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Human cytomegalovirus (HCMV) is a β-herpesvirus with high sero-prevalence within

the human population. Primary HCMV infection and life-long carriage are typically

asymptomatic. However, HCMV is implicated in exacerbation of chronic conditions

and associated damage in individuals with intact immune systems. Furthermore,

HCMV is a significant cause of morbidity and mortality in the immunologically

immature and immune-compromised where disease is associated with tissue damage.

Infection-induced inflammation, including robust cytokine responses, is a key component

of pathologies associated with many viruses. Despite encoding a large number

of immune-evasion genes, HCMV also triggers the induction of inflammatory

cytokine responses during infection. Thus, understanding how cytokines contribute to

CMV-induced pathologies and the mechanisms through which they are regulated may

inform clinical management of disease. Herein, we discuss our current understanding

based on clinical observation and in vivo modeling of disease of the role that cytokines

play in CMV pathogenesis. Specifically, in the context of the different tissues and organs

in which CMV replicates, we give a broad overview of the beneficial and adverse effects

that cytokines have during infection and describe how cytokine-mediated tissue damage

is regulated. We discuss the implications of findings derived from mice and humans

for therapeutic intervention strategies and our understanding of how host genetics may

influence the outcome of CMV infections.
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INTRODUCTION

Human cytomegalovirus (HCMV) is a ubiquitous beta-herpesvirus that has co-evolved with its host
for millions of years and acquired multiple immune evasion functions that manipulate and hide the
virus from host immunity (1, 2). PrimaryHCMV infection and latency in immune-competent hosts
is usually asymptomatic (3). Thus, HCMV is typically thought to establish lifelong infection without
inducing overt pathology often triggered by other viruses. It is becomingly apparent, however, that
chronic HCMV carriage in ‘healthy individuals’ may exacerbate conditions from general frailty (4)
to cardiovascular disease (5).

HCMV causes morbidity and mortality in immune-compromised patients including transplant
recipients and HIV co-infected individuals. Solid-state organ or human stem cell transplantation
remains challenging as immune suppression can facilitate uncontrolled HCMV reactivation
from host and/or donor tissue, resulting in organ pathology and systemic disease (6). HCMV
co-infection is the leading cause of vision loss in untreated HIV/AIDS individuals (7, 8) and
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remains an issue in patients receiving anti-retroviral therapy
(9). HCMV causes gastrointestinal and neurological diseases
during HIV co-infection (7, 10). Further examples of viral-
induced morbidity include congenital infection where HCMV is
the leading infectious cause of all congenital birth defects (11, 12).
Life-long neurological defects ensue, including microcephaly,
encephalitis, seizures, and blindness, and HCMV is the leading
cause of congenital deafness (6, 12, 13).

The fact that HCMV preferentially causes disease in
immune compromised individuals highlights the importance
of immune control of virus replication. Indeed, many HCMV-
associated disease manifestations correlate with viral replication
and respond to antiviral drug treatment. However, certain
syndromes, particularly chronic diseases, do not typically
correlate with high HCMV load (14), suggesting that direct
cellular destruction by virus is not the sole cause of tissue damage.

Cytokines participate in immune responses to viruses
that activate innate immune responses and orchestrate
the development of adaptive antiviral immunity. However,
uncontrolled cytokine production can cause off-target effects,
participating in various immune-driven pathological processes.
Due to the limitations of what can be investigated in humans, the
murine CMV (MCMV)model has been used for decades to study
mechanisms influencing CMV pathogenesis in vivo, including
how cytokines orchestrate antiviral immunity [summarized in
detail elsewhere (15)]. Herein, we examine evidence from both
clinical studies and experimental models of CMV infection
showing that although cytokines are required to limit viral
replication, they can cause host damage. We discuss these
findings in the context of different tissues where damage during
CMV infection can ensue and describe the mechanisms that
restrict these harmful processes (see Figure 1 for summary).

PRO-INFLAMMATORY CYTOKINES,
SYSTEMIC CYTOMEGALOVIRUS-
INDUCED DISEASE, AND ORGAN
DAMAGE

Cytokine responses during HCMV viremia have been mostly
studied in the transplantation setting where time of virus
exposure is known. Following initial replication, sustained type
1 cytokine signatures are observed that are characterized by
production of IFNγ [in some but not all studies (16)], IL-
18 and IL-6, and is further accompanied by acute phase
protein and chemokine (IP-10) secretion (16, 17). T-cells
are implicated as a significant source of type 1 cytokines
(18, 19). Furthermore, numerous pro-inflammatory chemokines
and cytokines, including IL-6, are secreted directly following
HCMV infection (20). HCMV triggers cytokine production
through the stimulation of pattern recognition receptors (PRRs),
most notably Toll-like receptor 2 (21), the cytoplasmic DNA
sensor STING (22) and IFI16 (23). Mice defective in PRRs
mount reduced cytokine responses to MCMV in vivo (24–26).
Although differences in the relative contributions of PRRs to the
recognition of MCMV and HCMV may exist, these data suggest
that innate immune recognition of viral infection by PRRs

contributes to HCMV-induced cytokine profiles. Furthermore, in
vitro, HCMV stimulation of peripheral blood-derived monocytes
increases expression of TLRs, CD14, and adaptor molecules and
transcription factors downstream of TLRs (27). Thus, active
HCMV replication likely induces systemic pro-inflammatory
cytokine responses both following via direct host recognition
but also, potentially, by priming the host immune response to
respond strongly to unrelated microbial signals.

Given the established role for type 1 cytokines in antiviral
immunity, is such a response to CMV infection a bad thing
for the host? Certainly, substantial evidence from clinical and
experimental studies point toward a protective role for type
1 cytokine responses in cytomegalovirus infections (28–30).
However, studies using MCMV show that T-cell responses,
particularly CD8+ T-cells, known to be induced by type
1 cytokines cause substantial tissue damage if insufficiently
regulated (31, 32). Also, severe inflammatory cytokine responses
or “cytokine storms” occur during MCMV hepatitis (33). Thus,
these processes may drive acute HCMV-associated diseases.
Furthermore, HCMV is implicated in organ rejection (34,
35) and, in cardiac transplants, graft atherosclerosis (36).
Experimental studies using MCMV have recapitulated the
observation that acute infection and viral reactivation can
influence graft longevity (37, 38). MCMV reactivation induces
expression within the graft of IFNα and IL-12 (37), implying that
viral infection may elicit cytokine responses that activate cellular
immunity capable of mediating graft rejection. Furthermore,
HCMV induces IP-10 and fractalkine production during
infection (17, 39), both of which are markers of allograft rejection
(40).

HCMV establishes life-long infection within multiple host
tissues (41) where some genomes are silent but others are
transcriptionally active and express many genes (41–43).
Immunological data highlights the likelihood that frequent
reactivation events occur that re-stimulate the host immune
system (44). Subsequently, HCMV may contribute to cytokine
mediated inflammatory diseases in latently-infected immune
competent individuals via continued gene transcription and
reactivation, stimulating immune recognition and subsequent
cytokine production. For example, HCMV is implicated in
cardiac diseases (45) including atherosclerosis (46) where plaque
formation and instability is an inflammatory-driven processes
initiated by IFNγ (47). HCMV also induces accumulation of
virus-specific cytotoxic CD4+ T-cells expressing CX3CR1 (48).
CX3CR1 binds fractalkine which is expressed by activated
endothelium in response to TNFα and IFNγ produced by
HCMV-specific T-cells (39). Interestingly, the HCMV chemokine
receptor homolog US28 also binds fractalkine (49) and may
contribute to localized inflammation. Thus, HCMV-induced
cytokine and T-cell responses may mediate endothelial damage
that in turn promotes vascular diseases and contributes to
damage in multiple tissues and organs. Whether such processes
underpin other harmful associations of HCMV, such as increased
frailty in elderly individuals (4), is unclear.

Cytokines may also indirectly enhance tissue damage by
promoting CMV reactivation and subsequent replication. IL-6
promotes HCMV reactivation in dendritic cells via ERK-MAPK
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FIGURE 1 | Role for cytokines in CMV-induced organ pathologies. Organ or tissue and associated CMV-induced disease is labeled with inflammatory pathogenic

cytokines highlighted in red and regulatory/suppressive pathways shown in blue.

mediated transcriptional induction of major immediate early
(IE) genes (50, 51). TNFα and IL-1β also induce IE gene
transcription by latent HCMV (52–54) and are implicated in
reactivation of HCMV and/or MCMV in vitro and in vivo
(55–59). An additional role for IFNγ in initiating HCMV
reactivation has been described (56, 58). Data from MCMV
suggest that overt pro-inflammatory cytokine responses may
also impinge on innate antiviral immunity. Inadequate pro-
inflammatory cytokine regulation can promote activation-
induced NK cell death (60, 61) in a process involving IL-6
(60). Thus, inflammatory cytokines may directly and indirectly
promote virus replication, which in turn drives peripheral tissue
damage.

CYTOKINES AND DAMAGE IN IMMUNE
PRIVILEGED SITES

When HCMV accesses immune privileged organs, immune-
mediated pathology can ensue. HCMV-induced retinitis is a
significant problem in AIDS/HIV patients (7–9). Interestingly,
elevated expression of type 1 cytokines including IL-6 and IFNγ

in aqueous and/or vitreous fluids from patients is detectable (62–
64). Systemic CMV infection in immune competent mice induces
significant myeloid cell and T-cell infiltrations into ocular tissue
including the neural retina (65). Although cytokines likely play
a role in mediating these inflammatory processes in immune
competent hosts, this has yet to be investigated.

A role for inflammation in HCMV-induced hearing loss in
infants is suggested by autopsies showing inner ear inflammation
(66, 67). In mice, systemic infection of newborns induces
progressive hearing loss and decreased spiral ganglia neuron
density that is indicative of congenital HCMV infection (68).
In MCMV, hearing loss does not correlate with the presence
of virus in the cochlea but rather associates with persistent
expression of chemokines and pro-inflammatory cytokines
including TNFα, IL-6, and IL-1β (68). Similarly, intracranial
MCMV infection induces hearing loss and chronic inflammatory
cytokine expression (69).

Murine neonatal infection models have also been used
to recapitulate central nervous system pathology triggered
by congenital HCMV infection. After systemic infection,
MCMV induces widespread focal encephalitis accompanied by
mononuclear inflammation and microglial activation (70, 71),
including TNFα expression (72). This is accompanied by STAT1
activation and IFN (type I and II) expression, in addition to
TNFα (73). Interestingly, glucocorticoid treatment of these
mice reduced cytokine expression and associated morphogenic
abnormalities and cellular inflammation without influencing
virus load, suggesting that virus-induced inflammation could
be safely targeted to improve CMV-induced CNS pathogenesis
(73). Indeed, neutralization of TNFα reduced expression
of cytokines and myeloid cell activation and accumulation
in the brain, and corrected cerebellar abnormalities and
developmental gene expression (74). These important studies
provide proof-of-concept that anti-inflammatory approaches
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can be safely utilized to ameliorate CMV pathogenesis
in vivo.

HCMV is implicated in esophagitis in HIV-infected
individuals and associates with elevated TNFα production
(75). Inflammatory bowel diseases are common during HIV
co-infection (7) and HCMV maintains active replication in
the gastrointestinal epithelium of individuals treated with
antiretroviral therapy, where replication disrupts epithelial
integrity in a manner partially dependent upon IL-6 (76). HCMV
also associates with gastrointestinal inflammation in healthy
individuals (77), where the virus may drive local production of
cytokines such as TNFα (78) via induction of pattern recognition
receptor expression and/or downstream, adaptor molecules
(27, 79).

HCMV may also impact on neurological diseases in adults,
with associations with HIV-associated neurological disorder
(HAND) and impaired cognitive performance in HIV-infected
individuals being reported [reviewed in (10)]. The link
between HCMV and multiple sclerosis in immune competent
hosts is controversial, with contradicting findings regarding
the association between HCMV seropositivity and disease
occurrence (80–82). In the murine experimental autoimmune
encephalomyelitis (EAE) experimental model, MCMV worsens
disease in genetically susceptible mice (83) and increases
EAE occurrence in resistant (BALB/c) strains. Here, infection
increases CD4 T-cell-dependent disease that is associated with
IFNγ- and IL-17-expressing T-cells (84), further demonstrating
that CMV can exacerbate tissue damage in the central nervous
system.

Like many herpesviruses, HCMV is implicated as a risk factor
in Alzheimer’s Disease (AD) and cognitive decline (85). PBMCs
from HCMV seropositive AD subjects produce more IFNγ

following polyclonal and viral protein stimulation than non-
AD subjects (86), and IFNγ is detectable only in cerebrospinal
fluid of HCMV seropositive but not seronegative AD patients
(87). Thus, although the role of HCMV in AD development is
controversial, (88) it appears that HCMV-infected AD sufferers
exhibit heightened cytokine responses which in turn could
contribute to disease development and/or progression.

REGULATION OF CYTOKINE-DRIVEN
CMV-INDUCED PATHOGENESIS

Despite its inflammatory potential, HCMV rarely causes
inflammatory conditions in healthy individuals. Furthermore,
infection in immune compromised and immunologically
immature hosts does not always cause overt tissue damage,
suggesting that virus-induced inflammatory cytokine responses
are tightly regulated.

Regulatory T-Cells
The association between inducible regulatory T-cell (iTregs)
expansions and reduced vascular pathology in elderly HCMV-
infected individuals suggests a protective function for Tregs in
HCMV infection (89). In MCMV, Tregs (promoted by IL-33)
restrict liver pathology following systemic MCMV infection (32)

and chronic reactive gliosis triggered by MCMV encephalitis
(90). Although hepatic Tregs are known to be dependent upon
IL-33 (32), whether Treg-mediated control of pathogenic T-cell
responses involves restriction of inflammatory cytokine secretion
is currently unknown.

Cytokines
Inflammatory cytokine responses during acute HCMV infection
are accompanied by secretion of the immune modulatory
cytokine IL-10 (16, 91). HCMV re-programmes human
hematopoietic progenitor cells (HPCs) into immune-suppressive
monocytes that express IL-10 in a process requiring US28
(92). In mice, genetic and pharmacological targeting of IL-
10 demonstrates that IL-10 limits systemic inflammatory
cytokine responses induced by CMV, including IL-6 and TNFα
(61, 93, 94). This alleviates MCMV-induced disease, assessed
using body weight (93, 94), and weight loss in IL-10−/− mice
is alleviated by TNFα neutralization (93). IL-10 also restricts
MCMV-induced hepatic inflammation and preserves liver
function by limiting inflammatory effector cell infiltration,
hepatocyte apoptosis and necrosis (95, 96). Experiments
performed in perforin-deficient mice that are unable to control
MCMV replication reveal that IL-10 restricts liver inflammation
primarily by limiting pathogenic CD8+ T-cell responses (31), a
conclusion supported by data derived from immune competent
Il-10−/− mice (95). Following injection of MCMV into the
brain, IL-10 limits fatal immunopathology characterized by pro-
inflammatory cytokine production and neutrophil infiltration
(97, 98). Although the physiological relevance of some of
these experiments in terms of HCMV pathogenesis is unclear,
these data clearly highlight that IL-10R signaling can suppress
CMV-induced immune pathology.

Importantly, genetic variation within the human IL-10 gene
correlates with altered HCMV disease occurrence following
allogeneic stem cell transplantation (99) and during HIV co-
infection (100). This suggests that host genetic variation may
influence tissue damage caused by HCMV-induced cytokines.
Furthermore, HCMV encodes a functional IL-10 otholog
(UL111A, vIL-10) that is expressed in lytic replication (101)
and an alternate isoform in latency [LAcmvIL-10 (102)]. vIL-
10 suppresses numerous innate and adaptive host immune
responses including pro-inflammatory cytokine secretion (103,
104). Given that cellular IL-10 promotes MCMV carriage (93,
105–107), one may predict that HCMV vIL-10 facilitates virus
persistence. However, using rhesus macaque CMV (rhCMV)
that, like HCMV but not MCMV, expresses UL111A, it has
been demonstrated that vIL-10 restricts acute inflammation at
the initial site of infection, the skin. Interestingly, UL111A had
no obvious impact on virus shedding in these experiments.
This implies that virus persistence may not be influenced by
UL111A in vivo (108) but instead that restriction of tissue
pathology is an important function of viral IL-10 orthologs
and perhaps other immune evasion gene products expressed by
HCMV. Intriguingly, certain clinically-isolated HCMV strains
have disrupted UL111A genes (109, 110). It will be interesting to
investigate whether these HCMV strains preferentially associate
with overt inflammatory responses.
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IL-27 is an IL-12 family member that restricts numerous
infection-induced pathologies (111). IL-27 facilitates MCMV
persistence in the mucosa by suppressing IFNγ+ (107) and/or
cytotoxic (112) CD4+ T-cells. Given that cytotoxic CD4+ T-cells
are implicated in tissue damage (113), IL-27-faciliated shedding
of virions may be a necessary evil to restrict the development of
these cells. Data regarding the function of IL-27 during HCMV
infection is limited. Spector and colleagues identified that IL-
27 limits IFNγ expression by virus-specific T-cells in HIV+ and
HIV− HCMV-infected individuals. This was accompanied by IL-
27-mediated induction of IL-10 secreting CD4+ T-cells (114).
Whether IL-27 also alters the development of HCMV-specific
cytotoxic T-cells is unknown. However, overall these data are
consistent with the idea that IL-27 restricts chronic tissue damage
by limiting HCMV-specific T-cell responses.

Data from HCMV and MCMV highlights that the cytokine
TNF-related apoptosis-inducing ligand (TRAIL) contributes
to control of virus replication (115–117). During persistent
MCMV infection in the salivary glands, however, TRAIL
expression by NK cells restricts pathogenic CD4+ T-cell
responses in this tissue. TRAIL-deficient mice exhibit hallmarks
of Sjogren’s syndrome (SS), an autoimmune disease of the
salivary glands that is characterized by ectopic germinal center-
like structures in the glands, elevated autoantibody production
and impaired saliva secretion (113). Thus, TRAIL can limit
both viral replication and potentially harmful infection-induced
inflammatory responses.

Antiviral Restriction Factors
Interferon induced transmembrane protein 3 (IFITM3)
is an antiviral restriction factor that inhibits endocytosis-
dependent cell entry of numerous viruses (118). IFITM3
polymorphisms associated with reduced function are linked
to increased risk of severe viral pathogenesis, most notably
influenza-induced disease (119–121). Although IFITM3 does
not directly impinge on either MCMV or HCMV replication
(60, 122), Ifitm3−/− mice are dramatically more susceptible
to MCMV-driven pathogenesis (60). Disease, which can be
fatal, consists of extensive weight loss, transient pulmonary
and hepatic mononuclear inflammation, and extensive and
irreversible splenic damage. Blocking the action of IL-6 alleviates
pathogenesis in MCMV-infected Ifitm3−/− mice and also
inhibits activation-induced NK cell death and promotes NK
cell immunity (60). Thus, it is unclear whether IL-6 drives
CMV-induced pathology by promoting tissue damage and/or
by impairing cellular antiviral innate immune responses and
subsequent control of virus replication. Irrespective, these data
again highlight the possible role for genetics in determining host
cytokine responsiveness to HCMV and the subsequent disease
outcome.

Glucocorticoids
Endogenous glucocorticoids are steroid hormones produced in
the adrenal cortex following activation of the hypothalamic-
pituitary-adrenal (HPA) axis. Initial inflammatory cytokine
responses during acute MCMV infection are accompanied by
robust glucocorticoid production (123, 124), the maximal release

of which is dependent upon virus-induced IL-6 (123). The
importance of glucocorticoids in modulating CMV-induced
pathogenesis is highlighted in studies where mice are rendered
globally deficient in glucocorticoids by adrenalectomy and
display increased production of pro-inflammatory cytokines
and susceptibility to TNFα-mediated lethal disease (125).
Furthermore, glucocorticoid receptor signaling in NK cells,
via an axis involving the inhibitory PD-1 receptor, exerts
tissue-specific regulation of IFNγ production. Here, unrestricted
NK cell expression of IFNγ in spleens of mice lacking the
glucocorticoid receptor in NCR1+ cells results in necrotizing
splenitis and destruction of the white pulp (124). Although
pathology in medically important sites of CMV pathogenesis
like the liver were unaffected by this process (124), these
data suggest that neuro-immune pathways may be critical
for control of cytokine-driven pathogenesis during CMV
infection.

CONCLUSIONS

Many associations exist between production of inflammatory
cytokines and CMV-associated pathologies in humans and
in experimental systems. Experimental models like MCMV
have their limitations in terms of variations in virus genetics
(including lacking key immune regulatory genes like vIL-
10) and the imperfect recreation in mice of HCMV-induced
pathologies. However, important predictions regarding roles
that cytokines play in virus-induced tissue damage and how
inflammatory cytokines are regulated can be derived from
these studies. Moving forward, these models will be critical to
examine whether targeting CMV-induced inflammation is an
effective, safe and viable approach to alleviating pathogenesis.
Understanding exactly how cytokines cause tissue damage and
how production of these cytokines is regulated will hopefully
lead to more refined and effective strategies to help alleviate the
pathological consequences of HCMV infection. These studies
may also help identify host genetic variations that influence
cytokine responsiveness and susceptibility to HCMV disease.
Finally, these studies may help form novel hypotheses regarding
the possible influence of genetic variation in virus-encoded
immune evasion genes on HCMV pathogenesis.
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