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Effect of sea-bottom elasticity on 
the propagation of acoustic–gravity 
waves from impacting objects
Usama Kadri   1,2,3

Recent analysis of data, recorded on March 8th 2014 at the Comprehensive Nuclear-Test-Ban Treaty 
Organisation’s hydroacoustic stations off Cape Leeuwin Western Australia, and at Diego Garcia, has led 
to the development of an inverse model for locating impacting objects on the sea surface. The model 
employs the phase velocity of acoustic–gravity waves that radiate during the impact, and only considers 
their propagation in the water layer. Here, we address a significant characteristic of acoustic–gravity 
waves: the ability to penetrate through the sea-bottom, which modifies the propagation speed and 
thus the arrival time of signals at the hydrophone station. Therefore, we revisit some signals that are 
associated with the missing Malaysian Aeroplane MH370, and illustrate the role of sea-bottom elasticity 
on determining impact locations.

Motivated initially by locating the missing Malaysian Aeroplane MH370, ref.1 studied the radiation of acoustic–
gravity waves from impacting objects. ref.1 presented a technique for locating objects impacting at the sea surface 
using an inverse approach. Data recorded at hydrophone stations were employed to calculate the location of 
events not only at the sea surface but also at the sea-bottom (i.e., earthquakes), which is found to be possible since 
the far-field solution of both problems is very similar. The proposed technique was validated by ref.1 by comparing 
the calculated locations of two earthquake epicentres with existing data from seismometers. Although the agree-
ment was sufficient at such large distances (order of thousands kilometres), discrepancies were still found. These 
might be associated with the sea-bottom rigidity assumption postulated in the original model. When rigidity is 
assumed, acoustic–gravity waves propagate at speeds near 1500 m/s, i.e. the speed of sound in water. In this study, 
we discuss the role of sea-bottom elasticity on the propagation speed of acoustic–gravity waves, and how this 
alters location calculations of impacting objects. Note that the sound signals that were analysed here are standard 
sound waves of low frequency nature. They are referred to as acoustic–gravity waves to emphasise that gravita-
tional effects, which can modulate them, are not neglected in the analysis.

It is now well established that acoustic–gravity waves can travel in the ocean2–5 for long distances6, yet they 
can also penetrate through the elastic layers such as sea-bottom7 or ice-sheets8,9. The transmission mechanism 
between layers is still not well developed, though it is believed that it could occur once a critical depth (or fre-
quency) is reached7. It is also reasonable that transmissions and reflections occur between media (liquid and 
solid) when a sharp change in the sea-bottom bathymetry is observed, such as a trench, a hill, or a shelf-break6. 
The propagation through multiple layers results in different arrival times, or in the context of this work, would 
modify the calculated location of impacting objects. To this end, we revisit data that was recorded at the 
Comprehensive Test Ban Treaty Organisation’s (CTBTO) hydrophone stations HA01 and HA08s on March 7th 
and 8th 2014 between 23:00 and 04:00 UTC, a time window in which MH370 is believed to have crashed in the 
Southern Indian Ocean. The findings here not only modify possible impact locations from previously analysed 
signals on HA01, but also reveal new evidence of missing data on HA08s, which if found related to MH370 would 
suggest a completely different route and impact location north-east Madagascar, see Fig. 1.

Results
Upon impact, the generated acoustic–gravity waves radiate in the water layer at about cl = 1500 m/s. When they 
penetrate in the solid layer they travel at cs = 3350 m/s. Acoustic–gravity waves can transmit back and forth from 
one layer to another, depending on the critical depth/frequency and sharp changes in sea-bottom bathymetry, 
and that creates a complex matrix of possible routs for the recorded signals as summarised below. In the following 
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we revisit some of the previously analysed signals recorded on station HA01, and introduce new signals recorded 
on station HA08s. Spectrograms of all signals indicate a significant amount of noise in the 0–4 Hz band. The 
signals in this band appear to have a broadband frequency content which is typical for low frequency AGWs 

Figure 1.  Map of recorded signals on CTBTO hydrophone stations HA01 and HA08s on March 7th and 8th 
2014 between 23:00 and 04:00 UTC. Purple: bearing of signals recorded on HA01 that could be associated with 
MH370, with white-grey polygons that present possible source locations corresponding to transmission routes 
combining water and sea-bottom following Tables 1 and 2. Cyan: bearing of signals recorded on HA08s that 
could be associated with MH370, based on Table 3 - bearings 170° and 234° could be related. White: satellite 
data of the last ‘handshake’ with MH370, known as the 7th arc. Red: bearings of military action that were 
recorded intermittently on HA08s between 23:00–04:00 UTC. Orange: two possible MH370 routes; only route I 
is in agreement with the 7th arc. Attribution: Data SIO, NOAA, U.S. Navy, NGA, GEBCO; ©2018 Basarsoft; US 
Dept of State Geographer; ©2018 Google.

Transmission route Distance (km) Location

no transmision 1900 ± 200 24°50S 98°06′E

→T T16 15 2226 ± 234 23°01S 95°38′E

→ →T T T15 14 12 2234 ± 235 22°56S 95°35′E

T15 2876 ± 303 19°10S 90°55′E

→T T16 12 3664 ± 386 14°18S 85°28′E

T17 3918 ± 412 12°43S 83°46′E

T18 4294 ± 452 10°21S 81°18′E

Table 1.  Possible transmission routs between water and solid layers for signal E1 on bearing 301°. T1j at odd or 
even sequence order correspond to transmissions from water to solid or solid to water, respectively. The distance 
is measured from station HA01.

Transmission route Distance (km) Location

no transmision 1940 ± 204 43°29S 94°30′E

→T T23 22 2276 ± 271 44°36S 90°35′E

→ → →T T T T25 24 23 21 3180 ± 335 46°53S 79°25′E

T24 3222 ± 339 46°58S 78°50′E

T26 4384 ± 461 48°01S 63°31′E

Table 2.  Possible transmission routs between water and solid layers for signal E2 on bearing 234°. T1j at odd or 
even sequence order correspond to transmissions from water to solid or solid to water, respectively. The distance 
is measured from station HA01.
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that can travel long distances before dissipating. We therefore filtered low frequencies (below 5 Hz) with a high 
pass Butterworth IIR filter. Since the signal randomness measure will change when the signal’s nature changes, 
transient signals over a noisy background can be identified by calculating a windowed entropy value. Peaks in the 
entropy trace are present where transient signals are detected. These peaks were considered for the subsequent 
bearing calculation. After separating the signals, the bearing is calculated using time of arrival based triangula-
tion, see ref.1 for detailed bearing calculations.

HA01.  We address two possible impact events that were identified by ref.1 thats could be associated with 
MH370:

	 1.	 E1: 301.4 ± 0.4°, 1900 ± 200 km from HA01, centred at −23.662°, 96.676°, recorded at 01:34:40 UTC (event 
source between 01:11 and 01:16)

	 2.	 E2: 234.6 ± 0.4°, 1940 ± 200 km from HA01, centred at −43.487°, 94.469°, recorded at 00:50:00 UTC (event 
source between 00:25 and 00:31)

Transects along the bearings of E1 and E2 are given in Figs 2 and 3. Acoustic–gravity waves can transmit 
between layers at the highlighted regions T1j (j = 1, …, 8) in the case of bearing 301°, and T2k (k = 1, …, 6) in the 
case of bearing 234°. One possibility, in both E1 and E2, is that the recorded acoustic–gravity waves travelled 
only in the water layer, which results in the locations originally identified by ref.1. Another possibility is that 
acoustic–gravity waves couple with the elastic layer shortly after the impact and all along the way until the signals 
are received at the station. This scenario dictates farest location distance that is cs/cl (almost as twice) the dis-
tance originally calculated by ref.1. The second scenario is more likely when the water depth at impact is critical. 
Between these two marginal possibilities there are a number possible transmission between layers that result in 
different locations, as summarised in Tables 1 and 2.

Signal
Time 
[UTC] Bearing

Distance 
[km] Location

HA_30 11:57 247.4° 585 ± 276 9°34′S 67°36′E

HA_31 12:11 170.9° 2,300 ± 250 28°08′S 76°20′E

HA_32 01:58 241.3° 2,860 ± 900 19°05′S 48°32′E

HA_34a 03:47 170.9° — —

HA_34b 03:50 173.0° — —

HA_34c 03:55 170.9° — —

Table 3.  Signals recorded at HA08s. The recording times are in UTC, and the bearings are relative to HA08s. 
Signals from military action are intermittent at two locations: 219.2° and 309.7°.

Figure 2.  Top: bearing 301° relative to HA01 (solid line). Bottom: transection of sea-bottom, and zones of 
possible transmissions from and to water or solid layers.
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HA08s.  Analyses of signals recorded at station HA08s (−65.5445°, 32.4730°) were more challenging, partially 
due to disturbances in the recordings that are believed to be caused by military action in the region. A summary 
of identified signals of interest (see Fig. 4) is given in Table 3. Note that bearings if signals HA_30 and HA_32 fall 
within the military action bearings, so it is also possible that the signals are associated with the military action. 
Among the rest of the signals, it is remarkable that three have a bearing of 170.9°, and one 173°. The first occurred 
at 12:11 UTC whereas the other three followed about three hours later, all after 3.30. Last but not least, a fifth 
signal appears at 3:07 (see Fig. 5). This signal probably indicates restarting the system after it was shutdown for 
25 minutes, i.e. there is a missing data in these specific CTBTO recordings.

Discussion
Acoustic–gravity waves can travel at speeds near the speed of sound in water, yet they can double their speed 
when coupling with the elastic layer. As they propagate they carry information on their source and thus can 
be used, among others, for locating impacting objects at the sea surface by applying a proper inverse model1. 
However, since the location directly relies on the propagation speed, and the later depends on the medium, it is 
important to know the route travelled by acoustic–gravity waves. For example, signals E1 and E2 travel through 
different routs, as given in Tables 1 and 2, which can results in different calculated locations. In the case of mul-
tiple transmissions one expects teh signals to be composed of a number of smaller signals, which is not the case 
here unless if other signals are buried in the ambient noise. Since only one complete signal has been identified 
for each of E1 and E2, it is more likely that the signals either did not transmit at all into the elastic layer, or 
transmitted only once at the initial stage and coupled with the elastic layer all a long the way, i.e. the first and last 
possibilities of each table.

The locations of signals found on HA08s are with high uncertainty or unknown and require further analysis. 
Though, if related to MH370 that might suggest a location in the northern part of the Indian Ocean. Due to the 
sensitivity of the recorded data, it is unlikely that the three hydrophones on HA08s had a simultaneous technical 
failure and the reason behind the shut down is to-date unknown. The missing data might be related to the military 
action in the area (during or after the impact), but another argument is that a violent nearby activity (including 
impact, explosion) could have resulted in a shutdown of the system. Both the signal HA_30 of bearing 247° 
recorded at 11:57 on March 7th, and the missing data if related to MH370 could (independently) suggest that the 
impact location is closer to Diego Garcia’s station, as opposed to Cape Leeuwin’s station. With the absence of the 
recordings, there is currently no scientific evidence that an impact occurred during this time window. However, it 
might be possible to extract more information after processing hidden signals in the ambient noise. To study this 
possibility and to further assess the effects of elasticity and transmissions due to sea-bottom topography we intend 
to carry out a set of field experiments, while in parallel develop a depth-integrated, see10, sea-bottom elastic model 
for the radiation of acoustic–gravity waves from impacting objects.

Methods
Dispersion relation.  The solution for the propagation of acoustic–gravity waves in compressible water under 
the effects of gravity, and an elastic half space was treated by ref.7, who derived the dispersion relation,

Figure 3.  Top: bearing 234° relative to HA01 (solid line). Bottom: transection of sea-bottom, and zones of 
possible transmissions from and to water or solid layers.

https://doi.org/10.1038/s41598-018-37626-z


www.nature.com/scientificreports/

5Scientific Reports |           (2019) 9:912  | https://doi.org/10.1038/s41598-018-37626-z

ρ λ μ λ

λ μ λ
=

+ 



− + + 



+ 



− + + 



ω μ

ω ρ μ

−

+ +

−

+ +

{ }( )
( )

rh
q q k

q k
tanh( )

( 2 )

( 2 )
(1)

r l
k s
k s g

k qs
k s

q

gr
k s
k s

k qs
k s

1 4 2 2

4 2 2l

2 2 2

2 2

2

2 2

4

2

2 2

2 2

2

2 2

where r is the eigenvalue, h is the water depth, g is the acceleration due to gravity, k is the wavenumber, ω is the 
frequency, λ and μ are Lame’s elasticity constants, ρl is the water density, and q and s are separation constants in 
the solid sea-bottom,

Figure 4.  Signal, cross-correlation, and bearings of recordings at HA08s reveals a few signals of interest 
(summarised in Table 3).

Figure 5.  Raw data recorded by all three hydrophones of HA08s. The sharp signal indicates restarting the 
system after 25 minutes of missing data on all three hydrophones starting from 3:07 UTC.
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where λ μ ρ= +c ( 2 )/p s  and μ ρ=c /s s  are pressure-wave and shear-wave velocities in the sea-bottom, respec-
tively; and ρs is the earth density. For our numerical examples we rely on average parameter-values taken from the 
entries for the crust and ocean in Table 1 of PREM11: ρl = 1020 kg/m3, ρs = 2750 kg/m3, cl = 1470 m/s, cs = 3550 m/s. 
Employing the dispersion relation allows transmission from the water layer into the elastic sea-bottom and 
vice-versa. Once coupled with the sea-bottom, the propagation speed increases from cl to cs. Note that for this 
main reason, and since we analyse low frequency acoustic–gravity waves that span the entire depth, the effects of 
stratification and variations of water density on the propagation speed where ignored.

Impact time and location.  The measured frequency of the signal is dependant on the impact time and 
location, t0 and x0 as given by5,12:
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For each signal we fix t̂n at some instant at the beginning of the signal, and calculate t0 and x0 with t̂m running 
from = ...m n M, where M denotes the location at the end of the signal. Thus, we obtain a probabilistic distribu-
tion of solutions that allow uncertainty about the most probable solution (see Fig. 6). Detailed signals processing 
and bearing calculations can be found in the methods section of ref.1.
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