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Abstract 

A novel pH gradient methodology was used to synthesise a series of Cu-ZrO2 catalysts containing 

different quantities of Cu and Zr. All of the catalysts were highly selective to the desired product, γ-

valerolactone, and are considerably more stable than Cu-ZrO2 catalysts prepared by other co-

precipitation methods for this reaction. Characterisation and further investigation of these catalysts by 

XRD, BET, SEM and XPS provided insight into the nature of the catalytic active site and the 

physicochemical properties that lead to catalyst stability. We consider the active site to be the interface 

between Cu/CuOx and ZrOx and that lattice Cu species assist with the dispersion of surface Cu through 

the promotion of a strong metal support interaction. This enhanced understanding of the active site and 

roles of lattice and surface Cu will assist with future catalyst design. As such, we conclude that the 

activity of Cu-ZrO2 catalysts in this reaction is dictated by the quantity of Cu-Zr interface sites. 
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1. Introduction 

Increasing global energy demands and diminishing fossil fuel stores has provided the scientific 

community with the motivation to develop new and economically viable routes to sustainable energy. 

As a consequence, there has been a growing interest in biomass valorisation in recent years [1,2]. 

Lignocellulose is a promising biomass feedstock due to its natural abundance and is often considered 

to be more viable than first generation biofuel feedstocks, as its production does not  compete for arable 

land with food crops. As such, the development of suitable technology and infrastructure which can 

efficiently valorise lignocellulosic feedstocks would be hugely beneficial from both a social and 

economic perspective. 

Levulinic acid (LA) has been identified by the US Department of Energy to be one of ten high-

value molecules which can be derived from biomass [3]. LA can be produced in high yields from the 

hydrolysis of hexitols (Scheme 1). This can be done either stoichiometrically using acids [4] or by a 

catalytic route, over strongly Bronsted acidic materials [5]. 

While LA does possess some interesting applications as a speciality chemical, far more emphasis 

has been placed on its numerous routes for valorisation. LA can be converted into a range of useful 

chemicals including γ-valerolactone (GVL) [6], 1-4 pentanediol and 2-methyltetrahydrofuran (2-

MTHF) [7] both of which are considered to be promising fuel additives [8]. Furthermore, GVL can also 

be used as a monomer for the synthesis of ‘green’ bio-degradable polymers [9].  

GVL possesses many attractive properties which make it a suitable replacement for bio-ethanol; it 

has a lower vapour pressure, high energy density, high boiling point and does not form an azeotrope 

with water, making separation far easier [10,11]. In addition, GVL can be further upgraded and used as 

a feedstock for the production of liquid alkenes (C8–C16 chains) [12]. Currently, the majority of all 

commercial bio-ethanol is produced by the fermentation of sugars, which are typically sourced from 

corn or sugar cane. Whilst the process itself is widely accepted as being environmentally friendly, the 

sustainability of the overall process has been a subject of debate, given that the production of the 

feedstocks competes for arable land with food crops [13,14]. Technologies to produce ethanol from 

cellulose do exist, but they are comparatively expensive and therefore, currently only account for a 

fraction of the global bio-ethanol produced each year [15]. For these reasons, developing an economic 

and efficient means of producing GVL from LA would be highly advantageous and the hydrogenation 

of LA over a catalyst is perhaps the most viable method reported to date. 

Previous studies have reported the use of both homogeneous and heterogeneous catalysts for the 

hydrogenation of LA to GVL. Supported ruthenium catalysts perform well for this reaction and 

consistently deliver excellent GVL yields (> 95%) under relatively mild conditions. As such, Ru-based 

catalysts are generally accepted as benchmark catalysts for this reaction, and typically comprise of Ru 

metal loadings between 0.5 – 2 wt% [16–18]. Other noble metals have also been studied, such as 
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palladium [19,20], gold [21] and platinum [22]. However, due to the relatively high costs associated 

with noble metals, the application of such elements on an industrial scale is somewhat limiting. As such, 

there is a drive to develop efficient hydrogenation catalysts comprising of cheap, non-noble metals. 

Copper has been explored as an alternative to ruthenium for this reaction, and is far more abundant. 

Rode and co-workers were one of the first to determine that 50 wt% Cu-ZrO2 and Cu-Al2O3 catalysts 

are active for the hydrogenation of LA and show good selectivity toward GVL [23]. 

Various bimetallic catalysts containing Cu have also been investigated for the hydrogenation of LA 

to GVL. Zhang et al.[24] determined that the incorporation of Ag into a Cu/Al2O3 catalyst suppressed 

the leaching of Cu metal during the reaction, which, as a consequence, greatly improved the re-usability 

of the catalyst. Various studies have also investigated supported Cu-Ni catalysts [25,26]; the presence 

of Ni improves reaction rates which is attributed to changes in the electronic properties of the Cu. 

Another study reported that the deposition of Pd onto a Cu-ZrO2 could result in sequential reaction to 

produce 1,4-pentanediol and 2-methyl tetrahydrofuran [27]. We too have investigated how the doping 

of a secondary transition metal onto a Cu-ZrO2 catalysts affects the performance [28]. Of the metals 

tested, only Mn provided a promotional effect which was established to be due to an increase in the rate 

of dissociative H2 adsorption over the catalyst. 

Numerous studies have also investigated the use of sacrificial hydrogen donors such as 2-propanol 

over supported Cu catalysts [29]. While these approaches are often highly efficient and eliminate the 

requirement of molecular hydrogen, they are often not as atom efficient as they perhaps appear. In the 

presence of a supported metal catalysts, the source of hydrogen likely comes from the reformation of 

the sacrificial alcohol, rather than the via Meerwein-Ponndorf-Verley reduction, which is observed over 

Sn-β zeolite and amorphous zirconia catalysts [30,31]. It is therefore often the case that greater 

quantities of the sacrificial alcohol are consumed than substrate. 

Despite the abundance of literature in this area, the desirable physicochemical properties of Cu-

ZrO2 catalysts for this reaction remain elusive. The performance of such catalysts have often been 

attributed to total surface area and/or copper surface area of the catalyst [32,33]. Previously, we 

synthesised and tested a series of Cu-ZrO2 catalysts for the hydrogenation of LA to GVL and determined 

that the active catalysts consisted of large quantities of copper within the ZrO2 lattice, as well as a 

surface containing CuO and Cu species [32,33]. 

Additionally, it was shown that deposition precipitation of copper directly on to the surface of 

zirconia produced comparatively poorly active catalysts [33]. As such, we believe that the copper 

sequestered within the bulk is redundant, and that discrete copper on the surface possesses limited 

catalytic activity, suggesting that it is the interface between copper and zirconia that comprises the 

active site. 
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With this in mind, we describe herein a novel catalyst synthesis method aimed at enriching the 

amount of copper in the surface lattice, reducing the amount of copper locked up within the bulk and 

present as spectator species on the surface. This should, in turn, reduce the amount of copper required 

to obtain useful activity, which will further enhance the cost-effectiveness of the material particularly 

as an alternative to Ru catalysts. We also provide evidence of a strong metal support interaction (SMSI) 

between Cu and ZrO2 which is central to the catalytic activity of these catalysts in hydrogenation 

reactions. 

 

2. Experimental 

2.1. Synthesis of CuZrO2 by pH gradient method 

For the synthesis of a 50 mol% Cu-ZrO2 catalyst, the following procedure was followed. 

Cu(NO3)2·3H2O (5 mmol, Acros Organics, 99 %) and ZrO(NO3)2·6H2O (5 mmol, Acros Organics, 99.5 

%) were dissolved as separate solutions in deionised water (100 mL). The solutions were subsequently 

mixed together and stirred for 5 min. The temperature of the mixture was maintained at 25 °C with a 

heated water bath throughout this synthesis. The solution was subsequently adjusted to pH 4.5 by a 

slow and controlled addition of aqueous K2CO3 (0.2 M, Fisher Scientific, 99%). Once at pH 4.5, the 

mixture was aged for 30 min. After 30 min, the pH was adjusted to 5.5 and the mixture was left to age 

for another 30 min. The process was repeated for pH set points of 6.5, 7.5, and 9.5. Once a pH 9.5 was 

reached, the mixture was aged for 4 h. Once the ageing process was complete, the catalyst was recovered 

by vacuum filtration and washed with deionised water (2 L, room temperature). The catalyst precursor 

was subsequently dried at 110 °C for 16 h. After drying, the catalyst was ground to a fine powder using 

mortar and pestle and calcined under static air at 400 °C, 20 °C min-1 for 4 h. A series of catalysts with 

different copper loadings (10–50 mol%) were prepared this way. Some of these catalysts were 

subsequently subjected to an additional reductive heat treatment, in such cases, this was conducted 

under flowing 5% H2/Ar (200 mL min-1) at a range of temperatures with a ramp rate of 10 °C min-1 for 

2 h. 

In some cases, the calcined catalysts were stirred in 0.5M HNO3 for 20 min (100 mL g-1
catalyst). The 

catalyst was then centrifuged and washed. The washing process was repeated until pH of the decanted 

solution was neutral (typically three washes). The catalyst was then dried at 110 oC for 16 h. 

2.2. Catalyst characterisation 

Powder X-ray diffraction (XRD) was performed on a PANalytical X’Pert Pro diffractometer with 

a monochromatic Cu-Kα source (λ = 0.154 nm) operated at 40 kV and 40 mA. The 2θ scan range was 

between 10° and 80°. 
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Surface areas were determined by multi-point N2 adsorption at 77 K on a Micromeretics Gemini 

2360 according to the Brauner-Emmet-Teller (BET) method. Prior to the analysis, samples were 

degassed at 120 °C for 2 h under N2 flow. 

TPR was carried out using a Thermo 1100 series TPDRO. Samples (0.1 g) were pre-treated at 110 

°C (heating rate = 20 °C min
−1) under Ar for 1 h prior to reduction in order to clean the surface. Analysis 

was performed under 10% H2/Ar (BOC 99.99%, 25 ml min
−1) 30–500 °C, 1 °C min

−1. 

Scanning electron microscopy (SEM) was carried out using a Tescan MAIA3 Triglav FEG-SEM, 

with the beam operating at 15 kV. Samples were prepared for SEM by depositing them onto a carbon-

supported, 300-mesh copper grid, and drying any excess solvent. The sample was then sputter coated 

with a 7 nm layer of gold, in order to reduce charging of the catalyst from the electron beam. 

Leaching studies were carried out using Agilent 4100 Microwave Plasma Atomic Emission 

Spectrometer (MPAES). The instrument was calibrated with solutions of known copper concentration, 

and filtered post-reaction solution was compared against the calibration curve. 

X-ray photoelectron spectroscopy (XPS) was performed using a Kratos Axis Ultra-DLD 

photoelectron spectrometer, using monochromatic Al Kα radiation, operating at 144 W power. High 

resolution and survey scans were performed at pass energies of 40 and 160 eV respectively. Spectra 

were calibrated to the C (1s) signal at 284.8 eV, and quantified using CasaXPS v2.3.17, using modified 

Wagner sensitivity factors supplied by the manufacturer. 

2.3. Catalyst testing 

Hydrogenation of LA to GVL was carried out using a 50 mL stainless steel Parr 5500 autoclave 

equipped with a Teflon liner. In a typical experiment, the reactor was charged with 50 mg of catalyst, 

0.5 g LA (Sigma Aldrich, 98%), 9.5 g distilled water, and purged three times with 35 bar H2 in order to 

remove any residual gas. The autoclave was then heated to 200 ⁰C. Once heated, the reactor was 

pressurized with 27 barg H2; this was considered to be time zero. Reaction time was 2 h. After the 

reaction, the autoclave was cooled on ice, and the gasses were vented once the internal temperature was 

below 10 ⁰C. The mixture was then filtered and analysed using a Varian 450 GC equipped with a CP-

Sil 5CB column (50 m, 0.32 mm, 5 μm) and an FID detector. Tetrahydrofuran (Fisher Chemical, 99.5%) 

was used as an internal standard. Catalyst reuse testing was carried out by running a reaction with large 

amount of catalyst (0.25 g) under standard conditions. The catalyst was then filtered, washed with 

deionised water (100 mL) and dried at 110 ⁰C for 16 h. From the used catalyst, 50 mg was taken and a 

standard reaction was carried out. This process was repeated for consecutive uses.  

For the majority of the reactions conducted in this study repeat experiments were conducted in order 

to establish error margins for the reaction data. In such cases, the data point corresponds to the mean 

value determined and the positive and negative error bars are representative of the standard deviation 

across the data set. 



7 

 

 

3. Results and discussion 

3.1. Co-precipitation by a pH gradient methodology 

A series of Cu-ZrO2 catalysts containing various Cu : Zr molar ratios were synthesised by a pH 

gradient method. This novel method of catalyst preparation was developed on the basis that Zr and Cu 

nitrate ligands will exchange with CO3
2- ligands at a different pH. Cu nitrate and zirconyl nitrates can 

be precipitated by K2CO3 at pH 4–5 and 3–4, respectively. Indeed, it has been established that Cu 

precipitation is not fully achieved until an alkaline pH (above 9) is reached [34]. As such, we reasoned 

that by slowly increasing or decreasing the pH of this mixture, we could gain control over the 

distribution of Cu and Zr in the resultant mixed metal oxide. For the purpose of this investigation, we 

wanted to maximise the quantity of Cu on, or very close to, the surface of the material and therefore, 

created a synthesis procedure which involved ramping the pH slowly and in a controlled manner, over 

time. A graphical representation of this procedure is highlighted in Fig. 1(a). 

 For the initial investigations, a series of Cu-ZrO2 with Cu loadings of 10, 20, 30, 40 and 50 mol% 

synthesised, calcined and tested for the hydrogenation of LA to GVL. The results from these 

experiments are displayed in Fig. 1(b). Clearly, there is a non-linear relationship between the Cu content 

of the catalyst and the yield of GVL produced, with the highest GVL yields observed in the reactions 

conducted over the 30 and 40 mol% catalysts. Interestingly, the GVL yield increases significantly as 

the Cu in the catalyst increases from 10 to 30 mol%, but not in a proportional manner; when the Cu 

content in the catalyst is doubled from 10 to 20 mol% for example, the yield of GVL produced triples. 

To investigate why this might be, the series of catalysts were characterised by BET, XRD and XPS. 

The total surface areas of the materials, also illustrated in Fig. 1(b), follow a similar trend to the 

catalytic activity exhibited by the catalysts. This is unsurprising, as previous studies have reported that 

there is relationship between the total surface area and catalytic activity of Cu-ZrO2 catalysts in this 

reaction [32,33]. The relationship between the GVL yield and surface area is similar but not 

proportional, indicating that the catalytic performance of these materials is not directly dictated by their 

total surface areas. Each of the samples was subsequently investigated by XRD; the corresponding 

diffraction patterns are displayed in Fig. 2. The materials with lower copper content (10%–30% Cu) 

appear to be amorphous and no distinct reflections could be observed. With the 40 mol% Cu material 

however, three distinct reflections characteristic of Cu(II)O (ICDD = 01-089-2529) emerge at 2θ = 36 

°, 39 ° and 49 °. This indicated crystallite growth, likely attributed to the increased concentration of 

copper in the solution during the precipitation [35]. With the 50 mol% Cu material, the crystallite 

growth appears to be more significant, as several additional reflections characteristic of Cu(II)O 

appeared. Perhaps more interestingly, a small reflection at 2θ = 31⁰ also appeared which is characteristic 

of tetragonal zirconia (t-ZrO2, ICDD = 01-080-3783). This indicates that with higher Cu loadings, a 
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phase separation occurs which would inevitably affect the distribution of Cu throughout the lattice of 

the material.  

These observations would appear to tie in with the activity data; whilst increasing Cu loadings of 

10%–30% display a strong increase in activity, increasing the loading beyond this point does not 

improve the activity. At the highest loadings, the activity decreases. The formation of the copper oxide 

phases at these loadings implies that copper is being deposited on the surface, as opposed to being 

intimately mixed with the surface lattice. This could act to lower the activity, which would be consistent 

with previous observations that copper deposited on the surface in large enough crystallites to be 

detected by XRD is inactive for this reaction. In addition to being less active, this surface copper could 

also act to lower the number of Cu-ZrOx interface sites that we believe to be the active site for the 

reaction. This would have further detrimental effects on the activity.  

The XRD patterns also demonstrate that Cu can be present in quite large quantities (up to 30 %) 

without the formation of detectable Cu or Cu(II)O structures. Presumably, this Cu is integrated into the 

zirconia lattice while at higher Cu loadings the lattice becomes saturated and Cu deposits on the material 

surface as a discrete phase. 

 Subsequent investigation of these materials by XPS provided information on the materials’ 

surface elemental composition. The Cu (2p) and Zr (3d) regions for the catalytic series are presented in 

Fig. 3. The quantity of Cu on the surface steadily increased with rising Cu loading on the catalyst, 

whereas the quantity of Zr on the surface decreased marginally between 10%–40% Cu, and showed a 

large decrease in the 50% Cu catalyst. This could be due to the formation of large particles of copper 

oxide on the surface of the material; as XPS is a quasi-surface technique, copper oxide particles of 

sufficient size could act to occlude the underlying zirconia. 

From calculation of the Cu/Cu+Zr ratio on the surface (Table 1) it was determined the surface 

Cu content was generally proportional to the total Cu loading of the catalysts, with increased Cu 

loadings only observed for the 50% loading. This would be consistent with the idea that large amounts 

of copper oxide have been deposited on the surface in the 50% Cu catalyst. However, the lack of surface 

copper enrichment means that the primary motivation for the development of the pH gradient method; 

to increase the proportion of Cu on the surface, had not been achieved. Nevertheless, the observation 

that the yield of GVL formed in the reaction is not proportional to the quantity of Cu on the surface 

may be informative for the identification of the active surface species in this reaction.  

Subsequent experiments were conducted over the 30 mol% Cu-ZrO2 catalyst in order 

investigate the stability of the catalyst as previously Cu-ZrO2 catalysts prepared by co-precipitation 

have been reported to deactivate rapidly over subsequent uses [33,32]. GVL yield as a function of time 

in a typical experiment is shown in Fig. 4(a). The yield after 4 h reaction time is around 75% and in fact 

100% yield is not observed after longer run times. As the only observed product is GVL this indicates 
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incomplete conversion of the LA substrate. This does indicate deactivation of the catalyst during a batch 

reaction, however, only trace quantities of Cu were detected by MP-AES after a standard conditions 

reaction; so that less than 0.2% of the Cu leached from the catalyst during a 2 h reaction. Even so, 

additional cycling experiments (Fig. 4b) confirmed that the catalytic performance of the 30 mol% 

catalyst remained reasonably constant for up to 4 uses, which is a marked improvement compared with 

other Cu-ZrO2 catalysts we have investigated previously (activity drop of up to 30% after 1 use) [28,32]. 

Perhaps most interestingly, SEM confirmed that there was severe change in the surface morphology of 

the catalyst upon subsequent uses, see Fig. 5(a-d), which evidently has little effect on the catalysis 

taking place. This could be indicative of phase separation between Cu/CuOx and ZrO2, which is 

evidenced by evaluating the corresponding XRD patterns of each materials (Fig. 5e). The Cu crystallite 

sizes increase upon subsequent uses, which were estimated from the Cu(111) reflection using the 

Scherrer equation; at 2θ = 43⁰. The observation that this substantial change in the morphology of these 

materials does not impact catalytic performance, indicates that the Cu/CuOx particles on the surface of 

the catalyst are likely to be spectator species in this reaction and thus, are unlikely to be involved in the 

catalytic surface mechanism taking place. With this in mind we suggest that the deactivation observed 

over long run times (Fig. 4a) is likely due to site inhibition either by the GVL product or by an 

unidentified reaction intermediate which adheres to the active site. On reuse testing the catalyst is 

washed prior to reuse which could free up the active site for subsequent reaction runs. 

 

3.2. Identification of the catalytically active species 

We previously proposed that lattice Cu in close proximity to the surface of the catalyst is very important 

for the performance of Cu-ZrO2 catalysts in this reaction [33]. To establish whether the large Cu/CuOx 

particles on the surface were indeed spectator species, each of the catalysts was subjected to an acid 

treatment with HNO3 (0.5 M) as described in the experimental section. The aim of these acid washing 

steps was to remove labile copper species and expose underlying copper species with SMSIs. To 

confirm that all the labile species had been removed, some of the acid-treated catalysts were subjected 

to a second acid wash, after which only negligible amounts of Cu were present in the resulting acidic 

solution. Analysis of the acid washings by MP-AES allowed for the determination of Cu metal leached 

from each of the catalysts. The results indicated that large amounts of Cu were removed from the 

catalysts; the quantity of Cu removed had a linear dependence on the original target Cu loading of each 

catalyst; only 1.3% was removed from the 10 mol% Cu-ZrO2 catalyst, whereas 76.6% of the Cu present 

in the 50 mol% Cu-ZrO2 was removed. As the quantity of Cu lost is not proportional to the quantity of 

Cu present in each catalyst, it indicates that during catalyst synthesis, copper species first saturate the 

bulk lattice before Cu is precipitated on to the surface.  
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Following the acid treatment, the catalysts were tested for hydrogenation of LA to GVL under standard 

conditions, the results of which are displayed in Fig. 6. Interestingly, it was determined that the catalysts 

retained their activity completely despite the loss of significant quantities of copper. Indeed, the 50% 

Cu catalyst was actually more active after having 76.6% of its copper removed. This strongly implies 

that the copper removed by acid washing is a spectator species that plays little part in the reaction. As 

the removed copper was not involved in the reaction, we can attribute the catalysis taking place to 

surface lattice Cu species with SMSIs. The resilience of the active species towards acid treatment 

underlines the stability of the catalyst. We also noted that there is negligible leaching of the zirconia 

support during the acid washing procedure 

To further rationalise this data, the turnover frequency (TOF) of each catalyst was calculated and 

normalised to the moles of copper remaining on the acid-washed catalyst (Fig. 7). The quantity of Cu 

remaining in each of the catalysts was estimated by quantifying the amount of Cu leached during the 

acid treatment by MP-AES (Table 2).  A linear trend was observed between the GVL yield observed 

and the copper content present in the catalysts. The acid-washed materials had higher TOFs than their 

fresh counterparts, further evidencing that much of the surface Cu species in the fresh catalysts are 

indeed spectator species. SEM images of the acid washed catalysts were subsequently obtained (Fig. 

8a-d). The morphology of the catalysts was radically different to the fresh samples; there was no 

evidence to suggest that any large Cu/CuOx particles were still present. With the 40 mol% and 50 mol% 

Cu-ZrO2 catalysts, large pores were observed, evidencing the significantly large quantities of spectator 

Cu in the fresh catalysts. Despite this, the activity of the 50 mol% Cu-ZrO2 did not decrease, and but 

understandably, the TOF improved drastically from 12.85 molGVL molCu
-1 h-1 to 68.64 molGVL molCu

-1 h-

1.  

 

3.3. Pre-reduction effects on catalytic performance 

It is known that the reduction of copper is a highly exothermic process and that poor control of reduction 

conditions can lead to substantial sintering of heterogeneous catalysts [36]. Given that we have already 

established that the catalytic activity of the Cu-ZrO2 catalyst is strongly related to intimate mixing of 

Cu and ZrO2, we wanted to establish whether it was beneficial to pre-reduce the Cu-ZrO2, prior to 

catalytic testing experiment. To investigate whether this pre-reduction was influential, our most active 

catalyst; the 30 mol% Cu-ZrO2, was pre-reduced at various temperatures from 150 – 500 °C with 5% 

H2/Ar. A slow temperature ramp (1 °C / min) was invoked to prevent, or at least reduce, any localised 

exotherms in the catalyst bed. H2 TPR was used to establish the lowest reduction temperature which 

should be used (Fig. 9a).  

XRD of the pre-reduced catalysts confirmed that the reduction temperature significantly influenced the 

crystallinity of the catalysts (Fig. 9b). Reflections at 2θ = 43°, 51° and 74°, which are characteristic of 
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metallic copper (ICDD = 01-070-3038) become more prominent as the reduction temperature increases. 

Assessment of the Cu (111) peak (2θ = 43°) by the Scherrer equation provided an estimation of the 

corresponding Cu crystallite sizes for each catalyst. As the reduction temperature was increased, the 

crystallinity of the Cu phase increased significantly (Table 3) and the particle sizes of the Cu species 

increased. This aligns with the surface area of the catalysts (Table 3), which decreases as the reduction 

temperature increases. After reduction at 500 °C, additional reflections at 2θ = 31°, 35°, 60° and 63° 

are observed, which are characteristic of tetragonal zirconia (t-ZrO2, ICDD = 01-080-3783).  Given that 

no characteristic reflections of ZrO2 are present in in the XRD patterns for any of the other samples, it 

suggests that reduction at 500 °C leads to a complete phase separation between Cu and ZrO2. Indeed, 

this was confirmed to be the case by subsequent investigation of the 30 mol% Cu-ZrO2 catalysts reduced 

at 150 and 500 °C by SEM-EDS (Fig. 10b and c, respectively). Each of these catalysts was subsequently 

tested for the hydrogenation of LA (Fig. 10a). The reduction temperature had a profound effect on 

catalytic performance; activity decreased as reduction temperature increased. This aligns well with 

conclusions drawn previously, that an intimate mixing of Cu and Zr promotes catalytic performance in 

this reaction. Agglomeration of Cu or indeed ZrO2, will likely result in a loss in catalytic performance. 

This is shown in the trend of increasing Cu particle size leading to less active catalysts. 

 

4. Conclusions and future perspectives 

A range of CuZrO2 catalysts with varied molar copper content were synthesised by a novel pH 

gradient co-precipitation method. Their activity for the hydrogenation of LA was determined to be 

related to the total surface area of the catalysts. Further investigation confirmed that activity was in fact 

dictated by the degree of mixing between Cu and ZrO2 phases; activity is considered to be directly 

related to the proportion of Cu/ZrOx interface sites in a given catalyst. In typical co-precipitated 

catalysts, much of the copper in the final catalyst is but a spectator in the reaction. We have previously 

observed the important role lattice copper has on the performance of these catalysts but until now were 

unable to ascertain why. The new insights herein infer an intimately mixed copper-zirconia surface 

phase leads to highly active catalysts, which is in line with our assumption that the active site for this 

reaction is the interface between copper and zirconia upon reduction. This intimate mixing may also 

play a role in the increased stability of these catalysts relative to other examples in the literature. We 

consider that this enhanced understanding will be exceptionally important for future work in this 

abundant and heavily competitive area of research. Developing novel routes to synthesise Cu-ZrO2 

catalysts with SMSIs should be priority moving forward, to ensure that the process is as economic and 

atom efficient as possible.   
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Schemes and Figures 

 

 

Scheme 1: Levulinic acid (LA) is formed from the hydrolysis of cellulose and can be hydrogenated to 

γ-valerolactone (GVL) over a suitable catalyst. GVL can also undergo sequential hydrogenation to 1,2-

pentanediol (1,4-PDO) and 2-methyltetrahydrofurfural (2-MTHF). 

 

 

 

Fig. 1. A series of Cu-ZrO2 catalyst with varied Cu/Zr loadings were prepared via a pH gradient 

methology (a); the dotted and solid lines correspond to the pH ramp in the standard and pH gradient 

methods, respectively. The activity of the catalysts for the hydrogenation of LA to GVL and their total 

surface area as determined by BET is displayed in (b). Reaction conditions: 200 °C; H2 27 bar; 2 h; 

substrate 5 wt% LA/H2O (10 g); catalyst (0.05 g). 
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Fig. 2: XRD diffraction patterns corresponding to the series of Cu-ZrO2 catalysts prepared by the pH 

gradient methodology. CuO;   ♦ t-ZrO2. 

 

 

Fig. 3: X-ray photoelectron spectra of the Cu(2p) and Zr(3d) regions for (1) 10 mol% Cu-ZrO2, (2) 20 

mol% Cu-ZrO2, (3) 30 mol% Cu-ZrO2, (4) 40 mol% Cu-ZrO2 and (5) 50 mol% Cu-ZrO2 catalysts. 
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Fig. 4. (a) The yield of GVL produced as a function of time for the hydrogenation of LA over a 30 

mol% Cu-ZrO2 catalyst. (b) Investigation into how the activity of the 30 mol% catalyst is effected by 

sequential reactions; 2 h reactions. Reaction conditions: 200 °C, H2 27 bar, time stated, substrate 5 wt% 

LA/H2O (10 g), catalyst (0.05 g).  

 

 

 

Fig. 5. Characterisation of the fresh 30 mol% Cu-ZrO2 catalyst (a), after one use (b), after two uses (c) 

and after three uses (d) by SEM. The XRD patterns for each of these samples are also displayed (e). For 

the XRD data series:  ●  Cu;   ♦  t-ZrO2. Cu crystallite sizes of 63, 74 and 87 nm were determined for 

the catalysts after one, two and three uses, respectively. The Cu crystallite sizes were estimated using 

the Scherrer equation (2θ = 43o). 
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Fig. 6. The activity of the catalytic series before     and after      treatment with HNO3 (0.5 M). 

Reaction conditions: 200 °C; H2 27 bar; 2 h; substrate 5 wt% LA/H2O (10 g); catalyst (0.05 g). 

 

 

Fig. 7. Catalyst TOF dependence on moles of Cu present in the reactor. Comparison between the fresh;      

and acid washed;       catalysts. 
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Fig. 8. SEM images of (a); the fresh (calcined) 10 mol% CuZrO2 catalyst (b); 10 mol% CuZrO2 after 

acid washing with HNO3 (0.5 M) (c); fresh (calcined) 50% CuZrO2 catalyst and (d); 50% CuZrO2 after 

acid washing with HNO3 (0.5 M). 

 

Fig. 9. Temperature programmed reduction of the calcined 30 mol% Cu-ZrO2 catalyst with 5% H2/Ar 

at a ramp rate of 1 °C/min (a). X-ray diffraction patterns of the calcined 30 mol% Cu-ZrO2 catalyst after 

reduction at different temperatures (b).  
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Fig. 10. Catalytic testing data for the calcined 30 mol% Cu-ZrO2 catalyst after reduction at different 

temperatures (a). SEM images of the calcined 30 mol% Cu-ZrO2 catalyst after reduction at 150 °C (b) 

and 500 °C (c). 
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Tables 

 

Table 1. Surface atom coverage derived from XPS of the calcined calcined catalysts prepared by the 

pH gradient method. 

Catalyst 
Surface elemental concentrations (Atom %) 

Atomic ratio 

(Cu/Zr) Cu (2p) O (1s) C (1s) Zr (3d) 

10 mol% Cu-ZrO2 2.32 50.57 24.15 22.97 0.09 

20 mol% Cu-ZrO2 5.47 53.02 18.27 23.24 0.19 

30 mol% Cu-ZrO2 9.21 54.58 14.17 22.04 0.29 

40 mol% Cu-ZrO2 12.93 54.88 11.8 20.39 0.39 

50 mol% Cu-ZrO2 19.74 51.65 12.69 15.91 0.55 

 

 

Table 2. Quantified amounts of copper and zirconia lost upon acid washing the catalysts. MP-AES 

was used to quantify the effluent after washing with HNO3 (0.5 M). 

Catalyst 
Copper lost 

(%) 

Copper loading post acid 

treatment (mol%) 

 Zirconia lost 

(%) 

10% Cu-ZrO2 1.3 9.9 0.2 

20% Cu-ZrO2 28.2 14.4 0.4 

30% Cu-ZrO2 28.9 21.3 0.3 

40% Cu-ZrO2 48.4 20.6 0.6 

50% Cu-ZrO2 76.6 11.7 0.4 

 

  

Table 3. BET surface area and Cu-crystallite sizes of the 30 mol% Cu-ZrO2 catalyst after reduction at 

different temperatures. 

Reduction temperaturea (°C) BET surface area (m2 g-1) Cu crystallite sizeb (nm) 

150 - - 

200 50 6 

300 28 25 

400 9 75 

500 11 87 
aCatalysts reduced in 5 % H2/Ar at stated temperature for 2 h. A ramp rate of 1 °C min-1 was 

used for each catalyst.  
bCu crystallite sizes were derived from XRD patterns of the corresponding catalysts using 

the Scherrer equation (2θ = 43o). 
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Graphical Abstract 

 

Description 

Cu-ZrO2 catalysts were synthesised by a pH gradient methodology, characterised and tested for the 

hydrogenation of levulinic acid to γ-valerolactone. The results from these experiments provide fresh 

insight on the intrinsic activity of these catalysts in hydrogenation reactions.  

 


