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I. POTENTIAL ENERGY OPERATOR MATRIX ELEMENTS

Below we provide the derivation and full expressions for the potential energy operator
matrix elements used in the GAP-vMCG method, both for k™(q,q;) and k494(q, qz).
Since we use vMCG within the frozen-width approximation, with only the position and mo-
mentum of fixed-width GWPs being propagated, we only provide formulas relevant to this
approximation here, with extension to the time-dependent width parameter being straight-
forward.

With k¥(q, q;), the GAP-vMCG potential energy ME reads

M M f
 )Fu u mi_— m_my2,
Vi = (0:V™"™g5) = (gl D wnk™ (@, an)lgy) = £° Y wr [ (g e T E gy (S1)
k=1 k=1

=1
With the f-dimensional GWP given in the Heller form
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the one-dimensional, one-point term from the full matrix element expression in Eq. (S1) can

be further expanded as follows:
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where the asterisk symbol means complex conjugate. Applying the standard Gaussian inte-
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gral formula [ dx emar*thrte — \/ge%a“ to Eq. (S3), we obtain the final expression:
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which is equivalent to Egs. (27-28) from Ref. [1].
It is convenient to write (and implement) the vMCG equations-of-motion (EOM) in terms

of the following parameters:?
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in which Eq. (S2) takes a simple form:
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One should note that Eq. (S8) only describes separable GWPs - in the fully thawed formalism
one needs to adopt a matrix form such as in Eq. (10) from Ref. [2] with the widths of the
1D Gaussians being coupled to each other within a given GWP. In terms of those new

parameters defined in Eqgs. (S5-S7), the formula for the 1D matrix element becomes:
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Plugging Eq. (S9) into Eq. (S1) we obtain the full expression for GAP-vMCG potential
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energy matrix element when using k*(q, qz).
Apart from the usual Hamiltonian matrix elements, fully-variational vMCG EOMs also
require the derivative matrix elements:?
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where )\iﬁ is the fth parameter of the ith GWP being propagated. In the frozen-width
approximation only the & parameters (the number of which is equal to the number of degrees
of freedom) are propagated, so we will only consider the Vf;o matrix element, which is just:
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The analytic expression for the corresponding 1D, one-point k™!(q, qx;) matrix element

can be straightforwardly obtained from Eq. (S3) by applying the standard formula for the
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first-order Gaussian moment integral, [ dz ze~ et

99:"
oer

 205™g" + 20 g + 2yq;t + i(p)t — pf)
2(a;™ + o + )

T+ gy

2(=¢" =" +7)

e (@™ =a)? | gy

m|  — m__,m)2 m
; (g e @~ | g

(

m _ m__,m\2 m
(g e @A gy (S12)

3



where on the second line we used the parameters defined in Eqs. (S5-S7). The full multi-

dimensional expression therefore reads:
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The form of £244(q, q,) somewhat complicates the expressions for matrix elements. For the

second-order additive kernel, used in the current work, they take the following forms:
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which can be trivially obtained by using Egs. (S9) and (S13) as well as the formula for the

first-order Gaussian moment:

99, il 5“ f[

<ag;¢ |9) = DTEE—m i lait - (S16)

1 m=1

II. ADJUSTMENT OF KERNEL PARAMETERS

Values for parameters v and x have been gradually lowered from their default values of
0.5 and 1.0 (used in previous work) correspondingly with steps of 0.1 until the quality of the
flux started to visually deteriorate compared to the exact result or otherwise the wavepacket

propagation became less stable; then finer steps of 0.05 were used for fine-tuning. The value
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for A has been used as in previous work. Parameters obtained in this fashion should not be
considered to be general for arbitrary molecular system and a proper optimization should

become part of the GAP-vMCG algorithm, as we point out in the main text.
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