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Evidence for macroscopic life in the Paleoproterozoic Era comes
from 1.8 billion-year-old (Ga) compression fossils [Han TM, Run-
negar B (1992), Science 257(5067):232-235; Knoll et al. (2006),
Philos Trans R Soc London B 361(1470):1023-1038], Stirling biota
[Bengtson S et. al. (2007), Paleobiology 33(3):351-381], and large
colonial organisms exhibiting signs of coordinated growth from
the 2.1 Ga Francevillian Series, Gabon. Here we report on pyritized
string-shaped structures from the Francevillian Basin. Combined
microscopic, microtomographic, geochemical, and sedimentologic
analyses provide evidence for biogenicity, and syngenicity and
suggest that the structures underwent fossilization during early di-
agenesis close to the sediment-water interface. The string-shaped
structures are up to 6 mm across and extend up to 170 mm through
the strata. Morphological and 3D tomographic reconstructions
suggest that the producer may have been a multicellular or syn-
cytial organism able to migrate laterally and vertically to reach
food resources. A possible modern analogue is the aggregation of
amoeboid cells into a migratory slug phase in cellular slime molds
at times of starvation. This unique ecologic window established
in a oxygenated, shallow-marine environment represents an ex-
ceptional record of the biosphere following the crucial changes
that occurred in the atmosphere and ocean in the aftermath of
the Great Oxidation Event (GOE).
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The exquisitely preserved sediments of the Francevillian Se-
ries B (FB) Formation from southeastern Gabon were deposited
in an oxygenated (1, 2) offshore to offshore transition envi-
ronment at 2100 ± 30 million years ago (Ma) (3, 4). The de-
posits pass upwards into shallow-water, stromatolitic dolostones
and dolomitic cherts of the Francevillian C (FC) Formation (SI
Appendix, Figs. S1 and S2), recording a regression (1, 2). The
specimens for this study were collected from black, silty shale
intercalated with siltstone to very fine-grained sandstone in the
FB2 Member of the FB Formation (SI Appendix, Figs. S1 and S2).

The black, silty shales preserve millimetre-sized, diverse
string-shaped structures (Figs. 1, 2), most of which are pyritized.
These structures occur throughout the member; however, they
are most abundant in the basal-most metre on the bedding plane
(Fig. 1 and SI Appendix, Fig. S1C). Microbially induced sedimen-
tary structures (MISS) prevail in the interbedded sandstone and
silty sandstone layers (SI Appendix, SI Text 1, Fig. S3) and are
commonly present in the vicinity of the string structures (Fig. 1E,
F, I, J).

More than 80 specimens from several fossiliferous horizons
were studied using X-ray micro-computed tomography (micro-
CT) (Fig. 2; SI Appendix,Figs. S4-7 andVideos S1-4). The analysis
reveals the presence of string-shaped structures within the strata
(Fig. 2; SI Appendix, Figs. S4-7 and Videos S1-5). Some of these
structures occur close to pyritized laminae lenses extending over

several centimetres (Figs. 2C-F and SI Appendix, Videos S1-3),
suggesting an association with organic-rich mats where micro-
bial sulphate-reduction was enhanced (Figs. 2C-F; SI Appendix,
Figs. S3, S5-7). In one case, a sheet-like structure with distinct
boundary forms an apparent continuity with an equally distinct
string (Fig. 3A, B). Strings are mostly parallel to the bedding
plane, and when observed in vertical cross-sections (Figs. 2C-F;
SI Appendix, Fig. S6 and Videos S1, S2) display an elliptic to
rounded section, flattened parallel to the bedding (Figs. 4C, E; SI
Appendix, Fig. S6). They appear to have only a minor impact on
the original sedimentary fabric with the laminae generally bend-
ing around these structures consistent with their early formation
(Fig. 2H; SI Appendix, Figs. S6-7 and Videos S1-2). Specifically,
the features indicate compaction of soft, fine-grained sediment
around a relatively rigid object and show that the strings were in
place and mineralized when the sediments were still compacting
(Fig. 2H). Detrital phyllosilicate particles are parallel to bedding
and aligned along the perimeter of the strings (Fig. 4). This re-
lationship confirms pre-compactional formation of pyrite within
the string structures resulting in local rearrangement of sedi-
ment grains during compaction. Combined SEM-BSE (scanning
electron microscopy-back-scattered electron imaging) and EDX
(energy-dispersive X-ray spectrometry) analyses also indicate

Significance

The 2.1 billion-year-old sedimentary strata contain exquisitely
preserved fossils that provide an ecologic snapshot of the
biota inhabiting a oxygenated, shallow-marine environment.
Most striking are the pyritized string-shaped structures, which
suggest that the producer have been a multicellular or syncy-
tial organism able to migrate laterally and vertically to reach
for food resources. A modern analogue is the aggregation of
amoeboid cells into a migratory slug phase in modern cellular
slime molds during time of food starvation. While it remains
uncertain whether the amoeboid-like organisms represent a
failed experiment or a prelude to subsequent evolutionary
innovations, they add to the growing record of comparatively
complex life forms that existed more than a billion years
before animals emerged in the late Neoproterozoic.
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Fig. 1. Reflected-light photographs of pyritized
string-shaped specimens from the Francevillian Series,
Gabon. White and yellow arrows point to string-
shaped specimens and microbial mats, respectively.
(A) Slab displaying several straight specimens with
straight to convoluted strings. (B-I) Sinuous strings. (C)
Straight or slightly contorted strings; frame denotes
specimen figured in D. (D). Enlarged part of C, contour
of trace marked in white within frame. Note the ter-
mination of the trace showing a small pyrite globule
(green arrow). (E) Slab displaying several sub-parallel
specimens in the vicinity of bacterial mats. Note that
the relief increase at the surface of the sediment
from right to left for each specimen; frame denotes
specimen figured in F. (F) enlarged part of E, white
arrow shows the detail of the trajectory of specimen
under the fine clay laminae toward the bacterial mats
(yellow arrow). (I, J) Part and counterpart of twinned
contorted strings, parting from each other at upper
white arrow; box denotes specimen figured in K. (K)
Enlarged part of J; note the contorted strings and
braided aspect. Scale bars are 1 cm.

contrasting textures and mineralogical compositions within and
outside the strings (Figs. 4E, F). Very few detrital minerals (e.g.,
quartz) are scattered within the pyrite strings, while authigenic
illite and chlorite grains show signs of free growth within the pore
spaces (Figs. 4E, F, G).

The strings have a straight to sinuous shape (Figs. 1, 2; SI
Appendix, Figs. S4, S-8) and a maximum length of 170 mm.
The simplest specimens are horizontal, unbranched, with straight
(Figs. 1A-B and 2A-B; SI Appendix, Fig. S6 and Video S3) to
sinuous shapes (Figs. 1C-J; SI Appendix, Figs. S6-8 and Videos
S1-2). They are 1-6 mm wide, with a relatively constant diameter
along the structures (Figs. 2C-H; SI Appendix, Video S3). A
rounded termination is typically observed at the end of the struc-
tures (Figs. 1 and 2A), but one specimen ends with a spheroidal
pyrite concretion showing a similar size to the string structure
(Figs. 1C, D; 2A, inset). Specimens may develop a short, low-
wavelength sinuosity and angular bends (Figs. 1D, C, I, J). In
some cases, there are two or more parallel strings (Figs. 1C,

D, I, J) that may intertwine and display a contorted helicoid
shape, in places involving several strings in a braided pattern
(Figs. 1I, J, 2G, H; SI Appendix, Fig. S4 and Video S4). X-ray
micro-CT and petrographic microscopy reveal that these string-
shaped structures also intersect the stratification (Figs. 2E; SI
Appendix, Figs. S7-8 and Videos S-2). Strings might traverse silty-
shale laminae and continue along at other levels, with angles of
penetration ranging from 12 to 85° (Figs. 2D-F, 4E; SI Appendix,
Figs. S5C, S8 and Videos S1-2).

The pyritized string structures are present in sediment de-
posited under oxygenated bottom-water conditions (1, 5). This is
consistent with the observation that selective pyritization prefer-
ably occurs in oxic, organic-lean sediments, because localized
organic enrichments favour the needed chemical gradients. The
pyrite structures display highly negative δ34S values (-31‰ to -
21‰; SI Appendix, Figs. S9-10 and Table S1), which are in the
range of the lightest values for sedimentary pyrite deposited
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Fig. 2. Micro-CT-based reconstructions of string-shaped structures from
the Francevillian Series, Gabon. White and yellow arrows point to string-
shaped specimens and microbial mats, respectively. (A) Volume rendering
showing the external surface of straight structures. Inset shows enlargement
of string ending with a pyrite crystal. Same specimen as in Figures 1D and
E. (B) External surface volume rendering showing weakly sinuous string.
(C) External surface volume rendering, frame denotes the position of sub-
vertical tubes. (D) External volume transparencies of the same specimen
as in C, lateral view showing the string-shaped specimens inside the host
rock. Frame denotes the position of sub-vertical tubes. (E, F) External volume
transparencies of the same sample as in C and D at different heights in the
sample. (G) Twinned contorted strings; box denotes portion (cross-section)
figured in H. (H) Virtual cross-section of contorted strings, black arrow points
to the pre-compactional deformation of silty-shale laminae. Scale bars are 1
cm.

Fig. 3. (A, B) Volume rendering showing continuity between sheet and string
morphologies in a single specimen. Scale bars are 1 cm

Fig. 4. Petrography with scanning electron microscopy (SEM) and energy
dispersive analysis system (EDX) of pyritized string-shaped structures from
the Francevillian Series, Gabon. (A, C). Sediment laminae, white arrow,
intersected by pyritic strings. Laminae bending around the pyrite string
confirm pre-compactional formation, yellow arrow. (B, D) Bending of sed-
iment layers, yellow arrows, around pyritic strings. (E, F) Element mapping
of sections in C and D, showing mineralogical composition of the strings
and embedding sediment. White arrow indicates the area of elemental point
analyses (G). Scale bars are 1 cm. (G) Elemental points analysis indicate the
presence of K, Mg and Fe which confirm respectively the presence of illite
and chlorite. The picture (left side) shows authigenic illite and chlorite grains
and free growth of these minerals within the pore spaces.

before the late Neoproterozoic Era (6, 7). Considering a δ34S
value of ∼15‰ for seawater sulphate at 2.1 Ga (6, 8), the low
δ34S values of the string-shaped structures indicate early dia-
genetic pyrite formation from sulphide generated by sulphate-
reducing microorganisms close to the sediment-water interface
from a relatively large seawater sulphate pool (12–14). Consistent
with this observation, recent results suggest that concentration of
sulphate in seawater may have been unusually high at this time,
much higher than levels present immediately before and after this
period of the Paleoproterozoic Era (12, 13).

The morphological patterns of the string-shaped structures
and their relationship with the host sediment are very similar to
those of burrows preserved through selective pyritization of mu-
cus (14, 15), suggesting that the Francevillian structures may also
be the result of early pyritization of a mucus strand. Nonetheless,
it is critical to explore first the possibility of an abiogenic origin for
the morphologies by making comparison with abiotic structures.
Detailed comparison with syneresis cracks and pyrite precipitated
from migrating fluids (see SI Appendix, SI Text 2, Fig. S11 and
Table S2) indicates that the mineralogy, 3D morphology, tex-
ture, and sulphur isotope composition of the Francevillian string-
shaped structures are markedly different from these abiogenic
structures.
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The pyritic strings described herein may sometimes look
similar to other elongated body fossils in the Gabon biota, partic-
ularly where secondary pyritization has affected the morphology.
Lobate body fossils previously reported from these beds in places
may have a narrow, tail-like appendix that in well-preserved spec-
imens shows a flat cross-sectional profile and the same pattern
of radiating fabric and transverse folding characteristic of the
main body (14, 15). In heavily pyritized specimens, these primary
features are obscured, resulting in featureless rods. These fossils
resemble the specimen in Figure 3 (see, e.g., figures 4C, D, 5,
and 6E, F in (5)), but are usually coarser and display the typical
fabric of the lobate fossils. Another fossil that may have similarity
to string-shaped structures is a hitherto undescribed body fossil
forming a network of interconnected rings, where the walls are
expressed as thin pyritic strands along the bedding plane (SI
Appendix, SI Text 3 and Fig. S12). Short fragments of this fossil
missing the branching points may be mistaken for the string
structures on the bedding plane.

Experimental work (16) has shown that an oscillatory flow
may interact with centimetric microbial aggregates, resulting in
the formation on the sediment surface of elongate structures that
may vaguely resemble the Francevillian string-shaped structures.
However, the latter shows clear evidence of emplacement within
the sediment. In addition, formation of the Francevillian Series B
below the fair-weather wave base is inconsistent with continuous
wave agitation.

A pyritized string of organic matter may represent the body
of a filamentous organism or it may be the remnants of an
organic tube or a mucus strand constructed by a motile organism.
Among filamentous organisms, the closest living analogues to the
Francevillian straight-to-sinuous structures are sulphur-oxidizing
bacteria, such as Thioploca and Beggiatoa. These occur as hor-
izontally to vertically oriented sheathed filaments or filament
bundles in sediment, thriving at the interface between a weakly
oxic sediment–water interface and underlying reducing sediments
(17, 18). Individual filaments generally have a diameter of a
few to tens of micrometres, although giant Beggiatoa filaments
may reach nearly 200 µm in diameter (18). Sheathed Thioploca
filaments bundles with up to 500 µmdiameter have been recorded
(17). The mucus sheaths of these sulphur-oxidizing bacteria allow
filaments tomigrate in the sediment between the surficial, and the
deeper portions (17). Importantly, these microbial structures are
much smaller than ours. Phanerozoic pyritized organic trails and
burrows of dimensions comparable to those of the Francevillian
structures are commonly ascribed to animals (15, 19), but net-
works of pyritic filaments less than 1 mm in diameter have been
interpreted as bacterial or fungal in origin (15).

Other than length differences, the distinction between pyri-
tized tubes and trace fossils is subtle, but the latter can also be
recognized by being massive and locally branching and through
their incorporation of extraneousmaterial (19). The Francevillian
structures reported herein conform to this pattern and thereby
resemble traces left by motile organisms, rather than individ-
ual filaments of bacteria or sheaths/tubes. They are somewhat
reminiscent of simple straight forms resembling grazing trails
in Ediacaran sedimentary successions, commonly in association
with microbial mats (23–25). However, unlike these Ediacaran
trails, the Francevillian structures have rounded terminations
and occasional bulbous elements. Moreover, characteristic levees
formed by sediment pushing on both sides, crucial in ascertaining
the locomotory origin of some of the Ediacaran trace fossils, are
absent in the Francevillian structures. In addition, a metazoan
origin would not be supported by evidence frommolecular clocks
and the fossil record, which suggest a much younger origin for
animals at ∼650 my ago (23, 24).

Although the Francevillian specimens tend to be oriented
parallel to bedding, they are occasionally oblique to subvertical

in orientation, crossing up to 1.5 cm of sediment and locally
disturbing primary laminations. These relationships can be taken
as evidence for movement within the sediment, consistent with
the absence of levees, which form in association with trails at
the sediment-water interface, or even as tool marks produced by
microbial aggregates moving under oscillating flow regimes (25).
Given the inconsistencies with traces produced by animals or with
sheaths enveloping motile bacteria, an alternative interpretation
should be sought to explain their generation. Production by a
microbial organism seems highly unlikely due to the lack of
empirical evidence that such organism can produce megascopic
infaunal trace fossils. There is no easy explanation, owing to
morphologic simplicity of the structures and their great age,
but a possible analogue for the formation of these structures
involves cellular slime molds, a group within Mycetozoa referred
to as Dictyosteliida (29–31). These organisms, as illustrated by
Dictyostelium discoideum and D. polycephalum, spend most of
their life cycle as individual amoebae feeding on bacteria, but
when food becomes scarce, single cells may aggregate to form a
multicellular organism, referred to as "a slug", that subsequently
moves on and within the sediment in search of a place for sporula-
tion (31–34). During their aggregation stage, slime molds display
behaviour that is remarkably similar to that of simple animals
(31).

The overall morphology of the Francevillian structures sug-
gests an organism that was able to aggregate and migrate in a
similar fashion to that of cellular slime molds, leaving a mucus
trail behind. The occasional continuity between sheet and string
morphology (Fig. 3) is particularly suggestive of this kind of
behaviour. The slug phase of cellular slime molds can develop
differences in speed, with faster anterior relative to the posterior
portion of the aggregate, resulting in a narrow isthmus between
the anterior and posterior parts (28). The bulbous elements and
the globular morphology of some of the string structures may
have resulted from this movement pattern. Since metazoan trace
fossils essentially reflect the maximum width of the producer,
burrows tend to display constant diameter, but this is not nec-
essarily the case with locomotive structures produced by mobile
cell aggregates. The broken and crenulated appearance of some
strings (Figs. 2E–G) is consistent with slugs crossing over each
other, resulting in the grafting of tips onto the slug as has been
observed in cellular slimemolds during aggregation (28). In some
cases, the tips of two slugs going in the same direction may fuse
producing a larger one. The tip of the aggregate may also split
into two in a process known as twinning (28). In addition, parallel
orientation of some structures may reflect parallel movement
of the aggregates, as has been commonly observed in modern
dictyostelid slugs that move along environmental gradients (32).
Themorphologic variability and intergradation of forms observed
in the Francevillian structures (Fig. 1), in particular the transfig-
uration between sheets and strings (Fig. 3), as well as grafting
and twinning of strings (Figs. 1I, J, 2G, H; SI Appendix, Fig.
S4), suggest locomotion of cell aggregates rather than organisms
having a distinct body shape and the presence of an interactive
sensorial system that reflects deliberate behaviour.

Structures consisting of pairs of ridges preserved in positive
hyporelief in Myxomitodes of the 2.0–1.8 Ga Stirling biota have
been interpreted as mucus-supported trails of syncytial or multi-
cellular organisms comparable to dictyostelid slime molds (33).
The Francevillian structures, which are up to ∼300 million years
older than the Stirling biota, contrast with Myxomitodes in their
shape and dimensions. Again, the Francevillian features were
formed within the sediment as indicated by their oblique and
subvertical orientations to sediment lamination and in association
withmatgrounds (Figs. 2B-F), whereasMyxomitodes is exclusively
parallel to the bedding and interpreted as having been formed at
the sediment-water interface (33).
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Regardless of the difficulties in distinguishing between body
and trace fossils, the interpretation of the Francevillian structures
as those produced by organisms comparable in behaviour to cel-
lular slime molds is consistent with their morphologic variability
and mode of occurrence. The stimulus to become multicellular
for dictyostelids is the lack of food (31–34)

Thus, the aggregative stage of slime molds could take place
when all available organic material has been consumed. The
Francevillian structures tend to occur next to matgrounds (Figs.
2C-F), which are abundant and regularly spaced vertically. A
plausible ecosystem structure includes a community of single
(non-aggregated), amoeba-like organisms thriving on buried mi-
crobial mats, but aggregating during times of starvation in order
to move within the sediment to reach another mat at a differ-
ent level. This mode of existence is consistent with movement
guided by chemotaxis, which has been documented in modern
dictyostelid slugs (27, 28). Slime molds have been observed to
move vertically through sediment layers that are up to 7 cm thick
(31, 32), showing the capability to penetrate the substrate in a
way analogous to a muscular organism. This pattern is consistent
with the localized vertical displacement revealed by the Francevil-
lian structures. In addition, very shallow matgrounds could have
enhanced oxygen concentrations creating oases rich in oxygen
within the sediment at depths shallow enough to still receive light
(34) (SI Appendix, SI Text 1). Modern studies have shown that
during the day, concentrations of oxygen within biomats can be up
to four times higher than in the oxygen-stressed overlying water
column, highlighting the role of biomats as both oxygen and food
resource during the Precambrian (34).

However, there are two significant differences between the
Francevillian structures and those formed by modern slime
molds. First, slimemolds live in soils, not inmarine sediment (28).
In open-marine environments, the chemical gradients that are
necessary for the amoeboid cells to aggregate are not observed
at the surface of sediments, but frequently develop within the
sediment as a result of microbial activity and sediment perme-
ability. This argument is strong in rejecting a slime-mold interpre-
tation in the case of the surface trace Myxomitodes (33). Unlike
Myxomitodes, the Francevillian structures were formed within a
fine-grained and overall undisturbed sediment, where the devel-
opment of chemical gradients was favoured. Second, the width
of modern slime-mold slugs is up to 0.2 mm, significantly smaller
than that of the structures documented here. Importantly, we are
not suggesting that the Francevillian structures were produced
by slime molds, although the size and complexity of the fossils
suggest that the organism may have been a eukaryote. We rather
advocate an analogous situation wherein amoeba-like organisms
with the capability to aggregate in a similar fashion could have
been responsible for producing these complex structures. The
restriction of modern dictyostelids to soils does not rule out the
possibility that amoeba-like organisms may have been able to
evolve the trait of aggregation in marine environments below
the sediment-water interface, particularly in microbially bound
sediments.

The timing of origin of eukaryotes and its potential link to
the GOE has been the focus of intense debate (35–37). Inte-
gration of genomic and fossil evidence suggests that eukaryotes
emerged approximately 1.84 Ga ago, therefore postdating the
GOE (Betts et al., 2018) and the Francevillian structures, which
correspond in age to the end of the Lomagundi Event (∼2.22
to 2.06 Ga). This event represents, the largest global positive C
isotope excursion in Earth’s history, which is recorded in the FB
and FC formations of the Francevillian Series (2). This excursion
is thought to reflect a time of relatively high oxygen content in the
atmosphere and ocean relative to the time intervals immediately
before and after (38). Regardless of the approximately 300million
years discrepancy between the Francevillian and the proposed

timing for origin of eukaryotes, it is reasonable to assume that
such an increase in oxygenation may have promoted evolutionary
innovations, such as those recorded by the Gabonese biota and
associated ecosystems (El Albani et al., 2010, 2014; Aubineau et
al., 2018).

The Lomagundi Event may have ended up with a dramatic
deoxygenation after which seawater O2 levels remained near or
below the lower limit necessary for complex life to survive until
the late Neoproterozoic (39). In addition to this broad temporal
relationship with an oxygen increase, the FB and FC formations
were deposited in nearshore to offshore environments that al-
lowed widespread development of microbial mats (SI Appendix,
Fig. S3). These shallow-water, oxygen and food-rich conditions
within the photic zone were instrumental for the establishment
of an ecosystem able to harbour more advanced forms of life, in-
cluding organisms that couldmigrate. The fossiliferous Francevil-
lian strata were ultimately preserved in essentially undeformed
and non-metamorphosed strata (40). These special conditions
underscore the uniqueness of the Francevillian biota, although it
cannot be entirely excluded that our occurrence is related more
to favourable taphonomic conditions than to environmental or
evolutionary drivers/patterns.While it remains uncertain whether
the Francevillian string-shaped structures represent a failed ex-
periment or a prelude to subsequent evolutionary innovations,
they add to the growing record of comparatively more complex
life forms that colonized shallow-marine environments more than
a billion years before animals emerged in the lateNeoproterozoic.

Methods
Textural relationships between the pyritized string-shaped structures and the
silty shale matrix embedding the structures were assessed on polished slab
sections with a ZEISS Discovery V8 stereoscope combined with AxioCam ERc
5s microscope camera. SEMwas carried out on a JEOL 5600 LV equipped with
an Oxford EDX for mineralogical analyses.

The micro-CT analysis of the samples was run on a RX-solutions EasyTom
XL Duo equipment, which has one micro- and one nanofocus (LaB6 filament)
Hamamatsu X-ray sources coupled to a Varian PaxScan 2520DX flat panel.
Reconstructions were done with the XAct software (RX-solutions) with a
classical filtered back projection algorithm and reduction of beam hardening
artefact. Virtual sections, 3D rendering, and videos were performed with
Avizo Fire v.9.2 (FEI).

Values of δ34S were measured with Secondary Ion Mass Spectrometry
(SIMS) using a Cameca IMS1270 and 1280 at CRPG facility (Nancy, France).
The sulphur isotope compositions were measured using a 20-µm Cs+ primary
beam of ∼2-5 nA. Sulphur isotopes were measured in a multi-collection
mode using two off-axis Faraday cups (L'2 and H1). The gains of the Faraday
cups were intercalibrated at the beginning of the analytical session and their
offsets were determined before each analysis during the pre-sputtering (300
s). Typical ion intensities of 3×109 counts per second (cps) were obtained on
32S-, so that an internal error better than ±0.1‰ can be reached. Instrumental
mass fractionation and external reproducibility were determined bymultiple
measurements of the in-house reference material Pyr3B (δ34S = +1.41 ‰).
The external reproducibility ranges between 0.05 and 0.40 ‰ (1 sigma)
depending on the analytical session.
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