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A B S T R A C T

The combination of linear finite elements space discretisation with New-
mark family time-integration schemes has been established as the de-facto
standard for numerical analysis of fast solid dynamics. However, this set-up
suffers from a series of drawbacks: mesh entanglements and elemental dis-
tortion may compromise results of high strain simulations; numerical issues,
such as locking and spurious pressure oscillations, are likely to manifest;
and stresses usually reach a reduced order of accuracy than velocities.

Meshless methods are a relatively new family of discretisation techniques
that may offer a solution to problems of excessive distortion experienced by
linear finite elements. Amongst these new methodologies, smooth particles
hydrodynamics (SPH) is the simplest in concept and the most straight-
forward to numerically implement. Yet, this simplicity is marred by some
shortcomings, namely (i) inconsistencies of the SPH approximation at or near
the boundaries of the domain; (ii) spurious hourglass-like modes caused by
the rank deficiency associated with nodal integration, and (iii) instabilities
arising when sustained internal stresses are predominantly tensile.

To deal with the aforementioned SPH-related issues, the following reme-
dies are hereby adopted, respectively: (i) corrections to the kernel functions
that are fundamental to SPH interpolation, improving consistency at and
near boundaries; (ii) a polyconvex mixed-type system based on a new set
of unknown variables (p, F, H and J) is used in place of the displacement-
based equation of motion; in this manner, stabilisation techniques from
computational fluid dynamics become available; (iii) the analysis is set in a
total Lagrangian reference framework.

Assuming polyconvex variables as the main unknowns of the set of first
order conservation laws helps to establish the existence and uniqueness
of analytical solutions. This is a key reassurance for a robust numerical
implementation of simulations. The resulting system of hyperbolic first
order conservation laws presents analogies to the Euler equations in fluid
dynamics. This allows the use of a well-proven stabilisation technique in
computational fluid dynamics, the Jameson Schmidt Turkel (JST) algorithm.
JST is very effective in damping numerical oscillations, and in capturing dis-
continuities in the solution that would otherwise be impossible to represent.

Finally, we note that the JST-SPH scheme so defined is employed in a
battery of numerical tests, selected to check its accuracy, robustness, mo-
mentum preservation capabilities, and its viability for solving larger scale,
industry-related problems.
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Î1, Î2 First two invariants of the distortional deformation tensor Ĉ, p. 44

κ Bulk modulus, p. 45

λ1, λ2, λ3 Principal stretches, p. 37

λe,1, λe,2, λe,3 Principal stretches of Fe, p. 58

C Material elasticity 4th order tensor, p. 39

µ Shear modulus, p. 44

µ1, µ2 Hyperelastic material model shear parameters, p. 44

Ψ Elastic potential strain energy, p. 35

xxv



ρ Spatial density/Density in case ρ = const, p. 27

ρ0 Material density, p. 22

σ1, σ2, σ3 Principal stresses of stress tensor σ, p. 57

σeq Equivalent deviatoric stress measure in yield criterion, p. 56

θ Temperature, p. 41

URα = {pRα, FRα, HRα, JRα} Right eigenvector of deformation mode α of an elastic

medium, p. 77

ν Normal to the plastic yield surface at load point, in {σ1, σ2, σ3} space,

p. 60

σ Cauchy stress tensor, p. 28

ΣF, ΣH ΣJ Polyconvex stress work conjugates to polyconvex strain measures

F, H, J, p. 60

τ ′ Deviatoric part of the Kirchhoff stress tensor, p. 60

b Left Cauchy-Green deformation tensor, p. 46

bF Body force vector, p. 29

C Right Cauchy-Green deformation tensor, p. 43

F Deformation gradient tensor, p. 24

Fe, Ce, be Elastic part of the deformation tensors, p. 55

Fp, Cp, bp Plastic part of the deformation tensors, p. 55

H Matrix of cofactors of F, p. 25

l Rate of deformation vector, p. 56

lp Rate of plastic deformation vector, p. 56

P First Piola-Kirchhoff stress tensor, p. 28

p Linear momentum vector, p. 22

xxvi



Pdev Deviatoric part of the material stress tensor, p. 42

Pvol Volumetric part of the material stress tensor, p. 42

Q Heat flux vector, p. 31

S Second Piola-Kirchhoff stress tensor, p. 30

t Traction force vector, p. 28

t∂V‖ Projection of t∂V on the boundary surface, p. 75

t∂V Traction force vector imposed on the boundary, p. 75

A Helmholtz free energy potential, p. 41

c00, c01, c10, c11 Hyperelastic material model parameters, p. 44

cα Wave speed of deformation mode α of an elastic medium, p. 77

E Total energy, p. 31

e Total energy per unit volume, p. 32

h (ε̄p) Plastic hardening function, p. 57

I1, I2, I3 Invariants of deformation tensor C, p. 43

J Jacobian of the deformation, p. 24

m Mass, p. 27

p Hydrostatic pressure, p. 42

s Entropy function, p. 35

sQ Heat source, p. 31

galerkin methods and finite elements

βi=1,...,N Shape functions, p. 92

∆tn = tn+1 − tn Time step size, p. 140
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1I N T R O D U C T I O N

1.1 background

Any physical problem of interest to human applications can usually be

expressed mathematically through systems of partial differential equations

(PDEs) to yield the desired field variables. Nonetheless, it is very rare for

those systems of differential equations to have closed-form solutions; when

that is the case, they are generally determined only for linearised versions

of considerably simplified problems.

For the wider variety of real world applications, where nonlinear effects

are prevalent, it is therefore necessary to seek approximate solutions via

numerical methods. The momentous increase in computational power of the

past four decades, due to advances in computer hardware technology, and

in data transmission with the advent of the world wide web, has produced

a growing interest in industry for the development of novel – and the

enhancement of older – numerical techniques, with the aim of tackling

problems deemed untreatable before, due to their complexity, or due to the

level of detail required to obtain meaningful results.

Fast dynamics analyses, in particular, are very expensive to validate

with campaigns of experimental tests, both in terms of time and resources.

Industry relevant examples include collision and impact tests, vehicles

crashes, sub-, super- and hypersonic ballistics, earthquake shaking table

tests on structural models (see fig. 1.1).

Numerical procedures based on continuum domain discretisation, such

as finite elements (FE) or the finite volumes (FV) method, can ideally be

set up either from the displacement method, or from the method of forces,

respectively known also as the stiffness and flexibility methods [255]; these

two techniques offer alternative ways to obtain the current state of stress

and strain across a continuum in linear solid mechanics.

1
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(a) Automotive crash test (b) Earthquake safety
test

(c) Hypersonic ballistic
test

Figure 1.1: some examples of industry-related real physics test modelling that can
be alternatively performed with nonlinear solid dynamics numerical applications.

By far the most widely used of the two is the displacement method,

conceptually more straightforward, and easier to implement in computer

codes due to its repetitive, mechanical nature. It is also easier to extend this

approach for nonlinear cases [22].

For nonlinear solid dynamics problems, the differential form of the

displacement-based governing equation, to be verified locally at each space

point of the domain, is

ρẍ = ∇ ·σ (x) + f (1.1)

where ρ is the material density, ẍ is the local current acceleration, ∇ ·σ (x)

represents the divergence of local stresses, and f generically refers to external

forces.

The equation of motion (1.1) should be complemented with proper bound-

ary values for displacements x and/or stresses σ, and initial conditions (ICs)

for both positions x, and velocities ẋ.

FE formulations employ the weak version of (1.1), obtained through the

time rate of the principle of virtual work [39, 196, 262]:∫
Ω
ρẍ · δwdΩ+

∫
Ω
σ (x) : δddΩ =

∫
∂Ω
t · δwd∂Ω+

∫
Ω
f · δwdΩ (1.2)

In (1.2), the traction force vector t is obtained by applying integration by

parts and the divergence theorem to the term ∇ ·σ in (1.1), δw represents
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virtual arbitrary velocities, and δd is the virtual rate of deformation tensor,

defined as δd = 1/2
(
∇δw+∇δwT

)
.

The domain of interest Ω is firstly partitioned into a number of finite

elements, across which equation (1.2) is then discretised. The integrals

are computed numerically using quadrature rules; as a result, a global

algebraic system including all elements is assembled and solved for the

values of displacement at the elements nodes, through an implicit or explicit

time-marching scheme, such as the Newmark method [115]. As a last step,

displacement values at the nodes are used as starting points to interpolate

displacement fields over the whole domain, with the help of assigned shape

functions.

This procedure generally yields good results, acceptable even in the case

of coarse meshes. Such robustness has made it possible to adopt linear

finite elements, possessing a limited number of nodes and integration points

with respect to higher order elements, as a preferred choice in nonlinear

dynamics analyses by commercial FE packages (e. g. Adina, Abaqus or LS-

Dyna), principally due to the considerable speed-up in simulation time.

Other advantages of low order elements include simpler detection rules

for interpenetration of opposite surfaces during analyses involving contact

[103], and, more importantly, the availability of mesh generators based on

Delaunay triangulation for 3D tetrahedral and 2D triangular elements, that

are fast and can be automatised and adapted for complex geometries. In

addition, these advanced mesh generators can guarantee elemental angles in

the correct range, to avoid distorted and even unusable grid elements [142,

220, 254]. This robustness can be further enhanced by smoothing techniques,

that act by relocating nodes in order to eliminate excessively distorted

elements [78, 215]. This swift meshing capability is especially advantageous,

given that a sizeable portion of the average analysis process seems to be

spent on pre-processing, as can be readily noticed from fig. 1.2.

Thus, the combination of linear tetrahedral FE with a time integrator of the

Newmark family forms a mature and convenient methodology, and as such

it is widely used for fast dynamics simulations in academy and industry.

Still, room is left for improvement, as the technique has (a) a glaring defect

that affects all analyses, and, in addition, (b) it encounters serious difficulties

when employed in solving a few specific classes of applications.
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Figure 1.2: typical time allocation to the different stages of analysis for a solid
mechanics numerical simulation. Data elaborated at Sandia National Laboratories,
USA. (Source: [55])

a. order of accuracy: more to the point, the shortcoming mentioned

above consists in a lower degree of accuracy (first order) that stresses

and strains can achieve, in comparison to the second order reached

by displacements and velocities. This obviously affects the quality of

solutions, but also gives rise to other problems, in case internal bending

moments are present.

In fact, in a bending scenario, linear tetrahedral finite elements cannot

reproduce the deformed state correctly, because the number of nodes

they possess is not enough to interpolate with sufficient accuracy the

internal tensile stress associated with bending.*

This results in tensile stresses being underestimated when compared

to shear stresses, whereas in a bending scenario it should work the

other way around [16]. As a consequence, the structure will experi-

* It is said that they lack polynomial consistency.
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ence smaller deformations than expected, exhibiting an overly stiff

behaviour.

What just described is the so-called shear locking phenomenon, which

can be overcome by increasing the number of elements in the simula-

tion (h-refinement) [103], or by substituting the linear elements with

higher order elements, with nodes located at the mid-edges, not just

at the tetrahedral vertices (p-refinement). Both h- and p-refinement

add to the computational burden of the simulation, with the latter also

fundamentally altering the nature of the scheme.

b. enforcing incompressibility: in the particular scenarios of constrained

media problems, involving incompressible (Poisson’s ratio ν = 0.5) and

nearly-incompressible materials† (ν→ 0.5), the Galerkin weak formu-

lation as set up in (1.2) may not be able to suppress the volumetric

dilation throughout the whole domain Ω. Failing to enforce the incom-

pressibility condition leads to the development of the volumetric locking

pathology. For the simple case of linear elasticity, volumetric locking

can be explained as following: since ν ≈ 0.5, the material bulk modu-

lus κ, dependent on ν, assumes very large values; as a consequence

a pressure field (the portion of stress proportional to the volumetric

strain via κ) will produce little deformation, resulting in overly stiff

behaviour.

Volumetric locking cannot be rectified by h-refinement. One possible

solution consists in performing p-refinement (adopting high order

elements), and then in underintegrating the elements, that is, in reduc-

ing their number of integration points. Reduced integration elements

perform considerably better than fully integrated high order elements,

because the latter have more integration points than degrees of free-

dom available to satisfy the dilatation conditions [41], overconstraining

the kinematically admissible displacement field. Hence, eliminating

some of the quadrature points also eliminates these overconstraints,

reducing the stiffness of the response and improving accuracy.

In any case, reduced integration is not available for basic linear finite

elements, given that they have just one integration point.

† Real world examples of such materials: natural and synthetic rubbers, biological tissues.
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In order to address the numerical issues caused by incompressibility, sig-

nificant efforts have been made in the past to alter the original displacement-

based problem (1.1), and to develop formulations where additional equa-

tions, with forces or force-like variables (e. g. pressure) as unknowns, are

coupled as constraints to the balance of linear momentum, to be solved for

the displacements. These alternative governing systems of equations, that

have both forces and displacements as field unknowns, are termed mixed

methods.

Problem (1.1) will have to be reformulated accordingly, and a solution

space of forces (or pressures) will be prescribed along with the solution

space of displacements, in order to define the Galerkin weak statement of

the problem. Nodes intended for pressure interpolation will have then to be

defined, in addition to those allocated for interpolating displacements [115].

Mixed formulations present a system matrix that is symmetric, but not

positive-definite: zero-valued eigenvalues may appear, in the form of spuri-

ous pressure modes that will make the solution unstable.

The stability requirements of mixed formulation methods were investi-

gated by Babushka [10] and Brezzi [45], leading to the fundamental Lady-

zenskaja Babushka Brezzi (LBB) stability condition, an inf-sup requirement

on the solutions function spaces, that in many practical cases demands their

enrichment, i. e. the addition of further degrees of freedom in the model.

It has been proven [168] that certain types of mixed formulations, depend-

ing on the disposition of pressure nodes, end up yielding the same results

as certain approaches to displacement-based reduced, or selective [169],

integration. Nevertheless, the reverse is not necessarily true, i. e. there may

not be a reduced integration technique for every possible mixed formulation

conceivable, especially for meshes including different element types [29].

A technique that blends the concepts of mixed formulation and of reduced

integration is the B-method proposed in [114]. In fact, this method has been

proven in [235] to be equivalent to methods derived from Hu-Washizu three-

field variational principles [39], such as the mean dilatation algorithm. In

general, the three independent variables that define a Hu-Washizu-type of

energy potential W (Φ,P, F) are the spatial positions Φ, a complete stress

field P, and its associated deformations F. The mean dilatation method,

introduced in [188] assumes the spatial positions Φ, the hydrostatic pressure
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p, and the volumetric deformation J as independent variables for W. Nu-

merical integration of volumetric and distortional components is performed

separately, and the integration rule is one order lower for the volumetric con-

tribution, allowing it to relax some of the constraints under incompressible

conditions. Thus, volumetric locking is overcome by performing reduced

integration on just one component of the deformation. Much in the same

way, and yielding the same results, the B-method underintegrates the volu-

metric component of the strain-displacement matrix B. In the case of linear

elements underintegrated to just one quadrature point for volumetric strain

evaluation, a constant value B is obtained over the element. This method

has gained acknowledgement and widespread usage for its efficiency and

reliability in treating (nearly-)incompressible material behaviours, and as

such can function as benchmark to test and validate new methodologies.

The F-method [240, 241] directly modifies the deformation gradient F in

order to meet the incompressibility condition just on a limited set of quadra-

ture points, instead of enforcing it at every point. This procedure inhibits

volumetric locking, and differs from the B-method, in that it introduces its

corrections after the internal stress is obtained from the elastic potential

energy through variational methods.

Unfortunately, neither the B-, nor the F-methods can be applied directly to

simple linear elements (linear triangles in 2-D and tetrahedra in 3-D), because

these elements are already at the lowest possible amount of quadrature

points, that cannot be reduced further.

An effort to extend these constraint relaxation techniques to linear 3-

D elements was made by Bonet et al. [30, 37] through the use of nodal

integration. This technique however, itself a form of reduced integration,

introduces rank deficiency in the system matrix, leading to the emergence of

spurious modes [208] that produce excessive pressure oscillations, effectively

spoiling the solution.

An ongoing attempt to stabilise nodally integrated tetrahedral elements by

Scovazzi et al. [218, 222, 225] employs a stress(pressure)-velocity mixed for-

mulation, in conjunction with the variational multiscale stabilisation (VMS)

algorithm previously used in Lagrangian shock hydrodynamics [116, 221,

223, 224]. Results look promising for Lagrangian elastodynamics applica-

tions.
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This summary is by no means exhaustive, as a considerable amount

of research efforts has been poured into mixed formulation FE for nearly-

incompressible elasticity over the years. At this juncture, it is worth noting

further alternative investigations performed on nodally integrated tetrahedra

by Puso and Solberg [209], and Dohrmann et al. [66, 85].

1.2 polyconvex mixed formulation

One of the combinations of field variables proposed in the past as unknowns

for mixed methods elastodynamics problems was that of p, the linear mo-

mentum and F, the deformation gradient. Trangenstein et al. [257, 259, 260]

were the first in trying to reformulate the elastodynamics problem in terms

of first order conservation laws with p and F as unknowns. This formulation

gave rise to a hyperbolic system of PDEs analogous in its nature to the Euler

equations widely used in computational fluid dynamics (CFD).

In the case of hyperbolic PDEs discontinuities may emerge in the solution

over time‡, even in presence of smooth ICs [139, 258]. In CFD, hyperbolic

systems are discretised either:

1. with a combination of a spatial second order centred scheme (FV or

finite differences (FD)) with a method-of-line solver in time, such as one

in the Runge Kutta (RK) family [107]. This scheme may require artificial

viscosity to cure numerical oscillations that appear near discontinuities

of the solution.

2. with upwind, shock-capturing methods in FV [147, 206].

The aforementioned works of Trangenstein et al. employ the second of

the approaches listed above; however, they restrict their endeavours to the

small deformations, linearly elastic regime, from an Eulerian point of view.

Recently, further attempts were made to tailor FV algorithms from gasdy-

namics to solid dynamics applications, especially under a Lagrangian point

of view [48, 49, 132].

‡ Discontinuities go also by the name of "shocks" in gasdynamics literature, a real-physics
reference to the acoustic loud bangs that develop when mathematical solutions lose their
continuity.
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The idea of Trangenstein and Colella, to avoid volumetric locking in elas-

todynamics by using a {p, F} mixed formulation combined with FV fluid

dynamics methodologies, has been lately picked up again by Bonet et al.

[1, 129, 143, 144], who recognised that conservation of angular momentum

needs to be enforced over the discretised system at each time step. They

managed to achieve second order of accuracy for strains and stresses (ordi-

nary displacement-based codes can only reach first order in these variables).

Later, they have added a third conservation law for the volumetric strain

measure J, the Jacobian of F, in order to pursue the incompressible limit

ν→ 0.5 [86].

In [2, 31–33, 87, 99, 145, 146] they further refined their method by not-

ing that an extended {p, F, H, J} mixed formulation – with an additional

conservation law for the cofactors matrix of F, H – would receive solid

mathematical foundations from the theoretical framework of polyconvexity

[13, 62, 231], which could provide for proof of existence and uniqueness of

solutions, and hence offer the opportunity to systematise their approach for

treating elastodynamics with CFD stabilisation techniques. At least, this will

be true for material models with an internal potential energy that satisfies

the polyconvexity requirements.

1.3 meshless methods and sph

In the landscape of computational solid mechanics, FE formulations are

by far the most widespread and well-known methodologies for obtaining

numerical solutions to systems of PDEs. Many decades of research into the

finite elements method (FEM) have made it a mature and reliable technology;

code implementation into commercial computational software packages

(employed to solve problems in almost every field of engineering), has

contributed to its popularity amongst practitioners.

Meshless (meshfree) methods, on the other hand, have been introduced in

the literature relatively recently, and are not currently available for commer-

cial packages in anything but their most basic and uncomplicated features.

As an alternative discretisation technique to FE, meshfree methods present

both similarities and differences with it.
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Fundamentally, both approaches rely on the identification of a set of

material points across the problem domain, that will serve as nodes for the

interpolation of field variables. This interpolation is obtained through the

use of basis functions, that in both cases will need to compose a partition of

unity function space [11]. However, what sets the two apart, most noticeably,

is the dependence of the FEM from the discretisation of the domain into a

set of non-overlapping elements, that are in place to enable to perform the

necessary numerical integrations, and to ensure the internal compatibility

of the interpolation fields. On the contrary, in meshless techniques, there is

no mesh to connect the nodal points between them§.

The FEM enforces an internal compatibility of displacements that may

not be robust enough when subject to large deformations; moreover, in

simulations of explosions and fragmentations, the mesh topology bears an

influence on crack propagation and separation patterns, that should not

exist. Meshfree methods, instead, behave very well under the aforementioned

conditions, due to nodal connectivity not being constrained by the presence

of elements [153].

Other advantageous features of meshless methods with respect to the

FEM are: (i) ease of implementation of high-order shape functions, that are

necessary to discretise PDEs containing higher order derivatives (high rate

elasto-plasticity, plates and shells¶); (ii) an efficient adaptive refinement

capability in regions where more detailed analysis is needed, as particles

can be freely added locally (remeshing in FE is computationally taxing, and

can only be performed up to a certain point for complex geometries) [151].

Further, the task of structured meshing is far easier for meshless methods

than for FE [190].

So far, the advantages displayed by meshless particle methods over FE

would seem to suggest that a change in paradigm in computational mechan-

ics, from the latter to the former, is nothing but inevitable. However, the

decisive factors of speed, ease of implementation, and the support of mathe-

§ In partial exception to the general rule, many meshless techniques, such as the class of
Galerkin meshfree methods, need a background set of (possibly overlapping) cells, in order
to perform the integration of stresses through Gauss quadrature rules [23, 158].

¶ FE shape functions with higher regularity than C0 are in fact difficult to construct for
complicated geometries [50].
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matically sound and straightforward theory in favour of the FE method, all

contribute to make this vaunted replacement very unlikely.

Most meshless methods are, as a matter of fact, quite elaborate in their

implementation, often requiring their shape functions to be built locally

(employing complicated procedures) at each time step in the simulation, as

they lack the simple mapping procedures that allow the FE shape functions

to be built just once in the reference space, and then pushed forward to the

current configuration [190].

The first meshless method with a robust implementation to appear in

literature is the smooth particles hydrodynamics (SPH) formulation [88, 166].

The method constitutes an exception amongst other meshfree techniques

for its simplicity: its reproducing kernel mechanism, used for building local

shape functions, is in fact rather straightforward to implement, even with

regards to FE [177].

The simplicity of SPH comes useful when modelling multiscale compu-

tations, as SPH can go all the way down to simulate physical interactions

at the microscale, where most other local approximations, such as FE, FV or

Galerkin meshfree methods would break down, because of their need of a

background mesh [153].

There exists a vast literature on SPH, given the wide variety of applications

the method has been adapted to: originally devised for the fields of astro-

physics and cosmology, it expanded to fluid dynamics (including simulation

of breaking waves, breaking dams, sloshing tanks, liquid metal moulding),

to large deformation (metal forming) [34] and to fragmentation problems

[25, 26] in solid mechanics, where it really excels in comparison with FE

[181].

Reviews of the state of the art of SPH at various stages in its development,

each with focus on application in a particular discipline, are readily available

[178, 181, 243, 265].

The main advantage of SPH – its simplicity of implementation – is based

on the fact that it integrates over the field by collocation: a form of nodal

integration, it does not need background cells.

Nodal integration, per se, is a lean and straightforward methodology.

However, it can be partly associated with some drawbacks inherent in SPH,

that strongly limit its application.
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As noted in section 1.2, nodal integration is useful in avoiding locking

numerical issues; however, oscillatory instabilities may still arise in the ab-

sence of proper stabilisation. Stabilisation should be introduced in the form

of artificial viscosity or upwinding schemes, as also reported in section 1.2

with respect to FV.

Oscillatory instabilities arise when numerical integration of quantities of

interest is not performed over Gaussian quadrature points: that is, when

it does not follow proper optimal quadrature rules. In those cases, which

include nodal (or equivalently, reduced) integration, not only does the un-

conventional integration introduce a truncation error due to its inherent

inaccuracy, but it also decreases the rank of the local stiffness matrices,

thus introducing spurious zero-energy modes, called mechanisms or hour-

glass modes [115]. Hourglassing modes are the reason for the oscillations in

pressure values observed in non-stabilised solid dynamics SPH simulations.

This numerical issue can be addressed by introducing artificial dissipation

as an additional term in the equation of motion, as proposed by Monaghan

et al. [177, 184]. Later, Vidal et al. also recognised the need to add artificial

dissipation in the context of their updated Lagrangian SPH model, in case

instabilities were to develop over the long run [264]. Alternatively, Vignjevic

et al. [266] developed a scheme where some particles are used for evaluating

the velocities, while another set of particles is employed to compute stresses,

similar to “quadrature points” in FE. Analogous approaches are followed by

Belitschko et al. [20], Randles and Libersky [212], and Gray et al. [95]. Dyka

et al. [71] attempted to treat zero-energy modes by scattering integration

points in between particles, fundamentally altering the particle nature of SPH.

Recently, Ganzenmüller tried to eliminate hourglass modes by minimising

an error measure based on distances between particles, using a penalty force

[82].

Another drawback of SPH is its lack of consistency at and near the bound-

aries of the computational domain. This means that SPH cannot even approx-

imate constant values in regions adjacent to domain boundaries, because

locally its shape functions do not constitute a partition of unity. The reason

for this lies in the fact that shape functions, for particles at and near the

boundaries, are built on a domain of influence that is partially truncated by

the boundaries themselves, leaving it incomplete [153].
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Several corrections to the SPH shape functions were proposed over the

years to address this boundary incompleteness: ad-hoc modifications to the

kernels underlying the SPH shape functions, for instance through a moving

least squares (MLS) interpolant [65], or the corrections introduced by Liu

et al. [159, 163], that in practice developed a new meshless method, the

reproducing kernel particle method (RKPM). Johnson and Beissel treated

high-speed problems in [126], and focused on a normalised formula for

the velocities; Randles and Libersky [211] attempt something similar, by

operating a double contraction over the internal stresses with a correction

tensor weighted upon the current geometry. The corrections proposed by

Bonet et al. [34, 36] will be discussed at length in chapter 3.

Lastly, many studies have been devoted to the issue of tensile instability,

that affects SPH implementation in solid mechanics applications. This is

a behaviour observed in presence of a tensile state of stress: when this

is the case, the SPH nodal particles start accelerating towards each other,

and form clumps of particles. Once inside one of such clumps, particles

velocities decrease and turn into slow oscillatory motions. The occurrence

of tensile instability in SPH has been analysed in a number of papers [20,

35, 64, 70, 71, 180, 248]; it was concluded by Swegle et al. [248] that tension

instability develops as a consequence of the interaction between the SPH

kernel functions and the SPH expression of internal stresses, as the particles

move in and out of the domain of influence of each other.

Bonet and Kulasegaram proved in [35] that adopting a total Lagrangian

approach, in which the particles’ fields of influence are calculated based on

the reference configuration, and are then kept constant during the rest of

the simulation, can entirely eliminate the issue of tensile instability, as the

particles’ fields of influence are kept fixed throughout the simulation.

1.4 the jst-sph scheme

Earlier in this chapter, in section 1.1, we have briefly summarised the limita-

tions of FE when performing nonlinear solid dynamics analyses. Afterwards,

in section 1.3 we have reviewed the advantages that meshless methods

have in conducting such analyses, that is, improved capability in handling
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high-strain scenarios, higher-order shape functions consistency, efficient and

flexible implementations of adaptivity.

SPH, in particular, was given special consideration and its obstacles were

carefully noted, namely:

• Consistency problems at or near the boundaries: the issue is neutralised

by incorporating corrections to the SPH kernel functions. X

• Tensile instability: this problem is easily prevented by adopting a total

Lagrangian framework. X

• Spurious pressure oscillations: this is caused by rank deficiency of the

system matrix due to nodal integration, inherent to SPH. Elimination

of hourglass modes can be achieved by either (i) the introduction of

artificial dissipation in the equation of motion, (ii) upwind schemes, or

(iii) the introduction of a background set of stress-evaluating points.

We are going to adopt one of the three aforementioned techniques.

The hourglassing issue with SPH, discussed above, has to be resolved

in order to implement a nonlinear solid dynamics numerical solver able

to harness all the advantages offered by SPH. Introduction of an artificial

dissipation term of the kind presented by Monaghan [184] seems to be, out

of the methods proposed above, the most straightforward to implement.

However, the most advantageous option turns out to be the adoption

of the mixed formulation based on a polyconvex strain energy potential,

as outlined in section 1.2. Expressing the problem in terms of a mixed

{p, F,H, J} first order system of hyperbolic PDEs, in essence:

• ensures the existence and uniqueness of analytical solutions to the

problem, the numerical solution can achieve;

• enhances the order of accuracy of derived variables (stresses and

strains);

• enables the use of well-proven dissipation algorithms from CFD, an

opportunity offered by the analogy that can be established between

the Euler equations and the mixed {p, F,H, J} solid dynamics system.

More precisely, a Jameson Schmidt Turkel (JST) artificial dissipation

scheme [122] would allow a higher order of accuracy than the scheme
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proposed in [184]. The JST scheme has already been tested in the

context of the mixed {p, F}, {p, F, J} and {p, F,H, J} formulations in solid

dynamics, with promising results for FV [1, 2].

JST has the significant advantage of being composed of two terms: one

built on the Laplacians of the solution variables to be stabilised, and

the other made of Laplacians of Laplacians of those same variables.

The former is switched on in case a discontinuity is detected, while the

latter, instead, remains activated as long as the solution is continuous.

Any discontinuity will then be smeared over a region of high-gradient

that the scheme is able to capture, without generating oscillations on

the opposite edges of the discontinuity.

1.5 aim and objectives

The main objective of the research underlying this thesis, is to numerically

solve nonlinear, fast solid dynamics problems by adopting a new methodol-

ogy, that combines a spatial discretisation performed in the SPH meshless

technique, with an explicit RK time-marching scheme.

Instead of employing the standard formulation made of a second order

differential equation with displacements as the unknown variable, the fast

solid dynamics problem is expressed mathematically as a set of conservation

laws: a system of first order hyperbolic PDEs having the linear momentum

and the fibre, areal, and volumetric strain measures as unknowns to solve

for. In the FE literature, mixed formulation approaches are usually employed

when dealing with volumetric or shear locking, in case reduced integration

is not available (for instance, when employing linear elements for improved

performance).

This pursuit is not trivial, as there are a few numerical difficulties to

overcome, mostly stemming from local inconsistencies of the numerical

scheme arising near the boundary of the domain, and the limited stability

of the time integrator. A series of modifications to the scheme have to be

introduced accordingly, including the addition of a much used tool in CFD,

a JST dissipation term directly dependent on the undivided Laplacian of the

field variables.
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1.6 outline of the thesis

Figure 1.3 graphically illustrates the implementation of the new meshless

SPH mixed {p, F,H, J} formulation for nonlinear solid dynamics problems,

as proposed in section 1.4.

This novel methodology should be free from locking and pressure oscilla-

tions issues, that are also observed for linear FE under the same conditions,

and at the same time should avoid numerical problems inherent to SPH:

specifically, inconsistency and incompleteness of the interpolation at or near

the boundary regions, and tensile instability.

Description of the research effort undertaken to implement and test this

JST-SPH numerical scheme constitutes the main objective of this thesis, which

will, in its remaining chapters, be structured as follows:

• Chapter 2: a description of the principles behind hyperbolic systems

of conservation laws, including the theoretical requirements that such

systems must satisfy in order to exhibit existence and uniqueness of

solutions.

This is followed by a survey on the polyconvexity property a hyper-

elastic material may or may not enjoy, and how its being a stricter

condition than ellipticity, implies it can serve as proof for existence

and uniqueness of solution to the solid dynamics problem.

Afterwards, calculations are performed that are necessary to show that

a set of hyperelastic material models enjoy the property of polyconvex-

ity, and a spectral study of the complete {p, F,H, J} mixed formulation

for elastodynamics is attempted.

• Chapter 3: here, the implementation of the JST-SPH scheme is followed

step by step. In addition, a brief overview of meshless methods, in-

cluding SPH, is provided. Key equations employed in the SPH method

are detailed, with relevant correction methods adopted to overcome

boundary inconsistencies and tensile instability. Subsequently, a de-

scription of the JST dissipation term is presented, and is then used to

develop a semidiscretised {p, F,H, J} mixed system.

An explicit time-marching scheme of the two-stages RK family is em-

ployed to finally obtain the fully discretised {p, F,H, J} system.
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Chapter 1

Chapter 3

Chapter 2

Chapter 4

Chapter 5

Chapter 6

Large deformations solid dynamics:

7 FEM
3 meshless methods

Pure meshless: SPH→ nodal integration issues

7 inconsistencies at the boundary

7 spurious pressure oscillations

7 tensile instability

Novel numerical method developed in this work:

3 JST-SPH scheme

3 corrections to
the kernels

3 total Lagrangian
viewpoint

due to rank
deficiency of the

system matrix

3 JST artificial
dissipation

Change of governing
system of PDEs:

displacement
based

formulation

polyconvex
mixed

formulation

allows

Accuracy and stability analysis:

7 of plain SPH scheme
3 of improved JST-SPH scheme

Computer simulations
run with JST-SPH:

· numerical benchmark tests
? industry relevant processes
∗ surveying unstructured meshes

validates
Final remarks:

3 overall assessment of JST-SPH
· further research possibilities

Figure 1.3: flowchart of contents of this thesis, showing correlations behind topics
in blue lines, and the logical flow of chapters in red lines. Red blocks compose the
main items of the JST-SPH scheme.
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• Chapter 4: an accuracy and stability analysis is performed for a simple

SPH unidimensional spatial discretisation of a linear partial differential

equation (PDE) associated with the RK time-marching scheme previ-

ously described in chapter 3. The analysis includes a parametric study,

with the number of neighbouring particles acting as the influencing

factor. The JST dissipation is then introduced, to study its stabilising

effects on the dispersion and diffusion errors of the scheme.

• Chapter 5: numerical applications ranging from simple elastic prob-

lems, carried out to verify the order of accuracy of the JST-SPH scheme,

to nearly-incompressible and incompressible hyperelasticity high de-

formation problems, to impact tests and industry relevant high-strain

metal extrusion processes performed in the nonlinear elasto-plastic

regime. The chapter concludes by presenting some numerical simula-

tions performed using unstructured grids of particles.

• Chapter 6: conclusions are drawn by highlighting main outcomes of

the research reported in this thesis. Several possible avenues of future

research are recommended.



2G O V E R N I N G E Q UAT I O N S

The purpose of this chapter is to describe the mathematical model under-

lying the proposed research, and to clarify the strategy behind the chosen

computational procedures.

The contents of this chapter are organised as follows. Brief remarks on

geometry and kinematics in section 2.1 are useful to introduce the notation

on which the rest of the chapter will build upon. Section 2.2 focuses on

the definition and background of generalised conservation laws presented in

the form of first order, hyperbolic PDEs. Following this, sections 2.3 to 2.6

elaborate the conservation laws for various relevant physical quantities of

interest. Section 2.7 presents, in general terms, the nonclassical approach

adopted to model finite elasticity as a system of PDEs involving multiple

measures of strain, and the reasons that led to such a choice, that is, to ensure

compliance to certain constitutive inequalities. The role these constitutive

inequalities play on the physical plausibility, and on the uniqueness and

regularity of solutions – by prescribing certain convexity conditions on the

stored energy function – is the topic of section 2.8. In section 2.9, we are

thus then able to select appropriate hyperelastic energy functions for the

reversible part of the deformation. Furthermore, given that many of the

examples in subsequent chapters will include large inelastic deformations, a

necessary extension of these constitutive relations into the realm of plasticity

is treated in section 2.10. In section 2.11, the hyperelastic elastic energy

functions types previously considered are modified to become functions of

all strain measures needed for polyconvex modelling; for this purpose, an

alternative definition of the first Piola-Kirchhoff stress tensor is introduced.

In so doing, we will need to associate conservation laws for such strain

measures, and we will do that in section 2.12. The system of conservation

laws governing the nonlinear elastodynamics problem can now be finally

introduced with strong mathematical foundations in section 2.13. Some

properties of this system – specifically, ancillary static conservation laws

19
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(involutions), entropy function and boundary conditions (BCs) – will be the

object of section 2.14. In section 2.15, study of the eigenstructure of the

mixed system of conservation laws is attempted, to check that it possess real

elastic wave speeds. It will then be shown how this fact leads to compliance

with conditions prescribed in section 2.8, closing the loop on the subject. To

cap off the chapter, in section 2.16 the eigenstructure problem so defined is

set up in the case of an Ogden-type hyperelastic constitutive model. Finally,

an overview of the chapter contents is offered in section 2.17.

For convenience, a graphical walk-through of the chapter is sketched in

fig. 2.1.

2.1 introduction : notation, geometry, kinematics

Let us now define our body of interest as an open set B ∈ R3. Then, a

configuration of B is a mapping Φ : B → R3 that is sufficiently smooth, and

invertible. A motion can then be introduced as the set of all configurations

that exist in the time frame considered, and can be expressed as

x = Φ(X, t)

Here, x* represents a vector of positions the body occupies at a given time

t, and is used to express the current configuration of that body at that instant,

whereas X describes its starting positions in the reference configuration.

The rest of this dissertation will make use of the Lagrangian (material)

description of motion, meaning that fields of physical properties will depend,

at each point in time, on the initial configuration. With this approach, any

physical property can be directly referred with respect to the initial config-

uration, and followed for the entire duration of the motion. In contrast, in

the Eulerian (spatial) description, physical fields are direct functions of current

positions. The difference between these descriptions can be formulated by

identifying the body particles as the material points X = (X1,X2,X3)T , and

positions in R3 as the spatial points x = (x1, x2, x3)T .

* Throughout this work scalar quantities will be denoted as a, in regular typeface; vectors in
boldface as a, and second order tensors in uppercase boldface as A.
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Figure 2.1: block diagram illustrating how individual sections of this chapter
logically connect to each other.
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In terms of notation, making a distinction between Lagrangian and Eule-

rian framework is important for kinematic quantities expressing positions

or directions, and with regards to symbols employed to indicate differential

field operators.

Following standard practice in nonlinear continuum mechanics [73], we

will denote in upper case letters kinematic quantities when using a material

description, while quantities in spatial description will be written in lower

case letters.

In table 2.1 we compile a list of algebraic operations on vectors and tensors

used throughout this work. The lesser known among those operations, the

tensorial cross product×××, has been more extensively described in [31–33, 87].

As can be seen from table 2.1, the tensorial cross product can be between

two second order tensors, or can involve a tensor and a vector. Its outcome

will always be a second order tensor.

In addition, papers [31–33, 87] derive a number of useful properties valid

for the tensorial cross product, reproduced in table 2.2 for convenience.

Differential field operators include gradient, divergence and curl; the

nabla symbol ∇ will express them in spatial terms, while ∇0 will be used

for the material description.

Table 2.3 defines the differential operators used, and their notation.† In

table 2.3, Eijk is the Levi-Civita permutation tensor, assuming value +1 in case

ijk is an even permutation of the ordinal sequence [1, 2, 3], and −1 in case is

odd [148].

The material velocity v(X, t) is defined as the time derivative of the motion:

v(X, t) =
∂Φ(X, t)
∂t

(2.1)

The linear momentum p(X, t) is then defined in terms of material density

ρ0 as

p(X, t) = ρ0 v(X, t) (2.2)

The concept of strain allows to relate the initial material configuration and

the current spatial configuration at time t. It does so through the kinematic

† In table 2.3, and everywhere else in this work, repeated subscript indices are meant to be
summed.
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Table 2.1: product operations involving vectors and tensors. Scalar quantities are
denoted in normal font a, B; vectors in bold lowercase a, b; and second order
tensors in bold uppercase A, B. Subscript indices range from 1 to 3 for the R3

domain. Functions trA and det A stand respectively for trace and determinant of
a matrix A.
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Table 2.2: list of properties of the tensorial cross product×××. Constants are denoted in
lowercase font as a, vectors in bold lowercase as a, b, and second order tensors in
bold uppercase as A, B. Function cofA represents the cofactors matrix associated
to A.

1. (a×××A)b = a× (Ab)

2. (A×××a)b = A (a×b)
3. a · (A×××B)b = (a×××A) : (B×××b)
4. A×××B = B×××A
5. (A×××B)T = AT ×××BT
6. A××× (B+C) = A×××B+A×××C
7. a (A×××B) = (aA)×××B = A××× (aB)

8. (A×××B) : C = (B×××C) : A = (A×××C) : B
9. a××× (A×××b) = (a×××A)×××b = a×××A×××b

10. A××× (a⊗b) = −a×××A×××b
11. A××× I = tr (A) I−AT

12. (A×××A) : A = 6det(A)
13. cof(A) = A×××A

2

functions F, J and H, each one following a specific geometric property

through the deformation process.

The deformation gradient F is a second order tensor that acts on the material

fibre dX to give back the spatial fibre dx = FdX:

F(X, t) =
∂Φ(X, t)
∂X

(2.3)

From (2.3) follows that the deformation gradient can be understood as

the derivative of the current configuration of the body with respect to the

starting position.

The definition of the Jacobian J of the deformation is

J = det F (2.4)
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Table 2.3: summary of how differential operators (in rows) act with regards to the
dimensionality of the object they apply to (in columns). Subscript indices range
from 1 to n for the Rn domain. For material quantities, substitute ∇0 for ∇, and
Xi for xi.

scalar a vector a 2nd order tensor A
gradient (∇a)i = ∂a/∂xi (∇a)ij = ∂ai/∂xj (∇A)ijk = ∂Aij/∂xk

divergence null ∇ ·a = ∂ai/∂xi (∇ ·A)i = ∂Aij/∂xj

curl null (∇×a)i = Eijk∂ak/∂xj (∇×A)ij = Ejkl∂Ail/∂xk

J in (2.4) is a measure of volumetric change during the deformation. In

fact, once identified with dV the reference (material) elemental volume, and

with dv the current (spatial) elemental volume, it is true that

dv = J dV (2.5)

X1

X2

X3

dA

dX

dV

B0

x = Φ (X, t)

x1

x2

x3

da = HdA

dν = J dV

dx = FdX

B(t)

Figure 2.2: finite deformation process on a body in the continuum.

The second order tensor H is nothing else than the matrix of cofactors of F,

obtained as follows

H(X, t) = JF−T (2.6)
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Single entries in matrix H are the cofactors Hi,j, defined as

Hi,j = −1i+j detMF|i,j for i, j = 1, 2, 3 (2.7)

In (2.7), MF|i,j is the submatrix of F obtained by removing its ith row and

its jth column.

The H tensor in (2.6) maps the reference element area vector, dA = NdA

(with N being the unit vector normal to the surface element dA) into the

current element area vector da as:

da = nda = HdA (2.8)

In (2.8), n is the unit vector normal to the spatial surface element da.

Tensors F and H can be characterised as two-point tensors, in that they

map points from the referential, to the spatial point of view.

Figure 2.2 presents graphically some of the nomenclature just introduced

in this section.

2.2 general definition of conservation laws

Intuitive notions of conservation for a closed system – that certain physical

quantities can neither be created nor destroyed, but rather only be redis-

tributed throughout the system domain (the case of mass) and also turned

from one form to another (the case of momentum and energy) [139] – are

useful to understand the definition of conservation laws, as PDEs that track

changes of the conserved variables U in a control volume V [147]:

d

dt

∫
V
UdV +

∫
∂V
F(U)dA =

∫
V
SdV (2.9)

In (2.9), F is the vector of the fluxes of the conserved variables in and out

of the control volume, and S are the source terms:

U = (u1 · · ·un)T , F(U) = (f1 · · · fn)T , S = (s1 · · · sn)T (2.10)
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As their name suggests, we can understand fluxes fi as the amount of

conserved variable ui flowing in (if fi > 0) or out (if fi < 0) of the control

volume V .

The integral form of the conservation laws expressed in (2.9) can also be

stated in differential terms, provided that the set of U be differentiable in

time and the set of F be differentiable in space:

∂U
∂t

+
∂F(U)
∂X

= S (2.11)

In case U are not continuous in the domain, Rankine-Hugoniot conditions

have to be applied at the discontinuity, of normal Ndisc, that supposedly

travels with velocity cdisc:

(cdisc ·Ndisc)
(U+ −U−

)
=
(F+ −F−

)
Ndisc (2.12)

In (2.12), U+/U− and F+/F− express the values on one and the other

side of a discontinuity. The reader who is interested can consult [107] for

the full derivation of (2.12).

Fluxes terms in conservation laws (2.9) and (2.11) have to be referred, in a

three dimensional domain, to a direction m so that the projection

F = Fmm (2.13)

where Fm is the n× 3 flux matrix, is obtained.

2.3 conservation of mass

Given the spatial density ρ(x, t) of a body B with volume v in the cur-

rent configuration, its mass will be m =
∫
v ρdv. The conservation of mass

principle states that m is neither created nor destroyed during a motion

Φ(X, t):
d

dt

∫
v

dm =
d

dt

∫
v
ρ(x, t)dv = 0 (2.14)
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Noting that the current volume dv of a region in B is the scalar triple

product dv = |dx1 · (dx2 × dx3) |, and that the spatial fibre vectors can be

obtained from the deformation gradient as (see [97])

dxi = F(X, t)dXi =
∂Φ(X, t)
∂X

NidXi =
∂Φ(X, t)
∂Ni

dXi

it can be seen that

dv = dx1 · (dx2 × dx3) =
∂Φ

∂N1
·
(
∂Φ

∂N2
× ∂Φ

∂N3

)

︸ ︷︷ ︸
det F

dX1dX2dX3 =

= det FdV = J dV (2.15)

This way, (2.14) can be alternatively put as∫
v
ρ(x, t)dv =

∫
V
ρ(x, t)J dV =

∫
V
ρ0(X, t)dV (2.16)

Equation (2.16) can be more compactly put in differential form, provided

Φ(X, t) is sufficiently regular (no ripping or interpenetration taking place):

ρ0
ρ

= J (2.17)

2.4 conservation of linear momentum

Let t(x, t,n) be the traction force, defined as the force per unit area vector

applied on an elemental surface of B having a normal pointed to the out-

side n in the spatial configuration. Then, the Cauchy stress tensor σ can be

introduced as (see, for instance, [39])

t = σn (2.18)

The first Piola-Kirchhoff stress tensor P is the two-point tensor that expresses

the (current) force per unit of undeformed area

t = σn = JσF−TN = PN (2.19)
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In (2.19), N represents the direction and orientation of unit vector n at the

initial configuration.

We have derived equation (2.19) using the Piola transform rule, that, pro-

vided the motion Φ : B0 → B(t) is continuous and differentiable, allows to

express the pull back of a vector field a – connected with measures of area

or volume – from some configuration B(t) to the reference state B0 [196]:

A = J F−1a (2.20)

Having defined the traction force t in terms of the reference area dA =

NdA, and given the eventual presence of external body forces bF, it is easy

to assemble the balance of system linear momentum in global form:

d

dt

∫
V
pdV −

∫
V
ρ0bF dV =

∫
∂V
tdA =

∫
∂V
PNdA (2.21)

Now, recalling the main statement of the divergence theorem for C1(R3)

vector fields a, on a compact volume V with a continuously differentiable

boundary ∂V vector fields a, as∫
V
∇0 ·adV =

∫
∂V
a ·NdA (2.22)

we can put (2.21) in differential terms as following

∂p

∂t
−∇0 ·P = ρ0bF (2.23)

2.5 conservation of angular momentum

In principle, the conservation of angular momentum can be summarised by

stating that any torque acting on a system should be counterbalanced by

an equal and opposite variation of the overall angular momentum for that

same system [242].
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This, however, does not result in a simple extension of the linear momen-

tum conservation law, obtained by pre-multiplying each of the terms in

(2.21) by the distance from a point chosen at will.

In fact, if we proceed by identifying the pivot point with the origin (0, 0, 0)

of the system of coordinates, proceeding as described just above will yield:∫
V
x× ∂p

∂t
dV −

∫
V
x× ρ0bF dV =

∫
∂V
x× (PN) dA (2.24)

Consider the following property of the vector product [233]

a×bF = E : (a⊗bF) (2.25)

Using the divergence theorem on the right hand side (RHS) of (2.24) we

get ∫
V
x× ∂p

∂t
dV −

∫
V
x× ρ0bF dV =

∫
V
∇0 · (x×P) dV =

=

∫
V

∂

∂Xi

(EjklxkPli
)
dV =∫

V

[
x× (∇0 ·P) + EjklFkiPli

]
dV (2.26)

where i, j,k, l = 1, 2, 3.

The terms composing (2.23) can then be isolated on one side of (2.26) :∫
V
x×

(
∂p

∂t
−∇0 ·P− ρ0bF

)
dV =

∫
V
EjklFkiPli dV (2.27)

thus obtaining ∫
V
EjklFkiPli dV =

∫
V
E :
(
FPT

)
dV = 0 (2.28)

Now, we can observe that (2.28), expressed in local terms, yields the

symmetry

FPT = PFT (2.29)

In passing, it is useful to note that (2.29) leads to the definition of a

material, symmetric stress tensor S = F−1P, the second Piola-Kirchhoff stress
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tensor (the first Piola-Kirchhoff stress tensor P is a two-point tensor, and not

necessarily symmetric).

2.6 conservation of energy

The first law of thermodynamics is, in essence, the statement that the rate of

change in time of the total energy E of a system subject to a transformation

process (that might be, amongst many others, a deformation) is equal to the

quantity of energy exchanged by the system with the outer environment

[76]. The first law of thermodynamics directly leads to a conservation law

for the total energy of the system.

In continuum mechanics, the system coincides with a deformable body,

and influence from the outside comes in the form of the rate of work exerted

on the body by external traction, or volume forces; from heat exchange,

through the presence of a heat flux with the outside; and, potentially, heat

sources.

In absence of other forms of energy, conservation of mechanical energy is

a renown fact in general mechanics. It leads to the definition of conservative

force fields, as those that perform a fixed amount of work, that stays the

same regardless of the path taken in moving matter between two definite

positions.

The first law of thermodynamics on a continuum volume V can be ex-

pressed as

∂

∂t

∫
V
EdV =

∫
∂V
t · p
ρ
dA+

∫
V
bF ·pdV︸ ︷︷ ︸

mechanical

−

∫
∂V
Q ·NdA+

∫
V
sQ dV︸ ︷︷ ︸

thermal

(2.30)

where t is the traction force defined in (2.18), bF stands for body force,

and Q and sQ are the heat flux with the outside and a heating source,

respectively. Equation (2.30) is valid when only mechanical and thermal

exchanges with the outside are considered, disregarding other effects (such

as changes of phase or electromagnetic interactions).
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It is useful to introduce the internal energy per unit initial volume e as

e = E−
1

2

p ·p
ρ︸ ︷︷ ︸

kinetic energy

(2.31)

In (2.31), e could be identified with the amount of potential energy avail-

able to the system.

Thanks to (2.31) and the divergence theorem, we can express (2.30) locally

as a balance statement for the internal energy:

∂e

∂t
+
p

ρ
· ∂p
∂t

−∇0 ·
(
PT
p

ρ

)
= bF ·p−∇0 ·Q+ sQ (2.32)

Substituting in (2.32) the local form of the conservation law of linear

momentum (2.23):

∂e

∂t
+p ·

(∇0 ·P
ρ

+bF

)
−
∇0 ·

(
PTp

)

ρ
= bF ·p−∇0 ·Q+ sQ (2.33)

Given that

∇0 ·
(
PTp

)
−p · (∇0 ·P) = P : ∇0p (2.34)

We can rewrite (2.33) as

∂e

∂t
= P :

∇0p
ρ

−∇0 ·Q+ sQ (2.35)

Observing that symmetry of second derivatives allows to write

∂2 x (X, t)
∂X∂t

=
∂F

∂t
=
∇0p
ρ

our final formulation of the conservation law of energy can be made

dependent from F as

∂e

∂t
= P :

∂F

∂t
−∇0 ·Q+ sQ (2.36)
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The term P : ∂F∂t on the RHS of (2.36) provides the relation between the

laws of conservation of mechanical and thermodynamic energy.

In fact, the work done by internal stresses, P, may be split in two parts:

reversible, and irreversible. This provides the basis for the concept of en-

tropy, and the second principle of thermodynamics [227]; how to address

irreversibility effects when dealing with an elasto-plastic material model

will be the object of section 2.10.

2.7 mixed system of conservation laws : a first attempt

We may already be able to describe the motion Φ(X, t) in all its configura-

tions in time by noting that, using the definition of deformation gradient as

F (x) = ∇0x, the conservation of linear momentum (2.23) can be recast as a

function of the current position x:

ρ0 ẍ = ∇0 ·P (F (x)) + ρ0bF (2.37)

Equation (2.37) is solved for positions x. When it is complemented with:

(i) a material constitutive relation that explicitly expresses the dependence

P (F), (ii) ICs describing the geometry of the reference configuration B0,
and (iii) appropriate BCs on x or P, equation (2.37) allows to completely

determine the motion Φ (x, t) in time.

In R3, equation (2.37) is a system of nonlinear second order hyperbolic

PDEs in x.

For this type of problem, a unique solution has been proven to exist only

locally in time [124, 130, 172] even in the case of a system defined in open

space, where prescribed BCs are not necessary.

Furthermore, existing solutions are limited by the conditions that x ∈
C2 (B) and ẋ ∈ C1 (B), in other words, without any discontinuity [62, 89,

172]. This restriction rules out the modelling of shocks, that is instead of great

interest in applications, such as fracture, fragmentation or impacts [22].

In the past, the introduction of dissipative mechanisms of visco-elastic or

thermo-diffusive nature in (2.37) was proposed to attain a proof of existence
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for weaker solutions, by way of setting the added viscous or diffusive term

to the limit of 0 [62].

All these attempts have involved the transformation of (2.37) into a system

of first order conservation laws of the type [63, 140, 172]:

∂pi
∂t

−
∂Pij

∂Xj
= 0 (2.38a)

∂Fij

∂t
−
∂pi
∂Xj

= 0 i, j = 1, 2, 3 (2.38b)

We obtained system (2.38) by rearranging the unknowns in (2.37) to be

U = (p, F) instead of x. The additional set of equations (2.38b) are a simple

consequence of the commutative property of partial derivatives.

The source term bF was eliminated in (2.38), as its presence is not required

in what follows.

Now, proof of hyperbolicity for system (2.38) implies that its solutions can

be expressed in a wave-like form of type [74, 139]

U = f (X ·Z− λi(X) t)Ri i = 1, 2, 3 (2.39)

where Z is a direction of choice, λi is the wave velocity and an eigenvalue

of the flux matrix, and Ri is the wave profile and the eigenvector of the flux

matrix corresponding to λi.

System (2.38) is hyperbolic if its flux matrix has maximum rank, that is, if

its eigenvalues are all real and distinct, and its eigenvectors are orthogonal to

each other. Proof of hyperbolicity is key to ensure dependable and realistic

solutions, because the eigenvalues λi are the mathematical counterpart to

physical wave speeds travelling in the continuum during the motion [63].

One condition that guarantees hyperbolicity to a system of conservation

laws is the existence of a convex entropy function associated with it [13, 14].

Intuitively, a convex function on a Cartesian plane can be identified as one

having its curve always below the segment connecting any two of its points.

Entropy methods are generally utilised to gain information on solutions

of nonlinear PDEs, by integrating their terms, and then investigating their

boundedness. This way, non-increasing bound constraints help establishing

inequalities similar to dissipative behaviour [75].
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In order to be completely determined, system (2.38) has to refer to a

constitutive relation P(F). A general hyperelastic formulation is given by

Pij(Fij) =
∂Ψ(Fij)

∂Fij
i, j = 1, 2, 3 (2.40)

In (2.40), Ψ can either be defined as the elastic potential, in the case of

reversible elasticity, or the Helmholtz free energy, when dissipative processes

are also present.

For simplicity, hereafter we will always assume to be under isothermal

conditions.

A property of systems of conservation laws such as (2.38) consists in

the fact that their state variables end up satisfying certain relations at the

starting configuration, that are then guaranteed to hold for all time periods

considered.

These additional, stationary conservation laws emerging from systems of

PDEs similar to (2.38), are the so called involutions. Involutions for system

(2.38) are provided by the following set of equations:

∂Fij

∂Xk
−
∂Fik
∂Xj

= 0 i, j,k = 1, 2, 3 (2.41)

Noticeably, (2.41) simply restates the definition of deformation gradient

as F = ∇0x by taking advantage of the property of commutativity of partial

derivatives. In vectorial notation, (2.41) can be written more succinctly as

∇0 × F = 0.

To system (2.38) we can associate an entropy function s:

s =
p2

2ρ0
+Ψ(F) (2.42)

There is, however, a conflict between the conditional requirements on

entropy s as formulated in (2.42):

• reference frame objectivity for Ψ prescribes that the relation Ψ(F) =

Ψ(QrotF) has to be valid for any orthogonal rotation matrix Qrot;

• but, on the other hand, s has to be convex.
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These two instances clash in all cases, except when Ψ is quadratic with

respect to F [63]. This type of dependence, however, is not found for any of

the most used hyperelastic material models (see [109]).

From a mathematical standpoint, it has been shown in [63] that limiting

the convexity requirement to a reduced set of F (the so-called involution cone)

is not incompatible with material frame indifference of s, and does produce

realistic solutions.

From the numerical perspective, instead, framing the problem as a system

of conservation laws allows to employ dissipation techniques from CFD that

apply exclusively in case of hyperbolicity.

In light of these considerations, in the next section we will elaborate on

the relation between convexity of the energy function, and hyperbolicity of

the conservation laws, and on definitions further required to fulfil it.

More in particular, we shall see that introducing additional measures of

strains as unknowns to the system – moving from the {p, F} to the {p, F,H, J}

set of variables – will be, in this regard, the key step to take.

2.8 convexity requirements on the hyperelastic energy po-

tential

The second law of thermodynamics is an example of a restriction that can

be imposed on governing equations (2.38) in order to exclude possible

mathematical solutions that are not coherent with reality. It states that the

total entropy of an isolated system, accounting for all its components and

their interactions, can only remain constant or increase [76].

Non-decreasing entropy prescribes that the system can only drift towards

a more chaotic state or, at best, maintain its current level constant.

In order to reproduce real situations, further physical quantities, other

than entropy, can be subjected to mathematical constraints that assume the

form of inequalities.

Think, for instance, at the intuitive notion that internal stress increases

after any kind of compatible strain is imposed. This empirical observation di-

rectly translates into a constraint on the hyperelastic formulation (expressed

in (2.40)) of the elastic potential of the material.
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The aforementioned constraint on the Ψ of the material can be expressed

mathematically by noting that:

• in the simplest possible situation of tension being applied to a body

in the three Cartesian directions, a straightforward way to define the

potential energy consists in resorting to a symmetric function of the

stretches in principal directions λ1, λ2 and λ3, coinciding with the

Cartesian directions:

Ψ = Ψ (λ1, λ2, λ3) (2.43)

• The deformation gradient F and the stress tensor P can be expressed

as

F =




λ1 0 0

0 λ2 0

0 0 λ3


 P =




∂Ψ
∂λ1

0 0

0 ∂Ψ
∂λ2

0

0 0 ∂Ψ
∂λ3




• Switching to the spatial description, and using (2.19), the Cauchy stress

tensor assumes the form:

σ = J−1PFT =




σ1 0 0

0 σ2 0

0 0 σ3


 =

1

J




∂Ψ
∂λ1
λ1 0 0

0 ∂Ψ
∂λ2
λ2 0

0 0 ∂Ψ
∂λ3
λ3


 (2.44)

A material inequality can be established by noting that if λi > λj, then

by empirical observation it must follow that σi > σj, for i, j = 1, 2, 3, and

therefore (
σi − σj

) (
λi − λj

)
> 0 i 6= j (2.45)

from which
∂Ψ
∂λi
λi −

∂Ψ
∂λj
λj

λi − λj
> 0 i 6= j (2.46)

Inequality (2.46) is one of the results obtained in [12]. It is equivalent

to demand that the spatial stresses σi be monotonic in λi, since the first

inequality above, (2.45), constitutes the definition of monotonicity.
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Another basic concept drawn from real analysis (RA) that is useful to

characterise the admissibility of an elastic potential function is that of conve-

xity. A convex function f(x) is defined as

f (λa+ (1− λ)b) 6 λf(a) + (1− λ)f(b), a 6= b, 0 < λ < 1 (2.47)

Intuitively, (2.47) is equivalent to state that the line segment connecting

the points (a, f(a)) and (b, f(b)) on a Cartesian plane will always lie above

the graph of the function f(x) itself. Analytically, this is equivalent to the

condition

f ′′(x) > 0 (2.48)

If (2.47) and (2.48) are intended as strong inequalities (i. e. substitute

symbols Q with ≶), then function f(x) is said to be strictly convex.

Figure 2.3 is a graphical representation of a convex function.

0

x

y

f (x, y)

r

f (x, y)

r1 = (x1, y1)

r2 = (x2, y2)

f (x1, y1)

f (x2, y2)

r̄ = (x̄, ȳ)
= λr1 + (1 − λ)r2

λ f (x1, y1)+(1 − λ) f (x2, y2)

(r2 − r̄) == λ(r2 − r1 )

f (λr1 + (1 − λ)r2)

Given:

0 ≤ λ ≤ 1 ;

r1 =
√

x2
1 + y2

1 ; r2 =
√

x2
2 + y2

2 ,

f (r) is locally convex if

f (λr1 + (1 − λ)r2) ≤ λ f (r1) + (1 − λ) f (r2) .

Figure 2.3: example of a convex function f(x,y) in two variables. The function is
presented lying on a plane of fixed inclination for simplicity.
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Convex functions are of special interest because they possess only one

minimum value on an open set. If strictly convex, they possess a unique

minimum point.

Under suitable additional conditions, convex functions continue to satisfy

such properties independently from the number of dimensions of the do-

main. As a result, they are widely employed as functionals in the field of

calculus of variations [61]. This is interesting for our purposes because, at

each instant in time, the solution of the elastic problem (2.37) also satisfies

an associated variational problem [115, 125].

Strict convexity of a function f(x) implies monotonicity of its first deriva-

tive f ′(x), meaning in our case that strict convexity of Ψ (λ1, λ2, λ3) leads to

monotonicity of its first derivative with respect to the deformations, the

stress tensor σ [172].

If we now shift our attention from the spatial to the material point of view,

we may find [13] that, while the Baker-Ericksen condition (2.46) holds for any

material, the monotonicity statement in (2.45) does not hold for P, in the

case of nearly incompressible hyperelastic materials.

As stated earlier in chapter 1, much of the research underlying this thesis

is centred on the amelioration of numerical issues that arise in discretisations

involving hyperelastic materials at or near the limit of incompressibility.

We can now appreciate that these problems are related to the topic of

mathematical admissibility of the potential elastic function underneath the

equations to be discretised.

Convexity can be also imposed on the hyperelastic potential Ψ in the

material frame, if P satisfies the following strong ellipticity condition:

(v⊗w) : C : (v⊗w) > ε‖v‖2‖w‖2 (2.49)

where C = ∂P
∂F = ∂2Ψ

∂F∂F , and ε > 0. Inequality (2.49) has to hold for any

vector v, w ∈ R3.

Strong ellipticity leads to three important developments:
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1. the Legendre-Hadamard condition in linear elasticity, which states [98]

that if the elastic tensor satisfies (2.49), there exist a wave-form solution

to the system given as

u(x, t) = v f(x ·w± ct) (2.50)

In (2.50), u indicates the displacements, w is a constant, unit vector,

and v and c are, respectively, the eigenvectors and eigenvalues of the

equation of motion in linear elasticity:

ρ
∂2u

∂t2
= ∇ · (C : ∇u) (2.51)

2. It implies local convexity (by linearisation) of the elastic potential of

hyperelastic materials [172].

3. Most importantly, strong ellipticity leads to the Baker-Ericksen inequal-

ity (2.46). In linear elasticity, this, and the fact that there are wave-form

solutions guaranteed by the Legendre-Hadamard condition above,

provides strong physical groundings in favour of the plausibility of

the eventual solutions. Additionally, strong ellipticity is beneficial for

mathematical proofs of existence and uniqueness of such solutions

(see [13, 172]).

Thus, strong ellipticity is a precondition for the existence of dependable

solutions only in the realm of linear elasticity, or, at most, local nonlinearity,

both in statics [245] and dynamics [113].

In [13], Ball provided a proof of global existence of solutions for nonlinear

elastostatics, by resorting to the notion of polyconvexity, which translates

into a convexity condition of the elastic potential with respect to multiple

independent variables, as in the following:

Ψ = Ψ (F, cof F, det F) = Ψ (F, H, J) (2.52)

Much less is known about global solutions in elastodynamics, as remarked

in section 2.7. However, elastodynamics is embedded in elastostatics, in the
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sense that each solution for the latter problem is a point in the evolution

trajectory of the former.

If the elastic potential is polyconvex in the sense of (2.52), then, in general

[15, 133], the variational problem leads to the existence of minimisers of

such potential, corresponding to correct solutions [172, 219]. Reduction of

the quasilinear equations of classical nonlinear elasticity to semilinear form

(by suppressing problematic higher frequency waves) also leads to stable

solutions.

Some recent results providing global existence of dynamic solutions for

polyconvex energies in presence of small deformations were produced by

Sideris in [230, 231].

2.9 nonlinear constitutive models in elasticity

We have noted in section 2.8 that the intuitive considerations on the relation

between stresses and strains were at the root of the Baker-Ericksen inequality

(2.46), and an additional constraint on the elastic potential Ψ to ensure

realistic solutions (or, mathematically, to ensure the existence of minimising

parameters to the variational problem associated with elasticity).

In this section, our aim is to quantify this relation for elastic, that is,

reversible, material behaviour in the presence of finite deformation. We will

lay out the foundation for a general elastic potential Ψ(F), and then develop

it into the polyconvex version, Ψ(F,H, J) in section 2.11.

Defining the temperature of a thermodynamic system as θ, the Helmholtz

free energy potential A = A(F, θ) is a function of state that can be established

as [138]

A(F, θ) = Ψ(F, θ) − sθ (2.53)

In isothermal conditions, (2.53) becomes A(F) = Ψ(F), and their rates:

Ȧ(F) = Ψ̇(F) (2.54)

Now, in case of a reversible process, the internal dissipation rate µ̇ [109]

equals to zero:

µ̇ = P : Ḟ− Ȧ = P : Ḟ− Ψ̇ = 0 (2.55)
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By applying the chain rule as defined in tensor calculus [39, 148], it follows

from (2.55) that

P : Ḟ− Ψ̇ =

(
P−

∂Ψ(F)

∂F

)
: Ḟ = 0 (2.56)

Finally, from (2.56) the definition for the first Piola-Kirchhoff stress tensor

can be recovered as

P =
∂Ψ(F)

∂F
(2.57)

It is possible to identify two separate contributions from the stress P:

the pressure component Pvol, responsible for any volumetric changes, and

the remaining deviatoric part, Pdev, tracking the shear forces. An analogous

decomposition can be introduced for the elastic potential Ψ = Ψvol +Ψdev,

and the pressure and deviatoric contributions to the first Piola-Kirchhoff

stress tensor P can be obtained from the respective components of Ψ, and

can be completely decoupled from each other:

Pdev =
∂Ψdev
∂F

Pvol =
∂Ψvol
∂F

=
∂Ψvol
∂J

∂J

∂F
= p JF−T (2.58)

In (2.58), p = ∂Ψvol/∂J. The first Piola-Kirchhoff stress tensor P can then

be obtained as the additive composition of the pressure and deviatoric

contributions, P = Pvol +Pdev.

The decoupling operated in (2.58) is essential in the presence of nearly or

totally incompressible behaviour of any material [39, 109, 196].

The pressure p can also be directly expressed in Lagrangian terms as

p = 1/3 J−1P : F.

Suitable forms of the elastic potentials Ψ have been verified to well agree

with realistic applications of both compressible and (nearly) incompressible

finite elasticity (see [42, 67, 171, 244]). These models are applicable to motion

of isotropic and homogeneous materials in an isothermal environment.

We will now introduce three types of well-established hyperelastic elastic

potentials, that have been proven to be truly polyconvex [102, 219, 232]

according to (2.52): the Ogden model, the Mooney-Rivlin model and the neo-

Hookean model. These models were historically introduced for the study
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of rubbers, that, in common with biological tissues, share the property of

allowing a large range (stretches λ > 0.5) of reversible deformation [109, 196].

All three models are based on phenomenological considerations, i.e. they try

to fit polynomial functions on the experimental set of stress-strain curves for

vulcanised rubber of Treloar [261]. In [261], experimental data were collected

in conditions of uniaxial, biaxial and pure shear deformations.

1. The first hyperelastic strain energy model to appear in literature,

amongst those mentioned above, is the formulation developed by

Mooney in [185] and later perfected by Rivlin [216]. The Mooney-

Rivlin model is based on strain-invariance, that is, it expresses the

strain potential as Ψ = Ψ(I1, I2, I3), a function of the strain invariants of

the right Cauchy-Green tensor C = FT F, that can be defined as:
I1 = tr(C) = F : F

I2 = C : C = tr(C2)

I3 = detC

(2.59)

The elastic potential function Ψ can be expressed as a Taylor series

expansion, of the form:

Ψ =
∑
i,j,k

cijk (I1 − 3)
i (I2 − 3)

j (I3 − 3)
k i, j,k = 0, 1, . . .∞ (2.60)

Introducing the incompressibility constraint

J = det F =
√

detC = I3 = 1 (2.61)

equation (2.60) reduces to

Ψ =
∑
i,j

cij
(
Î1 − 3

)i (
Î2 − 3

)j
i, j = 0, 1, . . .∞ (2.62)
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In (2.62), Î1 and Î2 are the first two invariants of Ĉ, the distortional part

of C, defined as

Ĉ = (detC)−
1/3 C = J−

2/3C (2.63)

Î1 = J
−2/3I1 (2.64)

Î2 = J
−4/3I2 (2.65)

If only linear expansions are considered, (2.62) becomes

Ψ
(
Î1, Î2

)
= c00 + c10

(
Î1 − 3

)
+ c01

(
Î2 − 3

)
+

+ c11
(
Î1 − 3

) (
Î2 − 3

)
(2.66)

If we set

c00 = 0 c10 =
µ1
2

c01 = −
µ2
2

c11 = 0

where µ1 and µ2 are constants with dimensional units same as that

of shear modulus, and yield the shear modulus of the material as

µ = µ1 − µ2.

The Mooney-Rivlin elastic potential ΨMR
(
Î1, Î2

)
is then obtained as

ΨMR
(
Î1, Î2

)
=
µ1
2

(
Î1 − 3

)
−
µ2
2

(
Î2 − 3

)
(2.67)

For near incompressibility, a volumetric component can be added to

the isochoric part of ΨMR in (2.67) [39] to yield

ΨMR
(
Î1, Î2, J

)
=
µ1
2

(
Î1 − 3

)
−
µ2
2

(
Î2 − 3

)
+
κ

2
(J− 1)2 (2.68)
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where κ is the material bulk modulus. In this manner, the first Piola-

Kirchhoff stress tensor PMR is given as

PMR = µ1 J
−2/3

[
F−

1

3
(F : F) FT

]
+ µ2 J

−4/3·

·
{
2

3
F−T [(C : C) − 3] −C

(
FT + F

)}
+ p JF−T (2.69)

In (2.69), the pressure value p is

p = κ(J− 1) (2.70)

In their work [244], Steinmann et al. have compared simulation results

to the set of experimental tests carried out by Treloar in [261]: uni-

axial tension, biaxial equivalent tension, and pure shearing. Material

parameters for the simulations were obtained from each of the three

experimental tests by means of fitting the data presented in [261] in

two distinct manners: firstly, data are fit from one type of experiment;

secondly, alternative values for the parameters were obtained by fitting

the data from the other two tests (cross-fitting simulations). Using this

procedure, the accuracy of the various hyperelastic models could be

verified for different loading conditions, other than for a specific load

test.

For the Mooney-Rivlin model, it was found that accuracy was good

for small strains (stretch λ < 1.5), but, for larger ranges of deforma-

tions, only results for biaxial strains were acceptable. In addition, the

simulations based on cross-fitting data are seen in [244] as not being

reliable.

2. The next hyperelastic model of interest is the so-called neo-Hookean

model [261]. It is derived from (2.66) by choosing

c00 = 0 c10 =
µ

2

c01 = 0 c11 = 0
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where µ corresponds to the shear modulus of the material.

The neo-Hookean elastic potential can then be expressed in terms of

the strain invariants of C as

ΨnH (I1) =
µ

2
(I1 − 3) (2.71)

If the material is considered to be nearly incompressible, a volumetric

strain potential U(J) = κ/2 (J− 1)2 can be added to (2.71), as done

previously for the Mooney-Rivlin model:

ΨnH
(
Î1, J

)
=
µ

2

(
Î1 − 3

)
+
κ

2
(J− 1)2 (2.72)

The first Piola-Kirchhoff stress tensor is then

PnH =
∂ΨnH
∂F

= µJ−
2/3

[
F−

1

3
(F : F) FT

]
+ p JF−T (2.73)

In (2.73), we made use of the definition of pressure p found in (2.70).

Clearly, the neo-Hookean model is a simplification of the linearised

Mooney-Rivlin model. Its performances, as reported in [244], do not

accurately fit the results of Treloar [261] beyond a stretch coefficient of

λ = 1.5.

3. The last large strain hyperelastic model to be considered, by virtue of

its proven polyconvexity [219], is the Ogden model, first formulated in

[195]. The model was developed due to the necessity to increase the

accuracy attained by simulations of rubber-like materials, when very

large deformations are involved.

Its formulation is based on a polynomial combination of the principal

stretches λi, i = 1, 2, 3, the square roots of the eigenvalues of the right

Cauchy-Green strain tensor C (or of the left Cauchy-Green tensor b,

as λi, i = 1, 2, 3 are identical for the two tensors, see for instance [262]

or [39]).
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In light of this, the Ogden hyperelastic strain potential function used

to model incompressibility is expressed as:

ΨO(λ1, λ2, λ3) =
N∑
p=1

µp

αp

(
λ
αp
1 + λ

αp
2 + λ

αp
3 − 3

)
p = 1, . . . ,N (2.74)

where αp are constants, and µp have the dimensional unit of shear

moduli. Equation (2.74) is subjected to the constraint

µ =
1

2

N∑
p=1

µpαp with µpαp > 0 (2.75)

In equation (2.75), µ is the shear modulus of the material.

The best fit to Treloar empirical data in [261] was realised for a choice of

N = 3 in (2.74), with the material parameters assuming the following

numerical values:

α1 = 1.3 µ1 = 0.63MPa

α2 = 5 µ2 = 0.0012MPa

α3 = −2 µ3 = −0.01MPa

(2.76)

For a nearly incompressible material, the isochoric component of the

strain energy Ψ̂O given by equation (2.74), is appropriately rewritten

as a function of the principal strains of the distortional strain tensor Ĉ

defined in (2.63):

Ψ̂O(λ̂1, λ̂2, λ̂3) =
3∑
p=1

µp

αp

(
λ̂
αp
1 + λ̂

αp
2 + λ̂

αp
3 − 3

)
p = 1, 2, 3 (2.77)

where the λ̂i are related to the principal strains of C by

λ̂i = J
−1/3λi i = 1, 2, 3 (2.78)
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An expression for the volumetric part of ΨO as a convex function can

be found in [194] and it is reproduced below:

ΨvolO (J) =
κ

β2

(
β ln J+

1

Jβ
− 1

)
(2.79)

In equation (2.79), κ is the bulk modulus and β is an empirically

determined constant. It was found [109] that a set value of β = 9 ac-

counts well for volumetric changes in rubber-like materials as recorded

experimentally, for instance, in [47].

Since the component Ψ̂O of the strain potential energy in (2.77) is a

function of the principal strains, it is convenient to obtain the second

Piola-Kirchhoff stress tensor S first, and then use it for determining P.

The reason for proceeding in this manner is that S shares the same

principal material directionsNi, as eigenvectors, with the right Cauchy-

Green strain tensor C (but not with the left Cauchy-Green tensor b,

the eigenproblem of which yields the principal spatial directions ni).

The distortional part of the stress tensor Ŝ can be spectrally decom-

posed as

Ŝ =

3∑
i=1

ς̂iNi ⊗Ni (2.80)

To find the eigenvalues ς̂i in (2.80) we need to solve the eigenproblem

(
Ŝ− ς̂iI

)
Ni = 0 (2.81)

Now, Ŝ can be found as a derivative of Ψ̂O using a relation similar to

(2.57):

Ŝ = 2
∂Ψ̂O
∂C

(2.82)

By using the chain rule on the RHS of (2.82) we obtain:

∂Ψ̂O
(
λ̂1, λ̂2, λ̂3

)

∂C
=

3∑
i=1

3∑
j=1

∂Ψ̂O

∂λ̂j

a©

∂λ̂j

∂λi
b©

∂λi

∂λ2i
c©

∂λ2i
∂C

d©

(2.83)
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We will now separately analyse the four terms in the RHS of (2.83).

a) Standard derivation of (2.77) yields

∂Ψ̂O

∂λ̂j
=

3∑
p=1

µpλ̂
αp−1
j j = 1, 2, 3 (2.84)

b) In consideration of (2.78), this term can be expanded to

∂λ̂j

∂λi
=
∂
(
J−

1/3λj

)

∂λi
= −

1

3
J−

4/3 ∂J

∂λi
λj + J

−1/3δij i, j = 1, 2, 3

(2.85)

Expansion of the derivative ∂J
∂λi

in (2.85) can be achieved taking

into account (see [39], among others) that

∂J2

∂C
=
J

2
C−1

Being J2 = detC = I3 the third invariant of C, as in (2.59).

Then we have

∂J

∂λi
=
∂J

∂C

∂C

∂λi
=
J

2
C−1

3∑
j=1

∂λ2j

∂λi
Nj ⊗Nj =

= J λi

(
3∑
k=1

1

λ2k
Nk ⊗Nk

)
(Ni ⊗Ni) =

J

λi

i = 1, 2, 3 (2.86)

In expanding (2.86), we made use of the property of orthonormal-

ity of the vectors of principal directions Ni.

Equation (2.86) can be employed to further develop (2.85) into

∂λ̂j

∂λi
= −

1

3
J−

4/3 ∂J

∂λi
λj + J

−1/3δij =

= −
1

3
J−

4/3J
λj

λi
+ J−

1/3δij = J
−1/3

(
δij −

1

3

λj

λi

)

i, j = 1, 2, 3 (2.87)
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Remembering (2.78), expression (2.87) can be put in terms of the

principal distortional strains as

∂λ̂j

∂λi
= J−

1/3

(
δij −

1

3

λ̂j

λ̂i

)
i, j = 1, 2, 3 (2.88)

c) From basic derivation rules, and (2.78), it follows that:

∂λi

∂
(
λ2i
) =

1

2λi
=
J−

1/3

2λ̂i
i = 1, 2, 3 (2.89)

d) The last term on the RHS of (2.83) may be reformulated in a more

suitable manner by observing that a differential increment of C

in terms of principal strains and directions reads

dC = d

(
3∑
i=1

λ2iNi ⊗Ni

)
=

=

3∑
i=1

{
2λidλiNi ⊗Ni + λ

2
i (dNi ⊗Ni +Ni ⊗ dNi)

}
(2.90)

Pre- and post-multiplication of (2.90) by Ni yields

NT
i dCNi =

3∑
j=1

{
2λidλiNi ·Nj ⊗Nj ·Ni+

+λ2i
(
Ni · dNj ⊗Nj ·Ni +Ni ·Nj ⊗ dNj ·Ni

)}
=

= 2λidλi i = 1, 2, 3 (2.91)

In the RHS of (2.91), the second and third addenda are reduced

to 0 because vectors Ni are normalised, and hence an increment

dNi can happen only in the direction orthogonal to Ni, giving

Ni · dNi = 0.
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We can now exploit a property of the trace of tensors (see [39]) to

obtain

NT
i dCNi = dC : Ni ⊗Ni =

=
∂C

∂λi
dλi : Ni ⊗Ni = 2λidλi i = 1, 2, 3 (2.92)

And, noting that

∂C

∂λi
:
∂λi
∂C

= 1 i = 1, 2, 3

we have:
∂λi
∂C

=
1

2λi
Ni ⊗Ni i = 1, 2, 3 (2.93)

Finally, term d© in (2.83) can be expressed as

∂λ2i
∂C

=
∂λ2i
∂λi

∂λi
∂C

= Ni ⊗Ni i = 1, 2, 3 (2.94)

Now, with the help of equations (2.84), (2.85), (2.89) and (2.94), we are

able to expand the RHS of (2.83) in order to obtain ŜO in (2.82):

ŜO = 2
∂Ψ̂O
∂C

= 2

3∑
i=1

3∑
j=1




a©

3∑
p=1

µpλ̂
αp−1
j







b©

J−
1/3

(
δji −

1

3

λ̂j

λ̂i

)






c©

J−
1/3

2λ̂i







d©

Ni ⊗Ni


 (2.95)

Algebraic manipulation of expression (2.95) leads to

ŜO = J−
2/3

3∑
i=1

3∑
p=1

µp

λ̂2i


λ̂αpi −

1

3

3∑
j=1

λ̂
αp
j


Ni ⊗Ni (2.96)



52 governing equations

Comparing (2.96) with the spectral decomposition of the deviatoric

second Piola-Kirchhoff stress tensor Ŝ in (2.80), we can thus specify

the eigenvalues ς̂i|O of ŜO as

ς̂i|O =
J−

2/3

λ̂2i

3∑
p=1

µp


λ̂αpi −

1

3

3∑
j=1

λ̂
αp
j


 i = 1, 2, 3 (2.97)

Analogously to the procedure discussed above for the isochoric tensor

ŜO, the volumetric component SvolO can be derived from ΨvolO in (2.79)

in the following manner

SvolO = 2
∂ΨvolO (J)

∂C
= 2

dΨvolO (J)

dJ

∂J

∂C
=

= 2

[
κ

β2

(
β

J
−βJ−(β+1)

)][
JC−1

2

]
=
κ

β

(
1− J−β

)
C−1 (2.98)

Having obtained both the isochoric (equation (2.96)) and volumetric

(equation (2.98)) contributions to SO, still the need remains to map

the current stress distribution onto the material configuration. This

task could be performed by the first Piola-Kirchhoff stress tensor PO
[39, 109, 262], which for the Ogden model can be obtained by the

transformation below

PO = F
(
SvolO + ŜO

)
= F

[
κ

β

(
1− J−β

)
C−1

]
+

+ F


J−2/3

3∑
i=1

3∑
p=1

µp

λ̂2i


λ̂αpi −

1

3

3∑
j=1

λ̂
αp
j


Ni ⊗Ni


 (2.99)

As a concluding note to this section, we observe that the isochoric contribu-

tions to the strain potential energies for the Mooney-Rivlin and neo-Hookean

models can be readily expressed in terms of principal strains. In fact, they

can be seen as special cases of the Ogden model.
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To demonstrate this, let us consider the relations between invariants and

principal stretches of C in the incompressible regime:
I1 = λ

2
1 + λ

2
2 + λ

2
3

I2 = λ
2
1λ
2
2 + λ

2
1λ
2
3 + λ

2
2λ
2
3

I3 = J
2 = λ21λ

2
2λ
2
3 = 1

(2.100)

• For the Mooney-Rivlin model, it suffices to set the parameters in (2.67)

to

c1 =
µ1
2

c2 = −
µ1
2

to obtain the following potential function from (2.67):

ΨMR =

2∑
p=1

µp

αp

(
λ
αp
1 + λ

αp
2 + λ

αp
3 − 3

)
(2.101)

Equation (2.101) corresponds to (2.74) with parameters

N = 2 α1 = 2 α2 = −2

• For the neo-Hookean model, the Ogden model (2.74) is obtained in a

straightforward manner by substituting in (2.71) parameters

N = 1 α1 = 2

Albeit it has been shown that it is fairly easy to transform from an

invariant-based to a principal stretches-based hyperelastic model, it is not

possible to operate in the opposite sense, converting from the Ogden model

(2.74) to an invariant-based form of the type (2.60).

As a consequence, for an elastic finite response of the Ogden type, there

will always be the additional cost of having to solve the eigenproblem

associated to the current deformation state (in order to extract the principal

stretches and directions of C).
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Algorithm 1 summarises in steps the whole procedure to obtain PO.

1. Assume Ogden model material parameters in (2.74) as

β = 9 N = 3

α1 = 1.3 µ1 = 0.63MPa

α2 = 5 µ2 = 0.0012MPa

α3 = −2 µ3 = −0.01MPa

2. Assume known the bulk modulus κ of the material

3. Assume the solving algorithm provides the deformation

gradient at current time, F

4. Evaluate the right Cauchy-Green strain tensor C = FTF, and

Jacobian J = det F

5. Solve the eigenvalue problem (C− µiI)Ni = 0 for i = 1, 2, 3

to obtain principal directions Ni

6. Get principal strains of C as λi =
√
µi and

principal stretches of Ĉ as λ̂i = J−
1/3λi, for i = 1, 2, 3

7. Compute the 2nd Piola-Kirchhoff stress as SO = ŜO +SvolO :

a) ŜO through (2.96)

b) SvolO through (2.98)

8. Derive PO = FSO, (2.99).

Algorithm 1 : Ogden hyperelastic model

2.10 treatment of inelastic deformations

A complete description of nonlinear deformation should include treatment

of inelastic effects, that, in the scope of this thesis, reduce to non-recoverable

plastic strains. Plastic deformation on a body B takes place without inducing
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changes to volume; computationally, this means that an incompressibility

constraint has to be imposed during the process. There are, however, excep-

tions to this rule: yielding in porous metals, for instance, is compressible

when studied at the macroscopic level [69]. Nevertheless, the elasto-plastic

deformation process, as a whole, has to be treated as nearly-incompressible.

The elastic strain is in fact generally compressible, but incompressible plastic

strain makes up the larger part of the deformation, once the yielding point

is reached [39].

The deformation gradient F keeps track of the total strain, and can be

multiplicatively decomposed into two components, Fe, elastic, and Fp, plastic,

so that

F = FeFp (2.102)

Even though the internal stress state depends uniquely on the Fe in (2.102),

it is not possible to compute the two components separately by virtually

unloading the structure at each step, because local neighbourhoods would

not be necessarily geometrically compatible with each other, once the load

is removed [236]. The Cauchy-Green right (C) and left (b) strain tensors

are the preferred measures of representing deformations in the constitutive

equations, given their symmetry, and hence their independence from rigid

body rotations. In turn, C and b can also be split into an elastic and a plastic

contribution, derived from the respective components of F:

Ce = F
T
eFe ; Cp = F

T
pFp ;

be = FeF
T
e ; bp = FpF

T
p .

(2.103)

Among the strain measures in (2.103), be and Cp satisfy the condition of

being invariant not only with respect to global rotations, but also to local

ones that were applied after elastic unloading of the local state [39]. Thus,

the elastic potential energy, from which we will later derive the stress state,

shall be expressed as Ψ = Ψ(X,be), while Cp will be treated as the main

indicator to detect and follow plastic deformation. Cp and be can be seen
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as being a function of each other, as can be verified by operating on (2.102)

and (2.103) in the following manner:

be = FeF
T
e = FF−1p F

−T
p F

T = FC−1
p F

T (2.104)

Given the non-conservative nature of plastic strain Cp, be can be exactly

evaluated with (2.104) only if all previous states of deformation are known.

This is obtained by integrating the rate of plastic deformation lp, which is the

part of the velocity gradient tensor l = ∇0v (F(t), Cp(t)) that is associated

with plastic effects [39]:

lp = −
1

2

dbe

dt

∣∣∣∣
F=const

b−1e (2.105)

In order to derive the inelastic constitutive relation, the tensor lp has to

be associated with the current stress distribution over the body. Assigning

a relation of the type be = be (σ) establishes a flow rule for the material.

To this end, it is useful to define the yield criterion as a function of σ that

monitors when the yield limit of stress is reached, and when plastic strain

occurs. Among the many yield criteria developed in the past [165], we will

hereby resort to the one formulated by von Mises [175] as

f
(
σ ′, ε̄p

)
= J (σeq − σ̄y (ε̄p)) (2.106)

The yield condition prescribes that if

f
(
σ ′, ε̄p

)
= 0 (2.107)

then it follows that the structure is at the point of yield, and plastic

strain ε̄p is needed to hold (2.107) true. This is because, as a fundamental

hypothesis for the theory of plastic deformation, f (σ ′, ε̄p) in (2.107) has to

be non-positive [175].

In (2.106), the (local) state of internal stress being tested for yield is scalarly

represented as an equivalent deviatoric stress σeq,

σeq =

√
3

2
(σ : σ) (2.108)
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The yield stress σ̄y in (2.106) is in general a function of the equivalent plastic

strain ε̄p, and assumes the form

σ̄y = σ̄
0
y + h (ε̄p) (2.109)

In (2.109), σ̄0y is the initial yield stress, and h (ε̄p) is an hardening function

that governs the additional quantity of stress that is required to further

increase the plastic strain, once the yield point is reached.

The yield criterion (2.107) can then be expanded, using (2.106) and (2.108),

as

f
(
σ ′, ε̄p

)
=

√
3

2
(σ : σ) − σ̄0y + h (ε̄p) = 0 (2.110)

It can be noted from (2.110), that f (σ ′, ε̄p), other than being independent

of the pressure component of stress, is also a symmetric function, reflecting

independence from the selected coordinates system.

Given that, in principal stresses {σ1, σ2, σ3}, the von Mises equivalent

stress σeq becomes

σeq =

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2

2
(2.111)

then, in light of (2.111), equation (2.110) clearly represents a cylinder in

the {σ1, σ2, σ3} space. If a section is taken at σ3 = 0, the yield surface would

assume a shape similar to that illustrated in fig. 2.4.

σ1

σ2

ε2

σ2

ν direction of
plastic propagation

load
pointradial return:

2Jµ∆γ

σ̄y

−σ̄y

−σ̄y

σ̄y

initial elastic
regime

yield surface
f (σ ′, ε̄p) = 0,

ε̄p 6= 0 at time t

initial
yield surface

f (σ ′, ε̄p) = 0, ε̄p = 0

tangent direction
to yield surface

initial
yield stress

σ̄0
y

yield stress
σ̄y at time t

hardening
saturation

elastic
reversible

work

dissipation due
to plastic deformation

Figure 2.4: von Mises-defined yield surface in plain stress (σ3 = 0) and in presence
of isotropic hardening; radial return mapping procedure also shown.
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Working in principal directions has also the advantage of facilitating the

integration of the flow rule (2.105). Current elastic principal directions ni
are shared by the left Cauchy-Green strain tensor be and the Cauchy stress

tensor σ:

be =

3∑
i=1

λ2e,i ni ⊗ni (2.112)

σ =

3∑
i=1

σi ni ⊗ni (2.113)

Principal stresses σi in (2.113) are derived from the adopted hyperelastic

potential function Ψ:

σi =
1

J

∂Ψ

∂ ln λe,i
=
λe,i

J

∂Ψ

∂λe,i
i = 1, 2, 3 (2.114)

Specifically, for the three types of hyperelastic material models considered

in the previous section (Mooney-Rivlin, neo-Hookean, Ogden), (2.114) yields:

σMR,i =
1
J

(
µ1 λ

2
e,i + µ2 λ

−2
e,i

)
= µ1 J

−1/3 λ̂2e,i + µ2 J
−5/3 λ̂−2e,i

σnH,i =
µλ2e,i
J = µ J−

1/3 λ̂2e,i

σO,i =
1

J

(
µ1λ

α1
e,i + µ2λ

α2
e,i + µ3λ

α3
e,i

)
=

=µ1 J
α1/3−1λ̂

α1
e,i + µ2 J

α2/3−1 λ̂
α2
e,i + µ3 J

α3/3−1 λ̂
α3
e,i i = 1, 2, 3

(2.115)

where, as before, λ̂e,i are the deviatoric principal stretches, related to λe,i
by (2.78).
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A general formulation for a nearly incompressible hyperelastic material

in principal directions ΨM = ΨvolM + Ψ̂M, useful to simulate the behaviour of

metals undergoing plasticity, can be found in [39]:
ΨvolM (J) = 1

2κ (ln J)
2

Ψ̂M
(
λ̂e,1, λ̂e,2, λ̂e,3

)
= µ

[(
ln λ̂e,1

)2
+
(
ln λ̂e,2

)2
+
(
ln λ̂e,3

)2]
=

=µ
[
(ln λe,1)

2 + (ln λe,2)
2 + (ln λe,3)

2
]
−
1

3
µ (ln J)2

(2.116)

The principal components of the deviatoric Cauchy stress tensors for

the three hyper elastic formulations considered, are easily obtained by

subtracting the hydrostatic pressure component, in (2.70), from (2.115):
σ ′MR,i = σMR,i − p = µ1 J

−1/3 λ̂2e,i + µ2 J
−5/3 λ̂−2e,i − κ (J− 1)

σ ′nH,i = µ J
−1/3 λ̂2e,i − κ (J− 1) i = 1, 2, 3

σ ′O,i = µ1 J
α1/3−1λ̂

α1
e,i + µ2 J

α2/3−1 λ̂
α2
e,i + µ3 J

α3/3−1 λ̂
α3
e,i − κ (J− 1)

(2.117)

For the material in (2.116), the deviatoric Cauchy stress tensor can be

expressed in its principal components as

σ ′M,i = 2
µ

J
ln λe,i −

2

3
µ

ln J
J

i = 1, 2, 3 (2.118)

In deriving (2.118), it is worth recalling that the bulk modulus κ can be

written in terms of Lamé constants as

κ = λ+
2

3
µ (2.119)

Integration of (2.104) expressed in principal directions with (2.112), can

then provide with the flow rule (see [39]):

lp =
˙̄εp
J

3∑
i=1

∂f (σii, ε̄p)
∂σii

ni ⊗ni (2.120)

where ˙̄εp is the plastic multiplier, which can be interpreted as a Lagrange

multiplier in a maximisation problem involving the plastic dissipation rate

in the functional, Jσ : lp (see [236]). It is this very postulate of maximum plastic
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dissipation that determines the proportionality of lp to the gradient of the

yield surface f (σii, ε̄p) in (2.120).

In other words, when represented in the principal stresses spaces, the

increment of plastic strain will always lie in the direction ν normal to the

tangent of the yield surface f at the load point.

Then, using this notion of plastic deformation normality in conjunction

with (2.110), we obtain ν as the derivative of the yield function in (2.120):

νi =
∂f (σii, ε̄p)
∂σii

=
σ ′ii

J
√
2
3 σ
′ : σ ′

i = 1, 2, 3 (2.121)

Resorting to (2.121) we obtain the principal components of the rate of

plastic deformation lp as

lp,i =
˙̄εp
J
νi i = 1, 2, 3 (2.122)

The theory described so far will form the basis of the numerical procedure

employed in the next chapter to extract the plastic strain ε̄p, and update the

material stress P.

The overall procedure discussed in this section is presented schematically

in algorithm 2, where for ease of notation the deviatoric Kirchhoff stress tensor

τ ′ is used in the computations.

2.11 conjugate stresses and the hessian operator

We have seen in section 2.8 that the polyconvexity condition in (2.52) requires

the elastic potential function to be dependent of three strain measures,

Ψ = Ψ (F,H, J). Work conjugate stresses ΣF, ΣH and ΣJ can be associated to

strains F,H and J, so that their generalised products return energy quantities.

Taking the total differential of Ψ (F,H, J) yields

DΨ (F,H, J) =
∂Ψ

∂F
: dF+

∂Ψ

∂H
: dH+

∂Ψ

∂J
dJ (2.123)



2.11 conjugate stresses and the hessian operator 61

From (2.123), we can define the work conjugate stresses as [32]

ΣF =
∂Ψ

∂F
; ΣH =

∂Ψ

∂H
; ΣJ =

∂Ψ

∂J
(2.124)

The main task now is to derive from the polyconvex energy Ψ (F,H, J) a

practical expression for the first Piola-Kirchhoff stress tensor P = P (F,H, J)

in polyconvex variables. To this end, we may want to consider the expression

for DΨ (F), and compare it with (2.123) in order to formulate a polyconvex

description for DΨ:

DΨ (F) = P : F (2.125)

with P in (2.125) given by (2.57). Then, by comparison of (2.123) with

(2.125), and with the help of the properties of the tensor cross product (see,

for instance, appendix in [31]) we may find

DΨ (F) = P : F = DΨ (F, H, J) = ΣF : dF+ΣH : dH+ ΣJ dJ (2.126)

using the definitions in (2.124). With respect to an arbitrary small dis-

placement δu, the linearised deformation gradient DF[δu] is known [39] to

be

DF[δu] =
∂δu(X)

∂X
= ∇0δu (2.127)

Using the last property listed in table 2.2 to express H as a function of F,

using the above (2.127), and the product rule of derivation, we can define

DH as

DH[δu] = D

(
1

2
F××× F

)
[δu] =

1

2
F×××DF+ 1

2
DF××× F = F×××∇0δu (2.128)

Similarly to (2.128), and, in addition, expressing J as a function of F and

H (thanks to the 12th property in table 2.2), we are also able to expand DJ as

DJ[δu] = D

(
1

3
H : F

)
[δu] =

1

3
DH[δu] : F+

1

3
H : DF[δu] = H : ∇0δu

(2.129)
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In light of eqs. (2.127) to (2.129), we can further develop the RHS in (2.126):

DΨ (F, H, J) = ΣF : ∇0δu+ (ΣH××× F) : ∇0δu+ ΣJH : ∇0δu =

= (ΣF + ΣH××× F+ ΣJH) : ∇0δu (2.130)

Thus, from (2.130) it can be assumed that in the case a polyconvex elastic

potential function, an equivalent P (F,H, J) to the first Piola-Kirchhoff stress

tensor can be established by comparison with (2.125) as

P (F,H, J) = ΣF +ΣH××× F+ ΣJH (2.131)

Equation (2.131) can be readily applied to the three hyperelastic constitu-

tive models discussed earlier:

• Mooney-Rivlin:

Σ
(MR)
F = µ1 J

−2/3F ; Σ
(MR)
H = −µ2 J

−4/3H ; (2.132)

Σ
(MR)
J = −

µ1
3
J−

5/3 (F : F) +
2

3
µ2 J

−7/3 (H : H) + κ (J− 1)

P(MR) = µ1 J
−2/3F− µ2 J

−4/3H××× F− µ1
3
J−

5/3 (F : F)+

+
2

3
µ2 J

−7/3 (H : H) + κ (J− 1)H

• neo-Hookean:

Σ
(nH)
F = µJ−

2/3F ; Σ
(nH)
H = 0 ; (2.133)

Σ
(nH)
J = −

µ

3
J−

5/3 (F : F) + κ (J− 1)

P(nH) = µ J−
2/3F+

[
κ (J− 1) −

µ

3
J−

5/3 (F : F)
]
H

The strain energy of an Ogden material, recalling (2.74), depends on the

principal stretches λi, and not on the invariants of C.
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1. Plastic state from previous time step (n):
(
Cnp
)−1, ε̄np

Known from solver at current time step (n+ 1): Fn+1, Jn+1

2. Compute pressure: pn+1 = κ ln Jn+1
Jn+1

3. Guess trial elastic left Cauchy-Green strain tensor:

b
(trial)
e = Fn+1

(
Cnp
)−1 (

Fn+1
)T

4. Obtain λ(trial)
e|i

, n(trial)
i from spectral decomposition of b(trial)

e :

b
(trial)
e =

∑3
i=1

(
λ

(trial)
e|i

)2
n

(trial)
i ⊗n(trial)

i

5. Principal components of the trial deviatoric Kirchhoff stress

tensor: τ ′(trial)
ii = 2µ

(
ln λ(trial)

e|i
− ln Jn+1

3

)
i = 1, 2, 3;

‖τ ′(trial)‖ =
√∑d

i=1

(
τ
′(trial)
ii

)2
d = 2, 3

6. Define yield surface function f = f(τ ′(trial), ε̄np) and verify

presence of yielding:

IF f(τ ′(trial), ε̄np) > 0 THEN

∆γ =
f(τ ′(trial),ε̄np )
3µ+H ; νn+1i =

τ
′(trial)
ii√

2
3‖τ ′(trial)‖

ELSE: ∆γ = 0; νn+1i = νni i = 1, 2, 3

7. Update components of deviatoric Kirchhoff stress tensor:

τ ′n+1ii = τ
′(trial)
ii − 2µ∆γνn+1i i = 1, 2, 3

8. Update elastic stretches and directions i = 1, 2, 3:

λn+1
e|i

= exp
(

ln λ(trial)
e|i

−∆γνn+1i

)
nn+1i = n

(trial)
i

9. Update elastic left Cauchy-Green strain tensor:

bn+1e =
∑3
i=1

(
λn+1
e|i

)2
nn+1i ⊗nn+1i

10. Update plastic deformation data:

ε̄n+1p = ε̄np +∆γ
(
Cn+1p

)−1
=
(
Fn+1

)−1
bn+1e

(
Fn+1

)−T

11. Obtain Cauchy and first Piola-Kirchhoff stress tensors:

σn+1ii =
τ ′n+1ii

Jn+1
+ pn+1 ⇒ σn+1 =

∑3
i=1 σ

n+1
ii nn+1i ⊗nn+1i

Pn+1 = Jn+1σn+1
(
Fn+1

)−T

Algorithm 2 : extension of the material model to plastic deformation
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Therefore, while determining P(O) from (2.131) for the Ogden model, it

should be noted that tensors F and H can be written in terms of their eigen-

values and eigenvectors, where, in particular, (λ1, λ2, λ3) are the eigenvalues

of F and (λ1λ2, λ1λ3, λ2λ3) are the eigenvalues of H ‡:

F =

3∑
i=1

λini ⊗Ni (2.134a)

H =

3∑
k=1

λiλjnk ⊗Nk i, j,k = 1, 2, 3 , i 6= j 6= k (2.134b)

The polyconvex version of the hyperelastic strain function can then be

written in terms of the principal stretches as

Ψ (F,H, J) = Ψ (λ1, λ2, λ3; λ1λ2, λ1λ3, λ2λ3; J) (2.135)

In addition, for the purposes of deriving the Ogden model stress tensor

P(O), it will be worth to recall the following result, valid for a tensor A with

material Ni and spatial ni principal directions, i = 1, 2, 3:

dλi|A
dA

= ni ⊗Ni i = 1, 2, 3 (2.136)

‡ In fact, this can be seen by expanding H(F):

H =
1

2
F××× F = 1

2

(
3∑
i=1

λini ⊗Ni
)
×××


3∑
j=1

λjnj ⊗Nj


 =

=
1

2

3∑
i,j=1

λiλj
(
ni ×nj

)
⊗
(
Ni ×Nj

)
=

3∑
k=1

λiλjnk ⊗Nk

with i 6= j 6= k. This computation benefited from the property of the tensor product between
vectors [33], below:

(a⊗b)××× (u⊗ v) = (a×u)⊗ (b× v)
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In the case of F, eq. (2.136) results from considering the trace of the

right Cauchy-Green deformation tensor C expressed in terms of principal

stretches:

trC = F : F
a©

=

3∑
i=1

λ2i

b©

(2.137)

The outcome in (2.136) is obtained by linearising separately terms a© and

b© in (2.137) and subsequently by comparing the results:

D (F : F) [δu] = 2F : DF [δu] = 2F : ∇0δu =

= 2

(
3∑
i=1

λini ⊗Ni

)
: ∇0δu (2.138a)

D

(
3∑
i=1

λ2i

)
[δu] = 2

3∑
i=1

λiDλi [δu] = 2

(
3∑
i=1

λi
∂λi
∂F

)
: ∇0δu (2.138b)

Comparing the RHS of (2.138a) and (2.138b) verifies (2.136). Moreover, the

same procedure employed in (2.137) and (2.138) can be applied to H : H, so

to prove that (2.136) is also valid for H.

At this point, we may proceed with the linearisation DΨ(O) (λF, λH, J) in

order to extract the stress tensor P(O) for this particular energy functional,

as already seen for other forms in (2.125) and (2.130):

DΨ(O) (λF, λH, J) [δu] =

=

3∑
i=1

∂Ψ(O)

∂λFi
DλFi [δu] +

3∑
i=1

∂Ψ(O)

∂λHi
DλHi [δu] +

∂Ψ(O)

∂J
DJ [δu] (2.139)

In (2.139), DλFi [δu] and DλHi [δu] can be expressed as

DλFi [δu] =
∂λFi
∂F

: DF [δu] = (ni ⊗Ni) : ∇0δu (2.140a)

DλHi [δu] =
∂λHi
∂H

: DH [δu] = [(ni ⊗Ni)××× F] : ∇0δu (2.140b)

DJ [δu] in (2.139) is found in (2.129).
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Hence, considering (2.131), the stress conjugates in the case of the poly-

convex Ogden material strain energy can be defined as

Σ
(O)
F =

3∑
i=1

∂ΨO
∂λFi

(ni ⊗Ni) (2.141a)

Σ
(O)
H =

3∑
i=1

∂ΨO
∂λHi

(ni ⊗Ni) (2.141b)

Σ
(O)
J =

∂ΨO
∂J

(2.141c)

The Ogden strain energy (2.74) Ψ(O) (λFi, J) that was considered in sec-

tion 2.9 lacks any dependence from λHi. This further simplifies things, and

thanks to (2.135) and to (2.136), we are now in possess of all elements needed

to derive the conjugate stresses (2.141) for an Ogden material:

• Ogden:

Σ
(O)
F =

∂ΨO (F,H, J)
∂F

=

3∑
i=1

∂ΨO
∂λF|i

∂λF|i
∂F

= (2.142)

=J−
2
3

[(
µ1λ

α1−1
1 + µ2λ

α2−1
1 + µ3λ

α3−1
1

)
(n1 ⊗N1)+

+
(
µ1λ

α1−1
2 + µ2λ

α2−1
2 + µ3λ

α3−1
2

)
(n2 ⊗N2)+

+
(
µ1λ

α1−1
3 + µ2λ

α2−1
3 + µ3λ

α3−1
3

)
(n3 ⊗N3)

]

Σ
(O)
H =

∂ΨO (F,H, J)
∂H

= 0

Σ
(O)
J =

∂ΨO
∂J

=

=−

3∑
p=1

µp

3

(
λ
αp
1 + λ

αp
2 + λ

αp
3

)
J−(

αp
3 +1) +

κ

β J

(
1−

1

Jβ

)

P(O) = Σ
(O)
F +Σ

(O)
H ××× F+ Σ

(O)
J H

It is known from RA (see [148], or [3]) and, in more detail, from the topic

of convex optimisation (see [43]), that a multivariate, differentiable convex
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function f(xi), i = 1, . . . ,n possesses a positive semi-definite Hessian Hf,

defined as the matrix of the second derivatives of f:

Hf =




fx1x1 fx1x2 . . . fx1xn

fx2x1
. . . fx2xn

... . . . ...

fxnx1 · · · fxnxn−1 fxnxn




(2.143)

In the context of nonlinear elastostatics, the Hessian operator in (2.143)

applies to the elastic strain potential Ψ as HΨ, and it is used to evaluate the

tangent elasticity operator [31, 32].

Each one of the three hyperelastic models presented so far can all be

made strictly polyconvex, if the coefficients that appear in the expressions

for the strain potentials (2.68), (2.72) and (2.77) + (2.79) are chosen so that

they satisfy the convexity condition (2.47) in a strict sense. In this case, being

positive definite, the Hessian HΨ will have all real and positive eigenvalues

λi [148], and its determinant, as a consequence, can never be equal to 0:

detHΨ =
∏
i

λi > 0 i = 1, . . . ,n (2.144)

By virtue of equation (2.144), the Hessian HΨ is evidently a non-singular

and thus invertible matrix. In turn, this allows the same properties to be

enjoyed by the tangent elasticity operator [39]. A Newton-Raphson numerical

procedure can then be safely employed to search for an equilibrium solution.

However, as stated in section 2.7, guarantee of global existence and unique-

ness of solutions for polyconvex strain energy potentials cannot be extended

from elastostatics to elastodynamics problems, given that a rigorous argu-

ment supporting that claim has yet to be advanced.

On the other hand, empirical evidence of stable and realistic solutions to

nonlinear elastodynamic problems by use of polyconvex hyperelastic strain

energies leads to speculate, that it is useful to extend the polyconvexity

prerequisite to the dynamic regime. Further examples corroborating the

point just made will be advanced in the remainder of this work.
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2.12 geometric conservation laws for polyconvex variables

Additional conservation laws – other than the ones, involving kinetic quan-

tities, presented in section 2.3 to section 2.6 – can be formulated for the

geometric arguments of a polyconvex potential function as defined in (2.52),

namely, the deformation gradient F, its cofactors matrix H and its determi-

nant, the Jacobian J.

Conservation properties for F, H and J unveil no physical insight that can

be intuitively understood, as was the case for the conservation of mass, or

that of energy. They mainly exploit symmetry properties of the mathematical

representation of solid continua [62, 191, 198–202].

2.12.1 Conservation of deformation gradient F

A local expression for the conservation law of the deformation gradient

tensor F can be derived directly from the definition of F (2.3), that, in terms

of current position x reads:

F (X, t) =
∂x (X, t)
∂X

(2.145)

Given the total differential of x

dx (X, t) =
∂x

∂X
dX+

∂x

∂t
dt (2.146)

Considering x (X, t) as smoothly differentiable both in space and time,

(2.146) represents a closed and exact differential form: that is, respectively,

dx = 0 (closure), and there exists a primitive function U such that
∫xb
xa
dx =

Ub −Ua (exactness).

Under these conditions, second derivatives of x with respect to both X

and t do not depend from the sequential order of variables with which the

derivation is made.
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We can then write:

∂

∂t

(
∂x

∂X

)
=
∂F

∂t
=

=
∂

∂X

(
∂x

∂t

)
=
∂v
∂X

=
1

ρ
∇0p = ∇0 ·

(
1

ρ
p⊗ I

)
(2.147)

The local, differential formula for the conservation of F can be extrapolated

from (2.147) as
∂F

∂t
−∇0 ·

(
1

ρ
p⊗ I

)
= 0 (2.148)

By using the divergence theorem, we can obtain the corresponding integral

expression for (2.148), as

∂

∂t

∫
V
FdV =

∫
∂V

1

ρ
p⊗NdA (2.149)

To ensure that the deformation gradient F obtained through (2.149) would

yield a continuous and single-valued displacement field (x (t) − x (t0)), with

time instants t > t0, the following compatibility condition should be im-

posed [138, 165, 255] on F:

∇0 × F = 0 (2.150)

It is easy to recognise in condition (2.150) a basic property of tensor

calculus, namely, that the curl of the gradient of a vector (and F is the

gradient of x, F = ∇0x) be null [108]. In addition, (2.150) is automatically

verified in the displacement-based formulation, where the deformation

gradient is computed from the position x by definition F = ∇0x. Given that

we employ the hyperbolic first order mixed framework, (2.150) has to be

identified with an involution of the hyperbolic system; once reached the

discretisation stage of the analysis, there is the need to enforce it at each

time step to avoid spurious deformation modes [143].

A more in-depth survey of involutions will follow, towards the end of this

chapter.
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2.12.2 Conservation of the cofactors matrix H of F

We defined in (2.6) the matrix of cofactors, H = cof(F).

We start this section by noting that an alternative expression for H can

be easily obtained by using the last property of the tensorial cross product

amongst those listed in table 2.2:

H =
F××× F
2

(2.151)

In [33] it has been proven that from (2.151) descends

H =
∇0 × (x××× F)

2
(2.152)

By expressing the matrix of cofactors H as in (2.152), we may observe

that the antisymmetry of the curl operator, combined with the symmetry of

second derivatives (F is already F = ∇0x) [33] leads to

∇0 ·H = 0 (2.153)

Equation (2.153) constitutes a second involution condition that the mixed

system of conservation laws has to satisfy.

Using the commutative property of the tensorial cross product (fourth

row in table 2.2), the temporal derivative of (2.151) yields:

∂H

∂t
=
1

2ρ
(∇0p××× F+ F×××∇0p) =

(
F××× ∇0p

ρ

)
(2.154)

In order to obtain the global form of the conservation law, integrating

(2.154) over the initial volume V and applying the divergence theorem gives

∂

∂t

∫
V
HdV =

∫
V
F××× ∇0p

ρ
dV = (2.155)

=

∫
∂V
F××× p

ρ
⊗NdA−

���
���

���
��∫

V

p

ρ
××× (∇0 × F) dV =

∂

∂t

∫
V
HdV =

∫
∂V
F××× p

ρ
⊗ dA
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In (2.155), a term has been eliminated by virtue of (2.150), and integration

by parts was used.

Condition (2.150) permits an alternative formulation of the local conserva-

tion law for H (2.154), as [33]

∂H

∂t
−∇0 ×

(
p

ρ
××× F

)
= 0 (2.156)

2.12.3 Conservation of the Jacobian J of F

The observation that the Jacobian, as defined in (2.4), is a measure of the

volumetric dilatation, consents to derive a conservation law for J. Its integral

version may be formulated by considering the Reynold’s transport theorem

[173, 213], useful to assess the rate of change of a test volume v in the

Eulerian framework:
∂

∂t

∫
v
dv =

∫
∂v

v ·nda (2.157)

where v is the velocity of matter inside v, as this evolves. With the help

of interpretations, made in (2.8) and (2.5), of H and J in terms of area and

volume change, (2.157) can be expressed in Lagrangian frame as the global

form of a conservation law for J:

∂

∂t

∫
V
J dV =

∫
∂V

p

ρ
·HNdA (2.158)

Alternatively, using the following identity involving vectors a, b and

tensor S, found in [39]:

a ·Sb = S : (a⊗b) (2.159)

we may express (2.158) as

∂

∂t

∫
V
J dV =

∫
∂V
H :

(
p

ρ
⊗N

)
dA (2.160)

A local form analogous to the integral (2.158) can be derived with the

help of the divergence theorem:

∂J

∂t
−∇0 ·

(
HT
p

ρ

)
= 0 (2.161)
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2.13 the complete first order mixed system of conservation

laws

It is customary to solve dynamic problems in nonlinear solid mechanics for

displacements u, by creating a system of equations combining the linear

momentum conservation law (2.23), with a kinematic equation connecting

displacements and velocities v = p/ρ, of the type (2.1).

The first Piola-Kirchhoff stress P that appears in (2.23) has to be obtained

by applying the material gradient operator to the spatial vector of positions

x, P = P (∇0x,X). The deformation gradient F, therefore, is obtained directly

from (2.3) as per its definition.

In a Lagrangian framework, the imposition of the conservation of mass

(2.17) is not strictly necessary, as the density of the material, ρ, is always

implied to be the initial one, and the effects of volumetric deformation are

tracked by the updating of J = det F. Imposition of initial and BCs complete

the problem.

Proceeding this way, involutions (2.150) and (2.153) are automatically sat-

isfied, as the relation between positions (x) and deformations (F) is strictly

enforced in the equation of motion [262]. The same is true for the conserva-

tion of angular momentum.

However, the equation of motion that has to be solved in this manner is

a second order PDE. On the numerical side, this means that there may be

drawbacks in terms of accuracy and stability of the approximated solution

of the discretised equation.

To bypass these numerical problems, in the course of this chapter we

laid the foundation of a different representation of the dynamic problem,

made through a mixed system of first order PDEs, where the unknowns are

the strain measures F, H and J that define a polyconvex material, and the

linear momentum p. As mentioned in section 2.7, polyconvexity ensures

the existence of solutions for the nonlinear problem [62]. The mixed system

of first order PDEs can be proven to be hyperbolic, and hence numerical

dissipation techniques prevalent in CFD become available, ensuring stability

and enhanced order of accuracy to the numerical solution. Displacements
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u are not unknown variables of the system anymore, and thus can be

computed on the side of main calculations, by integrating p over the length

of the time step.

As a cost for the adoption of the mixed system as the governing equations

of the problem, we may cite the loss of a direct kinematic relation between

deformations and displacements, which was instead straightforward in the

case of the displacement-based method. Consequently, the conservation

of angular momentum is not being directly fulfilled, as it requires the

employment of x as an independent variable, and has thus to be enforced

through a numerical algorithm.

The first order mixed system of PDEs governing elastodynamics analyses

can be assembled together from the relevant local conservation laws as

defined in previous sections, (2.23), (2.148), (2.154) and (2.161):

∂p

∂t
−∇0 ·P = ρbF (2.162a)

∂F

∂t
−∇0 ·

(
1

ρ
p⊗ I

)
= 0 (2.162b)

∂H

∂t
−∇0 ×

(
p

ρ
××× F

)
= 0 (2.162c)

∂J

∂t
−∇0 ·

(
HT
p

ρ

)
= 0 (2.162d)

System (2.162) is valid for isothermal (adiabatic) conditions; in the pres-

ence of heat exchange, (2.36) should be added as a fifth equation with the

internal energy e as extra unknown.

We can write (2.162) more succinctly, in the general structure of a conser-

vation law, as:
∂U
∂t

+∇0 ·F = S (2.163)

In (2.163), we define U as the generalised vector of unknown variables,

F I = FeI as the generalised vector of flux terms projected in the three
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directions of space, eI, for I = 1, 2, 3. and S as the generalised vector of

external sources. More explicitly:

U =




p

F

H

J




F I =




FpI
FFI
FHI
F JI



= −




PeI

p/ρ⊗ eI
F××× (p/ρ⊗ eI)
H : (p/ρ⊗ eI)




S =




ρbF

0

0

0




(2.164)

The structure of system (2.163), for instance, can be found in the Euler

equation in fluid dynamics [5], known to be a system of hyperbolic PDEs. It

can be formulated in quasi-linear form [256] by operating a linearisation of

the flux matrix, obtaining

∂U
∂t

+AI
∂U
∂XI

= S I = 1, 2, 3 (2.165)

where

AI
∂U
∂XI

= AI




· ∂p∂XI
: ∂F∂XI

: ∂H∂XI
∂J
∂XI




and

AI =
∂F I
∂U =




FpIp F
p
IF
FpIH F

p
IJ

FFIp FFIF F
F
IH
FFIJ

FHIp FHIF F
H
IH
FHIJ

F JIp F
J
IF
F JIH F

J
IJ



= (2.166)

=−




03×3 [PFeI]3×3×3 [PHeI]3×3×3 PJeI

1/ρ [δikδIK]3×3×3 03×3×3×3 03×3×3×3 03×3
1/ρ [EilkEKLIFlL]3×3×3 03×3×3×3 03×3×3×3 03×3

1/ρ [HiI]1×3 03×3 03×3 0
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The generalised matrix AI defined in (2.166) uses derivatives of the first

Piola-Kirchhoff stress tensor (2.131), depending on the hyperelastic potential

Ψ chosen:

PF =
∂2Ψ

∂F∂F
= ΨFF +ΨHF××× F+ΨJF ⊗H (2.167a)

PH =
∂2Ψ

∂F∂H
= ΨFH +ΨHH××× F+ΨJH ⊗H (2.167b)

PJ =
∂2Ψ

∂F∂J
= ΨFJ +ΨHJ××× F+ΨJJH (2.167c)

2.14 boundary and initial conditions ; involutions

In order to close the system of governing equations (2.162) for a solid

dynamics problem, BCs and ICs need to be defined.

Assignment of mechanical BCs depends on the linear momentum p and

the stress tensor P [2]. Equation (2.162a) involves p as unknown variable

and P as part of the flux term; p appears in the flux terms of the other

equations in (2.162). Thus p can be imposed directly as a Dirichlet boundary

condition (BC) for (2.162a) and weakly, as a Neumann BC for the other

governing equations. P on the other hand can act as Neumann condition for

(2.162a).

Types of possible BCs that can be imposed are listed in table 2.4.

Table 2.4: sets of mechanical BCs that can be assigned to the first order form system
of PDEs. Below, n is the current normal direction to the boundary, obtained from
its initial direction N as n = F−TN

‖F−TN‖ , while t∂V and t∂V‖ are the traction value
imposed on the boundary, and its tangential component.

clamp free sliding
Dirichlet Neumann Dirichlet Neumann Dirichlet Neumann

p(X) 0 0 not imposed not imposed p(X) ·n = 0 p(X) ·n = 0

P(X) not imposed Pn(X) = P(X)n = t∂V(X) P(X) −Pn(X) = t∂V‖(X, t)

In this work, applications will be limited to cases where only the linear

momentum is imposed, meaning that the structures considered will never

be pre-stressed.
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ICs determine the reference configuration of the problem, and are therefore

essential in total Lagrangian dynamics. A set of initial data to start the

problem is required for all unknowns, p, F, H and J.

As ICs on strain measures have to be imposed, a further constrain is added

by compatibility conditions, that ought to be respected for the purpose of the

problem well-posedness. For a first order hyperbolic system of partial differ-

ential equations, involutions ensure the compatibility between deformations

and displacements [62, 63, 172].

Involutions were already introduced in section 2.7 in a {p, F} system for

the F variable. Under those conditions, we have observed that (2.41) holds.

Its equivalent is equation (2.150) in section 2.12.1, that, once pulled back to

the initial configuration, reads:

∇0 × F = 0 (2.168)

In section 2.12.2 we formulated the other set of involutions relevant to the

full {p, F,H, J} system, presented in (2.153). The complete set of involutions

can be summarised below for ease of recall

∇0 × F =0 (2.169a)

∇0 ·H =0 (2.169b)

As briefly mentioned in section 2.7, conditions (2.169) need only to be

satisfied at the initial configuration, in order to be fulfilled throughout the

analysis. If this is true, the existence of a unique solution to the elastody-

namic problem is ensured [62]. They can be viewed, for the purpose of

physical interpretation, as compatibility conditions, relating the various

measures of deformation with the respective kinematic variable, in (2.162).

However, fulfilment of (2.169) has to be carefully ensured when discretis-

ing (2.162) throughout the analysis, in order to avoid numerical errors.
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2.15 eigenstructure of the full mixed system

Conclusive proof of hyperbolicity for system (2.162) is provided by the

existence of solutions U of a plane, wave-form nature [13, 98, 172]. For the

quasi-linear reduction of the problem (2.165), U would assume the form

U = f (X ·N− cαt)URα α = 1, 2, 3, . . . , 22 (2.170)

In (2.170) t stands for time, N is the normalised directional vector of wave

propagation, while cα is the eigenvalue/wave speed of mode α, and URα is

the right eigenvector of that same mode α.

In order to demonstrate that (2.170) constitutes an alternative manner

of representing U as defined in (2.164), we start by substituting the wave-

like form (2.170) into the homogeneous version of our quasi-linear system

(2.165):

− cαf
′URα + (AI ·N) f ′URα = 0 (2.171)

and then

[AN − cαI]URα = 0 (2.172)

where AN = AI ·N = ∂F ·N/∂U , and I is a 22× 22 identity tensor in the

space of U .

Considering now the projection in the direction N of the generalised flux

vector F I in (2.164), we obtain:

FN = F I ·N =




FpN
FFN
FHN
F JN



= −




PN

p/ρ⊗N
−p/ρ××× F×××N
p/ρ · (PN)




(2.173)

Consequently, projecting the whole system (2.172) on N yields:

ANURα = cαURα (2.174)
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The expanded form of equation (2.174), reads

−




03×3 [PFN]3×9 [PHN]3×9 [PJN]3×1
1/ρFFNp |9×3 09×9 09×9 09×1

1/ρFHNp |9×3 09×9 09×9 09×1

1/ρ [HN]T |1×3 01×9 01×9 0







pRα

FRα

HRα

JRα




= cα




pRα

FRα

HRα

JRα




(2.175)

In (2.175), PF, PH and PJ are those defined, for a polyconvex material

energy function, in equations (2.167), while FFNp and FHNp are the tensors

below:

FFNp =




N|3×1 03×1 03×1

03×1 N|3×1 03×1

03×1 03×1 N|3×1


 (2.176)

FHNp =




03×1 [F×××N]T3 |3×1 − [F×××N]T2 |3×1

− [F×××N]T3 |3×1 03×1 [F×××N]T1 |3×1

[F×××N]T2 |3×1 − [F×××N]T1 |3×1 03×1


 (2.177)

In (2.176),N is the direction of wave propagation in Cartesian coordinates.

In (2.177), vectors [F×××N]i for i = 1, 2, 3 are the rows of the tensor cross

product between F and N:

F×××N =




[F×××N]1 |1×3

[F×××N]2 |1×3

[F×××N]3 |1×3




From (2.175), it can be seen that the eigenvalues for the strain measures FRα,

HRα and JRα are uncoupled, and only depend on the eigenvalues of the linear

momentum, pRα. This observation leads to the formulation of the eigenvalues

FRα in terms of those of pRα, as

FRα = −
1

ρcα

(
pRα ⊗N

)
(2.178)
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Eigenvectors for the surface strain measure H are also readily obtained by

looking at (2.175) and (2.177):

HRα =
1

ρcα

(
pRα××× F×××N

)
(2.179)

Equation (2.175) yields the eigenvectors of J as

JRα = −
1

ρcα
pRα · [HN] (2.180)

Further, from (2.179) using the property of the tensor cross product listed

as tenth in table 2.2, we get

HRα = −
1

ρcα
F×××

(
pRα ⊗N

)
(2.181)

Remembering the property (2.159) of double contraction for second order

tensors, [39], equation (2.180) can be rearranged as

JRα = −
1

ρcα
H :

[
pRα ⊗N

]
(2.182)

Lastly, the first set of equations in (2.175) yields the eigenvectors pRα of the

linear momentum. Expanding these equations results in

−
[
(PFN) : FRα + (PHN) : HRα + (PJN) JRα

]
= cαp

R
α (2.183)

Substituting the full expressions for polyconvex stress conjugates (2.167)

to strain measures F, H and J in (2.183) yields

−(ΨFF + F×××ΨHF +H⊗ΨJF)N :

(
−
1

ρcα
pRα ⊗N

)
+

−(ΨFH + F×××ΨHH +H⊗ΨJH)N :

[
−F×××

(
1

ρcα
pRα ⊗N

)]
+

−(ΨFJ + F×××ΨHJ +HΨJJ)N :

(
−
1

ρcα
pRα ⊗N

)
= cαp

R
α (2.184)
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Now, by noticing the following property for the product between 2nd, or

higher, order tensors (A) and vectors (u and v) [39]

(Av)u = A : (u⊗ v)

we can then pre-multiply (2.184) by pRα, and, arranging the terms oppor-

tunely, obtain:

(
pRα ⊗N

)
: (ΨFF + F×××ΨHF +H⊗ΨJF) :

(
pRα ⊗N

)
+

+
(
pRα ⊗N

)
: (ΨFH + F×××ΨHH +H⊗ΨJH) :

[
F×××

(
pRα ⊗N

)]
+

+
(
pRα ⊗N

)
: (ΨFJ + F×××ΨHJ +HΨJJ) :

[
H :

(
pRα ⊗N

)]
=

= ρc2αp
R
α ·pRα (2.185)

Use of property 8 in table 2.2 enables to arrange (2.185) in matrix form,

namely




(
pRα ⊗N

)
:

F××× (pRα ⊗N
)
:

H :
(
pRα ⊗N

)




T 


∂2Ψ
∂F∂F

∂2Ψ
∂F∂H

∂2Ψ
∂F∂J

∂2Ψ
∂H∂F

∂2Ψ
∂H∂H

∂2Ψ
∂H∂J

∂2Ψ
∂J∂F

∂2Ψ
∂J∂H

∂2Ψ
∂J∂J







:
(
pRα ⊗N

)

:
(
pRα ⊗N

)××× F
(
pRα ⊗N

)
: H


 =

= ρc2α p
R
α ·pRα (2.186)

The generalised matrix of second derivatives of the polyconvex potential

energy Ψ(F,H, J) that appears in (2.186) is the Hessian of Ψ,HΨ, as defined

in (2.143):

HΨ =




∂2Ψ
∂F∂F

∂2Ψ
∂F∂H

∂2Ψ
∂F∂J

∂2Ψ
∂H∂F

∂2Ψ
∂H∂H

∂2Ψ
∂H∂J

∂2Ψ
∂J∂F

∂2Ψ
∂J∂H

∂2Ψ
∂J∂J



19×19

(2.187)

Given the polyconvexity of Ψ, that HΨ in (2.187) be positive definite

follows directly from (2.144).

This proves the existence of real and positive elastic wave speeds in a

medium governed by the system of first order mixed equations (2.162). As a

consequence, such a system can be classified as hyperbolic.
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The positive-definiteness of Ψ could also be inferred from (2.49), as poly-

convexity is a stricter condition than strong ellipticity, and inclusive of

it.

In order to better appreciate this, it can constitute a useful exercise to

substitute for Ψ(F,H, J) in (2.175) – by way of P(∂Ψ/∂F, ∂Ψ/∂H, ∂Ψ/∂J) – the

potential elastic energy of one of the three polyconvex hyperelastic models

presented in section 2.9.

2.16 eigenstructure for the ogden material model

In the following, guidelines for this derivation process are sketched for the

Ogden model.

The energy expression for this type of material is the sum of its isochoric

component in (2.77) and its volumetric in (2.79), as reported below:

ΨO =

3∑
p=1

µp

αp

[
J−

1/3
(
λ
αp
1 + λ

αp
2 + λ

αp
3

)
− 3
]
+
κ

β2

(
β ln J+

1

Jβ
− 1

)
(2.188)

See section 2.9 for the meaning of symbols in (2.188).

Observing that the Ogden potential energy ΨO in (2.188) does not depend

on the surface strain measure H, we can simplify its HessianHΨO , (2.187),

to

HΨO =




∂2ΨO
∂F∂F 0 ∂2ΨO

∂F∂J

0 0 0

∂2ΨO
∂J∂F 0 ∂2ΨO

∂J∂J


 (2.189)
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First derivatives of ΨO with respect to F, H, and J are pre-condition to

evaluate the Hessian, and can be retrieved from (2.142):

∂ΨO
∂F

= J−
2/3
[(
µ1λ

α1−1
1 + µ2λ

α2−1
1 + µ3λ

α3−1
1

)
(n1 ⊗N1)+

+
(
µ1λ

α1−1
2 + µ2λ

α2−1
2 + µ3λ

α3−1
2

)
(n2 ⊗N2)+

+
(
µ1λ

α1−1
3 + µ2λ

α2−1
3 + µ3λ

α3−1
3

)
(n3 ⊗N3)

]
(2.190a)

∂ΨO
∂H

= 0 (2.190b)

∂ΨO
∂J

= −

3∑
p=1

µp

3

(
λ
αp
1 + λ

αp
2 + λ

αp
3

)
J−(

αp
3 +1) +

κ

β J

(
1−

1

Jβ

)
(2.190c)

The four non-zero terms in (2.189) have to be computed one by one.

• The term ∂2ΨO
∂F∂F should be computed as:

∂2ΨO
∂F∂F

=

3∑
i=1

(2.192a)

∂
(
∂ΨO
∂F

)

∂λi

(2.192b)

∂λi
∂F

+

(2.192c)

∂
(
∂ΨO
∂F

)

∂ni

(2.192d)

∂ni
∂F

(2.191)

Noting the rendition of ΨO in (2.188), the four components in (2.191)

can be readily expressed as following

∂
(
∂ΨO
∂F

)

∂λi
= J−

2/3
[
µ1 (α1 − 1) λ

α1−2
i + µ2 (α2 − 1) λ

α2−2
i +

+µ3 (α3 − 1) λ
α3−2
i

]
(ni ⊗Ni) (2.192a)

∂λi
∂F

= ni ⊗Ni (2.192b)

∂
(
∂ΨO
∂F

)

∂ni
= J−

2/3
(
µ1λ

α1−1
i + µ2λ

α2−1
i + µ3λ

α3−1
i

)
·

· (e1 ⊗Ni ⊗ e1 + e2 ⊗Ni ⊗ e2 + e3 ⊗Ni ⊗ e3) (2.192c)
∂ni
∂F

= −J
dA

da
F−T∆F F−TNi i = 1, 2, 3 (2.192d)

In (2.192c), ei, i = 1, 2, 3 represent the 3 axes of the Cartesian frame

reference our continuum body is immersed into.
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Term (2.192d) comes from considering the dependence of the current

principal direction ni, i = 1, 2, 3 from the deformation gradient F

through the Nanson formula [196, 242] reproduced below:

nida = JF−TNidA (2.193)

In (2.192c) and (2.193), scalars dA and da respectively indicate the

measures of a unit of body surface in the initial configuration, and

how it has evolved in the current configuration. In (2.192c), ∆F is

an increment from the present F, used to evaluate the directional

derivative DF−T [F].

Substituting the four derivatives found in (2.192) into (2.191) yields

the sought-after first Hessian term:

∂2ΨO
∂F∂F

= J−
2/3

3∑
i=1{ [

µ1 (α1 − 1) λ
α1−2
i + µ2 (α2 − 1) λ

α2−2
i + µ3 (α3 − 1) λ

α3−2
i

]
·

· (ni ⊗Ni ⊗ni ⊗Ni) +
(
µ1λ

α1−1
i + µ2λ

α2−1
i + µ3λ

α3−1
i

)
·

· (e1 ⊗Ni ⊗ e1 + e2 ⊗Ni ⊗ e2 + e3 ⊗Ni ⊗ e3)⊗

⊗
(
−J
dA

da
F−T∆F F−TNi

)}
(2.194)

• The second non-zero term in the Hessian (2.189) is ∂2ΨO
∂F∂J

∂2ΨO
∂F∂J

=
∂
[
∂ΨO
∂F (J, ni)

]

∂J
+

3∑
i=1

∂
[
∂ΨO
∂F (J, ni)

]

∂J

∂ni
∂J

(2.195)
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Using (2.190a), (2.192c) and (2.193), we can expand (2.195) as

∂2ΨO
∂F∂J

= −
2

3
J−

5/3
3∑
i=1[(

µ1λ
α1−1
i + µ2λ

α2−1
i + µ3λ

α3−1
i

)
(ni ⊗Ni)

]
+

+ J−
2/3

3∑
i=1

[(
µ1λ

α1−1
i + µ2λ

α2−1
i + µ3λ

α3−1
i

)
(e1 ⊗Ni ⊗ e1+

+e2 ⊗Ni ⊗ e2 + e3 ⊗Ni ⊗ e3)⊗
(
dA

da
F−TNi

)]
(2.196)

• The third non-zero component of (2.189) is

∂2ΨO
∂J∂F

=

3∑
i=1

∂
[
∂ΨO
∂J (λi)

]

∂λi

∂λi
∂F

(2.197)

Using (2.190c) and (2.192b), we can expand (2.197) as

∂2ΨO
∂J∂F

= −

3∑
i=1

{[µ1
3
α1J

−(α13 +1)λα1−1i +

+
µ2
3
α2J

−(α23 +1)λα2−1i +
µ3
3
α3J

−(α33 +1)λα3−1i

]
(ni ⊗Ni)

}
(2.198)

• The last non-zero component of (2.189) can be obtained directly from

(2.190c):

∂2ΨO
∂J∂J

=
1

3

3∑
i=1

[
µi

(αi
3

+ 1
)
J−(

αi
3 +2) (λαi1 + λαi2 + λαi3

)]
+

+
κ

βJ2

[
β+ 1

Jβ
− 1

]
(2.199)
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Substituting the Hessian for the Ogden model, (2.189), in (2.186) allows

to write




(
pRα ⊗N

)
:

F××× (pRα ⊗N
)
:

H :
(
pRα ⊗N

)




T 


∂2ΨO
∂F∂F 0 ∂2ΨO

∂F∂J

0 0 0

∂2ΨO
∂J∂F 0 ∂2ΨO

∂J∂J







:
(
pRα ⊗N

)

:
(
pRα ⊗N

)××× F
(
pRα ⊗N

)
: H


 =

= ρc2α p
R
α ·pRα (2.200)

Further developing (2.200) leads to the characteristic equation, from which

to extract the eigenvalues (pressure and shear wave velocities) of the mixed

Ogden polyconvex system:

(
pRα

)T ∂2ΨO
∂F∂F

∣∣∣∣
NN

pRα +
(
pRα ·HN

)[(∂2ΨO
∂F∂J

N

)
·pRα +

(
∂2ΨO
∂J∂F

N

)
·pRα

]
+

+
∂2ΨO
∂J∂J

[
pRα · (HN)

]2
= ρc2α p

R
α ·pRα (2.201)

where ∂2ΨO
∂F∂F

∣∣∣
NN

= NT
(
∂2ΨO
∂F∂F

)
N.

2.17 concluding remarks

In the course of the present chapter we have laid out the mathematical frame

needed to understand the set-up of a first order, mixed system of PDEs to

represent solid dynamics problems, in place of the standard, second order,

displacement-based description.

Essentially, proof of hyperbolicity for the first order mixed system has to

be provided in order for it to produce reliable solutions for elastodynamics

simulations. This is demonstrated by analysis of the eigenvalues of the

matrix of the linearised system: real and distinct eigenvalues are directly

related to corresponding pressure and shear elastic wave speeds.

After defining relevant concepts, and setting up conservation laws for

kinetic quantities in sections leading up to section 2.6, we go on discussing

the requirements that are necessary from these conservation laws in order

to build a well-posed hyperbolic system of PDEs.
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Constitutive inequalities and the notion of strong ellipticity (2.49) are

defined and described in sections 2.7 and 2.8. In particular, in section 2.8 we

introduce polyconvexity, a more stringent condition than strong ellipticity on

the constitutive material behaviour, that under certain regimes ensures the

existence and uniqueness of solutions. Polyconvexity requires an extension

of the dependence of the elastic potential function Ψ(F) to include not

only the deformation gradient, but also its determinant J and its matrix of

cofactors H, as shown in (2.52).

In section 2.9 we identify three well-known hyperelastic material models:

the Mooney-Rivlin, neo-Hookean, and Ogden models, which we reformulate

in the frame of polyconvexity. This task is further discussed in section 2.11,

while in section 2.10 the developed model is expanded to include plastic

deformation.

Additional conservation laws can then be established for F, H and J in

section 2.12, and a complete, first order mixed {p, F, H, J} system of PDEs is

formulated in section 2.13, see (2.162). Boundary and initial conditions for

system (2.162) are discussed in section 2.14, along with compatibility issues

(involutions).

As mentioned in chapter 1, (2.162) clearly presents analogies with the

Euler equations in fluid dynamics. This will be further explored in chapter 3,

where the possibility to employ stabilisation techniques from CFD will be

exploited in order to devise a new discretisation strategy for nonlinear fast

solid dynamics problems.

Finally, in the last two sections, a study of the eigenstructure of system

(2.162) is attempted: first its characteristic equation is derived in section 2.15

in the most general manner (eqs. (2.185) and (2.186)), without specifying any

constitutive model. Afterwards, this formulation is adapted for the Ogden

model in section 2.16; the derivation, yielding characteristic equation in

eqs. (2.200) and (2.201), provides a framework for the study of the polyconvex

version of the Ogden material in the context of a first order, mixed system

of conservation laws PDEs. At present, and to the author’s knowledge,

detailed discussion of this formulation is not available in literature, and the

contribution made in this thesis would be a good starting point for further

study.
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In the previous chapter, we have covered some aspects of the mathematical

representation of fast dynamics solid deformations, with a focus on hyper-

elastic and elasto-plastic material behaviours. We introduced the problem

in the form of a set of conservation laws, seeking a solution capable of

completely describing stress and strain states at a given time and on any

location of the body of interest during the simulation.

In order to do this, we have proceeded in an unconventional manner,

by adopting the linear momentum p and a set of strain measures – the

deformation gradient F, the cofactors matrix of F, H, and the Jacobian of the

deformation J – as the main unknowns for the system of conservation laws.

Displacements u, can then be easily calculated from these quantities.

By adopting the aforementioned approach, in place of solving the classical

second order equation of motion (2.37) with displacements as unknowns,

there will be an additional cost incurred in handling a system of first order

PDEs. However, in so doing, the mixed governing system of PDEs will be

hyperbolic in nature, mirroring typical governing equations in CFD. This

similarity holds the decisive advantage of enabling to borrow effective and

reliable dissipation techniques from the (by now) vast CFD literature on the

subject.

Benefits arising from this analogy will be made clearer during the course of

the present chapter, which is structured as following: section 3.1 will provide

some fundamental notions over the basic Galerkin type weak discretisation

problem and its solution by the FEM. In section 3.2 we will give an overview

of the various typologies of meshfree numerical methods, their main features,

and how they differ from the FEM. Our focus will be on meshless techniques

based on the concept of reproducing kernel. The SPH method, a reproducing

kernel technique, will be described in more detail in sections 3.3 and 3.4,

and will be used to discretise equation (2.162) in the subsequent section 3.5.

87
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As mentioned above, the spatially semi-discretised system of ordinary

differential equations (ODEs) obtained with SPH can be enhanced via a

numerical dissipation term that helps in suppressing spurious oscillations, as

typically done in the field of CFD, with the Euler and Navier-Stokes equations

for inviscid and viscous flows, respectively. To this aim, in section 3.6 a

dissipation term obtained using the JST artificial dissipation algorithm will

be added to the RHS of ODEs in the semi-discretised system.

Finally, the system of ODEs will be fully discretised by the use of an explicit

time integration scheme of the RK family in section 3.7. Yet, the introduction

of artificial dissipation can lead to the unintended consequence of violating

the global angular momentum of the discretised system. To avoid this,

a correction procedure based on Lagrange multipliers is implemented in

section 3.8. As a result, corrected values for the JST dissipation terms and for

internal stresses are obtained.

Brief details on the computer implementation of the method are out-

lined in section 3.9, and some concluding remarks are finally provided in

section 3.10.

3.1 introduction : formulation of the problem , galerkin dis-

cretisation, finite element method

Before introducing meshless methods, it is convenient to start from the

classic FEM theory. Thorough description of the method can be found in

texts such as [16, 115, 125, 271]; however it was felt that a swift summary of

its most relevant points will help to get a better understanding of the topics

more of interest to this thesis, and to better appreciate the advantages lying

in the decision of modelling system (2.162) with a particle method.



3.1 introduction 89

3.1.1 Strong and weak formulations of the problem

Let the strong form of the problem at hand be to find an unknown function

u (x), defined over a domain B ∈ R3, that solves the following system:

A (u) = f ∀ x ∈ B
u = u0 ∀ x ∈ ΓD
∂u

∂n
= h ∀ x ∈ ΓN

(3.1)

In (3.1), A is a generic differential operator containing derivatives with

respect to space x; f is a term that renders the equation non-homogeneous,

ΓD and ΓN are the boundary regions of B with normal direction n where,

respectively, Dirichlet boundary values u0 and Neumann boundary values

h · n are imposed. Equations (3.1) state the so called strong form of the

problem: that is, they formulate it locally in a differential sense.

Numerical methods that operate directly on (3.1) to extract an approximate

solution include the finite differences method (FDM) [6, 115, 139], and the

family of collocation methods [118, 151]. In particular, the latter family of

methods is mainly limited to look for a solution over a finite number of

points in the domain.

In spite of the availability of strong forms, the greater part of numerical

approximation methods for PDEs are set up to operate on what is known

as the weak form of problem (3.1). To properly define it, we first need to

introduce a set of auxiliary test, or weighting functions w such that they

assume the value of 0 on the boundary region ΓD of B, where Dirichlet

(essential) boundary conditions were imposed in (3.1). The weak formulation

of (3.1) can then be stated as∫
B
wA (u) dB =

∫
B
wfdB+

∫
ΓN

whdΓ (3.2)

The expression in (3.2) is essentially an average of the strong differential

form on the domain B, weighted by the test function w. In other words, the

residual of (3.1) (A (u) − f) is required in (3.2) to cancel out in a weighted
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(by w) average sense everywhere on B, and to assume the prescribed value

on ΓN.

As a further requirement to ensure the equivalence of the weak problem

(3.2) to the strong one (3.1), special attention has to be given to the way

the functional spaces containing functions u and w are defined. We seek

a solution function u amongst the set of those that satisfy the essential

boundary conditions on ΓD. In addition, both sets of functions u and w

have to be endowed with a certain degree of regularity (i. e. continuity and

differentiability) across the domain B. However, this regularity should be

less strict than that guaranteed by continuously differentiable functional

spaces (in this case of order k) Ck. This has to be ascribed to the nature of

real world applications that these type of numerical approaches are designed

to tackle, which often include discontinuities, in the solutions or in their

derivatives, arising inside the domain (e. g. cracks in solid mechanics, or

shocks in gas dynamics).

In order to build functions u and w in possess of the desired regularity,

the definition of square-integrable functional space is given as

L2 (B) =
{
u

∣∣∣∣
∫
B
|u|2 dB <∞} (3.3)

It then makes sense to look for solutions u of (3.2) with the property of

being square-integrable as in (3.3), to the kth maximum order of derivatives

present in the differential operator A:

Hk (B) =

=

{
u (x1, . . . , xm)

∣∣∣∣∣u ∈ L
2 (B) ,

∂Nu

∂x
N1
1 . . . ∂xNmm

∈ L2 (B) , ∀|N| 6 k

}
withN = N1 + · · ·+Nm

(3.4)

Functional spaces such as those defined in (3.4) are called Sobolev spaces;

they ensure that the energy integral associated with (3.2) is bounded by a

finite constant [44].
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The FEM is the most established among the numerical procedures based

on a weak formulation (3.2) of the analytical problem at hand. A schematic

illustration of the FEM discretisation process is provided in fig. 3.1.

X1

X2

X3

∂uB

f

B

∂ fB

E

linear tetrahedral
element E

B =
⋃ E

FE discretisation

Figure 3.1: discretisation of a continuum medium B by the FE procedure into a set
of linear tetrahedra elements E . Also shown are a generic external force f and the
surface regions where Dirichlet, ∂uB, and Neumann, ∂fB boundary conditions
apply.

It is useful to introduce a more compact notation for (3.2), valid in case

the differential operator A applied on u leads to a bounded, symmetric

bilinear form a(u,w):

a(u,w) ≡
∫
B
wA (u)dB 6 C1‖u‖‖w‖ C1 > 0 (3.5a)

(f,w) =

∫
B
fwdB 6 C2‖f‖‖w‖ C2 > 0 (3.5b)

(h,w)|ΓN =

∫
ΓN

hwdΓ 6 C3‖h‖‖w‖ C3 > 0 (3.5c)

In equations (3.5), Ci, i = 1, 2, 3 are positive, finite constants, and ‖·‖ are

norms defined in the functional spaces.

The variational statement (3.2) can then be reformulated as

a(u,w) = (f,w) + (h,w)|ΓN (3.6)
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Formulation (3.6) is used as a starting point to derive weak form discreti-

sation methods.

3.1.2 Galerkin approximation

Now, let trial solution functions be u ∈ U , and test functions be v ∈ V ,

where U and V are two infinite dimensional functional spaces.

The approximation introduced by a Galerkin method of solution of (3.6)

rests on the relocation of the problem from infinite dimensional functional

spaces U and V to finite ones, Uh ⊂ U and Vh ⊂ V , respectively built

upon the finite sets of all linear combinations of basis or shape functions υi,

i = 1, . . . , M and βj, j = 1, . . . , N. In these bases, trial and test functions are

expressed as

uh =

M∑
i=1

uiυi (3.7a)

v =

N∑
j=1

βj (3.7b)

The simplest choice of bases is made in the case of the Bubnov-Galerkin

methods, where the same set is employed for test and trial spaces, Uh ≡ Vh,

so that M = N and υi = βi, i = 1, . . . , M.

This allows one to reformulate the variational statement (3.6) as

M∑
i=1

a(uiυi,υj) = (f,υj) + (h,υj)|ΓN j = 1, . . . , M (3.8)

where the finite functional spaces are defined by

Uh = {uh |uh ∈ Hk (B) , uh|ΓD = u0} (3.9a)

Vh = {vh |vh ∈ Hk (B) , vh|ΓN = 0} (3.9b)

The Galerkin-approximated version of the weak problem, in equation

(3.8), has to satisfy the essential BC in (3.1).
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To attain this goal, the shape functions space Uh should be expanded to

accommodate a set of (R−M) additional bases υr, r =M, . . . ,R that assume

value 1 on ΓD:

υr|ΓD = 1 r =M, . . . , R, R > M (3.10)

Using (3.10) it is possible to express the BC u0 in (3.1) in the following

manner

u0h =

R∑
r=M

u0υr (3.11)

This way, we have updated the set of shape functions υi at the boundary

ΓD of our domain B so that

υi|ΓD =

0 if 0 < i 6M

1 if M < i 6 R
(3.12)

With the help of (3.11) and (3.12), we can reformulate (3.8) as

M∑
i=1

a(uiυi,υj) +
R∑

r=M

a(u0hυr,υj) = (f,υj) + (h,υj)|ΓN

j = 1, . . . , M (3.13)

Equation (3.13) represents a linear system of algebraic equations, that can

be rearranged in a more succinct manner as

M∑
i=1

Kijui = Fj j = 1, . . . , M (3.14)

where

Kij = a(υi,υj) (3.15a)

Fj =(f,υj) + (h,υj)|ΓN −

R∑
r=M

a(u0hυr,υj) (3.15b)
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From (3.15), a global stiffness matrix K can be assembled using submatrices

Kij, acting as nodal connectivities. This leads to the classic matrix form for

the displacement problem

Kû = F (3.16)

In equation (3.16), û = (u1, . . . ,uM)T is known as the solution vector, and

F = (F1, . . . , FM)T as the external force vector.

It has long been proven [115, 125] that K is a symmetric, positive definite –

and hence, invertible – matrix. The solution to problem (3.16) can therefore

be found as

û = K−1F (3.17)

3.1.3 The finite element method

In brief, a FE approach to problem (3.16) would consist in selecting a set of

M points xi, i = 1, . . . ,M across the domain B as nodes, determining their

interconnectivity by linking them with a mesh, in this manner partitioning B
into separate, non-overlapping elements. The next, fundamental step would

then be to select a family of shape functions υi, i = 1, . . . ,M endowed with

the properties listed below:

• Satisfaction of the Kronecker delta property at nodes: each shape function

υi is associated with a node xi so that its value is exactly 1 on xi, and

0 at the other nodes locations: υi(xj) = δij, i, j = 1, . . . ,M.

• υi 6= 0 only across the elements sharing xi as one of their node.

• The FE solution û should be exact at nodes xi, i. e. ûi = u(xi) where

u(xi) solves (3.1) at xi.

• Regularity: the shape functions υi, i = 1, . . . ,M should be at least con-

tinuous and differentiable to the same order p of the highest derivative

appearing in the PDEs: υi ∈ Cp(B). They should also have up to an

order (p− 1) of regularity on boundaries, υi ∈ Cp−1 (Γ (B)).

• Completeness of representation: the FE solution û should be able to

correctly reconstruct polynomials of order p at nodes positions.
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Now that the general features of the FEM, and the procedure of interpo-

lation to achieve the solution, have been briefly presented, it is worth to

focus on the way stiffness matrix coefficients Kij and force components Fi
in (3.15) are calculated. These terms are made of the bilinear forms defined

in (3.5), that require integration of the shape functions and their derivatives

inside the domain of interest. The evaluation of these integrals is performed

numerically, through a weighted sum of the integrand values at particular

integration points xint inside the finite element E :

∫
E

K(x)dE =

∫
E

K̃(x)ω(x)dE ≈
nint∑
i=1

K̃(xint)ω(xint) (3.18)

Equation (3.18) shows that the function K(x) to be integrated can be

decomposed as the product of another polynomial function K̃(x) with a

non-negative weight function ω(x) [90]. In turn, and in addition to the inter-

polation error introduced by adopting finite basis functions in (3.7), further

approximation error is provided in (3.18) by substituting the integral with

the weighted sum at a number (nint) of integration points. Many techniques

of numerical integration are currently at disposal [105, 214], each differing

from the other in terms of the number of integration points, their location

inside the element, and the weight they are assigned in the summation.

Whilst considering this issue, it is important to strike a balance between

accuracy (increasing with the number of integration points considered) and

practicality (the fewer the integration points, the less the cost [115]). Families

of quadrature rules include the Newton-Cotes formulas, and the Gaussian

quadrature rules. Newton-Cotes formulas use a grid of integration points

at fixed distance from each other, and are thus easily scalable. Gaussian

quadrature rules instead look to solve an optimization problem, with the

aim of placing the integration points in spots where the highest possible

degree of accuracy can be reached, all the while using the lowest possible

number of points [246].

On the other hand, the methodology of nodal integration, devised to min-

imise computational costs by using nodes as integration points, introduces

sizeable inaccuracies that can seriously undermine the robustness of any

simulation scheme. This prospective issue will affect the chosen discreti-
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sation method, and will be addressed more extensively in the following

sections.

3.2 meshless methods

3.2.1 Finite Elements and Meshless Methods

The FEM, of which a very general sketch was provided in section 3.1, is

nowadays the standard method for solving engineering problems. However,

as applications of interest become more and more complicated, FEM is

beginning to encounter some limitation:

1. Automated quality meshes are not easy to generate, especially for

studies involving large deformations. This results in a time consuming

process for the analyst, as often automated mesh generators fail to

create good meshes on complex geometries. As a consequence, these

have to be designed and created manually. It is also essential to con-

sider that a mesh needs to be made up of elements with a degree of

smoothness high enough to capture the geometry of the underlying

problem with sufficient accuracy.

2. Material discontinuities (such as crack growth and propagation) are

difficult to treat if they do not follow nodal connection lines, i. e. the

mesh lines, as it is more than often the case. Thus, these types of

analyses require frequent remeshing, with associated loss of time

and accuracy, in order to realign the mesh on crack lines. Therefore,

enhanced FEM techniques have to be introduced.

3. Mesh refinement is in some cases required locally to capture stress

and strain states with accuracy. However, reliable adaptive mesh gen-

eration procedures are very costly in terms of computational time,

because they require a mapping of field variables from the old to the

new mesh. In addition, remeshing is very challenging in presence of

impacts, fragmentations, complex contact geometries, fluid-structure

interactions. The process also carries a certain numerical error with

it, causing degradation of the quality of the sequential solutions ob-

tained each time a new mesh is generated. In particular, the source of
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numerical error lies in just a few distorted elements, created by the

otherwise robust adaptive algorithm in situations where, for instance,

a local high gradient is present. Loss of accuracy also appears due to

the consecutive mapping of state variables to the current mesh.

4. High-order interpolation fields are expensive to construct in FEM,

which is at its most practical when employing linear (C0) shape func-

tions. This limits the ability of the method to solve plates and shells

applications, and nonlinear, high-gradient plastic behaviour.

5. For linear finite elements analyses, the stress and strain field outputs

are an order of accuracy below those of velocities and displacements.

6. In the presence of complete material disintegration (for instance, in

impact or explosion analyses), fragmentation patterns change with

the mesh adopted, i. e. different disintegration patterns are observed

for different discretisations of the same medium. Furthermore, single

elements do not allow for internal breakage, requiring the generation

of a more refined mesh through adaptive processes. Strain localisations

are also difficult to represent due to this mesh alignment sensitivity issue.

7. Mesh compatibility does not enforce continuum compatibility across

the physical medium, as can be seen in the case of large deformations

and more in general highly nonlinear Lagrangian analyses, where

excessive mesh distortion leads to poor and inaccurate solutions.

The root of the problems listed above lies in the very existence of the

finite elements, that have to be organised into a mesh. Meshless methods

arose with the idea of eliminating elements and meshes altogether. Conve-

niently, these new meshless methods can bypass most of the limitations of

FE listed above, while maintaining conservation of essential parameters in

the governing equations.

Compatibility of the interpolation functions across finite elements is en-

sured by the mesh, a topological map connecting them together. Meshfree

methods rely on relinquishing the concept of element as the main unit of

discretisation, and that of mesh as the main unit of connectivity among

nodes; the idea of domain of influence of a particle, in the meshless domain,

is in itself a way less demanding substitute for the idea of a mesh, while
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elements are entirely discarded. Moreover, while in the FEM the problem

domain is partitioned into non-overlapping finite elements, many meshless

techniques allow for overlapping domains of influence.

The advantages in terms of costs and improved quality that meshless

methodologies bring along can be summarised as follows:

1. reduced computational and time costs in mesh generation for the

analyst, due to absence of a mesh, and due to the availability of

automated algorithms for proper distribution of particles over the

problem domain.

2. Higher accuracies are easy to achieve, as the implementation of adap-

tive refinement in meshless methods reduces to merely adding more

particles where needed.

3. The ease at which shape functions of polynomial high order (> 1) can

be readily built, enables high-gradient analyses.

4. Large deformations and nonlinear problems do not pose difficulties

such as single elements excessive distortion in FE, as the connectivity

between particles can be rearranged during the simulation.

5. Particle methods are suited, by their very nature, to solve disintegration

problems such as fragmentation or explosions.

A further advantage of meshless methods over the FEM lies in the fact that

shape functions are built directly on nodes in the domain, without the need

of a mesh of elements.

In turn, absence of a mesh then avoids the need for coordinate mapping

from natural coordinates – where shape functions are defined based on the

nature of finite element used – to the inevitably more complex geometry of

the domain to be discretised.

3.2.2 Classes of Meshless Methods

Meshless or particle techniques can be classified in two groups:

• those following the direct approach: employed directly on the strong

form of PDEs;
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• those following the indirect approach: based on the discretisation of

the integral form of the governing equations (weak statement of the

problem).

The first category resorts to collocation techniques: namely, evaluates the

unknown function on a cloud of positions across the domain, and then

interpolates the unknown function values over the rest of the domain from

the values at those collocation points.

Direct approach (strong form) methods are easy to implement, efficient,

and truly meshless. But, on the other hand, they tend to suffer from insta-

bility and lack of accuracy. Among these methods, SPH is perhaps the most

popular; others include the radial basis collocation method, also known as

Kansa method [128], the finite point method [203], and the generalised finite

difference method [156].

SPH was initially developed as a probabilistic method by Lucy [166] and

Gingold and Monaghan [88] to study astrophysics phenomena, through the

use of Montecarlo estimations for the volumes to assign to each particle.

Methods based on weak statements of the problem are, on the contrary,

very stable and accurate, due to the integral formulation producing a smear-

ing effect on the computational error across the domain. The indirect ap-

proach, in fact, shifts the focus from the local to the global behaviour of

the PDEs that govern the problem. It presents the relaxed requirement, with

respects to the direct approach, of having to be satisfied only in an aver-

age sense over the domain of integration. The final equations for indirect

formulations are obtained through procedures that look for a stationary,

stable state for a functional designed to be a meaningful representation of

the problem.

A good example of such functionals can for instance be the total energy

of the system. The minimum potential energy principle then will search for

the configuration that minimises the total energy, out of all the legitimate

states of deformation the system can assume at the moment of calculation.

Proceeding this way, only first derivatives are required to compute the global

energy, while there appear second derivatives in the PDEs governing the

displacement-based problem.
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Another advantage is that Neumann boundary conditions are naturally

satisfied in the weak form, so imposing stresses on the problem boundaries

does not end up being an issue.

However, meshless weak form methods are not truly meshfree, since most

of them have to resort to some sort of background mesh or set of cells, to

perform the integration of system matrices. Meshes have to be created by em-

ploying triangulation techniques, using the particles as vertices; in the event

refinement is needed, e. g. at areas of stress concentration, the introduction

of new particles will require these background cells to be updated. For these

methods, interpolation of field variables is still obtained in true meshless

form, only using node positions. However, the way numerical integrations

are performed make weak form methods computationally expensive, and

difficult to implement.

Amongst the meshless weak form methods are the element free Galerkin

method (EFGM) [23, 24] and its predecessor, the diffuse element method

(DEM) [189], the radial point interpolation method (RPIM) [268], the maximum

entropy (Max-Ent) method [7], the hp-cloud method [68], and the meshless

local Petrov-Galerkin (MLPG) method [8].

The first two methods mentioned above use MLS approximations [137] in

building the shape functions. In particular, the element free Galerkin (EFG)

approach has proven itself successful over the years, in terms of range of

applications and influence over later meshless techniques.

Derived as a variation from the EFG theme is the RPIM, which uses a blend

of radial basis functions and polynomial functions to build an efficient and

consistent interpolation [268].

In the Max-Ent method [7, 247], the role of MLS in building the shape func-

tions is assumed by the probability distribution that maximises its associated

informational entropy [123], as defined by Shannon [228]. In the context

of building a Max-Ent meshless method, the shape functions are adapted to

be the probability functions for a node to fall in the domain of influence

of another node [247]. Max-Ent shape functions are particularly interesting

because of a host of favourable properties: positivity, continuity, the stability-

enhancing total variation diminishing (TVD) feature, and, above all, the fact

that nodes at the boundary of the computational domain enjoy the Kronecker
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delta property, facilitating the imposition of BCs. These properties make the

Max-Ent shape functions more attractive than their MLS-built counterparts.

Also of interest is the hp-cloud method [68], which calculates its shape

functions with a procedure directly based on the partition of unity concept.

The MLPG method [8] aims to avoid global integration by focussing on

local weak statements. It is peculiar in that a Petrov-Galerkin procedure is

used, in which trial and test functions are computed on different solution

spaces, with the latter, as a result, not required to vanish at the boundaries of

the domain. In contrast, the more conventional (Bubnov-)Galerkin methods

employ trial and test functions belonging to the same solution space.

For each of the aforementioned meshless methods based on a weak

statement of the problem, meshes of cells for integration purposes are

easily created by triangulation techniques, using the particles as vertices. In

the event that refinement be needed (e. g. at areas of stress concentration),

new nodes are added and the background cells have to be updated by

recalculating new triangulations.

3.2.3 Properties of Meshless Methods

The support domain of a point x is a region in the domain centred on x and

bounded by a support radius r. Particles that lie inside the support domain

give a weighted contribution to the interpolation of some field variable f (x)

in x. The weight is determined by the particular shape function that the

selected meshless method employs.

An interesting concept is also that of domain of influence of a particle

xa, defined as the union of support domains that include xa, or, in other

words, the region where the contribution of xa to the determination of field

variables is not zero.

The main principle underlying meshless techniques is the partition of unity

[11], that, for a set of regular functions Wi ∈ Cn
(
R3
)
, i = 1, . . . ,n, over a

domain Ω, can be defined as follows:

n∑
i=1

Wi (x) = 1 ∀Wi (x) | 0 6Wi (x) 6 1 , ∀x ∈ Ω , i = 1, . . . ,n (3.19)
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Functions Wi, i = 1, . . . ,n in (3.19) are each defined locally over a support

domain Ωi ⊂ Ω centred around a node xi, i = 1, . . . ,n. Support domains

Ωi are an overlapping covering of Ω, in the sense that:

n⋃

i=1

Ωi ⊃ Ω , i = 1, . . . ,n (3.20)

Property (3.20) is clearly a distinctive feature with respect to the strict

non-overlapping definition of finite elements.

Implementation of meshless methods usually follows the ensuing se-

quence of steps:

1. Geometry creation: a set of nodes with the opportune spatial density

and distribution is created in the domain of interest, trying to strike a

balance between the pattern of gradients expected in the solution, and

the accuracy requirements.

2. Field function interpolation (approximation): build the interpolated field

variable uh as a linear combination of shape functions Nb(xa) on

neighbouring nodes b = 1, . . . , n with unknown coefficients ub at

point of interest xa:

u(xa) ≈ uh(xa) =
n∑
b=1

Nb(xa)ub (3.21)

3. Governing system discretisation: either strong approximation of the dif-

ferential form of the PDE at the field node (problems with imposing

Dirichlet BCs), or weak approach through numerical integration of the

weak forms of the PDEs and BCs, yielding a sort of average value over

each cell. Additional costs come with the weak approach since a grid

of background cells is needed, but, on the plus side, it improves the

stability of the algorithm, and BCs are easier to implement.

4. Solving the system of discretised equations: in dynamics, time integration

schemes are employed that are essentially based on a FD reduction, of

either explicit or implicit nature, of the ordinary differential equation

(ODE) yielded by spatial discretisation of the original PDE.
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Meshless shape functions Ni, i = 1, . . . ,n should satisfy (3.19), and cor-

rective mechanisms should be put in place in case such condition cannot be

guaranteed. Other than that, the way each method builds its shape functions

is what more starkly distinguishes it from the next one.

Properties such as consistency, stability, compatibility, Kronecker delta p.,

compact support p. should drive the development process of shape functions.

• Consistency: a meshless interpolation (3.21) that is able to exactly

reproduce polynomial functions of order k, can then be called kth or-

der consistent. For instance, if we aim at 1st order consistency, the

approximation should satisfy the requirement:

n∑
i=1

Ni(x)xi = x (3.22)

Condition (3.22) should be valid everywhere across domain Ω.

Consistency is a prerequisite for the convergence of the numerical

scheme to the exact solution, when the distance between particles is

progressively reduced, h→ 0. In particular, we observe that Galerkin

weak forms of PDEs with order of differentiation 2k, require an inter-

polation scheme up to order k of consistency, as necessary condition

for convergence.

• Stability: the particle distribution in the domain Ω, however irregular,

should be such that at any position x ∈ Ω there is always a sufficient

number of particles as needed in order to form a shape function

support.

• Compatibility: in weak formulations, the interpolated function has to

be continuous all across the overlapping support domains on Ω.

• Kronecker delta property: satisfaction of the Kronecker delta prop-

erty, which is helpful to impose essential (Dirichlet) BCs:

Ni(xj) = δij =

1, i = j

0, i 6= j, i, j = 1, . . . , n
(3.23)
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An interpolant operator I[·], when applied to a function f (x), gives

I [f(x)] =
N∑
i=1

Wi(x)f(xi) | I [f(xi)] = f (xi) i = 1, . . . ,N (3.24)

The interpolant as defined in (3.24) can only be built from shape

functions Ni, i = 1, . . . ,N that satisfy the Kronecker delta property.

When this is not true, an additional approximation error is added to the

solution.

• Compact support: the shape functions supports should remain reason-

ably small in size in order to include only the number of nodes strictly

necessary for a correct local interpolation. This property is useful to

obtain discretised equations that are as decoupled as possible from

each other (i. e. a sparse system matrix).

3.3 smooth particle hydrodynamics

3.3.1 Generalities

Lucy [166], Gingold and Monaghan [88] came up simultaneously (in the

same year) with the concept of SPH, for the purpose simulating astrophysical

phenomena such as the formation of stars and galaxies. Instead of breaking

down a continuum into a discrete set of points, as it is mostly the case for

numerical methods used in mechanics, SPH was used in astrophysics as

a mean to blend a system made of many, discrete pieces of matter into a

continuum field, that could as a consequence be governed by PDEs. In order

to achieve this, they ([166] and [88]) employed an interpolating kernel function

capable of determining the local value of the field f(x) at a position x, based

on the surrounding particles B at positions xB, representing scattered matter.

The closer a particle B is to x (‖x− xB‖ → 0), the greater the weight that

the interpolation process assigns to B for the evaluation of f (x).

Therefore, in astrophysics the kernel function characterises a position x

with the probability of finding a particle B there, or, in other words, that
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x = xB. It is in this context that SPH can be seen as a probabilistic method

based on Montecarlo estimations [177].

Soon was the potential of the method discovered for fluid dynamics

[176] and continuum mechanics applications [154], but this time playing the

reverse role than that in astrophysics: the role of an innovative discretisation

technique for the analysis of continuum media. This was the first completely

meshless method to appear in literature.

3.3.2 In the continuum: reproducing kernel approximation

A square integrable function f (x) ∈ L2 (R) can always be representable

using the Dirac delta generalised function δ (x) as

f (x) =

∫+∞
−∞ f (y) δ (x−y) dy (3.25)

In (3.25), δ (x−y) denotes the Dirac delta function, commonly defined as

δ (x, ε) = lim
ε→0


0 if ‖x‖ < −ε

2

1
ε if − ε

2 < ‖x‖ < ε
2

0 if ‖x‖ > ε
2

(3.26)

The reproducing kernel approximation procedure employed in SPH aims

to approximate the integral version of f (x) expressed in (3.25), defined

over a finite domain Ω, by substituting the Dirac delta function with a

weighting function over a support domain known as window [153] or kernel

function W (x− x ′,h) centred at location x, and averaging contributions

from all particles at locations x ′ found inside the (usually compact) support

of W (x− x ′,h), with the radius depending on the smoothing length h.

〈f (x)〉 =
∫
Ω
f
(
x ′
)
W
(
x− x ′,h

)
dx ′ (3.27)
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The Dirac delta function (3.26) does indeed possess some interesting

properties, one akin to the partition of unity:∫+∞
−∞ δ (x) dx = 1 (3.28)

and another resembling the Kronecker delta property (which, in effect,

constitutes its discrete analogue [3]):∫+∞
−∞ δ (y− x) f (y)dy = f (x) (3.29)

However, (3.25) cannot be used to interpolate the field of f (x) because of

its lack of regularity, namely, continuity and differentiability.

The kernel function W (x,h) in (3.27) can be easily constructed to achieve

a high order of regularity k,

W (x,h) ∈ Ck
(

Rd
)

k > 1 (3.30)

In (3.30), d is the dimensionality of the problem.

It may be speculated that the smoothness property (3.30) of the kernel

functions W (x,h) is the reason why the “smooth particle hydrodynamics”

method was called as such. Alternatively, the “smooth” denomination may

be due to the averaging effect exercised by the kernel function on the field

interpolation across the neighbouring particles, seen as collocation points

over the local support [158].

The majority of SPH kernel functions are defined over a compact support

which enhances the local character of the interpolation and is also computa-

tionally more efficient. A kernel function W (x,h) centred at position xa is

provided with a compact support Ωxa if the following property is verified:

W (x− xa,h) = 0 ∀x /∈ Ωxa (3.31)

Upholding (3.31), the interpolation of a field variable at xa will depend

only on neighbouring particles, enhancing its local character, and thus

improving its accuracy.
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As the smoothing length h→ 0, the kernel function behaviour should be

as close as possible to that of a Dirac delta function (3.28):

lim
h→0

W (x− xa,h) = δ (xa) ∀x ∈ Ω (3.32)

As a consequence of (3.32), in case (3.28) holds then (3.27) will be equiva-

lent to (3.25) for h→ 0.

Other than properties (3.28) and (3.31), SPH kernel functions W (x,h)

should also:

• be positive, in order to be numerically stable [158]

W (x− xa,h) > 0 ∀x ∈ Ωx̄ (3.33)

• be monotonically decreasing as the particles distance ‖x− xa‖ increases

∂2W (r,h)
∂r2

< 0 r = ‖x− xa‖ (3.34)

• be C1-consistent, in order to at least be able to reproduce linear fields.

C1-consistency implies C0-consistency, or the ability to correctly repli-

cate constants. The requirements that a SPH kernel function has to

satisfy in order to meet the consistency conditions are∫
Ωxa

W (x− xa,h) dx = 1 (3.35a)∫
Ωxa

xW (x− xa,h) dx = x (3.35b)

It is interesting to note that condition (3.35a) also imposes the normali-

sation of kernel function W (x,h), while (3.35b) is satisfied by kernels

that are symmetric around the origin [158].

Symmetric kernels are built so by construction, and thus (3.35b) is

easily met inside the domain. Problems originate for particles at or
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near the boundaries, where the particles support domains get cut off,

and the kernel functions that rest upon them end up incomplete, thus

failing to satisfy both conditions (3.35). This is shown graphically in

fig. 3.2.

Figure 3.2: one-dimensional representation of a bell-shaped SPH kernel: the compact
kernel support is complete in the interior of the domain, leading to symmetric
kernel functions (a); however, the presence of the boundary truncates part of
the support for target particles located in the proximity (b) or directly on the
boundary (c, d), leading to incomplete supports, unsymmetrical kernel functions
and inconsistent interpolations. (Source: [158])

Ad-hoc correction procedures have to be implemented for regions at

or near boundaries, in order to offset the lack of symmetry of local

kernels.
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3.3.3 Discrete kernel evaluation

Kernel properties (3.33)-(3.35) refer to integral formulations of the reproduc-

ing kernel approximation. In order to implement the SPH discretisation of the

governing PDEs, it is required to reduce integrals across the domain to sums

over the particles contained therein. In practice, this entails transforming

(3.27) into

fh (x) =

n∑
b=1

Vbf (xb) W (x− xb,h) (3.36)

In (3.36), n is the total number of particles discretising problem domain

Ω, while Vb is the volume attributed to each particle, at position xb. To

emphasise the dependence on the smoothing length h, the radius of influence

of the chosen position x, the approximated field variable f is denoted by fh.

In fact, the smoothing length h is an important parameter as it determines

the number of particles that are used in the computation (3.36) at each

position, that in turn governs the accuracy of the numerical scheme.

To further underline the importance of this dependence from h, Monaghan

in [179] recommends to consider Gaussian kernel functions as the most

faithful to the original continuous form of the PDEs. As it will be described

in subsequent sections, the Gaussian kernel is not compactly supported,

meaning that every particle in the domain enters (3.36) for any position,

although the weight assigned to each particle drops significantly with the

distance from the target point.

Using the notion of shape function as defined in (3.7a), (3.36) can be

rewritten as

fh (x) =

n∑
b=1

f (xb)υb (x) (3.37)

By comparing (3.37) with (3.36), SPH shape functions υb (x) are defined as

υb (x) = VbW (x− xb,h) b = 1, . . . ,n (3.38)

As SPH shape functions υb (x) in (3.38) depend on kernel function W (x−

−xb,h), they differ from their finite elements equivalents in that:
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• SPH shape functions do not satisfy the Kronecker delta property (3.23),

fh (xa) 6= f (xa). Therefore, they cannot be defined as interpolants, but

are instead only approximants for a given function at a position xa.

• The discrete form of consistency conditions (3.35) has to be imposed

directly on the kernels, in order to ensure the reproducibility of at least

first order polynomial functions:

n∑
b=1

VbW (x− xb,h) = 1 (3.39a)

n∑
b=1

(x− xb)VbW (x− xb,h) = 0 (3.39b)

3.3.4 Numerical errors

The SPH method introduces three types of numerical errors when it is used

to solve a differential equation in discrete terms:

1. The smoothing error that originates from adopting an integral repre-

sentation (3.27) which uses kernel functions that do not select the

target position x, filtering out values at other positions as Dirac delta

functions (3.25) would do, but act by distributing the local field value

f(x) over a neighbourhood of x.

εS = ‖f (x) − 〈f (x)〉‖ =

= ‖f (x) −
∫
Ω
f
(
x ′
)
W
(
x− x ′,h

)
dx ′‖ (3.40)
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Taylor series expansion of 〈f (x)〉 would yield

〈f (x)〉 = f (x)
∫
Ω
W(x− x ′)dx ′+

−
df (x)

dx

∫
Ω
(x− x ′)W(x− x ′)dx ′+

+
1

2

d2f (x)

dx2

∫
Ω
(x− x ′)2W(x− x ′)dx ′ + . . .

. . .+
1

k!
dkf (x)

dxk

∫
Ω
(x− x ′)kW(x− x ′)dx ′ (3.41)

Considering consistency conditions (3.35) to be holding, substituting

〈f (x)〉 from (3.41) in (3.40) leads to [18]

εS ∝
1

2

d2f (x)

dx2
h2 +O

(
h3
)

(3.42)

In going from (3.40) to (3.42), distance x − x ′ is assumed to be a

multiple of the smoothing length h.

In case we were to impose consistency conditions similar to (3.35b),

but of higher polynomial order, i. e. of the type∫
Ω

(
x− x ′

)j
W
(
x− x ′,h

)
dx ′ = 0 0 < j 6 k (3.43)

then (3.42) would become

εS ∝
1

(k+ 1)!
d(k+1)f (x)

dx(k+1)
+O

(
hk+2

)
(3.44)

Other than the imposed order of consistency, smoothing error εS in

(3.40) also depends on the choice of kernel function W(x,h) [153].
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2. A truncation error that arises from the finite approximation (3.36) of

integral form (3.27).

εT = ‖〈f (x)〉− fh (x) ‖ =

= ‖
∫
Ω
f
(
x ′
)
W
(
x− x ′,h

)
dx ′ −

n∑
b=1

Vbf (xb) W (x− xb,h) ‖

(3.45)

The truncation error εT in (3.45) mainly depends on the number of

particles used for the discrete representation [162].

3. A further source of error is the nodal integration scheme that is inherent

to the particle approximation and to the overlapping support domain

structure of SPH. Direct integration of the field variable at the nodes,

on the one hand has the advantage of avoiding the deployment of

an auxiliary mesh of Gauss quadrature points, rendering SPH a truly

meshless method and facilitating large deformation analyses [208], but

on the other hand it inevitably suffers from cost of numerical insta-

bilities (pressure oscillations, tensile instabilities, locking scenarios)

caused by rank deficiency in the stiffness matrix, see fig. 3.3 [35, 115].

In essence, the nodal integration error is conceptually very close in

meaning to the truncation error discussed above, and depends on the

way in which particles are distributed across the domain [65].

There is a correlation between the stability of a numerical method,

and the conservation properties of the system it is set to discretise: at

each point in the domain, the relevant properties – that, for a purely

mechanical system, amount to mass, linear and angular momenta, and

energy – shall remain conserved [52].

SPH, along with other strong form collocation particle methods, satis-

fies conservation requirements globally, as a sum on the whole domain,

but not locally [53]. This statement is shown valid for the discrete

angular momentum in [36], which does not get preserved in the course

of a simulation, and thus special techniques have to be used to modify

the kernels, with the aim of satisfying the local conservation prerequi-

site. These modifications, in turn, have an effect on other conserved
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meshless fem

nodal integration (e.g. sph)

inconsistent
interpolation

near boundary

local kernel
compact
support

interpolation particle integration point

fe reduced integration

excessive
elemental
distortion:

hourglassing?

element node quadrature point

3 multiple quadrature points
per element

7 reduced or nodal integration:
can lead to quadrature errors

0-energy modes for
bilinear quadrilateral element

with reduced integration

spurious pressure
oscillations

insufficient number of
integration points,

leads to . . .

from CFD literature:
use central scheme

+ artificial dissipation

from CFD literature:
use upwind scheme
+ Riemann solvers

background cells
with stress points

kernel
support

(interpolation)

background
cell

(integration)

interpolation particle integration point

background cell

possible remedies

Figure 3.3: nodal integration creates rank deficiency in the system matrix, as the
number of quadrature points is insufficient for a correct numerical integration.
Spurious modes are generated, critically affecting the accuracy of the simulation.
A similar problem faced in FEM is that of hourglassing instabilities caused by
reduced integration. The figure also shows possible remedies to the problem.
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properties, that as a consequence are left themselves in need to be

corrected. This entire chain of modifications, and their consequences

will be made clearer in subsequent sections.

3.3.5 Artificial viscosity

As stated above, the numerical error induced by the SPH nodal integration

gives raise to spurious oscillations of pressure and velocity in the solution,

depending on the type of physical problem and unknown variables [153].

Spurious oscillations could also be caused by discontinuities in the field

variable (the so-called shocks in fluid dynamics [107, 139], and high-strain

solid dynamics [104, 155]).

In the context of the FDM, the most expedient numerical device envisaged

to alleviate these instabilities was found to be the introduction of an artificial

viscosity term to the momentum equations, which is specifically designed

to smooth out the spurious oscillations from the solution. This has been

especially well-developed in the field of CFD [139], and is generally expressed

in the case of the linear momentum equation (in spatial configuration) as

ρv̇ = ∇ · (σ+σν) (3.46)

In (3.46), σ is the Cauchy stress tensor, and σν is the artificial viscous

stress term, which in general will indirectly depend on the velocity.

SPH bears resemblance, in its basis concept, to FD, being a collocation,

nodally integrated algorithm. Hence, it was found that adding an artificial

viscous pressure to SPH-discretised field equations could be an effective

means to get rid of unwanted oscillations.

Monaghan and Gingold [182] found that the most common models of arti-

ficial viscosity used in FDM – von Neumann-Richtmyer viscosity, proportional

to the square of the velocity gradient [267], and artificial bulk viscosity, directly

proportional to the velocity gradient ([170], [197]) – cannot be successfully

adapted to SPH. This is mainly due to the dependence of artificial viscous

terms on smoothing length h as reference length, which is too small to
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account for discontinuities of particles motions that take place at a larger

scale [182].

In order to address this issue, the following viscous term was proposed

by Monaghan in [182]:

σν = Πij ei ⊗ ej =

=


− 1
ρ

[
αcij

hvij·rij
r2ij+η

2 +β

(
hvij·rij
r2ij+η

2

)2] (
ei ⊗ ej

)
if vij · rij < 0

0 if vij · rij > 0
(3.47)

In (3.47), cij is the mean speed of sound, and rij = ‖xi − xj‖ the distance,

between particles at positions xi and xj; α, β are appropriately chosen

constants coefficients that regulate the damping intensity of the viscous

stress (usually β is chosen as β = 2α, with 0.5 6 α 6 1), while η is a

small valued parameter introduced to avoid invalid results when particles

i and j are very close to each other. The product vij · rij can be shown to

be equivalent, in the case of a SPH discretisation using a Gaussian kernel

[153, 182], to ∇ · v, measure of volumetric compression or dilatation. This

establishes a direct correlation between the artificial viscous term Πij in

(3.47) and the divergence of the velocity. Density ρ is assumed to be constant

for all particles.

The Monaghan artificial viscosity term Πij in (3.47) contains a term linearly

dependent from the product vij · rij, as in the bulk viscosity, and a term with

a quadratic dependence from the same product, as in the von Neumann-

Richtmyer viscosity model. The presence of rij in (3.47) ensures that the

viscous parameter modifies the equations at the appropriate length scale at

which shocks can be simulated as discontinuous particles behaviour.

The viscous term defined in (3.47) is able to treat the discontinuities that

may arise in the solution of hyperbolic systems of PDEs, as those governing

CFD problems. However, there are some drawbacks associated with the

adoption of this type of artificial viscosity, namely:

• artificial viscosity σν may inadvertently affect the solution of the

original PDEs;
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• inability to gauge and control the deterioration of accuracy. Such

deterioration stems out of the error introduced by the addition of a

non-physical term to the governing equations.

These points will be addressed in later sections, where an alternative

numerical dissipation scheme, well known in the field of CFD, will be intro-

duced for applications in the context of mixed formulation solid dynamics.

3.3.6 Enforcement of boundary conditions

As noted earlier, the enforcement of essential (Dirichlet) BCs is problematic

for a strong form, collocation type method such as SPH. This is due to the

fact that the kernel interpolant is intrinsically non-local (namely, in order

to define it, information needs to be gathered not just at the target position,

but also from surrounding particles) and therefore, most importantly, it

does not satisfy the Kronecker delta property. Moreover, the presence of

boundaries divides kernel compact supports in regions inside and outside

the computational domain: as a result, the SPH interpolation functions lose

their properties of unity (3.19) and consistency (3.39).

In literature, this shortcoming is addressed through a variety of ap-

proaches.

In the context of fluid dynamics, Monaghan in [179] proposed to add

a layer of particles on the boundary, capable of preventing other particles

located inside the domain from crossing it. This is achieved by the introduc-

tion of boundary fictitious forces (e. g. Lennard-Jones inter-particle forces)

acting in the opposite direction.

Alternatively, in [59], a set of mirror particles, arranged in a specular manner

with respect to the domain particles at or near boundaries, are placed on

the other side of walls, or fixed constraints. These mirror particles do not

enter calculations in any way other than exerting a velocity that is equal

and opposite in direction to that of the inner particles they mirror. In this

manner, the velocities of particles at the boundary are enforced to reduce to

zero, as these particles are specifically conceived to have an equal number

of real and mirror neighbours.
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As just seen for the mirror particles method, the ghost particle approach

[211, 251] populates the space outside the boundary of the domain with

dummy particles, but improves on the former technique by eliminating

the requirement that dummy particles should mirror the inner particles

arrangement.

The topic of lack of consistency at and near boundaries in SPH is not

exhausted by the remedies briefly mentioned above. All these methods have

a common feature in that they act on the problem configuration, adding

dummy particles or ad-hoc forces, but they do not amend the original form

of the SPH kernel function. The issue of lack of consistency however can also

be addressed by modifying the kernel interpolant, in order to ensure that

the particle interpolation complies with partition of unity (3.19), and with

consistency and completeness conditions (3.39). The modifications should

be done in such a way as to be activated only on the boundary region, or,

more specifically, in regions of the problem domain where SPH cannot even

provide correct representation of rigid body motions [21, 163].

In the next section, a different type of SPH kernel correction will be in-

troduced, with the aim of improving consistency at and near boundaries.

This novel methodology has the advantage of being far less computationally

expensive than RKPM, another particle method described in appendix A.1,

at the expense, however, of achieving a smaller order of polynomial repro-

duction.

3.4 corrected smooth particle hydrodynamics

3.4.1 Types of Kernel functions

Generally speaking, the function chosen as kernel should be sufficiently

smooth, and as both the smoothing length h → 0 and the inter-particles

distance ∆x → 0, the discrete solution should converge to the analytical

solution (i. e. fh (x) → f (x)), no matter the choice of kernel function [81].

However, an SPH simulation will always employ a finite number of particles,

so the limits h→ 0 and ∆x→ 0 will never be realised in practice, and the

type of kernel function chosen will influence the smoothing error εS in (3.40).
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Different classes of functions have been employed as kernels in SPH litera-

ture. An early survey of these (in one-dimensional examples) was made by

Fulk et al. [81], who distinguished four main types: the bell-shaped kernels,

that resemble statistical normal distributions around a mean; hyperbolic-type

kernels, shaped as negative exponentials; the parabolic-type kernels, shaped

as convex parabolas; and the double hump type of kernels, derived from bell-

shaped curves, and modified in order to have a minimum at the centre and

two maxima symmetrically placed left and right of the centre. See fig. 3.4 for

a visual representation of these four main groups of SPH kernel functions.

Figure 3.4: four main types of SPH kernel functions as described in [81]. K and K ′

as listed in the y-axis represent the kernel function and its derivative with respect
to space, respectively. The x-axis has the target particle lying at the 0 point, with u
measuring the distance from it. (Source: [81])

It was concluded in [81] that, out of all the kernel types considered, the

bell-shaped functions provide the best SPH approximation of a continuous

function.

The bell-shaped kernel functions can, in turn, be classified into a kernel

with compact or non-compact support. In the case of non-compact supports,

the whole domain acts as support for each particle; however, the influence of
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particles beyond the immediate neighbourhood of the target position rapidly

decays. In general, any kernel function can be expressed in the following

form:

W(x,h) =
α

hd
Φ(x,h) (3.48)

In (3.48), Φ(x,h) is the mathematical expression chosen as kernel, d is the

problem dimensionality and α is a constant of normalisation to ensure that

(3.39a) is satisfied by W(x,h).

The Gaussian function belongs to the group of kernels with non-compact

support, and is commonly defined by:

Φ(x,h) = exp
(
−
‖x− xa‖2

h2

)
α =

1

πd/2
(3.49)

As the Gaussian kernel (3.49) is not compactly supported, and as a con-

sequence it is more computationally more expensive to use. However, as

indicated earlier, it leads to the most accurate representation of the continu-

ous form for field variables in the original PDEs.

The spline polynomial kernel functions can be ideally considered as the

adaptation of the Gaussian kernel to a compact support [64, 183]. For the set

of spline functions that follow, xa is intended as the target position where

the kernel is centred.

The cubic spline function [178] is expressed as

Φ(x,h) =


1− 3

2

(
‖x−xa‖
h

)2
+ 3
4

(
‖x−xa‖
h

)3
; 0 6 ‖x−xa‖

h 6 1

1
4

(
2−

‖x−xa‖
h

)3
; 1 6 ‖x−xa‖

h 6 2

0 ; ‖x−xa‖
h > 2

(3.50)

To complete the definition of the cubic spline function, (3.50) should be

normalised by introducing constant α determined by (3.39a). To be consistent

with (3.50), ensuing definitions of other spline kernel functions also will not

include normalisation factor α.
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An example of quartic spline function is found in [64] expressed as

Φ(x,h) =



(
1− 1

2
‖x−xa‖
h

)4
− 5

(
3
5 −

1
2
‖x−xa‖
h

)4
+ 10

(
1
5 −

1
2
‖x−xa‖
h

)4
;

0 6 ‖x−xa‖
h < 0.4

(
1− 1

2
‖x−xa‖
h

)4
− 5

(
3
5 −

1
2
‖x−xa‖
h

)4
; 0.4 6 ‖x−xa‖

h < 1.2
(
1− 1

2
‖x−xa‖
h

)4
; 1.2 6 ‖x−xa‖

h < 2

0 ; ‖x−xa‖
h > 2

(3.51)

The quintic spline function was used in [34, 35], and also appeared in [187].

Derivatives of an SPH approximation up to the 4th order can be calculated,

and this enables the determination of interpolated values of the Laplacian

of Laplacian. The quintic kernel assumes the form:

Φ(x,h) =



(
2−

‖x−xa‖
h

)5
− 16

(
1−

‖x−xa‖
h

)5
; 0 6 ‖x−xa‖

h 6 1
(
2−

‖x−xa‖
h

)5
; 1 <

‖x−xa‖
h 6 2

0 ; ‖x−xa‖
h > 2

(3.52)

It has been shown in [64] that a non-negative Fourier transform of the

kernel function [152] is a necessary condition for stability in analyses with a

large number of particles.

The Gaussian kernel function (3.49) would satisfy this condition, yet its

open support renders it computationally unattractive when there are too

many particles. An alternative class of functions, defined over a compact

support, is the family of Wendland functions [269]. Wendland-type kernels are

computationally inexpensive, as they are based on low order polynomials:

Φ(x,h) =

max
(
0, 1− ‖x−xa‖h

)3
·
(
1+ 3

‖x−xa‖
h

)
in 1-D

max
(
0, 1− ‖x−xa‖h

)4
·
(
1+ 4

‖x−xa‖
h

)
in 2-D and 3-D

(3.53)
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with normalising factors being

α =


5
4 in 1-D

7
π in 2-D

21
2π in 3-D

(3.54)

Wendland kernels W(x,h) = αΦ(x,h) defined by (3.53) and (3.54) are

those of 2nd order differentiability. Additional examples of Wendland kernels

that reach C4 and C6 orders can also be found in [64].

All kernel functions reported above are y-symmetrical about their centre;

this leads to

Φ(∆xij,h) = f
(
∆xij

h

)
= Φij = Φji = f

(
∆xji

h

)
(3.55)

with

∆xij = ‖xi − xj‖ = ‖xj − xi‖ = ∆xji.

From (3.55) a useful property of symmetry can be derived also for the

gradients of W(x,h) as:

∇iW
(
∆xij,h

)
=
∂W

(
∆xij,h

)

∂xi
ei =

∆xij

‖∆xij‖
∂W

(
∆xij,h

)

∂∆xij
=

=−
∆xji

‖∆xji‖
∂W

(
∆xji,h

)

∂∆xji
= −∇jW

(
∆xji,h

)
(3.56)

In (3.56), ∇iW
(
∆xij,h

)
is the gradient of the kernel function at particle at

position xi.

The five types of bell-shaped kernel functions just described are graphi-

cally represented in fig. 3.5.

3.4.2 Kernel correction

In order to at least ensure that, using SPH, linear fields get correctly inter-

polated – or, in other words, in order to cure the adverse effects caused

by the truncation of particle support domains at or near the boundaries –
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Figure 3.5: superimposition, for purpose of visual comparison, of different types of
one-dimensional SPH bell-shaped kernel functions: Gaussian (orange), cubic spline
(brown), quartic spline (blue), quintic spline (red) and Wendland-type (green).
This is also the order at which diameters of compact supports grow progressively
thinner (see illustration at the top), and the kernels more biased towards the center
(see bottom illustration). Kernel diameters in the upper figure are computed as
the distance between the two tail points where the bell-shaped kernel function is
reduced to 1% of its peak value. Chosen smoothing length of h = 1.2.
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corrections have to be introduced in the formulation of the kernel functions,

so that consistency conditions (3.39) are satisfied.

RKPM, as briefly described in appendix A.1, can be one way to obtain

this result. A simple correction procedure was proposed in [36], taking

inspiration from what done in [152, 164] in the context of RKPM modified in

a MLS sense.

In [36], the corrected kernel* W̃ (x) is defined as the product of the original

SPH kernel W (x) function and a corrective polynomial Ψ(x):

W̃ (x) = Ψ(x)W (x) ; Ψ(x) = α(x) [1+β (x) · (x− xb)] (3.57)

In (3.57), α(x) and β (x) are parameters that locally estimate the correction.

They are determined by imposing conditions (3.39) on the corrected kernel

W̃ (x) in (3.57), namely:

n∑
b=1

VbW̃ (x− xb) = 1 (3.58a)

n∑
b=1

(x− xb)VbW̃ (x− xb) = 0 (3.58b)

Substitution of (3.57) in (3.58b) first allows to identify β (x); afterwards,

substituting in (3.58a) yields α (x), as:

α (x) =
1∑n

b=1 Vb [1+β (x) · (x− xb)]W (x− xb)
(3.59a)

β (x) =

[
n∑
b=1

Vb (x− xb)⊗ (x− xb)W (x− xb)

]−1 N∑
b=1

Vb (xb − x) ·

·W (x− xb) (3.59b)

It can be noted that α (x) in (3.59a) depends on β (x).

* For conciseness, dependence of W from the smoothing length h will be omitted from
notation from this point onward.
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Corrections (3.59) allow the SPH interpolation to reproduce exactly linear

functions of the type f(x) = ax+b. This follows from first considering the

SPH approximation fh(x) of the linear function f(x):

fh(x) =

n∑
b=1

Vb (axb +b) W̃ (x− xb) =

=a

n∑
b=1

VbxbW̃ (x− xb) +b

n∑
b=1

VbW̃ (x− xb)

=1 from (3.58a)

(3.60)

Given that conditions (3.58) hold true, then (3.60) leads to

fh(x) = a

see (3.58b)

n∑
b=1

VbxbW̃ (x− xb)+b = ax+b = f(x) (3.61)

Superimposed plots of an uncorrected and a corrected version of a one-

dimensional kernel in the proximity of a boundary are drawn in fig. 3.6a.

Values of coefficients α(x) and β(x) for the corrected kernel in fig. 3.6a, as

calculated in (3.59), are presented in fig. 3.6b.
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Figure 3.6: on the left, plot of one-dimensional corrected kernel functions W̃ (x) on
a line of unit length, for particles: at the boundary (x = 0, blue), inside the domain
(x = 0.5, red), near the boundary (x = 0.98, brown). Corresponding uncorrected
kernels W(x) are plotted in black. Quintic kernel (3.52), 1001 particles, particles
distance h = 0.001, smoothing length coefficient in (3.48) α = 120. On the right,
coefficients α(x) and β(x) for the corrected kernels in fig. 3.6a, as calculated in
(3.59) along the domain; positions of the three particles in fig. 3.6a are highlighted.
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3.4.3 Correction for the gradient of kernel

Conditions (3.39) should also apply to the gradient of kernel ∇W (x), as the

governing system (2.162) is made of first order PDEs in all the unknowns of

the problem. At the least, we want to be able to correctly reproduce linear

fields, because the artificial dissipation term to be included in the numerical

scheme will require the evaluation of the Laplacians of field variables (see

section 3.6 further on).

In order to fulfil first order completeness, that is, for the SPH representation

to be able to exactly fit a linear field, from (3.39b) it follows that the corrected

gradient ∇̃W (x) of the kernel should satisfy, for all particles xa in which

the domain is discretised:

n∑
b=1

Vb (xb − xa)⊗ ∇̃W(xb − xa) = I a = 1, . . . ,n (3.62)

In [36], the corrected gradient ∇̃W (x) was implemented to comply with

constraint (3.62), as

∇̃W (xb − xa) = La∇W(xb − xa) (3.63)

with correction matrix La in (3.63) being defined as

La =

[
n∑
b=1

Vb∇W(xb − xa)⊗ (xb − xa)

]−1
(3.64)

Substituting ∇̃W(xa) as defined in (3.63) into ∇W(xa) in (3.62), the cor-

rection matrix La in (3.64) ensures first order consistency for each target

particle at xa.

Having guaranteed the satisfaction of (3.39b), there remain to be verified

that ∇̃W(x) is in compliance with 0th degree consistency condition (3.39a),

that is, the gradients of constant functions should vanish across the domain.

As already shown in early SPH papers [177, 178], this goal can be easily

achieved by subtracting from the SPH summation the value of the function

f (xa) at target point xa.
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Normalisation of the corrected kernel, as in (3.58a), should in general

be enough to ensure correct reproduction of constant functions by the SPH

method.

Ultimately, the corrected SPH interpolation of the gradient of a function

f(x) can then be expressed as

∇f(xa) =
n∑
b=1

Vb [f(xb) − f(xa)]⊗ ∇̃W(xb − xa) (3.65)

3.4.4 Correction for the Laplacian of kernel

In sections 3.4.2 and 3.4.3 we introduced the kernel modifications necessary

to correctly implement a consistent discretisation of mixed system (2.162).

In any event, the artificial dissipation that will be employed to stabilise the

SPH-discretised governing system will rely on the undivided [82] discrete

harmonic (Laplacian) and biharmonic (Laplacian of Laplacian) operators.

In analogy with (3.58) and (3.62), consistency of the discretised kernel

Laplacian ∇̃2W (x) is obtained by enforcing the following requirements

n∑
b=1

Vb∇̃2W (x− xb) = 0 (3.66a)

n∑
b=1

(x− xb)Vb∇̃2W (x− xb) = 0 (3.66b)

n∑
b=1

(x− xb)
2 Vb∇̃2W (x− xb) = 2d (3.66c)

In (3.66c), d(= 2, 3) indicates the dimensionality of the problem.

As already noted for the corrected kernel gradient in section 3.4.3, 0th

order consistency (3.66a) will be ensured by subtracting the field variable at

the target position, f(xa), from the SPH summation. Therefore, the Laplacian

of a function ∇2f(x), will assume the form

∇2f(xa) =
n∑
b=1

Vb [f(xb) − f(xa)] ∇̃2W(xb − xa) (3.67)
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A formulation of the term ∇̃2W (x) above, capable of satisfying the re-

maining conditions (3.66b) and (3.66c), is obtained by using the method of

Lagrange multipliers (see for instance [43]). The general form of the cor-

rected Laplacian ∇̃2W (xa) for a particle at xa is defined up to the quadratic

order as below:

∇̃2W (xa) = ∇2W (xa) +αa · (xa − xb) +βa (xa − xb)2 (3.68)

Considered (3.68), equation (3.67) transforms into

∇̃2f(xa) =
n∑
b=1

Vb [f(xb) − f(xa)] ∇̃2W(xb − xa) (3.69)

The approach described above has been adopted in [145]; a similar pro-

cedure was implemented in [34], except for the fact that, in that paper, all

three conditions (3.66) are employed as constraints to the target function.

In (3.68), αa and βa are correction parameters that are found by solving a

system of equations generated by the substitution of (3.68) into (3.66b) and

(3.66c), namely:



∑
b∈Ωa Vb‖xa − xb‖ ⊗ ‖xa − xb‖

∑
b∈Ωa Vb‖xa − xb‖2‖xa − xb‖(∑

b∈Ωa Vb‖xa − xb‖2‖xa − xb‖
)T ∑

b∈Ωa Vb‖xa − xb‖4


 ·


αa
βa


 =

=


 −

∑
b∈Ωa Vb‖xa − xb‖∇2W(xa − xb)

2d−
∑
b∈Ωa Vb‖xa − xb‖2∇2W(xa − xb)




(3.70)

Given that system (3.70) has to be solved for each particle a = 1, . . . ,n,

the computational cost of the correction procedure can increase significantly

with the number of particles present in the simulation.

3.4.5 Tensile Instability

Tensile instability is a numerical difficulty mainly associated with SPH, en-

countered when simulating solid mechanics applications.
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This phenomenon occurs in SPH simulations of bodies under a tensile state

of stress, once in a transient regime, because a previous equilibrium state has

been broken. It happens locally, and consists in a rapid and sustained growth

of velocity in some particles, that afterwards stabilises into an oscillatory

pattern as the particles become very close and begin clumping together

in clusters. This behaviour is particularly difficult to detect in cases when

particles are expected to behave that way, for instance when simulating

fragmentation processes.

A significant amount of research has been undertaken in order to under-

stand the root of this problem, and to overcome it.

Dyka et al [70, 71], for instance, developed a modified SPH scheme where

particles were divided in two groups, one that evaluated velocities, and

the other stresses. This approach produced encouraging results; however, it

adds a certain layer of complexity to SPH procedures.

Morris [186] investigated the issue in depth, and suggested the adoption

of higher order spline-type kernel functions in order to cure the instabilities.

Dilts, on the other hand, used an MLS approximation in order to alleviate

the problem, in [65].

Swegle and coworkers in [248] were the first to diagnose tensile instability

as an issue intrinsic to the SPH method, and to point out its possible remedies.

In that work, a von Neumann stability analysis, as pioneered in [192], was

performed on a linearised, one-dimensional solid mechanics problem based

on the conservation of mass and linear momentum. In brief, their procedure

consisted, firstly, in linearising the equations of motion subjected to a small

perturbation; then, in applying the Fourier transform to the result, and

finally, in studying the eigenstructure of the matrix of the resulting system

of equations. In case there be eigenvalues > 1, the amplitude of some wave

number would then consistently grow with time, eventually developing

instabilities in the simulation.

It is possible to perform a linearised analysis to determine the potential on-

set of tensile instability, as this turns out to be completely time-independent.*

* This is confirmed by the fact that velocities cease to grow indefinitely after particles have
moved very close to one another, in clusters.
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The von Neumann analysis shows that, in an idealised interaction between

two particles, tensile instability appears in case the following condition is

met:

W ′′(x) T > 0 (3.71)

From (3.71), it can be seen that presence or absence of instability depends

on the sign of the second derivative of the kernel, W ′′(x), and on whether

the state of stress T is compressive or tensile.

Figure 3.7: shape of first derivative of a bell-shaped kernel function. The dotted
vertical line locates the saddle point at a shorter distance from the origin than the
smoothing length h. In this case, neighbouring particles will fall in the region of
tensile instability and compressive stability, where W ′ > 0. (Source: [248])

Figure 3.7 helps to better understand condition (3.71): given the symmetry

about the target particle position (the origin of the diagram) of derivatives

of bell-shaped kernel functions W ′(x), instability in tension, (T > 0), will

happen in regions beyond the position (saddle point) where the second

derivative changes sign and becomes negative, W ′′ < 0.

In compression, instead, T < 0 so the unstable region is the one between

the origin and the saddle point, where W ′′ > 0.

As the smoothing length h is usually set to be equal to the initial distance

between two neighbouring particles, ∆x, and also, given that the saddle

point of bell-shaped kernels (where W ′′(x) changes sign) is located at a

distance from the origin xs < h, this issue mainly happens in tension, and

hence it is known as “tensile instability”.
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When the study in [248] is extended to include multiple neighbours for a

target particle, while still being in one-dimension, the condition allowing

the onset of tensile instability is revealed to be very similar to (3.71):

[
W ′′(xa − xi+1) +W

′′(xa − xi+3) +W
′′(xa − xi+5) + . . .

]
T > 0 (3.72)

In (3.72), xa is the position of the target particle, assumed as origin in

fig. 3.8.

Figure 3.8: influence of neighbours position over onset of tensile instability, drawn
on the first derivative of a bell-shaped kernel function. A black dot represents an
odd-positioned particle, while a crossed dot represents an even-positioned one.
Even-positioned neighbours do not influence the tension instability criterion (3.72).
(Source: [248])

Therefore, it is seen from (3.72) that tensile instability was found to be

highly dependent from particles positions, and from the shape of the kernel,

which determines the saddle point position for W ′′.

Monaghan et al. [95, 180] proposed the addition of an artificial stress

component to the equation of motion, based on the signs of stresses P.

Later, both papers of Bonet and Kulasegaram [35], and Belytschko and co-

authors [20], building on its dependency from neighbours positions, suggest

that the problem of tensile instability can be eliminated altogether through

the adoption of a total Lagrangian perspective. Encouraging results of SPH

in an updated Lagrangian framework, devoid of tension instability, can be

found in [112, 264].
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In [35], analysis of tensile instability was extended to include the effects

of nonlinear mechanics. It was concluded that stability at initial positions

depends on the well-posedness of the constitutive model, which is ensured

by any reliable material model. However, once the simulation starts and

equilibrium is lost, movement of particles, as they drop in and out each

other compact supports, can eventually activate condition (3.72) at some

position in the domain, leading to local developments of tensile instabilities.

The danger could be entirely avoided in case a total Lagrangian framework

is adopted. In fact, in total Lagrangian analyses, neighbours of each particle,

along with their respective kernel weight, are assigned just at the initial

step of the simulation, for the reference configuration, and are then left

unchanged until the end of the analysis.

Proceeding this way, not only the onset of tensile instability is prevented

from ever happening, but there are also conspicuous savings in computa-

tional time, stemming from having to search for neighbours and to apply

corrections to the kernel and its derivatives, only once over the course of the

entire simulation.

For these reasons, the total Lagrangian description will be adopted as the

framework for the SPH discretisation of the equations of motion.

3.5 sph spatial discretisation of the mixed system

In order to discretise the nonlinear elastodynamics system of PDEs in space

with the SPH model described in this chapter, it is essential to revisit the

mixed {p, F,H, J} system (2.162) as developed in section 2.13. That system
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can be rewritten in terms of a vector of residuals R = (Rp, RF, RH, RJ)
defined as†

Rp =
∂p

∂t
−∇0 ·P− ρb (3.73a)

RF =
∂F

∂t
−∇0

(
p

ρ

)
(3.73b)

RH =
∂H

∂t
− F×××∇0

(
p

ρ

)
(3.73c)

RJ =
∂J

∂t
−H : ∇0

(
p

ρ

)
(3.73d)

Then, it is possible to specify a generalised expression for the rate of

virtual work by employing (3.73) in conjunction with arbitrary general

virtual stresses δV = (δv, δΣF, δΣH, δΣJ), conjugate toR, to yield:∫
Ω
δVTRdΩ =

∫
Ω
(δv ·Rp + δΣF :RF + δΣH :RH + δΣJRJ) dΩ =

= 0 (3.74)

In (3.74), δv represent an arbitrary velocity field, while δΣF, δΣH and δΣJ
are virtual conjugate stresses to the strain measures F, H and J, as defined

in (2.124), and originally found in [32].

By separately setting each of the terms in (3.74) equal to 0, we obtain a

system of equations in a form apt to be discretised:∫
Ω
δv · ∂p

∂t
dΩ =

∫
Ω
δv · (∇0 ·P+ ρb) dΩ (3.75a)∫

Ω
δΣF :

∂F

∂t
dΩ =

∫
Ω
δΣF : ∇0

(
p

ρ

)
dΩ (3.75b)∫

Ω
δΣH :

∂H

∂t
dΩ =

∫
Ω
δΣH :

[
F×××∇0

(
p

ρ

)]
dΩ (3.75c)∫

Ω
δΣJ

∂J

∂t
dΩ =

∫
Ω
δΣJ :

[
H : ∇0

(
p

ρ

)]
dΩ (3.75d)

† As already specified in section 2.1, physical quantities and mathematical operators pointing
to the reference configuration will be designated with a subscript (·)0; e. g., the gradient
operator with respect to the reference configuration will be identified with ∇0.
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Equation (3.75a) can be further rearranged by using integration by parts

and the divergence theorem, as∫
Ω
δv · ∂p

∂t
dΩ =

∫
Ω
[∇0 · (δv ·P) −P : ∇0δv] dΩ+

∫
Ω
ρδv ·bdΩ =

=

∫
∂Ω

(δv ·P)NdΓ −
∫
Ω
P : ∇0δv dΩ+

∫
Ω
ρδv ·bdΩ (3.76)

where N is the normal vector to the surface Γ acting as boundary of Ω,

in the reference configuration. Remembering the relation between traction

force t and the first Piola-Kirchhoff stress tensor P expressed in (2.19), (3.76)

can be further simplified into∫
Ω
δv · ∂p

∂t
dΩ =

(∫
∂Ω
δv · tdΓ +

∫
Ω
ρδv ·bdΩ

)
+

+

(
−

∫
Ω
P : ∇0δv dΩ

)
= δWext + δW int (3.77)

In (3.77), δW int stands for the internal virtual work generated by stresses

inside the body reacting to externally applied conditions. These conditions

are exemplified by the external virtual work δWext term, defined as

δWext =

∫
∂Ω
δv · tdΓ +

∫
Ω
ρδv ·bdΩ (3.78)

It is useful to note that traction forces t in (3.78) are natural boundary

conditions that can be imposed along with external body forces b.
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As a first step towards meshless discretisation of equations (3.77), (3.75b)-

(3.75d), the collocation method is used to approximate the integrals over

domain Ω as sums over a cloud of particles scattered across Ω.

∑
a∈Ω

Vaδva ·
∂pa
∂t

=
∑
a∈Ω

Vaδva ·
(
Aa

Va
t+ ρba

)
+

−
∑
a∈Ω

VaPa : ∇0δva (3.79a)

∑
a∈Ω

VaδΣF|a :
∂Fa

∂t
=
∑
a∈Ω

VaδΣF|a : ∇0
(
pa
ρ

)
(3.79b)

∑
a∈Ω

VaδΣH|a :
∂Ha

∂t
=
∑
a∈Ω

VaδΣH|a :

[
Fa×××∇0

(
pa
ρ

)]
(3.79c)

∑
a∈Ω

VaδΣJ|a
∂Ja

∂t
=
∑
a∈Ω

VaδΣJ|a :

[
Ha : ∇0

(
pa
ρ

)]
(3.79d)

In each of the equations (3.79), Va is the subvolume assigned to each

particle at position Xa; more in general, physical quantities present subscript

(·)a refer to their value in Xa. Density ρ is assumed uniform over the domain.

Aa in (3.79a) stands for the part of boundary surface Γ assigned to a

particle in Xa that is itself located on the boundary, so that:Aa = 0 if Xa ∈ Γ

Aa 6= 0 if Xa /∈ Γ
(3.80)

We now observe that the RHS of equations in system (3.79) present gradi-

ents of quantities (virtual velocities δva and linear momenta pa) that can be

approximated by SPH summation, following (3.65).
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The RHS of (3.79a) contains the internal virtual work δWint, that depends

on ∇0δva which, with the help of property (2.159) for the double contraction

between second order tensors, can be simplified into

δWint = −
∑
a∈Ω

VaPa : ∇0δva =

= −
∑
a∈Ω

VaPa :


∑
b∈Ωa

Vb (δva − δvb)⊗ ∇̃0Wa (Xb) δva


 =

= −
∑
a∈Ω

Vaδva ·


∑
b∈Ωa

Vb

(
Pb∇̃0Wa (Xb) −Pa∇̃0Wb (Xa)

)

 (3.81)

Considering (3.81), the SPH approximation of ∇0pa terms on the RHS of

(3.79) leads to the spatial semidiscretisation of the {p, F,H, J} mixed system

(2.162), namely:

∂pa
∂t

=

(
Aa

Va
ta + ρba

)
−
∑
b∈Ωa

Vb

[
Pb∇̃0Wa (Xb) −Pa∇̃0Wb (Xa)

]
(3.82a)

∂Fa

∂t
=
1

ρ

∑
b∈Ωa

Vb (pb −pa)⊗ ∇̃0Wb (Xa) (3.82b)

∂Ha

∂t
= Fa×××

1

ρ

∑
b∈Ωa

Vb (pb −pa)⊗ ∇̃0Wb (Xa) (3.82c)

∂Ja

∂t
= Ha :

1

ρ

∑
b∈Ωa

Vb (pb −pa)⊗ ∇̃0Wb (Xa) (3.82d)

3.6 jst artificial dissipation

The semi-discretised system (3.82), combined with any time-marching scheme,

may still suffer from pressure chequerboard instabilities, due to the nodal

integration nature of SPH discretisation, as already highlighted in section 3.3.

Moreover, the presence of discontinuities in the solution field, system (3.82)

cannot produce meaningful results.

Both these shortcomings can be addressed by the addition of an artificial

dissipation term in the governing equations, as widely practised both in

CFD and computational solid mechanics (CSM). In CSM, artificial dissipation
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makes use of techniques ranging from gradient-based stabilisation [157, 207,

208] to strain smoothing [40, 52, 106]. These techniques, however, do not fully

solve the issue of pressure oscillations for analyses involving incompressible

and nearly-incompressible materials [72].

On the other hand, in section 3.3 we introduced (3.47) from [182] as

an effective way to add artificial dissipation to a SPH problem, capable

of smearing shocks and attenuate instabilities. This, however, affects the

accuracy in the continuous regions of the solution [243].

As a rule, the order of accuracy of a scheme should not be altered by

the introduction of an artificial dissipation term, that therefore should be

associated with a lower truncation error than the one of the scheme. A

straightforward way to achieve this, is to build the dissipative term out

of derivatives of a higher order than the ones appearing in the equations

governing the chosen problem. As an additional constraint, by their very

nature, dissipative terms in hyperbolic differential equations should be made

of derivatives of even order [107].

The JST scheme was first introduced in [122], in the context of FV schemes

for the solution of the Euler equations of fluid dynamics. It is designed to

provide background stabilisation in regions where the solution is spuriously

oscillating, together with the ability to capture shocks in the solution by

thickening the width of discontinuities with artificial viscosity.

The JST algorithm introduces artificial viscosity in a set of conservation

laws, and is composed of two terms: one acts on conserved variables Ua
through a harmonic (Laplacian) differential operator, the other through a

biharmonic (4th order derivatives) operator:

DJST (Ua) = D2(Ua) +D4(Ua) (3.83)

In (3.83), the second order term D2(Ua) performs the shock-capturing

role, while the fourth order term D4(Ua) smears out possible instabilities

that may appear where the solution is continuous.

The two terms are activated where necessary by discontinuity switches

ε(2)(x) / ε(4)(x), previously defined for FE solvers in the context of fluid

dynamics in [121], and later recast in [1] for FV in mixed form conservation
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laws solid dynamics. Both papers present switches ε(2)/ε(4)(x) as dependent

from a second order difference of pressure between adjacent nodes:

ε
(2)
ab = κ(2) max (Υa, Υb) (3.84a)

ε
(4)
ab = max

(
0, κ(4) − ε(2)ab

)
(3.84b)

In (3.84), κ(2) and κ(4) are appropriate coefficients (< 1), while Υa are

normalised second order difference for pressure variable p at nodes xa with

respect to adjacent nodes xb ∈ Λa, defined as [1] for FV:

Υa|FV =
|
∑
b∈Λa θab (pb − pa) |∑
b∈Λa (pb + pa)

=
|LFV [p(xa)] |∑
b∈Λa (pb + pa)

(3.85)

In (3.85), Λa represents the connectivity region of node at xa, and θab are

a set of weighting coefficients assigned to each node xb ∈ Λa in order to

define an undivided Laplacian [1, 80, 121] operator LFV(·):

LFV [f(xa)] =
∑
b∈Λa

θab [f(xb) − f(xa)] (3.86)

Geometric weights θab in (3.86) are obtained through a Lagrange multi-

plier minimisation procedure, aimed at making LFV [f(x)] = 0 from a linear

function f(x). This procedure is illustrated in detail in [80].

Adaptation, to a SPH context, of the approach described above for obtain-

ing the JST switches, would only require the substitution in (3.85) of the

Laplacians of neighbouring particles at xb ∈ Ωa, obtained through equation

(3.69):

Υa|SPH =
|
∑
b∈Ωa L [p (Xb)] −L [p (Xa)] |∑

b∈Ωa (pb + pa)
(3.87)

where L [p (X)] = ∇̃20p (X) from (3.69) with f(x) = p(X).

In (3.87), neighbours included in the computation of Υa for target par-

ticle at Xa will always be the same set of material particles determined

at the reference configuration at Xb, with each carrying the same value
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of ∇̃2Wb(Xa) throughout the simulations, since it is computed in a total

Lagrangian framework.

Having obtained the switches in (3.84), JST dissipation terms D2(Ua) and

D4(Ua) are defined for SPH as

D2 [U (Xa)] = ε
(2)cp∆xmin∇̃20U (Xa) (3.88a)

D4 [U (Xa)] = −ε(4)cp∆x
3
min·

·
∑
b∈Ωa

Vb

(
∇̃20U (Xb) − ∇̃20U (Xa)

)
∇̃20Wa (Xb) (3.88b)

In (3.88), U (Xa) can be assumed to be any of the conserved variables in

(2.164) from section 2.13, evaluated at the target particle material position

Xa; cp is the pressure elastic wave speed; ∆xmin is the characteristic length

of the problem, assumed to be equal to the smallest distance between any

two particles in the simulation; ∇̃20W (X) and ∇̃20U (Xa) are obtained from

(3.68) and (3.69) respectively.

Switches ε(2)/ε(4)(x) are now defined in terms of SPH for each particle at

Xa as

ε
(2)
a = κ(2) max

b∈Ωa
(Υb) (3.89a)

ε
(4)
a = max

(
0, κ(4) − ε(2)a

)
(3.89b)

In (3.89), second order sensors Υb are taken from (3.87), and are evaluated

for each neighbour b ∈ Ωa.

To note, the reiterated application of the Laplacian operator in (3.88b)

defines the SPH Laplacian of Laplacian of U (X).

An undivided Laplacian of the type (3.87) is effective in detecting dis-

continuities and high gradients in the solution fields, as its presence will

make the Laplacian assume high values; at the same time, in regions where

the solution is continuous and smooth, it will instead assume small values.

The switch ε(2)a in (3.89a) will therefore tend to zero, in case the solution

field is sufficiently regular. In turn, this will deactivate the dissipation term

D2 [U (Xa)] in (3.88a).



3.6 jst artificial dissipation 139

On the other hand, the Laplacian of Laplacian characterising theD4 [U (Xa

)] term in (3.88b) adds artificial dissipation, in order to cancel oscillations in

continuous regions of the solution field, where strong gradients are absent.

Switch (3.89b), however, forces D4 [U (Xa)] → 0 in presence of high gra-

dients and discontinuities: in fact, it was reported in [121] that the fourth

order term could be the source of numerical noise when activated close to

large discontinuities in value of solutions.

Spurious oscillations mainly target the pressure field, and hence artificial

dissipation terms (3.88) will be added to the conservation law for linear

momentum, (3.82a); they will also be useful if introduced in (3.82d), the

conservation law for the Jacobian, or volumetric strain, because stabilisation

is needed there when considering materials near, or at, the incompressibility

limit ν = 0.5 [86]. The semidiscretised {p, F,H, J} governing mixed system

then becomes:

∂pa
∂t

=

(
Aa

Va
ta + ρba

)
+

−
∑
b∈Ωa

Vb

[
Pb∇̃0Wa (Xb) −Pa∇̃0Wb (Xa)

]
+

+D2 [p (Xa)] +D4 [p (Xa)] (3.90a)
∂Fa

∂t
=
1

ρ

∑
b∈Ωa

Vb (pb −pa)⊗ ∇̃0Wb (Xa) (3.90b)

∂Ha

∂t
= Fa×××

1

ρ

∑
b∈Ωa

Vb (pb −pa)⊗ ∇̃0Wb (Xa) (3.90c)

∂Ja

∂t
= Ha :

1

ρ

∑
b∈Ωa

Vb (pb −pa)⊗ ∇̃0Wb (Xa)+

+D2 [J (Xa)] +D4 [J (Xa)] (3.90d)

The introduction of the JST terms in (3.90a) and (3.90d) may affect their

global momentum conservation properties [36]. This is due to the asymmetry

introduced by corrections (3.68) in the Laplacian of kernel ∇̃0W (X) [145].

This will require a specific procedure to recover conservation of linear and

angular momenta properties for (3.90a) and (3.90d), that will be based on

minimisation through Lagrange multipliers, and will be described in one of

the next sections.
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On the other hand, (3.90b) and (3.90c) do not need to be altered and thus

respect involution conditions (2.169) in a discrete sense, thereby ensuring

the geometric compatibility and frame objectivity qualities of F and H.

3.7 time integration

The system of ODEs with respect to time (3.90) forms a semi-discretised

representation, since the time variations are still expressed in differential

form.

In the case of fast elastodynamics problems, the part of solution carrying

the more significant information is the transient, unsteady initial period.

Theoretically, in case simulations were instead to be run with the aim of

obtaining an asymptotic, steady state solution, then time dependence in

(3.90) could be either entirely discarded, or alternatively, the system could

be adapted into a discrete form in only one step, by a combined space-time

discretisation of the Lax-Wendroff type [141, 167], opportunely adjusted to

SPH.

On the other hand, the alternative approach of separating space and time

discretisations of (2.162) as two distinct and consecutive steps, is known as

the method of lines [139, 147], and is the most widely followed procedure in

CFD for analyses where the unsteady part of solution is of interest [107].

To achieve this, we had first to get to (3.90); only then it is possible to

integrate the RHS of the system equations, regarded as balance of fluxes, or

local residualR (Ua) in the region of domain assigned to a particle in Xa,

as:
dUa
dt

=R (Ua) (3.91)

A value of R (Ua) = 0 in (3.91) would yield the steady state solu-

tion. Finite differences can be used to discretise the left hand side (LHS)

in (3.91), so that the solution will be known at discrete time instants

t0, t1, . . . , tn−1, tn, tn+1, . . . , T where T is the final instant in the simulation.

The time step size at instant tn will be ∆tn = tn+1 − tn.
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The general form of the discretised system with the method of lines will

then assume the form

Un+1a −Una
∆tn

=

m∑
i=1

ciR
(Ua|i

)
(3.92)

Both the acceptable limits of stability for the time step size ∆tn and

the quantity m of weighting coefficients ci on the RHS of (3.92) are to be

determined based on the type of time integration scheme selected.

The choice of time integration method has to be exerted between explicit

and implicit methods. The nature of the case study at hand should drive

the selection, as there are advantages and drawbacks for each of the two

approaches. Essentially, we want to minimise both the computational cost

per time step, and the overall number of time steps.

Implicit methods have the advantage of numerical stability, allowing a

larger time interval length ∆t [19]. This reduces the number of time steps

needed to run the simulation. On the other hand, though, these methods

include unknown time position data Un+1 as part of the computations,

relying on the solution of a system of equations. This requires the inversion

of the system matrix, which is a computer-intensive operation, and also

requires additional memory storage.

Conversely, explicit methods are designed to solve (3.92) for Un+1a , based

only on known information gathered at past instants ti, i 6 n. This implies

that no matrix has to be inverted, resulting in simpler and cheaper solution

progress at single time steps, with respect to implicit procedures.

However, explicit time integration techniques carry the drawback of being

unstable, in case the time step size is larger than an allowable maximum

∆t determined by the so-called Courant Friedrichs Lewy (CFL) condition

[56]. The CFL condition depends on the refinement level of the spatial

discretisation, and on elastic properties of the material:

∆tmax = σCFL
∆X

cnp
(3.93)

In (3.93), ∆X is the characteristic length of the discretisation, assumed to

be the average distance between two particles, cnp is the pressure wave speed
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of the material at time tn, and σCFL is the CFL number (0 6 σCFL 6 1 has to

hold), a constant parameter that can be adjusted depending on the nature of

the simulation.

The stability limit imposed on explicit time integration by the CFL condi-

tion (3.93) leads to short time step lengths, and explicit analyses will require

a larger number of time steps than implicit ones to be completed [107, 139].

As this work is mainly concerned with fast dynamics problems of short

duration in time, the larger number of time steps required by explicit

integration is not much of a hindrance; for the sake of accuracy, smaller time

steps would have still to be required nevertheless. For our purposes, explicit

time integration is therefore preferable to implicit schemes.

The existing literature [6, 117, 136] identifies two broad categories of well

established explicit time integration algorithms: predictor-corrector schemes

and RK multistage methods.

Predictor-corrector numerical schemes are based on iterative approach,

where an initial guess (the predictor step) of the solution at instant tn+1 is

firstly obtained using fast but generally less accurate approach, and then is

improved to match the nominal accuracy of the scheme (corrector step).

On the other hand, RK methods were originally devised to reach high

orders of accuracy by relying on multiple stages within one step, as opposed

to enlarging the number of time steps involved to achieve the same effect,

as seen in implicit methods [19, 84]. All schemes of the RK family, in fact,

evaluateR (U) in (3.92) many times as the solution U is advanced in multi-

ple stages from instant tn to tn+1. All temporary solutions at intermediate

stages are then averaged together, and in this way they all concur to the

high order of accuracy achievable.

The RK general expression for temporary solution U (i) at the ith stage is

then derived as following:

U (1) = Un

U (2) = Un +∆t c12R
(
U (1)

)

... (3.94)

U (i) = Un +∆t
i−1∑
j=1

cjiR
(
U (j)

)
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The final solution at instant tn+1 = tn +∆t is obtained from (3.94) as

Un+1 = Un +∆t
i∑
j=1

kjR
(
U (j)

)
(3.95)

In (3.95), the index i stands for the same index in (3.94), that indicates the

total number of intermediate stages. In (3.94) and (3.95), c and k are sets

of weighting coefficients, and their particular combinations determine the

order of accuracy of the time integration [84].

However, using values of U at all previous stages in order to determine the

current stage value, would imply having to store in memory a considerable

quantity of data. This would amount to all solution variables in U , at all

particles positions, times the number of stages required.

This practical complication imposes a restriction on the number of in-

termediate stages considered; it also makes convenient the adoption of

a simplified RK multistage scheme, where only the stage previous to the

current needs to be stored [263]:

U (1) = Un

U (2) = Un +∆t c1R
(
U (1)

)

... (3.96)

U (i) = Un +∆t ci−1R
(
U (i−1)

)

At instant tn+1, the solution obtained will be a combination of those

yielded at intermediate stages in (3.96), similar to what done for (3.95):

Un+1 = Un +∆t
i∑
j=1

kjR
(
U (j)

)
(3.97)

The maximum order of accuracy achievable by a RK scheme is equal to

its number of stages, so for instance (3.96) will be of ith order of accuracy

[107]. The particular choice of weighting coefficients c and k will determine

whether the maximum order of accuracy is reached or not; optimisation pro-

cedures are adopted for achieving this through error minimisation processes,

as shown in [111, 210].
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Alternatively, if accuracy is not the most pressing issue, one can decide to

select c and k coefficients with the aim of enhancing the stability of the RK

scheme, enabling to expand the time step size for the simulation [249, 250].

This latter design choice has proven popular in CFD, where fourth order

RK methods are in the most widespread usage for discretisation of systems

of hyperbolic equations of Euler or Navier-Stokes type. The elimination of

high frequency oscillations in the solution is a very important issue for these

problems: in this regard, the addition of a high-gradient artificial dissipation

term – such as the JST technique presented in section 3.6 – to the discretised

system has proven to be an effective remedy.

Jameson and co-workers, in particular, have demonstrated [119, 120, 122]

that multistage (4th order) RK time integration of the type (3.96)-(3.97),

coupled with the JST technique presented in section 3.6, leads to a numerical

scheme for solving systems of conservation laws that has both enhanced

stability properties and high-order accuracy.

In addition, further research by Shu et al [54, 229] proved that it is possible

to bring the number of stages of the RK temporal scheme down to two, while

retaining a sufficiently high (2nd) order of accuracy, in case the numerical

discretisation satisfies the criterion of TVD, first formulated by Harten in

[100, 101].

The TVD requirement essentially enforces the monotonicity of the scheme –

that is, the solution cannot assume new maxima or minima during its time

evolution, but is only allowed to retain the ones already present in the initial

condition field – through bounded total variation [139]. This way, spurious

oscillations cannot appear in the solution field.

Further, in the present case the 2nd order of the temporal scheme would

match that of the SPH spatial discretisation; higher orders of temporal accu-

racy should then be regarded as an unnecessary complication.

A 2-stage RK scheme reaches 2nd order accuracy when the weighting

coefficients ci in (3.96) assume the values [107]:

ci =
1

2
, i = 1, 2 (3.98)
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The 2-stages, total variation diminishing, Runge Kutta (TVD-RK) integra-

tion scheme selected to march in time the solution vector U of system (3.90)

will then assume the form:

U∗a = Una +∆tRa (Una , tn) (3.99a)

U∗∗a = U∗a +∆tRa (U∗a, tn) (3.99b)

Un+1a =
1

2
(Una +U∗∗a ) (3.99c)

We have already mentioned that particles positions x do not play any

role in the {p, F,H, J} mixed formulation system, as x is not part of solution

vector U .

However, the moment conservation algorithm that will be introduced in

the next section will require the particles position vectors x to be updated

at each step of a simulation. Moreover, capability to track the deformation

history of an object will always be essential for visualisation purposes. Up-

dates of x for each particle in the model will be performed using the TVD-RK

algorithm (3.99), making JST-SPH a monolithic solver. Thus, for n particles,

their positions xa, a = 1, . . . , n are to be obtained from the corresponding

linear momenta pa as

x∗a = xna +
∆t

ρ
pna (3.100a)

x∗∗a = x∗a +
∆t

ρ
p∗a = xna +

∆t

ρ
(pna +p

∗
a) (3.100b)

xn+1a =
1

2
(xna + x

∗∗
a ) = xna +

∆t

2ρ
(pna +p

∗
a) (3.100c)

3.8 discrete momentum preserving algorithm

Without considering external torques acting on the system, a property of

physical system that numerical models should be capable to reproduce is the

conservation of its angular momentum in time, which in its discrete version,
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for a system with n particles (and without externally acting torques), reads

as
n∑
i=1

xn+1i ×pn+1i −

n∑
i=1

xni ×pni = 0 (3.101)

where the n and n+ 1 superscripts respectively stand for the current

instant, and for the next one to come, in the simulation time history.

In [36], Bonet and co-workers have shown that a SPH discrete system

preserves its total angular momentum if it also respects the consistency

condition (3.62) imposed on the gradient of the kernel. As the JST-SPH

method directly enforces (3.62) on ∇W in order to obtain a modified ∇̃W,

and achieve completeness for regions at and near the boundaries, it might

be thought that this algorithm is free from issues arising when principle

(3.101) does not hold true. Namely, a non-physical loss of energy with time,

that makes final results unreliable.

Instead, the loss of angular momentum may occur not due to a flaw of

the spatial discretisation, but as a consequence of the adopted mixed system

with strain variables F, H and J amongst the unknowns.

As these variables do not formally depend any more from the geometry†,

they cannot be relied upon in order to satisfy (3.101).

Lack of geometric compatibility for the strain unknowns in the mixed

{p, F,H, J} system, however, is not the only cause for the missed validity

of (3.101): both JST dissipation terms (3.88), in fact, are partly made of

corrected Laplacians that, as a result of corrections (3.68), are left asymmetric.

Asymmetries in the system, in effect, prevent it to remain invariant with

respect to rigid body translations, and hence not only the angular, but even

the linear momentum are not preserved when progressing from one time

step to the next [36].

In a series of papers, Simo and co-workers [237, 239] were first to present

a novel class of implicit time stepping algorithms of the Newmark type

able to preserve the global angular momenta, as well as the energy of

discretised nonlinear Hamiltonian systems, without significant additional

computational costs. The same authors successfully tested the method in

applications spanning from rigid body dynamics, nonlinear rods and shells

† That is, in general, here F = ∇0x, H = det (∇0x)∇0x−T and J = det∇0x do not generally
hold.
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[238], to plasticity effects in high-strain dynamics [234]. They also later

improved the accuracy of their momentum-preserving formulation taking it

from the 2nd to the 4th order [252].

Investigation of global energy and momentum preservation properties

was conducted by Gonzalel and Simo in [94] on the discretisation of a simple,

nonlinear solid dynamics system, with implicit time-marching algorithms.

The lack of need of any additional parameters or equations makes this

method attractive, and a subsequent paper by the first author appeared

years later, where it was applied to treat compressible and incompressible

hyperelasticity problems employing Ogden-type material models, with

encouraging results [93].

A survey of the conditions that a system of PDEs must satisfy in order to

preserve its overall angular momentum was conducted, from a mathematical

perspective, in [46], with the aim of establishing guidelines for conception

and design of momentum and energy preserving time stepping algorithms.

Komatitsch et al. [134] studied the momentum preservation properties

and the temporal stability of an explicit/implicit, predictor-corrector scheme,

and applied it in a geological simulation in the linear elastodynamics regime.

Betsch and co-workers employed one-step, implicit time-marching schemes

in [28, 96] to build a momentum-preserving discretisation method based on

borrowing strain modification quadrature rules for lower order FE in space,

for the purpose of time integration.

A series of papers by Lew and co-workers [149, 150] assesses the opportu-

nity of bypassing the issue of preservation of momentum altogether. This

opportunity would be offered by the derivation and adoption of a family of

variational time stepping algorithms, of the kind initially proposed in [127]

by Kane et al. Variational time schemes would preserve symmetry properties

of the elastodynamics system of PDEs, and hence guarantee the conservation

of global angular momentum, without having to enforce this prerequisite by

resorting to ad hoc modifications to the code.

Recently, global angular momentum preservation mechanisms were adop-

ted [1, 143] in the context of a simplified, non-polyconvex {p, F} mixed

formulation, that were subsequently extended to the full {p, F,H, J} mixed

formulation in the context of upwind, cell-centred FV [99]; analogous work
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was done in the context of a spatial discretisation obtained with SPH for the

two cases of upwind Petrov-Galerkin SPH [146] and JST-SPH [145].

The description of the global angular momentum preserving algorithm,

undertaken in the remaining part of this section, will largely draw upon

[145] and [99].

Substituting xn+1 from (3.100c) in (3.101) yields

n∑
i=1

[
xni +

∆t

2ρ
(pni +p

∗
i )

]
×pn+1i −

n∑
i=1

xni ×pni = 0 −−−−−−−−−−−−−→(
x
n+1/2
i = xni +

∆t
2ρp

n
i

)

n∑
i=1

x
n+1/2
i ×pn+1i +

∆t

2ρ

n∑
i=1

p∗i ×pn+1i −

n∑
i=1

xni ×pni = 0 −−−−−−−−→
(pni ×pni =0)

n∑
i=1

x
n+1/2
i ×

(
pn+1i −pni

)
+
∆t

2ρ

n∑
i=1

p∗i ×pn+1i = 0 (3.102)

Positions xn+
1/2

i , i = 1, . . . ,n in (3.102) can be understood as intermediate

stages in the advancement of the solution from instant tn to tn+1, in case

time integration were to be performed with the trapezoidal rule [115]. In

that case, xn+1 would have to be computed as:

xn+1i = xni +
∆t

2ρ

(
pni +p

n+1
i

)
i = 1, . . . ,n (3.103)

Incidentally, it is useful to bear in mind that the sequence of algebraic

manipulations that equation (3.101) is being subjected to, aims to reformulate

it by excluding any term at instant tn+1 from its final expression.

Proceeding in this manner, we will end up obtaining an expression suitable

for explicit time integration.

With this purpose, (3.102) further evolves into:

n∑
i=1

(
x
n+1/2
i +

∆t

2ρ
p∗i

)
×
(
pn+1i −pni

)
+
∆t

2ρ

n∑
i=1

p∗i ×pni = 0 −−−−−−−→
(p∗i×p∗i=0)

n∑
i=1

(
x
n+1/2
i +

∆t

2ρ
p∗i

)
×
(
pn+1i −pni

)
+
∆t

2ρ

n∑
i=1

p∗i × (pni −p
∗
i ) = 0

(3.104)
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Noting that, applying the RK scheme (3.99) for the update in time from

pn to pn+1 generates the following sequence of stages:

p∗i = p
n
i +∆tṗ

n
i (3.105a)

p∗∗i = pni +∆t (ṗ
n
i + ṗ

∗
i ) (3.105b)

pn+1i = pni +
∆t

2
(ṗni + ṗ

∗
i ) (3.105c)

we can then introduce (3.105a) and (3.105c) into (3.104) in order to obtain

∆t

2

[
n∑
i=1

(
x
n+1/2
i +

∆t

2ρ
p∗i

)
× (ṗni + ṗ

∗
i ) −

∆t

ρ

n∑
i=1

p∗i × ṗni

]
= 0 −→

n∑
i=1

(
x
n+1/2
i +

∆t

2ρ
p∗i

)
× ṗ∗i +

n∑
i=1

xni × ṗni +

+
∆t

2ρ

n∑
i=1

pni × ṗni −
∆t

2ρ

n∑
i=1

p∗i × ṗni = 0 −−−−−−−→
see (3.105a)

n∑
i=1

(
x
n+1/2
i +

∆t

2ρ
p∗i

)
× ṗ∗i +

n∑
i=1

xni × ṗni +

+
∆t

2ρ

n∑
i=1

[���
���(pni × ṗni ) −����

��
(pni × ṗni ) −∆t����

��
(ṗni × ṗni )] = 0 (3.106)

Equation (3.106) achieves the objective of rearranging (3.101) without any

dependence on tn+1, presenting it only in terms of quantities at the starting

time instant tn, or at first stage of the RK procedure, t∗. To highlight this

aspect, (3.106) can be rewritten as

n∑
i=1

xni × ṗni +
n∑
i=1

[
xni +

∆t

2ρ
(pni +p

∗
i )

]
× ṗ∗i = 0 (3.107)

Compliance with (3.107) can be imposed by setting both summation terms

that compose (3.107) to 0:

n∑
i=1

xni × ṗni = 0 (3.108a)

n∑
i=1

[
xni +

∆t

2ρ
(pni +p

∗
i )

]
× ṗ∗i = 0 (3.108b)
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In essence, (3.108) imposes condition (3.108a) at the first stage of the RK

algorithm, and condition (3.108b) at the second.

From the conservation law of the linear momentum, (3.90a), and ignoring

external forces, it follows that ṗη, for η = {n, ∗} in (3.107) is equal to

ṗηa = −
∑
b∈Ωa

Vb

[
P
η
b∇̃0Wa (Xb) −P

η
a∇̃0Wb (Xa)

]
+Dη

a|JST
=

= Tηa +Dηa|JST a = 1, . . . ,n , η = {n, ∗} (3.109)

In (3.109), the internal forces vector Tηa, a = 1, . . . ,n, η = {n, ∗}, is defined

as

Tηa = −
∑
b∈Ωa

Vb

[
P
η
b∇̃0Wa (Xb)− P

η
a∇̃0Wb (Xa)

]

a = 1, . . . ,n ; η = {n, ∗} (3.110)

while the JST dissipation term Dη
a|JST

, a = 1, . . . ,n, η = {n, ∗} was first

defined in (3.83).

As already mentioned in section 3.6, the inclusion of the JST artificial dis-

sipation term introduces an asymmetry in the mixed system of conservation

laws (3.82a). As a consequence of this asymmetry, the total quantity of linear

momentum p cannot be preserved from one instant tn to the next tn+1. Ad-

ditionally, satisfaction of conditions (3.108) would modify the values Tη as

computed by the solver, and thus conservation of linear momentum would

need to be verified anew.

Hence, it is convenient to simultaneously enforce the conservation of both

linear and angular momentum in time, leading to the establishment of four
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conditions for Tη and DηJST to be verified at each stage of the RK numerical

time integration:

n∑
a=1

VaT
η
a = 0 (3.111a)

n∑
a=1

VaDηa|JST = 0 (3.111b)

n∑
a=1

VaΓ
η
a × Tηa = 0 η = {n, ∗} (3.111c)

n∑
a=1

VaΓ
η
a ×Dηa|JST = 0 (3.111d)

In (3.111), Γηa for a = 1, . . . ,n assumes values as following (see (3.108)):

Γηa =

x
n
a η = n

xna +
∆t
2ρ (p

n
a +p

∗
a) η = ∗ a = 1, . . . ,n

(3.112)

Modified internal forces T̂a and JST dissipation terms D̂a able to satisfy

(3.111) for each particle at Xa can be obtained through the method of La-

grange multipliers [43], which requires the minimisation of functionals built

as in below:

ΠT

(
T̂a,λlin,λang

)
=
1

2

n∑
a=1

Va

(
T̂a − Ta

)
·
(
T̂a − Ta

)
+

− λlin

n∑
a=1

VaT̂a − λang

n∑
a=1

VaΓa × T̂a (3.113a)

ΠD
(
D̂a,γlin, γang) =

1

2

n∑
a=1

Va

(
D̂a −Da

)
·
(
D̂a −Da

)
+

− γlin

n∑
a=1

VaD̂a − γang
n∑
a=1

VaΓa × D̂a (3.113b)

In (3.113), λlin, λang, γlin and γang are vectorial Lagrange multipliers to

be found at the end of the procedure. They will contribute to the formulation

of momentum-preserving T̂ and D̂.
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Minimisation of ΠT and ΠD in (3.113) is accomplished by imposing the

following conditions on their derivatives:

∂ΠT

∂T̂
= 0 ,

∂ΠD
∂D̂

= 0 (3.114a)

∂ΠT
∂λlin

= 0 ,
∂ΠD
∂γlin

= 0

∂ΠT
∂λang

= 0 ,
∂ΠD
∂γang

= 0 (3.114b)

Conditions (3.114a) lead to the following expressions for T̂ and D̂:

T̂a = Ta + λlin + λang × Γa (3.115a)

D̂a = Da + γlin + γang × Γa (3.115b)

Substituting expressions (3.115) in equations (3.114b), and making use of

the permutation tensor Eijk (a)j = [A]i k
‡, and of properties of the cross

product such as (2.25), we obtain two system of equations that can be solved

for λlin, λang and for γlin, γang:




∑n
a=1 VaEijk (Γa)j −

∑n
a=1 Va∑n

a=1 Va [(Γa · Γa) I− Γa ⊗ Γa]
∑n
a=1 VaEijk (Γa)j




λlin
λang


 =

=




∑n
a=1 VaTa

−
∑n
a=1 VaΓa × Ta


 (3.116a)




∑n
a=1 VaEijk (Γa)j −

∑n
a=1 Va∑n

a=1 Va [(Γa · Γa) I− Γa ⊗ Γa]
∑n
a=1 VaEijk (Γa)j




γlin
γang


 =

=




∑n
a=1 VaDa

−
∑n
a=1 VaΓa ×Da


 (3.116b)

At this point, solving systems (3.116) yields the pairs of Lagrange mul-

tipliers λlin, λang and γlin, γang, that can be substituted, respectively, in

(3.115a) and (3.115b) in order to finally obtain T̂ and D̂ that conserve global

linear and angular momenta.

‡ Here a is an arbitrary vector; the application of the permutation tensor on it will result in a
second order tensor A.
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3.8.1 Discrete Jacobian Preserving Algorithm

Since non-symmetrical JST dissipation terms were added not only to the

linear momentum conservation law (3.82a), but also to the Jacobian of the

deformation conservation statement (3.82d), there exist now the need to

develop an algorithm for preserving the Jacobian J (that as we recall tracks

the volumetric deformation) at every instant of the simulation.

This algorithm can be designed along the same lines as the one described

in section 3.8, with a potential to minimise ΠDJ|a depending from a scalar

Lagrange multiplier γDJ as parameter:

ΠDJ|a
(
D̂J|a, γDJ

)
=
1

2

n∑
a=1

Va

(
D̂J|a −DJ|a

)2
− γDJ

n∑
a=1

VaD̂J|a (3.117)

where, for each particle a = 1, . . . ,n :

DJ|a = D2 [J(Xa)] +D4 [J(Xa)] .

Similarly to what done in the previous section, setting

∂ΠDJ|a
∂D̂J|a

= 0 ;
∂ΠDJ|a
∂γDJ

= 0 (3.118)

will yield a set of preserved D̂J, modified as

D̂J|a = DJ|a + γDJ a = 1, . . . ,n (3.119)

The second condition in (3.118) will then give out γDJ as

γDJ = −

∑n
a=1 VaDJ|a∑n
a=1 Va

(3.120)

Substituting γDJ from (3.120) in (3.119) will result in a JST modified term

D̂J|a capable to preserve globally the Jacobian J of the deformation.
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3.9 computer implementation

Computer code implementation of the JST-SPH methodology is written in

modern Fortran (using features up to version 95); for the conservation algo-

rithms presented in this section 3.8, it makes extensive use of the LAPACK

library [4] for solving linear systems of equations (3.116). More precisely,

the program accomplishes that task by employing the LAPACK subroutine

DGESV, which provides a solution to systems of real, linear equations of

the type AX = B with the help of a LU decomposition with partial pivoting

and row interchanges [105], so that system matrix A is reduced to a factored

form, and the system of equations can be quickly solved for X [4].

A scheme of the whole algorithm, illustrating the code flow, is presented

in algorithm 3.
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Initialisation

1. Initiate all variables (set of particles geometry, material

properties, numerical parameters, pa, Fa, Pa, xa for each

particle a).

2. Compute SPH kernel smoothing length h = α(Vtot/N)1/3

3. Locate neighbours b for each target particle a, using the

alternating digital tree (ADT) search algorithm [38].

4. Compute corrected kernel W̃, its gradient ∇̃W and its

Laplacian ∇̃2W.

Time-stepping the solution

FOR t < tf

1. Compute wave speeds cp|a =
√
λ+2µ
ρ0

/max
α
λC|α .

2. Compute time step ∆t (3.93).

3. RK time stepping (3.99):

FOR RK = 1, 2

a) Advance p (3.82a).

b) Compute JST term (3.88).

c) Apply conservation of angular momentum on Ta and

JST term Da (3.116).

d) Advance the other variables F, H and J (3.82).

e) Impose BCs

f) Compute first Piola-Kirchhoff stress tensor Pa follow-

ing sections 2.9 and 2.10 and algorithm 2.

4. Obtain conserved variables values and particles positions

at time n+ 1 through averaging RK steps (3.99).

Algorithm 3 : algorithmic flow for the JST-SPH method
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3.10 concluding remarks

This chapter described in its main components a novel numerical method-

ology, named JST-SPH, intended to constitute an effective alternative to the

currently widespread FEM in solving nonlinear fast solid dynamics problems.

A brief description of FEM, followed by an overview of meshless numerical

schemes are located respectively in section 3.1 and in section 3.2.

JST-SPH provides SPH discretisation to the mixed {p, F, H, J} system of

conservation laws developed in chapter 2. The main features of SPH are the

subject of section 3.3.

By performing a number of corrections to the original SPH scheme, of the

manner detailed in section 3.4, the kernel and its derivatives do not suffer

from lack of consistency at or near the domain boundaries. Also, the tensile

instability issue encountered in solid dynamics simulations run with SPH is

addressed by switching the framework to a total Lagrangian point of view;

see section 3.4.5.

A provisional version of the spatial semi-discretisation of the mixed

system performed with the aforementioned corrected SPH scheme is shown

in section 3.5; however, the discretised system may still suffer from spurious

oscillatory behaviour, caused by SPH nodal integration. These problems are

experienced by the pressure term in the equation of motion, (3.82a), and

by the Jacobian of the deformation, also a measure of volumetric dilatation

and an unknown in equation eq. (3.82d). Given that non-physical oscillatory

patterns are also observed in analogous hyperbolic systems of PDEs in CFD,

section 3.6 introduces an artificial JST dissipation term borrowed from the

CFD literature, that makes use of biharmonic ∇ (∇·) operators in order to

stabilise the wiggling solution terms.

Various types of time stepping schemes for the JST-SPH spatially semi-

discretised system were considered in section 3.7, before an explicit, two

stages TVD-RK method is selected for its simplicity, its explicit nature advan-

tageous for the kind of problems at hand, and its TVD quality on energy

conservation.

A drawback to the introduction of the JST dissipation term is the loss of

preservation of the total angular momentum of the system. A procedure

that realigns the total angular momentum to its initial values at each time
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step of the simulation, is presented in section 3.8; a similar readjustment

is done for the Jacobian of the deformation in section 3.8.1, as also its

conservation law makes use of a JST term. This novel angular momentum

preserving algorithm, based on Lagrange multipliers minimisation, modifies

the internal stresses term; as a consequence, the preserving algorithm has to

be expanded into a system, in order to accommodate for a similar procedure

targeting the linear momentum.

The next chapter will focus on the stability properties of the proposed

JST-SPH scheme. Rigorous stability analyses have been established for discreti-

sations of linear systems of PDEs, the most renown being the von Neumann

stability analysis.

Hence, the JST-SPH discretisation will be investigated for stability on

simple, linear PDEs; these equations are similar to the linearised version of

nonlinear PDEs, and can provide with a good account on local behaviours of

nonlinear problems.





4A C C U R A C Y A N D S TA B I L I T Y A N A LY S I S

As previously indicated in section 3.10, the present chapter will be devoted

to the study of the consistency and stability of the JST-SPH scheme.

The order of accuracy of a numerical scheme is determined from the

higher order terms (h.o.t.) in its truncation error. Stability analysis, on the

other hand, is performed with the tools of the von Neumann analysis, using

spectral decomposition to yield a graphical representation of the margins

of stability for a scheme. Moreover, dissipation and dispersion errors give out

more information about the stability behaviour of a scheme.

The main limitation of the von Neumann analysis is that it applies only to

linear schemes. However, the stability characteristics for discretised nonlinear

systems of PDEs can only be checked at the local level, through linearisation.

A simple example of a one-dimensional linear advection equation (LAE),

presenting derivatives in space and time of the unknown variable u, will

constitute the object of our JST-SPH stability analysis. Its SPH discretisation is

introduced in section 4.1.

In section 4.2, the truncation error and the eigenvalues decomposition of

the SPH-discretised LAE are examined under the varying parameters of:

1. number of neighbouring particles per side (p.p.s.) of the target position;

2. presence (or absence) of the JST term.

For those same cases, dissipation and dispersion errors are shown in

section 4.3. Some conclusive remarks are finally drawn in section 4.4.

4.1 discretisation process

The one-dimensional LAE governs the propagation of a signal having wave

speed c and amplitude given by the unknown u:

∂u

∂t
+ c

∂u

∂x
= 0 (4.1)

159
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Equation (4.1) is a hyperbolic PDE. As such, it can be solved with the

method of lines: first, it is reduced to an ODE in time, which then can be

solved by any method able to numerically evaluate initial value problems,

such as the TVD-RK algorithm described in section 3.7.

In any event, the semi-discretisation in space must be implemented first;

in the present case, we will resort to SPH. The derivation of discretised

equations from the weak formulation can be arranged in two steps:

1. nodal integration of the virtual work expression over a finite set of

particles Ω discretising the domain B;

2. interpolation by a reproducing kernel of the dependent variable at each

target particle a from its values in the neighbouring particles b.

The weak formulation of (4.1) over a one-dimensional domain B is ob-

tained by introducing a virtual variable δF, work conjugate to the unknown

u, to yield, in the reference configuration:∫
B
δF
∂u

∂t
dx = −c

∫
B
δF
∂u

∂x
dx (4.2)

Integrating by parts the RHS in (4.2), and using the divergence theorem:∫
B
δF
∂u

∂t
dx = −c

(∫
B

∂(δFu)

∂x
dx−

∫
B
u
∂δF

∂x
dx

)
=

=
��

���
���

−c

∫
∂B
δFudx + c

∫
B
u
∂δF

∂x
dx (4.3)

The first term on the RHS in (4.3) can be neglected, in case BCs at the two

edges of domain B are chosen appropriately.

1. As a first step, the domain B is discretised as a set of particles, Ω.

Values of integrated variables are obtained by summation of their

assumed values at the particles (nodal integration). It follows that (4.3)

is discretised as

∑
a∈Ω

δFa
∂ua

∂t
Va =

∑
a∈Ω

cua
∂δFa

∂x
Va (4.4)
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where the set of particles a ∈ Ω represents the continuum domain

B, and Va is the volume fraction of B assigned to a particle a. In a

one-dimensional setting, Va has the dimension of a length.

2. The gradient of δFa in (4.4) can be interpolated using a reproducing

kernel function W(x− xa,h), with compact support centred on target

particle a and of radius h. Equation (4.4) then becomes:

∑
a∈Ω

δFa
∂ua

∂t
Va = c

∑
a∈Ω

Vaua


∑
b∈Λa

VbδFb
∂Wb(xa)

∂x


 =

= c
∑
a∈Ω

∑
b∈Λa

Vaua

(
VbδFb

∂Wb(xa)

∂x

)
(4.5)

In (4.5), Λa represents the set of particles b falling in the compact

support radius of the kernel centred around target particle a. Since the

sum in (4.5) is made over the whole set of particles Ω, their indices a

and b can be swapped to obtain:

�
��

�
��

∑
b∈Ω

VbδFb
∂ub
∂t

= c

�
��

�
��

∑
b∈Ω

VbδFb


∑
a∈Λb

Vaua
∂Wa(xb)

∂x


→

→ ∂ub
∂t

= c
∑
a∈Λb

Vaua

(
−
∂Wb(xa)

∂x

)
(4.6)

Note that W(x− xa,h) was chosen as an even function around xa, so

thatW(x− xa,h) =W(xa − x,h). Therefore, its first derivative in space

∇W(x− xa,h) will be an odd function, justifying the change in sign

at the RHS of (4.6). The semi-discretisation in space of (4.1) using SPH

will thus end up to be

∂ua

∂t
= −c

∑
b∈Λa

Vbub
∂Wb(xa)

∂x
(4.7)

In the following, particles volume will be assumed to be constant:

Vi = V ≈ ∆x
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4.1.1 Kernel function in 1D

The kernel function W(x− xa,h) is selected to be a polynomial function,

with compact support (meaning W will vanish for ‖x− xa‖ > 2h).

An example of such a polynomial function is the quintic spline defined in

equation (3.52), which is then inserted in the general expression of the kernel

function (3.48) using as normalisation parameter α = 1/8. This particular α

was chosen in order to satisfy consistency condition (3.39a).

Visualisation of W(x− xa,h), as defined in (3.52), and of its space deriva-

tives up to the fourth order, is offered in fig. 4.1.

Figure 4.1: quintic spline kernel W(x− xa,h) and its derivatives up to 4th order.

In the discrete domain, corrections have to be implemented to uphold the

validity of consistency conditions (3.39).

Accordingly, for the corrected gradient of the kernel, ∇̃W(x), it must hold

that ∑
b∈Λa

Vb∇̃Wb(xa) = 0 ;
∑
b∈Λa

Vb [xb − xa] ∇̃Wb(xa) = 1 (4.8)
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Following on the same pattern of (4.8), corrections to the kernel Laplacian

∇̃2W(x) will assume the form:

∑
b∈Λa

Vb∇̃2Wb(xa) = 0 (4.9)

∑
b∈Λa

Vb [xb − xa] ∇̃2Wb(xa) = 0 (4.10)

1

2

∑
b∈Λa

Vb‖xb − xa‖2∇̃2Wb(xa) = 1 (4.11)

∇̃2W(x) can then be obtained as:

∇̃2Wb(xa) = αa [1+ γaδab +βa(xa − xb)]∇2Wb(xa) (4.12)

In (4.12), αa, βa and γa are parameters chosen so that (4.9) holds true.

4.1.2 Time integration

The spatial discretisation discussed above yields a system of ODEs of the

form:

dua

dt
=Ra(ua, t), (4.13)

whereRa(ua, t) represents the residual of the SPH spatial discretisation

associated with particle a. The explicit, two-stage TVD-RK time integrator

from section 3.7 is used to advance (4.13) in time from tn to tn+1:

u∗a = una +∆tRa(una , tn); u∗∗a = u∗a +∆tRa(u∗a, tn+1);

un+1a = NRK (u
n
i ) =

1

2
(una + u

∗∗
a ). (4.14)

As in (3.93), the time step ∆t = tn+1 − tn depends on ∆x by means of

∆t = σCFL (∆x/c), where σCFL is the CFL number.
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4.2 accuracy analysis

In this section, a survey of the consistency and stability properties of the

SPH discretisation for LAE (4.7)+(4.14) will be carried out.

The quintic spline function (3.52) will be used as interpolating kernel,

and stencils with 2 and 3 neighbouring p.p.s. will be examined. To check a

numerical scheme for consistency amounts in finding the truncation error

associated with it, and evaluating its order of magnitude with respect to

increments in time and space. The larger this order of magnitude, the more

accurate the numerical scheme.

In the case of a discretised hyperbolic PDE, increments in time are depen-

dent from increments in space. The magnitudes of errors in space and time

can thereby be seen as exerting the same effect on accuracy; the lower value

of the combined two should be regarded as the main indicator to gauge

the consistency of the numerical scheme, against the original differential

problem. A step by step procedure to find the truncation error in a SPH

(space) combined with a two stages TVD-RK (time) scheme is drafted in

algorithm 4.
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1. Find the exact values for W̃ and its derivatives of interest at the

particles points. Then correct them, to obtain the discretised

formulation of the problem, according to the numerical scheme;

2. Compute Taylor series expansion for ui, ui±1, ui±2, and ui±3 as

needed by the 2 or 3 p.p.s. stencil under scrutiny;

3. Compute u∗i in (4.14) as combination of quantities found in point 2;

4. Obtain ∂ku
∂xk

∣∣∣
∗

i
by differentiating k-times the value of u∗i found in

point 3;

5. Calculate u∗∗i in (4.14);

6. Compute the end-step value for TVD-RK, NRK
(
uni
)
= 1

2

(
u∗∗i + u∗i

)
;

7. Find u|n+1i as a Taylor expansion in time around u|ni ;

8. Obtain the truncation error εnT as εnT = 1
∆t

(
NRK

(
uni
)
− u|n+1i

)
, and

check the combined order of increments ∆t and ∆x.

Algorithm 4 : evaluation of truncation error

4.2.1 2 particles per side: consistency

The truncation error εnT for the 2 p.p.s. stencil will be obtained by following

the steps outlined in algorithm 4.

1. The exact values of the kernel function coefficients, and its derivatives

for the 2 p.p.s. stencil are listed in table 4.1.

Applying corrections to values up to the second derivative in table 4.1

leads to table 4.2.

It is useful to point out that the value of ∇̃2W in table 4.2 has not been

divided by the increment ∆x with each derivation, for reasons that will

be explained later.
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Table 4.1: uncorrected Kernel, 2 p.p.s.

relative particles position

a− 2 a− 1 a a+ 1 a+ 2

W 0 1/8 2 1/8 0 ·1/∆x
∇W 0 −5/8 0 −5/8 0 ·1/∆x2
∇2W 0 5/2 −20 5/2 0 ·1/∆x3
∇3W 0 −15/2 90 −15/2 0 ·1/∆x4
∇4W 0 15 −210 15 0 ·1/∆x5

Table 4.2: corrected Kernel, 2 p.p.s.

relative particles position

a− 2 a− 1 a a+ 1 a+ 2

W̃ 0 1/18 8/9 1/18 0 ·1/∆x
∇̃W 0 −1/2 0 1/2 0 ·1/∆x
∇̃2W 0 1 −2 1 0 ·1/∆x

Through table 4.2, the semi-discretised equation for (4.1) can be ex-

pressed as in (4.15):

∂u

∂t

∣∣∣∣
a

= −
c

2∆x

(
una+1 − u

n
a−1

)
(4.15)

2. Compute the Taylor expansion of terms ua±i in (4.15):

una+1 = u
n
a +

∂u

∂x

∣∣∣∣
n

a

∆x+
1

2

∂2u

∂x2

∣∣∣∣
n

a

∆x2 +
1

6

∂3u

∂x3

∣∣∣∣
n

a

∆x3 +O
(
∆x4

)

una−1 = u
n
a −

∂u

∂x

∣∣∣∣
n

a

∆x+
1

2

∂2u

∂x2

∣∣∣∣
n

a

∆x2 −
1

6

∂3u

∂x3

∣∣∣∣
n

a

∆x3 +O
(
∆x4

)

(4.16)

3. Obtain u∗a in (4.14) by use of (4.16):

u∗a = una − c∆t
una+1 − u

n
a−1

2∆x
=

= una − c∆t

(
∂u

∂x

∣∣∣∣
n

a

+
1

6

∂3u

∂x3

∣∣∣∣
n

a

∆x2

)
+O(∆x4) (4.17)
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4. Derivatives in space of u∗a:

∂u

∂x

∣∣∣∣
∗

a

=
∂u

∂x

∣∣∣∣
n

a

− c
∂2u

∂x2

∣∣∣∣
n

a

∆t− c
∂4u

∂x4

∣∣∣∣
n

a

∆t∆x2 +O(∆x4)

∂2u

∂x2

∣∣∣∣
∗

a

=
∂2u

∂x2

∣∣∣∣
n

a

− c
∂3u

∂x3

∣∣∣∣
n

a

∆t− c
∂5u

∂x5

∣∣∣∣
n

a

∆t∆x2 +O(∆x4) (4.18)

∂3u

∂x3

∣∣∣∣
∗

a

=
∂3u

∂x3

∣∣∣∣
n

a

− c
∂4u

∂x4

∣∣∣∣
n

a

∆t− c
∂6u

∂x6

∣∣∣∣
n

a

∆t∆x2 +O(∆x4)

5. Compute u∗∗a from (4.14), (4.17), (4.18):

u∗∗a = u∗a −
c∆t

∆x

(
u∗a+1 − u

∗
a−1

)
=

= una − 2c
∂u

∂x

∣∣∣∣
n

a

∆t+ c2
∂2u

∂x2

∣∣∣∣
n

a

∆t2 −
c

3

∂3u

∂x3

∣∣∣∣
n

a

∆t∆x2 +O(∆x4)

(4.19)

6. Runge-Kutta estimation for next step in time, NRK(una):

NRK(u
n
a) =

1

2
(una + u

∗∗
a ) =

= una − c
∂u

∂x

∣∣∣∣
n

a

∆t+
c2

2

∂2u

∂x2

∣∣∣∣
n

a

∆t2 −
c

6

∂3u

∂x3

∣∣∣∣
n

a

∆t∆x2 +O(∆x4)

(4.20)

7. Taylor expansion of un+1a in time around una :

un+1a = una +
∂u

∂t

∣∣∣∣
n

a

∆t+
1

2

∂2u

∂t2

∣∣∣∣
n

a

∆t2 +
1

6

∂3u

∂t3

∣∣∣∣
n

a

∆t3 +O
(
∆t4
)

(4.21)

8. Obtain the truncation error εnT for the scheme from (4.20) and (4.21) as

εnT =
1

∆t

(
NRK(u

n
a) − u

n+1
a

)
=

=una − c
∂u

∂x

∣∣∣∣
n

a

+
c2

2

∂2u

∂x2

∣∣∣∣
n

a

∆t−
c

6

∂3u

∂x3

∣∣∣∣
n

a

∆x2+

−
∂u

∂t

∣∣∣∣
n

a

−
1

2

∂2u

∂t2

∣∣∣∣
n

a

∆t−
1

6

∂3u

∂t3

∣∣∣∣
n

a

∆t2 +O(∆x3,∆t3) (4.22)
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The previous equation (4.22) can be simplified by observing that

∂u

∂t

∣∣∣∣
n

a

+ c
∂u

∂x

∣∣∣∣
n

a

= 0 (4.23)

is none other than (4.1), involving its exact solution una in xa at time

tn.

Also, consider the commutative property of second derivatives:

∂

∂x

∂u

∂t

∣∣∣∣
n

a

−
∂

∂t

∂u

∂x

∣∣∣∣
n

a

= 0 (4.24)

The cross derivatives in x and t for (4.23) are

∂

∂x

(
∂u

∂t

∣∣∣∣
n

a

)
=− c

∂2u

∂x2

∣∣∣∣
n

a

∂

∂t

(
c
∂u

∂x

∣∣∣∣
n

a

)
=− c

∂2u

∂t2

∣∣∣∣
n

a

Applying (4.24):

c2
∂2u

∂x2

∣∣∣∣
n

a

−
∂2u

∂t2

∣∣∣∣
n

a

= 0 (4.25)

Equation (4.25) makes it possible to further simplify εnT in (4.22). The

final expression for εnT is then

εnT = −
c

6

∂3u

∂x3

∣∣∣∣
n

a

∆x2 −
1

6

∂3u

∂t3

∣∣∣∣
n

a

∆t2 +O(∆x3,∆t3) (4.26)

Equation (4.26) proves that a stencil with two neighbours at each side

of the target particle is of second order accuracy in space and time.

4.2.2 2 particles per side: stability

The von Neumann method is widely used for analysing the stability of a nu-

merical scheme associated with a linear PDE. Denoting the spatial discretised

nodal SPH operator as D, (4.7) can be written in matrix form as
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∂u

∂t
= Du (4.27)

where, more specifically, D is a square matrix of dimension N equal to the

number of particles in the discretisation, and u denotes the vector of nodal

values for u.

A spectral decomposition of D yields the eigenvalues λi and eigenvectors

Ri for each degree of freedom (d.o.f.) in the discretised system (4.27):DRi = λiRi

det (D− λi I) = 0 for i = 1, . . . ,N
(4.28)

System (4.28) allows to obtain the modal decomposition of the solution

of the semi-discretised problem (4.7), in terms of separate contributions in

space and time.

In order for (4.7) to preserve its stability, solution u has to remain bounded.

It can be proven that this condition is met if

<(λi) 6 0, ∀i = 1, . . . ,n (4.29)

Eigenvectors Ri can be represented via Fourier series, that is

Ri =
∑
j

eiIΦj (4.30)

where I =
√
−1, and the phase angle Φj ∈ [−π,π]. In (4.30), index i refers

to the particle, and the sum is done over all frequencies j in the Fourier

decomposition.

The wave number kj associated to each jth-Fourier harmonic is

kj =
2π

λwl|j
= j

π

N∆x
(4.31)

In (4.31), λwl|j is the wavelength of the jth harmonic.

Having introduced the wave number k, the phase angle can be alterna-

tively expressed in terms of it, as Φj = kj∆x.
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Substituting (4.30) in the first of (4.28) yields, in indicial notation, and for

the jth-harmonic of Ri:

Dai e
IiΦj = λa e

IaΦj for i = a− p, . . . ,a, . . . ,a+ p (4.32)

where p is the number of neighbouring particles at each side of target

particle a that fall inside of the kernel smoothing circle centred in xa and of

radius 2∆x.

In the case of 2 p.p.s., (4.32) becomes

λa = Dai e
I(i−a)Φa = −

c

2∆x

[
eIΦa − e−IΦa

]
(4.33)

Taking into account the following relations:

eIΦa = cosΦa + I sinΦa e−IΦa = cosΦa − I sinΦa

e2IΦa = cos 2Φa + I sin 2Φa e−2IΦa = cos 2Φa − I sin 2Φa (4.34)

e3IΦa = cos 3Φa + I sin 3Φa e−3IΦa = cos 3Φa − I sin 3Φa,

the real and imaginary parts of λa, from (4.33), are:

<(λa) = 0

=(λa) =−
c

∆x
sin (Φa) (4.35)

The result obtained in (4.35) proves that for this particular stencil the SPH

spatial discretisation of (4.1) is stable, as (4.29) is satisfied.

However, the numerical system may still harbour instabilities in time. In

order to check against this, a constraint must be imposed on the numerical

amplification factor of the time integrator zP, to ensure that the temporal

component of the modal decomposition obtained through (4.28) remains

bounded during the simulation. This pre-condition can be stated as

|zP(λa∆t)| 6 1 (4.36)
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Knowing the zP for a 2-stages explicit TVD-RK time integrator, (4.36) tran-

slates in

|1+ λa∆t+
1

2
(λa∆t)

2| 6 1 (4.37)

A plot of (4.37) on the complex plane of λa∆t enables to directly visualise

the stability limits for the temporal scheme under study. On the same plane

it is also convenient to plot the eigenvalues of the spatial discretisation, in

(4.33), for the whole range of Φa ∈ [−π,π].

All of this is done in fig. 4.2. Observing fig. 4.2, it can be stated that a

SPH discretisation with 2 p.p.s. is unstable, if paired with a 2 stages TVD-RK

temporal integrator. This is because the eigenvalues of the spatial semi-

discretisation fall outside of the time scheme stability region.

Figure 4.2: graphic representation of the stability analysis for the SPH 2 p.p.s. in
space, and 2 stages TVD-RK in time, numerical scheme.

4.2.3 2 particles per side + JST dissipation: consistency

Results obtained in the previous section with the SPH 2 p.p.s. scheme,

show there is the need to introduce numerical dissipation in the SPH semi-

discretisation, in order to generate a stable numerical scheme.

To this purpose, a JST type dissipation term may be added to (4.1) as:

∂u

∂t
+ c

∂u

∂x
= −

ck(4)

∆x

∂4u

∂x4
(4.38)
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An undivided Laplacian of Laplacian is employed in the dissipation

term in (4.38). It can be seen from table 4.2 that having an undivided

∇̃4W = ∇2(∇̃2W) will bring down all the increment terms on the RHS of

(4.38) to the same order. This will prove to be essential in order to prove the

consistency of the scheme.

In the rest of this section, the discretised and corrected version of ∇4W is

obtained in two stages:

1. firstly, the application of correction (4.12) to the SPH Laplacian of kernel,

∇̃2SPHW,

2. then, the use of a central difference operator to obtain the second

Laplacian, ∆CD
(
∇̃2SPHW

)
= ∇̃4W.

The semi-discretisation in space of (4.38) is

∂u

∂t
= −c

∑
b∈Λa

∆x ub∇̃Wb(xa) −
ck(4)

∆x

∑
b∈Λa

∆x ub∇̃4Wb(xa) (4.39)

The study of the consistency properties of (4.39) will be carried out fol-

lowing the procedure outlined in algorithm 4.

1. In the first Laplacian SPH discretisation, values in table 4.2 will be used

for the corrected kernel W̃ and its derivatives. Once ∇̃4W is obtained,

the Laplacian of Laplacian in the dissipative term can be expressed in

terms of central differences as

∇4u =∆CD

(
∇̃2SPHu

)
= ∆CD


∑
b∈Λa

∆x ub ∇̃2Wb (xa)


 =

=
∑

b∈Λa−1
∆x ub ∇̃2Wb (xa−1) − 2

∑
b∈Λa

∆x ub ∇̃2Wb (xa)+

+
∑

b∈Λa+1
∆x ub ∇̃2Wb (xa+1)

=ua+2 − 4ua+1 + 6ua − 4ua−1 + ua−2 (4.40)
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In light of (4.40), (4.39) becomes:

∂u

∂t
= −

c

2∆x

(
una+1 − u

n
a−1

)
+

−
ck(4)

∆x
(ua+2 − 4ua+1 + 6ua − 4ua−1 + ua−2) (4.41)

2. With respect to (4.16), fourth order terms will be added to the Taylor

series expansions of ua±i in (4.41):

una+2 = una + 2
∂u

∂x

∣∣∣∣
n

a

∆x+ 2
∂2u

∂x2

∣∣∣∣
n

a

∆x2 +
4

3

∂3u

∂x3

∣∣∣∣
n

a

∆x3 +
2

3

∂4u

∂x4

∣∣∣∣
n

a

∆x4 + . . .

una+1 = una +
∂u

∂x

∣∣∣∣
n

a

∆x+
1

2

∂2u

∂x2

∣∣∣∣
n

a

∆x2 +
1

6

∂3u

∂x3

∣∣∣∣
n

a

∆x3 +
1

24

∂4u

∂x4

∣∣∣∣
n

a

∆x4 + . . .

una−1 = una −
∂u

∂x

∣∣∣∣
n

a

∆x+
1

2

∂2u

∂x2

∣∣∣∣
n

a

∆x2 −
1

6

∂3u

∂x3

∣∣∣∣
n

a

∆x3 +
1

24

∂4u

∂x4

∣∣∣∣
n

a

∆x4 + . . .

una−2 = una − 2
∂u

∂x

∣∣∣∣
n

a

∆x+ 2
∂2u

∂x2

∣∣∣∣
n

a

∆x2 −
4

3

∂3u

∂x3

∣∣∣∣
n

a

∆x3 +
2

3

∂4u

∂x4

∣∣∣∣
n

a

∆x4 + . . .

+O
(
∆x5

)
(4.42)

3. u∗a is then

u∗a = una −
c∆t

2∆x

(
una+1 − u

n
a−1

)
+

−
ck(4)∆t

∆x
(ua+2 − 4ua+1 + 6ua − 4ua−1 + ua−2) = (4.43)

= una − c
∂u

∂x

∣∣∣∣
n

a

∆t−
c

6

∂3u

∂x3

∣∣∣∣
n

a

∆x2∆t− ck(4)
∂4u

∂x4

∣∣∣∣
n

a

∆x3∆t+O
(
∆x4

)

4. Derivatives in space of u∗a:

∂u

∂x

∣∣∣∣
∗

a

=
∂u

∂x

∣∣∣∣
n

a

− c
∂2u

∂x2

∣∣∣∣
n

a

∆t−
c

6

∂4u

∂x4

∣∣∣∣
n

a

∆x2∆t−ck(4)
∂5u

∂x5

∣∣∣∣
n

a

∆x3∆t+ . . .

∂3u

∂x3

∣∣∣∣
∗

a

=
∂3u

∂x3

∣∣∣∣
n

a

− c
∂4u

∂x4

∣∣∣∣
n

a

∆t−
c

6

∂6u

∂x6

∣∣∣∣
n

a

∆x2∆t−ck(4)
∂7u

∂x7

∣∣∣∣
n

a

∆x3∆t+ . . .

∂4u

∂x4

∣∣∣∣
∗

a

=
∂4u

∂x4

∣∣∣∣
n

a

− c
∂5u

∂x5

∣∣∣∣
n

a

∆t−
c

6

∂7u

∂x7

∣∣∣∣
n

a

∆x2∆t−ck(4)
∂8u

∂x8

∣∣∣∣
n

a

∆x3∆t+ . . .

+O(∆x4) (4.44)
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5. u∗∗a , from (4.14), (4.43), (4.44):

u∗∗a = u∗a − c
∂u

∂x

∣∣∣∣
∗

a

∆t−
c

6

∂3u

∂x3

∣∣∣∣
∗

a

∆x2∆t− ck(4)
∂4u

∂x4

∣∣∣∣
∗

a

∆x3∆t =

= una − 2c
∂u

∂x

∣∣∣∣
n

a

∆t+ c2
∂2u

∂x2

∣∣∣∣
n

a

∆t2 −
c

3

∂3u

∂x3

∣∣∣∣
n

a

∆x2∆t+

+
c2

3

∂4u

∂x4

∣∣∣∣
n

a

∆x2∆t2 − 2ck(4)
∂4u

∂x4

∣∣∣∣
n

a

∆x3∆t− 2ck(4)
∂5u

∂x5

∣∣∣∣
n

a

∆x3∆t2+

c2

36

∂6u

∂x6

∣∣∣∣
n

a

∆x4∆t2 −
c2k(4)

3

∂7u

∂x7

∣∣∣∣
n

a

∆x5∆t2 −
(
ck(4)

)2 ∂8u
∂x8

∣∣∣∣
n

a

∆x6∆t2

+O(∆x7,∆t3) (4.45)

6. Runge-Kutta estimation for next step in time, NRK(una):

NRK(u
n
a) =

1

2
(una + u

∗∗
a ) =

= una − c
∂u

∂x

∣∣∣∣
n

a

∆t+
c2

2

∂2u

∂x2

∣∣∣∣
n

a

∆t2 −
c

6

∂3u

∂x3

∣∣∣∣
n

a

∆t∆x2+

+
c2

6

∂4u

∂x4

∣∣∣∣
n

a

∆x2∆t2 − ck(4)
∂4u

∂x4

∣∣∣∣
n

a

∆x3∆t− c2k(4)
∂5u

∂x5

∣∣∣∣
n

a

∆x3∆t2+

+
c2

72

∂6u

∂x6

∣∣∣∣
n

a

∆x4∆t2 −
c2k(4)

6

∂7u

∂x7

∣∣∣∣
n

a

∆x5∆t2 −

(
ck(4)

)2

2

∂8u

∂x8

∣∣∣∣
n

a

∆x6∆t2

+O(∆x7,∆t3) (4.46)

7. Taylor expansion of un+1a in time around una , see (4.21).
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8. Obtain the truncation error εnT for the scheme from (4.46) and (4.21) as

εnT =
1

∆t

(
NRK(u

n
a) − u

n+1
a

)
=

=
�
�
�una

∆t
− c

∂u

∂x

∣∣∣∣
n

a

+
c2

2

∂2u

∂x2

∣∣∣∣
n

a

∆t−
c

6

∂3u

∂x3

∣∣∣∣
n

a

∆x2+

+
��

���
��

���:h.o.t.
c2

6

∂4u

∂x4

∣∣∣∣
n

a

∆x2∆t −
���

���
���:

h.o.t.
ck(4)

∂4u

∂x4

∣∣∣∣
n

a

∆x3 +

−
��

���
���

���:
h.o.t.

c2k(4)
∂5u

∂x5

∣∣∣∣
n

a

∆x3∆t +
���

���
���

�:h.o.t.
c2

72

∂6u

∂x6

∣∣∣∣
n

a

∆x4∆t +

−
���

���
���

��:h.o.t.
c2k(4)

6

∂7u

∂x7

∣∣∣∣
n

a

∆x5∆t −
���

���
���

���
�:h.o.t.(

ck(4)
)2

2

∂8u

∂x8

∣∣∣∣
n

a

∆x6∆t +

−
�
�
�una

∆t
−
∂u

∂t

∣∣∣∣
n

a

−
1

2

∂2u

∂t2

∣∣∣∣
n

a

∆t−
1

6

∂3u

∂t3

∣∣∣∣
n

a

∆t2 +O

(
∆x���

3

7 ,∆t3
)

(4.47)

Applying (4.23) and (4.25), εnT in (4.47) can be reduced to

εnT = −
c

6

∂3u

∂x3

∣∣∣∣
n

a

∆x2 −
1

6

∂3u

∂t3

∣∣∣∣
n

a

∆t2 +O(∆x3,∆t3) (4.48)

4.2.4 2 particles per side + JST dissipation: stability

The stability analysis for the 2 p.p.s. SPH scheme with JST dissipation contribu-

tion will be conducted in the same way to what already done in section 4.2.2

for the 2 p.p.s. space semi-discretisation.

Proceeding in that manner, the specific row Da of the spatial discretisation

matrix D in (4.27) corresponding to a generic particle a, may be written as:

Da =

[
0 . . . −

ck(4)

∆x

∣∣∣∣∣ −
c

∆x

(
1

2
− 4k(4)

) ∣∣∣∣∣ −
6ck(4)

∆x

∣∣∣∣∣

c

∆x

(
1

2
+ 4k(4)

) ∣∣∣∣∣ −
ck(4)

∆x
. . . 0

]
(4.49)
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and, using (4.32), an eigenvalue λa of D can be obtained as

λa =−
ck(4)

∆x
e2IΦa −

c

∆x

(
1

2
− 4k(4)

)
eIΦa − 6

ck(4)

∆x
+

+
c

∆x

(
1

2
+ 4k(4)

)
e−IΦa −

ck(4)

∆x
e−2IΦa (4.50)

λa in (4.50), decomposed in its real and imaginary parts, becomes

<(λa) = −2
ck(4)

∆x
cos (2Φa) + 8

ck(4)

∆x
cosΦa − 6

ck(4)

∆x
=

= −4
ck(4)

∆x
(cosΦa − 1)

2 (4.51)

=(λa) = −
c

∆x
sinΦa

The condition for stability stated in (4.29) is satisfied by <(λa) in (4.51),

∀Φa ∈ [−π,π].

Figure 4.3: stability of the SPH 2 p.p.s. - JST dissipation (space) + 2 stages TVD-RK
(time) scheme, α = 1/2 and k(4) = 1/16.

Figure 4.3 shows the stability of the discretising scheme with added

dissipation in space and time, for values of α = c∆t/∆x = 1/2 and k(4) = 1/16.

To the contrary of what happened for the previous SPH scheme without

artificial dissipation, this time the eigenvalues λa∆t fall entirely inside the

allowed stability domain of the time discretisation.
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However, in case different combinations of values for α and k(4) are chosen,

the range of λa∆t ∈ [−π,π] can also become large enough to grow beyond

the stability limits set by the amplification factor of the time scheme.

4.2.5 3 particles per side: consistency

Investigation of the accuracy properties for the case of a 3 p.p.s. SPH discreti-

sation will be carried out in the same manner it was done for the 2 p.p.s.

scheme in section 4.2.1.

To study the consistency of the scheme, the highest degree of the trunca-

tion error εnT has to be determined with respect ot increments in space ∆x

and in time ∆t. To achieve this, the procedure described in algorithm 4 will

be followed.

1. The exact values of the kernel function coefficients and its derivatives

for the 3 p.p.s. stencil are presented in table 4.3.

Table 4.3: uncorrected kernel, 3 p.p.s.

stencil particles position

a− 3 a− 2 a− 1 a a+ 1 a+ 2 a+ 3

W 0 8/729 28/81 4/3 28/81 8/729 0 ·1/∆x
∇W 0 40/729 200/243 0 −200/243 −40/729 0 ·1/∆x2
∇2W 0 160/729 320/243 −160/27 320/243 160/729 0 ·1/∆x3
∇3W 0 160/243 0 160/9 0 −160/243 0 ·1/∆x4
∇4W 0 320/243 −640/81 −2240/81 −640/81 320/243 0 ·1/∆x5

Applying corrections up to the second derivative in table 4.3 yields the

coefficients in table 4.4.

Table 4.4: corrected kernel, 3 p.p.s.

stencil particles position

a− 3 a− 2 a− 1 a a+ 1 a+ 2 a+ 3

W̃ 0 2/373 63/373 243/373 63/373 2/373 0 ·1/∆x
∇̃W 0 −1/34 −15/34 0 15/34 1/34 0 ·1/∆x
∆̃W 0 1/10 3/5 −7/5 3/5 1/10 0 ·1/∆x
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As was the case in section 4.2.1, values of ∇̃W and ∇̃2W in table 4.4

are undivided, i. e. they have not been divided by the increment ∆x

with each derivation. The semi-discretised equation for (4.1) can then

be expressed as

∂u

∂t

∣∣∣∣
a

= −
c

34∆x

(
una+2 + 15u

n
a+1 − 15u

n
a−1 − u

n
a−2

)
(4.52)

2. The stencil in (4.52) is the same used in the 2 p.p.s. with added JST

dissipation seen in section 4.2.3 (eq. (4.41)), as it goes from the particle

at xna−2 to the one in xna+2.

However, with respect to (4.42), in this case Taylor expansions of terms

ua±i are used just up to the third order:

una+2 = una + 2
∂u

∂x

∣∣∣∣
n

a

∆x+ 2
∂2u

∂x2

∣∣∣∣
n

a

∆x2 +
4

3

∂3u

∂x3

∣∣∣∣
n

a

∆x3 +O
(
∆x4

)

una+1 = una +
∂u

∂x

∣∣∣∣
n

a

∆x+
1

2

∂2u

∂x2

∣∣∣∣
n

a

∆x2 +
1

6

∂3u

∂x3

∣∣∣∣
n

a

∆x3 +O
(
∆x4

)

una−1 = una −
∂u

∂x

∣∣∣∣
n

a

∆x+
1

2

∂2u

∂x2

∣∣∣∣
n

a

∆x2 −
1

6

∂3u

∂x3

∣∣∣∣
n

a

∆x3 +O
(
∆x4

)

una−2 = una − 2
∂u

∂x

∣∣∣∣
n

a

∆x+ 2
∂2u

∂x2

∣∣∣∣
n

a

∆x2 −
4

3

∂3u

∂x3

∣∣∣∣
n

a

∆x3 +O
(
∆x4

)

(4.53)

3. Obtain u∗a in (4.14) from (4.53):

u∗a = una −
c∆t

34∆x

(
una+2 + 15u

n
a+1 − 15u

n
a−1 − u

n
a−2

)
=

= una − c
∂u

∂x

∣∣∣∣
n

a

∆t−
23

102

∂3u

∂x3

∣∣∣∣
n

a

∆x2∆t (4.54)
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4. Derivatives in space of u∗a:

∂u

∂x

∣∣∣∣
∗

a

=
∂u

∂x

∣∣∣∣
n

a

− c
∂2u

∂x2

∣∣∣∣
n

a

∆t−
23

102
c
∂4u

∂x4

∣∣∣∣
n

a

∆x2∆t+O(∆x4)

∂2u

∂x2

∣∣∣∣
∗

a

=
∂2u

∂x2

∣∣∣∣
n

a

− c
∂3u

∂x3

∣∣∣∣
n

a

∆t−
23

102
c
∂5u

∂x5

∣∣∣∣
n

a

∆x2∆t+O(∆x4) (4.55)

∂3u

∂x3

∣∣∣∣
∗

a

=
∂3u

∂x3

∣∣∣∣
n

a

− c
∂4u

∂x4

∣∣∣∣
n

a

∆t−
23

102
c
∂6u

∂x6

∣∣∣∣
n

a

∆x2∆t+O(∆x4)

5. Compute u∗∗a from (4.14), (4.54), (4.55):

u∗∗a = u∗a − c
∂u

∂x

∣∣∣∣
∗

a

∆t−
23

102

∂3u

∂x3

∣∣∣∣
∗

a

∆x2∆t =

= una − 2c
∂u

∂x

∣∣∣∣
n

a

∆t+ c2
∂2u

∂x2

∣∣∣∣
n

a

∆t2 −
23

51
c
∂3u

∂x3

∣∣∣∣
n

a

∆x2∆t+O
(
∆x3

)

(4.56)

6. Runge-Kutta estimation for next step in time, NRK(una):

NRK(u
n
a) =

1

2
(una + u

∗∗
a ) =

= una − c
∂u

∂x

∣∣∣∣
n

a

∆t+
c2

2

∂2u

∂x2

∣∣∣∣
n

a

∆t2 −
23

102
c
∂3u

∂x3

∣∣∣∣
n

a

∆x2∆t+O
(
∆x3

)

(4.57)

7. Taylor expansion of un+1a in time around una , found in (4.21).

8. Obtain the truncation error εnT for the scheme from (4.57) and (4.21) as

εnT =
1

∆t

(
NRK(u

n
a) − u

n+1
a

)
=

=−
23

102
c
∂3u

∂x3

∣∣∣∣
n

a

∆x2 −
1

6

∂3u

∂t3

∣∣∣∣
n

a

∆t2 +O
(
∆x3,∆t3

)
(4.58)

To get to the final expression for εnT in (4.58), use was made of (4.23)

and (4.25). Equation (4.58) shows that the 3 p.p.s. scheme is of third

order accuracy in space and time.
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4.2.6 3 particles per side: stability

In order to study the stability of the 3 p.p.s. stencil, modifications have to be

implemented into the 2 p.p.s. equation (4.27), so that it fits the 3 p.p.s. scheme.

Then, for a generic particle located at xa:

∂ua

∂t
=

2∑
i=−2

Dai ua+i =

−
c

34∆x

(
una+2 + 15u

n
a+1 − 15u

n
a−1 − u

n
a−2

)
(4.59)

A row Da of matrix D now reads

Da =

[
0 . . . −

c

34∆x

∣∣∣∣ −
15c

34∆x

∣∣∣∣ 0

∣∣∣∣
15c

34∆x

∣∣∣∣
c

34∆x
. . . 0

]

(4.60)

The eigenproblem for (4.59), after the eigenvectors have been decomposed

in the Fourier domain, reads

Daie
IiΦj = λae

IaΦj i = a− 2, . . . ,a+ 2 (4.61)

Substituting (4.60) in (4.61) allows to express λa as

λa = −
c

34∆x
e2IΦj −

15c

34∆x
eIΦj +

15c

34∆x
e−IΦj +

c

34∆x
e−2IΦj (4.62)

By means of (4.34), (4.62) transforms into:

λa = I

(
−

c

17∆x
sin 2Φj −

15c

17∆x
sinΦj

)
(4.63)

Since <(λj) = 0, the SPH spatial semi-discretisation with 3 p.p.s. fulfils the

stability condition (4.29).

Despite this, fig. 4.4 shows that the time stepping of (4.59) with a 2 stages

TVD-RK approach should lead to instability.

4.2.7 3 particles per side + JST dissipation: consistency

Section 4.2.6 showed that the 3 p.p.s. SPH spatial semi-discretisation needs

artificial dissipation in order to achieve stability in time.
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Figure 4.4: stability of the SPH 3 p.p.s. (space) + 2 stages TVD-RK (time) scheme,
α = 1/2.

For this purpose, and similarly to what was done in section 4.2.3 for the 2

p.p.s. case, a JST-type of dissipative term is added to the SPH-discretised LAE

in order to obtain (4.39). As in the 2 p.p.s. case, the dissipation term employs

an undivided Laplacian of Laplacian. The discretised version of ∇4W is

obtained in the same way of section 4.2.3, by first applying a corrected SPH

Laplacian, and then a central difference Laplacian operator to W in (4.39).

Algorithm 4 will be followed to derive the truncation error εnT for the

scheme.

1. Values in table 4.4 will be used for the corrected kernel W̃ and its

derivatives, in order to compute ∇̃2SPHW. The Laplacian of Laplacian

in the dissipative term, expressed in terms of central differences, is

∇4u = ∆CD

(
∇̃2SPHu

)
=∑

b∈Λa−1
∆x ub ∇̃2Wb (xa−1) − 2

∑
b∈Λa

∆x ub ∇̃2Wb (xa)+

+
∑

b∈Λa+1
∆x ub ∇̃2Wb (xa+1) =

=
1

10
ua+3 +

2

5
ua+2 −

5

2
ua+1 + 4ua −

5

2
ua−1 +

2

5
ua−2 +

1

10
ua−3

(4.64)
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In light of (4.64), the complete SPH 3 p.p.s. semi-discretisation in space

can be put as:

∂u

∂t
= −

c

34∆x

(
una+2 + 15u

n
a+1 − 15u

n
a−1 − u

n
a−2

)
+

−
ck(4)
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(
1
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5
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2
ua+1 + 4ua −

5

2
ua−1 +

2

5
ua−2 +

1

10
ua−3

)

(4.65)

2. With respect to (4.53), fourth order terms have to be added to the

Taylor series expansions of terms ua±i that are in (4.65). In addition,

expansions for the ua±3 contributions need to be computed:

una+3 = una + 3
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(4.66)

3. Obtain u∗a in (4.14), with the help of (4.66):

u∗a = una −
c∆t
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(4.67)
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4. Derivatives in space of u∗a:
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5. Compute u∗∗a from (4.14), (4.67), (4.68):
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(4.69)

6. Runge-Kutta estimation for next step in time, NRK(una):

NRK(u
n
a) =

1

2
(una + u

∗∗
a ) =

= una − c
∂u

∂x

∣∣∣∣
n

a

∆t+
c2

2

∂2u
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∂3u

∂x3
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∆x2∆t+O
(
∆x3

)

(4.70)
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To note, (4.70) is the same result achieved in (4.57), meaning that the

consistency of the schemes, one with and the other without dissipation,

will be the same.

7. Taylor expansion of un+1a in time around una , found in (4.21).

8. Obtain the truncation error εnT for the scheme from (4.70) and (4.21) as

εnT =
1

∆t

(
NRK(u

n
a) − u

n+1
a

)
=

=−
23

102
c
∂3u

∂x3

∣∣∣∣
n

a

∆x2 −
1

6

∂3u

∂t3

∣∣∣∣
n

a

∆t2 +O
(
∆x3,∆t3

)
(4.71)

The final expression for εnT in (4.71), obtained by drawing upon (4.23)

and (4.25), proves that the accuracy of the 3 p.p.s. scheme with added

JST dissipation attains the same third order accuracy in space and time

achieved by the 3 p.p.s. scheme in (4.58).

4.2.8 3 particles per side + JST dissipation: stability

As a first step, the stability of the 3 p.p.s. + JST dissipation stencil is investi-

gated by adapting (4.27) to the current stencil. This yields, for the generic

particle a:

∂ua

∂t
=
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10
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(4.72)

so that row Da of matrix D reads

Da =

[
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Substituting (4.73) in (4.61) allows to express λa as

λa = −
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− 4
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(4.74)

By means of (4.34), λa in (4.62) can be separated into its real and imaginary

parts:

<(λa) =−
ck(4)

5∆x
cos 3Φj −

4ck(4)

5∆x
cos 2Φj +

5ck(4)

∆x
cosΦj −

4ck(4)

∆x
6 0 ,

∀Φj ∈ [−π,π] (4.75a)

=(λa) =−
c

17∆x
sin 2Φj −

15c

17∆x
sinΦj (4.75b)

Since condition (4.29) is satisfied by (4.75a), the 3 p.p.s. SPH spatial semi-

discretisation with JST artificial dissipation is proven stable.

Figure 4.5: stability of the SPH 3 p.p.s. - JST artificial dissipation (space) + 2 stages
TVD-RK (time) scheme, α = 1/2 and k(4) = 1/16.

Figure 4.5 shows the stability in space and time of the discretising scheme

with added dissipation, for values of α = c∆t/∆x = 1/2 and k(4) = 1/16.

As opposite to the SPH 3 p.p.s. scheme without artificial dissipation seen in

section 4.2.6, in fig. 4.5 the eigenvalues λa∆t fall entirely inside the allowed
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stability domain of the time discretisation. However, in case particular

combinations of values for α and k(4) are chosen, the range of λa∆t ∈
[−π,π] can possibly overrun the stability limits set up by the time scheme

amplification factor zP.

Alternatively, stability plots could be drawn on the amplification factor zP
complex plane, as shown in figs. 4.6 and 4.7.
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Figure 4.6: stability limits for the non stabilised SPH scheme, plotted on the amplifi-
cation factor zP complex plane. Zoomed section shows instability of the scheme,
as the SPH eigenvalues lie outside the stability range.

(a) JST-SPH 2 p.p.s. scheme (b) JST-SPH 3 p.p.s. scheme

Figure 4.7: stability limits for the JST-SPH scheme, plotted on the amplification factor
zP complex plane. The scheme lies inside the stability range, for both the 2 and 3
p.p.s. cases.
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4.3 spectral analysis of the amplification factor

The amplification factor zP, defined in (4.37), provides more insight on the

nature and behaviour of the numerical error. Since zP is peculiar to each

scheme, it allows the analyst to predict performances and pick the most

appropriate scheme for the problem at hand.

The solution of (4.7) can be split into separate time- and space-dependent

components:

u(t, x) =
N∑
j=1

lj(t)Rj(x) (4.76)

In (4.76) the space-dependent component is the eigenvector Rj, which has

been already presented as a Fourier series expansion in (4.30). An expression

for the time-dependent lj is found by substituting (4.76) in (4.27), and then

by using the first of (4.28) to obtain

dlj

dt
= λjlj ∀j ∈ [1,N] (4.77)

The solution for the j-th single equation in (4.77) is

lnj = lj(t) = lj(0)e
λjt = l0j e

λjn∆t (4.78)

where lnj is considered at n equispaced time instants ∆t, that is t = n∆t.

In (4.78), l0j is the initial solution of (4.1). It can be further expanded into

Fourier series as

lj(0) =
1

2L

∫L
−L
f(x)e−Ikxjdx (4.79)

where L is the length of the unidimensional domain, k is the wave number

defined in (4.31), here taken in its continuous form, and xj = j∆x. The

numerical amplification factor zP has already been employed in the study of

stability from section 4.2.2 onward. It is time to give a proper definition of

zP as

zP =
ln+1j

lnj
(4.80)
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From (4.80), it follows that

lnj

l0j
= (zP)

n (4.81)

Further, using (4.78), zP can be written as

zP = eλj∆t (4.82)

In general, the eigenvalue λj will be a complex number, and, as a conse-

quence of (4.82), so will also be zP. It is thus possible to separate it in an

amplitude, or absolute value, |zP|, and a phase angle, φ:

zP = |zP|e
−Iφ (4.83)

The amplification factor of the numerical solution zP can be compared

with the z̃P of the exact solution, to obtain:

• the error in amplitude, or dissipation error εD

εD =
|zP|

|z̃P|
(4.84)

In order to achieve stability, it is necessary that εD < 1, or else the

amplitude of the solution will grow along with the time steps, leading

the solution to eventual divergence;

• the error in phase angle, or dispersion error εφ, which for convection

dominated problems takes the form

εφ =
φ

φ̃
(4.85)

εφ could also be expressed as εφ = φ − φ̃, in case of a diffusion

dominated problem. In case φ > φ̃, εφ is said to be a leading error; on

the contrary, if φ < φ̃, εφ is said to be a lagging error.
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Given the fact that in hyperbolic PDEs, such as (4.1), no physical damping

is present, it holds that

εD = |zP| =

√
[<(zP)]

2 + [=(zP)]
2

εφ =
φ

αΦ
= −

1

αΦ

=(zP)

<(zP)
(4.86)

withΦ being the phase angle of the Fourier decomposition of eigenvectors

Ri as defined in (4.30) of section 4.2.2. Errors as defined in (4.86) can be

applied to a scheme discretised in time with TVD-RK, by substituting (4.37)

in (4.86).

It is possible then to plot both errors as functions of the phase angle φ

used in the Fourier series expansion of unj , in order to gather insightful

information on the solution stability and behaviour.

Values of Φ near 0 represent the contribution of low-frequency harmonics

of the solution, while high-frequency contributions are located near Φ = π.

• Diffusion error for SPH schemes without artificial dissipation

The diffusion error εD for the 2 p.p.s. and 3 p.p.s. SPH stencils is plotted

in fig. 4.8.

Figure 4.8: diffusion error εD for the 2 p.p.s. and 3 p.p.s. SPH schemes.
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Both schemes in fig. 4.8 display εD > 1 for the whole spectrum [0,π]

of Φ. This proves they are unstable, confirming what had been already

determined in sections 4.2.2 and 4.2.6.

• Diffusion error for SPH schemes with JST artificial dissipation

The diffusion error εD for the 2 p.p.s. and 3 p.p.s. SPH stencils with

added JST numerical dissipation is plotted in fig. 4.9.

Figure 4.9: diffusion error εD for the 2 p.p.s. and 3 p.p.s. SPH schemes + JST.

With the addition of artificial dissipation, the schemes in fig. 4.9 now

show εD 6 1 for the whole spectrum [0,π] ofΦ, reaffirming conclusions

drawn in sections sections 4.2.2 and 4.2.6 about their stability.

It can also be observed how εD stays in the neighbourhood of 1 for

an ample stretch in the low-frequency harmonics range. This has a

positive effect on accuracy, as that interval is much wider than the

Φlim = π/12 (≈ 25 points per wavelength) needed to capture high-

frequency signals.

Moreover, the smaller values εD assumes in the high-frequencies end

up yielding a positive influence, as they help to dampen the numerical

oscillations that inevitably appear when using second order schemes

to approximate solutions with discontinuities.
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• Dispersion error for SPH schemes without artificial dissipation

The dispersion error εφ for the 2 p.p.s. and 3 p.p.s. SPH stencils is

presented in fig. 4.10.

Figure 4.10: dispersion error εφ for the 2 p.p.s. and 3 p.p.s. SPH schemes.

Both schemes in fig. 4.10 show εΦ 6 1 for the whole spectrum [0,π] of

φ, a lagging phase error. The velocity at which the numerical solution

propagates will be therefore slower than velocity c in the continuum.

However, this will be more true for the high-frequency wavelets, as

εφ is at its smallest there, than for low-frequency harmonics. As the

spectral content of numerical errors is mostly located at high frequen-

cies, it is expected that oscillations will appear upstream of eventual

discontinuities of the solution, or its derivatives. Low frequencies, on

the contrary, are expected to constitute the bulk of the exact solution;

therefore, the lagging effect on the numerical solution is predicted to

be negligible.

• Dispersion error for SPH schemes with JST artificial dissipation

The dispersion error εφ for the 2 p.p.s. and 3 p.p.s. SPH stencils, is

presented in fig. 4.11.
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Figure 4.11: dispersion error εφ for the 2 p.p.s. and 3 p.p.s. SPH schemes + JST.

Figure 4.11 does not differ much from previous fig. 4.10. As could be

expected, the added numerical dissipation predominantly affects the

dissipation error εD.

4.4 concluding remarks

In terms of stability, the JST-SPH discretisation of the one-dimensional LAE

equation, as conducted in section 4.1, has been shown in section 4.2 to be an

improvement with respect to the case without the JST dissipative term.

Data gathered on the dissipation error in section 4.3 confirm that JST

is effective in damping high-frequency oscillations, such as the pressure

chequerboard instabilities that are a consequence of SPH nodal integration.

Appearance and development of these instabilities will be shown in the

applications presented in the next chapter.



5N U M E R I C A L A P P L I C AT I O N S

Numerical simulations, performed with the JST-SPH methodology described

so far, constitute the subject of the present chapter. The order of presentation

will be arranged according to the material constitutional law used, amongst

those listed in chapter 2.

Thus, in section 5.1 the applications will consider nearly incompressible

hyperelasticity; while in section 5.2 the focus will be expanded to include

material deformation scenarios with permanent plastic deformations. Sec-

tion 5.3 will repeat some of these tests to simulate and investigate initial

configuration with unstructured (i. e. irregular) particle distribution. Sec-

tion 5.4, finally, will present closing remarks.

5.1 hyperelasticity

5.1.1 Swinging cube

A cube of side length 1m, as illustrated in fig. 5.1, is assigned symmetric BCs

(roller supports) on the faces aligned with the X = 0, Y = 0 and Z = 0 planes,

while on faces lying on the X = 1, Y = 1 and Z = 1 planes its movement is

restricted to the tangential direction by skew-symmetric BCs.

This example is set up to investigate the convergence of the JST-SPH

scheme, as in the small strain regime a closed form solution is known to be

of the form [135, 145]:

u(X, t) = U0 cos

(√
3

2
πc t

)
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(5.1)

In (5.1), the solution is provided for the displacements u using material

elastic speed defined as c =
√

(λ+ 2µ)/ρ. User-defined parameter U0 governs

193
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X1

X2

X3

1 m

Figure 5.1: swinging cube initial configuration.

the amplitude of the solution oscillations. In caseU0 < 10−3 is selected, uwill

be sufficiently small to assume a Saint-Venant type of material behaviour. The

motion of the cube is triggered by imposing the following initial deformation

field:

F(X, t = 0) = I+∇0u(X, t = 0)

H(X, t = 0) =
1

2
F(X, t = 0)××× F(X, t = 0) (5.2)

J(X, t = 0) =
1

6
[F(X, t = 0)××× F(X, t = 0)] : F(X, t = 0)

The amplitude parameter is selected as U0 = 0.0005, while the material

is modelled as linearly elastic, with Young modulus E = 17MPa, Poisson’s

ratio ν = 0.3 and density ρ = 1100 kg/m3.

Assigning a JST constant k(4)JST = 1/8, a CFL number σCFL = 0.3, a SPH kernel

support radius of 2.2 times the smoothing length h, and choosing a discre-

tised mesh of 8× 8× 8 = 512 particles, graphical representations of the cube

motion are presented in fig. 5.2 at various instants of the simulation time.

In fig. 5.2, deformations have been significantly enlarged for visualisation

purposes.

A convergence analysis was performed in the case of the mixed {p, F}

JST-SPH scheme, calculating the global error norms for velocities L1(v) and

L2(v), and pressures L1(p) and L2(p). Data are extracted at simulation instant
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t = 0.0001 s t = 0.004 s t = 0.008 s

t = 0.012 s t = 0.016 s t = 0.02 s

Figure 5.2: swinging cube simulation, pressure contour plot at various instants in
time. Results obtained with the {p, F} JST-SPH scheme. Simulation parameters: 512
particles, k(4)JST = 1/8, Saint Venant elastic material with density ρ = 1100 kg/m3,
Young’s modulus E = 17MPa, Poisson’s ratio ν = 0.3. Initial conditions are as
defined in (5.2) and (5.1), with U0 = 0.0005. Deformations in the images above are
magnified 200 times. σCFL = 0.3 assumed.

t = 0.004 s, for different discretisations of 512 (8 p.p.s.), 1728 (12 p.p.s.), 4096

(16 p.p.s.), 8000 (20 p.p.s.) and 13824 (24 p.p.s.) particles.

The norms are defined as:

L1(v) =
N∑
i=1

Vi |vexact
i − vi| ; L2(v) =

√√√√
N∑
i=1

Vi
(
vexact
i − vi

)2 (5.3a)

L1(p) =

N∑
i=1

Vi |p
exact
i − pi| ; L2(p) =

√√√√
N∑
i=1

Vi
(
pexact
i − pi

)2 (5.3b)
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In (5.3), N is the total number of particles, Vi is the portion of domain

volume assigned to each particle i, vexact
i is the analytical velocity obtained

by differentiating (5.1) with respect to time t; while exact values of pressure

pexact
i are computed as the trace of the stress tensor in linear elasticity:

pexact = tr (2µE+ λ tr (E) I) (5.4)

In (5.4), µ and λ are the Lamé constants, and the Green strain tensor is

defined as E = 0.5 (FTF− I). The simulation is conducted with the same

material properties reported in fig. 5.2.
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(b) pressures
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Figure 5.3: swinging cube, convergence analysis for (5.3a) velocity v and (5.3b)
pressure p at t = 0.0004 s. L1(v, p) and L2(v, p) error norms considered. Saint
Venant material with density ρ = 1100 kg/m3, Young’s modulus E = 17MPa,
Poisson’s ratio ν = 0.3. U0 = 0.0005, JST constant k(4)JST = 1/8 and σCFL = 0.3.

The study of results depicted in fig. 5.3 suggests that the JST-SPH scheme

achieves and even surpasses (in fact, a logarithmic slope of 3.32 is observed

when considering the most refined meshes) a 2nd order of convergence with

respect to the L2(v) norm.

This does not happen for the L1(v) norm, that reaches only 1st order of

convergence. Same behaviour is observed for the convergence of L1 and L2

norms for pressures p. Sensitivity of the L1 norm to outliers may explain

this discrepancy in performance. In fact, as it can be deduced from (5.3), the
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L1 norm lacks the smoothing effect achieved while using squared values of

the error components, which on the other hand benefits the L2 norm.

Results of the other mixed {p, F, J} and {p, F, H, J} JST-SPH schemes show

an almost identical path to convergence to that in fig. 5.3. Table 5.1 highlights

this, by listing error norms for all three mixed schemes.

Table 5.1: swinging cube simulation, error norms for the mixed {p, F}, {p, F, J} and
{p, F, H, J} JST-SPH schemes. Material and simulation properties are those used in
fig. 5.3. As differences between schemes are minimal, values for the {p, F, J} and
for the {p, F, H, J} mixed methods are expressed as variation percentages from
{p, F} results.

mixed
form

particles per
cube edge

total
particles

L1(v) L2(v) L1(p) L2(p)

{p, F} 8 512 0.0255 0.0011 999.938 68.625
{p, F, J} 8 512 ±0 ±0 −0.03% −0.05%

{p, F, H, J} 8 512 ±0 ±0 −0.03% −0.05%
{p, F} 12 1728 0.022 4.442 · 10−4 769.522 26.112
{p, F, J} 12 1728 ±0 ±0 +0.032% +0.015%

{p, F, H, J} 12 1728 ±0 ±0 +0.032% +0.015%
{p, F} 16 4096 0.019 2.586 · 10−4 618.635 13.928
{p, F, J} 16 4096 ±0 ±0 +0.017% ±0

{p, F, H, J} 16 4096 ±0 ±0 +0.017% ±0
{p, F} 20 8000 0.018 1.61 · 10−4 485.893 8.197
{p, F, J} 20 8000 ±0 ±0 +0.027% ±0

{p, F, H, J} 20 8000 ±0 ±0 +0.027% ±0
{p, F} 24 13824 0.013 8.789 · 10−5 441.25 5.837
{p, F, J} 24 13824 ±0 −0.12% +0.014% ±0

{p, F, H, J} 24 13824 ±0 −0.12% +0.014% ±0

A series of parametric studies were carried out in order to analyse the

influence of the following two parameters on convergence:

1. the smoothing length h = αh|xa − xb|, where numerical constant αh
multiplies the particles horizontal inter-distance |xa − xb|. αh will be

set to αh = 1.2, and to αh = 3.2. Previously, for the analysis in fig. 5.3,

it was selected to be αh = 2.2;
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2. the JST constant κ(4). Initially set to κ(4) = 1/4 in fig. 5.3, it has been

decreased to κ(4) = 1/64 and to κ(4) = 0 to evaluate the importance of

JST dissipation on the convergence of the scheme.

Convergence plots for these two sets of parametric analyses are presented

in figs. 5.4 and 5.5. The simulations were run using the mixed {p, F} scheme,

and, with the exception of the parameter object of study (αh or κ(4)JST), with

the same set of properties used for the simulations shown in fig. 5.3.

(a) velocities, varying parameter = αh
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Figure 5.4: swinging cube, {p, F} formulation, convergence analysis for (5.4a) velocity
v and (5.4b) pressure p at t = 0.0004 s. Parameter αh, which governs the number
of neighbours for each particle, is set equal to 1.2 (red lines), 2.2 (grey lines, same
value adopted in fig. 5.3) and 3.2 (blue lines). L1(v, p) and L2(v, p) global error
norms considered. Other material and simulation data are the same as those used
for fig. 5.3.

It is clear from fig. 5.4 that increasing αh, the number of neighbours per

particle, leads to a slower, and more irregular path to convergence. This is

seen for the red lines, i. e. those with αh = 3.2. As in fig. 5.3, this phenomenon

is more accentuated for L1 plots. Another drawback is that computational

costs also increase with αh, as the rising number of neighbours per particle

implies that more calculations have to be performed.

In order to gain a better understanding of the aforementioned computa-

tional costs, fig. 5.6 plots times to completion for simulations used in fig. 5.4

run with αh = 1.2 (limited number of neighbours per particle) and with

αh = 3.2 (large number of neighbours per particle).
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Figure 5.5: swinging cube, {p, F} formulation, convergence analysis for (5.5a) velocity
v and (5.5b) pressure p at t = 0.0004 s. JST constant κ(4) is set equal to 0 (red lines),
1/64 (blue lines) and 1/4 (grey lines, same value adopted in fig. 5.3). L1(v, p) and
L2(v, p) global error norms considered. Other material and simulation properties
are the same as in fig. 5.3.
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Figure 5.6: swinging cube, times to completion for analyses in fig. 5.4 with αh = 1.2
(blue bars) and αh = 3.2 (red bars), and lasting 0.005 s in simulation time.
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In case the amount of JST dissipation is assumed as parameter, patterns of

velocity errors in fig. 5.5a are shown to be comparable. Limiting the amount

of JST dissipation leads a more irregular path to convergence for stresses, as

can be observed from fig. 5.5b.

5.1.2 Spinning cube

The test described here will demonstrate the effectiveness of the momen-

tum-preserving procedure introduced in section 3.8. A cube is discretised

as an assemblage of 6× 6× 6 particles in space. The cube is set to spin by

an initial, impulsive angular velocity ω0z = 105 rad/s imposed on the axis

passing through its centroid, and directed parallel to one of the coordinate

axes (see fig. 5.7).

X1

X2

X3

1 m

ω0z = 105
rad

s

Figure 5.7: spinning cube initial configuration.

No restraint on movement is imposed. The cube is modelled with a

hyperelastic, neo-Hookean material of the type described in section 2.9, with

density ρ = 1100 kg/m3, Young’s modulus E = 17MPa and Poisson’s ratio

ν = 0.3. The CFL stability coefficient is taken as σCFL = 0.3.

Graphics representing the evolution in time for this test are presented in

fig. 5.8. Comparison between first and second rows in fig. 5.8 shows that

JST stabilisation is essential to avoid simulation failure due to the rise of

pressure instabilities. Last row in fig. 5.8 proves that differences between
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t = 0.01 s t = 1 s

{p, F} SPH

t = 3 s

t = 0.01 s t = 1 s

{p, F} JST-SPH

t = 3 s

t ≈ 5 s

{p, F} JST-SPH

t ≈ 5 s

{p, F, J} JST-SPH

t ≈ 5 s

{p, F, H, J} JST-SPH

Figure 5.8: spinning cube simulation, pressure contour plot at various instants in
time. Results obtained with the {p, F} SPH without JST stabilisation are presented
in the first row; results obtained with {p, F} JST-SPH in the second. In the third
row, results around instant t = 5 s are shown, coming from all three JST-SPH mixed
formulations. Simulation parameters: 1× 1× 1m3, discretised with 216 particles,
k
(4)
JST = 1/8, neo-Hookean hyperelastic material with density ρ = 1100 kg/m3,

Young’s modulus E = 17MPa, Poisson’s ratio ν = 0.3. Angular velocity ω0z =
105 rad/s imposed on the cube centroid only in the first time step. σCFL = 0.3
assumed.
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the three mixed formulations employed, {p, F}, {p, F, J} and {p, F, H, J}, are

minimal.

Energy considerations can be drawn from fig. 5.9.

The non-stabilised {p, F} SPH method is used to produce results in fig. 5.9a.

In it, artificial increases in both kinetic and internal total energy lead to the

unstable behaviour already noticed in the first row of fig. 5.8. In fig. 5.9b, it

is shown that these effects are largely eliminated by the introduction of a

small amount of JST dissipation.

Following, fig. 5.10 presents plots of the components of the total linear

and angular momenta, obtained by summing values of these quantities over

all particles a composing the cube.

The algorithm for the conservation of momentum described in section 3.8

helps in achieving the expected values in fig. 5.10. Further on this point,

fig. 5.11 compares the z-components of the total angular momentum from

{p, F} JST-SPH simulations, with and without the conservation of momentum

algorithm.

5.1.3 Tensile cube

In the test that follows, the unit cube of the previous paragraphs has now

its bottom side fixed to the ground.

The cube is subject to an initial vertical velocity field v0z = 800 ·X3 m/s.

Figure 5.12 illustrates this configuration. The cube material will be modelled

as nearly-incompressible neo-Hookean, with Young’s modulus E = 21GPa,

Poisson’s ratio ν = 0.3 and density ρ = 7000 kg/m3. The SPH discretisation

will consist of a set of 512 particles, 8 per side, with σCFL = 0.3.

The purpose of this example is to prove that the {p, F} JST-SPH method

presents no adverse effects when subjected to a tensile dynamic load of

some significance.

In order to appreciate that, the first row of fig. 5.13 displays results

obtained from running the test with displacement-based corrected SPH

[34]. Being set in a total Lagrangian framework, this method avoids [35]

the tension instability problems that are so common in SPH [211, 248]. It

is clear from the first row of fig. 5.13 that the succession of tensile and

compressive phases of deformation leads to pressure instabilities that make
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(a) {p, F} SPH

(b) {p, F} JST-SPH

Figure 5.9: spinning cube simulation, plots of total energies in time, run in
(a) the {p, F} SPH formulation, and in (b) the {p, F} JST-SPH formulation. To-
tal kinetic energy is expressed as EkTOT =

∑
a(1/2) ‖pa‖2/ρ, while total de-

formation energy is UTOT =
∑
a(∆t/ρ) ‖pa‖ ‖Ta‖ and total JST dissipation is

D
JST
TOT =

∑
a(∆t/ρ) ‖DJST

a ‖ ‖pa‖.
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(a) {p, F} SPH

(b) {p, F} JST-SPH

Figure 5.10: spinning cube simulation, plots of total linear and angular momentum
in time, run with the {p, F} JST-SPH formulation. The total linear momentum is ex-
pressed as pTOT =

∑
a pa, while total angular momentum isMTOT =

∑
a xa ×pa.

The cube is made of 216 particles, with JST k
(4)
JST = 1/8; neo-Hookean hyper-

elastic material: ρ = 1100 kg/m3, E = 17MPa and ν = 0.3. Angular veloc-
ity ω0z = 105 rad/s imposed on the cube centroid only in the first time step.
σCFL = 0.3 assumed.
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Figure 5.11: spinning cube simulation, time comparison between z-components
of total angular momentum with and without application of the conservation of
momentum algorithm of section 3.8. {p, F} JST-SPH formulation.

X1

X3

X2

1 m

v0y = 800 X2 ·
m
s

Figure 5.12: tensile cube initial configuration.

the simulation unstable. The outcome of the test run with {p, F} JST-SPH,

with JST dissipation factor k(4)JST = 1/8, but k(4)JST|J
= 0, is shown in the second

row of fig. 5.13. The third row of fig. 5.13 presents identical results taken

from different analyses, employing the three mixed forms of JST-SPH at same

instant. Given these results, it can be argued that no practical advantage is

gained by adding unknowns J and H to the system.
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t = 0.0002 s t = 0.002 s

displ.-based corrected SPH as in [34]

t = 0.02 s

t = 0.0002 s t = 0.002 s

{p, F} JST-SPH

t = 0.02 s

t = 0.05 s

{p, F} JST-SPH

t = 0.05 s

{p, F, J} JST-SPH

t = 0.05 s

{p, F, H, J} JST-SPH

Figure 5.13: tensile cube simulation, pressure contour plot at various instants in time.
Results obtained with displacement-based corrected SPH without JST stabilisation
are presented in the first row; results obtained with {p, F} JST-SPH in the second.
In the third row, results at time t = 0.05 s coming from all three JST-SPH mixed
formulations. Simulation parameters: 1× 1× 1m3, discretised with 512 particles,
smoothing length factor αh = 2.2, k(4)JST = 1/8; neo-Hookean hyperelastic material
with density ρ = 7000 kg/m3, Young’s modulus E = 21GPa, Poisson’s ratio
ν = 0.3. Initial velocity field of v0z = 800 ·X3m/s imposed only in the first time
step. σCFL = 0.3 assumed.
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5.1.4 Punch test

A rectangular region of 3 cm × 1 cm, constrained by rollers in the normal

direction on its left and bottom sides, is compressed by a vertical velocity

of intensity vy = −10m/s on the leftmost third of its top side. The test lasts

until this zone is compressed to 50% of its initial height. The billet is made of

neo-Hookean nearly incompressible hyperelastic material, with parameters

E = 1MPa, ν = 0.495, ρ = 1000 kg/m3. The particle discretisation consists of

225 uniformly distributed particles; the selected CFL constant is σCFL = 0.3.

The overall setup is shown in fig. 5.14.

3 cm

1
cm

vy = −10 m/s

Figure 5.14: punch test configuration.

This problem was proposed, among others, by [264], where it was found

that the displacement-based, corrected SPH method needed to switch from a

total to an updated Lagrangian framework to be able to deal with the large

distortions. As shown in fig. 5.15, the mixed-based JST-SPH methodology is

able to correctly handle these same distortions. The first row of fig. 5.15 also

clearly highlights the importance of the JST dissipation: without it, the bar is

subjected to heavy pressure fluctuations.

Further evidence in this direction is provided in fig. 5.17, where the

difference in pressure for particles left and right of the discontinuity in

velocity boundary condition, ‖∆p‖ = ‖pright − pleft‖ (see fig. 5.16 for visual

reference), is plotted in time.
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t = 0.2 · 10−3 s t = 0.4 · 10−3 s

{p, F} SPH

t = 0.6 · 10−3 s

{p, F} JST-SPH, k(4)JST = 1/8

{p, F, J} JST-SPH, k(4)JST = 1/8

{p, F, H, J} JST-SPH, k(4)JST = 1/8

Figure 5.15: punch test simulations, pressure contour plot at various instants in time.
Each row hosts results coming from a different simulation, top to bottom: {p, F}
SPH with no artificial dissipation; {p, F} JST-SPH with k(4)JST = 1/8; {p, F, J} JST-SPH

with k(4)JST = 1/8 and {p, F, H, J} JST-SPH with k(4)JST = 1/8. The simulation is carried
in plane strain conditions, on a 3 cm × 1 cm bar made of hyperelastic, nearly
incompressible material (density ρ = 1000 kg/m3, Young’s modulus E = 1MPa,
Poisson coefficient ν = 0.495) and discretised with 225 particles. A vertical velocity
vy = −10m/s acts as external load throughout the simulation. σCFL = 0.3 assumed.
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Figure 5.16: punch test, external velocity vy = −10m/s is imposed on the red region.
Highlighted are the positions of the two test particles in fig. 5.17.

Figure 5.17: punch test, evolution in time of the pressure difference
‖∆p‖ = ‖pright − pleft‖ between top layer particles that belong (left) and that do
not belong (right) to the region of imposed velocity (refer to fig. 5.16). Blue line for
{p, F} JST-SPH with k(4)JST = 1/8, red line for {p, F} SPH with no artificial dissipation.
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5.1.5 Bending column

In this simulation, a square-based column of width and depth l = 1 m and

height h = 6 m is set in motion by the application of an initial velocity of

value v0y = 10 · X3h m/s, with direction orthogonal to the column axis. The

column is then left oscillating in time, as shown in fig. 5.18.

Figure 5.18: bending column, initial configuration.

A hyperelastic, nearly incompressible neo-Hookean material is chosen,

with properties: density ρ = 1100 kg/m3, Young’s modulus E = 17 MPa and

Poisson’s ratio ν = 0.45.

Reduced order FEM bending simulations of nearly incompressible rubbers

are known to be affected by volumetric locking [115]. If this defect is not

properly addressed with available techniques, it leads to an overly stiff

response by the structure. It has already been observed in chapter 3 that

SPH discretisations, by their very nature, are immune from locking phenom-

ena. This fact notwithstanding, running the present test for a sufficiently

prolonged simulation time leads to interesting results.

Figure 5.19 shows the evolution of the column captured at various instants

until time t = 1.5 s, and with different, decreasing number of particles

employed in the discretisation. In the first row, a discretisation of 12× 12×
72 = 9648 particles is used; in the second row, the number of particles
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t = 0.5 s t = 1 s

9648 particles

t = 1.5 s

1116 particles

117 particles

Figure 5.19: bending column simulation, pressure contour plot at instants 0.5, 1
and 1, 5 s. All results obtained with the {p, F} JST-SPH methodology, smoothing
length factor αh = 2.2, k(4)JST = 1/8. Results with 9648 particles are presented in
the first row; with 1116 particles in the second, 117 particles in the third. A nearly
incompressible, neo-Hookean hyperelastic material is employed, with density
ρ = 1100 kg/m3, Young’s modulus E = 17MPa, Poisson’s ratio ν = 0.45. The
column has measures: short edge l = 1m, height h = 6m; the initial velocity field
is v0y = 10X3/hm/s, imposed only in the first time step. σCFL = 0.3 assumed.
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per short side is halved to 6× 6× 31 = 1116; and again halved down to

3× 3× 13 = 117 in the third row. All simulations are run in {p, F} JST-SPH,

with k(4)JST = 1/8 and σCFL = 0.3.

From fig. 5.19 it can be noted that the scheme is capable to perform

appropriately even on prolonged time periods and with the bare minimum

number of particles per short side (three), required to represent the bending

load. Oscillations restrict themselves to the same X2X3 plane on which the

initial velocity is assigned.

Figure 5.20 presents, plotted against time and for the discretisations

considered in fig. 5.19, the X2 displacements for a particle positioned at

one of the angles on the top surface of the column. Figure 5.20 can help

to appreciate the progress to convergence as the number of particles is

increased.

Figure 5.20: bending column simulation, time plot of displacements of particle at
one of the top angles of the column, obtained with the {p, F} JST-SPH formulation.
X2 (y in the legend) displacements are from analyses made with 9648, 1116 and
117 particles. X1 (x in the legend) displacement plot is also presented, and it is the
same at all resolutions, showing that symmetry of movement is preserved in all
cases. JST dissipation is set to k(4)JST = 1/8. Neo-Hookean hyperelastic material, ρ =

1100 kg/m3, E = 17 MPa and ν = 0.45. Initial velocity field of v0y = 10 ·X3/h m/s
imposed only in the first time step. σCFL = 0.3 assumed.
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t = 0.5 s t = 1.5 s

9648 particles

t = 2.5 s

1116 particles

117 particles

Figure 5.21: bending column simulation, pressure contour plot at instants 1.5, 2.5
and 3.5 s. The setup is the same of fig. 5.20, with the exception that now the
external velocity field (imposed only in the first step) is v0y = 10 m/s. Results
with 9648 particles are presented in the first row; with 1116 particles in the second,
and with 117 particles in the third.
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A more challenging version of this example is presented in fig. 5.21, where

the initial velocity is now v0y = 10 m/s, uniform over the column vertical axis.

The JST dissipation helps to avoid the appearance of pressure instabilities.

Furthermore, although in the third row of fig. 5.21 the use of fewer particles

implies that less degrees of freedom are available to represent as many

deformation modes as visible in the other simulations, in no instance does

the column sway out of its initial plane of movement.

5.1.6 Twisting column

For this test, the column of the previous example will now be subjected to

an initial angular velocity ω0z = 105 · sin πX3
2h rad/s, as shown in fig. 5.22.

Figure 5.22: twisting column, initial configuration.

The material is characterised as nearly incompressible neo-Hookean, of

density ρ = 1100 kg/m3, Young’s modulus E = 17 MPa. The SPH discreti-

sation is carried out by a set of 6× 6× 31 particles, with k(4)JST = 1/8 and

σCFL = 0.3.
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A series of three analyses is performed, each using a different value of

Poisson’s ratio: ν1 = 0.45, ν2 = 0.495, and ν3 = 0.4995. Other than testing

the robustness of the JST-SPH algorithm in a highly nonlinear setting, the

parametric study performed on ν will help assessing the potentialities of

the different mixed formulations to accurately reproduce incompressibility.

Results for the {p, F} JST-SPH scheme are reported in fig. 5.23.

Figure 5.23 clearly exposes the need to add further conservation laws to

the solving system when the material is nearing towards incompressibility

(ν = κ/µ→ 0.5).

Figure 5.24 displays the analyses run in the {p, F, J} JST-SPH formulation,

and fig. 5.25 those carried out in {p, F, H, J} JST-SPH. For case study ν3 =

0.4995, it is seen that the hourglass problems that were noticed in fig. 5.23

for the {p, F} scheme have been fixed by setting J as an independent variable.

At last, it is observed that no appreciable difference can be detected between

results from the {p, F, J} and from the {p, F, H, J} JST-SPH formulations.

In fig. 5.26, a displacement-based SPH formulation is adopted in order to

perform the same test presented in fig. 5.23. The improvement in perfor-

mance brought about by the adoption of a mixed formulation is substantial,

as both meshes presented in fig. 5.26 fail to preserve the shape of the column

during the twisting motion.

Completion times for the various analyses performed in figs. 5.23 to 5.25

are presented in table 5.2.

The degree of near-incompressibility negatively influences the time step

length by increasing the pressure wave speed of the material. Table 5.2

shows that this is a far more significant factor in creating a performance

bottleneck, rather than the addition of one or two more conservation laws to

the governing mixed system of equations.
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t = 2.510−3 s t = 0.1 s

ν1 = 0.45

t = 0.17 s t = 0.23 s

ν2 = 0.495

ν3 = 0.4995

Figure 5.23: twisting column simulation, pressure contour plot at instants 2.5 · 10−3,
0.1, 0.17 and 0.23 s. All results obtained with the {p, F} JST-SPH methodology,
with smoothing length factor αh = 2.2, k(4)JST = 1/8. The column is simulated
with a set of 6× 6× 31 = 1116 particles. A nearly incompressible, neo-Hookean
hyperelastic material is employed, with density ρ = 1100 kg/m3, Young’s modulus
E = 17 MPa. Each row of pictures is assigned a different Poisson ratio: ν1 = 0.45
for the first row, ν2 = 0.495 for the second, ν3 = 0.4995 for the third. The column
has measures: short edge ` = 1 m, height h = 6 m; the initial angular velocity field
is ω0z = 105 · sin (πX3/2h) rad/s, imposed only in the first time step. σCFL = 0.3
assumed.
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t = 2.510−3 s t = 0.1 s

ν1 = 0.45

t = 0.17 s t = 0.23 s

ν2 = 0.495

ν3 = 0.4995

Figure 5.24: twisting column simulation, pressure contour plot at instants 2.5 · 10−3,
0.1, 0.17 and 0.23 s. All results obtained with the {p, F, J} JST-SPH methodology,
with smoothing length factor αh = 2.2, k(4)JST = 1/8. The column is simulated
with a set of 6× 6× 31 = 1116 particles. A nearly incompressible, neo-Hookean
hyperelastic material is employed, with density ρ = 1100 kg/m3, Young’s modulus
E = 17 MPa. Each row of pictures is assigned a different Poisson ratio: ν1 = 0.45
for the first row, ν2 = 0.495 for the second, ν3 = 0.4995 for the third. The column
has measures: short edge ` = 1 m, height h = 6 m; the initial angular velocity field
is ω0z = 105 · sin (πX3/2h) rad/s, imposed only in the first time step. σCFL = 0.3
assumed.



218 numerical applications

t = 2.510−3 s t = 0.1 s

ν1 = 0.45

t = 0.17 s t = 0.23 s

ν2 = 0.495

ν3 = 0.4995

Figure 5.25: twisting column simulation, pressure contour plot at instants 2.5 · 10−3,
0.1, 0.17 and 0.23 s. All results obtained with the {p, F, H, J} JST-SPH methodology,
with smoothing length factor αh = 2.2, k(4)JST = 1/8. The column is simulated
with a set of 6× 6× 31 = 1116 particles. A nearly incompressible, neo-Hookean
hyperelastic material is employed, with density ρ = 1100 kg/m3, Young’s modulus
E = 17 MPa. Each row of pictures is assigned a different Poisson ratio: ν1 = 0.45
for the first row, ν2 = 0.495 for the second, ν3 = 0.4995 for the third. The column
has measures: short edge ` = 1 m, height h = 6 m; the initial angular velocity field
is ω0z = 105 · sin (πX3/2h) rad/s, imposed only in the first time step. σCFL = 0.3
assumed.
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Figure 5.26: twisting column simulation, pressure contour plots obtained with the
classic displacement-based SPH methodology, at different simulation times. The
upper row shows a coarser mesh (6× 6× 31 = 1116 particles, as in figs. 5.23
to 5.25). A more refined mesh (12× 12× 67 = 9648 particles) is in the lower row.
The simulations are run with the same parameters adopted in figs. 5.23 to 5.25.
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Table 5.2: twisting column simulation, times to completion for analyses ending
at tf = 0.25 s, expressed in relation to the first entry. Also reported are material
properties that influence the time step length (ν and cpmax).

ν mixed eq. set wave speed cpmax (m/s) ∆tmin (s) total time steps time elapsed

0.45 {p, F} 368.768 1.627 10−4 1331 1.000

0.45 {p, F, J} 373.270 1.607 10−4 1358 1.029

0.45 {p, F, H, J} 373.752 1.602 10−4 1365 1.051

0.495 {p, F} 1111.640 5.397 10−5 4005 2.920

0.495 {p, F, J} 1101.822 5.390 10−5 4038 2.961

0.495 {p, F, H, J} 1099.906 5.351 10−5 4075 3.022

0.4995 {p, F} 3431.208 1.749 10−5 12540 9.380

0.4995 {p, F, J} 3425.657 1.691 10−5 12890 9.388

0.4995 {p, F, H, J} 3424.597 1.681 10−5 13047 9.481

More in general, the hindering effect that a short time step length exerts on

explicit time stepping simulations will resurface in the next section, covering

plasticity problems.

5.2 plasticity

5.2.1 Taylor bar

A common benchmark test for plastic deformation at high-speed is the

classical Taylor bar impact problem [253], presented graphically in fig. 5.27.
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Figure 5.27: Taylor bar test, initial configuration.

The original test was performed on an aluminium cylinder, but work-

hardening effects, essential in order to derive an acceptably realistic plastic

flow model, are better demonstrated with copper. Elastic behaviour is gov-

erned by a stretch-based, hyperelastic energy function defined as [39]:

Ψ(λ1, λ2, λ3, J) = µ[(ln λ1)2 + (ln λ2)2 + (ln λ3)2] +
λ

2
(ln J)2 (5.5)

Equation (5.5) will be coupled with a standard von Mises plastic yield

model with linear isotropic hardening. The material has the following prop-

erties: Young’s modulus E = 117 GPa, Poisson ratio ν = 0.35, yield stress

τ̄0y = 0.4 GPa, hardening modulus H = 0.1 GPa and density ρ = 8930 kg/m3.

The bar has initial height h0 = 32 mm and radius r0 = 3.2 mm, and is

discretised as a set of 4131 particles arranged in a regular pattern, each being

assigned a spherical subvolume k with radius rk = 0.32 mm. The impact

is frictionless and takes place at an initial speed v0z = −227 m/s in the X3
direction on a rigid wall in the plane normal to X3. Due to extensive plastic

dissipation, the JST stabilising term is set to a very low value. Figure 5.28

presents results of the Taylor bar simulation performed by JST-SPH.

In fig. 5.28, as expected [270], the plastic front is shown to remain close to

the bottom wall in the early stages of the simulation (red contour regions). It

then slowly climbs up, as more kinetic energy dissipates into plastic strain.
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t = 20µs t = 40µs t = 60µs t = 80 µs

Figure 5.28: Taylor bar problem. The pictures show the cross sectional shape of
the bar, and the plastic strain contour plot at various instants in the simulation.
4131 particles, {p, F} JST-SPH employed, with smoothing length factor αh = 2.2,
k
(4)
JST = 1/4096. The material chosen is copper, modelled as following isotropic

hardening von Mises plasticity, with properties: Young’s modulus E = 117 GPa,
Poisson ratio ν = 0.35, initial yield stress τ̄0y = 0.4 GPa, hardening parameter
H = 0.1 GPa, density ρ = 8930 kg/m3, initial velocity v0z = −227 m/s.

In this case, a pressure contour plot would not reveal much of the state of

tension in the structure. The deformation happening is in fact predominantly

plastic, and therefore deviatoric in nature. The evolution of the von Mises

equivalent stress would constitute a better gauge, and therefore is plotted in

fig. 5.29.

In table 5.3, the radius of the bottom surface at tf = 80 µs is compared

to results of identical tests performed using different numerical techniques

[1]. As can be seen from table 5.3, mixed formulation techniques, being

locking-free, avoid the excessively rigid response of the structure given by

FEM displacement-based analyses.
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t = 20µs t = 40µs t = 60µs t = 80µs

Figure 5.29: Taylor bar problem. The pictures show the cross sectional shape of the
bar, and the von Mises stress contour plot at various instants in the simulation.
4131 particles, {p, F} JST-SPH employed, with smoothing length factor αh = 2.2,
k
(4)
JST = 1/4096. The material chosen is copper, modelled as obeying to isotropic

hardening von Mises plasticity, with properties: Young’s modulus E = 117 GPa,
Poisson ratio ν = 0.35, initial yield stress τ̄0y = 0.4 GPa, hardening parameter
H = 0.1 GPa, density ρ = 8930 kg/m3, initial velocity v0z = −227 m/s.

Table 5.3: Taylor bar, radius of bottom face at tf = 80 µs, obtained from different
numerical methods.

numerical method final radius (mm)

standard finite elements, hexahedra [30] 6.95

standard finite elements, tetrahedra [30] 5.55

mixed JST finite volumes, vertex-centred [1] 6.98

mixed JST-SPH 6.66+ rk = 6.98

More to note, SPH particles station at the centre of their assigned spherical

subvolumes, of radius rk. Results in table 5.3 account for rk in the JST-SPH

case.
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5.2.2 Equal Channel Angular Extrusion (ECAE) process

Numerous metallurgic techniques exploit the mechanics of plastic defor-

mation, in order to attain smaller grain size – and thus better material

standards – for metals and alloys. Amongst them, equal channel angular

extrusion (ECAE) [217, 226] can guarantee high levels of shear strain for

relatively low levels of external pressure, making it suitable for mass pro-

duction. In the present setting, the ECAE process will be simulated in its

2-turns, 90◦-channel variant, trying to replicate the results obtained in [217]

using a commercial finite element software. In the same paper, these re-

sults were qualitatively validated through physical modelling. The test will

showcase the robustness of the JST-SPH numerical setup, and indeed the

overall adequacy of the CFD-inspired mixed formulation implementations,

under a demanding dynamical regime where external energy is continuously

introduced, generating very large distortions.

The analysis is performed in plane strain conditions, and is focused on a

bar made of commercially pure aluminium (Al1100, E = 69 GPa, ν = 0.33,

ρ0 = 2800 kg/m3, width l = 8 mm) passing through a channel carved into a

rigid die, of the same width of the bar. The right-angled corners are rounded,

with 1.5 mm and 1 mm external and internal fillet radii. A sketch of the

initial setup of the experiment is presented in fig. 5.30.

56
m

m

8 mm

v = 1 m/s

Figure 5.30: JST-SPH ECAE simulation, initial setup.
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Simulations are run with a mesh of 400 particles disposed in 50 rows of 8,

at a distance of 1.14 mm from each other, with each assigned a constant vol-

ume of 1.12mm2. The CFL number governing the time stepping increments

is 0.3.

Contact between bar and die is assumed lubricated, and is simulated firstly

as frictionless, and afterwards in presence of a kinetic friction coefficient of

µ = 0.05, as adopted in [217]. However, a proper contact algorithm has not

been developed; more simply, the contact is managed through a procedure

based on the reflection of the velocity of SPH particles coming at, or crossing,

a wall position. The reflection is calculated with respect to the perpendicular

to that wall (see [110]). Friction is simulated by detracting momentum from

the particles in contact with the straight walls of the die. In addition, a

coefficient of restitution < 1 is imposed for reflections happening on the

curvilinear angular regions of the channel die. Therefore, the simulation

does not yield the contact forces exerted on the walls of the die.

Given that heavy plastic deformations are expected, it is useful to add

numerical dissipation at the very first stages of the simulation, to prevent

pressure instabilities that may happen before the base of the billet reaches

the bottom wall of the channel. To this end, for each particle, the JST term

k(4) was linked to the plastic strain ε(p) in order to make it decrease linearly,

as plastic dissipation gradually sets. This is accomplished by resorting to

the following formula:k
(4) = 1

64 − 2
(
1
64 −

1
4096

)
ε(p) if ε(p) 6 0.5

k(4) = 1
4096 if ε(p) > 0.5

(5.6)

The hyperelastic-plastic material model used obeys to (5.5) and to the

plastic isotropic hardening law:

σY(ε(p)) = 159 (0.02+ ε(p))
0.27 MPa (5.7)

Equation (5.7) is solved for ε(p) numerically by employing the Newton-

Raphson method.

Figures 5.31 and 5.32 graphically capture the deformation process of the

billet at various instants in time, with the former plotting the pressure
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distributions in the bar, and the latter doing the same for the plastic strains.

These figures are obtained from the simulation in presence of friction; results

for the frictionless analysis are substantially similar, given the relevance of

plasticity as the main mechanism of energy dissipation. For the sake of

comparison, in figs. 5.31 and 5.32 a second row of results is shown where

tests are run with the FEM commercial solver Abaqus/Explicit, employing

linear quadrilateral elements.

There is substantial agreement of figs. 5.31 and 5.32 with the FEM results,

and with data presented in [217]. Irregularities in the particles distribution

can be spotted near the upper angle of the first bend at later stages of the

simulation. These can be attributed to difficulties in repositioning particles

that have crossed the die wall, and in reassigning them a correct velocity.

It can be observed that this generates a “boundary effect” that does not

affect the quality of the solution outside of the two outer layers of particles.

In fact, concerning the central part of the channel, deformation shapes and

plastic strain contour plot in fig. 5.32 closely resemble the one presented in

fig. 4 of [217]. Also, the mounting compressive stress shown in fig. 5.31 is

proportional to the number of walls of the die coming to contact with the

billet. Particularly evident are the sharp increments in plastic deformation –

from blue (ε(p) ≈ 0) to green (ε(p) ≈ 1) to red (ε(p) ≈ 2) – that happen when

the bar reaches, fills and surpasses each one of the two bends.

In the future, to ameliorate this boundary problem, it could be useful to

study and implement a penalty-type contact algorithm.

Analysis of the energy patterns throughout the simulation confirms that

plasticity is the main mechanism of energy dissipation, being on average two

orders of magnitude larger than the JST-related energy term when the latter

is active. A comparison in time, between the energy released through plastic

and JST dissipation, and the total internal energy of the bar is presented in

fig. 5.33.
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Figure 5.31: pressure p at various stages of the ECAE process. The billet being
extruded is made of Al1100, with E = 69 GPa, ν = 0.33, ρ0 = 2800 kg/m3 and
plastic properties determined by (5.7); it is subjected to a velocity of v = −1 m/s.
Top row, JST-SPH, discretised with 400 particles. Bottom row, FEM commercial
solver Abaqus/Explicit, linear elements, no remeshing.
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Figure 5.32: plastic strain (Peeq) ε(p) at various stages of the ECAE process. Billet
properties and simulation conditions are the same of fig. 5.31. Top row, JST-SPH,
discretised with 400 particles. Bottom row, FEM commercial solver Abaqus/Explicit,
linear elements, no remeshing.



5.2 plasticity 229

The formulas employed to calculate the total internal energy Uint, the total

plastic dissipation W(p) and the artificial JST dissipation W(JST) at each time

step, are the following:

Uint =

N∑
a=1

∆t

ρ0
‖pa (X, t) ‖ · ‖Ta‖ (5.8a)

W(p) =

N∑
a=1

J‖σa‖ ·∆ε(p)a (5.8b)

W(JST) =

N∑
a=1

∆t

ρ0
DJSTa (pa) for a = 1, . . . ,N (5.8c)

It can be seen from fig. 5.33 that the total internal energy, and the total

plastic dissipation, follow patterns that can be readily linked to the progress

of the billet inside the die channel. Thus, a peak for both these types of

energy near the beginning of the simulation, reaching their maxima around

time 0.00142 s, implies contact of the bar with the mid-channel bottom wall.

Starting from that same position, values of the energies begin to steeply

decline, signifying that expansion in the mid-channel has begun. A similar,

if less pronounced energy pattern can be found once the bar reaches, and

then begins to flow into the second channel, with a peak around time

0.035 s. Noise levels for both types of energy increase with each channel

intersection the bar is compressed against. They then gradually subside,

once at a sufficient distance from these intersections.

For ease of visualisation, energies shown in fig. 5.33 are plotted separately

in figs. 5.34a to 5.34c. In particular, fig. 5.34c shows more clearly the gradual

decrease of JST with the onset of plastic deformation introduced with (5.6),

and the low values of artificial dissipation needed.

In order to verify the accuracy of the simulation, a convergence study has

been run, with the number of particles in the mesh acting as parameter.

The quantity under analysis is the amount of plasticity at instant 0.035 s,

both in local (the maximum equivalent plastic strain max ε(p) among parti-

cles) and in global (the plastic dissipation developed in the single time step

leading to instant 0.035 s) terms. Other than the mesh of 400 particles used

so far in other analyses, alternative meshes of 88, 216 and 640 particles were
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Figure 5.33: JST-SPH ECAE. Total values, summed over all particles, of the internal
energy (blue line), plastic dissipation (yellow line) and JST artificial dissipation
(red line) over the simulation time. The evolution of these quantities discloses
information on various stages of the process.

employed. The results of the convergence analysis are listed in table 5.4 and

plotted in fig. 5.35. Data on plastic deformation presented there show a ten-

dency towards converging monotonically to a set value, as the investigated

quantities increase less and less for each grid refinement (and hence as the

ratio volume/particle decreases).

The 640 particles mesh has also been employed to check more accurately

the degree of similarity of the JST-SPH ECAE test conducted here with the

reference analysis found in [217]. To this end, the strain contour in the

direction normal to movement has been investigated towards the end of the

test, at simulation time t = 0.04 s. The two locations selected are “Section 1”

positioned at the centre of the middle channel, and “Section 2” at 5mm into
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(a) U (b) W(p)

(c) WJST

Figure 5.34: JST-SPH ECAE. separate plots in time of the total internal energy U, the
total plastic dissipation W(p), and the total JST dissipation WJST .

Table 5.4: JST-SPH ECAE. Convergence analysis obtained on meshes populated with
an increasing number of particles. Discretisation properties listed are the total
number of particles in each grid, the number of particles composing a row of the
discretised bar, the volume assigned to each particle, and the distance of particles
from each other. Physical quantities listed are the total plastic dissipation W(p) of
the bar in the single time step, and the maximum plastic strain so far accumulated,
entering instant 0.035 s into the simulation.

total particles part./row vol./part. (mm2) p. distance (mm) max peeq max ε(p) plastic W(p) (J)

88 4 5.09 2.67 1.410 20497.80
216 6 2.07 1.60 2.028 24692.61
400 8 1.12 1.14 2.133 28049.84
640 10 0.70 0.89 2.197 28186.20

the output segment of the die. The same analysis can be found in fig. 5 of

the reference [217], obtained through commercial FEM software.

Ten target positions have been chosen on the two sections of interest,

disposed at regular intervals. Local values of the plastic strain ε(p) have been

computed through SPH averaging over neighbouring particles. Results have

been collected in fig. 5.36. Comparison of fig. 5.36 with fig. 5 in [217] reveals
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Figure 5.35: JST-SPH ECAE. Convergence plot of local maximum plastic strain ε(p) (in
blue, left y-axis) and total dissipation W(p) due to plasticity (in red, right y-axis) at
the time step entering 0.035 s in simulation time, based on data found in table 5.4.

that plastic strain patterns of the two tests match closely along Section 2,

the main difference being that the JST-SPH analysis predictably presents a

smoother curve. The same can be observed for Section 1, the two analyses

showing qualitative agreement up to the control points near the upper wall,

where there is a surge in plastic strain in JST-SPH. This inaccuracy is caused

by being at the downstream of the previously mentioned boundary effect

originating near the top side of first bend, and visible in fig. 5.32.

Parametric analyses conducted in [217] offered occasion for further check-

ing on the validity of the results.

In [217], geometric properties of the die are modified in order to see if

it was possible to enhance ECAE metallurgic performances. One of those

parameters was the length of the middle die channel. From fig. 10 in [217] it

can be noted that interesting deformed shapes develop, when the middle

channel is shortened from 24mm to 16mm. The upper second bend has

a large unfilled area, while the bar itself experiences more stress due to

bending than due to shear. The effect is particularly strong around the inner

region of the billet in the vicinity of the bottom second bend. Both these
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Figure 5.36: JST-SPH ECAE. Plastic strain ε(p) distribution across the billet sections
labelled in colour at margin. Values obtained from SPH averaging of particles
near the control points distributed over the sections, at the closing stages of the
simulation, t = 0.04 s. The mesh utilised had 640 particles in total, 10 per line.
Compare to fig. 5 in [217].

aspects have been caught by an analogous simulation run with JST-SPH,

as reported in fig. 5.37, taken at time t = 0.027 s. Results obtained with

the FEM commercial solver Abaqus/Explicit, employing linear quadrilateral

elements, are also shown in fig. 5.37.

5.3 unstructured configurations

In this section, some of the tests described in the previous sections will be

run again, with the difference that this time the particles will be arranged in

an irregular pattern across the domain.

For each test, the particles disposition has been generated via the default

random generator algorithm (Mersenne twister, [174]) available within the

Matlab computational software. This has been accomplished by inputting

an array of random numbers as particles positions, and then using this

array as the seed for a Voronoi tessellation [9] of the problem domain, in
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Figure 5.37: ECAE. On the left, contour plot obtained with JST-SPH at time t = 0.027 s
of the equivalent plastic strain ε(p) distribution over a modified version of the die,
with a shortened middle channel length. On the right, same result obtained on
Abaqus/Explicit, with linear quadrilateral finite elements and no remeshing.

order to determine the subvolume attached to each particle. The vertices of

the Voronoi volume cells so obtained are then used as the seed array for a

second run of the Voronoi algorithm, to ensure particles are present at the

boundaries of the structures.

These tests are undertaken in order to mimic particles arrangements that

are needed for the discretisation of complex geometries. Application of SPH

irregular particles clouds in the realm of solid dynamics has proven to be

problematic in the past. In [34], for instance, it is seen that the corrected SPH

displacement-based method does not give satisfying results for irregular

dispositions of particles.

5.3.1 Cube

Previous analyses performed in section 5.1.3, involving a unit cube discre-

tised with a regular arrangement of particles, are hereby run again, this time

in a randomised configuration. Figure 5.38 shows the Voronoi tessellation,

with evidence on the particles positions, and their assigned subvolumes.
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Figure 5.38: SPH discretisation of a unit cube, with particles arranged in a random
pattern, and subsequent Voronoi tessellation. Particles are represented as blue
dots, and their assigned subvolumes as Voronoi cells of different colours.

Next, the cube is set to receive an initial velocity field of vy0 = 800 ·X3 m/s,

and to be pinned to the ground, as in fig. 5.12. Material and discretisation

properties are the same as those listed at page 202, with the exception that

there are now 353 particles present. The simulation is run to check whether

there are any important differences with the regular particles position case

in section 5.1.3.

Figure 5.39 presents the time evolution of the simulation.
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t = 0.0002 s
t = 0.002 s

t = 0.02 s t = 0.05 s

Voronoi particle subvolumes

constant particle subvolumes

Figure 5.39: tensile cube simulation, pressure contour plot at various instants in time.
{p, F} JST-SPH scheme employed. Results obtained assigning to each particle its
Voronoi volume are in the first row; assigning the same constant subvolume to each,
in the second. Simulation parameters: 1× 1× 1 m3, discretised with 353 particles,
k
(4)
JST = 1/8; neo-Hookean hyperelastic material with density ρ = 7000 kg/m3,

Young’s modulus E = 21 MPa, Poisson’s ratio ν = 0.3. Initial velocity field of
v0z = 800 ·X3 m/s imposed only in the first time step. σCFL = 0.3 assumed.

Figure 5.40 plots in time the displacements of the particle at the top side

corner position (1, 1, 1) of the cube, in both the random and regular pattern

simulations. It is clear that allowing a variable volume for each cell leads

to different results, than having it preserving a constant volume. Some of

the particles, in fact, also sway to the sides as a result of their random

distribution inside the cube, that places them more at distance from the

others, and, thus, less constrained in their motion.
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The magnitude of side movements can be observed in fig. 5.41, where

displacements in the X1 direction are plotted for the corner particle at (1, 1, 1).

Moreover, it should be observed that allowing for a large variance in the

values of volumes, can further shorten the time step, and hence further slow

down the simulation.

5.3.2 Taylor bar

The Taylor bar experiment run in section 5.2.1 will be proposed again here,

with a randomly disposed geometry of particles. As previously, a copper

bar of identical shape and material properties to the one in section 5.2.1 is

subjected to an initial vertical velocity of v0z = −227 m/s, as pictured in

fig. 5.27.

The SPH discretisation is composed of 373 particles disposed in a ran-

domised pattern; other simulation parameters and properties are the same

as those in section 5.2.1.

Results in fig. 5.42 show the simulation captured at a series of instants in

time, for the case where a uniform value of the subvolume is assigned to

each particle.

Figure 5.43, instead, represents a simulation where each particle gets

assigned its own Voronoi subvolume.

What emerges from comparing fig. 5.42 with fig. 5.43 is that in the first

instance, where densities and subvolumes are the same for each particle,

the non-uniform distribution of particles in space determines deformation

shapes substantially different from those of the Voronoi volume simulation,

as well as from those of the regular case (see fig. 5.28). This can be explained

by noting that there is no material matter assigned in regions where particles

are more distanced from each other. As a consequence, particles simply fill

the gap regions without exerting stress on their neighbours.

On the contrary, where particles tend to clump, their subvolumes overlap

and create clusters where particles influence each other and behave as a

group.

The analysis conducted with Voronoi particles subvolumes, in fig. 5.43,

exhibits an even more marked lack of configuration symmetry. This time,

forces and momenta computed by the JST-SPH solver depend on the assigned
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Figure 5.40: tensile cube simulation, time plot of displacements in the X3 direction,
for a particle at one of the upper face corners of the cube, obtained with the
{p, F} JST-SPH formulation. Tests run with random arrangement of particles, each
assigned Voronoi subvolumes (blue), each assigned constant subvolumes (red),
and results from the regular patterned simulation (dashed black).

Figure 5.41: tensile cube simulation, time plot of displacements in the X1 direction,
for a particle at one of the upper face corners of the cube, obtained with the
{p, F} JST-SPH formulation. Tests run with random arrangement of particles, each
assigned Voronoi subvolumes (blue), each assigned constant subvolumes (red),
and results from the regular patterned simulation (dashed black).
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Figure 5.42: Taylor bar problem, with random particles distribution and constant
particles subvolumes. {p, F} JST-SPH scheme employed. Shapes of the bar, and
plastic strain contour plots are shown in lateral view (top row) and from a bottom
perspective (lower row), at various instants during the simulation. 373 particles,
with smoothing length factor αh = 2.2, k(4)JST = 1/4096. A constant subvolume
Vk = 2.76 10−9m3 is assigned to each particle k. The material chosen is copper,
modelled as following isotropic hardening von Mises plasticity, with properties:
Young’s modulus E = 117 GPa, Poisson ratio ν = 0.35, initial yield stress τ̄0y = 0.4
GPa, hardening parameter H = 0.1 GPa, density ρ = 8930 kg/m3, initial velocity
v0z = −227 m/s.
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Figure 5.43: Taylor bar problem, with random particles distribution and Voronoi
particles subvolumes. {p, F} JST-SPH scheme employed. Shapes of the bar, and
plastic strain contour plots are shown in lateral view (top row) and from a bottom
perspective (lower row), at various instants during the simulation. 373 particles,
with smoothing length factor αh = 2.2, k(4)JST = 1/4096. The subvolume Vk assigned
to each particle k is equal to the volume of the Voronoi cell of k. The material
chosen is copper, modelled as following isotropic hardening von Mises plasticity,
with properties: Young’s modulus E = 117 GPa, Poisson ratio ν = 0.35, initial
yield stress τ̄0y = 0.4 GPa, hardening parameter H = 0.1 GPa, density ρ = 8930

kg/m3, initial velocity v0z = −227 m/s.
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373 particles 721 particles 2077 particles

373 particles 721 particles 2077 particles

Figure 5.44: Taylor bar simulation, comparison of plastic strain distribution contours
for meshes composed of different numbers of particles, at t = 48 µs into the
simulation. Figures located above the legend refer to simulations run with Voronoi
particle subvolumes, while figures below the legend refer to analyses in which
constant particle subvolumes were used. For each of the simulations considered,
views of the deformed cylinder are presented from the side, and from the bottom.
Mixed {p, F} JST-SPH scheme employed. Simulation parameters are the same as
those in figs. 5.42 and 5.43.
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subvolumes, and are thus directly affected by their variance from particle to

particle.

Figures 5.42 and 5.43 were obtained from simulations run with a smaller

number of particles with respect to the Taylor bar simulation in section 5.2.1,

that had a grid of regularly distributed particles.

In fig. 5.44, results obtained with increased particle mesh resolution (373

particles, as in figs. 5.42 and 5.43, 721 particles, and 2077 particles) at simu-

lation time t = 48 µs, are compared with each other. Clearly, the increase

in number of particles leads to improved symmetry in both the deformed

shape, and the plastic strain distribution.

Figure 5.45: Taylor bar simulation, time plot of X2 (radial) displacements of a particle
at the edge of the bar bottom face, obtained from unstructured configurations, with
constant particle subvolumes (blue line), Voronoi particles subvolumes (red line),
and from the regular particles pattern (yellow line). The {p, F} JST-SPH formulation
was used for all cases.

In fig. 5.45, the evolution of the radial displacement of a particle at the

base of the bar is followed for both cases of variable or constant particles

subvolumes. Results from the regular particles disposition are also reported.

Confirming the previous observations, the simulation adopting constant

particle subvolumes yields a reduced radius length, with respect to the other

cases.

It may be worth reminding that the objective of running analyses with

random particles dispositions is not to produce results comparable with
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those obtained with particles arranged in an orderly manner, but to check

the numeric feasibility of irregular distributions, in view of applying the

method on complex geometries.

In this regard, the JST-SPH algorithm looks robust, as results obtained with

unstructured simulations show a tendency to convergence towards results

obtained with a regular patterned particles disposition, when the number of

randomly-disposed particles is increased.

5.4 concluding remarks

The JST-SPH has been tested in a series of benchmark examples under various

dynamic regimes, using different constitutive laws and patterns of particles

disposition.

All in all, the method has been shown to perform well under a variety of

circumstances. The novel techniques that have been introduced – such as the

polyconvex full {p, F, H, J} mixed formulation, the JST dissipation from CFD,

and the algorithm for preservation of total momenta presented in section 3.8

– have been proven to be dependable. The study of ECAE, an industrially

relevant metallurgic process, has also shown the reliability of the method

for use in more complex settings.





6C O N C L U S I O N S

6.1 final remarks

The research addressed in this thesis is set in the context of a more ample

research effort [1, 2, 31, 86, 87, 99, 143–146], aimed at overcoming instabilities

and improving the low orders of accuracy, that constitute current limitations

in traditional linear tetrahedral finite elements in nonlinear solid dynamics

modelling.

To accomplish this, a novel mixed-based formulation is adopted, where

the linear momentum p and the three strain measures (of local fibre F, area

H, and volume J) of a polyconvex material model are treated as independent

variables, a move away from the displacement-based weak form commonly

in use for other methods. It is well known from FEM literature [16, 115]

that this is a general and robust approach to assume when modelling

incompressible and nearly incompressible materials, for which adverse

effects of volumetric locking are an issue.

Recently, this mixed approach in modelling the continuum has been

coupled with an array of numerical discretisation techniques, spanning from

FV [1, 2, 99, 143], to FE [31, 86, 87, 144], and to the SPH particle method (as

explored in this thesis), and further expanded in recently published papers

[145, 146].

Chapter 2 introduces the concept of systems of conservation laws in the

context of solid mechanics. Balance equations are formulated for kinetic

properties (mass, linear and angular momenta, and the total energy of a

continuum) so that their total quantities are preserved over time. It is not

guaranteed, however, that a system of PDEs derived from these conservation

laws could yield real and distinct analytic solutions. In order to do so,

such a system should have the property of hyperbolicity, which ensures the

existence of real material elastic wave speeds.

245
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Ball [13] and Dafermos [62] show that the property of polyconvexity of

the material constitutive model guarantees a well posed system of PDEs.

Polyconvexity, in fact, leads to ellipticity, that in turn establishes existence

and uniqueness of solutions [13, 172]. According to the aforementioned

literature, the strain energy of a polyconvex material is expressed in terms

of the deformation gradient F, its Jacobian J and the cofactors matrix H.

Supplementary conservation laws are then elaborated for F, J and H.

Together with the conservation of linear momentum p, and a polyconvex

constitutive model, these equations constitute a first order hyperbolic system

of PDEs.

Chapter 2 provides a theoretical background relevant for the subsequent

establishment of the JST-SPH computational method. Further, the eigen-

structure of the system of equations with respect to standard hyperelastic

materials are investigated. The eigenvalues of the system matrix represent

the elastic wave speeds; real and distinct values would prove the soundness

of the approach.

In addition to ensure the existence and uniqueness of solutions for the

mixed {p, F,H, J} system of conservation laws, the established proof of

hyperbolicity draws a direct parallel with the Euler equations that govern

fluid dynamics [6, 107, 139], which are themselves a first order hyperbolic

system of PDEs. This analogy with fluid dynamics allows the use of well-

honed numerical dissipation techniques adopted from CFD for the mixed

{p, F,H, J} system, in a fast solid dynamics context.

In depth, investigation of a numerical scheme to use for discretisation

of the mixed {p, F,H, J} system is the object of the analysis performed

in chapter 3, where the meshless SPH particle method is introduced and

described. SPH is advantageous in a large deformation context because it

does not need the concept of element, and hence does not require the use

of a mesh to interpolate field variables [181, 243]. In fact, shape functions

are instead directly built on the nodes (particles), with assistance from bell-

shaped kernel functions. In a high-strain regime, the presence of a mesh

would otherwise entail the risk of entanglements and excessive distortion of

the finite elements that compose it [22].

Corrections, however, have to be introduced over the kernel functions

and their derivatives, in order to help avoid irregularities at or near the
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boundary of the physical domain. Moreover, SPH also suffers from the so-

called tensile instability effect, which consists in particles clumping in pairs

when subjected to a tensile stress. It is shown that tensile instability can be

overcome by adopting a total Lagrangian approach.

One of the main novelties introduced in this thesis is the pairing of

artificial dissipation with the SPH spatial discretisation. The JST artificial

dissipation term is adopted directly from CFD, and is built on the Laplacians

of the SPH kernel function acting as discontinuity sensors [119]. Coupled

with an explicit, second order of accuracy, two stages TVD-RK time integrator,

it forms the JST-SPH numerical discretisation framework.

Considering that (i) there is now no relation between the deformation

gradient tensor F and the gradient of displacements ∇0x, as F is coopted

as a primary unknown variable, and that (ii) the JST dissipation term is

not symmetric due to corrections to the Laplacian of the kernel made to

avoid boundary incompleteness, conservation of discrete linear and angular

momenta has to be imposed on the system at each time step. An upwind

scheme, as introduced in [146], would bypass the need of imposing mo-

mentum conservation for the artificial dissipation, but still, the cost of this

added complexity for the JST-SPH methodology is paid back by its excellent

stability, as is testified in the von Neumann analyses run in chapter 4.

Lastly, the viability of JST-SPH is demonstrated in practice by solving a

range of numerical applications, as presented in chapter 5.

Chapter 5 also includes, amongst many examples, the simulation of a met-

allurgy process, ECAE, which will also be the focus of a journal paper that is

currently being drafted. Chapter 5 concludes with a foray in applications run

with an unstructured starting grid of particles, to assess the capability of the

JST-SPH scheme to simulate the more complex body geometries characteristic

of real world applications.

6.2 future work perspectives

Possible avenues of future research based on the work carried out in this

thesis are manifold. We list some ideas below, starting from the more straight-

forward, and proceeding towards the more difficult to implement.
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• Completion of the proof of hyperbolicity for the Ogden hy-

perelastic model: in order to fully bring closure to chapter 2, an

eigenvalue analysis on system (2.186) should be performed, adopting

the Ogden-type energy material potential ΨO expressed in (2.188). As

a first step towards this result, the characteristic equation for ΨO has

already been derived in (2.201). The resulting eigenvalues – the elastic

wave speeds of the material – should come out real, positive and dis-

tinct, and consequently prove the hyperbolicity of the mixed system

(2.162). This in turn will validate the treatment of nonlinear elastody-

namics for Ogden-type materials, with discretisation techniques lifted

from CFD, as described in chapter 3.

• Adoption of an implicit time integration scheme: an explicit

time stepping numerical approach can have hindering effects when in

presence of large plastic deformations, as clearly seen in the case of

the ECAE simulation in chapter 5. Indeed, the time step length of that

simulation decreases considerably, as plastic deformation accumulates

on the metal bar, with each 90◦-turn in the ECAE cycle. This overextends

the running time, to the point where the JST-SPH scheme loses its

computational viability.

As already described in section 3.7, this issue is caused by requirements

on the minimum time step length, that are imposed by the limited

stability of explicit RK time integrators.

The CFL stability requirement on time step length ∆t, (3.93), shows that

∆t and the material sound wave speed cp are inversely proportional.

As cp positively depends on the material current deformation state, it

is clear that explicit time integration can considerably slow down anal-

yses where large and rapid elasto-plastic deformations are involved.

In addition, local high strains act as further limitation to the global ∆t.

Implicit methods are specifically designed with a stability region large

enough to allow for large time step lengths, at the cost of a greater

computational effort to solve singular steps, with respect to explicit

methods. Therefore, it is speculated that the spatial JST-SPH discretising

methodology, in conjunction with an implicit multistep method – such

as the Crank-Nicholson method described in [57], the backward dif-
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ferencing method [84], or any other type of multistep implicit method

with at least second order of convergence such as those listed in [19] –

can possibly improve the speed and efficacy of the ECAE simulations,

as reported in chapter 5.

• Modelling a number of additional physical material behaviours:

the applications described in chapter 5 are simulations that have been

conducted exclusively in the framework of isothermal nonlinear elasto-

plasticity. Considered the maturity of the theory [27, 79, 262], and its

relevance in solid dynamics scenarios [17, 236], rate-dependent mate-

rial behaviour (viscoelasticity and viscoplasticity) could constitute a

valuable inclusion to the numerical model, and certainly a necessary

one in view of simulating real world applications.

In order to do so, the present {p, F,H, J} mixed formulation should

be expanded to include thermal effects, by adding the total internal

energy E to the set of unknowns. E would be made out of an in-

ternal mechanical energy component, and an additional component

modelling the dependency from the temperature field.

Assuming E as additional unknown of the system would also lead to a

more efficient error estimation analysis, as the energy norms would be

derived directly from an independent variable.

• Employment of alternative meshless methods to SPH: as far as

the spatial discretisation of the formulation is concerned, SPH was

preferred over other meshfree methods because of the straightforward

and physically meaningful correlation it creates between particles and

material points, and its conceptual simplicity, that leads to ease of

implementation and lower computational costs.

However, these advantages are counteracted with numerical issues

stemming in large part from nodal integration. These issues have been

addressed by correction devices described at length in chapter 3.

It would be interesting to verify whether the increase in computational

expense that comes with the adoption of a meshless weak-form method

requiring background quadrature cells, would constitute an acceptable

trade-off for the absence of numerical stability issues, and for the
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increased accuracy of those methods [50] with respect to SPH. Viable

candidate models of this kind are the EFG method [23, 24], and the

Max-Ent method [7, 204, 247]. In particular, as already mentioned in

chapter 3, the latter has the peculiarity of enjoying the Kronecker

delta property for nodes located at the boundary of the computational

domain. This considerably simplifies the imposition of Dirichlet BCs

with respect to what seen for other meshless methods, as SPH [77].

• Introduction of a contact algorithm: the simulation of the ECAE

process in chapter 5 has been carried out without detailed modelling

of the interaction between the metal piece and the rigid walls of the die.

A rebound algorithm was in place to adjust positions and velocities

of the SPH particles composing the piece, in case they crossed the die

walls. A more in-depth analysis of contact effects, such as magnitude

of contact areas and pressures, would help to better define interaction

properties like sliding mechanics and friction [131, 193].

The implementation of a contact model is a fundamental step in order

to progress towards fast solid dynamics analyses of a higher complexity,

like high-velocity collisions, and ballistic tests [60].

• Introduction of a fracture model: it has recently been observed

[83] that a displacement-based, total Lagrangian SPH formulation coin-

cides with a collocation-based meshless discretisation of the theory of

Peridynamics, with few adaptations required. Peridynamics is a weak-

statement extension of continuum mechanics, that does not need to set

up jump conditions to treat discontinuities, and hence is frequently

employed to simulate fracture and crack propagation.

Models of material damage and failure have already been developed

in the past using SPH, benefiting from the particle nature of the scheme.

In fact, SPH, bridges the gap between the continuum and fragmentation

in a natural way. A seminal study on the set-up of a SPH framework for

brittle fracture (and subsequent fragmentation in damaged solids) has

been firstly conducted by Benz and Asphaug [26], and later resumed

by Owen [205], among others.
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The SPH fracture model of Benz and Asphaug could, in our view, be

implemented in the current JST-SPH methodology. It would constitute

a useful addition, in view of investigating more complex fast solid

dynamics phenomena.

• Attempt more complex fast solid dynamics tests: should a con-

tact algorithm and a fracture model be incorporated in our JST-SPH

framework, it would then be theoretically possible to simulate more

challenging fast solid dynamics applications. Among these are high-

velocity ballistics and impacts involving complex geometry, industry

relevant test cases and prototypes.

• Code parallelisation: open source, advanced performance SPH par-

allel codes are already at disposal of the CFD research community.

Parallelisation offers optimised performances, with possibility to of-

fload part of the computing effort to graphical processor units (GPUs),

and capabilities to run common benchmark simulations (dam-breaking

flows, flows around simply shaped obstacles, etc.) with up to several

millions of particles in a reasonable time scale (hours). Most renown

among these open-source platforms are SPHysics, written in Fortran

[91, 92], and its off-shot Dual-SPHysics, written in the C++ and CUDA

languages [58], and optimised for simulations requiring a high number

of particles. Both are intended for local parallelism (OpenMP protocol).

An expansion of either of these two powerful codebases, made to

include a mixed formulation JST-SPH solver among pre-processing

options, would equip SPHysics or Dual SPHysics with the capability to

solve nonlinear solid dynamics problems. As a consequence, prototype

testing, of the kind mentioned in the previous point, would be made

computationally more affordable.





AA P P E N D I X

a.1 reproducing kernel particle methods

The RKPM was originally proposed in [159] and [163] as an improvement

on SPH, capable to yield modified kernel functions WRKPM (x− xb, x,h)

satisfying the discrete consistency conditions (3.39) across the whole problem

domain, boundaries included.

The corrected kernels WRKPM (x− xb, x,h) are defined as

WRKPM (x− xb, x,h) = CRKPM (x− xb, x)W (x− xb,h) (A.1)

with the correction function CRKPM (x− xb, x) in (A.1) being

CRKPM (x− xb, x) = PT
(
x− xb
h

)
a (x) (A.2)

In (A.2), h is the smoothing length, used as dimension (dilation [163])

parameter of the kernel function, xb are the neighbouring particles to target

position x, P (x) is the vectorial form for a complete set of polynomials

in x up to order k, while a (x) is the set of k unknown RKPM corrective

parameters to be determined:

PT (x) =
(
1, x, x2, x3, . . . , xk

)
a (x) =




a0 (x)

a1 (x)

a2 (x)

a3 (x)
...

ak (x)




(A.3)
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The RKPM procedure then calls for finding the unknown parameters by

solving a system made up of equations known as moment equations for the

corrected kernel WRKPM (x− xb, x,h):

n∑
b=1

VbWRKPM (x− xb, x,h) = 1

n∑
b=1

x− xb
h

VbWRKPM (x− xb, x,h) = 0

n∑
b=1

(
x− xb
h

)2
VbWRKPM (x− xb, x,h) = 0 (A.4)

...
n∑
b=1

(
x− xb
h

)k
VbWRKPM (x− xb, x,h) = 0

Moment equations making up system (A.4) resemble discrete consistency

conditions (3.39), except that they ensure up to the kth order of polynomial

reconstruction. This in turn guarantees a (k+ 1)th order of truncation error,

as can be verified [160] if each term of the Taylor kth order expansion of a

function f(x) from its value at point xb

f(x) = f(xb) +
df(x)

dx

(
x− xb
h

)
h+

1

2!
d2f(x)

dx2

(
x− xb
h

)2
h2 + . . .

. . .+
1

k!
dkf(x)

dxk

(
x− xb
h

)k
hk
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is approximated with RKPM to obtain

fRKPM(x) =

n∑
b=1

Vbf(xb)WRKPM (x− xb, x,h)+

+

n∑
b=1

(
x− xb
h

)
Vb
df(x)

dx
WRKPM (x− xb, x,h)h+

+
1

2!

n∑
b=1

(
x− xb
h

)2
Vb
d2f(x)

dx2
WRKPM (x− xb, x,h)h2+ . . .

· · ·+ 1

k!

n∑
b=1

(
x− xb
h

)k
Vb
dkf(x)

dxk
WRKPM (x− xb, x,h)hk+

+O
(
hk+1

)
(A.5)

From the fulfilment of (A.4) follows that, for the approximated fRKPM in

(A.5), ‖fRKPM(x) − f(x)‖ = O (hk+1).
Substitution of (A.2) into (A.1) and then of (A.1) into the moment equa-

tions (A.4) leads to a system that can be solved for a (x):

M (x,h)a (x) = F0 (A.6)

In (A.6), the matrix system M (x,h) assumes the form:

M (x,h) =




m0 (x) m1 (x) m2 (x) . . . mn (x)

m1 (x) m2 (x) m3 (x) . . . mn+1 (x)

m2 (x) m3 (x) m4 (x) . . . mn+2 (x)
... . . . ...

mn (x) mn+1 (x) mn+2 (x) . . . m2n (x)




(A.7)

with matrix components mi (x), i = 1, . . . ,n in (A.7) defined as

mi (x) =

n∑
b=1

(
x− xb
h

)i
VbW (x− xb,h) (A.8)

In (A.8), W (x− xb,h) is the original SPH kernel function.
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The vector of constant terms F0 in (A.6) is given as

F0 =




1

0

0
...

0




(A.9)

It is worth noting that the moment matrix in (A.7) is symmetric and non-

singular, as it is built out of a set of linearly independent bases
(x−xb

h

)i and

out of a positive function W (x− xb,h), with i = 1, . . . , 2n and b = 1, . . . ,n

[51]. Hence, the solution of (A.6) can be found after inverting M (x,h) as

a (x) =M−1 (x,h) F0 (A.10)

In light of (A.10), correction function CRKPM (x− xb, x) in (A.2) and modi-

fied kernel WRKPM (x− xb, x,h) in (A.1) are obtained as

CRKPM (x− xb, x) = PT
(
x− xb
h

)
M−1 (x,h) F0 (A.11)

WRKPM (x− xb, x,h) = PT
(
x− xb
h

)
M−1 (x,h) F0W (x− xb,h) (A.12)

In [163] a scaling factor E(h), function of the smoothing length h, is used

to maintain the RKPM consistency:

∑
b∈Ω

E(h)WRKPM (x− xb, x,h)Vb = 1 (A.13)

In (A.13), Ω is assumed to be the kernel support domain around position

x.

Additional information on the RKPM can be found in [159, 160, 162, 163];

there is also a review paper [161]. Furthermore, see [51] for the first use of

RKPM for solving explicit simulations of large, nonlinear deformations.

As opposed to unmodified SPH kernel functions, correction (A.12) can

lead WRKPM to break positivity condition (3.33).
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This fact notwithstanding, RKPM succeeds in restoring consistency and

completeness to SPH approximations up to a high order of choice at the

problem boundaries, sparing the analyst of the need to resort to approaches

like the mirror or ghost particles techniques mentioned in section 3.3. There

is no verifiable manner, in fact, to measure the numerical accuracy of these

latter ad-hoc methods.

In computational terms however, the improved consistency provided by

RKPM does not come at a cheap cost. Clearly the need to assemble, and then

invert system matrix M (x,h) for every particle in order to obtain (A.11)

is very absorbing, both in terms of time and computer resources. This is

all the more true for simulations made in an Eulerian framework, where

neighbours and connectivities, and hence RKPM system matrices M (x,h),

have to be recalculated for each particle at each time step.
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