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Abstract  

 

Extracellular vesicles, in particular exosomes, have recently gained interest as novel drug 

delivery vectors due to their biological origin and inherent intercellular biomolecule 

delivery capability. An in-depth knowledge of their in vivo biodistribution is therefore 

essential. This work aimed to develop a novel, reliable and universal method to radiolabel 

exosomes to study their in vivo biodistribution.  

 

Methods: Melanoma (B16F10) cells were cultured in bioreactor flasks to increase 

exosome yield. B16F10-derived exosomes (ExoB16) were isolated using 

ultracentrfugation onto a single sucrose cushion, and were characterised for size, yield, 

purity, exosomal markers and morphology using Nanoparticle Tracking Analysis (NTA), 

protein measurements, flow cytometry and electron microscopy. ExoB16 were 

radiolabelled using 2 different approaches – intraluminal labelling (entrapment of 

111Indium via tropolone shuttling); and membrane labelling (chelation of 111Indium via 

covalently attached bifunctional chelator DTPA-anhydride). Labelling efficiency and 

stability was assessed using gel filtration and thin layer chromatography. Melanoma-

bearing immunocompetent (C57BL/6) and immunodeficient (NSG) mice were injected 

intravenously with radiolabelled ExoB16  (1x1011 particles/mouse) followed by metabolic 

cages study, whole body SPECT-CT imaging and ex vivo gamma counting at 1, 4 and 24 

h post-injection. 

 

Results: Membrane-labelled ExoB16 showed superior radiolabelling efficiency and 

radiochemical stability (19.2 ± 4.53 % and 80.4 ± 1.6 % respectively) compared to the 

intraluminal-labelled exosomes (4.73 ± 0.39 % and 14.21 ± 2.76 % respectively). Using 

the membrane-labelling approach, the in vivo biodistribution of ExoB16 in melanoma-

bearing C57Bl/6 mice was carried out, and was found to accumulate primarily in the liver 

and spleen (~56% and ~38% ID/gT respectively), followed by the kidneys (~3% ID/gT). 

ExoB16 showed minimal tumour i.e. self-tissue accumulation (~0.7% ID/gT). The 

membrane-labelling approach was also used to study ExoB16 biodistribution in melanoma-

bearing immunocompromised (NSG) mice, to compare with that in the immunocompetent 
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C57Bl/6 mice. Similar biodistribution profile was observed in both C57BL/6 and NSG mice, 

where prominent accumulation was seen in liver and spleen, apart from the significantly 

lower tumour accumulation observed in the NSG mice (~0.3% ID/gT). 

 

Conclusion: Membrane radiolabelling of exosomes is a reliable approach that allows for 

accurate live imaging and quantitative biodistribution studies to be performed on 

potentially all exosome types without engineering parent cells. 

 

Key words: Exosomes, drug delivery, radiolabelling, biodistribution   
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Introduction 

Exosomes are a subtype of extracellular vesicles (EV) ranging from 50-200 nm in 

diameter, secreted by various cell types such as dendritic cells [1], macrophages [2], 

cancer cells [3-6] and mesenchymal stem cells [7]. Exosomes have also been shown to 

be present in various physiological fluids [8-11]. The combination of the inherent ability of 

exosomes to carry various biomolecules (e.g. RNA and proteins) [12, 13] and the effective 

delivery of these biomolecules into recipient cells [14-16] attracted interest for their 

potential as nano-scale drug delivery vectors for a multitude of therapeutic agents. Small 

molecule-drugs such as doxorubicin [17-19], paclitaxel [20], imatinib [21], curcumin [22-

24], acridine orange [25] and anthocyanidin [26] have been demonstrated to be 

successfully loaded into exosomes and delivered to target cells. Nucleic acids such as 

siRNA [27, 28] and microRNA [29] have also been successfully loaded into exosomes via 

electroporation and delivered to target cells. Exosomes can also be engineered for 

targeted delivery, mostly by means of expressing the targeting moiety as a fusion protein 

with transmembrane proteins on the exosomes [14]. The RVG peptide-Lamp2b fusion 

protein was the first to be demonstrated to target exosomes across the blood-brain barrier 

(BBB) for brain delivery [30]. Exosomes bearing the GE11 peptide-PDGFR fusion protein 

were shown to target EGFR-overexpressing breast cancer cell lines [31]. Interestingly, 

non-targeted exosomes have been reported to home to their tissue or cell of origin [32], 

suggesting that exosomes might have inherent targeting ability without requiring any 

engineering. 

Given the huge interest and potential in developing exosomes as drug delivery vectors, 

it is essential to understand their in vivo biodistribution. Several studies have been 

conducted to analyse this, mostly involving labelling exosome with fluorescent probes to 

track them in vivo via qualitative live imaging or quantitative ex vivo organ analysis. The 

major drawback of this technique is auto-fluorescence and tissue penetration depth 

during live imaging, even when using near infrared (NIR) fluorescent probes, therefore 

requiring the animals to be culled and organs excised for ex vivo imaging for more reliable 

results [18, 31-33]. This makes optical imaging limited to end-point analysis and not 

amenable to longitudinal studies or those that involve multiple dosing on the same animal. 

Ex vivo organ analysis using this modality also harbours substantial inaccuracies, as the 
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fluorescence from the excised organs are detected in a 2D-manner. Combined with the 

limited tissue penetration depth of fluorescent probes, this results in partial loss of signals 

and therefore rendering the biodistribution analysis only semi-quantitative [18, 32, 33]. 

Labelling using lipophilic dyes such as PKH26 or DiR have been reported to suffer from 

non-specific transfer of the dye between membranes, which heavily and adversely 

influenced the accuracy of the results obtained in the studies carried out [34-36]. The long 

half-life of these lipophilic dyes adds to the drawback described above, where it is not 

possible to distinguish whether the signal is coming from the labelled body of interest or 

free dye transferred to another membrane. Therefore, the reliability and accuracy of organ 

biodistribution of exosomes labelled using such dyes is questionable. 

Other modalities such as bioluminescence has also been explored, whereby the 

exosomes were engineered to express luciferase on their surface, effectively creating 

bioluminescent exosomes upon introduction of its substrate. This modality eliminates the 

problem of auto-fluorescence but requires genetic modification of the parent cells from 

which the exosomes originate. This can be challenging to perform on primary cells and is 

not possible for exosomes isolated from physiological fluids [37, 38].  

Labelling the exosomes with radioactive isotopes for tracking them in vivo is a more 

robust modality for evaluating both qualitative and quantitative exosome biodistribution 

via live SPECT or PET imaging and ex vivo organ analysis, as it does not have the 

limitations associated with the modalities described above. However, only a limited 

number of studies have been carried out, and in these cases the radiolabelling techniques 

suffer from serious limitation. In one study, the exosomes were engineered to express 

streptavidin as a fusion protein on their membrane, and radiolabelling was achieved when 

incubated with 125I-tagged biotin [39]. Again, this method requires genetic modification of 

the parent cells and is therefore not applicable to all types of exosomes. Another study 

carried out radiolabelling by entrapping the 99mTc-HMPAO complex within the lumen of 

exosome nanomimetics (cells extruded to become vesicles of similar size to exosomes),  

via an in-situ glutathione-dependent reduction of the HMPAO chelator [40]. The success 

of application of this method to actual exosomes is uncertain as glutathione, the key 

molecule for this radiolabelling method, is only found in very low amounts in exosomes 

[41]. A similar method of entrapping the radioisotope for labelling exosomes is used in a 
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different study, where the 111In-oxine complex was used to shuttle the 111In3+ ions inside 

the exosomal lumen [18]. Oxine however, has been discontinued as a commercially 

available radiolabelling kit. 

In this study, two novel exosome radiolabelling approaches using 111In3+ as the 

radioisotope were explored. One method involves radioisotope entrapment approach 

similar to oxine, but using tropolone, a safe and cheap alternative to oxine which has been 

associated with solubility and toxicity issues [42-45] as the ionophore for 111In3+ shuttling 

into the exosomal lumen. The second method involved covalently attaching DTPA-

anhydride, a bifunctional chelator on the exosome surface that confers them the ability to 

bind 111In3+ stably. Although both of these approaches have been used to radiolabel cells, 

the properties of exosomes labelled by these means have not previously been evaluated.  

Therefore, the radiolabelling efficiency and stability of both approaches were assessed, 

and the approach with the most favourable outcome was used to study the biodistribution 

of melanoma-derived exosomes in both immunocompetent and immunodeficient 

melanoma bearing mice, to investigate the effect of the mouse immune system on 

exosome biodistribution. 
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Materials 

 

Sterile Newborn Calf Serum Heat Inactivated was purchased from First Link (UK). Millex-

GP Syringe Filter Units 0.22 µm were purchased from Merck Millipore (UK). Copper 300-

mesh grid was purchased from Elektron Technologies (UK). Sodium chloride and glycine 

were purchased from VWR Chemicals (UK). CELLine AD1000 bioreactor flasks was 

purchased from Wheaton (UK). Indium-111 chloride was purchased form Mallinckrodt 

(NL). Sepharose® CL-2B was purchased from GE Healthcare Life Sciences (UK). 

Sucrose, chloroform, magnesium sulphate and acetic acid were purchased from Fisher 

Scientific (UK). Ammonium acetate was purchased from Santa Cruz Biotechnology (UK). 

Thin layer chromatography (TLC) papers were purchased from Agilent Technologies UK 

Ltd (UK). Isoflurane (IsoFlo®) for anaesthesia was purchased from Abbott Laboratories 

(UK). PBS pH 7.4 10X, Advanced RPMI, penicillin/Streptomycin, GlutaMax™ 100X, 

Trypsin-EDTA 0.05%, aldehyde/sulfate latex beads 4% w/v 4 µm and Micro BCA™ kit 

were purchased from Thermo Fisher Scientific (UK). Deuterium oxide, tropolone, 

diethylenetriaminepentaacetic dianhydride (DTPA-anhydride), Trypan blue 0.4%, D-(+)-

Glucose 10%, Laminin, DMEM Nutrient Mixture F-12 Ham, BSA and HEPES buffer were 

purchased from Sigma-Aldrich (UK). Anti-CD81 and anti-CD9 polyclonal primary 

antibodies were purchased from Bioss antibodies (USA). Goat anti-rabbit secondary 

antibody Cy5-conjugated was purchased from Abcam (UK).  
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Methods  

 

Cell culture conditions 

The murine melanoma B16F10 cells were cultured Advanced RPMI 1640 medium 

supplemented with either 10% normal or exosome-depleted FBS, 1% 

penicillin/streptomycin and 1% GlutaMax™ in CELLine AD1000 bioreactor flasks. 

Exosome-depleted FBS was prepared by subjecting FBS to ultracentrifugation at 100,000 

g for 18 h at 4°C. The FBS supernatant post-centrifugation was collected and sterile-

filtered using 0.22 µm filters for use in cell culture. Cells from 4 x T75 flasks (80% confluent) 

in 15 ml medium supplemented with 10% exosome-depleted FBS were seeded into the 

cell compartment of 1 bioreactor flask. The medium reservoir compartment of the flask 

was filled with 500 ml of the medium supplemented with 10% normal FBS. Culture 

supernatant or conditioned medium (CM) was harvested from the cell compartment of the 

flask on a weekly basis and replaced with 15 ml of fresh medium supplemented with 10% 

exosome-depleted FBS. Collected CM was stored at 4°C until used for exosome isolation.  

 

Exosome isolation 

B16F10 CM was pre-cleared of dead cells and cellular debris by several rounds of 

differential centrifugation: 500 g for 5 minutes at 4°C (twice), then at 2000 g for 15 minutes; 

followed by filtration through 0.22 µm filter. Pre-cleared CM (22.5 ml) was added to 

polycarbonate ultracentrifuge tubes (355631, Beckman Coulter). Sucrose solution (25% 

w/w in D2O, 3 ml) was then carefully added to the bottom of the CM using glass pipettes. 

The ultracentrifuge tubes were placed in a swing-out rotor (SW45 Ti, Beckman Coulter) 

and subjected to ultracentrifugation at 100,000 g for 90 min at 4°C (Optima™ XPN-80, 

Beckman Coulter). Post-centrifugation, the sucrose solution (2 ml) was withdrawn and 

added to 20 ml filtered PBS in polycarbonate ultracentrifuge bottles (355618), Beckman 

Coulter), and subjected to another round of ultracentrifugation in a fixed-angle rotor (Type 

70 Ti, Beckman Coulter) at 100,000 g for 90 min at 4°C. The pellet obtained was 

resuspended in 400 µl filtered PBS. 
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Nanoparticle Tracking Analysis (NTA) and protein measurements 

Exosome hydrodynamic size and number were measured by Nanoparticle Tracking 

Analysis (NTA) using NanoSight LM10 (Malvern Instruments, UK). The exosome sample 

was first diluted in filtered PBS to obtain 20-80 particles in the viewing frame. The modal 

size and particle count were measured in triplicates, with 30 s as the duration for each 

recording, and analysed using the NanoSight NTA 3.2 software (Malvern Instruments, 

UK). The results were expressed as mean ± standard deviation (SD). Protein 

measurements were measured using Micro BCA™ kit. 

 

Flow cytometry 

Exosomes were coupled to latex microbeads using a protocol adapted from Théry et al. 

[46] prior to the detection of exosomal surface markers with flow cytometry. Briefly, 40 µl 

of exosomes were incubated with 10 µl aldehyde/sulphate latex beads for 15 min at room 

temperature (RT) before 5 µl of 100 µM BSA solution was added to the exosome-bead 

mixture (10 M final concentration). This was followed by incubation in 1 ml glycine (100 

mM in PBS) for 30 min at RT, after which it was centrifuged for 5 min at 580 g and washed 

twice with 1 ml of 3% exosome-depleted FBS (made in PBS, henceforth referred to as 3% 

FBS/PBS). After the second wash, the pellet was resuspended in 3% FBS/PBS and 

stained with CD81 and CD9 antibodies respectively (rabbit anti-mouse) followed by the 

Cy5-conjugated secondary antibody (45 min each at 4°C). The bead/exosome complexes 

were washed once with 1 ml 3% FBS/PBS after incubation with each antibody, and the 

pellet resuspended in an appropriate volume of 3% FBS/PBS. The exosome-bead 

complex was run on FACSCalibur using FL4 channel for detection of Cy5 signals, and 

the results were analysed using CellQuest Pro software (BD Biosciences, US). A control 

sample consisting of beads only was prepared and subjected to the same treatment as 

the above but without staining.  

 

Transmission and scanning electron microscopy  

For transmission electron microscopy (TEM), a sample of exosomes was fixed in 

formaldehyde/glutaraldehyde (2.5% each in 0.1 M sodium cacodylate buffer, pH 7.4) for 

15 min. The sample was then placed on 300-mesh carbon-coated copper grids and left 
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to air-dry. Negative staining was achieved using filtered aqueous uranyl acetate (25% in 

methanol) for 4 min followed by two 50% methanol/H2O washes and left to air-dry. The 

grids were imaged using Philips CM 12 (FEI Electron Optics, NL) equipped with Tungsten 

filament and a Veleta – 2k x 2k side-mounted TEM CCD camera (Olympus, Japan) with 

the following settings: accelerating voltage – 80 kV; spot size – 2; objective aperture – 

150 µm. 

For scanning electron microscopy (SEM), a sample of exosomes was fixed in 5% 

glutaraldehyde for 2 h, which was then added on the surface of APTES pre-treated silicon 

wafer and left for 1 h. This was followed by washing with PBS three times and dehydrated 

in a series of increasing ethanol concentrations (20, 50, 70, 90, 95, 100%). The samples 

were transferred for critical drying (Samdri, Tousimis), and sputter coated with gold before 

scanning. SEM was performed on FEI Inspect-F (Philips, Eindhoven, NL) operated at 20 

kV.  

 

Intraluminal radiolabelling of exosomes ([111In]-ExoB16) 

Tropolone was dissolved in 200 mM HEPES buffered saline (HBS) pH 7-7.5 to make 1 

mg/ml stock solution. 70-100 MBq 111InCl3 was added to 2 µg (2 l) tropolone from the 

stock solution allowing for the [111In]Tropolone complex to form. The [111In]Trop mixture 

was added to exosomes  (1 x 1011 particles/mouse) diluted with PBS to achieve a final 

tropolone concentration of 5 µg/ml and incubated for 20 min at 37°C. Radiolabelled 

exosomes ([111In]-ExoB16) were purified from free [111In]Trop complex by gel filtration using 

Sepharose® CL-2B as the resolving matrix, self-packed according to the dimensions of 

the commercially available NAP-5™ columns, and optimised such that exosomes will 

elute in the first 2 x 500 µl fractions (F1 and F2). Radiolabelling efficiency was calculated 

as follows: 

 

 
Activity recovered in F1 + F2 

Initial activity used 
x  100 Radiolabelling efficiency (%)  =  
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Membrane radiolabelling of exosomes ([111In]DTPA-ExoB16) 

DTPA-anhydride was added to dry chloroform (prepared by adding magnesium sulphate 

powder to chloroform and stirring the mixture vigorously for 2 min, and then filtered to 

remove the powder) to form a suspension at a concentration of 1 µg/µl, with brief 

sonication to break visible clumps. The amount required for the reaction with exosomes 

was added into a microtube and passed under a nitrogen stream to evaporate the 

chloroform thus forming a thin film of DTPA-anhydride on the lining of the microtube. 

Exosomes (1 x 1011 particles/mouse in 100 µl) were added to the DTPA-anhydride film at 

a molar ratio of 1:400 (lysine on exosome:anhydride – it was assumed that 1 exosome is 

equivalent to 1 BSA molecule i.e. containing 59 lysine residues) and incubated at 37°C 

for 30 min. Excess unreacted DTPA-anhydride was purified using Sepharose® CL-2B 

columns as described above. 15-50 MBq of 111InCl3 was added to 0.2 M ammonium 

acetate buffer (pH 5.5) to achieve a final volume of 500 µl. This was then added to an 

equal volume of DTPA-ExoB16 to achieve a final concentration of 0.1 M ammonium 

acetate buffer (pH 5.5). The mixture was incubated for 5 min at RT. Radiolabelled 

exosomes ([111In]DTPA-ExoB16) were purified from excess 111InCl3 using Sepharose® CL-

2B columns, and the radiolabelling efficiency then determined as described above. 

 

Radiochemical stability assessment 

 

Intraluminal-labelled exosomes 

[111In]-ExoB16 was incubated in 50% FBS or PBS (1:1, v/v) for 24 h at 37°C. Samples post-

incubation were passed through Sepharose® CL-2B columns and the first 2 x 500 µl 

fractions (F1 and F2) were collected as described earlier. Radiochemical stability of 

[111In]-ExoB16 was calculated as follows: 

 

 

 

 

Activity recovered in F1 + F2 

Sample activity post-incubation 
x  100 Radiochemical stability (%)  =  
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Membrane-labelled exosomes 

[111In]DTPA-ExoB16 was incubated in 50% FBS or PBS as described above, and samples 

post-incubation were then spotted on thin layer chromatography (TLC) paper strips 

impregnated with silica gel. The strips were eluted with 0.1 M ammonium acetate 

containing 0.25 mM EDTA (pH 5.5) and analysed on a phosphor imager (Cyclone® 

Packard, Australia). The percentage of 111In still attached to exosomes (immobile spot at 

the application point) was considered as the radiochemically stable [111In]DTPA-ExoB16. 

 

Animal models 

All animal experiments were performed in compliance with the UK Home Office Animals 

(Scientific Procedures) Act 1986. Female C57Bl/6 mice and male NOD SCID gamma 

(NSG) mice (~20 g, 6-8 weeks old) were obtained from Charles River (UK). Subcutaneous 

(SC) tumours were established by inoculating B16F10 cells (1 x 106 cells in 100 µl PBS) 

subcutaneously into the left and right rear flanks of the mice. The mice were monitored 

closely post-inoculation and were used for studies when the tumours reached ~200-300 

mm3. 

 

Whole body SPECT/CT imaging of radiolabelled exosomes  

For intraluminal-labelled exosomes, C57Bl/6 mice (n=1 per treatment) was injected 

intravenously via the tail vein with 1 x 1011 [111In]-ExoB16 (5-10 MBq) or the equivalent 

amount of radioactivity of free [111In]Trop. For membrane-labelled exosomes, C57Bl/6 

mice (n=1 per treatment) was injected with 1 x 1011 [111In]DTPA-ExoB16 (5 – 10 MBq) or 

the equivalent amount of radioactivity of free [111In]DTPA. Mice were imaged under 

anaesthesia (2% isoflurane in air) in prone position on a heating pad at 37°C using a 

nanoSPECT/CT four-head scanner (Bioscan, USA). SPECT images were obtained at 0-

30 min, 4 h and 24 h post-injection using 1.4 mm pinhole collimators (24 projections, 60 

s per projection; 30 min scan) and CT images were obtained at the end of each SPECT 

acquisition using an X-ray source setting of 45 kVp. All data were reconstructed with 

proprietary Bioscan software and SPECT and CT acquisitions were fused using PMOD® 

software (Mediso). Mice were culled and disposed of after the 24 h imaging. 
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Ex vivo gamma counting of excised organs/tissue  

Similar to SPECT/CT imaging, mice were injected intravenously with 1 x 1011 [111In]-

ExoB16 (0.5 – 1 MBq) or free [111In]Trop of equivalent radioactivity; and 1 x 1011 

[111In]DTPA-ExoB16 (0.5 – 1 MBq) or free [111In]DTPA of equivalent radioactivity. Blood 

samples (5 µl from the tail vein) were taken at various time points (2, 5, 10, 30, 60, 240 

and 1440 min) to analyse the exosome circulation profile. Urine and faeces were collected 

by housing the mice in metabolic cages for 24 h to analyse the excretion profile. After 1, 

4 and 24 h, mice were sacrificed (n=3 per time point) and perfused with heparinised saline 

(1000U/l, 25 ml per animal). Major organs (brain, lungs, liver, spleen, kidneys, heart, and 

stomach), muscle, skin, bone (femur), carcass and tumours were collected, weighed and 

placed in scintillation vials.   Samples were counted in a gamma counter (LKB Wallac 

1282 Compugamma, PerkinElmer, UK) together with radioactive dose standards. 

Radioactivity readings (counts per minute – CPM) were expressed as percentage of 

injected dose per organ (%ID/organ) or percentage of injected dose per gram of tissue 

(%ID/gT). Data were expressed as the mean ± SD of sample triplicates. 

 

Statistical analyses 

For all experiments, data were presented as mean ± SD, where n denotes the number of 

repeats. Statistical significance of the data was assessed using Student’s t-test and is 

designated with asterisk(s) (p* < 0.05, p**< 0.01, and p***< 0.001). 
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Results 

 

Exosome isolation and physicochemical characterisation 

Cancer cell lines are known to be good exosome producers [3-6] and hence they were 

selected as exosome sources in this study. Exosomes were isolated from B16F10 cells 

(murine melanoma) cultured in a bioreactor flask (CELLine AD1000) which can help 

increase the yield of exosomes [47]. The culture supernatant, hereby referred to as 

conditioned medium (CM) was harvested on a weekly basis. CM initially underwent pre-

clearing to remove dead cells and cellular debris by a series of differential centrifugation 

and ultrafiltration. Pre-cleared CM was then subjected to ultracentrifugation onto a 

sucrose cushion to separate exosome from proteins by density in the CM, followed by a 

washing step to remove the sucrose and residual contaminating proteins. The resulting 

exosome pellet was resuspended in a small volume of PBS (400 µl) to make a 

concentrated exosome stock.  

The physicochemical characterisation of exosomes isolated from B16F10 (ExoB16) 

cells are summarised in Table 1. The size measured using NanoSight was 132.3 ± 5.6 

nm, which compares to other exosome studies. Particle concentration quantification (also 

using NanoSight) showed that B16F10 cells are a prolific exosome producer, yielding 

1.02 x 1013 ± 3.9 x 1012 p/ml from 72 ml of CM (obtained from 6 rounds of CM collection 

from a single bioreactor flask). A measure of purity of the ExoB16 from contaminating 

proteins was also carried out by means of calculating the particle to protein (P:P) ratio of 

the isolated exosome stock. The P:P ratio was found to be 4.52 x 1010 ± 1.26 x 1010 p/µg 

protein, which falls in the proposed range of high purity level [47].  

 

Biochemical and morphological analysis of ExoB16 

Detection of exosomal markers was achieved using flow cytometry as previously 

described [48]. The isolated ExoB16 expressed CD81 and CD9, which is a common 

property of exosomal vesicles (Fig. 1A and Fig. S1). Morphological analysis of ExoB16 

was also undertaken using both transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM), which can also validate the size measurement obtained from 
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NanoSight. Both TEM and SEM images of ExoB16 demonstrated that the exosomes were 

spherical structures slightly above 100 nm in size (Fig. 1B). 

  

 

 

Intraluminal radiolabelling of ExoB16 

 

Radiolabelling efficiency and stability 

The intraluminal radiolabelling approach is achieved via the ability of the small 

hydrophobic molecule called tropolone to chelate radionuclides and form a complex that 

allows the radionuclide to diffuse across the exosomal membrane and into the exosomal 

lumen, similar to its predecessor oxine [49]. This method, particularly utilising the 

111Indium-tropolone complex ([111In]Trop) has been widely used to radiolabel cellular 

components of blood such as platelets [42, 43], lymphocytes [44, 50] and granulocytes 

[51] for in vivo imaging. Other cell types such as mesenchymal stem cells [52, 53] and 

endometrial cells [54] have also been successfully radiolabelled using [111In]Trop. More 

recently, [111In]Trop was used to label polymeric micelles [55]. The orientation of 

exosomal transmembrane proteins is the same as their parent cells [14] and therefore 

provides the opportunity for them to be radiolabelled using the same principle. The 

mechanism by which this intraluminal radiolabelling is achieved is summarised in 

Scheme 1A. Tropolone is firstly mixed with 111Indium (as 111InCl3) to allow for the 

formation of the of the [111In]tropolone complex. The chemical structure of tropolone and 

[111In]Trop complex is illustrated in Scheme S1A and S1B (supplementary information). 

Exosome 
Size1,2 

(nm) 

Yield1,2,3 

(p/ml) 

[Protein]2,4 

(ug/mL) 

Particle to protein 

(P:P) ratio2,5 

(p/ug) 

B16F10 132.3 ± 5.6 2.04x1013 ± 3.9x1012 451.15 ± 71.5 4.52x1010 ± 1.26 x1010 

Table 1 Physicochemical characterisation of exosomes 

1 Measured using NanoSight LM10 
2 Values are expressed as mean ± SD, where n=3 
3 Yield was obtained by cell-conditioned medium pooled from 6 rounds of harvesting 

from CELLine AD1000 flasks (72 ml) 
4 Measured using BCA assay  
5 Value obtained by using formula: P:P ratio = Yield / [Protein] 
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Upon incubation with exosomes, [111In]Trop gets translocated into the exosomal lumen, 

forming the intermediate [111In]Trop-ExoB16. Upon entry, 111In3+ exchanges to bind with 

cytoplasmic biomolecules of at least 3.6 kDa [49]. As the interaction between 111In3+ and 

tropolone is not particularly strong, 111In3+ from the [111In]Trop will then exchange with 

proteins and nucleic acids within the exosomal lumen [49]. Free tropolone molecules 

leave the exosomal lumen and the 111In3+ is now entrapped within the lumen, thereby  

resulting in radiolabelled exosomes ([111In]-ExoB16).   

Fig. 1  Biochemical and morphology analysis of B16F10 exosomes. (A) Detection of 
exosomal markers CD81 and CD9 using flow cytometry on exosomes isolated from B16F10 
cells. Exosomes were coupled to aldehyde/sulphate latex beads prior to detection. Exo-beads 
complex were subsequently stained using a 2-step labelling (anti-CD81 or anti-CD9 1° ab/Cy5-
conjugated 2° ab). Degree of expression of the markers are expressed as the fold difference 
in median fluorescence intensity (MFI) values from that of the control (exo-beads complex 
stained with Cy5-conjugated 2° ab). Values are expressed as mean ± SD, where n=3. (B) 
Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of 
exosomes isolated from B16F10 cells. 
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Scheme 1 (A) Intraluminal and (B) membrane radiolabelling protocols of B16F10 

exosomes  

A 

B 
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Purification of excess [111In]Trop from [111In]-ExoB16 was carried out via gel filtration 

using Sepharose® CL-2B as the resin. Free [111In]Trop was used as a control and the 

elution profiles of both [111In]-ExoB16 and [111In]Trop were analysed. Exosomes were found 

to elute in F1 and F2 (Fig. S2A and S2B) while [111In]Trop mainly eluted in F4 and F5 

(Fig. 2A). The percentage (%) radiolabelling for [111In]-ExoB16 was 4.73 ± 0.39% 

compared to only 0.20 ± 0.04% (p<0.05) for [111In]Trop collected in F1+F2 (Fig. 2A).  

Fig. 2  Radiolabelling efficiency and radiochemical stability of intraluminal-labelled 
B16F10 exosomes. (A) Radiolabelled exosomes ([111In]-ExoB16) were purified from excess 
[111In]Trop complex by gel filtration (Sepharose® CL-2B). Eight 500 µl fractions were collected 
and the radioactivity for each fraction and the column itself post-purification was measured by 
gamma counting, and are expressed as the percentage of activity relative to the initial activity 

A 

B 
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 [111In]-ExoB16 were incubated in either PBS or 50% serum at 37°C for 24 h to assess the 

radiochemical stability of the labelling. The typical method of assessing the labelling 

stability is  using thin layer chromatography (TLC), by measuring the % activity that did 

not migrate with the mobile phase and remains at the application point after 24 h 

incubation, corresponding to radiolabelled macromolecules [56-58]. It was not possible to 

apply this method to assess the intraluminal labelling stability of exosomes as [111In]Trop 

will not migrate using 0.1 M ammonium acetate with 0.25 mM EDTA, pH 5.5 mobile phase, 

rendering it impossible discern whether the % activity remaining at the application point 

is originating from that of radiolabelled exosomes or free [111In]Trop. An alternative 

approach was used by passing sample post-incubation through Sepharose® CL-2B 

column used previously to determine radiolabelling efficiency. The stability of intraluminal-

labelled [111In]-ExoB16 was found to be 43.35  10.12% and 14.21  2.76% in PBS and 

50% serum, respectively, at 24 h post incubation (Fig. 2B). 

 Biodistribution of intraluminal-labelled [111In]-ExoB16 was assessed qualitatively 

and quantitatively using whole body SPECT/CT imaging and ex vivo gamma counting, 

respectively. Significant difference was observed in the organ accumulation profile of 

[111In]-ExoB16 as compared to that of free [111In]Trop, which further supports the successful 

radiolabelling of the exosomes (Fig. S3, S4 and S5). However, due to the low stability of 

the intraluminal-labelled [111In]-ExoB16, the reliability and accuracy of the organ 

accumulation values, especially that of the tumours were deemed improbable.   

added to the column. Radiolabelling efficiency was calculated as the sum of % radioactivity 
recovered from F1 and F2. (B) Radiolabelled exosomes were incubated in either PBS or 50% 
serum for 24 h at 37°C, and then passed through the same column as (A). Eight 500 µl 
fractions were collected and the radioactivity for each fraction and the column itself (FC) post-
purification was measured using gamma counter, and are expressed as the percentage of 
activity relative to the activity of the sample added to the column. Radiochemical stability was 
calculated as the sum of % radioactivity recovered from F1 and F2. Values are expressed as 
mean ± SD, where n=3. Statistical analysis was done on F1 and F2 (p* < 0.05, p*** <0.001). 
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Membrane radiolabelling of ExoB16 

 

Radiolabelling efficiency and stability 

Membrane radiolabelling was achieved by covalently attaching the bifunctional chelator 

DTPA-anhydride to the exosome surface in an amine-dependent reaction. Exosome 

membranes contain various transmembrane proteins which are likely to have free amines 

(from lysine residues) on the extraluminal domain. The schematics of the reaction are 

summarised in Scheme 1B. The free amines act as nucleophiles that attack anhydrides 

on the DTPA, resulting in exosomes with covalently attached DTPA on their surface via 

amide bonds (DTPA-ExoB16). Incubating DTPA-ExoB16 with 111Indium (as 111InCl3) will 

then allow 111In3+ to be chelated by DTPA on the exosomes, thereby radiolabelling the 

exosomes ([111In]DTPA-ExoB16). The chemical structure of DTPA-anhydride and its 

reaction with exosomal amine is illustrated in Scheme S1C and S1D respectively 

(supplementary information). 

 Radiolabelling efficiency of membrane-labelled exosomes was assessed in a 

similar manner to that of intraluminal labelling, where [111In]DTPA and [111In]DTPA-ExoB16 

were eluted through Sepharose® CL-2B columns and their respective elution profiles 

analysed. Radiolabelling efficiency was determined as the % radioactivity recovered in 

F1+F2. [111In]DTPA and [111In]DTPA-ExoB16 showed similar elution profile, but unlike that 

observed with intraluminal labelling, % activity eluted in F4 and F5 were less than that of 

F1 and F2, with higher % activity being retained in the column post-elution (Fig. 3A). 

Percentage (%) activity recovered in F1+F2 for [111In]DTPA-ExoB16 was significantly 

higher than that of [111In]DTPA (19.2  4.53% and 0.02  0.001% respectively), thereby 

confirming that the activity recovered in F1+F2 were from [111In]DTPA-ExoB16. The 

radiolabelling efficiency of [111In]DTPA-ExoB16 considered to be 19.2  4.53 % was 

significantly higher than that obtained by intraluminal-labelling method (Fig. 2A). 

 Radiochemical stability of [111In]DTPA-ExoB16 in PBS and 50% serum after 24 h at 

37C was assessed using TLC as explained above, by measuring the % activity that did 

not migrate with the mobile phase (0.1 M ammonium acetate with 0.25 mM EDTA, pH 

5.5) and remained at the application point, corresponding to radiolabelled exosomes. 

Free In3+ was also run on the TLC paper as a control, where they all migrate to the solvent  
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Fig. 3 Radiolabelling efficiency and radiochemical stability of membrane-labelled 
B16F10 exosomes. (A) B16F10 exosomes with covalently attached DTPA (DTPA-ExoB16) 
were purified from excess 111InCl3 by gel filtration (Sepharose® CL-2B). Eight 500 µl fractions 
were collected and the radioactivity for each fraction and the column itself post-purification was 
measured by gamma counting, and are expressed as the percentage of activity relative to the 
initial activity added to the column. Radiolabelling efficiency was calculated as the sum of % 
radioactivity recovered from F1 and F2. Values are expressed as mean ± SD, where n=3. 
Statistical analysis was done on F1 and F2 (p** < 0.01, p*** <0.001). (B) Radiolabelled 
exosomes ([111In]DTPA-ExoB16) were incubated in either PBS or 50% serum for 24 h at 37°C, 
and then spotted on a TLC paper. The paper was then run on 0.1 M ammonium acetate with 
0.25mM EDTA (pH 5.5) as the mobile phase and imaged using a phosphorimager. 
Radiochemical stability was calculated as % radioactivity remaining at the application point. 
Values are expressed as mean ± SD, where n=3. 
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front as they were chelated by EDTA present in the mobile phase (Fig. 3B). The stability 

of [111In]DTPA-ExoB16 in PBS and 50% serum was ~87 % and ~80% respectively, both 

higher than that of intraluminal-labelled exosomes (Fig. 2B).  

 

Whole body SPECT/CT live imaging 

[111In]DTPA and [111In]DTPA-ExoB16 were injected intravenously into C57Bl/6 mice 

bearing subcutaneous B16F10 tumours (1x1011 particles per animal for [111In]DTPA-

ExoB16) for whole body SPECT/CT imaging, of which the former acts as a control to 

ensure the signals detected in vivo were coming from [111In]DTPA-ExoB16 and not from 

free circulating [111In]DTPA that was cleaved from the exosome surface. Imaging was 

undertaken immediately, 4 h and 24 h post-injection. Imaging results showed a significant 

difference between the biodistribution profile of [111In]DTPA and [111In]DTPA-ExoB16 (Fig. 

4). At 0-30 min post-injection, high amounts of [111In]DTPA can be seen in kidneys and 

bladder indicating high urinary excretion, but at 4 h the signals can only be seen in the 

bladder, which then becomes too low to be detected at 24 h. In contrast, [111In]DTPA-

ExoB16 showed very high signals in the liver and spleen at 0-30 min post-injection, which 

remained up to 24 h. Some signals detected in the bladder at the earlier timepoints, and 

tumour accumulation was not observed. The clear distinction between the in vivo imaging 

results of [111In]DTPA and [111In]DTPA-ExoB16 corroborated the finding that the % activity 

recovered in F1+F2 from Fig. 3A originated from labelled exosomes and confirms 

successful membrane radiolabelling of exosomes.  

 

Quantitative organ biodistribution by gamma counting 

Quantitative biodistribution analysis of both [111In]DTPA and [111In]DTPA-ExoB16 at 1, 4 

and 24 h was also carried out by gamma counting as per described above. Both 

[111In]DTPA and [111In]DTPA-ExoB16 were found to be cleared rapidly from the circulation 

with only ~16.2% injected dose (ID) and ~10.5% ID respectively remaining after only 2 

min post-injection and reaching a very low level of 1% or slightly less in just 1 h (Fig. 5A).  

Although both free [111In]DTPA and [111In]DTPA-ExoB16  showed rapid clearance from the 

circulation, they showed significantly different kinetics especially in the earlier timepoints 

(<60 min). As expected, a significantly much higher amount of [111In]DTPA (~92.6% ID)  



 23 

  

Fig. 4 Whole body SPECT/CT imaging of membrane-labelled B16F10 exosomes in 
melanoma-bearing C57Bl/6 mice. (A) Animal was injected intravenously with free 
[111In]DTPA complex as control. (B) Animal was injected with [111In]DTPA-ExoB16. Imaging was 

done immediately, 4, and 24 h post-injection. White circles indicate the position of tumours. 
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Fig. 5 Blood circulation, excretion and organ biodistribution profiles of membrane-
labelled B16F10 exosomes in melanoma-bearing C57Bl/6 mice. The [111In]DTPA group 
was injected with 0.02M DTPA complexed with 0.5-1MBq of 111InCl3 while the  [111In]DTPA-  
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was excreted in the urine as compared to that of [111In]DTPA-ExoB16 (~4.93% ID), but the 

amount excreted in faeces was similarly low for both compounds with a value of ~1-4 % 

ID (Fig. 5B). Looking at organ biodistribution, there was minimal accumulation of 

[111In]DTPA with ~2.0 % ID per gram tissue (ID/gT) or lower across all organs including 

tumours, which recorded a value of about ~0.2 – 0.4 % ID/gT (Fig. 5C). In contrast, 

[111In]DTPA-ExoB16 showed high accumulation in the liver with ~66.0% ID/gT at 1 and 4 

h, which then decreased slightly to ~56.0 % ID/gT after 24 h, of which the difference is 

not significant (Fig. 5D). This was followed by spleen, which showed an accumulation of 

~26.0% ID/gT at 1 and 4 h, which increased slightly but not significantly to ~37.7% ID/gT. 

Kidneys showed an accumulation of ~2.5 % ID/gT of [111In]DTPA-ExoB16 after 24 h. 

Tumour accumulation of [111In]DTPA-ExoB16 was initially very low but showed a steady 

increase, reaching a value of ~0.7 % ID/gT after 24 h. When comparing organ 

biodistribution values at 24 h, a significant difference can be observed between that of 

[111In]DTPA and [111In]DTPA-ExoB16, where the latter shows a significantly higher liver, 

spleen and tumour accumulation as compared to that of the former (Fig. 5E), which 

reflects successful and stable radiolabelling of ExoB16. The quantitative biodistribution 

results of both free [111In]DTPA and [111In]DTPA-ExoB16 expressed as %ID/organ are 

summarised in Fig. S6 (supplementary information). In summary, results from 

membrane-labelled exosomes, especially the quantitative organ accumulation values, 

were deemed as more reliable due to its superior radiochemical stability (thus higher 

signal-to-noise ratio) and is selected as the approach for the subsequent part of the study. 

 

ExoB16 group was injected with 1x1011 [111In]DTPA-ExoB16 (0.5-1MBq). (A) Blood circulation 
profile of [111In]DTPA and [111In]DTPA-ExoB16. 5 µl blood were taken via tail bleeding at 2 min, 
5 min, 10 min, 30 min, 1 h, 4 h and 24 h following intravenous injection of each compound. (B) 
Excretion profile of [111In]DTPA and [111In]DTPA-ExoB16  where urine and faeces were collected 
from the animals 24 h post-injection. (C) and (D) Organ biodistribution of [111In]DTPA and 
[111In]DTPA-ExoB16 respectively. Animals were culled at 1 h, 4 h and 24 h post-injection, 
perfused with saline and their organs were excised for analysis by gamma counting. Inset 
shows the zoomed-in tumour accumulation values for each group. (E) Comparison of organ 
biodistribution of [111In]DTPA and [111In]DTPA-ExoB16 24 h post-injection, where inset shows 
zoomed-in tumour accumulation values for each group. Values are normalised to organ weight 
and expressed as mean ± SD, where n=3 for each group. For (C), (D) and (E), statistical 
analyses were done on liver, spleen, kidneys and tumour (p*<0.05, p** < 0.01, p*** <0.001). 
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Comparative biodistribution of ExoB16 in immunocompetent and 

immunodeficient mice   

Next, membrane-labelled exosomes were injected into NOD-scid ILR2γnull (NSG) mice to 

study the influence of the immune system on the in vivo biodistribution of exosomes. 

[111In]DTPA-ExoB16 (1x1011 particles per animal) were injected intravenously into NSG 

mice bearing subcutaneous B16F10 tumours and quantitative biodistribution analysis at 

1, 4 and 24 h was carried out as the above via gamma counting. [111In]DTPA-ExoB16  

showed a similar blood circulation profile in NSG mice when compared to that in C57Bl/6 

mice, where [111In]DTPA-ExoB16 was cleared rapidly from the circulation with only ~15.3% 

ID remaining at 2 min post-injection, which decreased to ~0.1% ID after 24 h (Fig. 6A). 

[111In]DTPA-ExoB16 in NSG mice also showed similar amounts of excretion via the urine 

and faeces to that of C57BL/6 mice (Fig. 6B). [111In]DTPA-ExoB16 in NSG mice also 

showed a similar pattern of organ accumulation to that in C57BL/6 mice across the time 

points, where the liver recorded the highest signals with ~48.3% ID/gT at 1 h, which then 

decreased slightly to ~40.0% ID/gT at 4 and 24 h (Fig. 6C). Spleen recorded the second 

highest accumulation of ~13.0 % ID/gT at 1 and 4 h, which then increased significantly to 

~45.8 % after 24 h. [111In]DTPA-ExoB16 accumulation in the kidneys showed a steady 

increase over the timepoints, reaching a value of ~6.8 % ID/gT after 24 h. The tumours 

showed an accumulation of around ~0.4 % ID/gT at 1 and 4 h, which then decreased 

slightly to ~0.3 % ID/gT after 24 h. Comparing biodistribution values at 24 h showed that 

[111In]DTPA-ExoB16 accumulation in C57BL/6 and NSG mice recorded similar values 

across the different organs, especially in the liver, spleen and kidneys (Fig. 6D). 

[111In]DTPA-ExoB16 in NSG mice however showed a significantly lower tumour 

accumulation as compared to that in C57BL/6 mice. In summary, exosomes show a 

similar pattern of organ accumulation in both immunocompetent and immunodeficient 

mouse models with the exception of tumour, in which the accumulation in the latter was 

lower. 
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Fig. 6 Blood circulation, excretion and organ biodistribution profile of membrane-
labelled B16F10 exosomes in melanoma-bearing NSG mice. Animals were injected with 
1x1011 [111In]DTPA-ExoB16 (0.5-1MBq). (A) Blood circulation profile of [111In]DTPA-ExoB16 in 

NSG mice. Blood (5 µl) was taken via tail bleeding at 2 min, 5 min, 10 min, 30 min, 1 h, 4 h 
and 24 h following intravenous injection of exosomes. (B) Excretion profile of [111In]DTPA-
ExoB16  in NSG mice where urine and faeces were collected from the animals 24 h post-
injection. For (A) and (B), the values are plotted in comparison with that of C57BL/6 presented 
in Fig. 5. (C) Organ biodistribution of [111In]DTPA-ExoB16 in NSG mice. Animals were culled at 
1 h, 4 h and 24 h post-injection, perfused with saline and their organs were excised for analysis 
by gamma counting. Inset shows the zoomed-in tumour accumulation values for each group. 
(D) Comparison of organ biodistribution of [111In]DTPA-ExoB16 in C57Bl/6 and NSG mice 24 h 
post-injection, where inset shows zoomed-in tumour accumulation values for each group. 
Values are normalised to organ weight and expressed as mean ± SD, where n=3 for each 
group. For (C) and (D), statistical analyses were done on liver, spleen, kidneys and tumour 
(p*<0.05, p** < 0.01, p*** <0.001). 
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Discussion 

 

As described earlier, exosomes are very similar to cells in terms of being a phospholipid 

bilayer system, having the same membrane topology as their parent cells and inherently 

containing biomolecules such as proteins and RNAs as their cargo [14]. Therefore, 

[111In]Trop was hypothesised to result in successful radiolabelling of exosomes. This 

approach did lead to successful radiolabelling of the exosomes as described earlier, but 

at a much lower efficiency compared to that observed in platelets of ~60-80% [42]. 

Assuming platelet size to be 1 µm in diameter [59] and that of ExoB16 is ~130 nm (Table 

1), and that both are perfect spheres, the number of ExoB16 used in this study to determine 

the radiolabelling efficiency (3 x 1011 particles) accounts for a total surface area which is 

about double that of the platelets used in the above study (2.2 x 109 platelets). However, 

the volume of an ExoB16 particle is ~45 times lower than that of a single platelet. Therefore, 

although [111In]Trop complexes were able to translocate efficiently into the exosomal 

lumen due to the large total surface area, their significantly lower volume suggests a much 

lower amount of biomolecules within the exosomal lumen  for 111In3+ to exchange with as 

compared to that in the cytoplasm of platelets. 111In3+ translocated into the exosomal 

lumen probably largely still exists as [111In]Trop due to the lack of biomolecules for 

exchange and are well able to leave the exosomal lumen, forming an equilibrium in terms 

of its concentration within and outside the lumen, contributing to the low radiolabelling 

efficiency and stability. This is corroborated by the similar radioactivity detected in the 

tumours of mice injected with 111In-ExoB16 24 h post-injection and that of the mice injected 

with free [111In]Trop, suggesting that the unexchanged 111In3+ in the form of [111In]Trop 

leaked out from the exosomal lumen into the circulation and gradually accumulates in the 

tumour (Fig. S4C & S4D). Another possibility for the low serum stability observed with 

intraluminal-labelled exosomes is that the serum might be damaging the vesicles, thereby 

releasing the entrapped [111In]Trop. However, this possibility is ruled out as very good 

serum stability was observed with the membrane-labelled exosomes (Fig. 3B). 

 The membrane or surface radiolabelling approach has been employed in synthetic 

nanocarriers such as polymeric nanocapsules and liposomes, whereby strong 

radioisotope chelators such as DTPA is incorporated as an integral component of their 
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polymeric shell or membrane respectively during synthesis. This allows the nanocarriers 

to be radiolabelled when incubated with radioisotopes such as 111In3+, with their 

radiolabelling efficiency and stability reported to be between 61.9-100% and 78.2-91.3% 

respectively [56, 57, 60]. This strategy of DTPA incorporation however is not possible on 

biomolecules such as exosomes, and so bifunctional chelators are used instead. 

Bifunctional chelators are molecules that consist of a strong chelating agent such as 

DTPA on one end, and a biologically-reactive functional group on the other end, usually 

amine-reactive groups such as NHS-ester or anhydride, or thiol-reactive groups such as 

maleimide [61]. One such bifunctional chelator, cyclic DTPA-dianhydride (hereon referred 

to as DTPA-anhydride) was successfully conjugated to human serum albumin in a simple 

and rapid reaction, which allows subsequent radiolabelling with 111In3+ and its 

biodistribution analysed quantitatively [62]. DTPA-anhydride has since been 

demonstrated to be successfully conjugated to other biomolecules such as fibrinogen [63] 

and antibodies [64-67] without losing their specificity and function, enabling quantitative 

analysis of their biodistribution. This same DTPA-anhydride, which is now commercially 

available, was adopted in this study where it was conjugated to ExoB16, and a 5-fold 

increase in both radiolabelling efficiency and stability was observed (Fig. 3A & 3B).  

Radiolabelling stability of [111In]DTPA-ExoB16 was similar to that reported in the 

studies above, and this was expected as DTPA is attached to exosomes via the same 

stable amide bond. The radiolabelling efficiency of [111In]DTPA-ExoB16 however is lower 

than that reported for the other nanocarriers, and this could be due to a lower number of 

DTPA molecules conjugated to ExoB16. In principle, this could be overcome by increasing 

the molar ratio of DTPA-anhydride in the reaction with the exosomes. However this would 

pose a problem due to rendering the reaction mixture more acidic due to the increasing 

amount of free DTPA forming from spontaneous hydrolysis in aqueous solution [67]. 

Given that the pKa of the side-chain amine on a lysine residue is ~10.5, low pH conditions 

would easily increase the proportion of the protonated form of the free amines of the lysine 

residues on the exosomal surface, making them weaker nucleophiles and thereby 

reducing the efficiency of the reaction  [67]. This low pH could also adversely affect the 

function and integrity of other exosomal transmembrane proteins, which could affect the 

biodistribution as they have been reported to play a role in cell uptake [68-70]. This is 
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corroborated by studies that reported antibodies reacted with a high ratio of DTPA-

anhydride had reduced antigen binding ability [64, 67]. It is therefore important to 

determine the number of free amines on exosomal surface prior to the reaction with DTPA. 

This is challenging due to the heterogeneity of exosomes, even the ones isolated from 

the same source. In this study, the number of free amines i.e. lysine residues on 

exosomes was assumed to be similar to that of bovine serum albumin (BSA) and this was 

used as the basis for reaction with DTPA-anhydride. In our hands, reactions using 1:80, 

1:200, 1:400 and 1:800 (Lys:anhydride) molar ratios showed increasing radiolabelling 

efficiency with increasing molar ratio up to 1:400 (data not shown) after which a  decline 

was observed. The molar ratio 1:400 was therefore chosen for the DTPA-ExoB16 

conjugation in this study.  

Contaminating proteins from serum used in culture such as albumin and present 

in the ExoB16 sample [47], are likely to compete with the exosomes for the reaction with 

DTPA-anhydride [62], thus lowering ExoB16 labelling efficiency. Purifying exosome 

samples by gel filtration (e.g. Sepharose® CL-2B used in this study) or centrifugal filters 

(e.g. Nanosep®) prior to the labelling reaction can significantly reduce the amount of 

contaminating proteins in the sample, but this results in substantial loss of ~50% 

exosomes post-purification (Fig. S7A and Fig. S7B). This can pose a serious challenge 

when working with a limited number of exosomes either obtained from cell cultures or 

liquid biopsies. Gel filtration using Sepharose® CL-2B resin as the resolving matrix was 

chosen in this study due to its superior contaminating protein removal performance and 

thus significantly better improvement in the P:P ratio of the exosome sample, without 

altering the size of the exosomes (Fig. S7B, Fig. S7C and Fig. S7D). Hence, in case that 

radiolabelled proteins were formed, they could be efficiently removed along with excess 

unreacted DTPA-anhydride post-labelling. The radiolabelling efficiency of [111In]DTPA-

ExoB16 achieved in this study (Fig. 3A) was compliant to the “As Low As Reasonably 

Practicable” (ALARP) principle outlined by the UK’s Health and Safety Executive (HSE) 

in terms of radioactivity required to perform SPECT/CT imaging and quantitative 

biodistribution studies.  

 “As mentioned earlier, exosomal surface proteins play an important role in their 

interaction and subsequent uptake into cells, and that the disruption of these proteins can 
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influence their tissue uptake/localisation in vitro and in vivo [68, 70, 71]. DTPA-anhydride 

conjugation to exosomal surface proteins in the membrane labelling approach harbours 

such risk and could potentially influence the organ biodistribution of ExoB16. A dot blot 

analysis was carried out on the exosomes following a mock-radiolabelling protocol. It was 

found that surface proteins such as CD63 and CD9 are still present on the exosomes 

post-labelling, but showed a lower signal intensity upon detection (Fig. S8). This is most 

probably due to the conjugated DTPA causing slight hindering of the antibody binding. 

Further studies have to be carried out to investigate whether this would influence 

exosome uptake and accumulation in tissues in vivo.” 

In this study, ExoB16 showed rapid clearance from the circulation, accumulating 

predominantly in the liver and spleen. This accumulation profile is consistent with a 

number of other exosome biodistribution studies involving optical and nuclear modalities, 

where usually kidneys were reported to show the 3rd highest accumulation after the liver 

and spleen [18, 31-33, 72]. Other types of nanocarriers bearing physicochemical 

resemblance to exosomes such as liposomes and polymeric nanocapsules were also 

reported to accumulate mostly in the liver and spleen [56, 57, 60], which further supports 

the findings of this study. Lung accumulation is more commonly observed for non-

spherical carbon-based nanocarriers with high aspect ratio or surface area such as 

carbon nanotubes and graphene [58, 73], but a number of studies using melanoma-

derived exosomes however reported substantial exosome in the lungs. In two of these 

studies, B16-BL6 exosomes (murine melanoma) were engineered to express Gaussia 

luciferase (GL exosomes) and streptavidin (SAV-LA exosomes) respectively, showed 

prominent accumulation in liver and lungs [37, 39]. One study demonstrated that a high 

dose of exosomes administered intravenously resulted in asphyxia as a result of the 

exosome accumulation in the lungs [18]. However, the exosome dose administered in the 

former two studies (4-5 µg) were much lower than that of the latter (400 µg). Streptavidin 

was reported to naturally form tetramers in physiological conditions [74], and so the SAV-

LA exosomes in the study could have formed aggregates from the interaction between 

the streptavidin molecules and accumulated in the lungs. However, the authors reported 

no size differences between the SAV-LA exosomes and unmodified ones from NTA 

analysis [39]. Size analysis however was not performed on the GL exosomes  [37]. 
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Another study, also using B16BL6 exosomes showed substantial lung accumulation, 

which was significantly reduced following the disruption of their exosomal surface proteins 

[71]. The surface protein disruption done in this study was by Proteinase K treatment for 

30 minutes, which resulted in major ablation of surface proteins on B16BL6 exosomes, 

compared to the milder disruption on the surface proteins of ExoB16 by DTPA 

incorporation in this study as discussed above. Therefore, the minimal lung accumulation 

of ExoB16 observed in this study could not be attributed to the altered surface proteins. 

Although both B16BL6 and B16F10 are both melanoma-derived cell lines, the lung 

metastatic organotropism of the former was reported to be higher than that of the latter 

[75], thus it is likely that B16BL6 exosomes do home to the lungs to a greater extent than 

B16F10 exosomes. This is highlighted by a study that demonstrated exosomes derived 

from cancer cell lines with higher lung metastatic organotropism accumulated in lung 

tissues 3 times higher than those derived from cell lines with other metastatic 

organotropisms such as liver, bone and brain [76]. Another study showed B16F10 

exosomes presence in lungs and bone marrow following intravenous administration, and 

that they induce greater metastasis of B16F10 cells to these sites compared to untreated 

controls [77]. However, the amount of exosomes present in these tissues were not 

properly quantified. To complicate the position further, exosome doses administered in 

these studies were expressed differently (i.e. in terms of particle number or µg protein), 

which does not allow direct comparison to the results in this work. This implies that the 

exosome doses administered in these studies may vary and was reported to also 

influence their biodistribution [32].  

Another study by Lai et al. using exosomes from HEK293 cells showed a 

completely different exosome biodistribution profile to the one presented in this work. 

HEK293-derived exosomes accumulated to the greatest extent in the kidneys, followed 

by the liver, lungs and spleen [38]. The HEK293 exosomes had their surface engineered 

to have fusion protein constructs consisting of a PDGF-transmembrane domain for 

anchoring on the exosomal membrane; a biotin acceptor peptide sequence (BAP) for 

biotinylation by an exogenously expressed bacterial biotin ligase; and Gaussia luciferase. 

The modified exosomes here also did not show size differences from the unmodified 

exosomes [38]. Again, this study highlights the probable effect of introducing additional 
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moieties of relatively large size on exosomal membrane (e.g. luciferase and streptavidin) 

on the tissue tropism of exosomes in vivo, which concurs with the role of exosomal 

surface proteins on their tissue localisation discussed above. Substantial considerations 

are warranted when deciding on the modification status to be adapted for drug delivery 

applications, and it is therefore imperative that the biodistribution of engineered exosomes 

be compared with their unmodified counterparts to take into account any possible effect 

of the modification on their biodistribution, Thus, the membrane radiolabelling approach 

proposed in this work would serve as an excellent tool for this purpose.  

Discrepancies between exosome biodistribution reported in the above studies 

including the results in this work could also be due to the different labelling and imaging 

modalities used. Previous work from our group [57, 78] demonstrated the difference 

between the biodistribution of the PLGA nanocapsules labelled with DiR or radiolabelled 

with 111Indium, where nanocapsules labelled with DiR showed significantly higher lung 

accumulation as compared to the same nanocapsules which were radiolabelled by 

including 5-10% PLGA-PEG-DTPA in the excipients during formulation (i.e. without post-

synthesis surface modification as done in this current work). Live whole body SPECT/CT 

imaging showed that the radiolabelled nanocapsules had a substantial lung accumulation 

at 1 h post-injection, which then continued to decrease over time from 4 h to 24 h, and 

this was supported by the quantitative organ biodistribution values obtained by gamma 

counting. Given the non-specific dye exchange phenomenon between membranes 

associated with lipophilic dyes such as DiR and PKH67 described earlier, the lung 

accumulation of DiR-labelled nanocapsules observed after 24 h is likely to come from the 

dye exchanged from the labelled nanocapsules to lung tissue where they initially 

accumulated in the early timepoint before redistributing to other organs, and this 

exchanged dye probably accumulated in the lungs over time up to 24 h. This highlights 

the robustness and reliability of using the nuclear modality in assessing exosome 

biodistribution and is the main motivation in developing the novel exosome radiolabelling 

approaches described in this study. 

 There are reports on naive exosomes having the potential of adopting the homing 

properties of their parent cell in vivo [32] or home to self-tissue in vitro [70]. In another 

study, the ExoB16 in similar B16F10-bearing C57Bl/6 mice were reported to show tumour 
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accumulation of ~3% total administered fluorescence [32]. A separate study using PC3 

and MCF-7 exosomes also showed similar self-tissue accumulation of ~2% ID/gT [70]. In 

our hands, fluorescently-labelled B16F10 exosomes (Scheme S2 – supplementary 

information) showed good uptake in both B16F10 cells and GL261 (murine glioma) cells 

in vitro, but significantly higher uptake was seen in the former (Fig. S9) which suggests 

the self-homing potential of B16F10 exosomes. However, in this study, ExoB16 showed 

very low accumulation in B16F10 tumours in vivo, of less than 1% ID/gT. This low tumour 

accumulation of naïve exosomes, has been attributed to the rapid clearance of exosomes 

from the circulation by resident macrophages in organs that form part of the 

reticuloendothelial system (RES). A study demonstrated that depleting macrophages in 

mice by liposomal clodronate prior to exosome administration significantly increased their 

circulation time [79]. A separate study showed that by blocking the Scavenger Receptor 

Class A family (SR-A), a recently identified uptake receptor for exosomes in macrophages, 

liver accumulation of exosomes was significantly reduced while their circulation time 

increased, which led to a 3-fold increase in tumour accumulation in vivo [33]. Exosomes 

expressing CD47, which inhibits phagocytosis by macrophages upon binding to their 

SIRPα surface protein, were reported to have prolonged circulation time and resulted in 

better tumour uptake and ablation in vivo [80]. Flow cytometry analysis on ExoB16 showed 

that CD47 is expressed very minimally on their surface (Fig. S10), which corroborated 

with the observed rapid clearance of ExoB16 from the circulation. Similar analysis done on 

exosomes derived from other cancer and non-cancer cell lines suggested that CD47 is 

not a common marker of exosomes, and that this should be taken into account when 

interpreting the circulation profile of exosomes (Fig. S10). This highlights the importance 

of the endowment of active targeting moieties such as expression of targeting ligands as 

fusion constructs on exosomal surface proteins [14, 30],  as well as developing strategies 

to bypass the RES organs as described above for effective targeted in vivo delivery of 

exosomes to non-RES sites such as tumours. 

Immunodeficient mouse strains of various degrees of immune system impairment 

are used in studies involving human-derived tumour models to improve the engraftment 

success in mice. To date, the most immunodeficient mouse strain described is the NOD-

scid ILR2γnull (NSG) mice, whereby the NOD-mutation renders their innate immune cells 
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(particularly macrophages and dendritic cells) defective; the scid-mutation results in 

absence of the adaptive immune cells (T- and B-cells) and complement system, and the 

complete null mutation of the IL2R gene results in the absence of NK-cells as well as 

global defective cytokine-dependent signalling [81, 82]. In this study, although the B16F10 

cells used to develop the subcutaneous tumour is of murine origin and therefore does not 

require an immunodeficient background for the host, NSG mice were chosen to serve as 

the extreme counterpart of the immunocompetent C57Bl/6 mice to investigate the 

influence of the immune system in ExoB16 biodistribution. In this study, ExoB16 

biodistribution did not differ significantly between the C57Bl/6 and the NSG mice. 

However, looking at the kinetics of ExoB16 accumulation in the RES organs of the NSG 

mice, the spleen initially recorded a lower signal, which increased by 3-fold between 4 h 

and 24 h to match that of the of the C57Bl6 mice (Fig. 6C). This delayed exosome 

accumulation in RES organs in immunodeficient mice was consistent with a study using 

NOD.CB17-Prkdcscid/J mice, and was attributed to the defective complement activation 

in opsonisation and therefore less effective uptake by phagocytic cells in mice with NOD-

mutation background [18]. 

Interestingly, tumours of the immunocompetent mice showed significantly higher 

accumulation of ExoB16 than that of the immunodeficient mice (Fig.  6D). Given the 

difference in the immune background of both mice strains, it is hypothesised that the 

difference in tumour accumulation values is due to the difference in the proportion of 

tumour-associated macrophages (TAMs) present in the tumours. Flow cytometry analysis 

on the total cells isolated from subcutaneous B16F10 tumours (gating strategy is 

described in supplementary information and Fig. S11A) developed in both strains of mice 

showed that tumours from the immunodeficient NSG mice had a significantly smaller 

population of TAMs (CD45+ F4/80+ CD11b+) (Fig. S11b) compared to that of the 

tumours from C57Bl/6 mice, which supports the hypothesis above.  This suggests that 

tumour accumulation of exosomes in an immunodeficient host can be an underestimation 

compared to the actual value in an immunocompetent background. Therefore, it is 

important to relate the degree of immunity impairment of the animal model used to the 

results obtained for a more contextual interpretation of the data which might affect factors 

such as dosing for future therapy studies.   
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Conclusions 

The results in this work demonstrated that melanoma-derived exosomes were 

successfully and stably radiolabelled using a novel membrane radiolabelling approach. 

This has enabled a quantitative analysis of their biodistribution to be carried out in 

melanoma-bearing immunocompetent mice, showing high accumulation in the liver and 

spleen from the early time points up to 24 h, with marginal tumour (i.e. self-tissue) 

accumulation. This membrane radiolabelling approach also enabled a quantitative 

biodistribution comparison of the same exosomes in a similar tumour model but 

established in immunodeficient mice and showed that defective immune system did not 

influence the exosome biodistribution in vivo with the exception of the degree of their 

accumulation in the tumours. This novel membrane radiolabelling method is therefore a 

simple, reliable and more importantly, has the potential of radiolabelling any type of 

exosomes, isolated from either primary or immortalised cell cultures, and even from 

physiological fluids without requiring any engineering on the exosomes. It is hoped that 

this work will serve as an impetus in achieving a more standardised approach to 

understanding the in vivo fate of the many different types of exosomes thus rendering 

these future studies more comparable given the heterogeneous nature of exosomes. 

Given the marginal self-tissue accumulation as opposed to the high RES-organ 

accumulation of naïve exosomes observed in this study, active targeting moieties appears 

to be essential to be imparted on exosomes for them to have a better prospect as an 

effective drug delivery system. Nonetheless, the in vivo biodistribution of naïve exosomes 

should always be studied and compared to that of their engineered counterpart, and this 

work provides an excellent tool for such comparative studies to be done reliably and 

accurately.  
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