
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/11 9 1 9 9/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Williford,  Geo r g e  W. a n d  Atkinson,  Dougla s  B. 2 0 2 0.  A Bayesia n  for e c a s ting  m o d el  of

in t e r n a tion al  conflic t .  Jour n al  of Defe ns e  Mod eling  a n d  Si m ula tion  1 7  (3) , p p.  2 3 5-

2 4 2.  1 0.1 17 7/15 4 8 5 1 2 9 1 9 8 2 7 6 5 9  

P u blish e r s  p a g e:  h t t p s://doi.or g/10.1 17 7/15 4 8 5 1 2 9 1 9 8 2 7 6 5 9  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



1 

A Bayesian Forecasting Model of International Conflict 

George W. Williford and Douglas B. Atkinson 

October 31, 2018 

Received: 31-Dec-2017 

Revised: 06-May-2018 

Accepted: 31-Oct-2018 

Abstract: 

Scholars and practitioners in international relations have a strong interest in forecasting 

international conflict. However, due to the complexity of forecasting rare events, existing attempts 

to predict the onset of international conflict in a cross-national setting have generally had low rates 

of success. In this paper, we apply Bayesian methods to develop a forecasting model designed to 

predict the onset of international conflict at the yearly level. We find that this model performs 

substantially better at producing accurate predictions both in and out of sample. 
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1 INTRODUCTION 

Scholars of international relations have long endeavored to create a means of accurately 

forecasting interstate conflict. Being able to accurately anticipate interstate conflict will not only 

provide the international community with the information of when and where conflicts are likely, 

but which of these conflicts has the highest probability of occurring. With this information the 

international community can better direct scarce resources in the hopes of mediating the potential 

conflict.  

Although there have been a number of attempts to create forecasting models of 

international conflict (e.g., Beck, King, and Zeng 2000, 2004; Gleditsch and Ward 2013; de 

Marchi, Gelpi, and Grynaviski 2004), most previous work has focused on predicting whether states 

are engaged in conflict, not the onset of conflict. While these studies have undoubtedly improved 

our forecasting ability, as of yet, there has not been a model that can accurately predict the onset 

of conflict with a high enough level of precision or with enough warning for policy makers to act 

on its predictions. This is unsurprising given the inherent difficulties associated with forecasting 

rare events. Nonetheless, developing models that can more accurately forecast international 

conflict is an endeavor worth pursuing.  

In this article we apply Bayesian methods and machine-learning techniques to build a better 

prediction model. We use Bayesian logistic regression to provide regularized estimates of our 

coefficients and combine it with a technique known as undersampling to enhance the predictive 

power of our model. By using weakly informative priors to constrain the size of the estimated 

effects, we can help reduce the extent to which variables introduce extraneous noise to the model. 

The use of undersampling allows us to reduce the computational burden associated with our 

Bayesian approach. In addition, the use of undersampling produces more realistic predicted 
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probabilities in the face of rare events. This helps resolve a common problem associated with 

forecasting rare events, namely, that standard models fail to assign high predicted probabilities to 

any of the observations. This allows us to attempt to accurately forecast the onset of militarized 

interstate disputes (MIDs) at the dyad-year level.   

In addition, we improve upon previous models by attempting to model relative power 

dynamics. Most forecasting models focus on incorporating structural factors that change slowly, 

such as the presence of a territorial dispute (e.g. Gleditsch and Ward 2013). These factors change 

slowly, if at all, and are not easily manipulated by policy makers. Although previous research has 

modeled the balance of capabilities between two disputants, many existing theories of conflict 

posit that changes in two disputant’s relative capabilities are most likely to produce conflict by 

creating uncertainty about each other’s capabilities and making it more difficult for states to 

commit to agreements (5,6). Our results suggest that modeling more dynamic factors of two state’s 

relationship may provide better predictions about conflict behavior. 

2 THEORETICAL JUSTIFICATIONS FOR MODEL INPUTS 

Scholars have long argued that shifts in relative power are likely to lead to conflict (7–9). 

States in relative decline will be concerned about their security, being driven by the fear that in an 

anarchic world rising opponents will take advantage of the state’s moment of relative weakness 

and capture some corresponding share of their resources and influence. In this scenario, it has been 

argued, that the declining power is better off fighting a preventive war from a position of power 

than to continue to decline and be forced to fight a war from a weaker position at some point in 

the future (7,8). It has been argued, that even if the states can come to some agreement short of 

war, they will be unable to credibly commit to the agreement, because the state with increasing 

power will be unwilling to abide by the agreement when they are in a more favorable position in 
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the future. (5,6). This leads us to anticipate that large and rapid shifts in relative capabilities, will 

be moments when military conflict is most likely. It should be noted, that rapid shifts in relative 

power do necessarily have to be cases where one state threatens another state’s position in the 

international system, a rapid shift merely implies that their position has changed and may have 

little impact on the system structure but play an important role in the relationship between the 

states of the dyad (10). 

To fully capture the multifaceted nature of relative capabilities (exogenous and endogenous 

factors), we will be using the Composite Index of National Capabilities index (CINC) (11).  The 

CINC index is a composite index that considers the nation’s economic, demographic, and military 

attributes. To find the relative capabilities within the dyad, we take the capabilities of the weaker 

state and divide them by the combined capabilities of both states, giving us the proportion of shared 

capabilities held by the weaker state. We also include the squared value of this measure for each 

dyad.  Rapid increases in either of these sends a signal to adversaries (or potential adversaries) of 

a likely military conflict (12–14). To capture this, we include a measure of the percent change from 

year t to year t-1 for each dyad year. In addition to the measures generated by the CINC scores, 

we include a dichotomous indicator of whether or not the states in the dyad are major powers and 

whether both states in the dyad possess nuclear weapons. Both of these inputs affect the ability 

and incentives for states to engage in militarized conflict. Major powers are able to more easily 

project force and employ military capabilities (15). Possession of nuclear weapons makes major 

conflict between two nuclear armed powers less likely but increases the likelihood that the same 

states will engage in lower level conflict (16,17). 

Democracies have been shown to be less likely to engage in conflict with other 

democracies due to institutional and normative similarities (18,19). Similarly, autocracies have 



5 

been shown to be less willing to engage in conflict with regimes that are similar to their own (20). 

Because of this, when the dyad is made up of states with a shared regime type, conflict is less 

likely. For this input, we employ the regime type measure developed by the Polity IV project (21). 

This measure ranges from -10, the most autocratic regime type, and 10, the most democratic. We 

include the Polity score for each state in the dyad. In addition, we include a measure of regime 

similarity. To operationalize this input, we multiply each state’s Polity scores together. This 

produces a measure that ranges from -100 to 100, where 100 indicates two states have extremely 

similar regimes and -100 indicates that their regimes are extremely dissimilar. We use this measure 

rather than the standard dichotomous measures employed in the literature to avoid unnecessarily 

discarding variance based on arbitrary thresholds for what constitutes democracies and 

autocracies.1 

All else equal, states that have similar security preferences should be less likely to fight 

each other. This includes states that have security alliances with each other. Although these states 

may have mutually incompatible preferences in some areas, they have a stronger incentive to 

cooperate with each other in order to maintain their alliance ties in the event that they should need 

them. We model this using a dummy variable to indicate whether two states have a defensive 

alliance using data from the Correlates of War Formal Alliance Dataset (22). 

Scholars have also found that the previous use of force against the other state within the 

dyad, leads the two states within the dyad to be more likely to use violence as a means of resolving 

their disputes in the future (23). In cases where two states have engaged in militarized behavior in 

the past, shifts in relative power will be especially problematic as the side with increased 

                                                
1 De Marchi, Gelpi, and Grynaviski (2004) employ a similar measure. They also include the squared term of 

this measure. We find that including the squared term did not improve the predictive performance of the model and 

did not include it in the analysis presented here. 
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capabilities will take the opportunity presented by this scenario to resolve any outstanding disputes 

with the use of military force. To account for this, we include a count of the number of previous 

MIDs between two states. We expect that more previous MIDs are associated with a higher 

probability of future conflicts. 

We also account for joint membership in international institutions. International 

institutions are a means that states can use in order to manage relative shifts in power. When the 

two states belonging to a dyad belong to the same international institution they will be less likely 

to engage in militarized conflict with each other (24). When shifts in relative power occur within 

a dyad where both states belong to the same institution, the joint membership should have 

restraining effect on the behavior of the states within a dyad that experiences a shift in relative 

power as resorting to violence would cause the state to sacrifice the values accrued to the states 

via the international institution. To employ this input, we use a count of the number of international 

institutions that both of the states in the dyad belong to (25). The more international institutions 

that both states belong to the stronger the restraining effect and the less likely a conflict between 

the states will occur. 

3 MODELING APPROACH 

Our dependent variable is a binary indicator of whether two states become involved in a 

new militarized interstate dispute (MID) in a given year. Data on MIDs comes from version 2 of 

(26) dataset. This dataset makes adjustments to remove extraneous MIDs and rectify coding errors 

in version 4.0 of the MID dataset (27). Because our dependent variable is binary, we use logistic 

regression to predict the probability of observing the onset of a MID between two states in a given 

year. Our sample is composed of all states in the Western Hemisphere from 1816-2001. In the long 

run, our goal is to develop a comprehensive forecasting model for international conflict across the 
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globe. However, due to the computational requirements associated with Bayesian simulation, we 

limit our sample to the Western Hemisphere at this stage of our project. Using this region allows 

us to overcome some of the data limitations associated with other regions of the world and also 

facilitates comparisons with existing research, namely (3). 

Our unit of analysis is the dyad-year, which provides one observation for each pair of states 

in our sample for each year that both states are members of the international system. Because our 

primary concern is with accurately forecasting conflict, we use split-sample cross-validation to 

evaluate the predictive ability of our model. Following Gleditsch and Ward, (2013), we divide our 

data into two sets: a training set composed of all observations up to and including 1989, and a test 

set of all subsequent observations. This allows us to evaluate our model’s ability to predict the 

onset of conflict in the post-Cold War era. (e.g., 28), our results suggest that forecasting based on 

data in previous eras can still be effective despite this. 

3.1 Rare Events Corrections 

Because international conflicts are rare events, standard logistic regression is likely to 

underestimate the probability of a conflict occurring and produce biased estimates of the regression 

coefficients (29). To account for this, we employ two different corrections designed to remedy this 

problem. First, we use a sampling technique known as undersampling. This involves randomly 

selecting a subset of the observations that do not experience the event of interest to produce a 

balanced dataset that contains equal numbers of ones and zeros.2  

Second, many of the problems associated with rare events can be corrected for by choosing 

an appropriate prior distribution. Several prior distributions have been studied in the context of 

                                                
2	In	 addition	 to	undersampling,	we	estimated	models	using	oversampling	 (i.e.	 increasing	 the	 size	of	 the	

dataset	by	randomly	sampling	from	the	observations	that	experience	the	event)	and	two	different	algorithms	

designed	to	balance	the	data	by	creating	synthetic	cases	based	on	the	observed	conflicts	(SMOTE	and	ROSE).	

Of	these,	oversampling	performed	the	best.	
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rare events. Among these, we selected the Cauchy prior suggested by (30). 3  The Cauchy 

distribution is a weakly informative prior distribution that imposes limited constraints on the size 

of logistic regression coefficients, which prevents the possibility of extremely large coefficients 

and mitigates the problems with separation that are often associated with rare events data.  In 

addition, the use of a Cauchy prior helps to shrink the estimates of variables that do not have a 

strong influence on the dependent variable towards zero. The use of this prior naturally regularizes 

the estimates and helps prevent overfitting due to noise introduced by potentially extraneous 

covariates. Following the advice of (30) we use a Cauchy distribution with mean 0 and scale 10 as 

a prior on the constant term, and a Cauchy distribution with mean 0 and scale 2.5 for all other 

predictors. All predictors are centered, and continuous covariates are scaled to have a standard 

deviation of 0.5. 

4 EMPIRICAL RESULTS 

Table 1 presents the results of our analysis, including the mean of the posterior distribution, 

standard deviation, and the 95 percent credible intervals for each predictor. Our results are based 

on a sampling procedure that employs two Markov chains with 100,000 iterations each and a burn-

in period of 50,000 iterations. We assessed the convergence of the two chains by ensuring that the 

Gelman-Rubin diagnostic (𝑅") values were above 1.01 for all estimated parameters. 

  

                                                
3	In	addition,	we	tested	models	using	several	other	prior	distributions,	including	a	Jeffreys	prior,	a	normal	

prior,	and	a	Laplace	prior.	Of	these,	the	Cauchy	prior	produced	the	most	accurate	predictions.	
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Table 1: Posterior Distribution of Estimated Coefficients 

 Mean Std.	Dev. 2.5	Percent 97.5	Percent 

Constant -1.08 0.15 -1.39 -0.79 

Capability	Ratio 0.59 0.84 -1.04 2.26 

Capability	Ratio	Squared -0.43 0.78 -1.98 1.08 

Percent	Change	Capabilities 0.12 0.25 -0.37 0.62 

Major	Power 0.63 0.52 -0.39 1.65 

Polity	A -0.11 0.28 -0.66 0.44 

Polity	B -0.25 0.28 -0.79 0.29 

Polity	A*B -0.32 0.26 -0.82 0.18 

Defensive	Alliance -0.78 0.34 -1.47 -0.12 

Intergovernmental	Organizations 0.98 0.35 0.32 1.67 

Previous	MIDs 2.52 0.28 2.00 3.09 

Nuclear	Power 0.68 0.62 -0.53 1.91 

 

4.1 In-Sample Performance 

We begin by examining how our model performs at predicting conflicts within the training 

set. We start by plotting the Receiver-Operating Characteristic (ROC) curve for the training 

predictions, as first suggested by (4). ROC Curves plot the proportion of correctly predicted 0s 

(False Positive Rate) on the x-axis and the proportion of correctly predicted 1s (True Positive Rate) 

on the y-axis. This allows for a comparison of the proportion of correctly classified 0s and 1s at 

different thresholds. The greater the area under the ROC curve, the better a classifier performs 

regardless of the prediction threshold specified. This can be summarized using the Area Under the 

Curve (AUC) statistic, which provides a succinct summary of how well the model performs. The 
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closer this value is to one, the better a model performs, where values of 1 indicate that the model 

perfectly predicts the value of all observations. We also present the Brier score, which is the mean 

squared difference between an observation's predicted probability and its observed binary 

outcome. The closer this value is to 0, the less incorrect predictions the model makes. 

Figure 1 presents the ROC curve for the training sample. The summary statistics illustrate 

that the model performs very well overall, with an AUC value of 0.92 and a Brier score 

indistinguishable from 0. The AUC can be interpreted as the probability that a randomly selected 

conflict observation has a 92 percent probability of being assigned a higher predicted probability 

than a randomly selected peace observation. From the ROC curve itself, it is apparent that whatever 

threshold chosen must produce a relatively high false positive rate to correctly classify most of the 

conflict observations. For example, to correctly classify 90 percent of the observed ones, it is 

necessary to accept a roughly 20 percent false positive rate.  

  



11 

Figure 1: ROC Curve, In-Sample 

 

In terms of predictions, a model that performs well will assign higher predicted 

probabilities to observations that experience conflict than those that do not. We can evaluate this 

graphically by examining a separation plot of the data (31). Separation plots consist of a series of 

panels representing each observation in the data arranged from left to right in order of increasing 

predicted probability, with different colors used to indicate whether an event occurred. Dark panels 

represent observations where an event actually occurred, while light panels represent observations 

where no event occurred. The solid black line running from left to right represents the value of the 

predicted probability of each observation. Figure 2 displays the separation plot for our in-sample 

results. As illustrated, the model performs reasonably well, with dark panels clustered on the right-

hand side and light panels clustered on the left. 
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Figure 2: Separation Plot, In-Sample 

 

Table 2 summarizes the performance of our model by comparing the predicted values for 

each observation (0 or 1) in our test data with their observed values. Although any choice of 

threshold is possible, the use of undersampling to balance the training set makes it so that a 

threshold of 0.5 can be used to classify the observations into one category or the other. Without 

this technique, it is unlikely that many (if any) observations would be assigned predicted 

probabilities above 0.5. By contrast, our model correctly predicts the onset of roughly 73 percent 

of conflicts at this threshold. Similarly, the model predicts roughly 88 percent of peace years 

accurately. Although evaluating the performance of these models in the test sample is necessary 

to get a true sense of the model’s forecasting performance, this provides a benchmark for what to 

expect in the test set. Analysts interested in shifting the balance of true positives and negatives 

may be interested in selecting an alternative threshold. 

Table 2: Actual vs. Predicted Disputes, In-Sample 

	 No	Dispute	Predicted	 Dispute	Predicted	

No	Dispute	Observed	 225	(88.24%)	 30	(11.76%)	

Dispute	Observed	 69	(27.06%)	 186	(72.94%)	

	

4.2 Out-of-Sample Performance 

We now turn to discuss the predictive power of our model out-of-sample. Our validation 

set consists of a total of 3,900 dyad-years in the period from 1990 to 2001. During this time, a total 

of 33 militarized disputes were observed within the sample. Figure 3 presents the ROC curve for 
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our test sample, as well as the AUC and Brier scores. The AUC of 0.94 indicates that the model 

performs extremely well overall. This indicates that a randomly selected observation where 

conflict is observed has a 94 percent chance of being assigned a predicted probability higher than 

a randomly selected peace observation. As before, correctly identifying 90 percent of the 1s 

requires accepting a false positive rate of about 20 percent. As such, analysts are necessarily 

required to make tradeoffs when interpreting such models depending on whether they care more 

about identifying most potential conflicts or weeding out false positives. For example, an 80 

percent true positive rate yields a slightly lower false positive rate of roughly 10 percent. These 

results are roughly comparable to those in the training sample. 

Figure 3: ROC Curve, Out-of-Sample 

 

Although the Brier score of 0.11 is substantially larger than the in-sample Brier score, it 

still indicates that the model has strong predictive performance. In addition, Figure 4 presents the 

separation plot for the test sample. Although there is considerably more gray space than before 

due to the much higher number of 0s in the test sample, the red lines still cluster on the right-hand 

side of the graph, indicating that the model systematically assigns high predicted probabilities to 

the observations that experience conflict. 
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Figure 4: Separation Plot, Test Sample 

 

Table 3 presents a cross-tabulation of the predicted and observed values for each dyad-year 

in our dataset. In total, our model predicts 352 dispute onsets. In doing so, we correctly predict the 

onset of 27 out of 33 disputes, thereby correctly predicting 82 percent of the conflicts that actually 

occurred during this period. As an additional measure of predictive performance, Figure 5 presents 

the calibration plot of the test sample predictions (1,4). This figure is produced by binning the 

observations according to predicted probability, rescaled between 0 and 100, by intervals of 10. 

For each bin, the number of observed events is calculated. The median predicted probability for 

each bin is plotted on the x-axis with the proportion of observations that experienced the event 

plotted on the y-axis. Points that fall on the 45-degree line indicate that the proportion of events 

that occurred within that bin is equal to the expected number of events (e.g. roughly 85 percent of 

the observations should fail within the 80-90 percent probability bin). From this plot, we can see 

that the model tends to overpredict low probability conflicts below the 30 percent cut point (i.e., 

less conflicts occur than should occur within these bins) and underpredict conflicts above this 

point. This illustrates the fact that the model tends to assign too low probabilities to conflicts, as is 

to be expected with rare events. 
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Figure 5: Calibration Plot, Test Sample 

 

To get a sense of the disputes that our models fails to predict, we examine each of the false 

negatives in detail. Table 4 lists each of the seven observed disputes that our model failed to 

predict. Because we use data on the same countries and time period as (3), we can directly compare 

the results of our model to theirs. This comparison allows us to build on their already excellent 

work to produce an even more accurate forecasting model. Two of our false negatives, Canada vs. 

Haiti and Haiti vs. Argentina, stem from the same conflict, MID 4016, which involved an attempt 

by several countries to restore Haitian President Jean-Bertrand Aristide to power following a 

military coup. Notably, our model did accurately predict the occurrence of MIDs between Haiti 

and the Dominican Republic and the USA in this year, both of whom were participants in MID 

4016.  
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Table 3: Actual vs. Predicted Disputes, Test Sample 

 No	Dispute	Predicted Dispute	Predicted 

No	Dispute	Observed 3542	(91.6%) 325	(8.4%) 

Dispute	Observed 6	(18.18%) 27	(81.82%) 

 

In addition, our model did not accurately predict the onset of a conflict between Venezuela 

and Guyana. This incident occurred due to the escalation of a border dispute between the two 

countries, and although it led to the mobilization of troops in a display of force, no actual use of 

force was observed. Each of the remaining false negatives involved minor disputes over maritime 

boundaries or fishing rights, none of which presented a serious risk of escalation or casualties. In 

addition, our model predicts several disputes that (3) does not. In addition to the two mentioned 

above, our model accurately predicts a series of disputes between Belize and Guatemala, several 

other disputes between Trinidad and Tobago and Venezuela, a dispute between the U.S. and Peru, 

and a dispute between the U.S. and Venezuela. 

Table 4: False Negatives in Test Sample 

Country	A Country	B Year Mid	Number Fatality Max	Duration 

Canada Haiti 1993 4016 0 335 

Haiti Argentina 1993 4016 0 335 

Honduras El	Salvador 1993 4010 0 25 

Trinidad	and	Tobago Venezuela 1996 4149 0 0 

Trinidad	and	Tobago Venezuela 1999 4155 0 3 

Venezuela Guyana 1999 4260 0 6 

 

Although our model does correctly predict most of the disputes that occur in our validation 

sample, our model does produce a high rate of false positives. Of the 352 disputes predicted by 
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our model, 325 constitute false positives. Admittedly, this is substantially higher than similar 

models (e.g., 3), and in our view, constitutes the most serious problem with our current model. To 

a certain extent, this is offset by the superior performance of our model at accurately predicting 

the onset of observed conflicts. From a pragmatic perspective, we would rather accurately predict 

as many conflicts as possible, even if doing so produces a higher number of false positives. Since 

the ultimate goal of forecasting is to take steps to prevent conflicts from happening or mitigate 

their effects, we would rather identify countries that are potentially at risk of conflict. We contend 

that this is valuable, even if many of these conflicts do not occur. By contrast, models that produce 

lower numbers of false positives and higher numbers of false negatives are of less use in planning 

for potential conflicts. Moreover the model classifies 92 percent of the 0s correctly. Given the 

overwhelming number of 0s in the dataset, this performance is substantial. Nonetheless, we plan 

to focus on reducing the number of false positives generated by the model in future work. 

Finally, since shifts in the distribution of power between disputants are likely to influence 

the onset of international conflict, we included this measure in the model. Although this variable 

is itself insignificant, it does enhance the predictive performance of our model. Compared to a 

model that does not include this measure, our model predicts an equal number of conflicts in the 

test sample. However, it also predicts less false positives. Although we expected this measure to 

have a more measurable substantive effect, we suspect that the rough nature of this measure 

precludes finding more substantial results. However, our results do suggest that considering power 

dynamics may be an important avenue for future research. For example, using disaggregated 

measures of capabilities may be a fruitful endeavor. 
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5 CONCLUSION 

In this paper, we develop a forecasting model that is capable of predicting the onset of 

international conflict at the yearly level. To our knowledge, this is one of the first papers to do so. 

Using Bayesian regularization techniques and undersampling, our model can accurately predict 

the onset of 80-90 percent of conflicts using the conventional 0.50 threshold and may thus be 

useful in providing policymakers with early warning regarding potential international disputes. In 

future work, we hope to expand this model to develop a global forecasting model capable of 

facilitating cross-national risk mapping of countries that are at risk of experiencing conflict in the 

future. 

In addition, we provide some preliminary evidence that incorporating better measures that 

capture the dynamic relationship between two disputants may be a fruitful avenue for future 

research. By incorporating the change in the balance of capabilities between disputants in our 

model, we were able to reduce the false positive rate associated without our model. Although this 

variable does not have a significant effect in-and-of-itself, the fact that it improves the predictive 

performance of the model suggests that future models should make greater efforts to model 

dynamics between disputants. We suspect that more nuanced measures of changes in the balance 

of military capabilities would provide even greater predictive leverage and facilitate better 

predictions. 

In future work, we hope to extend our approach to allow for more natural methods of 

making predictions about future conflict. Unlike frequentist forecasting models, our Bayesian 

forecasting model incorporates uncertainty into the predictions made in the forecasting stage, 

which can provide policymakers with more realistic information regarding the probability of 

international conflict and the risks they should take based upon the forecasts generated from the 
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model. This is a step that has been called for in previous critiques of forecasting models of 

international conflict (32). 
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