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Abstract
Schizophrenia is a severe mental disorder characterized by numerous subtle changes in brain structure and function.
Machine learning allows exploring the utility of combining structural and functional brain magnetic resonance
imaging (MRI) measures for diagnostic application, but this approach has been hampered by sample size limitations
and lack of differential diagnostic data. Here, we performed a multi-site machine learning analysis to explore brain
structural patterns of T1 MRI data in 2668 individuals with schizophrenia, bipolar disorder or attention-deficit/
hyperactivity disorder, and healthy controls. We found reproducible changes of structural parameters in schizophrenia
that yielded a classification accuracy of up to 76% and provided discrimination from ADHD, through it lacked
specificity against bipolar disorder. The observed changes largely indexed distributed grey matter alterations that
could be represented through a combination of several global brain-structural parameters. This multi-site machine
learning study identified a brain-structural signature that could reproducibly differentiate schizophrenia patients from
controls, but lacked specificity against bipolar disorder. While this currently limits the clinical utility of the identified
signature, the present study highlights that the underlying alterations index substantial global grey matter changes in
psychotic disorders, reflecting the biological similarity of these conditions, and provide a roadmap for future
exploration of brain structural alterations in psychiatric patients.

Introduction
Schizophrenia is a severe neuropsychiatric disorder

affecting approximately 0.7% of the population1. A large
spectrum of experimental approaches has been used to
identify neural alterations in schizophrenia2,3. Among
these, magnetic resonance imaging (MRI) has received
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particularly strong interest4 due to its non-invasiveness,
high efficiency in acquiring brain-wide information on
structure and function, and the ubiquitous availability of
scanners, enabling the accumulation of large sample sizes.
Meta-analyses of MRI data have demonstrated the pre-
sence of widespread brain-structural changes in patients5–
14, and machine learning, whereby combined effects of
numerous predictors can be exploited, has been used to
identify predictive patterns that explain a substantial
amount of schizophrenia-associated variation15,16.
With a few notable exceptions17–19, pattern recognition

studies on brain MRI data have only been performed in
single-site studies that demonstrate substantial variability
in accuracy of case-control classification between studies.
A recent meta-analysis suggests that this variability may
be attributable to small sample sizes, with larger studies
converging at 70- 80% accuracy15. The latter accuracy is
consistent with a recent, large-scale multi-site investiga-
tion showing reproducible brain-structural differences
between individuals with schizophrenia and healthy con-
trols20. These limitations in accuracy pose a significant
challenge to translate psychiatric MRI tools for diagnostic
and predictive applications into clinical practice. The
clinical utility of such tools strongly depends on their
value for everyday clinical decision making, which usually
requires differential diagnosis among different disorders
rather than control/case discriminations. Therefore test-
ing diagnostic specificity is of paramount importance21.
Bipolar disorder has particularly high differential diag-
nostic relevance for schizophrenia and previous studies
have provided promising evidence that structural differ-
ences in schizophrenia show specificity against this dis-
order22–24. Furthermore, symptoms of attention-deficit/
hyperactivity disorder (ADHD) are among the frequent
precursors of schizophrenia25–31 during adolescence, but
have less differential diagnostic relevance in adult indivi-
duals. The three conditions show substantially shared
genetic risk, and conjointly map to a spectrum of neu-
ropsychiatric disorders with brain structure alterations
associated with genetic and environmental risk factors32.
Based on these considerations, the collaborative FP7

project IMAging GEnetics for MENtal Disoders (IMA-
GEMEND) has assembled a large, multimodal database
that comprises neuroimaging data on cohorts of indivi-
duals with schizophrenia and bipolar disorder, adolescent
as well as adult individuals with ADHD, and healthy
controls33. The primary focus of the project is the iden-
tification of multivariate biological signatures that can aid
diagnosis of these disorders. Using this resource, we
analyzed structural MRI data from 2668 individuals in the
present study.
Our primary aims were 1) to identify brain structural

patterns that can reproducibly differentiate individuals
with schizophrenia from controls, 2) explore their

diagnostic specificity with regard to other disorders and 3)
to identify the underlying brain structures driving suc-
cessful classification. The availability of matched case-
control data from several sites allowed application of a
leave-site-out procedure, meaning that data from all but
one site were iteratively used for algorithm training and
the remaining data used for testing. This was aimed at the
identification of differences robust against between-site
variability. In order to make use of the complementary
information provided by the different measures, we
included both 1) FreeSurfer-based measures of cortical
morphometry (cortical thickness, surface area and
volume) and global and subcortical volumetry as provided
by Freesurfer34, and 2) voxel-based morphometry (VBM)
as provided by Statistical Parametric Mapping (SPM)35.
We also compared two machine learning strategies: (I)
random forest machine learning, which captures non-
linear and multiplicative effects of predictors and yields an
efficient ranking of important predictors, and (II) support
vector machines (SVM), the most commonly and suc-
cessfully applied linear tool in machine learning studies
on brain structure36.

Materials and methods
Cohorts
This study comprised eight cohorts with a total of 2668

participants (consisting of patients with schizophrenia (n
= 375, cases in cohorts I-IV), bipolar disorder (n= 222,
part of cohort VIII), ADHD (n= 342, cases in cohorts V
and VI), as well as healthy control subjects (n= 1729,
cohorts I to VIII; n= 368 of these in cohorts I-IV)
demographic details are shown in Supplementary Table 1;
recruitment details are shown in Supplementary Table 2).
All participants gave written, informed consent and the
study received approval from the local ethics committees
of the participating institutions.

Data pre-processing
Pre-processing of all T1-weighted images was per-

formed centrally at the same site (University of Oslo,
Norway) using FreeSurfer 5.3 (http://surfer.nmr.mgh.
harvard.edu)34. All datasets underwent visual assessment
and minor manual intervention to correct for segmenta-
tion errors wherever necessary. Data with significant low
quality due to, e.g., motion artifacts and image distortions
were excluded. Cortical parcellation was performed using
the Desikan–Killiany atlas37,38, and subcortical segmen-
tation was performed based on a probabilistic atlas39. The
mean thickness, sum surface area, and volume for each
cortical region-of-interest (ROI), as well as the volume of
subcortical structures were computed, resulting in a set of
152 FreeSurfer features (Supplementary Table 4).
An important question of the present study was whe-

ther signatures that combined the effects of multiple brain
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structures could be represented through regionally non-
specific, ‘global grey-matter features’. For this, we manu-
ally selected 20 of such ‘global features’ and these are
detailed in Supplementary Table 11. Additionally, the per-
subject median of all ventricle features was used as
readout for global ventricle size. Furthermore, for VBM-
and FreeSurfer-based analyses we determined separately
the per-subject median across all features, resulting in a
‘median feature’, resulting in a set of 22 ‘global features’ in
total. To avoid feature redundancy, bilateral features were
removed if both uni-lateral features were available.
The dataset was also processed each using VBM35 as

implemented in the CAT12 toolbox (http://dbm.neuro.
uni-jena.de/cat/), SPM12 (http://www.fil.ion.ucl.ac.uk/
spm/software/spm12/) and MATLAB 2014a (Math-
works, Sherborn, MA, USA) to derive the grey matter
(GM) maps. As input, we used the nu.mgz volume, an
intensity-normalized volume adjusted for the non-
uniformity in the original T1-images, obtained from the
FreeSurfer pre-processing pipeline (https://surfer.nmr.
mgh.harvard.edu/fswiki/ReconAllOutputFiles). Briefly,
this volume was tissue-segmented into GM, white matter
(WM) and cerebrospinal fluid maps. The modulated GM
maps were subsequently registered to the Dartel template,
which is based on 550 healthy subjects from the IXI
database (http://brain-development.org/ixi-dataset/),
using affine registration followed by the Dartel non-rigid
registration algorithm40. The mean GM density was then
computed for each region-of-interest as defined in the
Automated Anatomical Labeling (AAL) atlas41, resulting
in a set of 122 VBM features (Supplementary Table 3).

Matching, covariate adjustment and normalization
An overview of the pre-processing and machine learn-

ing pipeline is shown in Fig. 1. Cohorts I to IV were used
for subsequent training of machine learning algorithms.
In cohorts II to IV, propensity score matching (using the
R library MatchIt42) was used to create schizophrenia-
control datasets, 1:1 matched on age and sex. Matching
was performed separately for each cohort. No matching
was performed in cohort I, since it comprised fewer
controls than patients and showed no significant case-
control differences regarding age and sex. Controls not
selected during the matching process were retained for
validation of algorithms (cohort VIII).
Covariate adjustment was performed in two steps. The

first step was aimed at removing the effects of covariates
relevant within a given dataset. For this, linear regression
was used to construct normalization models in the mat-
ched case-control data (Supplementary Figure 1). Each
feature was regressed against age, age2, sex, and total
intracranial volume (ICV, derived from FreeSurfer; this
covariate was not included for thickness features derived
from FreeSurfer processing). Normalization models were

built separately for the cohorts used for training (i.e.
during the leave-site-out procedure described below as
well as for prediction of the schizophrenia classifier into
the validation cohorts), and the resulting coefficients were
averaged to obtain a final model per brain feature. These
models were then applied to residualize the features in the
training as well as the test data. Subsequently, ICV was
added as a feature to the residualized training and test
data. In the second covariate adjustment step, the effects
of between-dataset variables (field strength and scanner
vendor) were removed. Using data from the previous step
as input, linear models were built to residualize all
training data and adjust the test data accordingly. During
the leave-site-out testing procedures, as well as for testing
classifiers in validation data, the test data were not used to
generate normalization models and remained indepen-
dent. The objective of this two-step procedure was to
appropriately account for the effect of potential con-
founders, without using site-information as additional
covariate. This is essential for potential clinical applica-
tion of a diagnostic tool, when subjects from sites are
tested that are not part of the training data. In this case,
adjustment against a site-covariate cannot be performed.
In a secondary analysis, we set the means of each feature
in a given test dataset artificially to 0 (for training data this
is already fulfilled due to the residualization procedure).
With this we tested whether not using test data for

Fig. 1 Overview of analysis procedure. Subjects were first
propensity score matched and VBM- / FreeSurfer-based features
were then normalized against potential confounders.
Normalization models were built in training data only and these
models were subsequently applied to adjust the test data. The same
normalization strategy was applied for global structural parameters,
which were subsequently used to remove the global structural signal
from VBM- / FreeSurfer-based features. The resulting data was used for
leave-site-out cross-validation analyses. For univariate analyses, as well
as for machine learning analyses performed on the entire dataset, data
were additionally corrected for a site factor, to account for the impact
of site differences (see methods)
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building of normalization models impacted on classifica-
tion performance.
For the machine learning analyses performed on the

entire, matched dataset (i.e. for out-of-bag performance
evaluation, where accuracy estimates were obtained from
observations not selected during the repeated boot-
strapping part of the random forest classification proce-
dure, see below), we excluded the impact of a site factor
through residualization using linear models, in addition to
the covariate adjustment described above. For this resi-
dualization, site and scanner vendor were both included
as covariates. Such corrected data was also used for the
univariate analyses (see below). For principal components
analysis, which was applied to explore the global similarity
between VBM- and FreeSurfer-based features, data were
additionally normalized against diagnosis and subse-
quently standardized.

Univariate analysis
Univariate analyses were performed to assess the extent

of change in individual brain-structural measures prior to
and following adjustment for global structural parameters.
Univariate analysis was performed on data residualized as
described above, to increase comparability against the
features’ importance determined by machine learning.
Case-control differences were evaluated using Student’s t-
tests and P-values were adjusted for the False Discovery
Rate (FDR) according to the method of Benjamini and
Hochberg43. The adjustment was performed separately for
VBM- and FreeSurfer-based features.
For the univariate analysis of the features following

removal of the global structural signal, we first corrected
the global structural features using the same steps
described above. These corrected global structural fea-
tures were then used to adjust the VBM- and FreeSurfer-
based features, and the resulting residuals were used for
the univariate analysis.

Machine learning – cross-validation and accuracy
estimation
Several different procedures were employed to train and

test machine learning algorithms: a) ‘within-site’ classifi-
cation, where algorithms were trained and tested sepa-
rately in each given cohort (using cohorts I-IV for
schizophrenia-control classification, cohort VIII (select-
ing University of Oslo data only) for bipolar disorder-
control classification, and cohorts V and VI for ADHD-
control classification). b) ‘Leave-site-out’ classification in
cohorts I-IV. c) Prediction of a schizophrenia-control
classifier in independent test data (the classifier was
trained in cohorts I-IV and tested in cohorts V-VIII).
For procedures a) and b), performance of machine

learning algorithms was assessed by comparing the pre-
dicted class membership against the real class-

membership. For ‘within-site’ classification, this was per-
formed using bootstrapping.
The Receiver Operating Characteristic Area Under

Curve (AUC) was determined to quantify accuracy (using
the R library pROC44). For leave-site-out classification, we
additionally determined the mean of sensitivity and spe-
cificity to explore whether predicted class probabilities
were shifted across cohorts.
For procedure c), accuracy was determined as the spe-

cificity, i.e. the percentage of subjects correctly classified
as being not affected by schizophrenia.

Machine learning – random forests
Random forest is a machine learning tool suitable for

classification and regression45. It combines the output of a
large number of individual classification/regression trees,
each of which are built on randomly selected subsets of
observations and predictors. The random forest can
naturally incorporate interactions between predictors,
allows efficient ranking of predictor importance and has
been shown to be one of the most accurate classification
tools on a large variety of data sets36.
Random forest machine learning (using the R package

randomForest46) was performed in a site-stratified man-
ner using 5000 trees and the default value for the mtry
parameter (no tuning of random forest parameters was
performed). The number of trees was chosen based on the
observation that larger tree numbers do not significantly
improve performance47. Site-stratification was performed
such that for building each tree, an equal number of
subjects (equal to the sample size of the smallest training
cohort) were randomly drawn without replacement from
the data of each site. We determined the importance of
the features for prediction during this procedure using the
Gini index, a measure of how much a given feature
impacts the correct class separation, when used for a split
during the tree-building process48. Selection of the most
important predictors was performed using the R package
varSelRF49, also using 5000 trees, and default settings
otherwise. During this procedure, the least important
variables are successively removed from the model. The
optimal number of variables is chosen for the solution
where the out-of-bag error is equal to the lowest observed
error rate, plus one standard deviation. This leads to a
solution with close to optimal error rate but with a lower
number of predictors, a scenario generally thought to be
beneficial for the generalizability of the classifier. The
Gini-index-derived variable importance measure was also
used to assess the similarity of features selected by within-
site classification. For this, we determined the median
Pearson correlation of the variable importance measures
across cohorts.
To explore the diagnostic specificity of important vari-

ables, we first selected the top m (with m being
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determined via random forest variable selection; m= 14
for VBM-based and m= 11 for FreeSurfer-based features,
respectively) variables from the schizophrenia-control
comparison. We then determined the Wilcoxon rank
sum statistic comparing the importance of these variables
against the remaining variables in bipolar disorder, ado-
lescent as well as adult ADHD. To test significance, a
5,000-fold permutation of diagnostic labels was per-
formed. During each repetition, variable importance was
re-calculated for the three non-schizophrenia case-con-
trol comparisons and the determination of rank sum
statistics was repeated. Empirical P-values were then
calculated as the frequency of permutation rank sum
statistic at least as high as those determined from non-
permuted data.
Random forest regression was used to determine the

amount of variance that could be predicted in individual
VBM- and FreeSurfer-based features using the global
structural parameters. The explained variance was deter-
mined from out-of-bag predictions. For this analysis, the
same covariate-adjusted data were used as for the uni-
variate analysis (see above). Accordingly, the global
structural parameters were also additionally residualized
against a site factor.

Machine learning – Support Vector Machines
A support vector machine is a classification tool that

aims to identify a decision boundary with maximal margin
between the boundary and observations from a given
class50. The boundary is defined based on the most
proximal observations, making classification insensitive to
data variations or outliers, resulting in frequently superior
generalization performance36. Linear SVM is relatively
robust to overfitting and was, in the present study (using
the R package e107151), tuned using 10-fold cross-vali-
dation to optimize the cost parameter (choosing among
values from the log sequence between 10−5 and 105).
Parameter optimization was performed in training data
only.

Exploring the impact of global structural parameters on
classification
To explore the effect of the 22 global structural features

on classification, these features were adjusted for con-
founding variables using the same procedure applied for
VBM- and FreeSurfer-based features (i.e. residualization
against age, age2, sex, gender, ICV, field strength, and
scanner vendor). VBM- and FreeSurfer-based features
were subsequently residualized against the covariate-
adjusted global features using additive linear models. To
explore the impact of this residualization procedure
per se, it was repeated 1000 times with row order-
permuted global features. Similarly, to explore the sig-
nificance of the accuracy obtained after residualization,

the procedure was repeated 1000 times with permuted
diagnostic labels. Finally, to explore the classification
accuracy obtained from global-features only, we applied
random forest machine learning (as described above)
using the covariate-adjusted global features.

Results
Brain structural neuroimaging data from a total of

2668 subjects were analyzed. Sample details are presented
in Supplementary Tables 1 and 2. The data were pro-
cessed to extract either 122 VBM-based or 152
FreeSurfer-based morphometry features (Fig. 1, Supple-
mentary Tables 3 and 4, ICV was added as a predictor to
each feature set). Machine learning was used to identify
structural patterns that could be used to differentiate
individuals with schizophrenia from controls and to
establish the diagnostic specificity against bipolar disorder
and ADHD.

Case-control differences, schizophrenia classification and
diagnostic specificity Univariate case-control differences
the univariate analysis of matched cases and controls

from cohorts I to IV demonstrated significant alterations
in VBM-based features of individuals with schizophrenia
(Supplementary Tables 3 and 4). A total of 110 of the 123
features showed significant alteration at FDR < 0.05.
Similarly, for FreeSurfer-based features, 105 of the 153
features were significant at this threshold.

Machine-learning classification
Using random forest machine learning, we first per-

formed a within-site classification of participants with
schizophrenia and controls and found AUC values
obtained from out-of-bag predictions ranging from 0.58
to 0.82 for VBM-based and from 0.58 to 0.80 for
FreeSurfer-based features, respectively (Supplementary
Table 5). Permutation analysis showed that accuracy
estimates were significant for three of the four cohorts
(Supplementary Table 5). When all case-control cohorts
were combined into a single dataset, the AUC obtained
from out-of-bag predictions was 0.73 (P < 0.001) for
VBM-based and 0.72 (P < 0.001) for FreeSurfer-based
morphometry, respectively. When VBM- and FreeSurfer-
based features were combined into a single dataset, the
resulting AUC was 0.74 (P < 0.001). We further found that
features were more consistently selected as important
predictors for VBM data (median correlation of variable
importance measures across the four cohorts of 0.11)
compared to FreeSurfer data (mean correlation -0.02).

Leave-site-out classification
We tested the classification accuracy when all but one of

the case-control datasets were used for training. This
leave-site-out cross-validation yielded median AUC
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estimates of 0.76 (range 0.63 to 0.90) and 0.64 (range 0.54
to 0.78) for VBM- and FreeSurfer-based morphometry
features, respectively. The median AUC for the combined
feature set was 0.71 (range 0.62 to 0.80) (Fig. 2a). For
VBM-based data, the observed accuracy corresponded to
a sensitivity-specificity mean with a median of 0.70 across
cohorts I-IV. We observed that sensitivity and specificity
varied substantially across cohorts (Supplementary
Table 6). In FreeSurfer-based data, this was even more
pronounced with a corresponding estimate of 0.52,
showing that the optimal cut-off for classification differed
across cohorts (Supplementary Figure 2). This was likely
due to shifts of structural volume means across cohorts.
The normalization models aim to set structure mean
values in the test data to zero, but this is not guaranteed as
test data were not used for building the normalization
models. Setting test data means to zero (a strategy com-
monly employed in machine learning) resolved the
sensitivity-specificity imbalance (sensitivity-specificity
mean with a median of 0.76, 0.71 and 0.71 for VBM-,
FreeSurfer and combined data, respectively. AUC values
were 0.79, 0.75 and 0.78, respectively; see Supplementary
Table 7).

Specificity testing in independent test cohorts
For VBM-based features, the application of an algo-

rithm trained on all four training cohorts resulted in
accuracies ranging from 50% to 89% (median 68%) in four
independent cohorts of healthy controls (Fig. 2b, Sup-
plementary Table 8). The algorithm showed limited spe-
cificity against bipolar disorder as 69% of the 222
individuals were assigned to the schizophrenia class. To
explore potential associations between prediction accu-
racy and the presence of psychotic features among indi-
viduals with bipolar disorder, we identified subsets of
individuals with severe psychosis (n= 28) and individuals
without psychotic features (n= 48). However, we found

no evidence that accuracy significantly differed between
these clinical groups (P= 0.63).
In contrast, when applying the algorithm to adult (n=

85) and adolescent (n= 257) subjects with ADHD, schi-
zophrenia classification showed similar accuracy (87% and
77% correctly classified as not belonging to the schizo-
phrenia class) as for healthy control subjects. Notably,
classification based on FreeSurfer-based morphometry
features showed substantially poorer accuracy in most
independent validation cohorts (Fig. 2b, Supplementary
Table 8). As for leave-site-out classification, this was due
to mean shifts of covariate-adjusted data that affected
FreeSurfer-based morphometry features important for
schizophrenia classification and is exemplified for amyg-
dala volumes in Supplementary Figure 3.

Comparison between classifier types
To explore whether prediction results were influenced

by the choice of the algorithm, we replaced the site-
stratified random forest with a non-site-stratified, linear
SVM. This showed that across all conducted tests, SVM
outperformed random forest classification by a small
margin (Supplementary Table 6, Supplementary Figure 4).
Notably, linear SVM application also showed an improved
specificity of the schizophrenia classification against
bipolar disorder (specificity between 48 and 55%, Sup-
plementary Table 6, Supplementary Figure 4).

Case-control classification of differential diagnoses
VBM-based data showed limited utility for a meaningful

differentiation of bipolar disorder (AUC of 0.63, derived
from random forest out-of-bag prediction), adult (AUC=
0.58), or adolescent (AUC= 0.62) ADHD from healthy
controls within the respective, propensity score-matched
cohorts. On the same cohorts, similar performance esti-
mates (AUC of 0.66, 0.56, and 0.63 respectively) were
obtained for FreeSurfer-based features.

Fig. 2 Accuracy of schizophrenia classifier using VBM- and FreeSurfer-based morphometry features. a) Leave-site-out cross-validation
performance measured as the ROC-AUC. b Specificity of schizophrenia-control classifier (trained on all SZ-HC cohorts) for prediction in independent
cohorts. The red horizontal line demonstrates 50% ROC-AUC or specificity, respectively. The classification was based on random forest machine
learning. SZ: schizophrenia; BD: bipolar disorder; ADHD: attention-deficit/ hyperactivity disorder; HC: healthy controls
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Exploration of features important for classification
The random forest variable importance derived from

the site-stratified classifiers based on all case-control
cohorts was used to identify the features most relevant for
classification. The ranked variable importance measures
derived from VBM-based morphometry data are shown in
Fig. 3a (and Supplementary Table 9). Using random forest
feature selection, we found 14 VBM-based features (11 for
FreeSurfer-based data) to be of particular importance for
classification, i.e. the respectively smallest feature sets
leading to the minimum error rate plus one standard
deviation (see methods). Figure 3a further displays the
importance of VBM-based features for classification of
bipolar disorder (propensity score-matched patients and
controls from University of Oslo bipolar disorder and
control data part of cohort VIII, n= 444) and ADHD
(propensity score-matched patients and controls from
cohorts V (adolescent subjects), n= 322, and VI (adult
subjects), n= 170). The top 14 features for schizophrenia-
control classification had also significantly higher impor-
tance for bipolar disorder-control as well as the adoles-
cent subjects with ADHD vs. controls classification (P=
0.011 and P= 0.008, respectively; permutation test,
Fig. 3b), compared to the remaining features. In contrast,
these features were of no significant importance for the
adult ADHD-control classification (P= 0.857, Fig. 3b).
Supplementary Figure 5 displays the variable importance
measures derived from FreeSurfer-based morphometry
data (Supplementary Table 10), showing a similar pattern
for schizophrenia markers and those for bipolar disorder
(P= 0.003) as well as adult (P= 0.196) ADHD compared
to VBM-based analysis. Notably, for FreeSurfer-based

morphometry data, no overlap with adolescent ADHD
markers was found (P= 0.350).

Relation between VBM-based and FreeSurfer-based
predictors
Between the top-14 VBM-based and the top-11 Free-

Surfer-based predictors for the schizophrenia-control
classification, we found significant pairwise correlations
(median Pearson’s correlation coefficient of 0.16, using
subjects from cohorts I to IV, after additional residuali-
zation against diagnosis). Accordingly, in this confounder-
corrected dataset, the first principal components (PCs) of
the top features (explaining 42% and 38% of variance in
FreeSurfer-based and VBM-based features, respectively),
were strongly correlated (ρ= 0.43, P= 5.4·10−34). This
raised the question whether the numerous, individually
weak structural predictors were related to a common
global measure of brain structure. To explore this, we
tested associations between the principal components and
22 global measures of brain structure and found highly
significant correlations with the large majority of these
measures (Fig. 4a, Supplementary Table 11). This effect
was not due to residual confounding of any PC by total
intracranial volume, age, age2, sex, scanner vendor, field
strength or recruitment site (all uncorrected P > 0.12).

Effect of global structural parameters on classification and
univariate differences
We then explored, whether these global measures

explained part of the multivariate signal that allowed case-
control differentiation between patients and controls.
Figure 4b shows that residualization of VBM- and

Fig. 3 VBM-based variable importance for classification. a Random-forest variable importance for the schizophrenia vs. control (red, used to
order the x-axis), the bipolar disorder vs control and the ADHD vs control comparisons. b Boxplot of random-forest variable importance measures,
comparing the 14 most important schizophrenia predictors against the remaining predictors in bipolar disorder and ADHD. The asterisk indicates
significance determined from permutation testing. Since variable importance was determined from the schizophrenia-control comparison, no
significance estimate is shown for the corresponding boxplot
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FreeSurfer-based features against the 22 global measures
led to a decrease in classification performance (measured
as the leave-site-out AUC determined on cohorts I to IV)
from 0.76 to 0.61 (VBM-based) and from 0.64 to 0.57
(FreeSurfer-based), respectively. These AUC values were
close to (VBM-based) or within (FreeSurfer-based) the
range of those obtained after randomly permuting diag-
nostic grouping (Fig. 4b). Accuracy did not decrease
substantially, when residualization was performed with
permuted global covariates, showing that residualization
against large covariate numbers did not per se have a
substantial impact (Fig. 4b). Classification using covariate-
corrected global features alone led to a leave-site-out
AUC of 0.62, regardless of whether the median VBM- or
the median FreeSurfer-based feature was included
(Fig. 4b). This raises the question why global structural
features were strong co-variates of case-control associa-
tions, but relatively poor predictors of diagnostic status
when used alone. This effect was likely due to site-to-site
variability of the global structural features, since random
forest learning applied on the entire dataset yielded out-
of-bag AUC values of 0.71 for both global structural
parameter sets. These values were comparable to the out-
of-bag estimates derived from similarly corrected VBM-
(AUC= 0.73) or FreeSurfer-based (AUC= 0.72) features.
This further supports the extent of signal shared between
global features and individual brain structures.
Notably, the residualization against global features also

led to substantial decrease in univariate significance
(Supplementary Table 3). For VBM-based features, after
residualization, FDR-corrected significance was only

observed for a bilateral increase in the pallidum (left: PFDR
= 2.5·10−5; right: PFDR= 1.5·10−4) and a decrease in the
right hippocampus (PFDR= 0.026). For FreeSurfer-based
features, after residualization against global parameters,
no significance was observed.

Prediction of individual structural features through global
structural parameters
We explored whether individual brain structural fea-

tures could be accurately predicted based on global
structural parameters. Based on random forest regression,
the global features explained a mean of 29% ± 13 (range
2.5% – 61.2%) of variance in VBM-based features and a
mean of 29% ± 15 (range 0.0% – 64.8%) of variance in
FreeSurfer-based features, respectively (Supplementary
Tables 3 and 4). In VBM-based data, the variance
explained by global features was further correlated with
the mean size of the respective structure (ρVBM= 0.33;
PVBM= 0.0002; ρsurface=−0.06; Psurface= 0.44; Spearman
correlation, to prevent overdue influence of larger
structures).

Discussion
The primary findings of this multi-site investigation

were 1) the presence of reproducible brain-structural
patterns that could differentiate individuals with schizo-
phrenia from healthy controls, 2) the specificity of the
patterns when applied on data from individuals with
ADHD, and the lack thereof in bipolar disorder, 3) the
significant overlap of markers important for classification
of schizophrenia, bipolar disorder and adolescent ADHD

Fig. 4 Effect of global structural covariates on classification. a Comparison of associations between global structural features and the first
principal components determined from the 14 selected VBM-based (orange; used to order the x-axis) and the 11 selected FreeSurfer-based (blue)
features (see also Supplementary Table 1,0). b Effect of residualization against global structural features on classification performance and
classification performance obtained from global features only. Notably, AUC values obtained from analyses with permuted diagnoses showed mean
values > 0.5, which was due to chance associations in the comparatively small datasets. Furthermore, surface based features showed an increase in
performance after residualization against permuted global features. This suggests features with poor cross-site reproducibility were coincidentally
prioritized for classification in the original data and this was remedied in the residualized data. The two sets of global features were identical except
for the addition of either a median VBM- or FreeSurfer-based feature
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and 4) the finding that brain-structural changes were
strongly associated with global structural parameters.
Based on brain-structural patterns, individuals with

schizophrenia could be reproducibly differentiated from
healthy controls, with a median AUC of up to 0.76. Per-
formance estimates were derived from unbiased leave-
site-out cross-validation and no test set data were used to
determine parameters of covariate adjustment or machine
learning models. Therefore, the obtained estimates are
likely to reflect the performance of the algorithms, when
tested in independent data. We observed that when test
data were not used during generation of normalization
models, sensitivity and specificity fluctuated substantially,
which could be resolved by scaling of the test data. This,
however, would require at least some data from a given
test site to be available prior to testing algorithms in data
from that site20. It should also be noted that biological
heterogeneity resulting from the current diagnostic sys-
tem limits the accuracy biological predictions can achieve,
when aiming to reproduce clinical classifications, con-
stituting a general caveat for the field.
The brain-structural patterns associated with schizo-

phrenia showed significant lack of specificity against
bipolar disorder, consistent with the substantial genetic
and clinical overlap of the two disorders30,31,52. Notably,
the signatures were specific against adolescent and adult
ADHD. Subjects with ADHD, did not, however, show
brain-structural alterations that could be used for accu-
rate classification, nor did those with bipolar disorder.
Despite this, the VBM-based feature sets most useful for
classification of adolescent ADHD and schizophrenia
showed significant overlap. Given the high specificity of
the schizophrenia classifier against adolescent ADHD, this
supports divergent profiles in the same feature set. A
particular strength of the present study was that conclu-
sions regarding differential diagnostic specificity against
bipolar disorder were not confounded by site variability.
Considering the observed specificity fluctuations during
leave-site-out testing, it should, however, be noted that
the preferential classification of subjects with ADHD as
controls could have been influenced by between-site
effects. Similarly, non-specificity of the schizophrenia
classifier against bipolar disorder was determined in one
cohort and requires further replication. Also, the lack of
adolescent subjects in the training data may have con-
founded the accuracy observed in adolescent ADHD
subjects.
We aimed to identify brain-structural features driving

reproducible schizophrenia-control classification and to
compare these between two different pre-processing
strategies. We observed that these strategies led to iden-
tification of differential structural patterns but found that
these alterations were, to a large extent, capturing over-
lapping global brain-structural alterations. Removing

variation explained by measures of global structural
properties also removed most of the identified multi-
variate signals. Notably, global structural parameters were
strong confounders of VBM- and FreeSurfer-based fea-
ture associations, but were on their own relatively poor
predictors of diagnosis. Our results indicate that this was,
to a significant extent, due to between-site variability
affecting the global signal. This effect may be due to the
fact that the global signal combines multiple signals that
are individually affected by site-specific effects (such as
the shifts in mean measurement observed in the present
study), creating an aggregate signal reflecting site idio-
syncrasies. This, in turn, raises the important question to
what extent global variables reflect the underlying biology
vs. measurement factors (i.e. the signal to noise ratio) in
structural imaging data. The observed case-control clas-
sification performance is consistent with previous large-
scale analyses15,20, thus it is unlikely that measurement
uncertainty specific to the present study accounts for the
global effects detected. Furthermore, GM differences have
been observed in numerous studies investigating first-
episode schizophrenia patients, suggesting that these
effects are not primarily related to the specific clinical
characteristics of the samples we examined [e.g53–55]. One
possible interpretation of these results is that schizo-
phrenia entails a combination of isometric and allometric
structural changes which may vary between individuals
and within patients across different stages of the illness.
This explanation may account for the low effect sizes and
effect heterogeneities of structural differences previously
observed in schizophrenia. Another interpretation is that
a shared biological component affecting global variables
across multiple disorders discriminates controls from
cases, but does not differentiate patients with different
diagnoses. Accordingly, previous reports highlighted
shared genetic components across multiple psychiatric
disorders and personality traits56,57. In contrast, the pre-
sent results may also be interpreted from the perspective
of cross-cohort reproducibility. That is, the reduction in
classifier accuracy through consideration of global struc-
tural features primarily relates to effects on reproducible
alterations in GM features. Changes in individual sites, in
contrast, may have persisted despite the normalization
against the global signals. This interpretation raises the
question whether this and previous studies had sufficient
resolution, in view of the large site to site differences, to
investigate reproducible regional effects. An improved
imaging resolution could also allow identifying patterns of
structural differences that show higher specificity between
schizophrenia and bipolar disorder. A corollary of this
view is the question whether, even assuming that struc-
tural imaging resolution yields sufficient signal to noise
ratio to study regional effects, the correlations between
regional and global variables caused by common
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underlying biology and by shared measurement uncer-
tainties can be meaningfully disentangled. For example,
we found that identification of univariate changes was
strongly dependent on global structural alterations.
Importantly, if the global signal was indeed more affected
by site specific experimental effects than individual brain
structures, it would be challenging for single-site investi-
gations or univariate statistics to appropriately account
for this effect, limiting the possibility to reproduce find-
ings across studies.
In this context, a limitation of the present study is the

lacking incorporation of other data modalities, such as
demographic, clinical or psycho-behavioral features,
which could potentially have informed on the presence of
patient subgroups or illness-dimensions in relation to
brain-structural alterations. Similarly, future studies
should explore the effects of antipsychotic treatment on
GM, which have been observed in schizophrenia (i.e.
ref. 9) and are supported by data from animal models58,59,
but which have also been found in antipsychotic-native
subjects9. An acerbation of disorder-intrinsic structural
changes by medication may be a possible explanation why
removal of the global signal almost completely removed
structural differences. While this study explores the
impact of different pre-processing strategies on machine
learning analysis of brain-structural differences, it does
not offer a comprehensive analysis of the broad spectrum
of preprocessing methods currently available. The sensi-
tivity of machine learning to the choice of preprocessing
may contribute to the variability of such analyses as
reported in previous studies. Another limitation of the
present study is the fact that it involved already diagnosed
patients. One of the most significant aspects of clinical
utility will be the ability to accurately predict the transi-
tion from early signs to full-blown illness, such that
appropriate treatment can be started earlier.
Finally, an interesting finding was that linear SVM

application showed marginally better classification per-
formance compared to RF machine learning. This sug-
gests that classification did not profit from RF’s ability to
model complex interactions. Interestingly, schizophrenia
classification using linear SVM also showed an improved
specificity against bipolar disorder, which requires further
validation in independent cohorts.
In conclusion, this study identified reproducible GM

patterns that index a multivariate, global alteration of
brain structure in schizophrenia and bipolar disorder, but
are different from those seen in ADHD. These results may
reflect the biological heterogeneity of schizophrenia and
are consistent with previous observations of shared
genetic determinants between these disorders. The results
further demonstrate the need for appropriately account-
ing for the global signal during analysis of individual brain
structures. They underline the importance of biologically

dissecting these illnesses as a basis to redefine diagnostic
boundaries using biological parameters. These efforts may
benefit from integrative analyses of other relevant data
modalities, including genetic risk measures or functional
neuroimaging, which may yield more accurate and spe-
cific classifiers that have clinical utility. Also, substantial
differences in the ability to derive reproducible brain-
structural signatures were found when using VBM or
FreeSurfer features derived from the same individuals,
highlighting the importance of preprocessing strategies
for machine learning analysis of brain-structural data.
Finally, the present results highlight the need for a more
in-depth analysis of how individual brain structures con-
tribute to the pathophysiology of these psychiatric
disorders.

Code availability
Code used for the analyses described in this manu-

scriptis available from the corresponding author upon
request.
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