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Abstract

Forecasts play a critical role at inflation targeting central banks, such as the Bank of England.

Breaks in the forecast performance of a model can potentially incur important policy costs.

Commonly used statistical procedures, however, implicitly put a lot of weight on type I errors

(or false positives), which result in a relatively low power of tests to identify forecast breakdowns

in small samples. We develop a procedure which aims at capturing the policy cost of missing a

break. We use data-based rules to find the test size that optimally trades off the costs associated

with false positives with those that can result from a break going undetected for too long. In so

doing, we also explicitly study forecast errors as a multivariate system. The covariance between

forecast errors for different series, though often overlooked in the forecasting literature, not only

enables us to consider testing in a multivariate setting but also increases the test power. As a

result, we can tailor the choice of the critical values for each series not only to the in-sample

properties of each series but also to how the series for forecast errors covary.
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1 Introduction

Economic forecasts are essential inputs into many policy decisions. At the Bank of England, lags in

the transmission process of monetary policy means that the Monetary Policy Committee (MPC)

sets the policy stance on the basis of forecasts of inflation, output growth and unemployment

typically over a two to three year period. Also, forecasts of household borrowing and debt are

key inputs into the Bank’s Financial Policy Committee’s (FPC) assessment of the resilience of the

financial system.

Economic forecasting is difficult to do accurately, however. The economy is complex and dynamic,

and, in many dimensions, not well understood. Relationships between economic variables can

exhibit unexpected shifts. Sometimes the presence of a break is obvious. For example, the global

financial crisis in 2008 arguably presented a structural break in the economy, but it nevertheless

takes time to gauge the quantitative effects and to understand exactly how the economy has

changed. Often, however, breaks occur more subtly and only become apparent with the passage

of time and the accumulation of forecast errors in one direction.

Given this challenging environment, the models and judgements that underlie economic forecasts

cannot be set in stone. Some that are relatively accurate at one point in time may be inaccurate

in other circumstances, and may need to be modified or replaced. It is important, therefore, that

economic forecasters maintain a close eye on the accuracy of their forecasts, and much of the skill

in forecasting lies in judging when a forecast breakdown has occurred and in taking appropriate

action. To this end, we focus on a test for a change in the mean forecast error.

A number of approaches have been put forward in the macroeconometric literature to support

this activity. Most involve some testing procedure which compares forecasts from two different

subperiods for evidence of difference in performance. By nature, these testing procedures are

related to tests of structural change. In particular, they are closely linked to fluctuation type

tests, such as those developed by Brown, Durbin, and Evans (1975) and Ploberger, Kramer, and

Kontrus (1989) (see, also, Kuan and Hornik (1995)), that aim to detect structural change without

entertaining a particular alternative hypothesis and are therefore, in theory, at least, robust to a

wide variety of deviations from stationarity.

One issue with such procedures is that the associated tests can have low power and, therefore,

not pick up forecast breakdowns for some time after they occur. This issue clearly illustrates

the asymmetry between the null hypothesis of no breakdown, whose probability of being rejected,

while true, is supposed to be well controlled, and the alternative of forecast breakdown which can

have a low probability of being selected, even if true. To address this asymmetry, we consider data

based rules, based on statistical decision making, to select significance levels. This enables quicker

detection of breakdowns, albeit at the cost of more false positives. This trade off is managed by

explicitly considering loss functions that quantify the costs of Type I and Type II errors.

Therefore, in this paper we describe a set of new procedures that we have developed for identifying

shifts in forecast accuracy. These procedures are designed to support a more regular, extensive and

systematic monitoring of the forecast accuracy of the Bank’s main forecast outputs. As such, they

address the Bank of England Court’s request for a better basis for evaluating the Bank’s forecast
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performance, and builds on the analysis of, and recommendations relating to, forecast performance

produced by the Bank’s Independent Evaluation Office (IEO) (Bank of England, 2015).

In its analysis of forecast errors, the IEO employed standard methods of statistical inference,

while noting that such methods were not necessarily ideal given the properties of the data. In

particular, the available time series for forecast errors is relatively short and exhibits considerable

serial correlation. As a result, standard tests for structural breaks, derived without correcting for

serial dependence and asymptotic approximations, tend to have problematic behaviour under the

null hypothesis of no breaks; in other words, there are nominal size distortions. Further, even if

the size distortions are corrected, such tests tend have low power to reject the null hypothesis of

no breaks, as discussed, for example, in Groen et al. (2013).

The procedure we present aims at warning the analyst that a break might be occurring earlier

than standard testing procedures would. It does so by taking fuller account of the empirical

properties of the data — making appropriate allowances for small sample sizes and the observed

serial dependence of forecast errors — and by putting the notion of loss at the centre of the forecast

evaluation assessment, i.e. flagging shifts in forecast performance only to the extent that they are

relevant to the forecaster’s objectives. This explicitly recognises the fact that in many contexts

some forecast errors are more important than others, depending on the use to which the forecasts

are to be put. We believe this will enhance the quality of discussion surrounding developments in

forecast accuracy and lead to sounder judgements on model design and use.

In practice, our exercise makes the case that standard forecast breakdown tests, such as those

proposed by Giacomini and Rossi (2009), used to detect forecast failure be made more sensitive

by being allowed to reject the null hypothesis of no shift in forecast accuracy more often. This

essentially involves selecting less conservative significance levels for the tests than is normal practice.

These significance levels are optimally chosen by explicitly trading off the losses associated with the

two errors associated with any decision making: taking action when no action is needed and not

taking action when action is needed. Of course, this approach is not confined to forecast breakdown

tests, but applies more widely to statistical tests that detect or monitor structural change, such as

Bai and Perron (1998) and Chu et al. (1996).

In order to appreciate the novelty and purpose of this approach it is important to present its

decision theoretical background. A large literature on statistical decision problems exists, starting

with Wald (1950) and Savage (1954), followed by DeGroot (1970) and Berger (1985). Our paper

builds on these works and focuses on specifying a decision rule for making a choice in the presence

of uncertainty about the true state of the world. Many approaches to this problem have been

proposed. As discussed in Granger and Pesaran (2000a), Granger and Pesaran (2000b), Pesaran

and Skouras (2002) and Granger and Machina (2006), one approach focused on forecasting involves

selecting a course of action that minimises an expected loss function in the presence of some

forecasting information. The forecasting information can be either a point forecast or a more

general conditional forecast distribution. Our theoretical setup is consistent with the spirit of this

strand of literature.

Statistical testing relates to this literature since testing has two outcomes and therefore provides

a decision rule that depends on the choice of the significance level. While Granger and Machina
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(2006) acknowledge the possibility of transposing their framework to a statistical testing context,

they do not pursue this possibility.

Recent work by Tetenov (2012) transposes this machinery to the microeconomic context of deciding

on the extent of using different treatments on a population based on a loss function and information

on the efficacy of these treatments. In that work, the link between reaching decisions using standard

decision rules and statistical tests is discussed but testing conventions such as using standard

significance level are not relaxed.

In a follow-up paper, Tetenov (2016) continues to focus on the above microeconomic treatment

decision framework and derives the optimal significance level of a test as a function of test power and

costs of treatment adoption. While this moves closer to our framework of viewing the significance

level of a test as a tuning parameter to be chosen by optimising a loss function, it is very specific

to the treatment problem at hand. In our case, we initially state the general problem by leaving

the losses incurred by each course of action available to the agent, unspecified. We then proceed

to specialise our analysis to the forecast breakdown problem and discuss, in detail, ways in which

this specialisation can be implemented.

The paper is structured as follows. Section 2 discusses the challenges of the current forecast break-

down procedures faced by policy makers. Section 3 gives an overview of our proposed solutions.

Section 4 and 5 offer theoretical discussion and step-by-step procedures on our proposed testing

procedures. Section 6 provides Monte Carlo evidence that our proposed algorithm performs better

in most of the scenarios. Section 7 discusses the empirical results when we apply our procedures

to the forecast produced by the Bank of England. Section 8 concludes.

2 Motivation

Many policy decisions rest on forecasts, so the accuracy of the latter will affect the appropriateness

of the former. As mentioned above, the optimal stance of monetary policy depends on an accurate

forecast for inflation, which, in turn, requires an assessment of the cost pressure outlook, so a

forecast for wages for example. The forecast for wages may hinge in turn on the projected path

for productivity. If the Great Recession caused a permanent fall in the level and/or growth rate of

productivity that forecasters were slow to detect, a bias is likely to show up in the wage forecast

which could then snowball into poor forecasts for other variables, such as inflation, and, ultimately,

in suboptimal policy decisions.

Forecast breakdowns are, however, not easy to identify. Almost ten years after the start of the Great

Recession, we only have about 30 post-recession forecast errors for a quarterly series. Identifying

forecast breakdowns with samples this small is no easy feat, but we think the procedure we propose

in this paper can help.

2.1 Four Challenges with the Textbook Procedure

The statistical test we consider in our analysis compares the bias in a base sample (which we also

refer to as a pre-break sample) and in a subsequent post-break sample and we tailor our approach
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so as to capture the small sample-size characteristics of our series. We proceed with the Giacomini

and Rossi (2009) test but our procedure can also be applied to other statistics, such as the forecast

errors’ second moments (although working with first moments is more useful for our application).

In particular, it relates more directly to the underlying economic dimension of the problem in that

it makes it easier to identify what specific model or judgement may be the cause of the break.

Many papers in the literature assume forecast errors to be identically and independently normally

distributed, and that a researcher would use a 5% as the confidence level, also known as the size

of the test. Although this procedure is a well-trodden path and widely understood, it is not ideal

for policy making in real time. There are four reasons for this.

1. The sample sizes with which we work are unavoidably small. Standard tests are

shown to have good power against the null of no break in the mean forecast error for sample

sizes of at least 100 observations (Giacomini and Rossi (2009)). This is natural, given they

are derived under assumptions that hold asymptotically. Policy makers, typically dealing

with quarterly series, cannot afford to wait that long so they would naturally put a premium

on a testing strategy that would increase the power of the test on shorter samples.

2. The forecast errors in our dataset are usually serially correlated, which reduces

the information content of each newly observed forecast error. As a result the actual size

of the test in a ”policy-relevant” sample can be significantly different from the nominal size

computed asymptotically and the power of the test can be disappointingly low.

3. The test size is set to 5 percent almost by default. It is such standard practice to use

a 5 percent critical value in statistical testing that this choice is rarely questioned. However,

given that this figure should reflect the share of false positives that is acceptable to the

decision maker, there is no particular reason why it should be the same for all enquiries.

4. The standard test procedure has no explicit consideration of the power of the

test. The power of the test is dependent (amongst other factors) on the size of the break in

forecast performance that has occurred, which is series-specific.

3 Proposed Solutions

It should be clear by now that the problems we face are both conceptual and practical. On the

conceptual side we want to overcome the lexicographic structure that underlies testing procedures

(as Tetenov (2016) refers to it). In other words, we aim at relaxing the prominence that Type I

errors have relative to Type II errors. It is not obvious that false positives(Type I errors) incur

greater policy costs than false negatives(Type II errors) so we want our procedure to be more

flexible in allowing us to trade off the two types of error in an optimal way. In this sense, our work

relates to the recent literature on decision-making using statistical testing (in particular Tetenov

(2012) and Tetenov (2016)), in that the optimal size for our tests (which will ultimately determine

whether a forecasting model is updated or not) is obtained by trading off the two error types

according to a loss function.
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3.1 Two-state, two-action problem

In order to select optimally the size of our test, we need a criterion capturing how often a policy-

maker is willing to tolerate a false alarm to catch a break promptly.

The specific problem that we face is the decision of whether or not to adjust a forecast model on the

basis of an emerging indication of a shift in forecast accuracy. We can think of it as a ‘two-state,

two-action’ decision problem, as is illustrated in Table 1, which shows the costs associated with

the decision given the unobserved true state. The diagonal elements correspond to situations in

which the correct decision is made, i.e. when the model is adjusted and there has been a break

(bad state), and when the model is not adjusted and there has been no break (good state). In this

general set-up, we denote the losses as Lyb and Lng respectively, although these may be zero. The

off-diagonal elements — adjusting the model when there has been no break and failing to adjust

the model when a break has occurred — are assumed to entail losses of Lyg and Lnb respectively.

These are the costs associated with running with an incorrectly specified model, one that will

systematically produce forecasts exhibiting a bias relative to that of those made in-sample.

Table 1: A two-state, two-decision problem
Bad state Good state
(a break) (no break)

Action taken (d = 1) Lyb Lyg

No action taken (d = 0) Lnb Lng

The choice of loss function L is an arbitrary one, reflecting the decision-maker’s preferences. L is

defined as the norm of the difference between two vectors: (i) a vector of forecast biases resulting

from a forecast breakdown in variable x; (ii) a vector of forecast biases when a variable x displays

no forecast breaks.

Such a definition of L enables us to accommodate a general loss function, allowing us to capture

the forecast bias of variables which may not necessarily be the same as the breaking variables.

Throughout the paper, we use µ to denote the forecast bias of a single variable, for example, µx

refers to the forecast bias of the breaking variable x. We use the upper case M to denote the

vector of forecast biases of a group of variables such as the headline variables of interest to the

researcher.1 We also denote bx as the magnitude of the forecast break (i.e. the change in forecast

bias) for variable x across base and evaluation samples. Using a subscript ‘0’ to denote the base

sample, L is therefore defined as follows:

L(bx) = ||M(µx
0 + bx)−M(µx

0)|| (1)

This loss function is a function of the magnitude of the break bx; and it is zero in the absence of a

break; and it is positive when a break of either sign occurs.

We choose α, the optimal nominal size, on the basis of our expected losses. Specifically, we choose

α so as to minimise the expected loss from the two-state, two-action problem. The probability of

1We will also use Mz to denote the forecast bias of variable z in the forecast bias vector. By definition, Mx = µx.
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mistakenly changing the model is the probability of a Type I error, i.e. α itself, and the probability

of mistakenly failing to change it is the probability of a Type II error, i.e. the probability of a

break going unnoticed or 1− P (one minus the power of the test). P itself depends on α, as well

as on the magnitude of the break under the alternative hypothesis (b) and the size of the sample

(T ). We will get into the details further below; for now it is important to note how this approach

allows us to formalize the tradeoff between the size and the power of the test. Increasing α will

increase the probability of taking action when in fact none would be required, but also increases

the power (∂P
∂α

> 0) thus diminishing the probability of not taking action in the ‘bad’ state. The

optimal size will be the one that equates the marginal cost of increasing further to its marginal

benefit.

3.2 A multivariate approach

The above two-state, two-action decision problem is general enough to be applied to both uni-

variate and multivariate settings. Much of the forecast breakdown literature tends to focus on

one variable at a time. Yet, policymakers consider their variables of interest as a multivariate

system. An excerpt from a recent Inflation Report publication by the Bank of England illustrates

the importance of the multivariate dimension of the problem:

CPI inflation had remained at -0.1% in October, as expected. The lower price of oil

increased the likelihood that headline inflation rates would remain subdued in the near

term. In addition, nominal wage growth had levelled off. Average hours worked had

been lower than expected, however, which might have explained some of the flattening

off in pay growth, with changes in the composition of employment an additional factor.

To the extent that these were reflected in productivity as well as pay, their implications

for inflation were likely to be small. A third potential factor behind weak pay growth

was the low level of CPI inflation seen during the course of the year, which may have

fed into pay negotiations.

(Bank of England (2016), p. 3)

This quotation is taken from the section of the Inflation Report that discusses the evolution of

variables of interest since the previous issue. What is interesting for our purposes is that the outturn

for inflation is not explained in terms of some past value of inflation itself, as one would expect in a

univariate setting. Rather, it is related to energy prices and labour market conditions. In turn the

weak level of wages is understood as potentially stemming from inflation. This interdependence

of variables is typical of the macroeconomic discussion and we will try to have our analysis reflect

this.

The quotation above also clearly illustrates the sense in which some variables have a headline

status while others play more of an instrumental role. Let us assume the end goal is to produce

the most accurate forecast for inflation. An efficient allocation of scarce resources would imply

that attention should be devoted to the variables whose forecast performance breakdown would

mostly affect inflation. Our multivariate procedure will involve the estimation of the degree of
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Figure 1: Bias simulation using Smets and Wouters (2007)
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Note: Bias (in absolute value and relative to the bias in wages) in consumption, investment, output, hours,
inflation, wage growth and the policy rate; Smets and Wouters (2007) calibration (blue) and ’flatter Phillips
Curve’ scenario (yellow).

co-variation in forecast errors for our variables of interest so as to be able to address this point.

To get a sense of how that works, though, we begin considering a similar example in a controlled

setting.

A DSGE model is the ideal environment in which the interaction of various macro variables can

be studied. The model presented by Smets and Wouters (2007) is a popular benchmark for any

policy-relevant DSGE, so we use it to conduct the following experiment. Suppose a judgment was

made on labour market conditions that resulted in a one-percent bias in the forecast for wage

growth.2 Policy makers taking Smets and Wouters (2007) and applying this judgement on wages

would produce biased forecasts for all other variables, as the blue bars in Figure 1 show. An

incorrect assessment of the future evolution of wage growth would impact the assessment of cost

pressures and so the forecast for inflation. In turn, this would affect the prediction for short-term

rates which ultimately influences the intertemporal consumption and investment decisions. In the

end, an unwarranted judgement on wages spills over to all the other variables.

The structure of the economy critically affects the degree to which this is the case though. If we

repeat a similar experiment in a version of the same model in which the Phillips Curve is flatter

the spillover of the incorrect judgement on wages onto other variables is much more muted because

inflation responds a lot less to an incorrect forecast for marginal cost.3

So, if we think of inflation as our key variable of interest, forecast breaks in wages would matter

much more in the former case than they would in the latter. The multivariate procedure we

2For concreteness, we assume a bias in the wage markup shock process, the shock more directly related to wage
determination. Of course there is a degree of arbitrariness in the selection of the shock, yet this is enough to illustrate
our point.

3Implemented by increasing the probability of firms not being able to re-optimize prices to .985.
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employ acknowledges this interdependence and captures it by means of a multivariate model of the

observed forecast errors. The observed covariance of the forecast errors will influence the selection

of the critical values used to determine whether a suspect forecast break is worth attending to.

3.3 Data-driven calibrations

Since eliciting the preferences on power and size is not straightforward, we propose to have the

loss function and most every other characteristic of our setup driven by the underlying data. A

key feature of our data is the small sample size, which reduces the power of tests. Testing for

breaks at the customary 5% significance value would, in practice, mean that forecast breaks would

go unnoticed for a long time, causing delays in adopting the appropriate policy measures. So not

only do we adopt a loss-function based approach but also we tailor our procedure to the specific

characteristics of each of the series under consideration.

In particular, we move away from asymptotic results by simulating the distribution of our test

statistics given the properties of the sample of data. So, for each of the series we consider, we

simulate the distribution for the Giacomini and Rossi (2009) test under the null hypothesis of no

break in the mean forecast error for each variable and forecast horizon.

As a result, the critical values we use to evaluate the null hypothesis of no breaks are made to

depend ultimately on the properties of the individual series; in particular on the likelihood of

observing a break. The larger the likelihood of observing breaks, the larger the power the test has

and hence renders smaller critical values.

4 Theoretical Considerations

As noted in Section 3.1, the loss function is constructed based on a two-state, two-action decision

problem. In the standard setting the decision maker takes a decision between two actions (or rather

action and inaction) each of which has a different payoff depending on the state of the world (good

or bad, or in our case no forecast breakdown against forecast breakdown). The timing structure is

one where the action is conditional on the state of the world which is observed via a noisy signal.

In terms of the loss function, we implicitly assume that Lyb(b) << Lnb(b) and that Lng(0) <<

Lyg(0). Moreover, the loss depends on b, the size of break which is not observable to policy

makers. The decision is a function of an econometric testing outcome which aims to uncover the

occurrence or not of the bad state. In particular, we specify that a test is carried out based on

an observed sample of size T . The test statistic ST leads to action being taken if it exceeds a

particular threshold given by cα which is a function of a tuning parameter α (the nominal size, or

rejection probability under b = 0). For example, a usual setting is one where a 5% two-sided test

is used, based on an asymptotic normal approximation which implies that α = 0.05 and cα ∼ 1.96.
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4.1 Finding the optimal size α

Define

PT,α(b) = Pr(ST > cα|b) (2)

The decision maker wishes to test the null hypothesis b = 0 and minimise expected losses, under

various possible values for b, under the alternative, with respect to α. Usual econometric practice

would fix this to say 0.05 or 0.1 but clearly this might not be optimal in the above setting. Expected

loss conditional on b, E(Lα|b), is given by

E(Lα|b) = PT,α(0)Lyg(0) + (1− PT,α(0))Lng(0) + PT,α(b)Lyb(b) + (1− PT,α(b))Lnb(b)

= PT,α(0)(Lyg(0)− Lng(0)) + Lng(0) + PT,α(b)(Lyb(b)− Lnb(b)) + Lnb(b).

Therefore, unconditional losses are given by

E (Lα) = PT,α(0) (Lyg(0)− Lng(0))+Lng(0)+

∫

b∈B

(PT,α(b) (Lyb(b)− Lnb(b)) + Lnb(b)) dF (b)

(3)

where F (b) denotes some weighting scheme for various deviations from the null hypothesis and

B denotes the set in which b takes values. In the following empirical analysis, we will approxi-

mate F (b) with a normal distribution (see Section 5.3) such that large breaks occur with smaller

probabilities. However, for simplicity and expositional purposes we now assume equal weights

(F (b) = 1) giving

E (Lα) = PT,α(0) (Lyg(0)− Lng(0))+Lng(0)+

∫

b∈B

(PT,α(b) (Lyb(b)− Lnb(b)) + Lnb(b)) db (4)

The problem amounts to minimising E (Lα) with respect to α or

α̂ = argmin
α

E (Lα) (5)

Denoting P ′
T,α as the first derivative with respect to α, the first order condition is then

P ′
T,α(0) (Lng(0)− Lyg(0)) =

∫

b∈B

(

P ′
T,α(b) (Lyb(b)− Lnb(b))

)

db (6)
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If ST is well behaved under b = 0, PT,α(0) = α and so (6) becomes

(Lng(0)− Lyg(0)) =

∫

b∈B

(P ′
T,α(b)(Lyb(b)− Lnb(b)))db (7)

Of course, in general, PT,α(0) and PT,α(b) and therefore P ′
T,α(0) and P ′

T,α(b) are not known but are

nonstochastic quantities that can be evaluated either analytically or, if that is too cumbersome as

is likely the case for most realistic settings, by simulation. Noting that limT→∞ PT,α(b) = 1, which

implies that limT→∞ P ′
T,α(b) = 0, it is easily seen that asymptotically the problem has a trivial

solution given by α = 0. In such cases, large breaks are uninteresting because most break tests will

be able to detect them. However, in practice the power is less than unity, implying that breaks are

small. We formalize this idea by using the local-to-zero argument. Specifically, one can define a

sequence of local bad states indexed by bT = b/
√
T , in which case limT→∞ PT,α(bT ) = Pα(b) 6= 1,

and then the problem has a non-trivial solution even asymptotically.

This procedure is a form of cross-validation whereby an objective function is optimised with respect

to a tuning parameter. It is important, therefore, to note that the idea can be extended to allow for

further tuning parameters. For example, the test statistic ST can be modified to allow for a data

dependent data window that only considers recent data. This might be useful in the context of

forecasting. Then the optimisation would be undertaken with respect to both α and the window,

or more generally, bandwidth.

4.2 An analytical example

A very simple derivation that illustrates the above considerations can be constructed as follows.

Let the data generating process be:

yi ∼ iidN(
µ√
T
, 1) (8)

The form is chosen to ensure that the power of the test does not converge to 1 asymptotically, as

discussed in the previous subsection. We wish to test E(yt) = 0. It follows that

ST =
1√
T

T
∑

t=1

yt ∼ N(µ, 1) (9)

In the context of the previous general discussion, b = µ. Therefore

PT,α(µ) = Pr (ST > cα|µ)
cα = Φ−1(1− α)

11



where Φ−1(·) is the inverse function of the cumulative standard normal distribution. Then,

PT,α(µ) = Pr(ST > cα|µ)
= Pr(ST − µ > cα − µ|µ)
= 1− Φ(cα − µ)

= 1− Φ(Φ−1(1− α)− µ)

Of course

PT,α(0) = Pr(ST > cα|0)
= 1− Φ(cα)

= 1− Φ(Φ−1(1− α))

= α

This gives closed form expressions that can be plugged in (6) together with user defined loss

functions, Lyb(µ) and Lnb(µ). Note that we do not place any restrictions on these loss functions.

5 Our procedure step by step

In this section, we provide a detailed discussion of our new approach to detecting shifts in forecast

accuracy.

5.1 The loss function

Recall that the purpose of this paper is to design a test to detect any changes in the mean forecast

errors across two samples subject to the set of challenges discussed earlier. As set out in Section

3, we are interested in not only detecting breaks in a univariate but also in a multivariate setting.

The set-up of the two-state, two-action decision problem addresses our need to balance the cost of

making mistakes for policymakers, i.e. working under the assumption there is a break when indeed

there is none (Type I error) or missing out a break that is actually driving a change in the forecast

error bias (Type II error).

Losses would, in principle, depend on the policymaker’s preference ordering. Since it is hard to elicit

those preferences, we adopt a simple statistical criterion. We assume that the loss incurred in not

capturing a break would be the same as that incurred if a perceived (but unrealized) break caused

the analyst to update the forecasting model unduly, in other words,Lyg(0) = Lnb(b) = L(b) > 0.

If, instead, the break was correctly captured, i.e. either no correction was applied and there

was no break or a correction was applied and there was a break, then the loss would be zero

(Lng(0) = Lyb(b) = 0). This choice is made for communication purposes. For instance, it is much

easier to explain that an x percentage points bias in nominal wages has caused an average inflation
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forecast error of y percentage points than talking about mean squared forecast errors. In this case,

if there is no wage bias then there should be no inflation bias. Furthermore, focussing on the mean

of forecast errors allows us to identify those periods that contribute most to the ‘break’ and help

us to identify not only the ‘source’ but also to assess the plausibility of the statistical inference.

We now lay down the generic notation for our application of the theoretical discussion in Section 4.

We denote z as the headline (or reference) variable the forecast accuracy of which policy makers are

interested in studying, and x as an ‘instrumental variable’, where policy makers are not directly

interested in its forecast accuracy but in how its display in forecast breakdowns affect z. For

example, we think of x as one of the series for import prices which is relevant inasmuch as it helps

produce an accurate inflation forecast — and z as one of the reference variables — for example,

inflation. Of course, in the univariate setting, the variables z and x coincide.

Following (4) and (5), we proceed to consider a grid of possible breaks for variable x at forecast

horizon h. (In this section, we omit the superscript h in order to simplify our notation. But it is

understood that our analysis is specific to the forecast horizon.) For each of them, we compute

Lz,x(·), i.e. the change in the bias in forecast error for variable z that would result from a break

in x. Table 2 presents our two-state, two-decision problem with the simplified loss structure.

Table 2: A two-state, two-decision problem with simplified loss structure
Bad state Good state
(a break) (no break)

Action taken (d = 1) 0 Lz,x(bx)
No action taken (d = 0) Lz,x(bx) 0

Note: L denotes the loss function. The superscript x refers to the variable with a forecast break (denoted as bx),
whereas z refers to the reference or headline variable(s) of interest to policy makers.

5.1.1 Modelling Lz,x(·) using a vector auto-regressive (VAR) model

Recall in equation (1) the loss function is defined as the difference between the mean of the forecast

error distribution under a break and that under no break. Generically, we model the mean of the

our forecast errors jointly as a vector autoregressive process:

εt = A0 +B0εt−1 + ut (10)

where εt is a vector including forecast errors for our variables of interest over our base period

t = 1, ..., T0, and ut ∼ N(0,Σu
0). Note that we add the subscript ‘0’ to denote the estimation using

the base sample.4

We include only one lag in our VAR specification owing to sample length considerations. Further-

more, due to small sample issues the estimation of the VAR model is carried out subject to the

constraint that the mean of the vector of the forecast implied by the multivariate model (equation

4Such notation corresponds to that in Section 4.2 if we let T0 = (1− p)T , T1 = (1− p)T + 1 and T2 = T .
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11) coincides with the univariate estimates.

M0 = (I −B0)
−1A0 (11)

where M0 = [µ1
0, ..., µ

Q
0 ]

′ denotes the vector of forecast biases of all of the Q = 13 variables in the

base sample (recall our notation in Section 3.1 that M denotes the bias of a group of variables

whereas µ denotes the bias of a variable). In the following, we use the subscript Y to indicate the

variables of interest to policy makers.

5.1.2 Inversion

Denote X as the set of all variables we are studying. In particular, consider a variable x ∈ X and

a vector Y = X\x which includes all variables but x, and define D0 ≡ (I −B0)
−1. After dropping

the subscript ‘0’, the constraint (11) can be partitioned as:
[

µx

MY

]

=

[

Dxx DxY

DY x DY Y

][

Ax

AY

]

And we can express:

Ax = D−1
xx (µx −DxY AY ) (12)

MY = DY xAx +DY Y AY (13)

so that we can use (12) to substitute for Ax in (13) to obtain:

MY = DY x

(

D−1
xx (µx −DxY AY )

)

+DY Y AY (14)

Equation (14) is key to understand how, under our inversion scheme, a break in a variable spills

over to others. In particular, if we define as dMz the change in forecast bias for some generic

variables z ∈ Y , it can be seen that:

dMz = e′zdMY

= e′zDY xD
−1
xx dµ

x

= e′zDY xD
−1
xx b

x

where ez is a vector that selects z out of Y , and dµx = bx, the change in the forecast error bias

for x from the base sample to be used in our simulations.5 This linear mapping gives us an idea

about how much an accurate forecast for variable x matters for that of variable z by capturing

5When carrying out hypothesis testing, we compute the test statistic using the break found between the evaluation
and base samples. In other words, dµx = bx ≡ µx

1 − µx

0 , where µx

0 and µx

1 respectively denote the bias in the base
and evaluation samples.
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how forecast errors for a certain variable x co-vary with forecast errors for z. This idea parallels

that in our DSGE example in Section 3. In that case we use the model’s controlled environment

to study the effects of a bias in the forecast for one variable onto another. Here we follow the same

principle but let the sample covariance of forecast errors determine how a change in forecast bias

in the forecast for one variable will impact another. The underlying idea, however, is the same:

inaccurate forecasts for one variable can cause deteriorations in the forecast performance for other

variables. If variable z is the variable of interest and variable x is instrumental to the forecast of

z, a small value of e′zDY xD
−1
xx suggests that a change in forecast error bias for x will not have a

dramatic effect on that of the variable of interest.

Following (1), we define the loss function L for our univariate and multivariate tests as follows:

Lz,x (bx) ≡
{

‖M(µx
0 + bx)−M(µx

0)‖ when z = x

‖Mz(µx
0 + bx)−Mz(µx

0)‖ =
∥

∥e′zDY xD
−1
xx b

x
∥

∥ when z 6= x
(15)

The outstanding question is then whether this effect is significant or not. We rely on information

from the sample and conduct simulations to characterize the distribution under the null hypothesis

of no breaks. Moreover, in the case where z 6= x, while at the moment we focus on one variable at

a time, it is straightforward to apply our proposed approach to linear combinations of bias changes

(by replacing e′z with any arbitrary vector in equation (15)) or other functions or moments of the

data.

5.2 Finding the optimal size

We next compute the optimal size and average optimal sizes over the grid of breaks we consider.

We first express the expected loss conditional on a break as:

E(Lα|bx) =
{

αLz,x (bx) + (1− PT,α (b
x))Lz,x (bx) when z = x

αLz,x (bx) + (1− PT,α (b
x, Lz,x (bx)))Lz,x (bx) when z 6= x

(16)

where bx is the size of the break in x and PT,α(·) is the test power as defined in Section 4. In

the case where z 6= x, the power function PT,α(·) depends on the dynamic covariance between

variables in addition to the magnitude of the break.

We then compute the optimal size α∗z,x as:

α∗z,x =
∑

bx∈B

π (bx)
{

argmin
α

E(Lα|bx)
}

(17)

where bx, the size of the break in x, is collected in the set B, and π(·) is its associated probability.

Details are discussed in Section 5.3.
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The minimization problem has a very intuitive interpretation under simple regularity conditions

on the power function.6 For a given break magnitude, one would want to increase the nominal size

to the point such that further decrease in the probability of a Type II error will not be able to

offset the increase in Type I error.7

5.3 Estimating reference breaks in the data

For a given series x under the base sample, forecast errors at a certain forecast horizon are denoted

as εxt . As mentioned above, these are considered primitives in our analysis and we model them as

a simple time-series autoregressive process:

εxt = ρw(0) +
P
∑

k=1

ρw(k)ε
x
t−k + ut

where the number of lags P is selected optimally using the Bayesian Information Criterion, and

the intercept ρw(0) and the autoregressive coefficients ρw(k) are estimated on a 24-quarter rolling

window (hence the subscript w on the autoregressive polynomial) for w = 1, ...,W . We then define

νxw, the rolling-window bias for series x:

νxw =
ρw(0)

1−
∑p

k=1 ρw(k)

We then compute the reference break b̃x for variable x as the difference (in absolute values) between

the largest of the biases estimated within the windows and the bias estimated over the entire base

sample (denoted as µx). In other words,

b̃x ≡ max {|νxw|}Ww=1 − |µx|

We approximate the distribution of breaks in the base sample as follows. We first define a grid

of non-zero breaks B = {.25b̃x, .5b̃x, b̃x, 1.5b̃x, 2b̃x} based on the reference breaks we computed

before. Then we compute the associated probabilities as π(bx) = φ( b
x

σx ) where bx ∈ B, σx is the

standard deviation of |νxw|Ww=1 and φ is the probability density function (pdf) for Normality.

6We use the grid method to solve the minimisation problem in order to ease the computational burden in our
already computationally intensive exercise.

7To clarify, our ‘loss function’ is different from that used by Giacomini and Rossi (2009). In our case the end-goal
of having a loss function is to pin down the optimal size for the test at hand, while in their setup the loss is a function
of parameter estimates (so ultimately of the sample) which measures the quality of the forecast. In our case, we focus
on the forecast-error bias as our measure of forecast quality so the surprise loss (as defined by Giacomini and Rossi
(2009), p. 672) is simply the standardised difference in the forecast-error bias in the base and evaluation samples,
and we do not refer to this quantity as loss to avoid possible confusion.
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5.4 The algorithm

Our aim is to test if the contribution of one variable to another one is significant. We proceed in

steps as detailed in the Algorithm below.

Algorithm 1 Our procedure in detecting shifts in forecast accuracy.

1. Given estimates for (Â0, B̂0, Σ̂
u
0) from equation 10 we simulate N samples by drawing random

disturbances via a wild bootstrap.

2. We simulate the null distribution by computing Mn(bx = 0), n = 1, ..., N , under the null

hypothesis of no break in x.

3. We simulate N samples using this same model but under the alternative of breaks bx given by

the following grid of non-zero breaks for each variable x: bx ∈ B = {.25b̃x, .5b̃x, b̃x, 1.5b̃x, 2b̃x},
where b̃x is the reference break estimated in the base sample in Section 5.3.

4. We then compute Mn(bx), n = 1, ..., N , and hence the loss function Lz,x(bx) as specified in

(15).

5. We also compute the power function PT,α(b
x, Lz,x(bx)), using the size-adjusted critical values

simulated from step 2.

6. And finally we compute the optimal size α∗z,x following 17.

So, for any variable pair (z, x), we have the optimal size (α∗z,x, averaged across break sizes) that

indicates when we should reject the null hypothesis that a break in the forecast error for variable

x has no statistically significant effect on the bias in the forecast for variable z at the same time

horizon.

6 Monte Carlo Simulations

In order to demonstrate the usefulness of our new approach to detecting shifts in forecast accuracy,

we conduct Monte Carlo simulations on the simple analytical example set out in Section 4.2. In

this section, we consider two possible scenarios: when the actual break size µ is (i) known and

(ii) unknown to the researcher. Our results show that, under most circumstances, our proposed

algorithm 1 does better than assuming a fixed level of significance.

6.1 When Type II loss is known to the researcher

We assume Lnb(µ) = µ > 0, Lyb(µ) = 0, Lng = 0 and Lyg = c > 0. In other words, Type II loss is

known and is equal to the actual size of break µ. The loss matrix is summarised in Table 3.

In this situation equation 7 can be simplified as

P ′
T,α(µ) =

c

µ
(18)
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Table 3: Monte Carlo simulation: loss matrix
Bad state Good state
µ > 0 µ = 0

Null hypothesis is rejected 0 Lyg(0) = c
Null hypothesis is not rejected Lnb(µ) = µ 0

Note: L denotes the loss function.

The optimal level of α which is a function of c and µ, denoted as α(c, µ), can be solved analytically

or numerically.

Algorithm 2 describes in detail the Monte Carlo simulations we conduct.

Algorithm 2 Monte Carlo Simulations when Type II loss is known

1. Define the grids µ ∈ [0.5 : 0.01 : 5], c ∈ [0.5 : 0.01 : 5], with the step size of 0.01 each. Solve

for the optimal α(c, µ) according to equation 18 for each pair of (c, µ).

2. Simulate data with the true data-generating process with positive breaks and conduct hypoth-

esis testing

(a) Given (c, µ) and assume T = 100, simulate data according to 8.8

(b) Construct the test statistic ST following (9).

(c) Conduct hypothesis testing for H0 : µ = 0 using the textbook procedure of setting α =

0.05. If the hypothesis is not rejected, the loss is recorded as µ; otherwise, the loss is

recorded as 0.

(d) Repeat the above three steps for 5000 times and compute the average loss given (c, µ).

This corresponds to Type II loss and denote it as L
c,µ
TypeII,α=0.05.

3. Repeat step 2 with simulated data with the true data-generating process with zero breaks, i.e.

µ = 0. Note that when the null hypothesis is not rejected, the loss is recorded as 0; otherwise,

c. The average loss computed corresponds to Type I loss and denote it as L
c,µ
TypeI,α=0.05.

4. Compute the average loss L
c,µ
α=0.05 = L

c,µ
TypeI,α=0.05 +L

c,µ
TypeII,α=0.05.

5. Repeat steps (2), (3) and (4) with the optimal critical values α(c, µ) derived in step (1).

Compute L
c,µ

α=α(c,µ).

Figure 2 displays the optimal alpha α(c, µ) in step 1. We observe that (i) as c increases the optimal

alpha decreases monotonically. This is intuitive because a smaller α(c, µ) will be chosen when the

cost of Type I error increases, holding all other factors constant; (ii) Given c, as µ increases, the

optimal α(c, µ) decreases monotonically only after a certain break size. Since the power increases

with µ, a trade-off between Type I and Type II errors exists such that a larger α(c, µ) is optimal

until the break size µ reaches beyond a certain threshold.

Figure 2 compares the average loss when a researcher uses the optimal chosen α(c, µ) (Lc,µ

α=α(c,µ))

and the usual textbook procedure α = 0.05 (Lc,µ
α=0.05) in our simulations. Results of selected pairs

8Owing to our calibration in our analytical example in Section 4.2, T does not matter in our simulations. We
present supporting evidence in the Appendix.
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of (c, µ) are reported in Table 4. It is found that the average loss when we use the textbook

procedure is uniformly bigger than the loss using the optimal picked α(c, µ). We also observe that

the difference in average loss between the two tests decreases as µ increases. This is because α(c, µ)

tends to be a very small number (close to the textbook size 0.05) when the break is large in size

and it is generally easy for either test to detect the break. In addition, the difference in average

loss between the two tests decreases as c, the Type I error cost, becomes larger.

In short, when a researcher knows Type II error loss our proposed algorithm works uniformly

better .

Figure 2: Monte Carlo simulations when Type II loss is known: optimal chosen α(c, µ)

Note: α(c, µ) is computed using step 1 described in Algorithm 2. Refer to main text for details.

Figure 3: Average loss for Monte Carlo simulations when Type II loss is known, T=100

Note: Average losses with simulations using the optimally chosen sizes under known Type II loss (Lc,µ

α=α(c,µ))

and using the usual textbook procedure of α = 0.05 (Lc,µ

α=0.05). Computation follows the Algorithm 2. Refer to
main text for details.

6.2 When Type II loss is unknown to the researcher

More realistically, a researcher does not know the loss when the hypothesis fails to reject the

wrong null hypothesis, implying that Lnb(µ) is unknown. To perform our simulations we again
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follow equation 7 to solve for α(c, µ). We note that b = µ and B = [0.5 : 0.01 : 5], and assume

that µ follows a uniform distribution for simplicity. The modified simulations are described in

Algorithm 3.

Algorithm 3 Monte Carlo Simulations when Type II loss is unknown

1. As before, define grids µ ∈ [0.5 : 0.01 : 5], c ∈ [0.5 : 0.01 : 5], with the step size of 0.01 each.

Solve for the optimal α(c, µ) according to equation 7 for each pair of (c, µ).

2. Repeat steps (2), (3), (4), (5) as stated in Algorithm (2).

Figure 4: Monte Carlo simulations when Type II loss is unknown: optimal chosen α(c, µ)

Note: α(c, µ) is computed using step 1 described in Algorithm 3. Refer to main text for details.

Figure 5: Average loss for Monte Carlo simulations when Type II loss is unknown, T=100

Note: Average loss is computed following the Algorithm 3. Refer to main text for details.

Figure 4 displays the optimally chosen sizes, which differ significantly from Figure 2 in that they

no longer vary with the true µ as this is unobservable to the researcher. Otherwise, we still see

that as c increases the optimal alpha decreases monotonically.

Average losses are presented in Figure 5. We find that the average loss under the optimally picked

sizes are lower for most values of µ, with the exception of extremely small or large values. Table
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4 compares the average losses under the situation with known and unknown Type II loss. The

average loss under unknown Type II loss is larger relative to the loss under known Type II loss.

Moreover, when µ = 0.5 (very small break) or µ = 4, 5 (very large break), losses with unknown

Type II loss are larger than the loss using α = 0.05. The intuition is as follows:

• when the actual break µ is very small (the power of the test tends to be small) but unknown,

the researcher has to integrate out all the possible break sizes in B. It implies that the

optimally chosen α(c, µ) is larger compared to the situation where µ is known, leading to

over-rejection of the null hypothesis.

• similarly, when the actual break µ is very large, the textbook procedure of using α = 0.05 is

sufficiently good at detecting breaks because of high power. However, an ignorant researcher

has to integrate out all the possible break sizes in B, implying that a larger optimal α(c, µ)

is chosen compared to the situation where µ is known. Over-rejection of the null hypothesis

is resulted.

In short, our proposed algorithm still works better when Type II loss is unknown, with the exception

of extreme values of µ.

Table 4: Comparing the average losses when Type II loss is known and unknown to the researcher,
T=100, for selected pairs of (c, µ)

µ

c 0.5 1 2 3 4 5

L
c,µ

α=α(c,µ) (known Type II loss) 0.5 0.20 0.13 0.09 0.06 0.03 0.01

L
c,µ

α=α(c,µ) (unknown Type II loss) 0.5 0.40 0.48 0.32 0.16 0.13 0.13

L
c,µ
α=0.05 0.5 0.48 0.85 0.97 0.46 0.10 0.02

L
c,µ

α=α(c,µ) (known Type II loss) 1 0.44 0.33 0.19 0.11 0.05 0.02

L
c,µ

α=α(c,µ) (unknown Type II loss) 1 0.50 0.66 0.49 0.23 0.16 0.15

L
c,µ
α=0.05 1 0.49 0.86 0.98 0.47 0.11 0.03

L
T,µ,c

α=α(c,µ) (known Type II loss) 1.5 0.50 0.48 0.27 0.14 0.07 0.03

L
T,µ,c

α=α(c,µ) (unknown Type II loss) 1.5 0.55 0.76 0.61 0.28 0.17 0.17

L
c,µ
α=0.05 1.5 0.50 0.87 0.99 0.48 0.12 0.04

L
c,µ

α=α(c,µ) (known Type II loss) 2 0.50 0.60 0.34 0.17 0.08 0.04

L
c,µ

α=α(c,µ) (unknown Type II loss) 2 0.57 0.81 0.70 0.33 0.18 0.17

L
c,µ
α=0.05 2 0.51 0.88 1.00 0.49 0.13 0.05

Note: Average loss Lc,µ

α=α(c,µ) when Type II loss is known is computed using Algorithm (2), whereas average loss

L
c,µ

α=α(c,µ) when Type II loss is unknown is computed using Algorithm (3). Lc,µ

α=0.05 is the average loss when the
textbook procedure of α = 0.05 is used. Refer to the main text for details.

7 Empirical Application

In this section we present the results of our exercise. We start off with our univariate analysis

by presenting the optimal size of the test that our procedures results in. Then, given the optimal

test size and the corresponding simulation-based critical values, we test whether Bank of England

forecasts for each of the variables under consideration and at various key forecast horizons improved

or deteriorated in the aftermath of the Great Recession. We will also discuss the implication for
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the optimal test size under our multivariate analysis.

7.1 Data

Our analysis considers 13 quarterly macroeconomic time series, including the headline variables

such as real GDP growth (‘GDP’), CPI inflation (‘CPI’) and the unemployment rate (‘Urate’). The

other ten variables are nominal wages (‘Wages’), hours, real investment (‘RealInv’), real government

spending (‘RealG’), real exports (‘RealX’), real imports (‘RealIm’), real consumption (‘RealC’),

nominal house prices (‘Houseprices’), as well as real GDP growth for the Euro Area (‘GDP-EA’)

and the US (‘GDP-US’). All series except the unemployment rate are expressed in annual growth,

in line with Bank of England (2015). Our sample covers the period from 2000Q4 to 2016Q4 from

the Bank of England database.9

We will focus on forecast errors at horizons of 1, 4, 8 and 12 quarters. Our implementation follows

the fixed-scheme approach outlined by Giacomini and Rossi (2009) in that we fix the dates for our

base and evaluation samples, primarily on considerations of sample sizes and on the occurrence of

the Great Recession in the middle of our data sample. We fix the break date at 2011Q4 so that

we have exactly 20 observations in the evaluation sample.

7.2 Univariate analysis

7.2.1 Optimal test size

Table 5 reports the test sizes we selected optimally following Algorithm 1, when we consider each

variable in isolation (i.e. when z = x). Test sizes are differentiated across both variables and

forecast horizons and tailored to the observed sample characteristics of each series. While there

is no particular pattern across horizons or depending on whether 2008 and 2009 are included in

the analysis, all the significance levels we end up selecting are larger than the customary 5 or 10

percent values.10 Indeed only a few are below the 30 percent mark.11 This suggests that given our

setup and sample the power of the test is rather low at the standard 5 percent significance level.

By selecting higher nominal size values our procedure increases the test’s power. As a result, our

procedure will be much more sensitive even to relatively small and recently occurred breaks. This

is optimal, however, given the costs that such breaks incur.

9The start date is constrained by the earliest date for which all of the series are available for the vector autore-
gressive model in Section 5.1.1.

10Excluding the crisis period reduces the number of observation to the point of making it impractical to study
3-year ahead forecasts.

11Some optimal test sizes reach 50 percent. There are two possible explanations. Firstly, the fact that we use a
grid in our minimisation problem, as explained in Section 5, to ease the computational burden comes with a trade-off.
We anticipate that the use of a finer grid can help. Secondly, it reflects that, for some variables, the test has very
low power for the alternative hypotheses considered and therefore has no ability to distinguish the null from the
alternative. It implies that the choice is essentially a binary one between the two hypotheses and, with very high
probability, the lower cost hypothesis is selected. The low power can be a result of our adoption of data-based rules.
Recall in Section 5.3 we estimate, in the base sample, reference breaks b̃x and their associated probabilities as a
function of the magnitude of the reference breaks standardised by the standard deviation of rolling window bias σx.
If the likelihood of observing a ‘reasonably large’ break in the data is low, our algorithm will have low power to
distinguish the null from the alternative hypotheses.
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Table 5: Optimally selected test size (in percent) in our univariate analysis

2000Q4-2011Q4 2000Q4-2011Q4
excl 2008-09

Forecast horizon (h) Forecast horizon (h)
1 4 8 12 1 4 8

GDP 37.2 36.1 37.7 44.7 42.3 39.1 45.8
CPI 42.1 46.6 46.5 50.0 46.44 37.7 50.0
Urate 46.9 36.7 42.9 40.0 40.0 42.2 35.6
Wages 39.9 39.6 46.1 40.0 48.7 39.6 43.6
Hours 42.1 49.2 38.1 49.0 38.5 32.0 40.0
RealInv 39.8 45.3 38.8 48.6 49.9 44.3 44.2
RealG 35.8 46.2 39.9 48.0 37.2 47.0 49.9
RealX 42.6 37.0 39.5 36.9 48.9 46.0 50.0
RealIm 37.5 44.2 47.1 47.0 40.1 38.7 46.0
RealC 40.2 40.6 46.7 49.9 44.5 39.8 48.3

Houseprices 46.5 42.4 45.0 43.1 40.0 46.1 38.5
GDP-EA 44.3 44.9 45.1 44.8 46.4 43.8 40.0
GDP-US 42.7 27.6 46.2.0 40.0 39.8 42.0 46.3

Note: The left panel considers the base sample from 2000 to 2012. In the right panel, observations in 2008 and
2009 are excluded from the base sample to guard against the effects of the Great Recession years. In so doing, the
sample becomes short to the point of making the evaluation of the 12-quarter ahead forecast impractical. The
optimal size is computed based on the univariate analysis outlined in Section 5 and is summarised in Algorithm
1.

7.2.2 Application to Bank of England Forecast Errors

Having worked out the optimal test size, we turn to study whether forecasts for our main variables

of interest have displayed significant improvements or deteriorations over our sample. Table 6

summarizes the main results for our univariate analysis.12 It reports the thirteen variables under

consideration in the rows and the forecast horizons in the columns. The left-hand panel compares

the 2012-2016 period to the 2000-2011 period while the right-hand panel reports result that exclude

the Great Recession period (2008-2009) from our base sample. We use a simple colour-coding

scheme to report our procedure’s results. A blue cell corresponds to the situation in which, based

on the test size selected with our loss-function scheme and the simulated critical values reported

in Table 5, we cannot reject the null hypothesis of no change in forecast performance. In other

words, it corresponds to a situation in which the forecast error biases in the evaluation period are

not statistically different from those observed in the evaluation period. The other cells correspond

to situations in which our procedures flags a statistically significant change in the forecasting for a

certain variable/horizon pair. When a significant change is observed we then check if the forecast

performance has deteriorated (which we mark with a red cell) or improved (which we represent

with a green cell).

Starting with the left-hand panel, we observe a predominance of green at horizons of one year

and beyond. That suggests that forecasts have generally become more accurate over the last 5

years. That is in part, however, due to the inclusion of the Great Recession period in our baseline

12Table B.1 in the Appendix documents the forecast bias of GDP and CPI (both of the series are available in the
public domain) in the base and evaluation samples.
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Table 6: Hypothesis testing: univariate analysis applied to Bank of England forecast errors

Base Sample Base Sample
incl 08-09 excl 08-09

Horizon Horizon
1 4 8 12 1 4 8

GDP
CPI
Urate
Wages
Hours
RealInv
RealG
RealX
RealIm
RealC

Houseprices
GDP-EA
GDP-US

Note: The base sample is from 2000Q4 to 2011Q4. In the left panel observations between 2008 and 2009 are
included whereas in the right panel these observations are excluded. The evaluation sample is from 2012Q1-
2016Q4. The null hypothesis is that there is no change in forecast bias across the base and evaluation samples. A
blue cell corresponds to non-rejection of the null hypothesis using the simulated critical values reported in Table
5. A red cell denotes a statistically significant deterioration of forecast performance in the evaluation period
relative to the base, and a green cell denotes a statistically significant improvement.
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sample. The right-hand panel shows that forecast accuracy has generally deteriorated from the

pre-crisis period. This is hardly surprising though. The post Great Recession economy presents

more challenges to a forecaster than the Great Moderation world we lived in at the turn of the

century. For instance, the exceptionally slow recovery of labour productivity in the aftermath of

the recession — the UK productivity puzzle — poses a set of new questions which can only be

answered with time. And uncertainties surrounding trend growth rates can easily result in biased

forecasts for many of the real variables.

Another interesting point can be made observing the left-hand panel of Table 6: the tendency to

observe forecast improvements at horizons of 4 quarters and above, does not extend to nowcasts

(i.e. h = 1). With the notable exception of the nowcast for inflation, biases worsened across a host

of variables. And, for the most part, the relative performance of nowcasts is unaffected (in terms

of the rejection of the null of no change in the forecast bias as well as in terms of improvement or

deterioration) by the inclusion of the crisis period in the baseline sample.

A notable exception is GDP. The GDP nowcast bias displays a significant deterioration when we

compare the 2012-2016 period to 2000-2011 but it does display a significant improvement when the

crisis period is removed. This is, at first, puzzling since both common wisdom and much of this

analysis suggests the Great Recession was not easy to handle for forecasters. Yet, it can be better

understood by studying the time series of forecast errors for GDP nowcasts, which we present in

Figure 6. Recent errors have displayed a positive bias on average (of 0.148%), while the average

error for the full base period was close to zero (-0.035%). However, the latter is the result of

a positive pre-crisis bias (0.225%) being offset by a large negative bias during the crisis period.

From this perspective, the nowcast errors for GDP over the most recent period are not particularly

troublesome at all.

We hope that this illustration shows how this framework can be used in practice. We see a null-

hypothesis rejection simply as the first step in what we could consider a triage process, i.e. it

should be the starting point of some more in-depth analysis.

In this sense, it is also useful to reiterate the benefits of using the first moment of forecast errors

for our analysis. The main advantage lies in the possibility of relating the forecast analysis to

the underlying economics. For instance, when it comes to unemployment, forecasts have ex-post

turned out to over-predict it, which relates to the puzzling weak growth. The problems behind

the apparent deterioration in the accuracy of the forecasts for government spending have a more

subtle explanation, instead, for which there is no substitute for an analyst’s expertise. The Bank of

England traditionally takes forecasts for nominal government spending directly from government

publications, yet a forecast for real government spending requires a projection for the government

spending deflator, which is where the problem appears to have emerged.

To sum up, these very different examples show how our test procedures on forecast errors can

be used as a trigger for further analyses. We cannot emphasise enough that it is important to

investigate forecast breaks case by case by considering a range of metrics, including the size of

forecast bias in sub-samples, the optimal test size and the hypothesis testing results, rather than

basing a decision on a single metric.
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Figure 6: Nowcast errors for GDP
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Note: This figure plots the nowcast (h = 1) errors for GDP and compares the mean in various subsamples.
‘Pre-2012’ represents the base sample (2000Q4 - 2011Q4) whereas ‘Post-2012’ represents the evaluation sample
(2012Q1 - 2016Q4). The dotted green line denotes the mean for the base period excluding the financial crisis
period, defined between 2008Q1 and 2009Q4, whereas the dotted red line includes the period. The dotted purple
line denotes the mean for the evaluation sample.

7.3 Multivariate analysis

Recall our discussion in Section 5 that the set-up of univariate and multivariate analyses seeks to

answer two different questions. In the multivariate analysis, we consider variables jointly rather

than in isolation. In other words, it involves testing not just whether there has been a break

in a particular series, but whether that break is material for another variable of interest. This

necessarily alters the consideration of the choice of the optimal size of the test as it changes the

loss characteristics of each variable. We find that such multivariate analysis leads to a dramatic

fall in the optimal test sizes, which is the direct result of the increase in test power.

Figure 7 displays the power function of GDP (the first row) and inflation (the second row) in the

univariate analysis (the first column) and in the multivariate case (the second column, as a function

of consumption and wages respectively). Figure 7 illustrates that the power increases dramatically

when we model cross-variable relationships — more specifically, when we model how a break in

forecast accuracy of an instrumental variable x impacts the forecast accuracy of a headline variable

z. In other words, it is easier for the test to detect changes in the forecast accuracy of GDP (CPI)

conditional on breaks in consumption (wages), when compared to using GDP (CPI) only.

What has caused this improvement? Note that the univariate analysis neglects any information

about cross-equation restrictions (Hansen and Sargent, 1980) which can carry economic implica-

tions between variables. Since consumption makes up 60% of the GDP, the two variables are

unsurprisingly highly correlated. While such correlation is neglected in the univariate case, it is
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Figure 7: Simulated Power Functions
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Note: This figure displays the power functions for GDP (the first row) and CPI (the second row) in terms of
the percentage of the estimated reference breaks based on the base sample (2000Q4-2011Q4). The first column
shows the power functions in our univariate analyses, where we consider breaks in forecast performance (changes
in forecast biases across the base and evaluation samples) in GDP and CPI per se. The second column reports
the power functions where we consider forecast breaks in real consumption (the first row) and in nominal wages
(the second row). The loss function is described in equation 15.

fully exploited in the multivariate one. The same argument goes for CPI inflation and nominal

wages. Table 7 presents the optimally selected size for GDP and CPI conditional on the forecast

break of each of the variables in the 13-variable VAR model. We observe that the optimal size

drops dramatically when comparing them to the univariate analysis in Table 5: many of the sizes

are now in the range of 5 and 30 percent. It reflects the substantial increase in the test power in

our multivariate setting.

8 Conclusion

Detecting forecast breakdowns is a difficult task. Data spans are limited and past structural

change further reduces informative data availability. Further, tests for structural change are well

known to have low power and therefore struggle to pick up recent breaks. The low power property

seems endemic and not associated with specific tests. Therefore, a different approach is needed to

overcome this hurdle. This paper provides one based on decision theory. Given that low power

is one of two forms of error associated with testing it is reasonable to consider trading off low

power with higher Type I errors. Standard practice which fixes Type I errors and accepts any
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Table 7: Optimally selected test size (in percent) for GDP and CPI conditional on the forecast
break of each of the variables in our multivariate VAR analysis

GDP CPI
Forecast horizon (h) Forecast horizon (h)
1 4 8 1 4 8

Forecast Performance Break
(i.e. ∆ forecast bias) in

GDP 9.70 8.53 11.4 19.4 22.6 11.4
CPI 23.8 9.23 6.96 9.75 10.0 9.58
Urate 9.70 26.6 8.28 29.3 16.8 8.28
Wages 19.9 19.6 41.2 20.0 10.0 7.97
Hours 19.8 50.0 20.0 27.0 20.0 20.0
RealInv 16.5 9.72 7.55 8.29 28.9 33.9
RealG 25.8 9.74 17.1 8.97 9.74 39.9
RealX 28.1 5.00 5.00 18.0 8.59 5.00
RealIm 24.0 38.9 5.00 43.9 18.9 5.00
RealC 17.9 24.6 5.00 9.04 7.82 8.40

Houseprices 20.0 5.00 5.00 18.4 9.47 18.2
GDP-EA 9.16 9.40 9.39 9.85 15.0 48.8
GDP-US 14.5 5.00 16.3 5.00 5.00 39.7

Note: The base sample is from 2000Q4 to 2011Q4. The optimal size is computed based on the multivariate
analysis outlined in Section 5 and is summarised in Algorithm 1.

resulting Type II ones seems ill equipped to address the problem. Therefore, we approach the

problem of setting Type I errors based on loss functions. This leads to a strategy for trading off

the two errors. The use of decision theoretic considerations to modify statistical testing seems

novel, certainly within our macroeconometric context.

The paper discusses extensively the problem, sets out the detailed theoretical setting and imple-

ments it using Bank of England forecasts. We find that, in a number of cases, resulting choices

for Type I error, based on our chosen loss functions, exceed considerably standard values. Our

new approach for detecting shifts in forecast accuracy opens up a new avenue for policy makers to

study forecast breaks when the sample size is small. As a matter of fact, our procedure serves as

a starting point for a case-by-case investigation into the cause of forecast breaks. In our discus-

sion, we demonstrate that, rather than relying on one single metric, we use a series of metrics for

investigation.
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Appendix

A Monte Carlo Simulations

In Section 6, we assume T = 100 in our simulations. We perform evidence that our simulations

are unaffected by the choice of T because of our simulation setup in section 4.2. For brevity, we

only present evidence when Type II loss is known, but results extend to the situation where Type

II loss is not known.

To that end, we show Figure A.1, a plot of the average losses L
c,µ

α=α(c,µ) and L
c,µ
α=0.05 with c = 1

with the number of observations T ∈ 10, 60, 100, 200. There is little difference between the four set

of simulations. Such result is held across all values of c.

Figure A.1: Average loss for Monte Carlo simulations when Type II loss is known, different values
of T
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Note: Average loss is computed following the Algorithm 2. Refer to main text for details.

B Forecast bias in the data
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Table B.1: Forecast bias for each variable in the data

Base sample bias Base sample bias Evaluation sample bias
2000Q4-11Q4 2000Q4-11Q4 2012Q1-16Q4

excl 08-09
1 4 8 12 1 4 8 1 4 8 12

GDP -0.035 -0.793** -1.275** -1.447** 0.225* -0.146 -0.330** 0.148 -0.137 -0.551** -0.752**
CPI -0.398** 0.030 0.276* 0.097 -0.509** -0.034 -0.157 -0.091** -0.540** -0.046 -0.032

Note: This table documents the forecast bias for each variable in each subsample period. The unit is in percent. The left panel considers the base
sample from 2000 to 2012 including observations from the financial crisis period between 2008-2009; the central panel considers the base sample
excluding observations from the financial crisis period; and the right panel considers the evaluation sample between 2012 and 2016. ‘*’ denotes that
the bias is statistically significant from zero at 10%, whereas ‘**’ denotes significance at 5%. The p-values which are used to conduct inferences are
simulated to adjust for potential small sample bias in the data. Refer to the main text for details.
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