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ABSTRACT
The method of direct variational quantum nuclear dynamics in a basis of Gaussian wavepackets, combined with the potential
energy surfaces fitted on-the-fly using Gaussian process regression, is described together with its implementation. Enabling
exact and efficient analytic evaluation of Hamiltonian matrix elements, this approach allows for black-box quantum dynamics
of multidimensional anharmonic molecular systems. Example calculations of intra-molecular proton transfer on the electronic
ground state of salicylaldimine are provided, and future algorithmic improvements as well as the potential for multiple-state
non-adiabatic dynamics are discussed.
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Fitting molecular potential energy surfaces (PESs) with
machine learning techniques is an increasingly popular
approach, with the Gaussian Process Regression (GPR)
method1 recently demonstrated as a technique competitive
with Artificial Neural Networks (ANNs) for general problems,
due to its simplicity and robustness.2–13 Several investiga-
tions performed for small molecular systems show that only
a surprisingly modest number of data points are required
to achieve high-quality PESs by means of GPR and that the
scaling of their number is close to linear with the size of
the system.5,7,8,14 The two outstanding questions are whether
this scaling is maintained for larger and more complex cases
and developing optimal approaches for selecting training
points.

A field where GPR could introduce a step change in capa-
bility, and which addresses the above two issues naturally,
is direct quantum dynamics (QD), where PESs are evaluated
on-the-fly, following the evolution of the time-dependent
nuclear wavepacket. Until recently, the only fully varia-
tional method that exactly solved the time-dependent nuclear
Schrödinger equation on-the-fly for general molecular

systems was DD-vMCG (direct-dynamics variational multi-
configurational Gaussian).15 Due to the localized nature of the
Gaussian wavepacket (GWP) basis functions employed in this
method, a local harmonic approximation (LHA) was originally
adopted to describe PESs, an approach having two drawbacks:
(a) computationally expensive electronic gradients and Hes-
sians need to be calculated at the center of each GWP at each
time step of wavepacket propagation (with the overall expense
being, however, reduced due to the usage of modified Shepard
interpolation)15 and (b) potential energy matrix elements are
correct only to the second order, restricting the range over
which interpolation can be trusted.

The first attempt to introduce machine-learned poten-
tials into direct GWP-based QD was by Koch and Zhang,16 who
used multiplicative ANN to fit PESs on-the-fly, allowing for
analytic potential energy matrix elements, and reported good
performance and accuracy. Subsequently, Alborzpour et al.
applied the Gaussian approximation potential (GAP) method
to direct dynamics based on classically propagated GWPs and
demonstrated improved accuracy in potential energy matrix
elements compared to the LHA.17 This method was based
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on GPR with non-optimized hyper-parameters, which predic-
tions for the PES fit can be shown to be equivalent to the
kernel ridge regression (KRR) method as we also discuss below.
Taking the simplicity of the GPR formalism and implementa-
tion, the authors suggested that the LHA should be abandoned
altogether in the field of direct QD in its favor. Expanding
on this prior work, Richings and Habershon have success-
fully applied the same technique to a conventional QD method
[multi-configuration time-dependent Hartree (MCTDH)18] in
a delocalized basis set defined on a grid.19,20 This approach has
been successfully demonstrated as an on-the-fly implementa-
tion of MCTDH which does not require pre-fitting of a global
PES; applications to both ground-state and non-adiabatic
dynamics have been presented, and further improvements to
scalability and efficiency of their approach have also been
recently reported.21,22

In this article, we fill the gap in the existing method-
ologies and describe the theory and implementation of the
variational Gaussian-based direct QD method, DD-vMCG,
using Gaussian-approximation potentials; we call the result-
ing approach GAP-vMCG. For full details on the DD-vMCG
method, we refer the reader to Ref. 15. We would like, how-
ever, to stress here that this method follows the two cou-
pled equations-of-motion (EOMs), one for the wavefunction
expansion coefficients and the other for the parameters (posi-
tion, momentum, and optionally width) of each Gaussian basis
function, both derived from a variational principle without any
approximations and is thus, in principle, exact.

The GAP method, used here, is an implementation of GPR
using combinations of squared exponential functions, which in
one dimension, qm, are

k(qm, qmk ) = exp
[
−γ(qm − qmk )2

]
, (1)

with γ defining the length-scale, as the kernel which is used to
define the prior normal distribution in functional space and,
effectively, to expand the PES. Matrix elements of the PES
operator must be evaluated in the basis of GWPs, which in f
dimensions are given by

gi(q, t) =
f∏

m=1

���g
m
i

〉
= exp



f∑
m=1

ςmi (qm)2 + ξmi qm + ηm
i


, (2)

where {ςi, ξi, ηi} are time-dependent, complex parameters
describing the exact form of the GWPs. In this work, we
employ the frozen-width approximation so that only the ξ
parameters are propagated in time [ξmi = −2ςmi qmi + ipmi where
ςmi determines the (negative) width, qmi determines the center,
and pmi determines the momentum of the GWP along degree-
of-freedom (DOF), m]. In order to evaluate the GAP matrix
elements, we need the following three integrals along the mth
DOF:

〈gmi |g
m
j 〉 =

*
,
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+
-

1/2

exp


(ξ∗mi + ξmj + 2γqmk )2

4(−ς∗mi − ςmj + γ)

−γ(qmk )2 + η∗mi + ηm
j

]
, (3b)

〈
∂gmi
∂ξmi

|k(qm, qmk ) |gmj 〉 =
ξ∗mi + ξmj + 2γqmk
2(−ς∗mi − ςmj + γ)

〈gmi |k(qm, qmk ) |gmj 〉. (3c)

In applying GPR to fit the f-dimensional PES, the most gen-
eral way to represent an f-dimensional kernel is to use a
many-body expansion in terms of the one-dimensional ker-
nels k(qm, qmk ),

kG(q,qk) = κ2
( f∑
m=1

k(qm, qmk ) +
f∑

m<n
k(qm, qmk )k(qn, qnk )

+ · · · +
f∏

m=1

k(qm, qmk )
)
, (4)

with κ2 being a variable prefactor. However, since the large
number of terms in this expansion leads to a significant com-
putational effort in the evaluation of the PES matrix elements,
we use two truncations of the general kernel in this work (both
of which are valid in terms of GPR). The first simply retains the
final, f-dimensional term in Eq. (4) and is termed the full ker-
nel, kFull(q, qk), whilst the second keeps the first two terms and
is called the additive kernel, kAdd(q, qk).

Whatever the exact form of the kernel [using k(q, qk) to
represent any of those described above], it can be used in GPR
as a covariance function that defines the prior joint normal
distribution of the values of the function to be learned (here
we use the general notation b ∼N(µ,σ2) to refer to a function
value b distributed normally with the mean µ and variance σ2).
In other words, it defines its smoothness. Suppose we have a
vector of function values b and another function value b0. In
GPR, they will have a prior joint normal distribution according
to (

b
b0

)
∼N

((
µ
µ0

)
,
(
A kT

k 1

))
, (5)

where matrix A is a covariance function with elements

Aij = k(qi,qj) + λ2δij, (6)

(with λ2 being a small regularization parameter), and the ele-
ments of the vector, k, are the values of the appropriate kernel
evaluated at points {q0} corresponding to the function value
b0: k(qi, q0). The conditional (posterior) distribution of b0, with
the function values b known, can be shown to be

b0 ∼N(µ0,σ2
0), (7)

with the mean given by

µ0(q) = kTA−1b, (8)

and the variance being

σ2
0(q) = (k(q,q) + λ2) − kTA−1k. (9)
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The PES is defined as the mean of the posterior normal dis-
tribution [Eq. (8)], and it is expanded as a linear combina-
tion of kernel functions centered at a selection of points in
configuration space,

V(q) '
M∑
k=1

ωkk(q,qk), (10)

where the weights {ωk} are found by solving

Aω = b, (11)

with b containing the actual values of the PES at assorted
points in configuration space, bk = V(qk).

Given the integrals in Eq. (3) and the form of the PES in
Eq. (10), it is straightforward to expand the full matrix elements
needed for GAP-vMCG. For completeness, the full expressions
are given in the supplementary material.

It is worth pointing out that the KRR method can be for-
mulated as an equivalent approach to fit a function given a
fixed kernel,4 but it can only provide a prediction [such as
in Eq. (8)], while GPR learns a probabilistic model of the tar-
get function, providing also a variance for each function value,
knowledge of which forms an integral part of our algorithm
for generating test points on-the-fly as described below. Fur-
thermore, GPR provides a direct mean for optimizing ker-
nel hyperparameters based on the gradient-ascent on the
marginal likelihood function,1 but the capability of doing so
does not define it as a method, and we have not pursued this
further in the current work.

To test the GAP-vMCG approach, we have implemented
the method in a development version of the Quantics pack-
age.23 The propagation of the vMCG wavepacket was per-
formed as described previously,15 except that the potential
energy matrix elements are evaluated using integrals defined
in Eq. (3) (with full expressions given in the supplementary
material), rather than employing the LHA when constructing
the EOMs. The other, new feature of this implementation con-
cerns the sampling of configuration space so as to generate
the GAP training set by evaluating the electronic energy at
appropriate molecular geometries.

In the original DD-vMCG implementation, electronic
energies (and gradients and Hessians) are evaluated at geome-
tries visited by the GWPs; at each step in the propagation, the
algorithm compares the location of the center of each GWP in
turn to the geometries previously sampled (which are stored
in a database) and if the minimum distance is larger than a
pre-defined parameter, a new set of electronic data is cal-
culated at the geometry in question, added to the database,
and then used in all subsequent representations of the global
PES. The GAP implementation retains this link between the
path of the GWPs and the regions of configuration space
sampled as it makes sense to have the PES most accurately
represented in the vicinity of the GWPs but with notable
differences.

The main difference between the old and new sampling
methods is that the distance measure comparing GWP centers
to entries in the database is no longer required; the need to
add another point to the database is determined by a variance

measure which is defined in the GPR theory. If the variance
at a test point q, defined in Eq. (9), is greater than a user-
defined value (in this work 10−3 a.u.), the fit to the PES using
the original training set at that point is considered to have
insufficient accuracy and a new electronic energy is calcu-
lated there and added to the training set database; otherwise
the point is rejected. This same approach has been used in the
previously reported direct MCTDH simulations.19–22

Test points are chosen as follows: beginning with an
empty database, the center of the initial wavepacket (along
with its electronic energy) is taken as the first member in
the training set. Subsequently, the first GWP is taken and the
location of its center is used as a test point; the variance
is evaluated, and a new energy is added to the database if
required. A fixed number of points (in this work 50) are then
quasi-randomly chosen around the center of this GWP fol-
lowing Sobol sampling in the multi-dimensional space within
a pre-defined (in this work 3) multiple of the GWP width of
the GWP center (see Ref. 22 for more details on sampling).
Each of these points is then tested for addition to the trial
set before the process is repeated for the remaining GWPs.
Once all of the GWPs have been subjected to this sampling,
Eq. (11) is solved and used to form the potential in Eq. (10). The
potential energy matrix elements can then be formed, allow-
ing construction of the EOMs, and the wavepacket is allowed
to propagate for a given period of time (typically 1 fs) on this
PES. After this period of propagation, the sampling of config-
uration space around the GWP centers is repeated to allow an
updated PES to be constructed. By doing so the PES is most
densely sampled in those regions of configuration space vis-
ited by the GWPs, while areas which they avoid are unsampled.
It should be noted that whenever a new trial point is added to
the database, matrix A is updated, together with its Cholesky
decomposition which is used in the solution of Eqs. (11) and (9),
thus ensuring that the subsequent sampling uses the most up
to date variance measure when determining whether to add a
point or not.

For test calculations, we have chosen a ground-state
intra-molecular proton transfer reaction in salicylaldimine,
using the PES fitted previously,24 and the same initial condi-
tions as in our earlier (DD)-vMCG24 and DD-MCTDH21 cal-
culations. As in previous work, we use the expectation value
of the flux operator defined at the barrier along the proton-
transfer mode ν1 as a highly sensitive observable and com-
pare the GAP-vMCG results to the 4th-order vMCG results,
being exact on the PES fitted to the same order. The hyper-
parameters have been manually adjusted to deliver approx-
imately best performance of the GPR fit in terms of the
required number of data points accumulated on-the-fly while
maintaining high accuracy of the results (see supplemen-
tary material for the details). Parameters γ and λ are not
expected to have different optimal values whether kFull(q,
qk) or kAdd(q, qk) is in use, and once adjusted values of 0.3
and 10−6, correspondingly, have been used throughout all
calculations. On the other hand, the optimal κ was found
to depend on the kernel in use, while having an overall
smaller effect on method efficiency, and was therefore set
to 1.0.
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The number of accumulated training points, M, is a cru-
cial factor for any GPR implementation, which generally scales
as O(M3).1 In our current implementation, due to the lack
of parameter optimization and the use of updates of the
Cholesky-decomposed matrix, A, the vector-matrix multi-
plication in Eq. (9) becomes the computational bottleneck
of the GPR part, i.e. less than O(M2). For GAP-vMCG as a
whole, when using the additive kernel (see below) for the cur-
rent test case, the evaluation of potential energy matrix ele-
ments becomes the bottleneck (scaling as O(Mm2n2) where
m is the system dimensionality and n is the number of
GWPs). The number of accumulated training points is still,
however, of vital importance to the method’s efficiency, espe-
cially since, in the absence of a pre-fitted PES, ab initio elec-
tronic energies would need to be evaluated on-the-fly at every
point.

After running some preliminary test calculations, we real-
ized that using kFull(q, qk) leads to accumulation of a very large
number of training points (with a 100 fs, 6D dynamics run
using adjusted κ = 0.75 resulting in more than 44 000 points
and a 13D calculation becoming nearly infeasible memory- and
time-wise). Introduction of kAdd(q, qk) led to a dramatic reduc-
tion in the number of training points necessary to obtain a
converged GPR fit for PES. This is in agreement with Ref. 21
where a poor span of the multi-dimensional space by a multi-
dimensional Gaussian has been discussed in detail. Already the
first (starting from an empty database) 6D run using 64 GWPs
and default hyper-parameters resulted in the nearly con-
verged flux (see Fig. 1) while accumulating only 1884 points.
The same-length “from scratch” 13D run employing 96 GWPs
also gave a qualitatively correct flux (see Fig. 2) with 8068
points evaluated on-the-fly. Both of the above calculations
have been performed using 40 cores (Intel Xeon Gold 6148 × 2)
and took 1 h 20 min and 14 h 15 min, respectively (for com-
parison, vMCG calculations took 8 min and 1 h 51 min, respec-
tively). Adjustment of the κ-values to 0.3 (6D) and 0.25 (13D)

FIG. 1. Flux through the potential barrier for the proton transfer isomerisation
of salicylaldimine in a 6D model using 64 GWPs, calculated with vMCG (blue
solid line) and GAP-vMCG (orange dashed line) using kAdd(q, qk ) and κ = 1.0.
The space between the two flux curves is filled with the color of the higher-lying
curve.

FIG. 2. Flux through the potential barrier for the proton transfer isomerisation
of salicylaldimine in a 13D model using 96 GWPs, calculated with vMCG (blue
solid line) and GAP-vMCG (orange dashed line) using kAdd(q, qk ) and κ = 1.0.
The space between the two flux curves is filled with the color of the higher-lying
curve.

led to a further reduction in the accumulated points down
to 1280 and 6120, respectively, while not altering the qual-
ity of the flux significantly. Obviously, proper optimization
of hyper-parameters, as commonly employed in GPR, while
adding to the overall time of computation, is expected to fur-
ther decrease the number of points necessary for an accurate
fit.

The results presented above promise that exact (to an
accuracy of at least the inherent error of the quantum chem-
ical method used to obtain the PES) fully quantum multi-
dimensional dynamics is possible for anharmonic molecular
systems using the GAP-vMCG method. Even using the exist-
ing code, systems as large as 30-40 DOF should be feasible
to study. One should note that the calculations performed
in terms of the current work made use of the pre-fitted
PES and therefore the computational time spent excluded
quantum chemistry calculations themselves. Still, even tens
of thousands of ab initio calculations are quite feasible with
modern, scalable codes and ever-improving HPC hardware.
Improvements are, however, sought to the GAP-vMCG algo-
rithm to make it even more efficient, among which are the
implementation of the proper automatic optimization of
hyper-parameters, individual instead of unique length-scale
parameters for different DOF, other covariance functions such
as Matérn kernel (which might be more advantageous for some
systems) and improved sampling algorithms.

The main focus of quantum dynamics calculations is usu-
ally non-adiabatic molecular systems, where different elec-
tronic states may couple to each other via nuclear distortion,
thereby violating the Born-Oppenheimer approximation. Evo-
lution of the nuclear wavepacket in a manifold of coupled
electronic states is a common application both for conven-
tional MCTDH and (DD-)vMCG methods. To achieve stable
propagation and avoid discontinuities in the gradients of adi-
abatic surfaces and the non-adiabatic couplings at conical
intersections, it is a common practice to perform a transfor-
mation to (quasi)-diabatic surfaces that cross smoothly. An
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on-the-fly method of propagation diabatisation has been suc-
cessfully implemented both for DD-vMCG and DD-MCTDH
methods,20,25,26 with the latter including modification allow-
ing for the use of GPR-learned surfaces,20,21 whilst, recently, a
new projection diabatisation scheme was introduced27 which
has already been successfully coupled to the DD-MCTDH
algorithm.22 The same two approaches should be straight-
forward to use for GAP-vMCG, allowing for larger-scale but
accurate calculations of non-adiabatic processes.

See supplementary material for the derivation and full
expressions for the potential energy operator matrix elements
as well as details on manual adjustment of kernel parameters
used in the current work.
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