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Abstract 1 

Due to the significant difference of dynamic properties between the fluid medium 2 

and the structure, when a vibro-acoustic system is subjected to a higher frequency 3 

excitation, it may typically exhibit mid-frequency behavior which involves different 4 

wavelength deformations and is very sensitive to the uncertainties of the system. This 5 

paper deals with optimized distribution of a sound absorbing layer for the mid-frequency 6 

vibration of vibro-acoustic systems by using hybrid boundary element analysis and 7 

statistical energy analysis. Based on the SIMP approach an artificial sound absorbing 8 

material model is suggested and the relative densities of the sound absorbing material are 9 

taken as design variables. The sound pressure level at a specified point in the acoustic 10 

cavity is to be minimized by distributing a given amount of sound absorbing material. An 11 

efficient direct differentiation scheme for the response sensitivity analysis is proposed. 12 

Then the optimization problem is solved by using the method of moving asymptotes. A 13 

numerical example illustrates the validity and effectiveness of the present optimization 14 

model. Impact of the excitation frequency on optimized topology is also discussed. 15 

Keywords: Mid-frequency; Vibro-acoustic system; Sound absorbing layer; Boundary 16 

element; Statistical energy analysis; Dynamic topology optimization 17 
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1 Introduction 1 

Vibro-acoustic systems are widely used in vehicles such as automobiles, trains, ships 2 

and rocket launchers. These vehicles may be subjected to complex environmental 3 

excitations during their operation, resulting in strong structural vibration and harmful high 4 

noise levels. Early studies on vibration and noise control (see e.g. Christensen et al. 1998a, 5 

b) mainly alter the shape and size of system components to control the generation of noise 6 

at the sound source. With the development of topology optimization techniques (Sigmund 7 

2001; Bendsøe and Sigmund 2003), more and more researchers began to study the noise 8 

control problem of vibro-acoustic systems by using topology optimization techniques. 9 

Yoon et al. (2007) dealt with the problem of topology optimization of vibro-acoustic 10 

systems using a mixed finite element (FE) formulation (Zienkiewicz and Taylor 2000; 11 

Bathe 2008), in which the acoustic cavity is enclosed by a finite boundary. Kook et al. 12 

(2012) proposed a design method for acoustical topology optimization considering human 13 

hearing characteristics. Shu et al. (2014) studied the topology optimization of vibro-14 

acoustic systems for minimizing sound pressure by using the level set method. To date, 15 

the studies on topology optimization of vibro-acoustic systems have been mainly focused 16 

on the optimized distribution of structural materials, while the topology optimization of 17 

damping or sound absorbing layers has been rarely involved. 18 

However, the design of a large vehicle should not only consider vibration and noise 19 

reduction, but also meet other design requirements including stiffness, strength, stability, 20 
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aerodynamics and hydrodynamics. Therefore, design methods for vibration and noise 1 

reduction by finding the optimized layout of structural material have some limitations. At 2 

present, a commonly used method is to place damping material on the surface of a 3 

structure and sound absorbing material on the sound propagation path to reduce the 4 

acoustic radiation and the reflection or transmission of sound waves, respectively. 5 

However, a large area of damping or sound absorbing material will cause a sharp increase 6 

in system weight, which will not only affect the system performance but also increase the 7 

manufacturing cost. In view of the above situation, topology optimization techniques are 8 

used to obtain the optimized layout of damping or sound absorbing layers in a vibro-9 

acoustic system. Dühring et al. (2008) studied the optimized placement of damping panels 10 

on walls of acoustic cavities by using the solid isotropic material with penalization (SIMP) 11 

method (Sigmund 2001; Bendsøe and Sigmund 2003). The sound level can be 12 

significantly reduced by optimizing the distribution of the sound absorbing and reflecting 13 

material. Akl et al. (2009) developed a mathematical model to simulate fluid-structure 14 

interactions based on FE method. A good agreement was obtained between the results 15 

obtained from the mathematical model and those from the experiment. Zhang and Kang 16 

(2013) presented a topology optimization model to obtain the optimized layout of a 17 

damping layer for minimizing the acoustic radiation of damped thin-walled structures. In 18 

their paper, the dynamic coupling between the acoustic medium and the structure is 19 

neglected. Then considering the velocity response of the structure which is calculated by 20 
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FE method as an acoustic excitation, the sound pressure at a reference point is obtained 1 

by using the boundary element (BE) method (Ciskowski and Brebbia 1991; Wu 2000). 2 

They also proposed a sensitivity analysis scheme using the adjoint variable method. Zhao 3 

et al. (2017) studied the optimized design of sound absorbing material distribution within 4 

sound barrier structures based on the BE method and the optimality criteria method. A 5 

smoothed Heaviside-like function was developed to help the SIMP method to obtain a 6 

clear 0-1 distribution. The optimized distribution of the sound absorbing material is 7 

strongly frequency dependent according to the results obtained by authors, and the 8 

optimization in a frequency band was suggested. Du and Olhoff (2007, 2010) studied the 9 

topology optimization problem of vibrating bi-material elastic structures placed in an 10 

acoustic medium for minimizing the acoustic radiation and gave a corresponding 11 

sensitivity analysis scheme. Their papers assumed that the vibration frequency of a 12 

structure has a sufficiently high value, so that the radiation impedance at the structure 13 

boundary is approximately equal to the characteristic impedance of the acoustic medium 14 

(Lax and Feshbach 1947; Herrin et al. 2003). Thus the sound pressure in the acoustic field 15 

can be easily obtained by using a high frequency boundary integral equation. Considering 16 

that resonance and wave-propagation problems are known to be highly sensitive towards 17 

parameter variations and the conventional robust topology optimization methods for 18 

structural problems are not suitable for the acoustic problem, Christiansen et al. (2015) 19 

suggested a new double filter approach and obtained highly robust designs for acoustic 20 
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problem. Christiansen and Sigmund (2015) provide the experimental validation of an 1 

acoustic cavity designed using topology optimization with the goal of minimizing the 2 

sound pressure locally for monochromatic excitation. 3 

Based on deterministic methods, such as the FE method, several of the papers 4 

mentioned above studied the topology optimization of vibro-acoustic systems. As the 5 

frequency increases, the deformation wavelength of the system components will decrease 6 

significantly. A fine mesh is required to capture the detailed deformation, typically six to 7 

eight elements per wavelength (Simmons 1991; Steel and Craik 1994), which leads to a 8 

large number of degrees of freedom (DOF). The computational cost of element-based 9 

techniques typically increases due to decreasing wavelengths and multiple reanalyses in 10 

the optimization process (Cotoni et al. 2007). Moreover, as the frequency increases, the 11 

response of a system will be more and more sensitive to the uncertainties which are 12 

inevitably generated during the manufacturing process. Systems with the same nominal 13 

geometric and material parameters may produce different responses. At this point, it 14 

makes no sense to analyze only one system, and an estimate of average behavior of an 15 

ensemble of similar systems with the same nominal properties might be preferred 16 

(Ladeveze et al. 2012). As a common statistical method, statistical energy analysis (SEA) 17 

(Lyon and DeJong 1995), can give an average prediction for the statistical behavior of 18 

systems with little computational cost. However, the assumptions introduced in SEA can 19 

only be satisfied when the system is subjected to sufficiently high frequencies (Lyon and 20 
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DeJong 1995; Langley 1989a). In addition, based on SEA the properties of a system may 1 

be highly generalized as some parameters are independent of the material topology layout, 2 

which makes topology optimization impossible. 3 

Due to the significant difference of dynamic properties between the fluid medium 4 

and the structure, when a vibro-acoustic system is subjected to a higher frequency 5 

excitation, it may typically exhibit mid-frequency behavior in which some subsystems 6 

are large compared with a wavelength, while others are small compared with a 7 

wavelength (Shorter and Langley 2005b). At present, neither the FE method nor SEA can 8 

describe the motion of vibro-acoustic systems well. To address this situation, three types 9 

of improved methods have been proposed for the mid-frequency vibration of complex 10 

systems. The first type aims to extend the effective frequency range of traditional 11 

deterministic methods to the mid-frequency domain (see e.g. Langley 1989b; Van 12 

Vinckenroy and De Wilde 1995; Harari and Avraham 1997; Pluymers et al. 2007; Hinke 13 

et al. 2009; Ma et al. 2015b). The second type aims to relax the assumptions in SEA to 14 

extend its application to the mid-frequency domain (see e.g. Keane and Price 1987; 15 

Langley 1992; Maxit and Guyader 2003; Mace 2005). The third type combines the 16 

deterministic and statistical methods to develop a hybrid model for the mid-frequency 17 

vibration of complex systems (see e.g. Zhao and Vlahopoulos 2000; Shorter and Langley 18 

2005a, b; Ji et al. 2006; Vergote et al. 2011; Zhu et al. 2014; Ma et al. 2015a; Gao et al. 19 

2018). As the most popular hybrid approach, the hybrid FE-SEA method proposed by 20 
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Shorter and Langley (2005b) divides a complex system into a number of deterministic 1 

and statistical subsystems according to the deformation wavelength. The so-called 2 

deterministic subsystem which is subjected to long wavelength deformation can be 3 

modeled by using the FE method, while the so-called statistical subsystem which is 4 

subjected to short wavelength deformation can be modeled by using SEA. The dynamic 5 

coupling between the two types of subsystems is described as the reflection and 6 

transmission of the vibration wave. Based on the diffuse field reciprocity principle 7 

(Shorter and Langley 2005a), a non-iterative relationship between the deterministic and 8 

statistical subsystems can be established. Due to the combination of the FE method and 9 

SEA, the hybrid FE-SEA method can give an average prediction for the mid-frequency 10 

vibration and deal with actual engineering systems. Considering the BE method to 11 

describe the motion of an acoustic cavity, Gao et al. (2018) proposed the hybrid BE-SEA 12 

method for the mid-frequency vibration of vibro-acoustic systems. Due to the nature of 13 

the BE method, the hybrid BE-SEA method not only satisfies the Sommerfeld radiation 14 

condition at infinity for exterior acoustic problem, but is also more efficient in the 15 

modeling stage. Since hybrid approaches are more appropriate than the traditional method 16 

for the mid-frequency of complex systems, Muthalif and Langley(2012) studied the active 17 

control of mid-frequency vibration by using the hybrid FE-SEA method as an analysis 18 

tool. The optimized skyhook damping value and its location were calculated by using the 19 

MATLAB GADS toolbox with combined pattern search and genetic algorithms. By using 20 
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the hybrid FE-wave based (WB) method, Goo et al. (2017) proposed an efficient topology 1 

optimization method for bounded acoustic problems. Their method employs the FE 2 

method and WB method to respectively model the design and non-design domains to 3 

increase computational efficiency and can thus be applied to higher frequency 4 

applications that conventional method takes considerable computation time to manage. 5 

The present work studies optimized distribution of a sound absorbing layer for the 6 

mid-frequency vibration of vibro-acoustic systems by using the hybrid BE-SEA method. 7 

In the topology optimization model, an artificial sound absorbing material model is 8 

established by employing the SIMP approach. The design objective is the sound pressure 9 

level at a specified point in the acoustic cavity, and the design variables are the relative 10 

densities of the sound absorbing material. The corresponding sensitivity analysis scheme 11 

is derived by direct differentiation. The basic principles of the hybrid BE-SEA method 12 

are outlined in Section 2. The topology optimization problem formulation and the 13 

corresponding sensitivity analysis scheme are developed in Section 3. In Section 4, a 14 

numerical example is presented to illustrate the efficiency of the hybrid BE-SEA method 15 

and the validity of the proposed topology optimization model. The impact of the 16 

excitation frequency on optimized topology is also discussed. Finally, conclusions are 17 

given in Section 5. 18 

 19 
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2 Basic principles of hybrid BE-SEA method 1 

The hybrid BE-SEA method was proposed by Gao et al. (2018) for the mid-2 

frequency vibration of vibro-acoustic systems based on the concept of the hybrid FE-SEA 3 

method. Due to the use of the BE method, the hybrid BE-SEA method provided an 4 

appropriate model with modeling advantages when the deterministic part of the model is 5 

a relatively large acoustic domain.  6 

Without loss of generality, this section demonstrates the basic principles of the 7 

hybrid BE-SEA method. In a vibro-acoustic system, the fluid is confined in a bounded 8 

acoustic domain 𝛺, as shown in Fig. 1, of which the boundary surface 𝛤𝑎 contains a 9 

velocity surface 𝛤𝑣 , an impedance (sound absorbing) surface 𝛤𝑍  and an elastic thin-10 

walled structural surface 𝛤𝑠 . The velocity and impedance boundary conditions are 11 

expressed by a generalized equation which can be written as (Wu 2000) 12 

 𝐯n = 𝐂𝛽𝐂𝛾 − 𝐂𝛽𝐂𝛼𝐩 (1) 

¦ ¸

¦ £Z¦ £s

¦ £v

 13 

Fig. 1  Coupled vibro-acoustic system. 𝛺, acoustic domain; 𝛤𝑣, velocity boundary 14 

surface; 𝛤𝑍, impedance boundary surface; 𝛤𝑠, elastic thin-structural surface. 15 
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where the vectors 𝐩 and 𝐯n  respectively represent the sound pressures and normal 1 

velocities at nodal points on the boundary of the acoustic cavity. 𝐂𝛼  and 𝐂𝛽  are 2 

constraint coefficient diagonal matrices corresponding to sound pressure and normal 3 

velocity, respectively. 𝐂𝛾 is a constraint coefficient vector. The hybrid BE-SEA method 4 

(Gao et al. 2018) may be employed for the mid-frequency vibration of the system. The 5 

acoustic cavity modeled by the BE method is treated as the deterministic subsystem, while 6 

the thin-walled structure modeled by SEA is treated as the statistical subsystem. 7 

According to the hybrid BE-SEA method, the response of the statistical thin-walled 8 

structure is viewed as the superposition of the direct and reverberant fields (see Shorter 9 

and Langley 2005a). Considering the velocity and impedance boundary conditions and 10 

the coupling interaction between the acoustic cavity and the direct field of the thin-walled 11 

structure, the governing equation of the system can be written as (Gao et al. 2018) 12 

 13 

 [
𝐇̃ −i𝜔𝐆𝐓
−𝐀 𝐃dir

] {
𝐩
𝐮
} = {

𝐆𝐯̅n
𝟎
} + {

𝟎
𝐟rev
s } (2) 

 14 

where 𝐯̅n = 𝐂𝛽𝐂𝛾 , 𝐇̃ = 𝐇 + 𝐆𝐂𝛽𝐂𝛼 , 𝐇 and 𝐆 are the influence matrices of sound 15 

pressure and normal velocity, respectively. 𝐃dir and 𝐮 are the dynamic stiffness matrix 16 

and displacement vector of the direct field of the thin-walled structure, respectively. 𝐟rev
s  17 

is the vector of the blocked reverberant forces. 𝐀 is a coupling coefficient matrix which 18 

converts the sound pressure vector of the acoustic cavity into the nodal force vector of 19 

the direct field of the thin-walled structure. 𝐓 is the transformation matrix resulting from 20 
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the non-conforming grids appearing at the fluid-structure coupling face, 𝜔 is the angular 1 

frequency, and i = √−1. For the sake of simplicity, Equation (2) will be written as 2 

 3 

 𝐃tot𝐪 = 𝐟ext + 𝐟rev (3) 

 4 

where 𝐃tot = [
𝐇̃ −i𝜔𝐆𝐓
−𝐀 𝐃dir

] and 𝐪 = {
𝐩
𝐮
} respectively represent the total dynamic 5 

stiffness matrix and the vector of all deterministic DOF. 𝐟ext = {
𝐆𝐯̅n
𝟎
} and 𝐟rev = {

𝟎
𝐟rev
s } 6 

respectively represent the vectors of all external and blocked reverberant forces. 7 

If there is sufficient uncertainty in the statistical subsystem, the statistics of the 8 

blocked reverberant force tend to zero (see Shorter and Langley 2005a). Rewriting 9 

equation (3) in cross-spectral form and averaging over an ensemble of statistical thin-10 

walled structures gives 11 

 12 

 𝐒𝑞𝑞 = 〈𝐪𝐪
H〉 = [

𝐒𝑝𝑝 𝐒𝑝𝑢
𝐒𝑢𝑝 𝐒𝑢𝑢

] = 𝐒𝑞𝑞
ext + 𝐒𝑞𝑞

rev (4) 

 13 

where 𝐒𝑞𝑞 represents the cross-spectrum matrix of the deterministic DOF. #H is the 14 

Hermitian transpose of #, and 〈#〉 is the ensemble average of #. The subscripts 𝑝 and 15 

𝑢 stand for the DOF of the acoustic cavity and the direct field of the thin-walled structure. 16 

Also 17 

 18 

 𝐒𝑞𝑞
ext = 𝐃tot

−1𝐒𝑓𝑓
ext𝐃tot

−H = [
𝐒𝑝𝑝
ext 𝐒𝑝𝑢

ext

𝐒𝑢𝑝
ext 𝐒𝑢𝑢

ext] (5) 

 19 

 𝐒𝑞𝑞
rev = 𝐃tot

−1𝐒𝑓𝑓
rev𝐃tot

−H = [
𝐒𝑝𝑝
rev 𝐒𝑝𝑢

rev

𝐒𝑢𝑝
rev 𝐒𝑢𝑢

rev] (6) 
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where 𝐒𝑓𝑓
ext = 〈𝐟ext𝐟ext

H〉  and 𝐒𝑓𝑓
rev = 〈𝐟rev𝐟rev

H〉  respectively represent the cross-1 

spectrum matrices of the total external and blocked reverberant forces. #−H represents 2 

the Hermitian transpose of the inverse matrix. Considering the diffuse field reciprocity 3 

principle (see Shorter and Langley 2005a), equation (6) can be rewritten in terms of the 4 

reverberant field energy 𝐸 and the modal density 𝑛m of the thin-walled structure as 5 

 6 

 𝐒𝑞𝑞
rev =

𝐸

𝑛m

4

𝜋𝜔
𝚼 (7) 

 7 

where 8 

 9 

 𝚼 = 𝐃tot
−1 Im{𝐃̃dir}𝐃tot

−H = [
𝚼𝑝𝑝 𝚼𝑝𝑢
𝚼𝑢𝑝 𝚼𝑢𝑢

] (8) 

 10 

with 11 

 12 

 𝐃̃dir = [
𝟎 𝟎
𝟎 𝐃dir

] (9) 

 13 

The cross-spectrum matrix of the deterministic DOF 𝐒𝑞𝑞 can be obtained by using 14 

equations (4)-(9). The only unknown quantity 𝐸 , at this time, can be calculated by 15 

employing the power balance equation of the reverberant field of the thin-walled structure, 16 

which is given by (see Gao et al. 2018) 17 

 18 

 (ℎout
rev + ℎdiss)

𝐸

𝑛m
= 𝑃in (10) 

 19 

Here, ℎout
rev  and ℎdiss  respectively represent the total energy leaving the reverberant 20 
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field of the thin-walled structure into the acoustic cavity and the total energy dissipating 1 

by the damping of the thin-walled structure per unit modal energy density in the 2 

reverberant field of the thin-walled structure. 𝑃in = 𝑃in
dir + 𝑃in

ext is the total power input 3 

to the statistical thin-walled structure, where 𝑃in
dir is the power arising from the force 4 

applied to the acoustic cavity and 𝑃in
ext is the power caused by other sources applied 5 

directly to the statistical thin-walled structure. The above parameters can be expressed as 6 

 7 

 𝑃in
dir =

𝜔

2
∑Im{𝐃dir,𝑖𝑗}(𝐒𝑢𝑢

ext)𝑖𝑗
𝑖𝑗

 (11) 

 8 

 ℎdiss = 𝜔𝑛m𝜂 (12) 

 9 

 
ℎout
rev =

2

𝜋
Re{−i∑𝐂sa,𝑖𝑗(𝚼𝑢𝑝)𝑖𝑗

∗

𝑖𝑗

} 
(13) 

 10 

where 𝜂  is the damping loss factor of the thin-walled structure, 𝐂sa  is a coupling 11 

coefficient matrix which connects the shape functions of the grids of the acoustic cavity 12 

and the direct field of the thin-walled structure (see Gao et al. 2018). #∗ stands for the 13 

complex conjugate of #. 14 

By substituting equations (11)-(13) into equation (10), the ensemble average energy 15 

of the reverberant field can be obtained. The energy of the direct field of the thin-walled 16 

structure can be neglected (see Shorter and Langley 2005b). Hence, by using equations 17 

(4)-(9), 𝐒𝑞𝑞  can be calculated. Selecting some points inside the acoustic cavity and 18 
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calculating the corresponding coefficient matrices 𝐠  of sound pressure and  𝐡  of 1 

normal velocity, the cross-spectrum matrix of sound pressure at these points can be 2 

expressed as (see Gao et al. 2018) 3 

 4 

 𝐒𝑝𝑝
in = 𝜔2(𝐠𝐓𝐒𝑢𝑢𝐓

H𝐠H) + i𝜔(𝚫 − 𝚫H) + 𝚵 − 𝚷 − 𝚷H (14) 

 5 

where 6 

 7 

 𝚫 = 𝐠𝐐𝐠H + 𝐡̃𝐒𝑝𝑢𝐓
H𝐠H (15) 

 8 

 𝚵 = 𝐠𝐒𝑣̅n𝑣̅n𝐠
H + 𝐡̃𝐒𝑝𝑝𝐡̃

H (16) 

 9 

 𝚷 = 𝐠𝐒𝑣̅n𝑝𝐡̃
H (17) 

 10 

with 11 

 12 

 𝐒𝑣̅n𝑣̅n = 〈𝐯̅n𝐯̅n
H〉 (18) 

 13 

 𝐡̃ = 𝐡 + 𝐠𝐂𝛽𝐂𝛼 (19) 

 14 

 𝐒𝑣̅n𝑝 = 𝐆−1𝐇̃𝐒𝑝𝑝 − i𝜔𝐓𝐒𝑢𝑝 (20) 

 15 

 𝐐 = 𝐓𝐒𝑢𝑣̅n = (𝐆
−1𝐇̃𝐒𝑣̅n𝑝

H − 𝐒𝑣̅n𝑣̅n)/i𝜔 (21) 

 16 

Now inserting equations (15)-(21) into equation (14), 𝐒𝑝𝑝
in  can be obtained, and then the 17 

sound pressure level at the points inside the acoustic cavity can be calculated. 18 
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 1 

Fig. 2  A vibro-acoustic system with surface sound absorbing layer. 𝛤p, a thin plate; 2 

𝛤𝑧, the layer of sound absorbing material; 𝛤𝑣, the domain subjected to external 3 

excitation; 𝛤𝑤, the acoustically rigid walls; 𝐫in, a reference point inside the acoustic 4 

cavity. 5 

3 Topology optimization problem formulation 6 

3.1 Topology optimization model 7 

Considering a vibro-acoustic system consisting of a deterministic acoustic cavity 8 

and a statistical thin plate as shown in Fig. 2, the acoustic cavity is a cuboid domain 9 

coupled with a thin plate on the upper surface. A layer of sound absorbing material is 10 

attached to the front surface of the acoustic cavity domain, and a velocity excitation is 11 

applied over a region on its right surface. The other regions of the boundary of the acoustic 12 

cavity domain are assumed to be acoustically rigid walls. By employing the hybrid BE-13 

SEA method for the mid-frequency vibration of the vibro-acoustic system, this section 14 



17 

deals with the optimized layout of a given amount of sound absorbing material within a 1 

prescribed design domain for minimizing the sound pressure level at a specified point 2 

inside the cavity. The topology problem can be thus formulated as  3 

 4 

 

find 𝛒 = {𝜌1 𝜌2 ⋯ 𝜌𝑚𝑍}T

min 𝑆̃𝑝𝑝
in (𝐫in) = 〈𝑝

∗𝑝〉

s. t. ∑𝜌𝑘𝑉𝑘
0

𝑚𝑍

𝑘=1

− 𝑓𝑉∑𝑉𝑘
0

𝑚𝑍

𝑘=1

≤ 0

0 < 𝜌min ≤ 𝜌𝑘 ≤ 1 (𝑘 = 1,… ,𝑚𝑍)}
  
 

  
 

 (22) 

 5 

where 𝛒 is the vector of the relative density design variables describing layout of the 6 

sound absorbing material. 𝑚𝑍 represents the total number of boundary elements in the 7 

design domain, and each element has one design variable. 𝑆̃𝑝𝑝
in (𝐫in)  represents the 8 

objective function and is a diagonal element of 𝐒𝑝𝑝
in  representing the power spectral 9 

density of sound pressure (PSDSP) at a specified point 𝐫in inside the acoustic cavity. It 10 

is important to point out that the objective function can also be written as the sum of the 11 

PSDSPs at more points (i.e. 𝑓 = ∑〈𝑝𝑖
∗𝑝𝑖〉 , 𝑖 = 1,2…𝑛 ) to obtain an overall sound 12 

pressure reduction in the acoustic cavity (Du and Olhoff 2010). 𝑓𝑉 represents the volume 13 

fraction and 𝑉𝑘
0 is the volume of sound absorbing material in the 𝑘th boundary element 14 

when 𝜌𝑘 =1. 𝜌min is the lower bound of the relative density variables, which is set to 15 

be 10-6 to avoid possible numerical singularity. 16 

Based on the framework of the SIMP approach, 𝐂𝛼 , 𝐂𝛽  and 𝐂𝛾  can be 17 

respectively written as 18 



18 

 1 

 𝐂𝛼 =∑(𝜌𝑘)
𝑁𝐑𝛼,𝑍

(𝑘)

𝑚𝑍

𝑘=1

 (23) 

 2 

 𝐂𝛽 = diag{𝐄𝑣 − 𝐄𝑍} (24) 

 3 

 𝐂𝛾 =∑𝐯0
(𝑘)

𝑚𝑣

𝑘=1

 (25) 

 4 

where 𝐑𝛼,𝑍
(𝑘)

 is the admittance matrix of the 𝑘th element of the sound absorbing layer. 5 

The penalty factor 𝑁 >1 is set to be 𝑁 =3 in this study. 𝐄𝑣 and 𝐄𝑍 are location vectors 6 

corresponding to velocity and impedance boundary conditions, respectively. 𝐯0
(𝑘)

 is the 7 

velocity vector of the 𝑘th element of the velocity surface, and 𝑚𝑣 represents the total 8 

number of boundary elements on the velocity surface. From equations (24)-(25), it is clear 9 

that 𝐂𝛽 and 𝐂𝛾 remain unchanged during the topology optimization process. 10 

3.2 Sensitivity analysis 11 

For solving the optimization model of equation (22) with a gradient-based 12 

mathematical programming algorithm, it is necessary to perform sensitivity analysis of 13 

the objective and constraint functions with respect to the design variables. The sensitivity 14 

equation for the PSDSP is derived by direct differentiation, as follows. 15 

Differentiating the objective function in equation (22) with respect to the 𝑘th design 16 

variable gives 
𝜕𝑆̃𝑝𝑝

in

𝜕𝜌𝑘
, a diagonal element of 

𝜕𝐒𝑝𝑝
in

𝜕𝜌𝑘
 which can be expressed as  17 

 18 



19 

 
𝜕𝐒𝑝𝑝

in

𝜕𝜌𝑘
= 𝜔2 (𝐠𝐓

𝜕𝐒𝑢𝑢
𝜕𝜌𝑘

𝐓H𝐠H) + i𝜔 [
𝜕𝚫

𝜕𝜌𝑘
− (

𝜕𝚫

𝜕𝜌𝑘
)
H

] +
𝜕𝚵

𝜕𝜌𝑘
−
𝜕𝚷

𝜕𝜌𝑘
− (

𝜕𝚷

𝜕𝜌𝑘
)
H

 (26) 

 1 

By using equations (15)-(21), 
𝜕𝚫

𝜕𝜌𝑘
, 

𝜕𝚵

𝜕𝜌𝑘
 and 

𝜕𝚷

𝜕𝜌𝑘
 in equation (26) can be, respectively, 2 

written as  3 

 4 

 
𝜕𝚫

𝜕𝜌𝑘
= 𝐠

𝜕𝐐

𝜕𝜌𝑘
𝐠H +

𝜕𝐡̃

𝜕𝜌𝑘
𝐒𝑝𝑢𝐓

H𝐠H + 𝐡̃
𝜕𝐒𝑝𝑢

𝜕𝜌𝑘
𝐓H𝐠H (27) 

 5 

 
𝜕𝚵

𝜕𝜌𝑘
=
𝜕𝐡̃

𝜕𝜌𝑘
𝐒𝑝𝑝𝐡̃

H + 𝐡̃
𝜕𝐒𝑝𝑝

𝜕𝜌𝑘
𝐡̃H + 𝐡̃𝐒𝑝𝑝 (

𝜕𝐡̃

𝜕𝜌𝑘
)

H

 (28) 

 6 

 
𝜕𝚷

𝜕𝜌𝑘
= 𝐠

𝜕𝐒𝑣̅n𝑝

𝜕𝜌𝑘
𝐡̃H + 𝐠𝐒𝑣̅n𝑝 (

𝜕𝐡̃

𝜕𝜌𝑘
)

H

 (29) 

 7 

where 8 

 9 

 
𝜕𝐡̃

𝜕𝜌𝑘
= 𝐠𝐂𝛽

𝜕𝐂𝛼
𝜕𝜌𝑘

 (30) 

 10 

 
𝜕𝐒𝑣̅n𝑝

𝜕𝜌𝑘
= 𝐆−1

𝜕𝐇̃

𝜕𝜌𝑘
𝐒𝑝𝑝 + 𝐆

−1𝐇̃
𝜕𝐒𝑝𝑝

𝜕𝜌𝑘
− i𝜔𝐓

𝜕𝐒𝑢𝑝

𝜕𝜌𝑘
 (31) 

 11 

 
𝜕𝐐

𝜕𝜌𝑘
= 𝐓

𝜕𝐒𝑢𝑣̅n
𝜕𝜌𝑘

= (𝐆−1
𝜕𝐇̃

𝜕𝜌𝑘
𝐒𝑣̅n𝑝
H + 𝐆−1𝐇̃

𝜕𝐒𝑣̅n𝑝
H

𝜕𝜌𝑘
)/i𝜔 (32) 

 12 

with 13 

 14 

 
𝜕𝐇̃

𝜕𝜌𝑘
=  𝐆𝐂𝛽

𝜕𝐂𝛼
𝜕𝜌𝑘

 (33) 

 15 

Substituting equation (27)-(33) into equation (26), it can be seen that 
𝜕𝐒𝑝𝑝

in

𝜕𝜌𝑘
 is 16 



20 

determined by 
𝜕𝐂𝛼

𝜕𝜌𝑘
 and 

𝜕𝐒𝑞𝑞

𝜕𝜌𝑘
. Differentiating equation (23) with respect to the 𝑘th design 1 

variable, 
𝜕𝐂𝛼

𝜕𝜌𝑘
 can be written as 2 

 3 

 
𝜕𝐂𝛼
𝜕𝜌𝑘

=∑𝑁(𝜌𝑘)
(𝑁−1)𝐑𝛼,𝑍

(𝑘)

𝑚

𝑘=1

 (34) 

 4 

According to equation (4), 
𝜕𝐒𝑞𝑞

𝜕𝜌𝑘
 can be written as 5 

 6 

 
𝜕𝐒𝑞𝑞

𝜕𝜌𝑘
=
𝜕𝐒𝑞𝑞

ext

𝜕𝜌𝑘
+
𝜕𝐒𝑞𝑞

rev

𝜕𝜌𝑘
 (35) 

 7 

where 
𝜕𝐒𝑞𝑞

ext

𝜕𝜌𝑘
 and 

𝜕𝐒𝑞𝑞
rev

𝜕𝜌𝑘
 can be, respectively, obtained by differentiating equations (5) and 8 

(7) with respect to the 𝑘th design variable and written as 9 

 10 

 
𝜕𝐒𝑞𝑞

ext

𝜕𝜌𝑘
= 𝛘(𝑘)𝐒𝑞𝑞

ext + (𝛘(𝑘)𝐒𝑞𝑞
ext)

H
 (36) 

 11 

 
𝜕𝐒𝑞𝑞

rev

𝜕𝜌𝑘
=

4

𝜋𝜔𝑛m
(𝐸

𝜕𝚼

𝜕𝜌𝑘
+
𝜕𝐸

𝜕𝜌𝑘
𝚼) (37) 

 12 

with 13 

 14 

 𝛘(𝑘) = −𝐃tot
−1
𝜕𝐃tot
𝜕𝜌𝑘

 (38) 

 15 

 
𝜕𝚼

𝜕𝜌𝑘
= 𝛘(𝑘)𝚼 + (𝛘(𝑘)𝚼)

H
 (39) 

 16 

Derivatives of the thin plate energy and the total dynamic stiffness matrix with 17 

respect to the 𝑘th design variable respectively appear in equations (37) and (38). By using 18 

equations (2), (3) and (33), 
𝜕𝐃tot

𝜕𝜌𝑘
 can be expressed as 19 
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 1 

 
𝜕𝐃tot
𝜕𝜌𝑘

= [𝐆𝐂𝛽
𝜕𝐂𝛼
𝜕𝜌𝑘

𝟎

𝟎 𝟎

] (40) 

 2 

Inserting equations (36)-(40) into equation (35), it can be seen that 
𝜕𝐸

𝜕𝜌𝑘
 is the only 3 

unknown quantity. Differentiating equation (10) with respect to the 𝑘th design variable, 4 

yields 5 

 6 

 
𝜕𝐸

𝜕𝜌𝑘
= (

𝜕𝑃in
dir

𝜕𝜌𝑘
𝑛m −

𝜕ℎout
rev

𝜕𝜌𝑘
𝐸) /(ℎout

rev + ℎdiss) (41) 

By using equations (11) and (13), the partial derivative terms on the right of equation (41) 7 

can be written as 8 

 9 

 
𝜕𝑃in

dir

𝜕𝜌𝑘
=
𝜔

2
∑Im{𝐃dir,𝑖𝑗} (

𝜕𝐒𝑢𝑢
ext

𝜕𝜌𝑘
)
𝑖𝑗𝑖𝑗

 (42) 

 10 

 
𝜕ℎout

rev

𝜕𝜌𝑘
=
2

𝜋
Re{−i∑𝐂sa,𝑖𝑗 (

𝜕𝚼𝑢𝑝

𝜕𝜌𝑘
)
𝑖𝑗

∗

𝑖𝑗

} (43) 

 11 

where 
𝜕𝐒𝑢𝑢

ext

𝜕𝜌𝑘
 can be obtained from equation (36). 12 

The solution procedure for the sensitivity analysis of objective function is 13 

summarized below:  14 

(i) The plate energy sensitivity with respect to design variables 
𝜕𝐸

𝜕𝜌𝑘
 is obtained by 15 

inserting equations (42) and (43) into equation (41); 16 

(ii) Substituting equation (41) into equation (37), and using equations (35) and (36), 
𝜕𝐒𝑞𝑞

𝜕𝜌𝑘
 17 
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is then calculated; 1 

(iii) Inserting equations (27)-(29) into equation (26), and using equations (33)-(35), one 2 

can obtain the sensitivity of the cross-spectrum matrix of sound pressure at inner 3 

points with respect to design variables 
𝜕𝐒𝑝𝑝

in

𝜕𝜌𝑘
. 4 

(iv) The objective function sensitivity with respect to design variables is calculated by 5 

using equation (26). 6 

The sensitivity of the constraint function in the optimization model equation (22) 7 

with respect to the 𝑘th design variable 𝜌𝑘 equals 𝑉𝑘
0. 8 

 9 

4 Numerical example 10 

A simple verification example consisting of two thin plates and an acoustic cavity, 11 

as shown in Fig. 3, is presented for illustrating the validity of the proposed topology 12 

optimization model. The acoustic cavity is comprised of air and has geometrical 13 

dimensions 0.7 m by 1 m by 0.5 m. The sound speed and mass density of the air are 14 

𝑐0 = 340 m/s and 𝜌a = 1.225 kg/m3, respectively. Two thin plates with the same 15 

dimensions of 0.7 m by 1.0 m by 1 mm are connected respectively to the front and rear 16 

surfaces of the acoustic cavity (the gray areas in Fig. 3). The edges of the two plates are 17 

all simply supported, and the in-plane deformation of the two plates is ignored. The two 18 

plates are made of aluminum, of which the mass density, Young’s modulus, Poisson’s 19 

ratio and damping loss factor are 2700 kg/m3, 7.1×1010 Pa, 0.33 and 0.01, respectively.  20 
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x

y

z

0.5 m0.7 m

1.0 m

 1 

Fig. 3  Geometric diagram of the vibro-acoustic system. Diagonally hashed area, the 2 

region subjected to velocity excitation; gray area, two plates coupled to the acoustic 3 

cavity; hexagon filled area, the design domain of sound absorbing material layer; other 4 

areas, acoustically rigid walls. 5 

 6 

The design domain of a sound absorbing layer is connected to the right surface of 7 

the acoustic cavity (the hexagon filled area in Fig. 3). A unit velocity excitation is applied 8 

over a square region (see the diagonal area in Fig. 3) of 0.04 m2 on the left surface of the 9 

acoustic cavity located at the point (0, 0.5, 0.25). The other areas are considered to be 10 

acoustically rigid. 11 

4.1 Response analysis for the mid-frequency vibration of the vibro-12 

acoustic system 13 

In order to show the efficiency of the hybrid BE-SEA method, the responses of the 14 

vibro-acoustic system calculated by employing the hybrid BE-SEA method are compared 15 
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with those calculated by using Monte Carlo simulation.  1 

The impedance of the sound absorbing material is set to be a large real number 1040, 2 

and all element-relative densities of the sound absorbing material in the design domain 3 

are set to be 1. The frequency range considered here is from 1 Hz to 400 Hz with a 4 

frequency step of 1 Hz. Since the acoustic cavity and each thin plate respectively have 7 5 

and 79 modes below 400 Hz, which illustrates the modal density of the acoustic cavity 6 

and each plate are significantly different, the systems will exhibit typical mid-frequency 7 

vibration behavior consisting of a deterministic acoustical behavior and a statistical 8 

structural behavior, within the frequency range of interest. In the hybrid BE-SEA model, 9 

the acoustic cavity is modeled by using the BE method, while the two plates are modeled 10 

by using SEA. A pure FE model is employed in the Monte Carlo simulation, and a regular 11 

fine FE mesh requires to be established to capture detailed deformation. Considering the 12 

influence of the uncertainties of the system, an ensemble consisting of 500 samples is 13 

generated by randomly choosing 200 points within each plate and adding 0.1% of the 14 

mass of one plate at each point. 15 

It is important to point out that appropriate element sizes should be chosen for the 16 

parts modeled using element-based techniques in the two methods, i.e. at least six element 17 

per wavelength. Table 1 gives the details of the parts modeled using element-based 18 

techniques and the time cost by two methods. As can be seen from Table 1, the minimum 19 

number of DOFs and time cost are required for the hybrid FE-SEA method. The hybrid 20 
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implementations and the Monte Carlo simulation are performed single-threaded in Julia 1 

(v0.6.3.1) on a 3.3 GHz Intel Xeon-based system with a Windows operating system. 2 

A comparison of the PSDSP at the point (0.3, 0.6, 0.4) inside the acoustic cavity 3 

calculated by using the hybrid BE-SEA method and the Monte Carlo simulation is shown 4 

in Fig. 4. As can be seen from Fig. 4, the resulting curves of 500 samples are concentrated 5 

at lower frequencies, which confirms that the system uncertainties have little impact on 6 

the system responses when the system is subjected to long wavelength deformation. In 7 

consideration of the sufficient uncertainty the hybrid BE-SEA has assumed over the entire 8 

frequency range, significant discrepancies can be observed between the results calculated 9 

with the two methods at lower frequencies.  10 

Table 1  Details of two analysis models 11 

Analysis model Element type 
Element 

size (m) 

Number of 

elements per 

wavelength 

at 400Hz 

Number of 

DOFs 

Calculation 

time (h) 

Hybrid BE-

SEA 

Cavity 
4-node 

quadrilateral 
0.050 17 1242 

7.9 
Direct 

field 

4-node 

quadrilateral 
0.025 6 1189×2 

Monte Carlo 

simulation 

Cavity 
8-node 

hexahedral 
0.025 34 24969 

61.4 

Plate 
4-node 

quadrilateral 
0.020 6 5508×2 
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 1 

Fig. 4  PSDSP at a point inside the acoustic cavity with coordinates (0.3, 0.6, 0.4). Fine 2 

solid gray lines, computed using Monte Carlo approach for 500 realizations of 3 

ensemble; bold solid red line, ensemble average of Monte Carlo results; bold dash blue 4 

line, ensemble average computed using Hybrid BE-SEA method. 5 

 6 

As the frequency increases, the system response becomes very sensitive to the 7 

uncertainties of the system, and the resulting curves of 500 samples become dispersed. 8 

The hybrid BE-SEA method predicts well the average trend of the pure FE method 9 

calculations with perturbed plate mass at higher frequencies. Furthermore, according to 10 

the principles of the hybrid BE-SEA method, there is sufficient uncertainty in a statistical 11 

subsystem. Hence, it should be pointed out that the average of the Monte Carlo results, 12 

which cannot involve all uncertainties (sufficient uncertainty), may have discrepancies 13 

with the results obtained by hybrid BE-SEA method even at some higher frequencies 14 
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(Cotoni et al. 2007; Shorter and Langley 2005b). 1 

In this paper, the discrepancies at lower frequencies may be neglected since the 2 

attention is only on the mid-frequency vibration of vibro-acoustic systems.  3 

 4 

4.2 Sensitivity analysis and topology optimization of sound absorbing 5 

layer for mid-frequency vibration of the vibro-acoustic system 6 

Setting the excitation frequency to be 415 Hz, the partition of the system can be 7 

performed by wavelength analysis for the acoustic cavity and the two plates. Here, the 8 

acoustic cavity is modeled using the BE method, while the two plates are modeled using 9 

SEA. Element sizes chosen for the parts modeled using element-based techniques are the 10 

same as those in Table.1. The design domain is discretized by 200 (20×10) uniform-11 

sized square elements. Hence there are 200 design variables 𝜌𝑘(𝑘 =1, 2, …, 200). The 12 

method of moving asymptotes (MMA) (Svanberg 1987, 2002; Johnson 2008, 2014) is 13 

employed to update the design variables. The optimization process is stopped when the 14 

relative difference of the PSDSP between two adjacent iteration steps is less than 10-6. 15 

Sensitivity analysis for the PSDSP is considered first. The point (0.35, 0.50, 0.25) is 16 

adopted as the reference point. The impedance of the sound absorbing material is set to 17 

be 𝑍0 =975+8798i kg / (m2s) (see Siemens Product Lifecycle Management Software 18 

Inc 2014), and all element-relative densities of the sound absorbing material in the design 19 

domain are set to be 0.6. The relative errors of the sensitivities of the objective function 20 
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with respect to the design variables 𝜕𝑆̃𝑝𝑝
in 𝜕𝜌𝑘⁄ (𝑘 =1, 2, …, 200), calculated by using the 1 

present method and the finite difference method (FDM) with 10-4 perturbation, are given 2 

in Fig. 5.  3 

As can be seen from Fig. 5, the comparison shows good agreement. The FDM 4 

requires one solution of the linear system of equations for the original value plus one 5 

solution (or two if using a central perturbation method) for each design variable. For the 6 

present method, one solution of the linear system of equations for the original value is 7 

required, and then, according to section 3.2, the derivative (sensitivity) can be calculated 8 

directly by a few matrix product operations, without other solutions of the linear system 9 

of equations for each design variable. Therefore, compared with FDM, the present method 10 

requires less computation time. 11 

 12 

Fig.5  Relative errors of the sensitivities of the PSDSP at the reference point with 13 

respect to the element relative density of sound absorbing material. 14 
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In the following, topology optimization for the vibro-acoustic system is considered. 1 

The point (0.60, 0.50, 0.25) is adopted as the reference point. The impedance of the sound 2 

absorbing material is set as 𝑍0 =4𝜌a𝑐0. All initial design variables are set to be 0.4, and 3 

the upper limit of the volume fraction of the sound absorbing material is given as 𝑓𝑉 =0.5. 4 

The optimization procedure converged after 21 iterations, and the iteration histories of 5 

the objective function and volume fraction are shown in Fig. 6. As can be seen, the PSDSP 6 

decreases significantly from 196065.61 Pa2/Hz in the initial design to 52063.696 Pa2/Hz 7 

in the final optimized design, and the volume fraction of the sound absorbing material 8 

reaches the upper limit. The sound absorbing layer layout and the contour of the PSDSP 9 

of the design domain for the initial and the optimized design are shown in Fig. 7. As can 10 

be seen, the sound absorbing material is concentrated in the places where there is a high 11 

PSDSP in the initial design, which indicates that incident sound waves reflect strongly at 12 

 13 

Fig. 6  Iteration histories of objective function and volume fraction. 14 
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 (a) Initial design (b) Optimized design 2 

 3 

 (c) Initial design (d) Optimized design 4 

Fig. 7  Distributions of sound absorbing material for (a) the initial design, (b) the 5 

optimized design. The colorbar shows relative density of the sound absorbing material. 6 

Contours of the PSDSP for (c) the initial design, (d) the optimized design. The colorbar 7 

shows the PSDSP of the design domain. 8 
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these areas. It can be seen from Fig. 7c and d that the PSDSP of the overall design domain 1 

has significantly reduced. 2 

Fig. 8 shows curves of PSDSP at the reference point in the frequency range of 300 3 

Hz - 500 Hz for the initial and optimized designs. As can be seen, the natural frequencies 4 

of the system remain unchanged in the optimization process. Although the excitation 5 

frequency selected in the optimization process is 415 Hz, the PSDSP at the reference point 6 

decreases over the whole frequency range. However, it is important to point out that the 7 

dynamic optimization problem for a vibro-acoustic system is highly nonconvex. A locally 8 

optimized design is generally obtained by using a gradient-based mathematical 9 

programming algorithm, but such solutions may provide helpful guidance at the 10 

conceptual design stage. 11 

 12 

Fig. 8  Curves of PSDSP at the reference point in the frequency range of 300 Hz - 500 13 

Hz for the initial and optimized designs. 14 
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4.3 Influence of excitation frequencies on optimized designs 1 

In the following, the influence of excitation frequencies on optimized designs is 2 

considered. The point (0.60, 0.50, 0.25) is adopted as the reference point. The impedance 3 

of the sound absorbing material is set as 𝑍0 =4𝜌a𝑐0. All initial design variables are set 4 

to be 0.4, and the upper limit of the volume fraction of the sound absorbing material is 5 

given as 𝑓𝑉 =0.5. The optimization process is performed by selecting the excitation 6 

frequencies as 348 Hz, 381 Hz, 425 Hz, 466 Hz, 491 Hz, 300 Hz, 400 Hz and 500 Hz. It 7 

can be seen from Fig. 8 that the first five selected frequencies correspond to the three 8 

peaks and two valleys of the curve of the PSDSP, and the last three selected frequencies 9 

correspond to the beginning, middle and end points of the frequency range of interest. 10 

 11 
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 (g) 400 Hz (h) 500 Hz 4 

Fig. 9  Optimized design under eight selected excitation frequencies. The colorbar 5 

shows relative density of the sound absorbing material. 6 
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The optimized designs obtained under each excitation frequency are shown in Fig. 1 

9. As can be seen, the topology optimization process gives essentially the same optimized 2 

designs under most selected excitation frequencies, except for 491 Hz. Moreover, 3 

although the optimized design obtained under excitation frequency 491 Hz is obviously 4 

different from that obtained under the other seven selected excitation frequencies, the 5 

central area of the design domain (the area drawn by the red circle in Fig. 9) is always 6 

covered with sound absorbing material, which indicates that incident sound waves reflect 7 

strongly at the central area. This is natural since the direction of the velocity excitation 8 

points exactly to the central area of the design domain. 9 

The first five optimized designs are further studied because the last three optimized 10 

designs are very similar to the first three optimized designs. The curves of PSDSP at the 11 

reference point in the frequency range of 300 Hz - 500 Hz for the initial and first five 12 

optimized designs are shown in Fig. 10. As can be seen, the PSDSP at the reference point 13 

decreases over the whole frequency range for the first five optimized designs. In addition, 14 

the five curves of PSDSP corresponding to the first five optimized designs are very close, 15 

which illustrates the importance of the central area of the design domain. 16 

Consider now the topology optimization over the whole frequency band. Selecting 17 

3 sampling frequencies (348 Hz, 425 Hz and 491 Hz) in the frequency band of interest, 18 

an envelope of the objection function, which is constructed by using a composite 19 

Kreisselmeier - Steinhauser objective function (Kreisselmeier and Steinhauser 1979;  20 
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 1 

 2 

Fig. 10  Curves of PSDSP at the reference point in the frequency range of 300 Hz - 500 3 

Hz for the initial and first five optimized designs. 4 
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Fig. 11  Optimized design obtained using an envelope function as the objective 7 

function. The colorbar shows relative density of the sound absorbing material. 8 
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Wrenn 1989) with the aggregation parameter 𝜂 =1000, is taken as the objective function 1 

to be minimized.  2 

The optimized design obtained using an envelope function over the whole frequency 3 

range as the objective function is shown in Fig. 11. As can be seen, it is almost the same 4 

as the optimized design obtained in Fig. 8 under 348 Hz or 425 Hz. Fig. 12 gives the 5 

comparisons between the PSDSP at the reference point in the frequency range of 300 - 6 

500 Hz for the initial and the optimized designs. As can be seen from Fig. 12, the PSDSP 7 

at the reference point decreases over the whole frequency range for the optimized design 8 

obtained using an envelope function as the objective function. And the optimized design 9 

obtained using an envelope function, not surprisingly, gives almost the same PSDSP at 10 

the reference point as the optimized design obtained under 348 Hz or 425 Hz. 11 

 12 

Fig. 12  Curves of PSDSP at the reference point in the frequency range of 300 - 500 Hz 13 

for the initial and optimized designs. 14 

300 325 350 375 400 425 450 475 500
103

104

105

106

107

108

P
S

D
S

P
 (

P
a2

/H
z)

Frequency (Hz)

 Int. des.

 348 Hz

 425 Hz

 491 Hz

 Fre. band



37 

5 Conclusions 1 

This paper performs the sensitivity analysis and topology optimization of a sound 2 

absorbing layer for minimizing the PSDSP at a specified point in the acoustic cavity when 3 

a vibro-acoustic system exhibits mid-frequency behavior. In the topology optimization 4 

model, an artificial sound absorbing material model is employed using the SIMP approach 5 

and the relative densities of the sound absorbing material are taken as design variables. 6 

The PSDSP of the acoustic cavity are calculated by using a hybrid BE-SEA method. In 7 

this context, the sensitivity analysis scheme of the PSDSP at a given reference point is 8 

developed by using the direct differentiation method. The optimized designs obtained 9 

under different excitation frequencies and using an envelope function as the objective 10 

function are also compared. The optimization process gives essentially the same 11 

optimized designs over a relatively wide frequency range. Moreover, due to the strong 12 

reflection of sound waves, the central area in the design domain which faces the region at 13 

which the velocity is applied is always covered with sound absorbing material. 14 
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