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Chemical vapour deposition (CVD) grown nanocrystalline diamond is an attractive material for the 
fabrication of devices. For some device architectures, optimisation of its growth on silicon nitride 
is essential. Here, the effects of three pre-growth surface treatments, often employed as cleaning 
methods, were investigated. such treatments provide control over the surface charge of the silicon 
nitride substrate through modification of the surface functionality, allowing for the optimisation 
of electrostatic diamond seeding densities. Zeta potential measurements and X-ray photoelectron 
spectroscopy (Xps) were used to analyse the silicon nitride surface following each treatment. exposing 
silicon nitride to an oxygen plasma offered optimal surface conditions for the electrostatic self-assembly 
of a hydrogen-terminated diamond nanoparticle monolayer. The subsequent growth of boron-doped 
nanocrystalline diamond thin films on modified silicon nitride, under CVD conditions, produced 
coalesced films for oxygen plasma and solvent treatments, whilst pin-holing of the diamond film 
was observed following RCA-1 treatment. The sharpest superconducting transition was observed for 
diamond grown on oxygen plasma treated silicon nitride, demonstrating it to be of the least structural 
disorder. Modifications to the substrate surface optimise the seeding and growth processes for the 
fabrication of diamond on silicon nitride devices.

Silicon nitride is a well known technical ceramic of extreme hardness, wear resistance, resistance to thermal 
shock, strength, and fracture toughness, and has historically been used in the manufacture of cutting tools1, 
engine components2, and ball and roller bearings3. In theory, silicon nitride is an excellent substrate for the 
growth of CVD diamond due to their similar linear thermal expansion coefficients, which ensures the adhesion 
of diamond to the silicon nitride surface through a reduction in the interfacial stress4,5. As such, CVD diamond 
is regularly employed as a coating to further enhance the tribological properties of silicon nitride1. Recently 
however, progress has been made towards diamond on silicon nitride devices, where the ceramic is employed, 
for example, as an interlayer to facilitate diamond growth on gallium nitride for GaN-based high electron mobil-
ity transistors6,7. The potential for integrated diamond – silicon nitride MEMS8–11, cryogenic radiation sensor 
arrays12, and graphene on silicon nitride transistors13, are also imagined. The fabrication of such device architec-
tures would benefit from a comprehensive study of the silicon nitride surface, which could then be exploited, e.g. 
for the optimisation of CVD diamond nucleation and growth.

Heteroepitaxial diamond growth generally results in isolated diamond islands when a specific nucleation step 
is not undertaken14. Various techniques have thus been employed to enhance nucleation site density for diamond 
growth on silicon nitride in order to achieve homogeneous diamond thin films, with varying degrees of success. 
Mechanical abrasion1,15–17 and ultrasonic micro-flawing18–21, using diamond particles, are amongst the most com-
mon nucleation techniques. Scratching of the substrate surface using diamond, in this manner, leaves behind 
small diamond fragments as nucleation sites22, and can produce nucleation densities of up to 1011 cm−2, required 
for the growth of diamond thin films23. However, by definition the above techniques lead to significant surface 
damage24. Whilst this is of little concern for high performance cutting tools, for thin film device applications, sur-
face imperfections become wholly more significant, especially when the thermal and electrical properties of the 
diamond-silicon nitride interface are considered. The use of such seeding techniques is therefore inappropriate. 
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Recent general nucleation efforts have focussed on the use of diamond seeds: nanoscale diamond particles syn-
thesised through a detonation process, that are then dispersed over the substrate surface as nucleation sites. 
Polymer coatings have been utilised alongside diamond seeds to afford such a diamond rich growth surface25–28, 
although the technique raises questions over residual polymer contamination at the diamond – silicon nitride 
interface.

The self-assembly of a diamond seed monolayer on a growth substrate through electrostatic forces of attrac-
tion is another commonly used method of substrate seeding29,30, and extremely high seeding densities can be 
achieved on both 2D and 3D structures, if an understanding of the substrate surface is first attained. Seeding 
densities for electrostatic seeding are modulated by the charging behaviour, or zeta potential (ζ), of both the dia-
mond seeds and the substrate surface, under aqueous conditions29. However, the surface charge of silicon nitride 
can vary considerably due to the reactive nature of silicon nitride under oxygen rich environments. Certainly, the 
Si-N bond is chemically reactive, and oxidation of the surface, although slow, is thermodynamically feasible at 
room temperature31. This paper therefore deals with the characterisation and optimisation of the silicon nitride 
surface ready for electrostatic seeding. We propose a pre-seeding treatment which allows for the homogenisa-
tion of the silicon nitride surface whilst also optimising the surface charge through modification of the surface 
functionality, allowing for the greatest possible seeding densities. In this work we correlate ζ potential and XPS 
analysis of the silicon nitride surface following exposure to an oxygen plasma, and we compare it to the surface 
of silicon nitride following two standard cleaning techniques, the RCA-1 clean, and the solvent clean. The results 
are used to determine the best surface treatment for the electrostatic self-assembly of a diamond nanoparticle 
monolayer. Seeded silicon nitride wafers are then exposed to CVD growth conditions incorporating a gas-based 
boron dopant, and the resulting films are analysed under scanning electron microscopy (SEM), Raman spectros-
copy, and sample resistance’s are measured as a function of temperature, to allow for a comparison of film quality 
and structural properties.

Results and Discussion
The XPS survey spectra, and narrow scan spectra for the Si 2p peak, were taken for the silicon nitride surface 
following exposure to an oxygen plasma, a multi-stage solvent clean, and an RCA-1 cleaning solution, and are 
plotted in Fig. 1. Table 1 details the atomic concentrations (at%) found at the silicon nitride surface following each 
treatment, determined by calculation of the area under the corresponding peaks in Fig. 1a. The survey spectra 
present peak intensities for silicon (Si 2s, Si 2p), carbon (C 1s), nitrogen (N 1s), and oxygen (O 1s). The Si 2s and 
Si 2p peaks, at ~153 eV and ~102 eV respectively, remain approximately constant in intensity following each 

Figure 1. (a) XPS survey spectra of the silicon nitride surface following (i) exposure to an oxygen plasma, (ii) 
solvent cleaning, (iii) RCA-1 cleaning. (b) XPS narrow scan spectra and chemical state analysis for the Si 2p 
region at ~102 eV, for the silicon nitride surface following each treatment.

Oxygen plasma 
treated Solvent clean RCA-1 clean

Si 2p 43 44 47.5

N 1s 28 36 44.5

O 1s 28 16 6

C 1s 1 4 2

Table 1. Atomic composition (at%) of the silicon nitride surface following three pre-seeding treatments, 
determined from the integration of peaks in the XPS survey spectra of Fig. 1a.
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treatment. The C 1s peak at ~285 eV is also largely unchanged between the three treatments; carbon’s relative con-
centration at the surface is extremely small, and can be explained by ambient contamination that occurs in most 
air stored samples32. The O 1s and N 1s peaks, at ~532 eV and ~397 eV respectively, show considerable variation 
in intensity between treatments. The binding energy of an element may be modified by the electronegativity of 
its neighbouring atoms, and can lead to asymmetry in the photoelectron peak if more than one bonding envi-
ronment is present. Deconvolution of the asymmetric Si 2p peak in Fig. 1b therefore provides information on the 
chemical environment of the silicon atoms present at the silicon nitride surface. Peak fitting in the Si 2p region 
reveals an intense peak at ~101.7 eV for each treated surface; labelled as Si-N, this peak is attributed to silicon 
nitride (Si3N4)33,34. A secondary component of the Si 2p peak, labelled Si-O, at ~103.5 eV, is observed for silicon 
nitride following exposure to an oxygen plasma and solvent cleaning, and is assigned to SiO2

35. Oxygen plasma 
treated silicon nitride exhibits by far the larger of the two Si-O components, 26% of the area under the Si 2p peak, 
compared to 11% for that of the solvent cleaned surface. The RCA-1 cleaned surface does not display this peak at 
all within the resolution of the measurements taken.

The O 1s peaks in the XPS spectra of silicon nitride following exposure to an oxygen plasma and solvent 
cleaning, in Fig. 1a, coupled with the asymmetry of the Si 2p peak in Fig. 1b, is attributed to surface oxidation31. 
The more intense O 1s and Si-O peaks that appear following silicon nitride’s exposure to an oxygen plasma would 
indicate a greater degree of surface oxidation, brought about by reactive oxygen species present in the plasma11,36, 
whilst the lesser oxidation of the solvent cleaned surface occurs passively under atmospheric conditions. Solvent 
cleaning is not expected to have an oxidising effect on the silicon nitride surface, and the XPS analysis closely 
resembles that of silicon nitride wafers stored under atmosphere31. Atomic concentrations at the surface, pre-
sented in Table 1 suggest a relative increase in oxygen accompanies a relative decrease in nitrogen, indicating 
the replacement of silicon bound nitrogen with oxygen. Depth profiling of the partially oxidised silicon nitride 
surface, that which is comparable to our solvent cleaned surface, carried out by Holloway and Stein37, indicate the 
formation of a graded oxynitride film with a greater proportion of Si-O character at the surface, decreasing into 
bulk silicon nitride at greater wafer depths38.

The O 1s peak present in the XPS spectra of silicon nitride following RCA-1 cleaning is greatly decreased 
in intensity, to that on the order of contaminant carbon. An Si-O peak, corresponding to SiO2, could not be 
fitted to the higher binding energy side of the Si 2p region, confirming a complete dissolution of the surface 
oxide. Kaigawa et al.39 observed the ability of RCA-1 cleaning solution to etch thermally grown SiO2; ammonium 
hydroxide being determined to be active in etching SiO2 a few years prior to the work40. The rate of SiO2 etch by 
RCA-1 solution increased with both temperature and concentration of ammonium hydroxide in solution. Etch 
rates of ~0.25 nm/min were observed by the group, and would be more than sufficient to completely etch oxygen 
from the surface of our sample. Etching of the silicon nitride surface oxide has been observed in the literature, 
under treatment with hydrofluoric acid (HF), and resulted in a similar reduction in the O 1s line in XPS spectra, 
compared to the non etched surface31,38. The oxygen free surface is therefore ascribed to the etching ability of the 
RCA-1 cleaning solution, and we assign any residual oxygen at the surface to adsorbed oxygen species.

The ζ potential is a measure of the overall charge exhibited by a surface or particle. Figure 2 details ζ potential 
measurements of the silicon nitride surface following each of the three surface treatment methods. A decrease in 
ζ potential is exhibited for all silicon nitride surfaces as a function of increasing pH, with a variation of ~100 mV 
between pH extremes. Following exposure to an oxygen plasma, silicon nitride displays the most negative ζ 
potential across the measured range, with an extrapolated pHIEP, the point at which the surface exhibits zero 
net charge, of 3.2; approaching that of SiO2

41. The solvent cleaned and RCA-1 cleaned surfaces see interpolated 
pHIEP = 4.4 and pHIEP = 5.7, respectively. Changes to the pHIEP may be attributed to the relative concentrations of 
functional groups present at the silicon nitride surface following treatment. Functional groups undergo acid/base 

Figure 2. ζ potential measurements plotted as a function of pH, for the silicon nitride surface following 
exposure to an oxygen plasma, an RCA-1 cleaning solution, and solvent cleaning. Isoelectric points (pHIEP) are 
extrapolated and interpolated from the data trends; they are found at pH 3.2, 5.7, and 4.4, respectively.
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type reactions under certain aqueous conditions to provide the surface with an overall charge. The oxygen plasma 
treated surface exhibits the lowest overall ζ potential, coinciding with the greatest degree of surface oxidation 
and SiO2 character, determined from Fig. 1. The surface is therefore likely to present functional groups similar to 
that of SiO2, believed to be silanol (Si-OH) groups42,43, which will dissociate their hydrogen atom under certain 
aqueous conditions, to afford the surface with the measured negative charge. Chingombe et al.44 and Garcia et al.45 
found that following chemical oxidation of the surface of activated carbon, ζ potential measurements observed a 
marked decrease towards negative potentials, when compared to measurements of an equivalent unoxidised sur-
face. We therefore attribute the pHIEP of the solvent cleaned silicon nitride surface to a reduction in the concentra-
tion of surface silanol groups due to a lesser degree of surface oxidation. The etched surface of the RCA-1 cleaned 
silicon nitride displays a pHIEP of 5.7, and would fit with our interpretation of the etched oxide free surface, and 
corresponding surface functionality. Bousse et al.46 observed a similar increase in ζ potential after etching the 
silicon nitride surface with hydrofluoric acid (HF) to remove any surface oxide.

For the self-assembly of a nanodiamond monolayer onto a growth substrate, it is important to achieve oppos-
ing charges and the greatest disparity in ζ potential between the substrate surface and the diamond seed solu-
tion. Whilst 5 nm hydrogen-terminated diamond particle solutions have been shown to exhibit ζ potentials of 
+40 mV29, in practice a value closer to +30 mV is observed. With water being the solvent of choice for the seed 
solution, the main region of interest in Fig. 2 lies around pH 7. Following exposure to an oxygen plasma, the 
silicon nitride surface exhibits the most negative ζ potential, with a value of −90 mV. After solvent cleaning, the 
silicon nitride surface exhibits a ζ potential of −70 mV, and following RCA-1 cleaning, a value of −30 mV. Oxygen 
plasma treated silicon nitride therefore displays the greatest disparity in ζ potential, optimal for high density 
diamond seeding.

In order to establish the effectiveness of each pre-seeding treatment in promoting high seeding densities and 
uniform seed coverage, boron-doped diamond thin films were grown on silicon nitride following seeding with a 
hydrogen-terminated diamond particle solution. All samples were grown sequentially under identical chamber 
conditions, for one hour, and we assume a similar boron incorporation for each sample. Figure 3 displays scan-
ning electron microscopy (SEM) images of boron-doped nanocrystalline diamond thin films grown following 
exposure to (a) an oxygen plasma (b) solvent cleaning (c) RCA-1 cleaning. Micrographs (a) and (b) show fully 
coalesced films with average grain sizes of 118 nm and 111 nm, respectively. The boron-doped diamond film 
grown on silicon nitride following RCA-1 cleaning exhibits pin-holing and a far greater average grain size of 
approximately 150 nm. Pin-holing and a larger average grain size are attributed to lower seeding densities follow-
ing RCA-1 cleaning, stemming from weaker forces of electrostatic attraction between the silicon nitride surface 
and the diamond seeds, as indicated by ζ potential measurements in Fig. 2. Of greater significance to granular 
superconductors such as boron-doped diamond, is the grain size distribution of each film. Figure 4 displays the 
frequency with which various grain sizes are present in each film. The diamond film grown on RCA-1 cleaned 
silicon nitride exhibits by far the greater variation in grain size compared to films grown following exposure to 
oxygen plasma and solvent cleaning, and again this may be ascribed to lower seeding densities brought about by 
a far less negative substrate surface charge.

To assess the quality of the films produced, we employ Raman spectroscopy. Normalised to the resonance 
around 1220 cm−1, the Raman spectra of heavily boron-doped nanocrystalline diamond films grown on silicon 
nitride following three pre-seeding treatments are offset and plotted in Fig. 5. An excitation wavelength of 514 nm 
ensures the resonance of both sp2 and sp3 sites within the film47. As is to be expected for thin diamond films, 
the second order silicon peak of the underlying substrate, is visible at 980 cm−1 due to the penetration depth of 
the Raman laser48. The first order silicon peak lies beyond the range of these measurements. A shoulder peak 
visible at around 950 cm−1 is regularly observed for thin film polycrystalline diamond grown on silicon based 
substrates49,50. The feature at 850 cm−1 is attributed to amorphous silicon carbide, SiC, with a similar broad peak 
being observed in the literature for silicon carbide films at approximately 820 cm−1. A shift to higher wavenum-
bers can be justified by changes to the bonding state, manifesting as a greater degree of microcrystallinity51,52.

Typical of heavily boron-doped nanocrystalline diamond are the broad band, B, centred around 1220 cm−1, 
and the shoulder peak, DF, at 1285 cm−1 53. Although typical, the origin of the broad band at 1220 cm−1 is some-
what controversial, being attributed in the literature to both boron dimers and boron-carbon bonding states. 

Figure 3. SEM images of boron-doped diamond grown on silicon nitride following (a) exposure to an oxygen 
plasma (b) solvent cleaning (c) RCA-1 cleaning. Clear pin-holing is exhibited for diamond grown on RCA-1 
cleaned silicon nitride.
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Sidorov and Ekimov54, provide evidence to the contrary, following isotopic shift studies with boron isotopes, 
finding that the shift must be attributed to carbon-carbon bonding states. A correlation between band intensity 
and boron doping levels, however, has been observed50, and we therefore attribute the band to locally distorted 
lattice structures induced by the addition of the dopant boron55. The shoulder peak at 1285 cm−1 is attributed 
to the crystalline diamond lattice. The diamond line is characteristically red shifted for boron-doped diamond, 
from 1332 cm−1 to 1285 cm−1, as well as appearing broader in nature. The diamond line adopts an asymmetric 
Fano-like line shape, due to the quantum interference between the triply degenerate zone centre diamond phonon 
and the continuum of electronic states induced by the presence of boron defects56,57. A further shoulder peak at 
1120 cm−1 is attributed to trans-polyacetylene, TPA, lying at the grain boundaries58.

The disordered carbon peak, D, at 1405 cm−1 is ascribed to the breathing mode of graphitic rings, whilst the G 
peak at 1560 cm−1 is the result of in-plane bond stretching modes of a pair of sp2 carbon sites59,60. The G band is 
shifted slightly from 1580 cm−1 to 1560 cm−1, due to the conversion of sp2 sites to sp3 sites that accompanies the 
transition of π ring systems to π chain systems61. The Raman spectra would suggest that diamond grown on oxy-
gen plasma treated silicon nitride incorporates fewer sp2 sites compared to that of other treatments, indicating a 
more structurally ordered film. Certainly, when compared to the diamond peak at 1285 cm−1, diamond grown on 
RCA-1 cleaned silicon nitride displays a far greater intensity in its D and G band structure, suggesting a greater 
degree of structural disorder for this film.

For many superconductive device architectures, the resistive transition temperature, TC, and the resistive tran-
sition width, ΔTC, are of fundamental importance. To assess the extent to which the three pre-seeding treatments 
affect these variables, the resistance of each film is measured as a function of temperature. Figure 6a displays a plot 
of resistance against temperature in the temperature range 1.9–300 K. As the temperature is modulated, clear dif-
ferences between the normal state resistance of each film emerge, due to variations in intergranular connectivity. 
The lower normal state resistance of the oxygen plasma treated sample tends to suggest a greater film connectivity, 

Figure 4. A plot displaying the grain size distribution for each diamond film.

Figure 5. Raman spectra of boron-doped diamond grown on silicon nitride following exposure to (a) oxygen 
plasma treatment (b) solvent cleaning (c) RCA-1 cleaning, and diamond seeding. The poor signal to noise ratio 
is attributed to a high boron content and to the thickness of the diamond films.
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whereas the higher normal state resistance of the RCA-1 would suggest the contrary. Finally, we can attribute the 
sharp increase in resistance observed for each diamond film at ~50 K to the underlying silicon nitride substrate, 
as it is not observed for boron-doped diamond on more common substrates, such as silicon.

A plot of the normalised resistance as a function of temperature is shown in Fig. 6b. The inset in Fig. 6b shows 
a plot of the first derivative of each resistance curve against temperature. The measured resistance decreases for 
each sample as the temperature is reduced from 7 K to 2.5 K. We determine the transition temperature to be the 
point at which the resistance diverges from zero62. Boron-doped diamond grown on oxygen plasma treated sil-
icon nitride and on solvent cleaned silicon nitride exhibit similar transition temperatures of TC = 3.52 ± 0.04 K, 
however they vary more substantially in their transition widths, ΔTC = 1.02 ± 0.08 K and ΔTC = 1.22 ± 0.08 K, 
respectively. The peak height of the derivative of the oxygen plasma treated sample’s resistance curve, shown in 
the inset of Fig. 6b, is far greater than that of the solvent cleaned or RCA-1 cleaned films, and confirms a much 
sharper transition. Following RCA-1 cleaning of silicon nitride, the grown diamond film exhibits a significantly 
reduced transition temperature compared to the other films, TC = 2.57 ± 0.03 K, and a significant increase in 
its transition width, ΔTC = 1.64 ± 0.07 K. The wider transition width and lower transition temperature of the 
RCA-1 cleaned sample may be attributed to a greater degree of structural disorder within the film, compared to 
the other samples. This interpretation is in good agreement with grain size analysis from Figs 3 and 4, where we 
observed pin-holing and a greater variation in grain size for the RCA-1 cleaned sample, both of which contribute 
to the level of structural disorder. In contrast, the higher transition temperature and lower transition width of the 
plasma treated sample would indicate a far more ordered film.

Further to this, we observe a correlation between increasing sp2 character in the Raman spectra of Fig. 5 and 
the transition widths in Fig. 6b, which we again link to an increase in the structural disorder of the respective film. 
Again, the most uniform film is produced following oxygen plasma treatment of the silicon nitride surface prior 
to growth.

Conclusions
The surface of silicon nitride has been chemically modified to allow for higher seeding densities and fully 
coalesced films comprising a more uniform grain size. XPS and ζ potential measurements allowed for a full 
description of the surface modification and surface charge. Following exposure to an oxygen plasma, silicon 
nitride exhibited an oxidised surface, and an extremely negative surface charge; pHIEP = 3.2. Following solvent 
cleaning, partial oxidation of the surface caused by ambient oxygen species was observed, with a correspond-
ing pHIEP = 4.4. The silicon nitride surface oxide was etched by an RCA-1 cleaning solution, and ammonium 
hydroxide is proposed to be the active agent. The etched surface exhibits a pHIEP = 5.7. Boron-doped diamond 
films were grown following each pre-seeding treatment, and fully characterised under SEM, Raman spectroscopy, 
and resistance vs temperature studies. Pin-holing was observed on samples that had undergone RCA-1 cleaning, 
whilst coalesced films were observed for solvent cleaned and oxygen plasma treated samples. Resistance data 
showed a clear improvement between the RCA-1 cleaned sample, and solvent cleaned and oxygen plasma treated 
samples. The sharpest superconducting transition was observed for the diamond film grown on oxygen plasma 
treated silicon nitride. Oxidation of a substrate surface under an oxygen plasma should find regular use prior to 
the growth of CVD diamond on silicon nitride, especially for device applications where control over the nature 
of the film is critical.

Methods
1 μm thick, LPCVD non-stoichiometric amorphous silicon nitride thin films on 356 μm p-type boron doped 
<100> 4” silicon wafers were used as substrates throughout.

Figure 6. Resistance vs temperature plots for boron-doped diamond thin films grown on silicon nitride 
following three pre-seeding treatments (a) for temperatures between 1.9 K and 300 K, where each dataset is 
normalised to R300K (b) between 2.5 K and 7 K, where each dataset is normalised to R7K. The first derivative of 
each resistance curve is plotted against temperature, in the inset.
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solvent clean. The wafers were solvent cleaned prior to any pre-seeding treatment. The wafers were placed 
into a bath of acetone at 45 °C for 30 min, followed by a methanol bath at room temperature for 5 min, they were 
then rinsed with deionised water, and dried under nitrogen gas.

oxygen plasma treatment. Oxygen plasma treatment was carried out in a PE-25 Plasma Cleaner using a 
RF plasma source. The chamber was evacuated at room temperature prior to plasma formation to reduce gaseous 
contamination. The process was carried out using 30 sccm of oxygen gas flow, a plasma power of 30 W, and a total 
plasma exposure time of 1 min.

RCA-1 clean. The RCA-1 clean was carried out as per the industry standard, using a 5:1:1 ratio of DI H2O: 
30% H2O2: 30% NH4OH63.

Zeta potential. The ζ potential of silicon nitride was determined from streaming current measurements that 
were taken using a SurPASS 3 electrokinetic analyser. The SurPASS system comprises two Ag/AgCl electrodes at 
either end of a streaming channel, and the streaming current is determined by measuring the current flowing 
towards the outlet electrode, as a function of the electrolyte pressure. The streaming channel is generated by 
mounting two pieces of silicon nitride (20 mm × 10 mm) face on in parallel, with ~100 μm gap between the wafer 
faces. An electrolyte flows through the streaming channel shearing counterions from the charged surface of the 
silicon nitride. The flow of counterions is dependent on the electric double layer created by the surface charge of 
the silicon nitride. A 10−3 M solution of potassium chloride was used as the electrolyte solution, and the pressure 
is controlled between 600 and 200 mbar. The ζ potential is measured as a function of electrolyte pH; 0.1 M HCl 
and 0.02 M NaOH solutions are used to induce a change in electrolyte pH, using the SurPASS’s inbuilt titration 
system. Four measurements were taken at each pH value, and an average was taken of the resulting data points.

X-ray photoelectron spectroscopy. XPS analysis was carried out using an Al Kα radiation source at 
1486.68 eV, operating at 12 kV anode potential and 6 mA emission current. Measurements were taken under an 
argon environment, to facilitates charge neutralisation. Broad survey scans and narrow scans of the relevant peaks 
were obtained at pass energies of 150 eV and 40 eV respectively. Analysis of data was performed in CasaXPS and 
peaks were normalised using relative sensitivity factors.

substrate seeding. Prior to film growth, silicon nitride substrates were seeded using a monodisperse aque-
ous colloid of hydrogen terminated diamond nanoparticles approx. 5 nm in diameter. The process by which dia-
mond particles can be surface terminated with hydrogen can be found elsewhere29. The silicon nitride substrate 
was placed into a seeding solution and ultrasonically agitated for 10 min. The substrate was then rinsed with 
deionised water, spun dry, and loaded directly into the reaction chamber.

Diamond film growth. Diamond films were grown using a Seki Technotron AX6500 series microwave 
chemical vapour deposition system. The growth temperature was maintained at ~800 °C. The substrates were 
exposed to a gas mixture of methane, hydrogen and trimethylboron, with a 3% CH4/H2 concentration and a 
25000 B/C ratio. 40 Torr pressure and 3.5 kW microwave power were used. After the growth, samples were cooled 
in hydrogen. The boron concentration within each film will exceed 3 × 1021 cm−3. They have been grown under 
identical conditions to those in Gajewski et al.64, with a higher concentration of TMB in the gas phase. The con-
centration of boron therefore far exceeds the Metal - Insulator Transition in all films, and thus they all exhibit 
superconductivity.

scanning electron microscopy. Scanning electron microscopy (SEM) images of the diamond films were 
taken using a Raith e-line operating at 20 kV and a 10 mm working distance.

Resistance measurements. A Quantum Design physical property measurement system was used to meas-
ure each sample’s resistance as a function of temperature. Samples were measured in the range 1.9–300 K. Silver 
paste contacts attached to the sample surface using four wires in a van der Pauw configuration. A current of 
0.1 μA, 0.1 μA, and 0.5 μA were made to pass through boron-doped diamond grown on solvent cleaned, oxygen 
plasma treated, and RCA-1 cleaned silicon nitride, respectively. The voltage was measured as the current was 
passed, and the resistance determined. The resistive transition temperature was taken to be the point at which the 
resistance diverges by 2% from zero resistance. The resistive transition width is determined to be the temperature 
range between the resistive transition temperature and the point at which the resistance diverges from the normal 
state resistance by 2%.

Raman spectroscopy. Raman spectroscopy was performed using an inVia Renishaw confocal microscope 
equipped with a 514 nm laser.

Data Availability
The datasets generated during and/or analysed during the current study can be found at https://doi.org/10.1703
5/d.2018.0055370965.
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