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Abstract: This year marks the 350th anniversary of the discovery of phosphorus by the alchemist 

Hennig Brand. It wasn’t until more recently though that P was put into the p-block. 2019 also 

marks the 150th anniversary of the preliminary tabular arrangement of the elements into the 10 

Periodic System by Mendeleev. Of the 64 elements known in 1869, over a third of them belonged 

to what ultimately became the p-block, and Mendeleev predicted the existence of both gallium and 

germanium as well. The elements of the p-block have a disparate and varied history. Their 

chemical structure, reactivity, and properties vary widely. Nevertheless, in recent years, a better 

understanding of trends in p-block reactivity, particularly the behavior of those elements not 15 

typically found in biological systems, has led to an exciting array of emerging applications, 

highlighted herein. 

 

One Sentence Summary: This article highlights recent key fundamental and applied studies 

relating to structure and reactivity which are changing common perceptions of the p-block. 20 

 

Main Text: The Periodic Table now comprises well over 100 elements, each with its own unique 

chemistry. Among the p-block elements, on the right-hand side, the chemistry of carbon, in 

conjunction with a small number of other elements, has a pre-eminent position in the discipline. 

The importance of organic chemistry cannot be understated as it defines important aspects of 25 

biological chemistry, pharmaceuticals, polymers, and materials science. As a consequence, the 

exploration of organic chemistry has dominated the efforts of chemists over the past two centuries. 

During this same time frame, the chemistry of the remaining elements in the p-block has garnered 

much less attention, often with a mere handful of research groups worldwide doing their best to 

explore and understand the underlying principles which convert a disparate set of observations into 30 

a systematic vision of chemical reactivity. This deficiency was further exacerbated by the fact that, 

in contrast to carbon where the chemistry is dominated by the tetravalent state, many other 

elements form multiple valencies and oxidation states whose reactivity patterns are each unique. 

This leaves our understanding of the chemistry of the other p-block elements far short of that 

established for carbon.  35 

The range of non-metals, metalloids, and metals, multiple oxidation states and valencies 

within the p-block provides a tremendous wealth of structures ranging from covalent molecules 

and polymers to metals, alloys and ionic solids with varied properties. This diversity has both 

fundamental and practical implications, providing insights for the foundation for life on earth and 

finding applications in pharmaceuticals, clothing, plastics or electronic devices. At the top of the 40 
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p-block, elements typically follow classical bonding models and are the focus of organic chemists 

where the synthesis, structure, reactivity, and properties of chemical compounds primarily 

constructed of carbon are studied. Even here there are notable exceptions where boron forms a 

large family of hydrides where the apparent deficiency in bonding electrons leads to extensive 

multicenter bonding which contrasts with the classical hydrocarbon counterparts. The heavier p-5 

block elements, however, are very different from their lighter counterparts displaying unusual 

bonding patterns and reactivity. Indeed, the behavior of the heavier p-block elements has been said 

to resemble that of the transition metals.(1,2) The diverse and sometimes enigmatic reactivity 

observed within the p-block is often chaotic, inspiring researchers to gain a deeper understanding 

of structure, bonding, and reactivity thereby acquiring an enhanced appreciation of these dynamic 10 

elements. An understanding of the reactivity of these elements and their compounds can have 

important subsequent ramifications in the applications of the p-block elements, whether it be in 

materials, synthesis or catalysis. It is this latter aspect of p-block chemistry that has begun to 

emerge in the last two decades, generating a renaissance in this field. This review highlights the 

findings that are, and continue to inspire, the current renewed interest in the chemistry of p-block 15 

elements in molecular chemistry from fundamental studies to small molecule activation and 

catalysis. It should be noted that the focus on structure and reactivity presented here, leads to a 

large area of solid-state and molecular materials chemistry which is not described. This is by no 

means of any lesser importance but just falls beyond the scope of the current article.  

 20 

Fundamental studies 

Many studies surrounding heavier p-block element reactivity have been brought about by 

variously making comparisons to, or contrasting with, well-established carbon chemistry. Through 

creating conceptual bridges between inorganic and organic chemistry, a deeper understanding of 

electronic structure and the ability to predict chemical reactivity can be made. This includes inter 25 

alia the structure and bonding in cluster compounds, p-block polymers, and multiple bonded 

systems.(3,4,5) Over the past few decades, the isolobal analogy has provided a theoretical 

foundation for rapid experimental developments in the chemistry of the p-block.(6) For example, 

the synthesis of urea in 1828 is often considered the foundation of modern organic chemistry.(7) 

Nonetheless, it was not until recently that a phosphorus-containing urea derivative H2PC(=O)NH2 30 

was synthesized from the anion [O─C≡P]- (Fig. 1A).(8,9) Indeed, one area of focus has been in 

the synthesis of new p-block reagents such as [O─C≡P]-. For example, white phosphorus (P4) is a 

common industrial reagent for the synthesis of value-added phosphorus-containing compounds. 

Yet, the synthesis of these compounds is both energy intensive and hazardous involving the 

reaction of P4 with chlorine gas.(10) The search for safer, cheaper and more environmentally 35 

friendly alternative reagents, has prompted the development of the bis(trichlorosilyl)phosphide 

anion, [P(SiCl3)2]
- (Fig. 1A), which can be used in the synthesis of a variety of phosphorus-

containing compounds.(11) Other reagents for incorporating p-block elements into compounds 

have included phosphinonitrenes (Fig. 1A). This first isolable non-metallic nitrene derivative was 

found to transfer a nitrogen atom to isopropyl isonitrile affording a carbodiimide.(12)  40 

  The strength of multiple bonding is a common theme of organic chemistry and is facilitated 

by efficient orbital overlap associated with smaller 2p orbitals. In these systems, the strength of -

bonding is comparable with -bonding. On descending the p-block, the more radially expanded 

nature of the p-orbitals leads to a reduced overlap integral and weaker bonds, and -bonds become 
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significantly favored over -bonds. The isolation of heavier main group compounds containing 

multiple bonds has therefore been of fundamental interest. These are expected to have much 

enhanced reactivity (in relation to their carbon analogs) arising from the inherent weakness of 

these multiple bonds. A common strategy to stabilize these multiply-bonded species is the use of 

sterically demanding substituents to protect low-valent, reactive main group centers. These bulky 5 

groups typically prevent polymerization or oligomerization of monomeric units and preclude 

attack by nucleophiles or electrophiles.(3) Following the first report of the tin analog of an alkene 

in the 1970’s,(13) other group 14 alkene derivatives were synthesized including the landmark 

disilene (Fig. 1B).(14) While alkenes adopt a planar geometry, the heavier group 14 analogs 

R2E=ER2, deviate from planarity reflecting a change in bonding pattern. Such compounds can be 10 

considered as dimers of R2E where the group 14 R2E unit is amphoteric, possessing both a Lewis 

basic lone pair and a vacant Lewis acidic orbital. Likewise, the heavier geometrically distorted 

group 14 derivatives of alkynes, RE≡ER, have also been developed, although more sterically 

demanding substituents were required.(3)  

 15 

Fig. 1. Fundamental studies. (A) Novel p-block reagents. (B) Multiple bonds. (C) Heterocycles. 

(D) Nucleophilic group 13 compounds. Mes = mesityl; Dipp = 2,6-diisopropylphenyl. 

 

A large sample of compounds containing homonuclear and heteronuclear multiple bonds 

for heavier p-block elements (n > 2) are now known.(3) However, whereas the first row elements 20 
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carbon and nitrogen readily form strong triple bonds, boron does not. A recent breakthrough in 

this area was the stabilization of a boron-boron triple bond. Within the “B≡B” unit, each boron is 

Lewis acidic and addition of a strong donor such as an N-heterocyclic carbene (NHC) generates a 

L→B≡B←L compound analogous to an alkyne (Fig. 1B).(15) Such an interpretation has been 

challenged by the proposition that the -character of the NHC is conjugated with the triple bond 5 

to afford an alternative resonance form, R2C=B=B-CR2.(16) 

Although aromatic species are ubiquitous in organic chemistry, aromaticity in main group 

heterocycles has been more controversial. Borazine, B3N3H6, is considered aromatic but with much 

lower aromatic stabilization than the isoelectronic benzene.(17) The potentially aromatic nature of 

many planar heavy p-block heterocycles has been discussed, a recent example being the 10 

development of the diphosphatriazolate P2N3
- heterocyclic anion (Fig. 1C).(18) A similar CNP3 

heterocycle was reported more recently, synthesized from the reactions of a cyclotriphosphine 

(tBuP)3 with nitriles to access 1-aza-2,3,4-triphospholenes (Fig. 1C).(19) The 2-phosphaethynolate 

anion, [O─C≡P]-, described earlier has also been found useful as a potential building block for the 

synthesis of heterocyclic organophosphorus compounds such as phosphinin-2-olates (Fig. 1C) 15 

through stepwise cycloaddition reactions.(20) The cycloaddition reactions of this anion can be 

contrasted with the related cycloaddition chemistry of isolobal, [S=N=S]+.(21) 

Another strategy to uncover distinct chemistry involves targeting inverse or umpolung 

reactivity of p-block elements. For example, whereas group 13 elements typically act as Lewis 

acids, boryl anions can behave both as a base and a nucleophile. For instance, reduction of N,N'-20 

bis(2,6-diisopropylphenyl)-2-bromo-2,3-dihydro-1H-1,3,2-diazaborole leads to a cyclic boryl 

anion (Fig. 1D).(22) This species, which is isoelectronic with an NHC, exhibits nucleophilic 

behavior in the reactions with alkyl halides, aldehydes, water, and methyl 

trifluoromethanesulfonate. Organoboranes incorporating the –BPin (Pin = pinacolate) 

functionality are widely used intermediates in organic synthesis and in the synthesis of 25 

pharmaceuticals, and finding optimal routes to incorporate boron into organic molecules is of 

paramount importance.(23,24) Though [BPin] functionalities are traditionally electrophilic, 

examples of nucleophilic source of the [BPin] moiety are known(25) including the recently 

reported magnesium boryl derivatives (Fig. 1D).(26) Another area of interest in group 13 

chemistry has been approaches to generate low oxidation state triels. Whereas the inert pair effect 30 

makes species such as In+ stable and Lewis basic/nucleophilic, univalent group 13 elements such 

as B(I) and Al(I) are rare but are expected to offer significantly different reactivity from their 

compounds in the more common Lewis acidic/electrophilic +3 oxidation state. For example, 

nucleophilic boron(I) compounds, which are isoelectronic to amines, can be synthesized by 

reduction of a CAAC→BBr3 (CAAC = cyclic (alkyl)(amino)carbene) adduct generating the 35 

borylene (H-B:) (Fig. 1D).(27) Here the CAACs act as strong π-acceptor ligands to stabilize the 

lone pair on boron.(28) Lewis basicity of the boron lone pair was demonstrated through 

protonation. As ligands these species could potentially act as better donors than amines or 

phosphines owing to their higher nucleophilicity. Further down group 13, nucleophilic low 

oxidation state aluminum species can also be developed, such as the dimethylxanthene-stabilized 40 

potassium Al(I) compound (Fig. 1D) which reacts with benzene by C-H oxidative addition.(29)  

 

Small molecule activation 
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The requirement of energetically accessible occupied and unoccupied orbitals for the activation of 

small molecules was previously thought to limit such reactivity to the d-block metals. In 2005, the 

addition of hydrogen to a main group center was reported: specifically, the germanium alkyne 

analogue ArGe≡GeAr (Ar = 2,6-Trip2-C6H3, Trip = 2,4,6-tri-iso-propyl3-C6H2) was shown to 

undergo oxidative addition with H2 yielding Ar(H)Ge=Ge(H)Ar, Ar(H)2Ge-Ge(H)2Ar and 5 

Ge(H)3Ar.(30) Similar studies have subsequently been reported with other low valent group 13 

and 14 compounds including aluminium, gallium, and tin (Fig. 2A).(1) The activation of 

dihydrogen in these cases involves synergistic bonding and back-bonding interactions of the 

frontier orbitals, whereby the σ-orbital of H2 donates into a low-lying vacant orbital on the p-block 

system and the HOMO of the p-block system donates to the H2 σ*-orbital (Fig. 2B). Analogous 10 

activation of dihydrogen at a single carbon site of a CAAC and an acyclic (alkyl)(amino)carbene 

species was reported in 2007 (Fig. 2A).(31) This reactivity results from the much more 

nucleophilic and electrophilic nature of these carbenes in relation to the archetypical NHCs.(28) 

In contrast to the transition metal oxidative addition of H2, the carbene behaves as a nucleophile 

donating into the H-H σ*-orbital prompting hydride delivery to the vacant orbital on the carbon 15 

center (Fig. 2B). The unique electronic nature of CAACs also allows them to undergo reversible 

oxidative addition of C-B bonds(32) as well as to activate ammonia,(28) a reaction typically not 

observed with transition metals due to adduct formation.  

The underlying principle in chemical reactivity of Lewis acidity and basicity has been 

known for almost 100 years. Typically, when paired, the Lewis base will donate into the vacant 20 

orbital of the Lewis acid to form an adduct. However, in 2006, through the use of sterically 

demanding groups, unquenched Lewis acidic and basic sites were identified in p-

(Mes2P)C6F4(B(C6F5)2). This compound was shown to activate hydrogen yielding the 

phosphonium borate p-(Mes2PH)C6F4(BH(C6F5)2) (Fig. 2A).(33) Importantly, this compound also 

releases dihydrogen above 100 ºC regenerating the original phosphine borane. Such reversibility 25 

of substrate binding is a key requirement for enabling catalytic turnover (vide infra). This finding 

spawned the field of frustrated Lewis pair (FLP) chemistry.(34) For just over a decade, the concept 

of FLPs has altered the way we think about the reactivity of the p-block elements, prompting new 

reagent design strategies and discovery of ensuing reactivity. Many different FLPs are now known, 

employing diverse p-block bases commonly derived from the group 15 or 16 elements and p-block 30 

Lewis acids usually based upon the group 13 or cationic group 13, 14, or 15 elements.(34) 

Although rarer, FLPs containing s- or d-block elements as the Lewis acid or base are also 

known.(35) The mechanism of activation of H2 by FLPs has been the subject of several 

computational studies in which theory predicts a trimolecular mechanism involving H2 and a Lewis 

acid and Lewis base.(36,37) The FLP tBu3P/B(C6F5)3 was calculated to proceed through a two-35 

electron diamagnetic mechanism, whereby the Lewis acid and base approach each other forming 

a tBu3P···B(C6F5)3 “encounter complex” in which the two species are 4.2 Å apart. In this species, 

the Lewis acid and base have their frontier orbitals correctly aligned for dative bond formation, 

but adduct formation is precluded on the basis of steric hindrance. In this configuration, the system 

is perfectly set up for synergic interactions with dihydrogen. Inclusion of dihydrogen in the 40 

encounter complex results in simultaneous polarization of H2 through donation of the lone pair of 

electrons on the Lewis base into the H-H σ*-orbital, and concurrent donation of the electrons in 

the H-H σ-bond into the boron vacant p-orbital (Fig. 2B). This leads to protonation of the 

phosphine and hydride delivery to the borane. This mechanism, which pertains for many FLP 

systems, is comparable to that exhibited by bifunctional transition metal complexes(38) and is 45 

conceptually similar to the synergic interactions described for other main group systems and 
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transition metal centers. More recently, an alternative single electron transfer (SET) mechanism 

for FLP activation of dihydrogen has been suggested based on the Mes3P/B(C6F5)3 FLP.(39)  

Although the activation of dihydrogen by p-block systems has garnered much attention, 

the activation of other small gaseous molecules including acetylene, ethane, CO, CO2, NO, N2O, 

and SO2 has also been sought.(40) These studies have been driven not only by curiosity over which 5 

other molecules reactive p-block elements can activate, but also in search of new practical systems 

that can bind, sequester, and potentially transform these molecules. The binding of carbon 

monoxide by transitions metals via synergic σ-bonding and π-back-bonding interactions is a key 

concept in undergraduate inorganic textbooks. However, mono-adducts and multi-carbonyls [E]-

(CO)x outside the d-block are very uncommon. The borane dicarbonyl complex, TpB(CO)2 (Tp = 10 

2,6-di(2,4,6-triisopropylphenyl)-phenyl) was prepared only recently via liberation of a borylene 

ligand from [(OC)5Mo(BTp)].(41) The bonding in this compound, which is isoelectronic with 

(CAAC)2BH described earlier, is reminiscent of that for metals in which there is extensive back-

bonding from the filled p-orbital on boron into the C≡O π*-orbital.(41) 

 15 

Fig. 2. Dihydrogen activation. (A) Activation of dihydrogen with p-block elements (Ar = 2,6-

(2,6-iPr2C6H3)2C6H3). (B) Mechanisms of activation.  

 

  Reactions of p-block elements with CO2 have garnered attention. Activation of CO2 has 

been achieved using both multiple bonded compounds and FLPs.(1,2,34) In the latter systems, 20 

activation of CO2 proceeds through a cooperative action of the Lewis base at carbon and the Lewis 

acid at an oxygen atom.(40) Through judicious choice of the Lewis acid and base, hydrogenation 

of the CO2 bound intermediate affords CH3OH.(42) As with FLPs, heteronuclear E=E′ bonds also 

react with CO2 owing to differences in electronegativity of the elements and polarity of the double 
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bond.(1) Conversely, the corresponding reactions of homonuclear E=E bonds are much rarer. 

However, aromatic diazadiborinine compounds have been shown to undergo [4+2] additions with 

CO2, and a boron–boron double bond was found to react with CO2 through an initial [2+2] 

cycloaddition.(43,44)  

Reactions of p-block elements such as selenium, iodine, and boron with C-C π-bonds have 5 

received much attention for applications in organic synthesis. However, reactions with gaseous 

ethane and ethylene are much less studied, yet multiple bonds of aluminum and tin have been 

shown to react with alkenes yielding formal [2+2] addition products.(2,45,46) Another application 

that exploits the reactions of p-block elements with C-C π-bonds is in gas separation. The 

separation of saturated and unsaturated hydrocarbons is critical to industries such as petroleum 10 

refining. FLPs are unreactive with alkanes but undergo addition to alkenes. Using segmented gas–

liquid microfluidic flow, the tBu3P/B(C6F5)3 FLP was shown to be an efficient reagent to separate 

ethylene and ethane mixtures (Fig. 3A). This work may pave the way to effective methods to 

separate gases provided routes to subsequently release the ethylene and to recycle the FLP can be 

found.(47)  15 

 

Fig. 3. Small molecule activation. (A) Separation of ethylene and ethane using FLPs. (B) 

Activation of N2 using borylenes through bonding and back-bonding interactions and the N2 

activated complex (crystal structure). 

 20 

Of all the small molecules, N2 is one of the most difficult to activate. Even for transition 

metals this still represents a substantial challenge. The Haber–Bosch process has been known for 

over a century, and although the process is energy intensive, viable alternatives remain elusive. 

Very recently, p-block elements have been shown to assist d-block elements in the activation and 

functionalization of N2. Specifically, the strong Lewis acid B(C6F5)3 has been shown to weaken 25 
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the N–N bond in M-N2 (M = Fe, Mo, W) complexes to allow for subsequent reaction through 

protonation, hydroboration or hydrosilylation of the N2 unit.(48,49) In a truly seminal finding, the 

CAAC stabilized borylene [(CAAC)BDur] (Dur = 2,3,5,6-tetramethylphenyl) was very recently 

found to activate N2 in the absence of transition metals (Fig. 3B).(50) The product displays a 

significantly elongated N-N bond as the two boron centers act in a “push-pull” fashion to weaken 5 

the N≡N bond. This discovery represents an exciting leap forward in the chemistry of the p-block. 

It is likely that in the future other p-block systems will be targeted for N2 activation and conversion.  

 

Catalysis  

The development of novel catalysts and improvements in catalytic performance have a 10 

direct influence on society and play a pivotal role in maintaining the quality of life. The d-block 

elements have dominated catalytic processes; however, many catalysts rely on scarce, often toxic 

utilize "precious" metals.(51) This prompts interest in the potential of p-block catalysts to replace 

metals, reducing purification costs and lowering toxicity, while at the same time offering unique 

selectivity or reactivity. Organocatalysis is now well-established(52) but, with the exception of 15 

simple Lewis acid catalysis (using e.g. AlCl3), the use of other p-block elements in homogenous 

catalysis is a more recent area of exploration. The small molecule activation studies described 

earlier were crucial in the realization that catalytic processes could be developed with p-block 

elements. Importantly, the studies that demonstrated the use of a perfluorinated aryl borane catalyst 

in hydrosilylation foreshadowed the broader use of p-block elements in catalysis.(53) Indeed, the 20 

advent of FLP activation of hydrogen prompted metal-free hydrogenation catalysis. In the first 

study, the intramolecular FLPs (R2P)C6F4(B(C6F5)2) (R = Mes, tBu) were found to catalyze the 

reduction of imines to amines (Fig. 4A).(54) This study led to a range of FLPs being developed 

and applied in metal-free hydrogenation of a variety of substrates. Key developments in this regard 

include the FLP-catalyzed hydrogenation of ketones using ethereal solvents as the Lewis 25 

base(55,56) as well as the use of FLPs to catalyze the highly chemo- and stereo-selective 

hydrogenation alkynes to cis-alkenes.(57) For applications in organic synthesis, chiral FLP 

catalysts have been targeted for application to asymmetric reductions. For example, chiral bis-

boranes(58) and chiral aminoborane(59) catalysts have been found to give enantioselectivities of 

up to 90% in the FLP reduction of prochiral imines. In addition to hydrogenation catalysis, FLPs 30 

have also proven effective in C-H dehydrogenative borylation of heteroarenes,(60) a reaction 

typically performed by transition metals.(24) 

Of particular interest have been catalytic methods to transform CO2 into useful 

hydrocarbons using p-block elements. Whereas most reported systems are typically heterogeneous 

metal-based catalysts, the stoichiometric fixation of CO2 by FLPs suggests their potential in the 35 

catalytic reduction of CO2. The o-phenylene bridged catalyst 1-BCat-2-PPh2-C6H4 was capable of 

catalyzing the hydroboration of CO2 to methoxy boranes with excellent turnover frequencies and 

turnover numbers (Fig. 4B).(61) The catalytic N-formylation of amines with CO2 has also been 

achieved in a metal-free manner to yield synthetically useful formamides via an aromatic 

diazadiborinine catalyst (Fig. 4B).(62)  40 

In the search for other p-block Lewis acid catalysts, the salt [(C6F5)3PF][B(C6F5)4] was 

developed.(63) The cation was found to have an extremely high Lewis acidity owing to the four 

electron withdrawing substituents resulting in a low lying P-F σ*-orbital. This high electrophilicity 

of the cation enables activation of C(sp3)–F bonds. Approaches to degrade fluorocarbons or to 

functionalize C-F bonds are generally challenged by the high dissociation energy. In addition to 45 
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other reactions, this phosphonium catalyst has been found to catalyze hydrodefluorination 

reactions as well as hetero-dehydrocoupling reactions between p-block E-H and E'-H bonds (E = 

O, N, S; E' = Si) (Fig. 4C).(64)  

 

 5 
Fig. 4. p-Block catalysis. (A) FLP catalyzed hydrogenation of imines and alkynes. (B) Catalytic 

CO2 reduction. (C) Phosphonium catalysis. (D) PIII/PV redox cycling. (E) Stereoselective 

hypervalent iodine catalysis.  

 

In contrast to metal-based catalysis, catalytic reactions using p-block elements do not 10 

generally involve a change in oxidation state. For instance, phosphorus(III) compounds have been 

used in C-C coupling reactions reminiscent of that in Pd catalyzed process which involves a 

phosphorus(V) intermediate.(65) This reaction however is stoichiometric as the starting phosphine 

cannot be regenerated. Nonetheless, catalytic systems based upon a PIII/PV redox couple have been 

developed and employed in catalysis.(66) Similarly, behaving as biphilic reagents, small-ring 15 

phosphacycles (phosphetanes) have been shown to be active in PIII/PV=O redox cycling in oxygen 
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atom-transfer catalysts. The 4-membered, 1,2,2,3,4,4-hexamethylphosphetane P-oxide was found 

to be an excellent catalyst for N−N bond-forming heterocyclization reactions in the Cadogan 

indazole synthesis,(67) and for intramolecular C−N heterocyclization of o-nitrobiaryl and -

styrenyl compounds to access carbazole and indole products (Fig. 4D).(68)  

Although hypervalent iodine compounds have long been applied in organic synthesis, these 5 

compounds are typically used in stoichiometric quantities.(69) Nevertheless, examples of catalytic 

reactions are emerging with the use of stoichiometric oxidants to regenerate the hypervalent iodine 

reagent (Fig. 4E). The choice of oxidant in these reactions is crucial since the oxidant must 

selectively oxidize the iodine species and not the substrate. For example, meta-chloroperbenzoic 

acid (mCPBA) can be used as oxidant to regenerate hypervalent iodine(III) reagents for the 10 

spirocyclization of phenol derivatives. Using this method only 5 mol% of iodotoluene is needed 

to generate the lactone products.(70) Similar conditions have been used to enable the α-

oxygenation of carbonyl compounds using a catalytic amount of an iodoarene with mCPBA as the 

oxidant.(71) An improvement to this reaction, which frequently relies on harsh conditions and 

generates meta-chlorobenzoic acid (mCBA) waste, was later reported whereby the oxidative 15 

coupling reactions of carbonyl compounds with carboxylic acids could be achieved using catalytic 

amounts of tetra-butylammonium (hypo)iodite and an environmentally benign oxidant (either 

hydrogen peroxide or tert-butyl hydroperoxide).(72) Hydrogen peroxide was also used as the 

oxidant to oxidize chiral quaternary ammonium iodide salts in situ to yield the active (hypo)iodite 

which could be employed as a catalyst for the asymmetric oxidative cycloetherification of 20 

ketophenols to yield biologically relevant 2-acyl-2,3-dihydrobenzofuran derivatives (Fig. 4E).(73) 

 

Outlook 

It is clear from this short review that the renaissance of main group chemistry is 

accelerating as fundamentally new principles and reactivity continue to emerge with our 25 

developing understanding of the diverse reactivity of the p-block. Moreover p-block chemists will 

glean some insights from the broad base of knowledge surrounding transition metal chemistry to 

design and find new applications in synthetic chemistry. While p-block catalysts, will undoubtedly 

present their own challenges, the promise of new reactivity and the potential for commercial 

applications keep the chemistry of the p-block elements perpetually exciting. 30 
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