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ABSTRACT: A noncollinear relativistic PBEsol + U study of low-index 

actinide dioxides (AnO2, An = U, Np, or Pu) surfaces has been conducted. 
The importance of magnetic vector reorientation relative to the plane of the 
surface is highlighted; this has often been ignored in collinear 
nonrelativistic models. The use of noncollinear relativistic methods is key 
to the design of reliable computational models. The ionic relaxation of 
each surface is shown to be confined to the first three monolayers, and we 
have explored the configurations of the terminal oxygen ions on the 
reconstructed (001) surface. The reconstructed (001) surfaces are ordered 
as (001)αβ < (001)α < (001)β in terms of energetics. Electrostatic potential 
isosurface and scanning tunneling microscopy images have also been 

calculated. By considering the energetics of the low-index AnO2 surfaces, 
an octahedral Wulff  crystal morphology has been calculated. 

 
  

 
 
1. INTRODUCTION  
The surface chemistry of actinide dioxides (AnO2, An = U, 

Np, or Pu) is key to understanding corrosion mechanisms,
1−8

 
which impacts the design of long-term storage facilities and 

the industrial reprocessing of nuclear fuels.
9
 

−15
 The 

inexorable oxidation of actinide metal forms an oxide surface 
layer; where, the composition controls successive corrosion 

rates.
1−5,7,16

 The rapid onset of corrosion results in: thermal 
excursions, the failure of containment vessels, and the 
resulting dispersal of nuclear materials. To reduce the risk of 
nuclear proliferation and assist in nuclear decommissioning, 
controlled oxidation of actinide metals off ers a means of 

converting classified nuclear material to simple ingots.
7
 In 

terms of fuel fabrication, the surface energetics also impact: 

fuel sintering behavior and particle morphology.
17 

 
As a result of the inhomogeneous and radioactive nature of An 

elements, few AnO2 experimental surface studies have been 

completed.
9,13,18−24

 To compensate for experimental issues, 

computational methods off er another mode of study; although, a 
computational investigation of heavy-fermion systems is also 
challenging. To investigate the complex electronic structure by 
computational methods, one must consider exchange−correla-tion 
influences, relativistic contributions, and noncollinear magnetic 

behavior.
25

 Only a limited number of studies have considered 

relativistic contributions (spin−orbit interaction,  

 

 
SOI), which is important in the treatment of actinide 

systems.
26−28

 In addition, the actinides often have complex 

(noncollinear) magnetic structures, and thus far no investigation  
of AnO2 surfaces has incorporated noncollinear magnetic 

behavior.
27,29 

 
The actinides are highly correlated f-electron systems for 

which conventional density functional theory (DFT) methods 
calculate an incorrect electronic structure. To model highly 
correlated materials correctly, a number of methods have been 

developed: the self-interaction correction method,
30

 modified 

DFT (DFT + U),
31−35

 dynamic mean field theory,
36

 and 

hybrid density functionals.
37−39

 As a computationally tractable 
method, DFT + U off ers a means of study in which the 
electronic structure can be computed. In the Liechtenstein DFT 
+ U formulism, independent Coulomb (U) and exchange (J) 
terms treat the on-site Coulomb repulsion of the An f-
electrons. The values are derived from higher level ab initio 

methods or obtained through semiempirical analysis.
26 

 
The electronic structure of AnO2 is influenced by changes in 

the magnetic order;
27

 here, the importance of magnetic vector 
reorientation is highlighted. The eff ect of transverse 3k  
 

  



    
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Longitudinal 3k AFM and transverse 3k AFM phases for the AnO2 crystal structure.  
 
antiferromagnetic (AFM) behavior on the properties of the UO2 

surface is unknown, whereas investigations on NpO2 and PuO2 

surfaces are even less common.
9
 
,11

 Information on the low-index 

AnO2(111), (011), and (001) surfaces has been calculated by DFT 

+ U: energetics, ionic relaxation, electrostatic isosurfaces, 
scanning tunneling microscopy (STM) images, crystal morphol-
ogy, and dipolar reconstructions.  

1.1. Magnetic Structure. The magnetic structure of AnO2 
is highly complicated. A discontinuous first-order magnetic 

phase transition (TN = 30.8 K)
40

 in UO2 has been established 

by heat capacity,
41,42

 magnetic susceptibility, 
43

 and neutron 

diff raction
44−46

 measurements. A transverse 3k AFM ground 

state has been identified (Figure 1).
26,29,47,48

 The ground state 
corresponds to an internal Pa3̅(no. 205) crystallographic  
distortion synonymous with the magnetic order (the 

displace-ment of O
2−

 ions is 0.014 Å).
46,47,49,50 

 
The magnetic structure of NpO2 remains unresolved. In the 

absence of interactions that break time-reversal symmetry 

conditions, the Np
4+

 ion (a Kramers ion, one with an uneven 
number of valence electrons) should order magnetically at low 

temperature.
51

 A first-order paramagnetic (PM)−AFM phase 
transition (T = 25.4 K) has been inferred by magnetic 

susceptibility
52

 and specific heat capacity measurements.
53,54

 
In spite of an exhaustive search, a measurable local magnetic 
moment has not been identified by low-temperature Mo ̈ssbauer 

(T = 1.5 K),
51

 neutron diff raction (12 K < T < 30 K),
55

 and 

muon spin rotation (0.3 K < T < 25.4 K) measurements.
56,57 

 
In terms of the crystal structure, no evidence has been found 

of an external distortion, which would indicate a noncollinear 

3k AFM order.
54

 An internal O
2−

 ion distortion [indicative of 
transverse 3k AFM behavior with Pa3̅(no. 205) crystal 
symmetry] can be inferred from the small broadening of 

Mo ̈ssbauer spectroscopic lines
51

 and inelastic neutron 

scattering (INS) (5 K < T < 25 K) measurements.
58,59

 An 

internal O
2−

 ion distortion of 0.02 Å has been calculated, 

which is, however, below the experimental resolution.
54,57,60

 
In contrast, a longitudinal 3k AFM ground state has been 

indicated by resonant X-ray scattering
61

 (10 K < T < 17 K) 

and 
17

O nuclear magnetic resonance (NMR) measurements (T 

= 17 K).
62

 The transverse 3k AFM state, relative to the 

longitudinal 3k AFM state, is 0.002 eV·formula unit
−1

 lower 
in energy (as calculated by HSE06 incorporating SOI). 

An experimental singlet Γ1 diamagnetic PuO2 ground state has 

been inferred from: magnetic susceptibility (T = 4 K), INS (T > 30 

K), and NMR (T > 4 K) measurements. However, a number of 

inconsistencies have been identified, and an ordered magnetic 

ground state can be assumed.
27

 In contrast to experimental 

measurements, a longitudinal 3k AFM ground state has been 

calculated.
18,22−24,39,63−73

 It is thought that PuO2 

 

could be a small-moment insulator (similar to NpO2) for which 

DFT overestimates the magnetic moments. In this study, the 

transverse 3k AFM order (UO2 and NpO2) and the longitudinal 3k 

AFM order (PuO2) have been used to describe the crystals.  
To model the noncollinear magnetic behavior, it is imperative 

that relativistic eff ects are considered. A considerable number of 
studies ignore the SOI (important in heavy-fermion systems) to 

reduce the computational cost.
11,74−76

 A limited number of 

studies on UO2
9
 and PuO2

23
 consider relativistic contributions to 

the total energy. The importance of SOI on modeling UO2 by 

DFT initially seemed to be inconsequential.
9
 In a nonrelativistic 

treatment of other actinide systems, the study has often been cited 

to justify the absence of SOI.
9,23,74

 The importance of SOI on the 

PuO2(111) surface energies has now been highlighted by hybrid 

DFT,
23

 but all studies have limited themselves to a discussion of 
the collinear 1k AFM order.  

A major limitation of scalar calculations is the inability to orient 

the magnetic moments relative to the direction of the surface. In 

this manner, the magnetic moments are directed orthogonal to the 

surface plane, which leads to notable inconsistencies within the 

electronic structure.
27,29

 If not corrected, the orientation of the 

magnetic field is also directed orthogonal to the surface plane 

because the principal axis diff ers between the surfaces. 

Consequently, the electronic, magnetic, and crystal structures 

diff er between the bulk crystal structure and individual surfaces. If 

the magnetic vectors are not reoriented, the energetics and 

structural relaxations derived by this approach are incomplete.
27

 

This is particularly concerning when calculating the surface 

energy, which is derived from the bulk structure, and it is 

therefore important that the magnetic vectors relative to the 

surface are carefully reoriented. In the past studies where this 

essential transformation has been omitted, the energies of the bulk 

and surface are therefore often incomparable, which introduces a 

significant error when calculating the energy of the surface. In this 

study, the magnetic vectors are reoriented relative to the surface 

plane, which ensures that we preserve the noncollinear 3k AFM 

structure. In addition, the reduction of cubic symmetry associated 

with collinear 1k AFM states (used in past calculations) is 

avoided.
27 

 
The magnetic structure is commonly defined by the principal 

axis. The principal axis of the AnO2 (111) and (011) surfaces 

diff ers from that of the bulk crystal, and the final magnetic, 

electronic, and crystal structures are therefore inequivalent. 

However, this is not the case for the AnO2(001) surface which 

shares the same axes. To illustrate in a two-dimensional material, 

we consider the first two layers of a collinear 1k AFM material 

(Figure 2). The (01) surface and the crystal share the same 

principal axis, and the magnetic structures are therefore directly 

related. In the (11) surface, the principal axis diff ers from that of 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Surface magnetism of a two-dimensional material. The 
direction of the magnetic moments for the respective surfaces is 
shown for the first two layers of the bulk crystal structure. The 
highlighted (01) (green) and (11) (blue) surfaces correctly emulate 
the magnetic structure in the bulk crystal. In contrast, the (11) 
(red) surface illustrates an incorrect depiction where the magnetic 
moments are aligned orthogonal to the surface.  

 

the crystal, which results in an unrelated magnetic and 
electronic structure. It is therefore critical to orient the 
magnetic vectors to emulate the initial crystal structure. 
 
2. COMPUTATIONAL METHODOLOGY  

2.1. Calculation Details. A noncollinear relativistic 

computational study of AnO2 (An = U, Np, or Pu) surfaces has 

been completed with the Vienna Ab initio Simulation 

Package.
30,36,77

 The code uses planewave basis sets, relativistic 

eff ective core potentials, and frozen-core projector-augmented 
wave (PAW) method. The cutoff  energy of the planewave basis 

set is 500 eV. The uranium (6s
2
, 7s

2
, 6p

6
, 6d

2
, 5f 

2
), neptunium 

(6s
2
, 7s 

2
, 6p

6
, 6d

2
, 5f

3
), plutonium (6s

2
, 7s

2
, 6p

6
, 6d

2
, 5f

4
), and 

oxygen (2s
2
, 2p

4
) valence electrons have been explicitly 

considered. The integration over the Brillouin zone is completed 
with the Blöchl tetrahedron method and a Γ-centered k-point 

grid.
78,79

 The influence of the SOI
74

 and noncollinear magnetic 

wave vectors has been considered. As a correction to the total 
energy, the SOI is included as a final perturbation. In the treatment 
of the SOI term, a few assumptions are made. First, a complete 
basis set is formed within the PAW spheres, and the SOI outside 

of the PAW spheres is irrelevant.
74

 Second, the wave functions 

are solutions of the radial scalar relativistic Schro ̈dinger equation, 
which includes Darwin and mass velocity terms. The spin 
quantization axis is defined by the (001) plane, from which 
magnetic and spinorlike values are calculated.  

The on-site Coulomb repulsion of the An 5f electrons has been 

treated by the Liechtenstein et al. DFT + U
33−35

 formulism.
34

 In 

the Liechtenstein et al. formulism, the Coulomb (U) and exchange 

(J) modifiers are treated as independent variables.
34

 To correctly 

calculate the electronic structure of AnO2 (where conventional 

methods often fail), the Coulomb modifier has been chosen to 
emulate the experimental band gap. The uranium (U = 3.35 eV), 
neptunium (U = 4.25 eV), and plutonium (U = 6.00 eV) Coulomb 

modifiers are shown.
27,29

 The influence of J on noncollinear 

magnetic materials has been investigated.
26,27,80

 The anisotropic 

nature of the f-states has been shown to increase with J (and with 

U), and therefore J is ignored in this study.
26,80,81

 The selected 

conditions off er an accurate representation of the electronic 
structure. The 

 
exchange−correlation energy has been evaluated by the 
revised Perdew−Burke−Ernzerhof for solids (PBEsol) 

function-al.
31,32,82

 The iteration threshold for electronic 

and ionic convergences has been set at 1 × 10
−5

 eV and 1 × 

10
−2

 eV Å
−1

, respectively. As the crystal and electronic 

structures of AnO2 are highly dependent on the magnetic 
state, it is imperative to correctly reorientate the magnetic 
vectors with respect to the surface plane.  

Ionic relaxation is a common mechanism by which the 
surface energy is minimized with respect to the unrelaxed 
surface. The surface energy (γ) is a measure of the surface 
stability and is defined by 

E
 tot 

(N
 
)

 
−

  
N

 
·

 
E

AnO2  
γ = 

(1) 2A   
The number of formula units (N), the total energy of the 

surface slab, [Etot(N)], and the total energy per formula unit 

(EAnO2) are defined in the parentheses. In our calculations, all 

ions are relaxed, whereas the dimensions of the unit cell are 
fixed. The conjugate gradient method has been employed in the 
relaxation of the ions. Images are visualized by the Crystal-

Maker
83

 and VESTA codes.
84

 The density of states have been 
illustrated by the SUMO code, a command-line plotting tool 

for ab initio calculations.
85 

 
2.2. Low-Index Surface Models. The low-index AnO2 (111), 

(011), and (001) surfaces are created by the METADISE code 

(Figure 3)
86

 from the ionically relaxed crystal structure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Low-index AnO2(111), (011), and (001) surfaces of an 

ideal calcium fluoride (CaF2) structural motif. The oxygen (red) 
and actinide (blue) ions are indicated.  

 

The nonpolar (111) surface is comprised of charged 
O−An−O monolayers, whereas the dipolar (011) surface is 
comprised of charge neutral planes.  

The polar (001) surface (formed of dipolar An−O layers) is 

inherently unstable.
17,87,88

 The electrostatic energy relative to the 

number of monolayers diverges; this is driven by the electric 

dipole moment.
89

 
,90

 To eliminate the dipole moment, the surface 

undergoes a reconstruction, whereby half of the charge oxygen 

ions are transposed from one surface to the other. This results in 

the formation of a half-filled oxygen terminated surface (Figure 

4). The reconstruction is influenced by environmental conditions 

in nature.
88,91

 In the nonpolar reconstructed (001)r surface, the 

(001)α or (001)β configurations in a (1·1) unit cell can be formed. 

Although numerous configurations are possible in a (1·2) unit cell, 

the (001)αβ reconstruction off ers 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Reconstruction of the AnO2 (001) surface. In a (1·1) unit 

cell, the transposition of oxygen ions results in the (001)α or (001)β 
configurations. In a (1·2) unit cell, the transposition of oxygen ions 

results in the (001)αβ configuration. The oxygen (red), oxygen 

vacancies (white), and actinide (blue) ions are indicated.  

 
The terms in the parentheses describe the total crystal-

medium interface free energy ( Gi), the surface Gibbs free 

energy (γj), and the surface area (Aj). 
 
3. RESULTS AND DISCUSSION 
 

3.1. Model Constraints. 3.1.1. Surface Energetics. As a 
function of the number of formula units used, the energy of the 

low-index AnO2 surfaces has been calculated (Supporting 

Information, Figure S1). The ions are fully relaxed while keeping 
the relative dimensions of the unit cell fixed. In this study, the 

surface energy is converged to within 0.01 J·m−2
 when 12 or 

more formula units are used. The surface energy increases across 
the series as (111) < (011) < (001)α < (001)β (typical of fluorite-

structured materials) (Table 1).
89,98

 The energy diff er-  
 

Table 1. Relaxed Energy (J·m−2
) of the AnO2(111), 

(011), and (001) Surfaces  
 

(001)  

hybridization between the two (1·1) reconstructions, and in this 
  (111) (011) (001)α (001)β  (001)αβ  
 

UO2 0.85 1.23 1.75 1.83 1.69 
 

study, we have calculated the relative stabilities of these three   
 

NpO2 0.90 1.28 1.86 1.92 1.80 
 

surface configurations.    
  

PuO2 0.92 1.35 1.96 2.13 1.85 
 

The surface energy is converged with respect to the k-point   

grid to under 0.05 J·m−2
  (Figure 5). The (111) surface is 

         

         

calculated from a 5·5·1 Γ-centered k-point grid recommended 
ence between the (001)α and (001)β terminations are relatively for hexagonal structures, whereas the (011) and (001) surfaces 

are calculated from a 4·4·1 Γ-centered k-point grid.
87

  To small in UO2 (0.08 J·m
−2

) and NpO2 (0.06 J·m
−2

) compared to 

minimize the potential aliasing errors, the initial bulk structure PuO2 (0.19 J·m−2
). If one uses a (1·1) unit cell model, the 

(from which the surfaces are derived) is calculated with both 4·4· (001)α surface relative to the (001)β surface is energetically 
4 and a 5·5·5 Γ-centered k-point grids for direct comparison. favorable, which is confirmed independently by an interatomic 

Finally, the (001)αβ surface is calculated form a 4·2·1 Γ- potential-based investigation on UO2.
91

 Compared with the past 
centered k-point.  DFT-based  methods,  the  calculated  surface  energies  are 

2.3. Hive Code. In the STM Hive code,
92,93

 the Tersoff− considerably greater for each surface,
9,11,17,18,23,76,99

 although 

Hamann model is considered, where the tunneling current is interatomic potential models
91

  and relativistic hybrid calcu- 

equivalent to the local density of states.
94

 A point source at a lations
15

 of UO2 have resulted in even higher surface energies. 

constant height (2.5 Å) and a Fermi energy sample bias (−2.50  In addition, interatomic potential models of UO2  have 
eV) are used. Topographies calculated by HIVE include calculated lower-energy (001) surface reconstructions, which 
copper,

95
  germanium,

92,93
  gold,

96
  iron oxide,

97
  and thorium are formed using a larger unit cell.

91,100
 In the reconstruction of 

dioxide.
98  the (001) surface in our (1·1) unit cell, only the (001)α and 

2.4. Wulff  Reconstruction. According  to  the  Gibbs (001)β configurations can be generated, whereas the surface 

thermodynamic principle, the equilibrium crystal morphology energy of the (001)αβ configuration from a (1·2) unit cell 
is influenced by the total surface energy of the medium interface. (calculated using 28 formula units) relative to the (001)α and 
An equilibrium crystal morphology that minimizes Gi has been (001)β configurations is considerably lower in energy (Table 1). 

calculated as follows (eq 3)  This implies a limitation of the DFT (1·1) unit cell model, and it 

Gi =  ∑ γjAj 

 is clearly possible that other configurations, even in larger cells, 

(2) 
could be more stable. However, increasing the size of the cell 

j 

increases the computational cost of the system signi 
fi 

  cantly, and 
            
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Surface energy converged with respect to the k-point grid for each surface: (a) uranium dioxide, (b) neptunium dioxide, and (c) 
plutonium dioxide. The colors indicate the (111) (green), (011) (blue), (001)α (red), and (001)β (yellow) surfaces. In these calculations, the 
(111), (001)α, and (001)β surfaces are formed of 15 monolayers, whereas the (011) surface is formed of 7 monolayers. 
  

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.8b07823/suppl_file/jp8b07823_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.8b07823/suppl_file/jp8b07823_si_001.pdf


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. Interlayer An−An relaxation for (a) (111), (b) (011), (c) (001)α, and (d) (001)β surfaces. The interlayer spacing index (i) is 

indicated in the parentheses.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7. Interlayer O−O relaxation for (a) (111), (b) (011), (c) (001)α, and (d) (001)β surfaces. The interlayer spacing index (i) is indicated 

in the parentheses.  
 
a systematic fully relativistic DFT study of bigger 
simulations cells is currently computationally intractable.  

3.1.2. Ionic Relaxation. The low-index AnO2 surfaces 
are characterized by the changes in the interlayer spacings 
(Figures 6a−d and 7a−d), which enable a quantitative 
analysis of the structural relaxation between layers. The 

interlayer relaxation ( dinterlayer) is calculated by 
 

d
 interlayer 

=
  
(d

i , i + 1
)

relaxed 
−

  
d

unrelaxed (3) 

where (di,i+1)relaxed is the average interlayer separation of ions 

in the relaxed surface and dunrelaxed is the average interlayer 

 
separation of ions in the unrelaxed surface. The interlayer 
relaxation is reminiscent of studies on the isostructural 

CeO2 material, with similar results found for the (111) and 

(011) surfaces.
101 

 
In the context of An−An relaxation, the (111) surface is 

marginally distorted. The major diff erence is confined to the 

oxygen separation in the second interlayer space. The (011) 

surface undergoes the greatest overall interlayer relaxation, with 

the first surface layer experiencing a marked contraction, where 

the first An layer contracts significantly more than the first O layer. 

The contraction of the first layer is countered by a slight 
  



 
 
expansion of An ions in the second layer, but the bulk structure is 

regained by the fifth layer. The terminal O ions in the (001)α and 

(001)β surface undergo a significant contraction, although the 

remainder of the structure is relatively unaff ected. In general, the 

interlayer relaxation is confined to the first 5 Å, indicating that for 

investigations of surface reactivity, a slab of minimum 10  
Å thickness should be used. Our results are similar to those 

found in studies of CeO2 and ThO2.
98

  
In the context of interlayer O−O relaxation, the distortion of 

the surface is primarily confined to the first three to four 
monolayers and the degree of ionic relaxation is generally 

identical in the AnO2 surfaces, with the exception of the 

PuO2(001)β surface. In the PuO2(001)β surface, the relaxation 

of the oxygen ions is significantly less relative to the UO2 and 

NpO2(001)β surfaces. Thus, of the (001)r surfaces, the UO2 

and NpO2(001)β surfaces undergo the greatest surface 

relaxation, whereas in PuO2, the (001)α surface undergoes the 
greatest surface relaxation, which is a result of the magnetic 
order and the relaxation in the xy-plane.  

No significant structural distortion in the xy-plane occurs in the 

AnO2(111), (011), or (001)α surface, possibly as a result of 

preserving the Pa3 ̅(no. 205) or Fm3̅m (no. 225) cubic symmetry 

from the use of noncollinear 3k AFM order.
27

 In contrast, the 

oxygen ions in the UO2 and NpO2(001)β configuration are shifted 

from their initial positions by the use of transverse 3k AFM 
ordering (Figure 8). This distortion is not  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8. Ionic relaxation of the low-index AnO2(001) 
reconstructed surfaces. The transverse (001)β surface is 

representative of transverse 3k AFM behavior for UO2 and NpO2, 
whereas the longitudinal (001)β surface is representative of 

longitudinal 3k AFM behavior in PuO2. The hybridized (001)αβ 

surface is calculated regardless of the magnetic order for AnO2. 
The oxygen (red) and actinide (blue) ions are indicated.  

 

observed in the corresponding PuO2 surface in which the 

ions are relatively fixed, although there is a minor distortion 
of the surface plutonium ions, potentially as a consequence 
of using either transverse 3k AFM or longitudinal 3k AFM 
behavior. By comparison, the oxygen ions in the (001)αβ 
configuration are relatively static, and instead, the actinide 
ion is partially shifted toward the terminal oxygen ions.  

3.2. Surface Properties. 3.2.1. Electronic Structure. The 

electronic structure of the AnO2 surfaces has been calculated 

(Figure 9). The covalent nature of the AnO2 materials (a 
consequence of An (f) and O (p) mixing) is seen to increase 

 
along the series. The Mott−Hubbard insulating nature of UO2 is 

characterized by transitions primarily occurring across the An f-

bands. Compared to relativistic hybrid DFT calculations of UO2, 

the calculated band gaps for the low-index surfaces are 

considerably greater.
15

 The charge-transfer insulating nature of 

PuO2 is characterized by transitions primarily between the valence 

Pu f-band and the conduction O p-band. In NpO2, both Mott 

insulating and charge-transfer characteristics are shown in the 
surface. In general, the electronic structure is only partially 
perturbed between surfaces.  

In addition, the electron affinity and ionization potential of 

the AnO2 surfaces has been calculated (Table 2). This 

information fills a significant gap in the literature where X-ray 
photoelectron spectroscopy and Kelvin probe microscopy 
studies are yet to be performed. The electron affinity and the 
ionization potential increase along the (011) < (111) < (001)β  
< (001)α series. Of the AnO2 (An = U, Np, or Pu) materials, 

UO2 is the least reactive, whereas PuO2 is the most reactive. 
3.2.2. Magnetic Deviation. The magnetic structure of the 

low-index AnO2 surfaces has been investigated. A complete 
analysis of the actinide ions can be found in the Supporting 
Information. The localized magnetic normalized root-mean-
square deviation (nrmsd) of the first three monolayers has been 
calculated for each surface (Figure 10). As the monolayer 
surface depth increases, the magnetic distortion decreases. The 

total magnetic moment of U (1.37 μB·ion
−1

), Np (2.70 

μB·ion
−1

), and Pu (3.80 μB·ion
−1

) ions remains constant.  
The comparative localized magnetic deviation in NpO2 for 

identical surfaces is relatively high. A number of competing 
low-temperature (T < 25.4 K) magnetic states could cause the 
distortion. For instance, the transverse 3k AFM state, relative 
to the ferromagnetic (FM) (111) ground state, is 0.002 eV per 
formula unit higher in energy; however, no experimental 
evidence of a FM (111) ground state, which results in a R3̅m 

(no. 166) crystallographic distortion, exists.
25

 In addition, the 

localized magnetic deviation of the (001)α series can be 
ascribed to the surface instability. In the first three monolayers 
of the (001)α surface, a FM and an AFM domain are formed. 

The lowest rmsd is found for the PuO2(011) surface.  
3.2.3. STM. The surface energies of UO2 are extremely 

sensitive to stoichiometry, defect chemistry, and environmental 

conditions.
102−104

 Low-energy electron diff raction measure-

ments of the UO2(111) surface have identified over 16 individual 

patterns.
105

 To assist the experimental analysis, low-index AnO2 
STM images have been calculated (Figure 11). The resulting 

images are analogues to experimental STM studies of AnO2 

surfaces;
88,106,107

 however, in an STM experiment, ionic 
positions are influenced by perturbations of the electric field 
caused by the probe. The calculated resolution relative to an 
experimental study is therefore considerably greater.  

The terminal O
2− ions are observed in white, whereas the An

4+
 

ions area considerably darker. The individual AnO2 (An = U, Np, 

or Pu) (111), (011), and (001)α surface patterns are indistinct. In 

the (111) surface, the O
2− ions result in a hexagonal structure, 

whereas in the (011) surface, a series of darker channels is 
observed in one direction. In the (001)α surface, the alignment of 

the O
2− ions results in a diamond pattern. As a means of 

diff erentiating between compounds, the (001)β surface is 
influenced by the magnetic state. In the transverse 3k AFM state 

for UO2 and NpO2, the O
2− channels oscillate continuously, 

whereas in the longitudinal 3k AFM state for PuO2, the O
2− 

channels are perfectly linear. In other words, the structures can be 
diff erentiated by the transverse 3k AFM 
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Figure 9. Calculated density of states for the low-index AnO2(111), (011), and (001)α surfaces; (left) UO2, (center) NpO2, and (right) 

PuO2. The colors indicate the actinide f (blue), actinide d (green), and oxygen p (red) bands. The Fermi level is set at 0 eV.  
 
Table 2. Electron Affinity (eV), Ionization Potential (eV), and 

Surface Energy (J·m
−2

) for the Low-Index AnO2 Surfaces 
 
  (111) (011) (001)α (001)β  

UO2 electron affinity (eV) 2.44 1.45 3.69 2.93  
 ionization potential (eV) 4.54 3.51 5.75 5.00  

 band gap (eV) 2.11 1.96 2.01 2.15  

 surface energy (J·m−2) 0.85 1.23 1.75 1.83  
NpO2 electron affinity (eV) 3.11 2.11 4.33 3.45  

 ionization potential (eV) 5.98 4.89 7.11 6.23  

 band gap (eV) 2.64 2.47 2.14 2.50  

 surface energy (J·m−2) 0.90 1.28 1.86 1.92  
PuO2 electron affinity (eV) 3.60 1.74 4.89 4.65  

 ionization potential (eV) 6.45 4.53 7.67 7.44  

 band gap (eV) 2.58 2.12 1.84 2.03  

 surface energy (J·m−2) 0.92 1.35 1.96 2.13 Figure 11. Low-index STM images. AnO2(111), (011), and (001)α are 

indistinguishable. The transverse (001)β surface is found for UO2 and 

NpO2, whereas the longitudinal (001)β surface is found for PuO2. The 

terminal O2− ions are observed in white; the An4+ ions are in dark gray.  
 

3.2.4. Electrostatic Potential Isosurface. The electrostatic 

potential isosurface for the low-index AnO2 surfaces has been 

calculated using the PBEsol + U functional (Figure 12), where the 

colors indicate the regions of relative high (red) and low  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 10. Cross-sectional illustration of the AnO2(111), (011), 

and (001)α surfaces for the first three monolayers. The initial 
magnetic (silver) and relaxed magnetic (green) vectors are 
colored. The actinide (blue) and oxygen (red) ions are also shown.  
 

state of UO2 and NpO2 or by the longitudinal 3k AFM state of 

PuO2, which is useful information for comparison with future 
experimental patterns to deduce the magnetic states. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 12. Electrostatic potential isosurfaces. AnO2(111), (011), 
and (001)α are indistinguishable. Transverse (001)β surface is 

found for UO2 and NpO2, whereas the longitudinal (001)β surface 

is found for PuO2. The regions of high (red) and low (blue) 
electrostatic potential are indicated. 

  



 
 
(blue) charge densities. An interesting region of high charge 
density for an An ion (highlighted in light blue) on the (111) 
surface has been identified. The area is expected to have a 
diff erent reaction chemistry compared to the remaining An 
ions, possibly a site of catalytic activity. In general, regions of 
high charge density are localized near the oxygen ions. The 

electrostatic potential isosurfaces of UO2 and NpO2(001)β 

diff er from that of the PuO2(001)β surface as a consequence of 

the surface ionic relaxation in the xy-plane, and the surfaces 
are therefore expected to have diff erent chemical activities.  

3.2.5. Crystal Morphology. Low-voltage scanning electron 

microscopy of UO2 shows a truncated octahedral Wulff  crystal 

morphology,
108

 which to our knowledge is the only experimental 

study concerning the morphology. The truncated octahedral Wulff  

crystal morphology of UO2 is inconsistent with studies of other 

fluorite-type crystal structures and may be the result of 
environmental influences and the method of sample preparation. 
The crystals were formed under high pressure (400 MPa) and 

temperature (1700 °C). A truncated octahedral UO2 Wulff  crystal 

morphology (γ100 = 1.60 ± 0.02 J·m−2
, γ111 = 1.14 ± 0.03 J·m−2

) 

has been found; where, empirical interatomic  
potentials without periodical boundary conditions have 

been used.
109 

 
In this study, an octahedral Wulff  crystal morphology has been 

calculated (Figure 13) from the surface energies of the low-index  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 13. AnO2 Wulff  reconstruction. The crystal structure is 
formed of (111) facets.  

 

(111), (011), and (001)αβ surfaces only. As a result of their 
relative instabilities, the (001)α and (001)β surfaces are 
omitted. Indeed, other high-index surfaces are considerably 
greater in energy, and their influence on the Wulff  crystal 
morphology is assumed to be negligible.  

In terms of computational theory, calculations have shown that 

the crystal structure is influenced by the magnetic state.
26,27

 In 

theory, the low-temperature octahedral Wulff  crystal morphology 
is linked to the noncollinear 3k AFM state, whereas the high-
temperature truncated octahedral Wulff  crystal morphology is 
linked to the PM state. In contrast, the octahedral Wulff  crystal 

morphology of the AnO2 materials is consistent with that of 

fluorite-based materials. The octahedral morphol-ogy in the 

present study is also consistent with: past DFT (PuO2,
22

 NpO2
98

) 

and interatomic potential calculations.
91

 The  
(111) surface dominates the morphological features of the 
particle.  

Interatomic potential models of the UO2(001) surface have 

indicated surface configurations of lower energy in a (2·2) unit 
cell, however this energy is not sufficiently low enough to result 

 

in a truncated octahedron.
91

 In the calculation of (001) surface 

energetics, the major limitation is the size of the unit cell, and 

hence there is a possibility that larger cells may result in a 

configuration of sufficiently low energy to result in a truncated 

octahedron. In this study, we have used a (1·1) unit cell with 

either the (001)α or (001)β configuration, although additional 

configurations are possible in larger supercells. In theory, one 

of these surfaces may possess sufficiently low energy to aff ect 

the morphology. However, a systematic investigation of the 

(2·2) surface is computationally unfeasible because of the 

large number of compute-intensive configurations that must be 

explored.  
In another scenario, the experimental sensitivity of UO2 

resulted in a crystal morphology influenced by environmental 
conditions. It is known that the interaction of oxygen with the 

AnO2 surfaces influences the composition range of the solid and 

the formation of superficial structures.
105

 In the past, DFT + U 

studies have indicated that the truncated crystal morphology is the 

result of oxygen-rich conditions at 300 K.
110

 In addition, 

interatomic potentials indicate that the AnO2(001) surface energy 

is reduced by hydroxylation,
12,17

 which also results in a truncated 

octahedron. Other models which use interatomic potentials have 
obtained an octahedral morphology at thermodynamic 
equilibrium; however, these studies concluded that the truncated 

morphology is the result of kinetic limitations.
111

 Finally, 

numerous experimental investigations have shown that the surface 
energies are temperature-depend- 

ent.102,112 

 

4. CONCLUSIONS 
 

PBEsol + U has been used to investigate AnO2 surfaces. In the 

past, collinear 1k AFM states were used to model surface 

structures, but these models predominately use scalar 

approximations of the crystal electric field, which causes an 

inability to reorient the magnetic vectors relative to the plane of 

the surface. Therefore, the magnetic structures diff er across 

surface indices. This study considers noncollinear 3k AFM 

behavior and SOI contributions to the surface energetics of the 

low-index AnO2 (111), (011), and (011) surfaces. The magnetic 

field is carefully reoriented relative to the plane of the surface for a 

complete description of the magnetic surface structure. Localized 

magnetic distortions have also been identified. 
 

The interlayer relaxation of the (111), (011), and (001)α 
surfaces is confined to the first 5 Å. In contrast to past DFT 
investigations, our surface energies are considerably 

higher,
11,76

 which illustrates the important contribution of the 

SOI
74

 to the calculated surface energetics. Our surface 

energies suggest that the chemical reactivity of the surface has 
previously been underestimated. The surface stability increases 
across the (001)β < (001)α < (011) < (111) series, which is 

typical of CaF2-type structures. From our Wulff  

reconstruction, the octahedral crystal morphology is 
completely dominated by 
 

(111) facets. As stated, this is consistent with previous 
calculations of fluorite-type structures. A computationally 

tractable method to model the low-index AnO2 surfaces 

with improved energetics has been shown.
25

 Finally, the 
models developed and described in this work could be 
employed in the implementation and use of machine 
learning methods to investigate structural defects and 
radiation damage in nuclear fuels. 
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