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Abstract 

Objective. A motor-imagery-based brain-computer interface (MI-BCI) provides an alternative way for people to interface 

with the outside world. However, the classification accuracy of MI signals remains challenging, especially with an increased 

number of classes and the presence of high variations with data from multiple individual people. This work investigates 

electroencephalogram (EEG) signal processing techniques, aiming to enhance the classification performance of multiple MI 

tasks in terms of tackling the challenges caused by the vast variety of subjects.  

Approach. This work introduces a novel method to extract discriminative features by combining the features of functional 

brain networks with two other feature extraction algorithms: common spatial pattern (CSP) and local characteristic-scale 

decomposition (LCD). After functional brain networks are established from the MI EEG signals of the subjects, the measures 

of degree in the binary networks are extracted as additional features and fused with features in the frequency and spatial 

domains extracted by the CSP and LCD algorithms. A real-time BCI robot control system is designed and implemented with 

the proposed method. Subjects can control the movement of the robot through four classes of MI tasks. Both the BCI 

competition IV dataset 2a and real-time data acquired in our designed system are used to validate the performance of the 

proposed method. 

Main results. As for the offline data experiment results, the average classification accuracy of the proposed method reaches 

79.7%, outperforming the majority of popular algorithms. Experimental results with real-time data also prove the proposed 

method to be highly promising in its real-time performance.  

Significance. The experimental results show that our proposed method is robust in extracting discriminative brain activity 

features when performing different MI tasks, hence improving the classification accuracy in four-class MI tasks. The high 

classification accuracy and low computational demand show a considerable practicality for real-time rehabilitation systems. 

Keywords: brain-computer interface, motor imagery, functional brain network, common spatial pattern, local characteristic-

scale decomposition 

 

1. Introduction 

The idea of using brain signals to control a robot or 

prosthetic device without the involvement of the peripheral 

nerves and muscles began in 1929 when Berger discovered 

electroencephalogram (EEG) signals [1]. A brain-computer 

interface (BCI) provides an alternative method for natural 

communication between human brains and the outside world 

directly without relying on human nerves and muscle tissues 

[2]. The EEG-based system is one of the most widely used 

techniques in BCI systems owing to its advantages of simple 

and high time resolution [3]. Among many brain-computer 

interaction control paradigms, motor imagery (MI)-based BCI 

is a very important brain-computer interaction strategy that 

realizes the control and exchange of information between the 

brain and the outside world by interpreting mental activities 

through recognizing EEG signals of different MI tasks [4]. 

Noninvasive BCI technology has matured and involved 

many areas, and the range of BCI applications has also been 

substantially enlarged. Research by the GRAZ-BCI team 
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focused on the pattern classification of the MI of different limb 

parts such as the left/right hands, feet, and tongue motor 

imagery [5]. At present, the MI BCI system they built is 

integrated to control wheelchairs, neural prostheses, and other 

devices in virtual and real environments [6-8]. Shi T. et al. 

realized a BCI system for unmanned aerial vehicle indoor 

navigation based on MI [9], and Müller-Putz G. et al. 

presented a hybrid BCI framework that was used in studies 

with nonimpaired as well as end users with motor impairments 

[10]. 

The effective extraction of discriminative features for 

identification of MI tasks from complex MI EEG signals is 

critical to the performance of BCI systems. However, acquired 

MI EEG signals are usually contaminated by strong artifacts 

and are highly nonstationary and nonlinear, posing a great 

challenge to the feature extraction from MI EEG. Researchers 

have proposed some classic feature extraction methods for MI 

EEG signals, including the adaptive auto regressive (AAR) 

model [11], wavelet transform (WT) [12], empirical mode 

decomposition (EMD) [13], and common spatial pattern 

(CSP) [14].  

At present, CSP method and its inheritance are known to be 

the most effective feature extraction methods in MI EEG 

analyses [15]. CSP method can extract the spatial information 

from EEG signals and make a remarkable effect in two-class 

EEG signals classification. However, there are also 

deficiencies in CSP. First, it needs a multichannel signal to 

improve the classification effect. Second, it ignores the 

frequency domain characteristics of EEG signals. However, 

the frequency domain information is particularly important for 

MI task classification. Since MI EEG signals are nonlinear and 

nonstationary, the time domain analysis method does not 

reflect the frequency information, and the frequency domain 

analysis method includes the frequency information, but the 

time when the frequency information changes is unknown.  

Therefore, combining the time domain method and the 

frequency domain method for analysis can more fully describe 

the characteristics of EEG signals. In 2012, based on the 

definition of the intrinsic scale component (ISC), Zhang Heng 

J. et al. proposed a new nonstationary signal analysis method 

named local characteristic-scale decomposition (LCD) [16]. 

LCD is known to be superior to the EMD algorithm in its 

endpoint effect, decomposition time, and iteration times, and 

is considered suitable for online analyses of EEG signals. 

When users perform limb MI tasks, the corresponding 

motor sensation cortex of the brain is activated, and specific 

physiological phenomena such as event-related 

desynchronization (ERD) and event-related synchronization 

(ERS) will be generated simultaneously [17,18]. The 

aforementioned feature extraction methods are based on the 

ERD and ERS phenomena. However, about 15% to 30% of 

users have the problem of “BCI illiteracy.” These users fail to 

produce signals with discriminative characteristics such as 

ERD/ERS; hence, the relevant rhythm signals cannot be 

measured [19,20]. In addition, owing to the individual 

differences in subjects, brain regions and the evoked 

characteristic signals activated by different subjects are not the 

same. These problems lead to rigorous screening of the 

subjects and a large amount of pretraining in BCI system 

experiments. 

The brain can be considered a dynamic network that 

constantly organizes and reshapes its functional connections. 

EEG signals are recorded as time-series signals of brain 

activity, and studies show that such time-series signals 

captured at different brain regions reflect the brain activity 

synergy of their corresponding brain regions. Such EEG time-

series signals acquired from multiple locations of the brain 

form a brain network [21,22], and cognitive activities can be 

analyzed by extracting different measures in the brain network 

in order to reflect differences between brain regions activated 

by different users. Finally, the classification accuracy can be 

improved.  

Considering the above challenges, we combine the CSP and 

LCD algorithms to extract multiscale features of MI EEG 

signals. A functional brain network is constructed to 

characterize the interaction between each pair of electrode 

leads in order to extract measures as additional features of the 

BCI system. Finally, the above three types of features, namely, 

CSP, LCD, and brain networks, are fused for classifying MI 

tasks. The proposed method quantifies brain information with 

multidimensional and multiscaled features, aiming to 

minimize the effect caused by individual differences and to be 

effective and feasible for real-world BCI applications. 

2. Methods 

2.1 Feature extraction 

2.1.1 Local characteristic-scale decomposition. 
LCD is a signal decomposition method that decomposes any 

complex signal ( )( 0)x t t  into the sum of n  ISC 

component ( )( )i 1,2, ,= ic t n  and a residue ( )nu t  

(see equation 1). The ISC component must satisfy two 

conditions: 1) its local waveform is approximately a sine 

wave, and 2) the ISC of a single mode will not generate a 

negative frequency. The signal decomposition expression is as 

follows: 

( ) ( ) ( )
1

x t
=

= +
n

i

i

nc t u t  (1) 

First, the baseline of the original signal is calculated using 

the cubic spline function, and then the baseline is subtracted 

from the original signal. If the residual signal satisfies two 
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conditions of the ISC component, the signal is an ISC 

component, otherwise, the signal is taken as the original signal 

and the above process is repeated. Meanwhile, after each ISC 

component is obtained, the standard deviation (SD) is 

calculated according to formula (2), and the iteration is 

terminated if the SD is less than 0.05[23]. 

( ) ( ) ( )

( ) ( )

2

1

2
0 1

SD
T

ip i p

t i p

h t h t

h t

−

= −

 −
 =
 
  

  (2) 

where ( )tiph  represents the i-th ISC component obtained 

after looping p times. Owing to the computation demand of 

the entire LCD calculation, only three channels (C3, C4, and 

Cz) that contribute most to the classification are selected for 

LCD decomposition [24]. Then, by conducting a lot of 

experiments and considering the computation time, the signals 

of these three channels are decomposed by the LCD and only 

the first three ISC components are taken, so 9 ISC components 

can be obtained from the C3, C4, and Cz channels in one 

experiment. 

Perform Hilbert transform on each ISC component 

( )( )t i 1,2, ,ic K=  ，formulated as 

( )
( )1

t i

i

c
y d

t








 
−

=
−  (3) 

where K  is the number of ISC components in each 

experiment, and K  is set to 9 in our experiment. The parsing 

signal ( )tiz  is then constructed as follows: 

( ) ( ) ( ) ( ) ( )
t ijf t

i i i iz c t jy t a t e= + =  (4) 

where ( )ia t  and ( )if t  represent the instantaneous 

amplitude and frequency of the i-th ISC component, 

respectively. Then, the instantaneous frequency is sorted, and 

part of the values are selected from the sorted instantaneous 

frequency '( )f t  at medium intervals as the frequency 

features   1

11 12 11 , , KP

KF f f f R =    of the MI EEG 

signals, where P  is the number of features selected from the 

ISC component, and P  is set to 20 through experimental 

experience. Each of the eigenvalues 11 12, f f  in 1F  is a 

1×P- dimensional vector. 

2.1.2 Common spatial pattern. The CSP algorithm uses 

the theory of matrix simultaneous diagonalization in algebra 

to find a set of spatial filters in order to maximize the variance 

of one class of signals while minimizing the variance of the 

other class of signals. 

Denote the original EEG signal of a trial as N TE , where 

N  is the number of electrode leads, and T  is the number of 

data samples. Here, we take an example of a two-class 

experiment, where data are collected from two types of tasks 

named the left-hand and the right-hand MI tasks. The subjects 

are instructed to imagine the movement of their left hands or 

right hands, but without actual muscle activations in their 

hands.  

The CSP feature is calculated with the following steps: 

1) Calculate the covariance C  of the two-class MI signals 

in each experiment, formulated as 

( )

T

T

EE
C

trace EE
=  (5) 

where ( )trace X  is the trace of matrix X , which is the sum 

of the diagonal elements of matrix X . The average 

covariance of all experiments is then calculated by summing 

up covariance matrices, in this case, the left-hand and right-

hand MI data: 

, ,

1 1

n n

l l i r r i

i i

C C C C
= =

= =   (6) 

Then, the sum of the two types of covariance matrices is 

obtained: 

c l rC C C= +  (7) 

2) Perform an eigenvalue decomposition of the mixed 

spatial covariance, formulated below: 

T

c c c cC U AU=  (8) 

where cA  is the eigenvalue diagonal matrix, and cU   is the 

corresponding eigenvector matrix. 

3) Construct the whitening transformation matrix first. 

Then, using the features of lS , rS  with the same feature 

vector, decompose its eigenvalue: 
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1/2 T

c c

T T

l l r r

P A U

S PC P S PC P

−=

= =
 (9) 

T T

l t r rS BAB S BA B= =  (10) 

The desired space filter ( )
T

TW B P=  is obtained, and the 

filter is used to obtain N T N N N TZ W E  =
.

 

4)  Find the eigenvector f .  

The dimension of f  can be adjusted according to the 

quality of the EEG signals and the classifier requirements, but 

should not exceed the number of electrode leads 𝑁. Extract 

the first m  rows and the last m  rows of ( )2 Z m N , take 

the p-th row of Z  as pZ  . Then, 𝑓𝑝 is calculated as 

1

var( )
log 1: 2

var( )

p

p p

l

n

Z
f p m

Z
=

 
 
 = =
 
 
 


 (11) 

where ( )var X  represents the variance of the time-series 

signals. 

Since there are four classes of MI tasks that need to be 

classified, it is necessary to expand the CSP to meet the 

technical requirements. There are two common methods to 

expand: one to one and one to the other. The one-to-one 

method is adopted to expand the CSP in this paper. For each 

experiment, six projection matrices are generated, and each 

projection matrix is concatenated to form a complete spatial 

feature vector
 2F . 

  11 6

2 21 22 23 24 25 26, , , , , NF f f f f f f R =   (12) 

where 
1N  represents the number of channels in each 

experiment. The signal of one experiment here includes 22 

channel data and 9 ISC component data, forming a total 1N  

of 31. Each of the eigenvalues 21 22,f f   in 2F  is a 1× 1N - 

dimensional vector. 

2.1.3 Brain network. Researchers have found that 

biological networks generally have properties of small-world 

networks. This means the network has a large clustering 

coefficient and a short characteristic path length [25,26]. 

Considering the independence of EEG nodes and the 

synergistic effect between nodes, we can use the complex 

network theory to construct an EEG functional brain network. 

In a functional network based on EEG, each node corresponds 

to the brain regions detected by different leads, and the 

collected EEG signals constitute the time series of this node.  

The definition of edges in functional networks is based on 

the functional connections, and the weights of the edges can 

be determined with various methods, which can be broadly 

categorized into two main branches: linear and nonlinear. The 

linear methods include the Pearson correlation, partial 

correlation, and partial coherence. The nonlinear methods 

include the synchronization likelihood, canonical correlation 

analysis, and mutual information.  

Through the analysis of various connection methods, we 

choose the canonical correlation analysis (CCA) to calculate 

the nonlinear correlation between each pair of leads. This 

method can analyze the signal in the entire EEG frequency 

band as well as in a specific range of frequency spectra. This 

is ideal for analyzing instantaneous and unstable signals such 

as EEGs. CCA considers the linear combination of the two 

sets of variables and studies the correlation coefficient 

( , )u v  between them. In all linear combinations, we find a 

linear combination with the largest correlation coefficient and 

use this maximum correlation coefficient to represent the 

correlation of the pair of variables. The correlation coefficient 

is expressed as 

( , )

( ) ( )
uv

Cov U V

Var U Var V
 =  (13) 

Mathematically, the functional network obtained is a 

correlation matrix in which each element represents a 

correlation between two brain regions. After obtaining the 

correlation matrix, the next step is to binarize it by setting a 

threshold thrC . If the value of an element in the matrix is 

greater than this threshold, it is considered that there is a 

functional connection between the two brain regions, and the 

value here is set to 1. Otherwise the value is set to 0, thereby 

establishing a complete binarized function network. The 

process of constructing functional brain networks based on 

EEG signals is shown in Figure 1. 

Figure 1. Diagram of building a functional network based on EEG 

signals. 

EEG signal 

acquisition

functional 

brain 

network
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In order to describe the topological structure of the 

established brain network, some common measures are 

provided, and the changes in the topological properties of the 

brain networks can be studied by analyzing these measures. 

We select five measures: degree, clustering coefficient, 

average shortest path length, local efficiency, and 

betweenness centrality. These complex network measures are 

described in detail below. 

Degree 

B

i ij

j G

k a


=  or 
W

i ij

j G

k w


=   (14) 

where or  is the corresponding element in the binary 

or weighted network matrix. The degree of a node is the 

number of edges of one node. A node with a higher degree is 

considered more important in the network. 

Clustering coefficient 

The clustering coefficients of the nodes are defined as 

follows [27]: 

1/3

,

2

( 1)

2
( )

( 1)

B

i B B

i i

W

i ij jk kiB B
j ki i

R
c

k k

or

c w w w
k k

=
−

=
−


  
(15) 

where R  represents the number of directly connected 

neighbors of node i . The clustering coefficient of a node is 

defined as the ratio between the actual number of edges 

existing between the neighbor nodes of the node and the 

maximum possible number of connected edges. The clustering 

coefficient reflects the local connectivity and measures the 

cluster characteristics and closeness within the functional 

brain network. 

Average shortest path length 

The shortest path length is the smallest number of edges 

between two nodes. In other words, it is the minimum number 

of steps to travel through the network from node i  to j . The 

average shortest path length is defined as the mean number of 

steps along the shortest paths between all possible pairs of 

network nodes. The definition is as follows: 

, ,

1

( 1)
ij

i j V i j

L d
N N  

=
−

  (16) 

where N  represents the total number of network nodes. (The 

number of network nodes is the same as the number of 

electrode leads in our experiment),  represents the distance 

between nodes i  and j  in the network. 

Local efficiency  

 For a network G  with N  nodes, the global efficiency is 

calculated as shown in equation 17 [28]: 

1 1
( )

( -1)
glob

i j G ij

E G
N N d 

=   (17) 

The formula for calculating the local efficiency is as 

follows: 

1
( ) ( )loc glob i

i G

E G E G
N 

=   (18) 

where  is the global efficiency of , and  is a 

subgraph composed of the neighbors of node i . The global 

efficiency and local efficiency measure the information 

transmission ability of the network globally and locally. 

Betweenness centrality 

 The betweenness centrality is defined as the number of 

shortest paths going through a node or edge [29]. The higher 

the betweenness centrality of a node, the greater the flow of 

information carried by the node, and the more significant the 

impact on the function of the functional brain network. The 

betweenness centrality is formulated in equation 19: 

, ,

2 ( )

( )
( 1)( 2)

hj

h i j i h j V

B

hj

g i

C i
N N g

   
=

− −


 (19) 

where hjg  is the number of all shortest paths between node 

h V  and j V , and V  is the set of all nodes in the 

network. 

After quantifying the relationship between nodes, it is 

necessary to select an appropriate threshold to binarize the 

adjacency matrix. Two principles need to be followed to 

establish the network: To ensure the integrity of the network, 

it should not contain any isolated node or isolated part; and the 

small-world characteristics of the network should be ensured 

[25,26]. According to the random model of Erdos-Renyi [30], 

if a graph with N  nodes is to be fully connected, the 

ija
ijw

ijd

( )iglob GE
iG iG
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connection sparsity should be greater than 2ln /N N . In 

addition, it should be ensured that its small-world attribute 

value   is much greater than 1. Through a large number of 

experiments, the threshold was empirically set to 0.84, and the 

corresponding sparsity of the brain network was 0.35. 

The offline experimental results of chapter 4 below show 

that the classification effect of the measure of degree in the 

binary network is better than for other measures. Thus, the 

measure of degree is used as the feature of the brain network 

for online experiments. 

2.1.4 Feature fusion. After establishing a functional brain 

network based on MI EEG signals, the measures described in 

the previous section are extracted as the features of brain 

networks and are then fused with the multiscale features 

extracted from the CSP and LCD algorithms. There are two 

feature fusion strategies: parallel feature fusion and serial 

feature fusion. Compared to parallel feature fusion, one 

advantage of serial feature fusion is its simplicity in that it 

requires two steps: normalization and concatenation of 

multiple features. This effectively retains the discriminative 

information of various features for classification. For the 

above reason, the serial feature fusion strategy is adopted in 

this work. 

With the features in the above spatial and frequency 

domains and the features of the brain network fused, the 

obtained feature vector of the EEG signals, denoted by 
( )11 6 +

F
KP N MN

R
 +

 , is defined below: 

 

 

1

11 22

111 12 1
11

11 12 1

1 621 22 26
22

21 22 26

131 32

33

33
3

31 32 3

,

, , ,

, , ,

, , ,

,

KPK

K

N

MNM

M

F F F

f f f
F R
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(20) 

The three channels C3, C4, and Cz that contribute most to 

the classification are selected to perform LCD decomposition 

[24], which produces nine ISC components and then extracts 

the frequency domain feature 1F . Next, the obtained nine ISC 

components are added to the 22 channels of original EEG 

signals, and the CSP algorithm is used to extract the spatial 

features from the 31-channel data as 2F . The feature vector 

3F
 
is extracted from the functional brain network, where  

is the l2-norm in equation 20. A flowchart of the feature 

extraction algorithm is shown in Figure 2. 

 

 

Figure 2. Flow of proposed feature extraction algorithm. 

2.2. Feature selection and classification 

The multicluster feature selection (MCFS) algorithm was 

applied to sort features [31]. The basic principle of MCFS is 

first to construct a p-nearest neighbor graph according to (21): 

( ) ( )1

0

i j j i

ij

if x N x or x N x
W

others

  
= 


 (21) 

Raw MI EEG signal 

CSP processing(31 channels) Brain network(22 channels)

LCD decomposition

Frequency domain features(F1) Spatial features(F2) Measure features(F3)

C3 Cz C4

ISC components

Feature fusion
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where ix  or jx  corresponds to the extracted feature, and 

( )iN x  represents the nearest neighbor of ix . Define a 

diagonal matrix D ,  =   ii ijj
D W . We can compute the 

graph Lapalcian L D W= −  and solve the generalized 

eigenvalue problem in equation 22 to obtain the feature vector 

iy  corresponding to the minimum eigenvalue. 

Ly Dy=  (22) 

Then, the sparse coefficient vector ia  is obtained by 

solving the normalized regression problem, as shown in 

equation 23: 

2

min
i

T

i i
a

y X a−  (23) 

where X  is the input data matrix, and ia  is the M-

dimensional vector that contains the combination coefficient 

for different features. For every feature j, we define the MCFS 

score for the feature as  

,( ) max i j
i

MCFS j a=  (24) 

where ,i ja  is the j-th element of vector ia . We then sort all 

features according to their MCFS scores and select a number 

of features. 

This work employs the spectral regression discriminant 

analysis (SRDA) classifier [32]. The SRDA algorithm 

combines spectral analysis and linear regression. It effectively 

solves the feature decomposition problem in the LDA 

algorithm, and saves a considerable amount of classification 

time and storage space. When extended to multiclassification 

problems, the SRDA algorithm first uses the regression model 

to reduce the dimension, and then by using spectrum analysis, 

feature data can be classified by simply solving a series of 

regular least squares problems. [33]. 

3. Experimental setup 

3.1 BCI competition IV dataset 2a 

The performance of our proposed method is evaluated 

using the BCI competition IV dataset 2a [34], which is widely 

used and publicly available. This dataset provided by Graz 

University was recorded from nine healthy subjects. 

According to the international 10/20 system [35], 22 Ag/AgCl 

electrodes were placed. The subject was required to perform 

the following four classes of MI tasks in each trial: left hand, 

right hand, both feet, and tongue. This means the subject 

imagined the movement of his limb without actual muscle 

activation. During the experiment, the subjects sat in front of 

the computer and performed corresponding actions according 

to the screen prompts. A detailed dataset description can be 

found in [34]. 

The EEG signal was recorded simultaneously at a sampling 

frequency of 250 Hz and processed by a band-pass filter with 

0.5 Hz–100 Hz to remove interference from other frequency 

bands. An embedded notch filter of 50 Hz eliminated power 

line noises. Each subject’s dataset consisted of a training set 

and a test set, and each set contained 288 experiments.  

In order to remove the artifacts and enhance the signal-to-

noise ratio of the signals, the EEG signals need to be 

effectively preprocessed before extracting the features. First, 

according to the characteristics of ERD and ERS, the data are 

band-pass filtered between 8 Hz and 30 Hz [36] by a five-

order Butterworth band-pass filter. Then, various artifacts in 

the EEG signals are removed effectively by wavelets. The 

‘sym4’ wavelet is selected to decompose the signal, and then 

the threshold function is used to set a critical threshold. If the 

wavelet coefficient is less than the threshold, it is considered 

that the coefficient is mainly caused by noise, and the 

coefficient is removed. If the wavelet coefficient is larger than 

the threshold, the coefficient is considered to be mainly caused 

by the signal, and the coefficient is retained. Finally, inverse-

transform is performed on the retained wavelet coefficients to 

reconstruct the denoised signal. 

3.2. Self-designed BCI system  

3.2.1 Subjects and experimental setup. The EEG data 

were recorded using a UE-16B EEG amplifier at a sampling 

rate of 1000 Hz. All 16 channels were selected (Fp1, Fp2, F3, 

F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, and T6). Since 

the frequency of the MI EEG signal is concentrated at 8–30 

Hz, and the cutoff frequency of the low-pass filter was set to 

100 Hz (with a 50-Hz notch filter enabled). The left and right 

ear electrodes, A1 and A2, were used as reference electrodes, 

and the forehead was used as ground electrode G. The 

controlled object in the online BCI system was a humanoid 

robot, the NAO robot, produced by Aldebaran Robotics. 

The subjects were eight graduate students aged from 23 to 

26, including two females and six males. All of them were 

right-handed and had no neurological history. To minimize 

environmental effects such as light stimulations, the 

experiments were carried out in a quiet environment with 

dimmed lighting. The subjects were seated in comfortable 

backrest chairs to reduce muscle strain that could interfere 

with the experimental results. Before the experiments, all 

subjects were instructed and trained about the experimental 

procedure. The study was conducted with approval from the 

Wuhan University of Technology.  
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3.2.2 Data acquisition. The MI EEG data acquisition 

included training data collection and real-time data collection. 

The training data collection session consisted of four runs with 

2-min breaks between two consecutive runs. Each run had 25 

MI trials. The MI tasks to be performed in the four runs were 

left hand, right hand, both foot, and tongue movements. Each 

trial consisted of a 2-s ready period, a 4-s motor imagery 

period, and a 2-s break period. When the prompt picture was 

displayed on the screen, the subject needed to perform the 

corresponding MI task until the prompt image disappeared. 

The subject then rested for 2 s and waited for the next 

experiment to begin. The experimental process for training 

EEG data acquisition is shown in Figure 3. 

We segmented the data in this duration into several epochs 

to conduct a series of experiments statistically, and found that 

the data between 2.5 s and 3.5 s achieved the best 

performance. Therefore, this 1-s data epoch was selected for 

feature extraction and classification.  

The real-time data acquisition session of the robot control 

continuously collected data, and the data of the 1-s time period 

was collected and sent to the signal processing module, where 

the data of the next second was collected at the same time. 

3.2.3 System framework and experiment design. This 

subsection introduces the BCI system framework designed for 

evaluating the proposed algorithm. The system includes four 

functional components: signal acquisition, signal processing, 

human-computer interaction, and robot control. The signal 

acquisition module is responsible for the data acquisition, 

filtering, and amplification of EEG signals, which are then 

sent to the human-computer interaction module in real time. 

Next, the human-computer interaction module stores the 

received EEG data, and the signal processing module starts to 

process the data that are eventually converted into a set of 

control commands. The commands are sent to the robot 

control module through socket communication. The NAO 

robot interprets the commands and starts executing the 

corresponding movement behaviors according to the received 

commands. A block diagram of the overall system is shown in 

Figure 4. 

The mapping between the MI tasks and the corresponding 

movement control commands of the robot are listed in Table 

1 together with their labels used for classification. As can be 

seen, the robot has four basic behaviors moving in four 

directions: forward, left, right, and backward. 

Correspondingly, the subjects are asked to execute the mental 

activities of moving four body parts, both feet, left hand, right 

hand, and tongue. 

Table 1. Mapping between motor imagery tasks and movement 

control commands of robot. 

Classification Labels Motor Imagery Robot Movement 

0 Both feet Forward 

1 Left hand Left 

2 Right hand Right 

3 Tongue Backward 

 

Figure 3. Training EEG data acquisition experiment design of real-time brain-computer interface system. 
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Figure 4. Structure of real-time brain-computer interface system. 

In terms of interacting with the robot, two control strategies 

were adopted for the motion control of the NAO robot: 

synchronous control and asynchronous control. 

1) Synchronous control 

The principle of the NAO robot synchronously controlled 

by the MI signals is as follows. The robot needs to perform a 

predefined sequence of motion behaviors. A motion behavior 

corresponds to a control instruction. In this work, we test with 

a total of 17 instructions. For example, [2 2 0 0 2 2 0 0 1 0 0 1 

1 3 3 3 1] is the sequence of labels (as seen in Table 1) of the 

control commands for testing in this work. The subject then 

performs the corresponding MI tasks with the given 

instructions displayed in order. During the experiment, the 

robot will carry out the corresponding motion only if the 

classification result of the MI signal matches the preset 

command. The experiment is completed when the robot 

completes all instructions. 

2) Asynchronous control 

Asynchronous control differs in that it does not require a 

pre-known sequence of control commands. The NAO robot 

starts performing behaviors purely based on the classification 

results. The task is to control the robot to move toward a 

predefined goal position in the room (Figure 9). The decisions 

of robot motions are not constrained and are only based on the 

classification results of the subject’s mental activities. 

However, false classifications are unavoidable. The expected 

motions from the subject’s mental activities cannot always be 

correctly recognized, resulting in incorrect motion behaviors 

executed by the NAO robot.  

To avoid or minimize the number of false alarms, an error 

control mechanism is deployed in the experiment of the 

asynchronous control robot. It is assumed that the subject’s 

mental activities will generally remain temporally consistent, 

meaning the subject will not change his or her task very 

quickly. Therefore, the false alarm detector used in the work 

compares the classification results of two consecutive 

detections by comparing the current classification result with 

the previous one. If the two classification results are the same, 

it is determined that the movement is correct, and the 

corresponding control instruction is sent to the robot, the sent 

instruction is also compared with the next classification result. 

However, if the two are inconsistent, a false alarm will be 

triggered, and the control command is not sent until the 

sending condition is met again. This control mechanism 

greatly increases the classification success rate of MI tasks 

that the subject needs to perform, and it effectively reduces the 

chances of performing incorrect movements by the NAO 

robot.  

4. Results and discussion 

4.1 Offline data analysis 

To quantify the validity of the proposed method, an offline 

study is carried out using BCI competition IV dataset 2a. We 

first study the effectiveness of the brain network features in 

order to choose the optimal feature sets. According to the 

forenamed complex network theory, a brain network can be 

used as a weighted network or it can be transformed into a 

binary network. Briefly, the functional brain network of each 

subject is first established by CCA, which is a weighted 

network, and is converted into a binary network according to 

the set threshold. Then, five brain-network measures are 
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extracted from the weighted network and the binary network: 

node degree, betweenness centrality, clustering coefficient, 

average shortest path length, and local efficiency. The 

connections between functional brain networks can be 

analyzed by graph theory.  

Figure 5 shows the average adjacency matrices of weighted 

brain networks of the nine subjects under the four classes of 

MI tasks. The dimension of the matrices is 22 22 , and the 

horizontal and vertical axes represent the signal channels. The 

elements in the matrices represent the correlation coefficients 

between all pairs of lead signals in the entire brain region. The 

correlation coefficients are normalized and range from 0 to 1. 

A coefficient closer to 1 indicates a higher degree of 

correlation between the two corresponding leads.  

Next, the weighted brain network is binarized. If the 

correlation coefficient is greater than the set threshold, it is 

considered that a connection edge is established between the 

two leads and the corresponding element in the adjacency 

matrix is set to 1. For the opposite situation, the element is set 

to 0. There is no edge in the general node set that is directly 

connected to itself without passing through other nodes, so the 

diagonal element in the adjacency matrix is 0. This is the 

average adjacency matrix of the binary brain network of the 

nine subjects shown in Figure 6. 

As presented in Figures 5 and 6, the brain functional 

connectivity of all four kinds of MI signals is overall quite 

large and evenly distributed. Among them, the connection of 

the right-hand MI signal is stronger than that of the other three 

kinds of MI signals, and the connection strength of the tongue 

MI signal is the weakest. This is clearly shown in Figure 6. In 

terms of the electrode locations from Figure 5, the connection 

of the right-hand MI signal is significantly concentrated on the 

8th-12th leads, corresponding to the central region of the 

brain. This is consistent with previous studies of MI brain 

activities [24]. 

After building the weighted brain network and the binary 

brain network, five measures can be extracted from the two 

networks and combined with multiscale features respectively 

to form all of the feature inputs. The classification 

performance is first evaluated with each of the five measures 

combined with multiscale features. The classification results 

of the nine subjects are listed in Table 2. 

As can be seen from Table 2, for weighted networks, the 

data in each row of the table vary considerably, and this may 

be caused by the subject’s adaptability problem. By comparing 

the average classification accuracy of the nine subjects, 

features extracted by the CSP and LCD algorithms combined 

with the measure of degree give the best results. The average 

classification accuracy of four classes of MI reaches 79.69%. 

The lowest classification accuracy for all five measures is the 

clustering coefficient, which is 76.05%. As for the binary 

network, the results of the five measures are very close, and 

the average classification accuracies obtained by the measures 

of degree and average shortest path length are both 79.5%, 

which is very close to the best result. Compared to the 

weighted networks, the results show that the difference 

between the five measures extracted from the binary networks 

is not significant.  

A comparison of the average classification accuracy of the 

five measures in the weighted network and the binary network 

is illustrated in Figure 7. It can be seen that in addition to the 

measure of degree, the other four measures extracted from the 

binary network have better results than the weighted network. 

The result with the measure of clustering coefficients in 

weighted networks is the worst of all the features, while the 

average classification accuracy obtained by the measure of 

degree in the weighted network is the highest.  

Previous studies of brain networks in disease states showed 

that the clustering coefficient of patients with Alzheimer’s 

disease is significantly lower than that of normal people [37]. 

Our experimental results of the weighted brain network show 

that the clustering coefficient does not accurately represent the 

brain differences between different MI movements, but at 

present, there are few research studies on the brain networks 

of healthy people under different activities. 

 As a whole, the classification performance by measures 

extracted from the binary networks is better overall. It also 

shows that the measure of degree with the weighted networks 

is very effective in classification despite the relatively poor 

performance of the other four measures. In Figure 8, the 

difference between the measures of degree of the binary 

networks in the four classes of MI tasks can be clearly seen. 

Based on the data of subject 8, the mean value of the degree 

in each class of MI data is calculated, and the distribution of 

the value for 22 channels can be observed.  

The results show that the value of degree is generally high 

in the left-hand MI task, while it is obviously low in the tongue 

MI task, and the value of degree of the other two kinds of MI 

tasks is very close. It is shown that the measure of degree can 

well distinguish the left-hand and tongue MI tasks. In addition, 

it can be seen from the values of degree under different 

channels that the degree of channels 9–11 is generally higher 

than that of other channels in each kind of MI task. These 

channels correspond to the central region of the brain, which 

is consistent with the conclusion in Figure 5. 

The feature extraction algorithm proposed in this work 

combines three algorithms: CSP, LCD, and brain network. In 

order to see the performance of each subset of features 

independently to show the contribution of each method, the 

classification effect of the three methods is tested separately. 
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Table 3 shows the classification accuracy and kappa 

coefficient of the three methods. As can be seen from Table 3, 

the contribution of the CSP algorithm is the largest, the 

average classification accuracy is 72.9%, where the kappa 

score is 0.64, and the average classification accuracy of the 

LCD algorithm is the lowest at only 28.4%, where the kappa 

score is only 0.04. The classification accuracy of the combined 

algorithm reaches 79.7%, which is about 7% higher than the 

CSP algorithm. In addition to subject 7, the proposed method 

achieved the best classification effect on the other subjects. 

The results show that the classification effect after combining 

the three algorithms is greatly improved compared with the 

single algorithm. 

In order to further verify the validity of the proposed 

method, the measures of degree in the binary networks with 

better results in both the weighted networks and binary 

networks are extracted as the brain network features. This is 

compared with some other popular feature extraction 

methods: support vector machine (SVM) [38], tangent space 

linear discriminant analysis (TSLDA) [39], and CSP 

combined with LCD method [40]. A 10-fold cross-validation 

procedure is applied here. The results of the classification 

accuracy and the kappa score of the different feature extraction 

algorithms are listed in Table 4. 

As can be seen from Table 4, except for subjects 5, 6, and 

7, the proposed algorithm outperforms the other methods with 

all other subjects. Among them, subject 9 achieves the highest 

classification accuracy of 89.7%, and the kappa score is 86%. 

The average classification accuracy obtained by the proposed 

algorithm is 79.7%, which is 6% higher than that of the CSP-

LCD algorithm, and the kappa score is 0.73. The proposed 

feature extraction algorithm combined with functional brain 

networks has the advantage of containing both the frequency 

and spatial features extracted from the MI EEG signals, and at 

the same time, tackles the difficulties caused by the 

differences between different subjects by utilizing brain 

network information. It is obvious that the accuracy and 

robustness of classification in the four classes of MI tasks are 

considerably improved by embedding features from three 

sources: CSP, LCD, and extra functional brain networks. 

 

(a)                                                                                       (b) 

 

                                                        (c)                                                                                   (d) 

Figure 5. Adjacency matrix of weighted brain networks under four kinds of MI tasks: (a) left hand, (b) right hand, (c) both feet, and (d) 

tongue. 

Page 11 of 16 AUTHOR SUBMITTED MANUSCRIPT - JNE-102575.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Journal XX (XXXX) XXXXXX Author et al  

 12  
 

 

 (a)                                                                                                              (b) 

 

 (c)                                                                                   (d) 

Figure 6. Adjacency matrix of binary brain networks under four kinds of MI tasks: (a) left hand, (b) right hand, (c) both feet, and (d) tongue. 

Table 2. Classification accuracy (%) of five kinds of measures based on weighted network and binary network combined with CSP and LCD 

features. 

Weighted network  Binary network  

Subject Degree 
Betweenness 

centrality 

Clustering 

coefficient 

Average 

shortest path 

length 

Local 

efficiency 
Degree 

Betweenness 

centrality 

Clustering 

coefficient 

Average 

shortest path 

length 

Local 

efficiency 

1 82.76 79.31 81.03 74.14 79.31 81.03 82.76 86.21 79.31 79.31 

2 65.52 67.24 62.07 62.07 56.90 68.97 65.52 63.79 65.52 62.07 

3 87.93 89.66 77.59 82.76 75.86 87.93 86.21 87.93 89.66 86.21 

4 77.59 68.97 74.14 79.31 75.86 70.69 75.86 75.86 77.59 74.14 

5 72.41 70.69 70.69 70.69 74.14 74.14 70.69 70.69 72.41 75.86 

6 70.69 65.52 65.52 74.14 72.41 70.69 70.69 68.97 70.69 70.69 

7 82.76 84.48 79.31 81.03 84.48 84.48 82.76 82.76 84.48 84.48 

8 87.93 86.21 87.93 86.21 87.93 86.21 87.93 86.21 87.93 87.93 

9 89.66 93.10 86.21 87.93 91.38 91.38 89.66 89.66 87.93 89.66 

Mean *79.69 78.35 76.05 77.59 77.59 *79.50 79.12 79.12 *79.50 78.93 
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Figure 7. Comparison of average classification accuracy (%) 

between weighted network measures and binary network measures.  
Figure 8. Measures of degree of the binary networks in four kinds 

of MI tasks under different channels. 

Table 3. Classification accuracy (%) and kappa score of proposed three combined methods compared with three individual methods. 

Subjects 
CSP LCD Brain network Proposed method 

CA K CA K CA K CA K 

1 69.0  0.59  25.9  0.01  51.7  0.36  *82.8 0.77 

2 48.3  0.31  25.9  0.01  31.0  0.08  *65.5 0.54 

3 70.7  0.61  22.4  -0.03  62.1  0.49  *87.9 0.84 

4 69.0  0.59  34.5  0.13  32.8  0.10  *77.6 0.7 

5 70.7  0.61  32.8  0.10  39.7  0.20  *72.4 0.63 

6 68.1  0.58  29.3  0.06  24.1  -0.01  *70.7 0.61 

7 *84.5  0.79  32.8  0.10  41.4  0.22  82.8 0.77 

8 *87.9  0.84  19.0  -0.08  65.5  0.54  *87.9 0.84 

9 87.9  0.84  32.8  0.10  53.4  0.38  *89.7 0.86 

Mean 72.9  0.64  28.4  0.04  44.6  0.26  79.7 0.73 

Table 4. Classification accuracy (%) and kappa score of proposed method compared with three other feature extraction methods. 

Subjects 

SVM [38] TSLDA [39] CSP-LCD [40] Proposed method 

CA K CA K CA K CA K 

1 59.3 0.46 80.5 0.74 69.0 0.59 *82.8 0.77 

2 59.3 0.46 51.3 0.35 56.9 0.43 *65.5 0.54 

3 57.5 0.43 87.5 0.83 84.5 0.79 *87.9 0.84 

4 55.4 0.4 59.3 0.46 46.6 0.29 *77.6 0.70 

5 *76.1 0.68 45.0 0.27 69.0 0.59 72.4 0.63 
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6 56.1 0.41 55.3 0.4 *72.4 0.63 70.7 0.61 

7 84.0 0.79 82.1 0.76 *86.2 0.82 82.8 0.77 

8 76.1 0.68 84.8 0.8 *87.9 0.84 *87.9 0.84 

9 75.7 0.68 86.1 0.81 87.9 0.84 *89.7 0.86 

Mean 66.6 0.55 70.2 0.6 73.4 0.65 *79.7 0.73 

4.2 Real-time data analysis 

The online BCI robot control system is used to validate the 

real-time performance of the proposed algorithm. In this work, 

we used data from eight subjects for training a classification 

model. Then, the training model is used to realize the 

synchronous control and asynchronous control of the NAO 

robot. In the experiment of synchronous control, each 

participant conducts four experiments. The execution times 

are listed in Table 5. 

Table 5. Execution time (s) of eight subjects to complete 

experiment of synchronous control.  

Subjects 
Experim

-ent 1 

Experim

-ent 2 

Experim

-ent 3 

Experim

-ent 4 
Mean 

1 40 43 39 35 39.25 

2 43 46 37 41 41.75 

3 44 43 38 42 41.75 

4 42 37 33 34 36.5 

5 39 40 38 33 37.43 

6 44 53 43 40 45.05 

7 42  63  44  36  46.23 

8 40  51  33  49  43.2 

As mentioned, several key steps are involved in producing 

one single motion command for the robot, including the data 

acquisition and processing of EEG signals, conversion of the 

classification results to corresponding robot control 

commands, and execution of the corresponding motion 

actions with the robot. Meanwhile, the motion status of the 

robot needs to be fed back to the subjects in real time so that 

the subjects can decide the next MI task to be performed. One 

experiment involves a total of 17 iterations of the above. As 

shown in Table 5, the time it takes each subject to complete 

the experiment varies greatly, and it takes about 41 s for 

subjects to complete one full experiment. The average time of 

one instruction for the robot is about 2.4 s.  

Owing to the different training effects of each subject in the 

previous period, the classification model obtained was not the 

same, which led to differences in the results of the real-time 

experiments for each subject. In the real-time control of the 

robot, the experimental effects of each subject were easily 

affected by subjective factors because the robot only 

performed the corresponding movement after the subject 

issued the correct instruction. The reason for the incorrect 

instruction may be that the subject performed the wrong MI 

task or there was a false classification by the algorithm.  

With asynchronous control, each subject plans and decides 

the motion actions of the robot. The mission is to control the 

robot to the designated position. During the experiment, the 

resulted trajectories of the robot controlled by the eight 

subjects are recorded (see Figure 9). The actual instructions 

received by the robot are listed in Table 6. Owing to the 

aforementioned error control mechanism, the instructions 

issued by the subjects are not all sent to the robot but need to 

be detected by the false alarm detector. The execution times 

required by the subjects to complete the experiments are also 

listed in Table 6. 

As shown in Table 6, the subjects spent more than twice the 

time sending instructions. In addition to the reason of false 

classification by the algorithm, it should be noted that there is 

an additional error control mechanism that forces the subjects 

to perform the same MI tasks multiple times. Moreover, the 

subjects could unintentionally use incorrect MI mental 

activities that may accidentally change the trajectories of the 

robot. Each subject controlled the movements of the robot 

with different planned trajectories.  

Subject 1 took the shortest path that only required eight 

instructions. The robot took the shortest time to complete the 

experiment at only 16.5 s. Subjects 4 and 8 decided to take the 

longest path that involved motions in all four directions. A 

total of 19 instructions were needed, and it took 41.8 s and 

56.1 s to complete the experiment, respectively. On average, 

it took 2.6 s for each subject to send an instruction. This is 

slightly longer than that of the synchronous experiment (2.4 

s). Because each of the subjects used different paths and 

different MI tasks were performed, the classification accuracy 

of each type of MI signal varied as well, resulting in different 

time spent by each subject.  
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Table 6. Instructions sent by eight subjects, and execution time(s) of 

experiment.  

Subjects Control instructions Time(s) 

1 
00000000 16.5 

2 
0001100000022 26.4 

3 
222000011000001 31.9 

4 
1110000000000022223 41.8 

5 
100000000002 27.5 

6 
20001000000 34.1 

7 
220000000000011 49.5 

8 

0222200000000011113 56.1 

 

 

Figure 9. Eight trajectories of robot controlled by eight subjects. 

5. Conclusions 

In this paper, a novel feature extraction method was 

proposed to classify four classes of MI signals by combining 

CSP, LCD, and functional brain networks. Features were 

extracted in the frequency domain and spatial domain from MI 

EEG signals by using the CSP and LCD algorithms. Brain 

networks were then constructed using the EEG signals of each 

subject. The measures of degree of the brain networks were 

extracted to characterize the subjects’ brain activities. The 

proposed method was integrated in a real-time BCI robot 

control system designed for real-world experiments.  

The method was validated using the BCI competition IV 

dataset 2a for offline study and online BCI data collected with 

the real-world experiments in this work. The experimental 

results for the two databases showed that the proposed feature 

extraction method can effectively extract discriminative 

features of the MI signals, enhancing the classification 

accuracy considerably in comparison with popular state-of-

the-art algorithms. In particular, it is worth noting that the 

method performs robustly when dealing with different 

subjects, meaning that the method can effectively eliminate 

individual differences by analyzing the functional brain 

network of each subject. The computation time demonstrates 

the capability of real-time applications and the feasibility of 

being applied in practical rehabilitation BCI systems.  

The functional brain network constructed in this paper 

belongs to the category of nondirected networks, which 

simply omit information flows in functional brain networks. 

In the future, it will be interesting to construct directional 

functional brain networks that characterize the causal 

relationships of neural activities in order to further extract 

discriminative information. In addition, we will continue to 

study the channel selection algorithms in order to reduce the 

number of channels required to construct a compact set of 

more representative features extracted from the EEG signals. 

The ultimate goal is to improve the performance with regard 

to the accuracy and robustness of classification and the 

suitability for practical BCI rehabilitation systems. 
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