotating cylinders: Kinetic & Elastic energies for
extended White-Metzner fluid, We ∈ {0.1, 0.25, 0.5, 0.75, 1.0}, βv = 0.5, Re = 100 Ma = 0.1.

Incompressible Newtonian

We=0.1

We=0.25
We = 0.5

(reference)

We=1.0

Ma = 0.005

Figure 6.13: Flow between eccentrically rotating cylinders: Diagram of steady-state resultant
force vector, F, varying with Weissenberg number for extended White-Metzner fluid, βv =
0.5, Re = 100, Ma = 0.005.

Table 6.10: Flow between eccentrically rotating cylinders: Values of the stability factor, χ,
Ma = 10−4Re (small), We = 0.5 Re = 25 k = −0.7, Re = 50.

172



(a) (b)

(c)

Figure 6.14: Flow between eccentrically rotating cylinders: (a) torque, (b) verti-
cal load (Fy) and (c) horizontal load (Fx) for extended White-Metzner fluid, We ∈
{0.1, 0.25, 0.5, 0.75, 1.0}, βv = 0.5, Re = 100 Ma = 0.1.

6.6 Summary

Numerical results for the viscoelastic flow between two cylinders have been presented. Both

incompressible and compressible flow have been considered. Using χ as a measure of the

rotational stability, we have shown that both elasticity and compressibility have a significant

stabilising effect on the journal for the extended White-Metzner and FENE-P-MP models.

The numerical results for viscoelastic flow suggest desirable and undesirable effects on the

load bearing capacity and torque. For both EWM and FENE-P-MP fluids the torque in-
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(a) (b)

Figure 6.15: Flow between eccentrically rotating cylinders: (a) kinetic & (b) elastic energies
for extended White-Metzner fluid, Re ∈ {25, 50, 100, 200}, βv = 0.5, We = 0.5 Ma =
10−4 ×Re

Figure 6.16: Flow between eccentrically rotating cylinders: Values of the stability factor, χ
against We. Ma ∈ {0.001, 0.01, 0.05}
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(a) (b)

(c)

Figure 6.17: Flow between eccentrically rotating cylinders: (a) torque, (b) horizontal load
and (c) vertical load for extended White-Metzner fluid, Re ∈ {25, 50, 100, 200}, β = 0.5,
We = 0.5 Ma = 10−4 ×Re.

creases with Weissenberg number whilst the stability factor also increases. This may be a

surprising result as both models are technically shear-thinning. However, whilst it is true

that the flow near the inner boundary near the journal is shear dominated, the flow becomes

increasing extensional in the region near the small gap. Hence the viscosity response in the

extensional region increases substantially as expected with both of these models. The selec-

tion of geometrical parameters (see Table 6.4) used in the simulations are similar to those

in a standard rheometer (see [92]). The results presented in this chapter are qualitatively
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(a) (b)

(c)

Figure 6.18: Flow between eccentrically rotating cylinders: The effect of dissipation param-
eter λD on (a) Fx, (b) Fy and (c) torque for FENE-P-MP fluid (We = 0.5, β = 0.5, Re = 50
Ma = 0.005).

verifiable and may give us stronger numerical insight into the nonisothermal flow between

cylinders.

Future work should focus on the dynamic problem, where the centre of rotation of the inner

moves as the inner cylinder is subject to the forces exerted on it by the fluid. This is a

necessary step for developing a fully dynamic model of journal bearing lubrication.

176



Chapter 7

Drag Predictions for the FENE-P-MP

Model

7.1 Introduction

The flow of a viscous fluid past a sphere at low Reynolds numbers is a classical problem

and one of the oldest in theoretical fluid mechanics, dating back to the work of G.G. Stokes

[83]. Stokes developed an analytical solution for non-inertial flow around a sphere in an

unbounded fluid. The problem of mathematically modelling viscoelastic flow past a sphere

has been studied since the 1970s, with the flow characteristics departing from the Newtonian

case in several important ways.

The quantity of interest is the drag experienced by a sphere, radius Rs when falling through

a cylindrical tube, radius, R. The drag correction factor, D∗, is used to normalise the results

and is defined as the ratio of the drag in the current flow to that which would be experienced

by the same sphere in an unbounded expanse of Newtonian fluid of the same viscosity. We

define D∗ as

D∗ =
Fd

6πµRsU
(7.1.1)

where Fd is the drag force on the sphere, µ is the dynamic viscosity, Rs is the radius of the
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Figure 7.1: Schematic diagram of viscosity experiment: A sphere falling through a cylindrical
tube.

sphere and U is the sphere velocity. Another measurement of the drag used in the literature

is the normalised drag coefficient, K/KN , defined

K/KN :=
Fd

FNewtonian
(7.1.2)

where FNewtonian is the Newtonian drag experienced by the sphere falling through a cylinder

with the same aspect ratio Rsphere/R.
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7.2 Literature Survey

In a study examining the influence of polymer properties (solvent quality and polymer molec-

ular weight), Solomon and Muller [79] concluded that the steady-state drag on a sphere is

determined by the interplay between the quality of the solvent, and the shear and extensional

viscosity behaviour of the solutions.

Jones et al. [47] performed drag experiments with Type-I and Type-II Boger fluids: Type-I

is a mixture of maltose syrup/water-based with 0.1% PAA (polyacrylamide) and Type-

II containing a 0.19% PIB w/v (polyisobutylene) with a solvent consisting of polybutene

(93%) and 2-chloropropane (7%). For the experimental set-up the drag was calculated by

measuring the rate at which spheres of radius Rs fall through cylindrical tubes, radius R.

The experiments were repeated varying the aspect ratio, βsphere = Rs/R. Once the sphere

achieves its terminal velocity the flow is considered to have reached a steady-state. Results

for the Type-II drag predictions are shown in Fig. 7.2. The rheological properties show that

both types of fluid exhibit constant shear viscosity, at low to moderate shear-rates, giving

way to some slight shear-thinning at high shear-rates. Furthermore, it is reported that the

first normal stress-difference, N1, exhibits the classical quadratic behaviour [34, 47].

Until recently the most widely used continuum models for Boger fluids have been the

Oldroyd-B and FENE-CR models, both predicting constant shear viscosity and extensional

strain-hardening. However, both models fail to predict the level of drag enhancement ob-

served in the flow past a solid sphere [17, 78]. Garduño et al [34] proposed the swanINNNF(q)

class of viscoelastic models to capture the strain hardening behaviour that causes the drag

enhancement observed in Type-II Boger fluids. They found that the extension rate depen-

dent viscosity FENE-CR and White Metzner models proved capable of capturing the levels

of enhanced drag, observed experimentally by Jones et al. [47] over comparable measures of

deformation-rates.

In this section we describe numerical predictions of drag for the FENE-P-MP model (Eq.

(3.3.21)) presented in Sec. 3.3.2. From the point of view of the underlying physics, the cause

of the secondary strain hardening regime can be attributed to the non-affine polymer stick
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relative to the flow field which is captured by the stick/slip tensor, L, defined in Eq. (3.3.15).

Figure 7.2: Empirical data for the normalised drag coefficient K/KN of a Type-II Boger
fluid with different aspect ratios ( βsphere = 0.2, 0.4, 0.5), Jones et al. [47] (Image: Garduño
et al. [34])

7.3 Domain & Mesh

We consider a cylinder of length 40Rs and radius 5Rs (βsphere = 0.2) or 2.5Rs (βs = 0.4) or

2Rs (βs = 0.5). The inflow boundary is located at z = −20Rs and outflow at z = 20Rs.

Uniform flow in the axial direction is imposed on both the inflow and outflow boundaries.

Axisymmetric boundary conditions are imposed along the axis of symmetry and no-slip

boundary conditions are imposed on the sphere. Finally, to take account of the moving

frame, time-dependent moving wall boundary conditions are applied along the top wall

matching the inflow and outflow velocity. The inflow and upper wall Dirichlet boundary
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conditions are ramped using a hyperbolic tangent ramping function so that the velocity at

the top wall and inlet is given by

u = (u, v) = (U(t), 0) (7.3.1)

where U(t) = Uin

2
tanh(8(t − 0.5)) and Uin is the terminal velocity of the sphere. At the

outlet and along the line of symmetry we impose that the radial component of velocity is

zero (v = 0).

(a)

Figure 7.3: Flow past a sphere: Schematic diagram of the 2D domain. As the flow is axisym-
metric it is only necessary to model a 2D flow in the plane extending from the centreline to
the boundary along the length of the cylinder. Here Rsphere is denoted a (Image: Garduño
et al. [34]).

Computations are performed on meshes with 3 levels of refinement: coarse (M1), medium

(M2) and fine (M3). Details of the finite element meshes when βsphere = 0.5 are given in

Table 7.1.

Mesh Cells hmin hmax DoF (p) DoF (u) DoF (τ p)

M1 3248 0.017425 0.744317 1879 14010 21015

M2 6362 0.017425 0.450238 3542 26890 40335

M3 8453 0.017425 0.37433 4606 35328 52992

Table 7.1: Flow past a shere: Mesh characteristics for coarse M1, medium M2 and fine M3
meshes for βsphere = 0.5.
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(a)

(b)

(c)

Figure 7.4: Flow past a sphere. Meshes (a) M1,(b) M2 and (c) M3 for βsphere = 0.5.

Fig. 7.3 shows the 2D schematic of the flow geometry. As Re ≈ 0 the flow is axisymmetric

about the centreline we only compute the flow in a 2D plane extending radially outward

from the sphere to reduce computational cost. Table 7.2 shows the characteristics of the

meshes shown in Fig. 7.4. In each case the meshes are further refined in he region near the

sphere boundary to maximise the solution accuracy.

βsphere Cells hmin hmax DoF (p) DoF (u) DoF (τ p)

0.2 8135 0.017377 0.52666 4434 34004 51006

0.4 6819 0.017402 0.50254 3689 28112 42668

0.5 6362 0.017425 0.450238 3542 26890 40335

Table 7.2: Flow past a sphere: Mesh characteristics βsphere = 0.2, 0.4, 0.5.
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(a)

(b)

(c)

Figure 7.5: Flow past a sphere. Finite element meshes for different aspect ratios: (a)
βsphere = 0.5 (b) βsphere = 0.4 and (c) βsphere = 0.2 (medium refinement).

7.4 Calculating Drag on Sphere

The solution is used to approximate the drag experienced by the sphere as the fluid passes

over it. The drag is calculated by computing the integral of σ · n over the sphere boundary

Fd = 2πR2
s

∫
Γsphere

(1, 0) · σ · n sin θ dS

= 2πR2
s

∫
Γsphere

(σzz cos θ + σrz sin θ) sin θ dS

(7.4.1)

where
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θ = arctan

(∣∣∣∣∣rz
∣∣∣∣∣
)

(7.4.2)

and the sphere is centred at the origin. the Reynolds, Weissenberg and Mach numbers are

defined

Re =
ρUinL

µ0

, We =
λUin
L

, Ma =
Uin
c0

. (7.4.3)

where Uin is the terminal velocity of the sphere, the characteristic length L = Rsphere and µ0

is the total viscosity.

7.5 Governing Equations

7.5.1 Oldroyd-B Model

In order to benchmark the results we first compute the flow of an Oldroyd-B fluid past a

sphere and compare the drag predictions with those obtained by Kynch and Phillips [54]. A

creeping flow is assumed and as such the effects of inertia and compressibility are negligible,

therefore we set Re = 0, Ma = 0 (∇ ·u = 0). The governing equations are given by (4.1.15)

with

g1(C) =
1− βv
We

(C− I) g2(C,∇u) = 0 (7.5.1)

The equations are solved using the numerical scheme for incompressible viscoelastic flow,

outlined in Sections 4.3, 4.6 and 4.7.

7.5.2 FENE-P-MP Model

We consider creeping flow past a sphere of a FENE-P-MP fluid, setting Re = 0, Ma = 0

(∇ · u = 0). For incompressible flow the governing equations are given by (4.1.15) with g1

and g2 defined
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g1(C) =
1− βv
We

(f(trC)C− I) (7.5.2)

g2(C,∇u) = (f(trC)− 1)C +Weψ(ε̇)[C · D + D ·C] (7.5.3)

where

f(trC) =
1

1− trC/b2
(7.5.4)

and ψ is defined by Eq. (3.3.16).

7.6 Results and Discussion

Results for low Reynold’s number flow past a sphere of Oldroyd-B and FENE-P-MP fluids

were computed for Weissenberg numbers in the range 0 ≤ We ≤ 2.5 and aspect ratios

βsphere ∈ {0.2, 0.4, 0.5}. Results for the Oldroyd-B flow were quantitatively compared to

results by Kynch & Phillips [53] and for the FENE-P-MP model are compared to numerical

results by Garduño at. al [34] and empirical data by Jones et al. [47].

7.6.1 Grid Independence and Error Size

First we compare the kinetic energy for the different meshes shown in Fig. 6.4 to verify the

independence of the solution to the mesh used.

Figure 7.6 shows the convergence behaviour of the kinetic energy and drag with meshes M1,

M2 and M3 for We = 0.2. Mesh convergence is confirmed for both elastic energy and drag.

7.6.2 Oldroyd-B

Figure 7.7 shows steady state pressure and velocity contours. For the Newtonian fluid

(We = 0) the pressure is symmetric about the mid-point of the channel. As the Weissenberg

number is increased this symmetry is progressively broken. A significant pressure drop

begins to occur in the wake of the sphere. The minimum and maximum pressures are not
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(a) (b)

Figure 7.6: Flow Past a Sphere: (a) Kinetic energy and (b) Drag profiles (Oldroyd-B model)
for meshes M1-M3 (βsphere = 0.5), Re = 1 We = 0.2, c1 = 0.05, γu = 1− βv.

largely affected by this for Weissenberg numbers in the range 0 ≤ We ≤ 1.0. Furthermore

the maximum flow speed in the region between the sphere and the wall remains effectively

unchanged in the range 0 ≤ We ≤ 1.0.

The first normal stress difference, N1 = τzz − τrr, and shear stress, τrz, grow significantly

in the wake of the sphere as the Weissenberg number increases. Figure 7.7 shows two

cases (We = 0.1 and We = 1.0). It is in this region where the fluid experiences large

extension rates and, as discussed in Sec. 3.4, the Oldroyd-B model risks predicting unphysical

extensional viscosities. For this reason the fluctuation operator, κh, attains high values in

the region just after the narrow gap.

We were able to compute values of the normalised drag coefficient for We ≤ 1.2 as shown in

Table 7.3. As the Weissenberg number is increased from 0, D∗ decreases. Drag predictions

computed using the Taylor-Galerkin finite element solution compare well in to those by

Kynch & Phillips [53].
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(a) (b)

(c) (d)

Figure 7.7: Flow past a sphere: Contours of steady state pressure and axial velocity of an
Oldroyd-B fluid, βsphere = 0.5 (a) and (b) We = 0.5 and (c) and (d) We = 1.0.

βSphere We Current study Kynch & Phillips [54]

0.0 5.9379 5.9474

0.5 0.5 5.8024 5.8494

0.7 5.4133 5.3492

1.0 5.2844 5.2277

1.2 5.2021 5.1887

Table 7.3: Flow past a sphere: Values of the drag correction factor for Oldroyd-B fluid,
Re = 0, βsphere = 0.5, βsolvent = 0.5.
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(a) (b)

(c) (d)

Figure 7.8: Flow past a sphere: Contours of Steady N1 and τrz of an Oldroyd-B fluid
βsphere = 0.5 (a) and (b) We = 0.2, (c) and (d) We = 1.0.

7.6.3 FENE-P-MP

Now that the numerical scheme has been benchmarked for Oldroyd-B flow and exhibits a

good level of agreement with results in the literature we numerically simulate FENE-P-MP

flow past a sphere. For all of the computations we set ∆t = h2
min, γu = 1−βv, c1 = 0.05 and

c2 = 0.01.

A sample of the results is displayed in Fig. 7.9 - Fig. 7.14 . During the first two seconds of

the flow there is an initial overshoot in the drag before it reduces to a steady state value.
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The time taken for D∗ to reach a steady state increases with Weissenberg number however

the peak value of drag during the transient phase is independent of We.

Comparisons of flow characteristics for varying λD are shown in Fig. 7.13 and 7.12. For

βsphere = 0.4, �= 5, a drag reduction is observed for We = 0.2 and K/KN stays below 1 for

0 ≤ λD ≤ 0.15. The transient behaviour remains largely unchanged by varying λD. However,

increases in the value of λD result in an increase in steady-state drag. The dissipation

parameter, λD, has a significant effect on both K/KN and Ee. Even for small values of λD a

significant increase in the normalised drag coefficient is observed, reaching 1.4 for λD = 0.2

(We = 0.5, βsphere = 0.4). Pressure at the mid point of the flow also varies significantly with

λD, ranging from P = 41.23 for λD = 0 to P = 56.27 for λD = 0.15 (We = 0.65), a 36.4%

increase. A sample of drag and energy results are displayed in Figures 7.12 and 7.14.

Table 7.4 provides a sample of calculated normalised drag coefficients for the FENE-P-MP

fluid, comparing our results to (i) numerical predictions by Garduño et al. [34] and (ii)

empirical data by Jones [47]. A lower value of the dissipation parameter is required in

order to attain the empirically observed values of K/KN and we are able to obtain good

agreement with the empirical data for both βsphere = 0.2 and βsphere = 0.4. The value of κh

required to stabilise solutions of the constitutive equation remains small over the range of

fluid parameters considered. Figure 7.9 shows a typical plot of κh for We = 1.0 Re = 0 and

λD = 0.05.

βSphere We K/KN FENE-P-MP K/KN SwanINNF(q) (2016) K/KN Experimental (1994)

0.2 2.1 1.51 (λD = 0.1) 1.481 (λD = 0.65) 1.484

3.5 - 2.041 (λD = 0.65) 2.009

0.4 0.65 1.018 (λD = 0.09) 1.004 (λD = 0.62) 1.012

2.25 - 1.278 (λD = 0.62) 1.258

Table 7.4: Flow past a sphere: Drag prediction comparison of FENE-P-MP with
swanINNF(q)-FENE-CR calculations (Re = 0, b = 5) and experimental data (Jones [47]).
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Figure 7.9: Flow past a sphere: Fluctuation operator κh: βsphere = 0.4 Re = 0, We = 1.0,
λD = 0.05, t = 8.0).

7.7 Summary

Numerical simulations of the inertia-free flow past a sphere using a stabilised Taylor-Galerkin

finite element method have been presented. Results using the Oldroyd-B model show good

agreement with results in the literature for attainable values of We. Computed values of the

normalised drag coefficient for the FENE-P-MP model display good agreement with empirical

data for the normalised drag coefficient of polyisobutylene/2-chloropropane solution (Type-

II Boger fluid) in two cases where the Weissenberg number is below 2.0. Unfortunately,

we were unable to achieve numerical convergence for high We > 2.0 for βsphere = 0.4 and

We > 1.5 for βsphere = 0.5 (βv = 0.5). Despite this disappointing result the overall qualitative

behaviour of the model (increasing K/KN with λD) implies that, with the right numerical

stabilisation higher values of We can be attained and the drag increasing predictions of the

FENE-P-MP can be further investigated. A suggested method for partial discretisation that

could potentially yield mesh convergent results with better numerical stability could be the
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(a) τrr (b) τrz

(c) τzz

Figure 7.10: Flow past a sphere: N1, τzz, τzr and τrr for the FENE-P-MP fluid βsphere = 0.4,
We = 0.5, b = 100, λD = 0.0.

spectral element method developed by Kynch and Phillips [53, 54].

The stabilised Taylor-Galerkin finite element scheme for incompressible viscoelastic flow

provides both an efficient and easily implementable method for simulating inertia free (ax-

isymmetric) flow past a sphere. Computations were performed on a single CPU (quad-core)

desktop and the numerical scheme (see Sec. 4.7.1) was programmed in Python using FEn-

iCS/DOLFIN finite element libraries.

The derivation of the FENE-P-MP model using the generalised bracket method means that

applications of the model to compressible and nonisothermal flows is straightforward and
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(a) τrr (b) τrz

(c) τzz

Figure 7.11: Flow past a sphere: (a) τzz, (b) τzr and (c) τrr for the FENE-P-MP fluid,
βsphere = 0.4, We = 0.5, b = 20, λD = 0.0.

does not require ad-hoc modifications to the incompressible equations. This is an important

advantage of the bracket method. When derived using the generalised bracket method and

a nonzero L tensor, additional terms similar to the second term in Eq. (7.5.3) appear

in the constitutive equation. The additional terms in the constitutive law (Eq. (3.3.19))

provide us with some physical insight into the material. A potential mechanism behind the

observed drag enhancement that can be read from the equations is that, as the extensional

flow rate increases, polymer entanglement causes the dissolved polymers to ‘stick’ relative to

the flow field. However, this theory contradicts material assumption made when modelling
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Boger fluids: that the polymer solution is dilute and therefore effects of polymer-polymer

interaction are negligible. The exact physics behind the drag behaviour is still unclear and

hence we are unable to determine the direct cause but numerical investigations such as this,

using theoretically rigorous models, help provide strong insight into the possible explanations.

It should be pointed out that the values of the phenomenological dissipation parameter, λD,

required to predict the levels of empirically observed drag enhancement are lower in the

FENE-P-MP model than those required in the swanINNF(q)-FENE-CR model. The reason

for this is that the dissipation function, φ(ε̇), appears in both the equation for the stress and

the constitutive equation, increasing τ p both directly and indirectly as ε̇ increases. There

are drawbacks to including these additional terms. The main two being increased numerical

instability and computational cost associated with computing the conformation tensor. For

small values of λD (≤ 0.2) the convergence is not affected although when 0.1 ≤ λD ≤ 0.2

noticeable numerical oscillations occur in the stress solution. When λD < 0.2 such large

values of c1 are required to stabilise the computations that the (nonphysical) stabilisation

terms dominate the constitutive equation in parts of the domain around the sphere boundary.

As such we are unable (at the current moment) to obtain numerically convergent finite

element solutions for We > 2.0 and λD > 0.2 for βsphere = 0.4 and βsphere = 0.5 using this

particular stabilisation scheme.

Potential ways to overcome these numerical difficulties could be: (i) log-conformation tensor

formulation (Fattal & Kupferman [31]) or (ii) adaptive mesh refinement methods (Berger &

Oliver [5]). In each case the risk of of the blow-up errors in the region near the sphere can be

mitigated. We intend to develop the numerical method and stabilisation methods further so

that we can obtain K/KN values for We > 2.0 when βsphere = 0.4 and βsphere = 0.5. Another

suggested test for the accuracy of the FENE-P-MP model is the matching of rheometric and

drag behaviour with a single choice of λD. This will ensure that λD is dependent on the fluid

and not the length/time scale of the flow being modelled.
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(a)

(b)

Figure 7.12: Flow past a sphere: The effect of dissipation parameter, λD, on elastic energy
and normalised drag coefficient, β = 0.5, Re = 0, We = 1.0, b = 5, βsphere = 0.4.

194



(a)

(b)

Figure 7.13: Flow past a sphere: The effect of dissipation parameter, λD, on (a) elastic
energy and (b) normalised drag coefficient, β = 0.5, Re = 0, We = 0.2, b = 5, βsphere = 0.4.
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(a)

(b)

Figure 7.14: Flow past a sphere: The effect of dissipation parameter, λD, on (a) sample point
pressure, (P=p(0, (Rs + R)/2)), and (b) drag, βsphere = 0.4, β = 0.5, Re = 0, We = 1.2,
b = 5.
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Chapter 8

Conclusions

In this thesis we have conducted an investigation into the theoretical and computational

modelling of compressible and nonisothermal viscoelastic fluids. The first principles that

govern the dynamics of large particle systems are ignored too often in the literature on

viscoelastic flow. Complex flows often occur under conditions where compressible and non-

isothermal effects have to be accounted for. As such it is important to develop models

that can accurately capture compressible, nonisothermal and viscoelastic behaviour whilst

remaining consistent with the laws of thermodynamics. This thesis has contributed to the

understanding of these important issues and valuable insights have been gained from the

results. The generalised bracket method provides a suitable vehicle for the development of

realistic viscoelastic models that can adequately describe nonisothermal and compressible

behaviour. As such we have developed the FENE-P-MP dissipative model which, with some

success has been able to capture features of Boger fluid flow such as drag enhancement for

flow past a sphere.

Computing viscoelastic flow using numerical methods remains a very challenging problem.

Alongside the new models we have developed, new techniques for obtaining approximate

solutions to the governing equations over a range of input parameters have been constructed,

which have worked with varying degrees of success. Furthermore, valuable insights have

been gained about the competing influence of inertia, compressibility and viscoelasticity as
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measured by the Reynolds, Mach and Weissenberg numbers, respectively.

There are several valuable contributions this thesis. In Chapter 2 we gave an overview of

the generalised bracket formulation. In Chapter 3 we used the single bracket formulation to

derive a family of constitutive equations for compressible viscoelastic fluids. In particular,

we have successfully derived the FENE-P-MP model, a strain-hardening and nonisothermal

dissipative viscoelastic model for Boger fluids. The content from Chapters 2 and 3 have been

submitted for publication in a JNNFM paper ‘On the Derivation of Macroscopic Models for

Compressible Viscoelastic Fluids using the Generalized Bracket Framework ’[72].

In addition to the development of the new generalised models we have presented a large

number of numerical results for 2D compressible viscoelastic flows. In the development of

the numerical scheme we have attempted to use well-established stabilisation methods in

order to prevent numerical blow-up. The stabilised Taylor-Galerkin finite element scheme

presented in Chapter 4 provided a robust means of computing viscoelastic flow, independent

of the constitutive model being used and applicable to both incompressible and compressible

flows.

In Chapter 5 we presented numerical solutions for both lid-driven cavity flow and natural

convection flow of an Oldroyd-B fluid. In the case of the lid-driven cavity, the results

displayed excellent agreement with those available in the literature for incompressible flow.

For nonzero Mach numbers a range of numerical predictions were made varying Ma, We

and Re. Numerical predictions for convection flow of an Oldroyd-B fluid using a Boussinesq

approximation were presented, showing a clear negative impact that elasticity has on steady-

state flow speed and thermal convection at low Rayleigh numbers. Failure to obtain solutions

for the compressible flow scheme was somewhat disappointing, but we believe that these

numerical issues can be overcome with a suitable problem-specific stabilisation methods.

In Chapter 6, eccentric Taylor-Couette flow of both the Extended White Metzner and FENE-

P-MP fluids model have been presented. Both models predict very clear trends in the

torque and load-bearing capacity for varying We and Ma, specifically that some reduction

of effective shear viscosity due to shear thinning does not imply reduced levels of torque
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for eccentric flow. For an eccentricity of ε = 0.8 viscosity increase in torque and load

bearing capacity is observed as We is increased due to the extensional viscosity response

in the narrow gap of the geometry. Moreover, the predictions presented in Chapter 6 are

verifiable with a suitable Taylor-Couette flow experiment and has also been summarised

in the paper ‘Compressible Viscoelastic Flow between Eccentrically Rotating Cylinders ’ (in

preparation)[71].

In Chapter 7 we presented some numerical solutions to the inertia-free flow of a FENE-P-MP

fluid past a sphere. The drag force on the sphere and pressure at the mid point of the flow

were calculated over a range of Re, We and λD. The numerical scheme was benchmarked

using the Oldroyd-B constitutive model, displaying good agreement with results in the lit-

erature. The drag force predictions for the FENE-P-MP model show very good agreement

with the drag calculated using the swanINNF(q)-FENE-CR model as well as empirical data.

This work represents a contribution to the development of viscoelastic constitutive equations

that benefit from being consistent with the laws of thermodynamics (making them generally

applicable to compressible and nonisothermal flows) whilst also being able to capture com-

plex drag behaviour. Altogether the results are encouraging and help provide a roadmap for

future developments.

8.1 Future Work

There are areas of this thesis related to modelling and numerical analysis that could be further

developed. Future work should focus on applications of the FENE-P-MP model. A suggested

benchmark problem is the 4:1 contraction flow, where a large body of both numerical and

experimental data is available. Now that the Mackay-Phillips class of dissipative models

has been established, similar extensions of models such as PTT and EPTT can be derived.

There are many examples of 2D and 3D nonisothermal viscoelastic flows where pressure and

temperature determine the flow behaviour. Models presented in this thesis could be useful

in the quantitative modelling of these problems.

Further improvements to the numerical method should be considered as a major area for
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development. Additional deformation terms in the constitutive equation that appear in the

derivation of the Mackay-Phillips class models make the scheme much more vulnerable to

the high Weissenberg number problem. The stabilisation techniques for the finite element

method need to be developed so that solutions can be obtained for a larger range of values of

We. This is especially important for tackling the flow past a sphere and compressible natural

convection flow problems, where results were somewhat hampered by numerical instability.

A suggested method suitable for this task could be the DEVSS-G-DG stabilised spectral

element method developed by Kynch and Phillips [53]. Furthermore, when Ma > 0.3 the flow

is no longer considered to be weakly-compressible. In practice this means that alternatives to

the equation of state that underpins the Taylor-Galerkin time-marching scheme will have to

be considered. A possible solution method for computing higher Mach number compressible

flows is the log-density formulation, which was described in Section 4.6.3.

Lastly, future numerical investigations using the models developed in this thesis should be

conducted focussing on the combined effects of compressibility and viscoelasticity. The

results from this thesis have shown that viscoelastic flow characteristics can vary drastically

depending on Re, We and Ma and temperature. More work needs to be done to determine

the relationship between these dimensionless parameters and their separate and combined

influence on flow characteristics for 3D problems.
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Appendix A

A.1 Notation Statistical Mechanics

Sec. A.1.1 covers some basic concepts in statistical mechanics including the definition of the

Poisson bracket for discrete particle systems. Sec. A.1.2 introduces the Lagrangian, Hamil-

tonian and Hamilton’s equations of motion. In Sec. A.1.3 bracket notation is introduced

along with the definition of the Volterra derivative.

A.1.1 Phase Space and Canonical Coordinates

For a collection of N particles in a system, Ω, we define configuration space.

Definition A.1.1 A point in configuration space, C = R3N , corresponds to all of the posi-

tions of the N particles in order i.e x ∈ C is x = (x1, y1, z1, x2, y2, z2, ...., xN , yN , zN) where

(x1, y1, z1) is the position of the 1st particle in R3, (x2, y2, z2) is the position of the second

etc.

Phase Space, Γ, is the union of configuration space with an equivalent space that, instead

gives the momenta of each particle instead of the position

Γ := R6N
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Any point, x ∈ Γ is denoted (q1, ..., q3N , p1, ..., p3N) is called a microstate. For each microstate

(q1, ..., q3N) are general coordinates and (p1, ..., p3N) is the general momenta where p1 =

m1
dx1
dt

, p2 = m2
dx2
dt

etc.

Definition A.1.2 An observable, F : Γ → R is a mapping (functional) that represents

some quantity over the field Γ

The Hamiltonian and Lagrangian are examples of observables, the Hamiltonian especially

useful for the purposes of understanding energy[43].

Definition A.1.3 Given two functionals dependent on time and the canonical coordinates

of a system, f(pi, qi, t) and g(pi, qi, t), the Poisson bracket is a bilinear operator {·, ·} :

R× R→ R

{f, g} =
N∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
(A.1.1)

A.1.2 The Lagrangian and Hamiltonian

Definition A.1.4 The Lagrangian, L, of a dynamical system is defined as the kinetic energy,

T, minus the potential energy,V.

L = T − V (A.1.2)

In generalised coordinated the kinetic energy is given by the equation T =
∑N

i=1
1
2
miq̇

2
i and

the potential field is dependent on the external forces acting on the system.

Definition A.1.5 The Euler Lagrange equation is a second order partial differential equa-

tion that gives the solutions to stationary ’points’ of functionals. in generalised coordinates

Lq(t, q(t), q̇(t))−
d

dt
Lq̇(t, q(t), q̇(t)) = 0

where L is the Lagrangian of the system. Physically the Euler-Lagrange equation is the

mathematical expression for the principle of least action.
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When applied to classical mechanics it becomes the mathematical statement for the principle

of least action (i.e Newton’s 1st law)[43]. The Euler-Lagrange equation is a powerful method

determining the motion of N particles in a dynamical system given that we have worked out

the relevant Lagrangian, L. A related functional, the Hamiltonian allows us to formulate

the time evolution of a system in a much more straightforward way [43].

Definition A.1.6 The Hamiltonian H(q,p, t) is a functional can be thought of as the total

energy of a system. but loosely we define H as follows

H =
p · p
2m

+ V (q, t) (A.1.3)

where p and q are the momenta and positions of the N particles in phase space.

The first and second term corresponding to kinetic and potential energy respectively. Note

that the potential energy has been very loosely defined here (as has the functional itself)

and we will need to sharpen this formulation later.

Definition A.1.7 Hamilton’s Equations are a set of partial differential equations that

uniquely determine the time evolution of a dynamical system.

dqi
dt

=
∂H

∂pi
(q1(t), ..., qN(t), p1(t), ..., pN(t)) (A.1.4)

dpi
dt

= −∂H
∂qi

(q1(t), ..., qN(t), p1(t), ..., pN(t)) (A.1.5)

where H = H(p, q, t) is the Hamiltonian of the system[43].

These relations can be easily proved using the definition of the Hamiltonian given in (A.1.3)[43].

A key use for the Hamiltonian and the Poisson bracket is determining the time derivative of

an observable along a phase space trajectory.
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A.1.3 Bracket Notation

In order to understand the bracket formulation for fluids we must first take a moment to

discuss some notation and calculus of functionals. Define an arbitrary function f = f [a, b, ..]

a, b ∈ P where P is the operating space. Importantly, we need to establish a relation between

the functional and its integral over a domain Ω.

Definition A.1.8 For any given function, f = f [a, b, ..] (a, b ∈ P ), we define a correspond-

ing functional F : f → R F = F [a, b, . . .]

F [a, b, . . .] =

∫
Ω

f(a, b, . . .)dΩ (A.1.6)

Note that d3x = dx1dx2dx3(= dΩ). Let us also introduce the definition of the Volterra

functional derivative as it will become of great importance later when we need to do

write dynamic relations in terms of integral equations.

Definition A.1.9 The Volterra functional derivative of F (where F : f → R), denoted δF
δ· ,

is defined as the partial derivative of the function f w.r.t. ·, ∂f
∂· .

δF

δa
≡ ∂f

∂a

δF

δb
≡ ∂f

∂b

The situation is more complex when the functional depends on not just a but ∇a. We write

F [a] =

∫
Ω

f(a,∇a)dΩ

The Volterra derivative of the functional F w.r.t. a becomes

δF

δa
≡ ∂f

∂a
−∇ · ∂f

∂(∇a)
(A.1.7)
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=⇒ dF

dt
=

d

dt

[∫
Ω

f(a,∇a, b)d3x

]
=

∫
Ω

∂

∂t
f(a,∇a, b)dΩ

Hence

dF

dt
=

∫
Ω

[
δF

δa

∂a

∂t
+
δF

δb

∂b

∂t

]
dΩ (A.1.8)

A.2 Derivation of the General Set of Governing Equa-

tions

A.2.1 Fundamental Concepts in Equilibrium Thermodynamics

To introduce the basics of thermodynamics we will simplify the problem by imagining a

system enclosed by a boundary Ω. The system has an internal energy, U which, as we will

see is directly related to the heat energy, Q, of the system. The change of internal energy

of a system is given by the heat energy transmitted into the system plus work done, W , by

the surroundings on the fluid body.

dU = dQ+ dW (A.2.1)

The infinitesimal change in heat energy is given by the temperature multiplied by change in

entropy of the system dQ = TdS and the work done by the system is equal to the pressure

multiplied by the change in volume, dW = −pdV . Substituting these relations into (A.2.1)

leads us to the fundamental equation of thermodynamics.

Definition A.2.1 The fundamental equation of thermodynamics for a closed system, Ω, is

given by the relation

dU = TdS − pdV (A.2.2)
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where U is the internal energy, T is the temperature, S is the entropy, p is the pressure

exerted onto the surrounding wall, ∂Ω, and V is the volume of Ω.

The differential of internal energy depends directly on entropy, S and the volume of the

system, V i.e. U = U(S, V ). Note that if there is 0 energy exchange between a system and

its environment then

TdS = pdV

for a fixed volume of fluid. Additionally, the change in enthalpy, E is given by the change in

internal energy plus the work done in order to expand the volume of the domain (pressure

multiplied by volume)

dE = TdS + d(pV ) = dU + (pdV + V dp)

Eliminating dU using (A.2.2) gives

dE = TdS + V dp

he enthalpy is dependent on S and p vary i.e. E = E(s, p) It is useful at this point to go

over some of Maxwell’s fundamental thermodynamic relations.

(
∂S

∂V

)
T

=

(
∂P

∂T

)
V(

∂S

∂P

)
T

=

(
∂V

∂T

)
P

The first relation states that the change in entropy with respect to volume at a constant

temperature is equal to the change in pressure w.r.t temperature at constant volume. The

second states that the change in entropy w.r.t pressure at a constant temperature is equal

to the change in volume w.r.t temperature at constant pressure.
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A.2.2 Lagrangian & Eulerian Poisson Bracket

In order to obtain working equations in the (Eulerian) form that we desire, we must convert

our Lagrangian variables Γ, Π, ρ0, for which the Poisson bracket was originally described in

into spatial variables, ρ, m, s and C. Putting aside functional forms we can discuss a simple

example of this transformation. Let Γ̇(r, t) be the Lagrangian description of the velocity

field. In the Eulerian description, we consider a fixed coordinate point in space ( assumed

to be Cartesian), x, for which the (constant) volume element is given by d3x = dΩ. For the

Eulerian description, dynamic variables of the body are functions of x and t, instead of r.

In particular the Eulerian specification for the flow field is given by

u(x, t)

where

x = Γ(r, t)

In terms of our functional defined variables the Lagrange to Euler transformation is a little

more complex. First we start with a definition of the variables concerned using a Dirac delta

function.

Definition A.2.2 δ3[Γ(r, t)− x] is a differential operator defined

∫
Ω′
g(Γ)δ3[Γ(r, t)− x]d3Γ =

 g(x) ; Γ(r, t) = x

0 ; Γ(r, t) 6= x
(A.2.3)

where g is a function of suitable continuity.

δ3[..] is defined as the Dirac operator. The usefulness of this notation will become more

apparent as we move on. Additionally, defining the Lagrange to Euler map (transition) this

way allows us to encode the initial conditions in the definition. The mass density in the

Eulerian (spatial) frame is given by
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ρ(x, t) = ρ(F(r, t), t)

=⇒ ρ(x, t) =

∫
Ω

ρ(F(r, t), t)δ3[Γ(r, t)− x]d3Γ

ρ(x, t) =

∫
Ω

ρ0(r)δ3[Γ(r, t)− x]d3r

(A.2.4)

where x is the original location of the fluid body. Similarly the momentum field is

M(x, t) =

∫
Ω

ρ(F(r, t))Γ̇(r, t)δ3[Γ(r, t)− x]d3Γ

which can be simplified using (A.2.6)

M(x, t) =

∫
Ω

ρ0Γ̇(r, t)δ3[Γ(r, t)− x]d3r

where ρ0Γ̇ is simply the initial momentum field which we can denote by p0

M(x, t) =

∫
Ω

p0δ
3[Γ(r, t)− x]d3r

Similarly

s(x, t) =

∫
Ω

s0(r)δ3[Γ(r, t)− x]d3r

At time t = 0, the fluid occupies a region Ω with surface ∂Ω. We can view fluid body motion

as a mapping Γ : Ω× t→ R3 denoted Γ(r, t) (we may denote the codomain of Γ as Ω′). The

mapping transforms the fluid body to fit in the domain Ω′ at time time t = t′ with boundary

∂Ω′ where ∂Ω′ = ∂Ω

Each fluid particle is considered a volume element at t = 0, d3r ≡ dr1dr2dr3 where the vector

r = (r1, r2, r3). It is necessary now to introduce some key dynamic variables and notation.

Definition A.2.3 The deformation gradient F : Ω′×Ω→ R3×3 is a second order tensor

field that represents the derivative of each component of the deformed map, Γ, with respect

to each component of the reference configuration, r
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Fij =
∂Γi
∂rj

(A.2.5)

Though the mass of the fluid must remain constant, the volume element may vary.

Definition A.2.4 The elemental volume change for the continuum mapped from Ω to

Ω′ by Γ is given by the equation

d3Γ = Jd3r

where J = detF and F is the deformation gradient.

Proposition A.2.1 If the distribution of the mass of the fluid at time t = 0 can be described

by the density function ρ0 = ρ0(r), then mass conservation principle can simply be stated

ρd3Γ = ρ0d
3r (A.2.6)

which implies

ρ =
ρ0(r)

J

meaning that the density, ρ depends on Γ though the Jacobian =⇒ ρ = ρ(F, t). This way

of denoting fluid body modeling will make the relatively difficult mathematics much easier

to read.

Definition A.2.5 the momentum vector field, Π, for a continuum occupying Ω is given by

Π(r, t) = ρ0Γ̇(r, t)

where Γ̇ is the velocity field.

Definition A.2.6 The Left Cauchy-Green deformation tensor, c : Ω→ R3 is a second order

tensor field
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cij = FikFjk =
∂Γi
∂rk

∂Γj
∂rk

where F = Fij is the deformation gradient tensor. We define C as the density dependent

finger tensor

Cij(x, t) = ρcij(x, t)

Several different definitions for C exist in the literature [8]. Another that we will consider

in later sections is the form based on kinetic theory where C is the normalised and averaged

dyadic product of the end-to-end distance vector Q denoted 〈Q,Q〉.

Definition A.2.7 The Hamiltonian for an elastic, inviscid continuum occupying Ω with

boundary ∂Ω is given by the expression

H[Π,Γ] =

∫
Ω

[
1

2ρ0

Π · Π + ρ0e
v
p(Γ) + ρ0Û(ρ(Γ, t), s0(r),C(F, t))

]
d3r (A.2.7)

In the Lagrangian framework the Poisson bracket representation for the time derivative of

F can be written

dF

dt
= {F,H}L =

∫
Ω

[
δF

δΓ

δH

δΠ
− δF

δΠ

δH

δΓ

]
d3r (A.2.8)

Using definition (A.2.7) we can write Hamilton’s equations for an elastic continuum

Γ̇i(r, t) =
∂H[Π,Γ]

∂Π
=

1

2ρ0

∂

∂Π
(Π · Π) =

Π(r, t)

ρ0(r)

Π̇i = −∂H[Π,Γ]

∂Γ
= −ρ0

∂epv
∂Γi

+
∂

∂rj

(
ρ0
∂Û

∂Fij

)

Definition A.2.8 The operating space for an observable on Ω with elastic dependence is

given by
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P =



ρ(x, t) ∈ R+

M(x, t) ∈ R+, n ·M = 0 on ∂Ω

s(x, t) ∈ R+

C(x, t) ∈ R+

(A.2.9)

Note the derivatives of C

δCij(x, t)

δΓk(r, t)
= ρ0cij

∂δ3[Γ− x]

∂Γk
− ∂

∂rl

(
ρ0δ

3[Γ− x]
∂Cij
∂Fkl

)
(A.2.10)

Making use of the Volterra derivative definition given in (A.1.7) δF
δa

= ∂f
∂a
−∇i

∂f
∂(∇ai) ∈ P

δCij(x, t)

δΠk(r, t)
= 0 (A.2.11)

A.2.3 Derivation of the Eulerian Poisson Bracket

By taking a continuum approximation (N →∞) of (A.1.1) we are able to derive a continuous

form of the Poisson bracket, Eq. (A.2.8). However the traditional formulation of the Poisson

bracket uses Lagrangian coordinates and hence the continuum approximation yields and

equation for F in terms of In order to establish an expression for the Poisson bracket in

Eulerian coordinates we need a change of variables. By substitution of F into (A.2.8) we

have

{F,G}E =

∫
Ω

[∫
Ω

[
δF

δρ

δρ

δΓi
+

δF

δMj

δMj

δΓi
+
δF

δs

δs

δΓi

]
d3y

∫
Ω

[
δG

δρ

δρ

δΓi
+

δG

δMj

δMj

δΓi
+
δG

δs

δs

δΓi

]
d3z

−
∫

Ω

[
δF

δρ

δρ

δΓi
+

δF

δMj

δMj

δΓi
+
δF

δs

δs

δΓi

]
d3y

∫
Ω

[
δG

δρ

δρ

δΓi
+

δG

δMj

δMj

δΓi
+
δG

δs

δs

δΓi

]
d3z

]
d3x

(A.2.12)

The notation d3y, d3z and d3x expresses the fact that we are integrating over the domain

for each functional and keeps the bracket bilinear. We now expand and regroup in a way
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that allows us to express the ”spatial” bracket {, }E in terms of the Poisson (or ”material”)

bracket {, }L. Note that we can manipulate the integrands as long as we keep track of the

x, y and z dependence of each functional derivative

{F,G}E =

∫
Ω′

∫
Ω′

∫
Ω′

δF

δρ

δG

δMj

[
δρ

δΓi

δMj

δΠi

− δρ

δΠi

δMj

δΓi

]
+

δF

δMj

δG

δρ

[
δMj

δΓi

δρ

δΠi

− δMj

δΠi

δρ

δΓi

]

+
δF

δs

δG

δMj

[
δs

δΓi

δMj

δΠi

− δs

δΠi

δMj

δΓi

]
+

δF

δMj

δG

δs

[
δMj

δΓi

δs

δΠi

− δMj

δΠi

δs

δΓi

]

+
δF

δMi

δG

δMj

[
δMi

δΓi

δMj

δΠi

− δMj

δΓi

δMi

δΠi

]
d3zd3xd3y

=

∫
Ω

∫
Ω′

[
δF

δρ

δG

δMj

− δF

δMj

δG

δρ

]
×
∫

Ω

(
δρ

δΓi

δMj

δΠi

− δMj

δΓi

δρ

δΠi

)

+

[
δF

δs

δG

δMj

− δF

δMj

δG

δs

]
×
∫

Ω

(
δs

δΓi

δMj

δΠi

− δMj

δΓi

δs

δPi

)

+
δF

δMi

δG

δMj

∫
Ω

(
δMi

δΓi

δMj

δΠi

− δMj

δΓi

δMi

δΠi

)
d3zd3x

which can be written

{F,G}E =

∫
Ω′

∫
Ω

[
δF

δρ(x, t)

δG

δmj(z, t)
− δG

δρ(x, t)

δF

δmj(z, t)

]
× {ρ(x, t),mj(z, t)}Ld3zd3x

+

∫
Ω′

∫
Ω′

[
δF

δs(x, t)

δG

δmj(z, t)
− δG

δs(x, t)

δF

δmj(z, t)

]
× {s(x, t),mj(z, t)}Ld3zd3x

+

∫
Ω′

∫
Ω′

[
δF

δmi(x, t)

δG

δmj(z, t)

]
× {mi(x, t),mj(z, t)}Ld3zd3x

+

∫
Ω′

∫
Ω′

[
δF

δCij(x, t)

δG

δmj(z, t)
− δG

δρ(x, t)

δF

δmj(z, t)

]
× {Cij(x, t),mj(z, t)}Ld3zd3x

(A.2.13)

where
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{ρ(x, t),Mj(z, t)}L =

∫
Ω′

[
δρ(x, t)

δΓj(r, t)

δMj(z, t)

δΠj(r, t)
− δMj(z, t)

δΓj(r, t)

δρ(z, t)

δΠj(r, t)

]
d3r

{mi(x, t),mj(z, t)}L =

∫
Ω′

[
δmi(x, t)

δΓj(r, t)

δmj(z, t)

δPj(r, t)
− δMj(z, t)

δΓj(r, t)

δmi(z, t)

δPj(r, t)

]
d3r

{Cij(x, t),Mj(z, t)} =

∫
Ω

[
δCij(x, t)

δΓi(r, t)

δMk(z, t)

δΠi(r, t)
− δMk(z, t)

δΓi(r, t)

δCij(x, t)

δΠi(r, t)

]
d3r

Now
δCij(x,t)

δΓi(r,t)
can be obtained using the Hamiltonian (A.2.7) and δMk(z,t)

δΠi(r,t)
= δ3[Γ− z]

Using (A.2.10) and (A.2.11)

{Cij(x, t),Mj(z, t)} =

∫
Ω

[
ρ0cij

∂δ3[Γ− x]

∂Γk
− ∂

∂rl

(
ρ0δ

3[Γ− x]
∂Cij
∂Fkl

)]
δ3[γ − z]d3r

Using the product rule

{Cij(x, t),Mj(z, t)} =

∫
Ω

[
ρ0cij

∂δ3[Γ− x]

∂Γk
− ∂

∂rl

(
ρJ

J
δ3[Γ− x](Filδjk + Fjlδik)

)]
δ3[γ − z]d3Γ

=

∫
Ω

[
ρ0cij

∂δ3[Γ− x]

∂Γk
− ∂

∂rl

1

J

(
ρJδ3[Γ− x](Filδjk + Fjlδik)

)]
δ3[Γ− z]d3Γ

(A.2.14)

Note we have used the fact that ρd3Γ = ρ0d
3r. We can then write

{Cij(x, t),Mj(z, t)} =

∫
Ω

[
ρ0cij

∂δ3[Γ− x]

∂Γk
− ∂

∂rl

(
ρFmlδ

3[Γ−x](Filδjk+Fjlδik)

)]
δ3[Γ−z]d3Γ

The expression can be simplified to

{Cij(x, t),Mj(z, t)}L = Cij
∂δ3[z− x]

∂z
− ∂

∂zm
(ρδ3[Γ−x](Cni(z, t)δjk+Cnj(z, t)δik)) (A.2.15)
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Eq. (A.2.13) can be written as {F,G}E = {F,G}ρE + {F,G}sE + {F,G}mE + {F,G}CE where

the first, second and third term on the RHS correspond to the first, second and third terms

on the RHS of equation (A.2.13), respectively.

δρ(x, t)

δΓi(r, t)
= ρ0(r)

∂δ3[Γ(r, t)− x]

∂Γi(r, t)

δρ(x, t)

δΠ(r, t)
=

δρ(x, t)

δρ(r, t)Γ̇(r, t)
= 0

δs(x, t)

δΓi(r, t)
= s0(r)

∂δ3[Γ(r, t)− x]

∂Γi(r, t)

δs(x, t)

δΠ(r, t)
=

δs(x, t)

δρ(r, t)Γ̇(r, t)
= 0

δmj(x, t)

δΓi(r, t)
= Πj(r, t)

∂δ3[Γ(r, t)− x]

∂Γi(r, t)

δmj(x, t)

δΠi(r, t)
= δijδ

3[Γ(r, t)− x]

where δij denotes the Kronecker delta. We can obtain expressions for all the relevant material

(Lagrangian) brackets by substituting these 6 partial derivatives into the definition of the

Poisson bracket (A.1.1) [8].

{ρ(x, t),Mj(z, t)}L = ρ(z, t)
∂δ3[z− x]

∂zj
(A.2.16)

{s(x, t),Mj(z, t)}L = s(z, t)
∂δ3[z− x]

∂zj
(A.2.17)

{mi(x, t),mj(z, t)}L = mk(z, t)
∂δ3[z− x]

∂zj
−mj(x, t)

∂δ3[z− x]

∂xj
(A.2.18)

Substituting (A.2.16), (A.2.17) and (A.2.18) into (A.2.13) yields

{F,G}ρE =

∫
Ω′

∫
Ω′

[
δF

δρ(x, t)

δG

δMj(z, t)
− δG

δρ(x, t)

δF

δMj(z, t)

]
× ρ(z, t)

∂δ3[z− x]

∂zj
d3zd3x

Integrating by parts (
∫
fg′ = [fg] −

∫
f ′g where f is the term in the ’[...]’ parenthesis and
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the g′ term is the partial derivative in the integrand

{F,G}ρE =

∫
Ω′

∫
Ω′

{∫
Ω′

[[
δF

δρ(x, t)

δG

δMj(z, t)
− δG

δρ(x, t)

δF

δMj(z, t)

]
× njδ3[z− x]

]
∂Ω′

−
∫

Ω

[
δF

δρ(x, t)

∂

∂zj

(
ρ(z, t)

δG

δMj(z, t)

)
− δG

δρ(x, t)

∂

∂zj

(
ρ(z, t)

δF

δMj(z, t)

)]
δ3[z− x]

}
d3zd3x

We must introduce key boundary conditions, the first being that nj is zero on the boundary.

The first term of the integrand is equal to zero.

n · δF
δm

= 0

which leaves us with the expression

{F,G}ρE = −
∫

Ω

∫
Ω′

[
δF

δρ(x, t)

∂

∂zj

(
ρ(z, t)

δG

δMj(z, t)

)
− δG

δρ(x, t)

∂

∂zj

(
ρ(z, t)

δF

δMj(z, t)

)]
δ3[z−x]d3zd3x

δ3[z−x]d3zd3x = d3x and all z functions to x dependent in the integrand i.e
∫
f(x)g(y)δ[y − x]dxdy =∫

f(x)g(x)dx

{F,G}ρE = −
∫

Ω′

[
δF

δρ(x, t)

∂

∂xj

(
ρ(x, t)

δG

δMj(x, t)

)
− δG

δρ(x, t)

∂

∂xj

(
ρ(x, t)

δF

δMj(x, t)

)]
d3x

(A.2.19)

By the symmetry of the terms governing s(x, t) in (A.2.20)

{F,G}sE = −
∫

Ω′

[
δF

δρ(x, t)

∂

∂xj

(
s(x, t)

δG

δMj(x, t)

)
− δG

δs(x, t)

∂

∂zj

(
s(x, t)

δF

δMj(x, t)

)]
d3x

(A.2.20)

and

{F,G}ME = −
∫

Ω′

[
δF

δMk(x, t)

∂

∂xj

(
Mk(x, t)

δG

δMj(x, t)

)
− δG

δMk(x, t)

∂

∂xj

(
Mk(x, t)

δF

δMj(x, t)

)]
d3x

(A.2.21)

Note that ∂
∂xj

= ∇j = ∇· is the divergence operator. The conformation tensor terms in the
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bracket can be written

{F,G}CE = I1 + I2 + I3 (A.2.22)

where

I1 =

∫
Ω′

∫
Ω′

[
δF

δCij(x, t)

δG

δMj(z, t)
− δG

δCij(x, t)

δF

δMj(z, t)

]
Cij(z, t)

∂δ3[z− x]

∂zk
d3zd3x

=

∫
Ω′

{∫
∂Ω′

Cij(z, t)

[
δF

δCij(x, t)

δG

δMj(z, t)
− δG

δCij(x, t)

δF

δMj(z, t)

]
× njδ3[z− x]d3x

}
d3z

−
∫

Ω′

∫
Ω′

[
δF

δCij(x, t)

∂

∂zj

(
Cij

δG

δMj(z, t)

)
− δG

δCij(x, t)

∂

∂zj

(
Cij(x,t)

δF

δMj(z, t)

)]
δ3[z− x]d3xd3z

where nj is the unit normal to the surface. The first term vanishes as n· δF
δM(z,t)

= nj
δF

δMj(z,t)
=

0 on the surface/boundary and so we are left with

I1 =

∫
Ω′

[
δF

δCij(x, t)

∂

∂zj

(
Cij

δG

δMj(z, t)

)
− δG

δCij(x, t)

∂

∂zj

(
Cij(x,t)

δF

δMj(z, t)

)]
d3x (A.2.23)

Noting again that
∫

Ω′ g(z)δ3[z− x]d3xd3z = g(x) when x = z and 0 otherwise. The second

and third of the extra three integrals can be derived using integration by parts

I2 =−
∫

Ω′

∫
Ω′

[
δF

δCij(x, t)

δG

δMj(z, t)
− δG

δCij(x, t)

δF

δMj(z, t)

]
∂

∂zk
(ρδ3[Γ− x]Cni(z, t)δjk)d

3zd3x

−
∫

Ω′
Cki

[
δG

δCij
∇k

(
δF

δMj

)
− δF

δCij
∇k

(
δG

δMj

)]
d3x

And similarly for the third integral

I3 =−
∫

Ω′

∫
Ω′

[
δF

δCij(x, t)

δG

δMj(z, t)
− δG

δCij(x, t)

δF

δMj(z, t)

]
∂

∂zk
(ρδ3[Γ− x]Cnj(z, t)δjk)d

3zd3x

−
∫

Ω′
Cki

[
δG

δCij
∇k

(
δF

δMj

)
− δF

δCij
∇k

(
δG

δMj

)]
d3x
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Combining the three we arrive at the spatial bracket counterpart to the Poisson bracket for

continuous media

{F,H}E =−
∫

Ω′

[
δF

δρ
∇j

(
ρ
δH

δmj

)
− δH

δρ
∇j

(
ρ
δF

δmj

)]
d3x

−
∫

Ω′

[
δF

δmk

∇j

(
mk

δH

δmj

)
− δH

δmk

∇j

(
mk

δH

δmj

)]
d3x

−
∫

Ω′

[
δF

δρ
∇j

(
s
δH

δmj

)
− δH

δs
∇j

(
s
δF

δmj

)]
d3x

−
∫

Ω′

[
δF

δCij
∇k

(
Cik

δH

δmk

)
− δH

δCij
∇k

(
Cij

δF

δmk

)]
d3x

−
∫

Ω′
Cki

[
δH

δCij
∇k

(
δF

δmj

)
− δF

δCij
∇k

(
δH

δmj

)]
d3x

−
∫

Ω′
Cki

[
δH

δCij
∇k

(
δF

δmj

)
− δF

δCij
∇k

(
δH

δmj

)]
d3x

(A.2.24)

which can be written in the form

{F,H}E =−
∫

Ω′

[
δF

δρ
∇j

(
ρ
δH

δmj

)
+
δF

δmi

(
ρ∇i

(
δH

δρ

)
+∇j

(
δH

δmj

mi

)
+mj∇i

(
δH

δmj

)

+ s

(
δH

δs

)
+ Cij∇k

(
δH

δCij

)
−∇k

(
Cki

δH

δCij

)
−∇k

(
Ckj

δH

δCij

))
+∇j

(
s
δH

δmj

)

+
δF

δCij

(
∇k

(
Cij

δH

δmk

)
− Cki∇k

(
δH

δmj

)
− Ckj∇k

(
δH

δmi

))]
d3x

(A.2.25)

We can also establish, by the chain rule, that

dF

dt
=

∫
Ω′

[
δF

δρ

∂ρ

∂t
+
δF

δmi

∂mi

∂t
+
δF

δs

∂s

∂t

]
dΩ (A.2.26)

Comparing coefficients in both equations Eq. (A.2.26) and Eq. (A.2.25) and evaluating the
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Figure A.1: Reversible process. Here dW = −pdV . One can theoretically interchange
between the two states with no energy being ‘wasted’.

Figure A.2: Irreversible Process: Here some energy is wasted and thus the final temperature
and volume do not return to their initial values.

Volterra derivatives of H (see Eq. (2.2.8)) we obtain the system of governing equation given

by (2.2.9).

A.2.4 Fundamental Concepts in Nonequilibrium Thermodynam-

ics

At the most fundamental level we will have to change the assumption made in (A.2.2) dW =

−pdV (equilibrium process). A.2 and A.1 demonstrate the distinction between reversible

(theoretical) and irreversible (real) processes.

The new equation relating work, pressure and volume in for a system surrounded by a flexible

adiabatic wall is

dW = −pdV + dWi

219



Here dWi represents the work lost recovering the initial deformation [8]. The second law

of thermodynamics restricts this new term: dW ≥ 0. The pressure difference between the

outside and inside of this flexible wall pα − p < 0.

dWi = (p− pα)dV

To ensure mechanical stability we have to guarantee that.

(
∂V

∂p

)
s

< 0 =⇒ κs > 0

where κs is the isentropic compressibility coefficient. In addition thermal stability means

(
∂U

∂T

)
v

> 0 =⇒ Cv > 0

which also means Cp > 0. The second law can be extended to the Gibbs relation [8]

dQ ≤ TdS (A.2.27)

where Q is the heat energy. All of this leads us to the fundamental equation for an irreversible

process

dU ≤ TdS − pdV (A.2.28)

Beris and Edwards [8] provide a uniform formulation of fluid modelling incorporating both

conservative and dissipative phenomena known as the The Generalized Bracket.

Proposition A.2.2 The internal dynamics of an isolated system is completely described

by the equation

dF

dt
= {[F,H]} = {F,H}+ [F,H] (A.2.29)

where F is an observable over Ω and H is the Hamiltonian.
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A.3 Derivation of the Compressible & Nonisothermal

Maxwell Models

In Section 3.1 we derive the closed form equations for the generalised Maxwell models. Note

that C ≡ ρc where ρ is the density and c is the kinematic conformation tensor. For the

purposes of clarity, here presented is the derivation of the governing equations. Starting from

the conservation of mass, which can be written

Dρ

Dt
+ ρ(∇ · u) = 0, (A.3.1)

Substituting Eq. (3.1.8) into (2.3.6) and (2.3.10) we obtain the evelution equation for the

kinematic conformation tensor

λ(T )
O
c +c =

kbT

K(T )
I, (A.3.2)

and polymeric extra stress

τ p = αρK(T )c− αρkbT I, (A.3.3)

where c - kinematic conformation tensor, τ p - extra-stress tensor, λ(T ) - relaxation time, α

- mass fraction, ρ - density, T - temperature, kb - Boltzmann constant. which can also be

written in terms of C as

τ p = αK(T )C− αρkbT I (A.3.4)

Isothermal and Incompressible - α, ρ, K(T ) = K, λ(T ) = λ, T - constant

Take upper convected derivative of (A.3.3)

O
τ p= αρK

O
c −αρkbT

O
I . (A.3.5)

Multiply (A.3.2) by αρK
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λαρK
O
c︸ ︷︷ ︸

(A.3.5)

+αρKc︸ ︷︷ ︸
(A.3.3)

= αρK
kbT

K
I

λ(
O
τ p +αρkbT

O
I) + (τ p + αρkbT I) = αρkbT I

Using the fact that
O
I= −∇u−∇uT = −2D

λ
O
τ p +τ p = 2λαρkbTD = 2µpD (A.3.6)

where we have used the definition of polymeric viscosity µp = λαρkbT .

Isothermal and Compressible - α, K(T ) = K, T - constant, ρ - variable

Take upper convected derivative of (A.3.3)

O
τ p= α

Dρ

Dt
Kc + αρK

O
c −αρkbT

O
I −αDρ

Dt
kbT I (A.3.7)

Substituting Eq. (A.3.1)

O
τ p= αρK

O
c −αρkbT

O
I −αρ(∇ · u)Kc + αρ(∇ · u)kbT I,

O
τ p= αρK

O
c −αρkbT

O
I −(∇ · u)[αρKc− αρkbT I].

Using Eq. (A.3.3) we obtain

O
τ p= αρK

O
c −αρkbT

O
I −(∇ · u)τ p

O
τ p +(∇ · u)τ p = αρK

O
c −αρkbT

O
I (A.3.8)
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λαρK
O
c︸ ︷︷ ︸

(A.3.8)

+αρKc︸ ︷︷ ︸
(A.3.3)

= αρK
kbT

K
I

λ(
O
τ p +(∇ · u)τ p + αρkbT

O
I) + (τ p + αρkbT I) = αρkbT I

λ
(

O
τ p +(∇ · u)τ p

)
+ τ p = 2λαρkbTD = 2µpD (A.3.9)

Nonisothermal and Compressible - α - constant, ρ, K(T ), T - variable

Take upper convected derivative of (A.3.3)

O
τ p= α

Dρ

Dt
Kc + αρ

DK(T )

Dt
c + αρK

O
c −αρkbT

O
I −αDρ

Dt
kbT I− αρkb

DT

Dt
I (A.3.10)

Use conservation of mass (eq. )

O
τ p= αρK

O
c −αρkbT

O
I −(∇ · u)[αρKc− αρkbT I] +

D lnK(T )

Dt
αρKc− D lnT

Dt
αρkbT I

O
τ p= αρK

O
c −αρkbT

O
I +

(
−(∇ · u) +

D lnK(T )

Dt

)
[αρKc−αρkbT I]+

(
D lnK(T )

Dt
− D lnT

Dt

)
αρkbT I

Using Eq. (A.3.3)

O
τ p +

(
(∇ · u)− D lnK(T )

Dt

)
τ p −

(
D lnK(T )

Dt
− D lnT

Dt

)
αρkbT I = αρK

O
c −αρkbT

O
I

(A.3.11)

Using the same technique as in the last section
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λ(T )αρK
O
c︸ ︷︷ ︸

(A.3.11)

+αρKc︸ ︷︷ ︸
(A.3.3)

= αρK
kbT

K
I

λ(T )

(
O
τ p +

(
(∇ · u)− D lnK(T )

Dt

)
τ p + αρkbT

O
I

)
+(τ p+αρkbT I) = αρkbT I+

(
D lnK(T )

Dt
− D lnT

Dt

)
αρkbT I

λ(T )
O
τ p +

[
1 + λ(T )

(
∇ · u− D lnK(T )

Dt

)]
τ p = G(ρ, T )λ(T )

[
2D +

(
D lnK(T )

Dt
− D ln(T )

Dt

)
I

]
(A.3.12)

where

G(ρ, T ) = αρkbT = µ(ρ, T )/λ(T ) (A.3.13)

is the elastic modulus. Note that in the subsequent chapters Eq. (...) is not used. Instead

the used for computing viscoelastic flow is not the closed form expressions but those in terms

of C.

A.4 Derivation of the Energy equation

As outlined in Sec. 2.3 the Helmholtz free energy is given by

A = H − ST ==

∫
Ω

â(ρ,u, s, T,C) dΩ (A.4.1)

where

â =
m ·m

2ρ
+ w(C) + û(ρ, s, T )− s(ρ,C)T (A.4.2)
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Taking the derivative w.r.t. t gives

∂â(ρ, s,C)

∂t
=
∂â

∂ρ

∂ρ

∂t
+
∂â

∂s

∂s

∂t
+
∂â

∂C
:
∂C

∂t

=
∂â

∂ρ

(
−∇ · (ρu)

)

+
∂â

∂s

(
−∇ · (su) +

1

T
Q ::

(
∇u⊗∇u

)
+

1

T
∇ · (αT∇T ) +

1

T
Λ ::

(
δA

δC
⊗ δA

δC

))

+
∂â

∂C
:

(
−∇ · (uC) +∇u ·C + C · ∇uT −Λ :

δA

δC
+ L : ∇u

)
(A.4.3)

Given that ∂a
∂t

= T and ∂â
∂C

=: δA
δC

, Eq. (A.4.3) can be re-arranged to give

∂â

∂t
=− ∂â

∂ρ
∇ · (ρu)− ∂â

∂s
∇ · (su)− ∂â

∂C
: ∇ · (uC)

+∇ · (αT∇T ) + Λ ::

(
δA

δC
⊗ δA

δC

)
+
δA

δC
: (∇u ·C + C · ∇uT )− δA

δC
: Λ :

δA

δC
+
δA

δC
: L : ∇u

(A.4.4)

It can be shown, using the definition of the pressure given by Eq. (2.3.11) that

∂â

∂ρ
∇ · (ρu) +

∂â

∂s
∇ · (su) +

∂â

∂C
: ∇ · (uC) = ∇ · (uâ) + p(∇ · u) (A.4.5)

Furthermore, because all indices are being summed over, terms 5 and 7 in (A.4.4) cancel and

δA

δC
: (∇u ·C + C · ∇uT ) = 2C · δA

δC
: ∇u (A.4.6)

and

δA

δC
: L : ∇u = L · δA

δC
: ∇u (A.4.7)

Substitution of Eq. (A.4.5), (A.4.6) and (A.4.7) into (A.4.4) gives the energy equation
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Dâ

Dt
+ (∇ · u)â = ∇ · (αT∇T )− p(∇ · u) + T̂ : ∇u (A.4.8)

where

T̂ = T− L · δA
δC

(A.4.9)

and T is given by (2.3.10).

8.5 GitHub

Scripts used to generate the data used in Chapters 5-7 are available from the GitHub repos-

itory

https://github.com/mackaya1/FEniCS
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