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Abstract

Generalizing Jones’s notion of a planar algebra, we have previously introduced
an A2-planar algebra capturing the structure contained in the double complex per-
taining to the subfactor for a finite SU(3) ADE graph with a flat cell system. We
now introduce the notion of modules over an A2-planar algebra, and describe cer-
tain irreducible Hilbert A2-TL-modules. We construct an A2-graph planar algebra
associated to each pair (G,W ) given by an SU(3) ADE graph G and a cell system
W on G. A partial modular decomposition of these A2-graph planar algebras is
achieved.

1 Introduction

We introduced in [16] the notion of an A2-planar algebra. This was useful to understand
the double complexes of finite dimensional algebras which arise in the context of SU(3)
subfactors and modular invariants. Here we begin a study of their planar modules.

These A2-planar algebras are a direct generalization of the planar algebras of Jones
[30]. To avoid too much confusion one could refer to these planar algebras of Jones here
as A1-planar algebras, which naturally contain the Temperley-Lieb algebra which encodes
the representation theory of quantum SU(2). Our A2-planar algebras naturally encode the
representation theory of quantum SU(3), or in the dual Hecke picture, the finite dimen-
sional algebras (or A2-Temperley-Lieb algebras) which appear from the representations
of the deformation of the symmetric group.

A braided subfactor N ⊂M , or equivalently a module category NXM over the modular
tensor category NXN , yields a modular invariant via the theory of α-induction [9, 6, 12],
and a non-negative integer matrix representation, or nimrep, of the Verlinde algebra
realised by NXN . In the case of SU(3), NXN is a finite system of endomorphisms over
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the type III1 factor N . The classification of SU(3) modular invariants was shown to be
complete by Gannon [22]. Ocneanu claimed [43, 44] that all SU(3) modular invariants
were realised by subfactors and this was shown in [43, 44, 51, 4, 5, 9, 7, 8, 14, 15]. The
braided subfactor, or module category, and its associated modular invariant, are both
classified by an SU(3) ADE graph G, which is the graph whose adjacency matrix is given
by evaluating the nimrep at the fundamental generator of NXN .

These graphs carry a cell system [43, 44]. These cells give numerical weight to Ku-
perberg’s [38] diagram of trivalent vertices – corresponding to the fact that the trivial
representation is contained in the triple product of the fundamental representation of
SU(3) through the determinant. They yield, in a natural way, representations of an A2-
Temperley-Lieb or Hecke algebra. We computed the numerical values of the Ocneanu
cells in [14]. For SU(2) or bipartite graphs, the corresponding weights (associated to
the diagrams of cups or caps), arise in a more straightforward fashion from a Perron-
Frobenius eigenvector, giving a natural representation of the Temperley-Lieb algebra or
Hecke algebra.

The bipartite theory of the SU(2) setting has to some degree become a three-colourable
theory in our SU(3) setting. This theory is not completely three-colourable since some
of the graphs are not three-colourable – namely the graphs A(n)∗ associated to the con-
jugate modular invariants, n ≥ 4, D(n) associated to the orbifold modular invariants,
n 6= 0 mod 3, and the exceptional graph E (8)∗. The figures for the complete list of the
ADE graphs are given in [1, 14].

In Section 2 we review the basics of Jones’ planar algebras and planar modules, and
in Section 3 we review our construction of A2-planar algebras. In Section 4 we describe
A2-planar modules, including the notion of lowest weight. In particular we describe all
irreducible A2-PTL-modules of lowest weight zero. Then in Section 5 we construct the
A2-graph planar algebra P G for an ADE graph, and determine a partial decomposition
of P G into irreducible A2-PTL-modules.

Before we delve into the theory of (A2-)planar algebras, we review the realisation of
modular invariants by braided subfactors. Let A and B be type III von Neumann factors.
A unital ∗-homomorphism ρ : A → B is called a B-A morphism. Some B-A morphism
ρ′ is called equivalent to ρ if ρ′ = Ad(u) ◦ ρ for some unitary u ∈ B. The equivalence
class [ρ] of ρ is called the B-A sector of ρ. If ρ and σ are B-A morphisms with finite
statistical dimensions, then the vector space of intertwiners Hom(ρ, σ) = {t ∈ B : tρ(a) =
σ(a)t , a ∈ A} is finite-dimensional, and we denote its dimension by 〈ρ, σ〉. A B-A
morphism is called irreducible if 〈ρ, ρ〉 = 1, i.e. if Hom(ρ, ρ) = C1B. Then, if 〈ρ, τ〉 6= 0
for some (possibly reducible) B-A morphism τ , [ρ] is called an irreducible subsector of [τ ]
with multiplicity 〈ρ, τ〉. An irreducible A-B morphism ρ is a conjugate morphism of the
irreducible ρ if and only if [ρρ] contains the trivial sector [idA] as a subsector, and then
〈ρρ, idB〉 = 1 = 〈ρρ, idA〉 automatically [27].

The Verlinde algebra is realised in the subfactor models by systems of endomorphisms

NXN of the hyperfinite type III1 factor N . That is, NXN denotes a finite system of finite
index irreducible endomorphisms of a factor N such that the elements of NXN are not
unitary equivalent, for any λ ∈ NXN there is a representative λ ∈ NXN of the conjugate
sector [λ], and NXN is closed under composition and subsequent irreducible decomposi-
tion. In the case of WZW models associated to SU(n) at level k, the Verlinde algebra
is a non-degenerately braided system of endomorphisms NXN , labelled by the positive
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energy representations of the loop group of SU(n)k on a type III1 factor N , with fusion
rules λµ =

⊕
ν N

µ
λνν which exactly match those of the positive energy representations

[48]. The fusion matrices Nλ = [Nσ
ρλ]ρ,σ are a family of commuting normal matrices which

give a representation themselves of the fusion rules of the positive energy representations
of the loop group of SU(n)k, NλNµ =

∑
ν N

µ
λνNν . This family {Nλ} of fusion matrices

can be simultaneously diagonalised:

Nλ =
∑

σ

Sσ,λ

Sσ,1
SσS

∗
σ, (1)

where 1 is the trivial representation, and the eigenvalues Sσ,λ/Sσ,1 and eigenvectors Sσ =
[Sσ,µ]µ are described by the statistics S matrix. Moreover, there is equality between the
statistics S- and T - matrices and the Kac-Peterson modular S- and T - matrices which
perform the conformal character transformations [33], thanks to [21, 20, 48].

The key structure in the conformal field theory is the modular invariant partition
function Z. In the subfactor setting this is realised by a braided subfactor N ⊂M where
trivial (or permutation) invariants in the ambient factor M when restricted to N yield
Z. This would mean that the dual canonical endomorphism decomposes as a finite linear
combination of endomorphisms in NXN . Indeed if this is the case for the inclusion N ⊂ M ,
then the process of α-induction allows us to analyse the modular invariant, providing two
extensions of λ on N to endomorphisms α±

λ of M , such that the matrix Zλ,µ = 〈α+
λ , α

−
µ 〉

is a modular invariant [9, 6, 12].
Let NXM , MXM denote a system of endomorphisms consisting of a choice of rep-

resentative endomorphism of each irreducible subsector of sectors of the form [λι], [ιλι]
respectively, for each λ ∈ NXN , where ι : N →֒ M is the inclusion map which we may con-
sider as an M-N morphism, and ι is a representative of its conjugate N -M sector. The
action of the system NXN on the N -M sectors NXM produces a nimrep (non-negative
matrix integer representation of the fusion rules) GλGµ =

∑
ν N

µ
λνGν , whose spectrum

reproduces exactly the diagonal part of the modular invariant, i.e.

Gλ =
∑

σ

Sσ,λ

Sσ,1
ψσψ

∗
σ, (2)

with the spectrum of Gλ = {Sµ,λ/Sµ,1 with multiplicity Zµ,µ} [10, Theorem 4.16]. The
labels µ of the non-zero diagonal elements are called the exponents of Z, counting multi-
plicity. A modular invariant for which there exists a nimrep whose spectrum is described
by the diagonal part of the invariant is said to be nimble.

The systems NXN , NXM , MXM are (the irreducible objects of) tensor categories of
endomorphisms with the Hom-spaces as their morphisms. Thus NXN gives a braided
modular tensor category, and NXM a module category. The structure of the module cat-
egory NXM is the same as a tensor functor F from NXN to the category Fun(NXM , NXM)
of additive functors from NXM to itself, see [45].

In [19] we described a C-linear tensor category TL called the Temperley-Lieb category,
which depends on a paramater δ = q+q−1, where q is real or a root of unity. Its objects are
given by direct sums of Jones-Wenzl projections [49], whilst its morphisms are matrices
whose entries are planar tangles. In the language of Section 2 these planar tangles are
planar j-tangles, j ≥ 0, with no internal discs and with the outer disc removed. The
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Temperley-Lieb category is semisimple for q real, i.e. 2 ≤ δ ∈ R. For q a mth root of
unity, the quotient TL(m) := TL/I(m) is semisimple, where I(m) is the unique proper
tensor ideal in TL generated by the morphism fm = idfm, and fm is the mth Jones-Wenzl
projection.

For q a k + 2th root of unity, these Jones projections satisfy the same fusion relations
as the positive energy representations of the loop group of SU(2)k, and hence each object
of TL(k+2) can be identified naturally with an endomorphism in NXN . Then for a braided
subfactor N ⊂ M with classifying graph G one of the ADE graphs, that is N ⊂ M
yields nimrep G such that Gρ = G, NXM defines a tensor functor F from TL(k+2) to
Fun(NXM , NXM). This functor recovers the bipartite graph planar algebra construction
[28] described here in Section 2.1.

A parallel construction of the A2-Temperley-Lieb category A2-TL was given in [19].
Then for a braided subfactor N ⊂ M with classifying graph G one of the ADE graphs,
which labels a modular invariant of SU(3) at level k, NXM defines a tensor functor
F : A2−TL

(k+3) −→ Fun(NXM , NXM) which recovers the construction of the A2-planar
algebra for an SU(3) ADE graph. This construction is described here in Section 5.

It would be interesting to extend the A2-planar algebra formalism to other rank 2
simple Lie algebras such as G2 or C2 = sp(4), based on the web spaces of Kuperberg [38].
Generalized Jones-Wenzl idempotents for C2 were constructed in [35]. One could also try
to extend the formalism to An, n ≥ 3. A complete list of relations for a diagrammatic
formalism for A3 has been conjectured [34]. The generators for this formalism yield cells on
the classifying graphs for SU(4) modular invariants, and the relations yield consistency
relations for these cells. These graphs were proposed by Ocneanu [44]. In order to
construct the corresponding (A3-)planar algebra, one would need to compute the values
of these cell systems. Some SU(4) modular invariants have been realised using braided
subfactors which come from conformal and orbifold embeddings [51, 4, 5, 44].

2 Preliminaries on Jones’ planar algebras and planar

modules

Let us briefly review the basics of Jones’ planar algebras, and the notion of planar modules
over these algebras [30, 29]. To avoid confusion we will refer to these planar algebras and
modules as A1-planar algebras and modules. A planar k-tangle consists of a disc D in the
plane with 2k vertices on its boundary, k ≥ 0, and n ≥ 0 internal discs Dj , j = 1, . . . , n,
where the disc Dj has 2kj vertices on its boundary, kj ≥ 0. One vertex on the boundary
of each disc (including the outer disc D) is chosen as a marked vertex, and the segment of
the boundary of each disc between the marked vertex and the vertex immediately adjacent
to it as we move around the boundary in an anti-clockwise direction is labelled ∗. Inside
D we have a collection of disjoint smooth curves, called strings, where any string is either
a closed loop, or else has as its endpoints the vertices on the discs, and such that every
vertex is the endpoint of exactly one string. Any tangle must also allow a checkerboard
colouring of the regions inside D.

The planar operad is the collection of all diffeomorphism classes of such planar tangles,
with composition of planar tangles defined. A planar algebra P is then defined to be
an algebra over this operad, i.e. a family P = (P+

k , P
−
k ; k ≥ 0) of vector spaces with
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P±
k ⊂ P±

k′ for k < k′, and with the following property: for every k-tangle T with n
internal discs Dj labelled by elements xj ∈ Pkj , j = 1, . . . , n, there is an associated linear
map Z(T ) : ⊗n

j=1Pkj → Pk, which is compatible with the composition of tangles and
re-ordering of internal discs.

A planar module over P is a graded vector space V = (V +
k , V

−
k ; k ≥ 0) with an

action of P . Given a planar m-tangle T in P with distinguished (V input) internal
disc D1 with with 2k vertices on its boundary, k ≥ 0, and other (P input) internal
discs Dp, p = 2, . . . , n, with 2kp vertices on its boundary, kp ≥ 0, there is a linear map
Z(T ) : Vk ⊗

(
⊗n

p=2Pkp

)
→ Vm, where Z(T ) satisfies the same compatability conditions as

for P itself.

2.1 P G as a TL-module for an ADE Dynkin diagram G

Jones [29] determined all Hilbert Temperley-Lieb modules Hk,ω of lowest weight k > 0,
k ∈ N, and Hµ of lowest weight 0. We review these modules. For k,m ∈ N, let ATLm,k

denote the space of all annular (m, k)-tangles (having 2m vertices on the outer disc and 2k
vertices on the (distinguished) inner disc, where the vertices have alternating orientations)
with no other internal discs. Tangles are composed by inserting one annular (m, k)-tangle
inside the internal disc of an annular (n,m)-tangle. For k,m ∈ N with 1 ≤ k ≤ m,
let T k

m denote the set of annular (m, k)-tangles with no internal discs and 2k through

strings. If ÃTLm,k denotes the quotient of ATLm,k by the ideal generated by all annular
(m, k)-tangles with no internal discs and strictly less than 2k through strings, then the

equivalence classes of the elements of T k
m form a basis for ÃTLm,k. The group Zk acts by

an internal rotation, which permutes the basis elements. The action of ATL on ÃTLm,k

is given as follows. Let T be an annular (p,m)-tangle in ATLp,m and R ∈ T k
m. Define

T (R) to be δrT̂R if the (p, k)-tangle TR has 2k through strings and 0 otherwise, where

TR contains r contractible circles and T̂R is the tangle TR with all the contractible

circles removed. Since the action of ATL commutes with the action of Zk, ÃTLm,k splits

as a TL-module into a direct sum, over the kth roots of unity ω, of TL-modules V k,ω
m

which are the eigenspaces for the action of Zk with eigenvalue ω. For each k one can

choose a faithful trace tr on the abelian C∗-algebra ÃTLk,k, which extends to ATLk,k by

composition with the quotient map. The inner-product on ÃTLm,k is then defined to be

〈S, T 〉 = tr(T ∗S) for S, T ∈ ÃTLm,k.
We now turn to the zero-weight case (k = 0). The algebras ATL±, which have the

regions adjacent to both inner and outer boundaries shaded ±, are generated by elements
σ±σ∓, where σ± is the (±,∓)-tangle which is just a single non-contractible circle, with the
region which meets the outer boundary shaded ± and the region which meets the inner
boundary shaded ∓. Then the dimensions of V+ and V− must be 1 or 0 for any TL-module
V . In V , the maps σ±σ∓ must contribute a scalar factor µ2, where 0 ≤ µ ≤ δ. If µ = δ, V δ

is simply the ordinary Temperley-Lieb algebra. When 0 < µ < δ, V µ is the TL-module
such that V µ

m m ≥ 0, has as basis the set of (m,+)-tangles with no internal discs and at
most one non-contractible circle. The action of ATL on V µ, 0 ≤ µ ≤ δ, is given as follows.
Let T be an annular (p,m)-tangle in ATLp,m and R be a basis element of V µ. Define

T (R) to be δrµ2dT̂R, where TR contains r contractible circles and 2d+ i non-contractible

5



circles, where i ∈ {0, 1}, and T̂R is the tangle TR with all the contractible circles removed
and 2d of the non-contractible circles removed. The inner product on V µ is defined by
〈S, T 〉 = δrµ2d, where T ∗S contains r contractible circles and 2d non-contractible circles.
When µ = 0, we have TL-modules V 0,+ and V 0,−, where V 0,±

m has as basis the set of
(m,±)-tangles with no internal discs and no contractible circles. The action of ATL on
V 0,± is given as follows. Let T be an annular (p,m)-tangle in ATLp,m and R be a basis

element of V 0,±. Define T (R) to be δrT̂R, where TR contains r contractible circles. Now

T̂R is zero if TR contains any non-contractible circles, and is the tangle TR with all the
contractible circles removed otherwise. The inner product on V 0,± is defined by 〈S, T 〉 = 0
if T ∗S contains any non-contractible circles, and 〈S, T 〉 = δr otherwise, where r is the
number of contractible circles in T ∗S.

In the generic case, δ > 2, it was shown [29] that the inner-product is always positive
definite, so that H = V is a Hilbert TL-module, for the irreducible lowest weight TL-
module V . In the non-generic case, if the inner product is positive semi-definite, H is
defined to be the quotient of V by the vectors of zero-length with respect to the inner
product.

Let G be a bipartite graph. Then the vertex set of G is given by V = V+ ∪V−, where
each edge connects a vertex in V+ to one in V−. We call the vertices in V+, V− the
even, odd respectively vertices of G. We will use the convention that the distinguished
vertex ∗ of G, which has the highest Perron-Frobenius weight, is an even vertex. The

adjacency matrix of G can thus be written in the form

(
0 ΛG

ΛT
G 0

)
. We let r± = |V±|.

The bipartite graph planar algebra P G of the graph G was constructed in [28], which is
the path algebra on G where paths may start at any of the even vertices of G, and where

the mth graded part P G
m is given by all pairs of paths of length m on G which start at

the same even vertex and have the same end vertex. Let µj, j = 1, . . . , r+, denote the
eigenvalues of ΛGΛ

T
G . Then the following result is given in [47, Prop. 13]: The irreducible

weight-zero submodules of P G are Hµj , j = 1, . . . , r−, and r+ − r− copies of H0.
Reznikoff [47] computed the decomposition of P G as a TL-module into irreducible

TL-modules for the ADE Dynkin diagrams. For the graphs Am, m ≥ 3,

PAm =

s⊕

j=1

Hµj , (3)

where s = ⌊(m+ 1)/2⌋ is the number of even vertices of Am and µj = 2 cos(jπ/(m+ 1)),
j = 1, . . . , s. For Dm, m ≥ 3,

PDm =
t⊕

j=1

Hµj ⊕ (s− t)H0,± ⊕
s−2⊕

j=1

H2j,−1, (4)

where s = ⌊(m+2)/2⌋, t = ⌊(m−1)/2⌋ are the number of even, odd vertices respectively
of Dm, and µj = 2 cos((2j − 1)π/(2m− 2)), j = 1, . . . , t. For the exceptional graphs the
results are

PE6 = Hµ1 ⊕Hµ4 ⊕Hµ5 ⊕H2,−1 ⊕H3,ω ⊕H3,ω−1

, (5)

PE7 = H0,± ⊕Hµ1 ⊕Hµ5 ⊕Hµ7 ⊕H2,−1 ⊕H3,ω ⊕H3,ω−1

⊕H4,−1 ⊕H8,−1, (6)
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Figure 1: Trivalent vertices

PE8 = Hµ1 ⊕Hµ7 ⊕Hµ11 ⊕Hµ13 ⊕H2,−1 ⊕H3,ω ⊕H3,ω−1

⊕H4,−1

⊕H5,ζ ⊕H5,ζ−1

⊕H5,ζ2 ⊕H5,ζ−2

, (7)

where ω = e2πi/3, ζ = e2πi/5, and µj = 2 cos(πj/h) where h is the Coxeter number.

3 A2-Planar Algebras

We will now review the basics of A2-planar algebras from [16]. Let σ = σ1 · · ·σm be a
sign string, σj ∈ {±}, such that the difference between the number of ‘+’ and ‘−’ is
0 mod 3. An A2-planar σ-tangle will be the unit disc D = D0 in C together with a
finite (possibly empty) set of disjoint sub-discs D1, D2, . . . , Dn in the interior of D. Each
disc Dk, k ≥ 0, will have mk ≥ 0 vertices on its boundary ∂Dk, whose orientations are
determined by sign strings σ(k) = σ

(k)
1 · · ·σ

(k)
mk where ‘+’ denotes a sink vertex and ‘−’ a

source. The disc Dk will be said to have pattern σ(k). Inside D we have an A2-tangle
where the endpoint of any string is either a trivalent vertex (see Figure 1) or one of the
vertices on the boundary of a disc Dk, k = 0, . . . , n, or else the string forms a closed loop.
Each vertex on the boundaries of the Dk is the endpoint of exactly one string, which
meets ∂Dk transversally.

The regions inside D have as boundaries segments of the ∂Dk or the strings. These
regions are labelled 0, 1 or 2, called the colouring, such that if we pass from a region R
of colour a to an adjacent region R′ by passing to the right over a vertical string with
downwards orientation, then R′ has colour a+ 1 (mod 3). We mark the segment of each
∂Dk between the last and first vertices with ∗bk , bk ∈ {0, 1, 2}, so that the region inside
D which meets ∂Dk at this segment is of colour bk, and the choice of these ∗bk must give
a consistent colouring of the regions. For each σ we have three types of tangle, depending
on the colour b of the marked segment, or of the marked region near ∂D for σ = ∅.

An A2-planar σ-tangle T with an internal discDl with pattern σl = σ′ can be composed
with an A2-planar σ

′-tangle S with external disc D′ and ∗D′ = ∗Dl
, giving a new σ-tangle

T ◦l S, by inserting the A2-tangle S inside the inner disc Dl of T such that the vertices
on the outer disc of S coincide with those on the disc Dl and the regions marked by
∗ also coincide. The boundary of the disc Dl is removed, and the strings smoothed if
necessary. Let P̃ be the collection of all diffeomorphism classes of such A2-planar tangles,
with composition defined as above. The A2-planar operad P is the quotient of P̃ by the
Kuperberg relations K1-K3 below, which are relations on a local part of the diagram:

K1:

K2:
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K3:

where δ = [2]q, α = [3]q = δ2 − 1, and the quantum number [m]q is defined by [m]q =
(qm − q−m)/(q − q−1), for some variable q ∈ C. We will call the local picture a

digon, and an embedded square.
An A2-planar algebra is then defined to be an algebra over this operad, i.e. a family

P = (P a
σ | sign strings σ, a ∈ {0, 1, 2}) of vector spaces with the following property: for

every σ-tangle T ∈ Pσ with outer disc marked by ∗b, and with n internal discs Dj with
pattern σk, outer disc marked by ∗bk and labelled by elements xj ∈ Pkj , j = 1, . . . , n, there

is associated a linear map Z(T ) : ⊗n
k=1P

bk
σk

−→ P b
σ which is compatible with the composi-

tion of tangles in the following way. If S is a σk-tangle with internal discs Dn+1, . . . , Dn+m,
where Dk has pattern σk, then the composite tangle T ◦l S is a σ-tangle with n +m− 1
internal discs Dk, k = 1, 2, . . . l − 1, l + 1, l + 2, . . . , n + m. From the definition of an
operad, associativity means that the following diagram commutes:

(⊗n
k=1
k 6=l

P bk
σk

)
⊗

(⊗n+m
k=n+1 P

bk
σk

)

id⊗Z(S)

��

Z(T◦lS)

((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

⊗n
k=1 Pσk

bk
Z(T )

// P b
σ

(8)

so that Z(T ◦l S) = Z(T ′), where T ′ is the tangle T with Z(S) used as the label for disc
Dl. We also require Z(T ) to be independent of the ordering of the internal discs, that is,
independent of the order in which we insert the labels into the discs. When σ = ∅, we
will often write P a

∅ as Pa, and we adopt the convention that the empty tensor product is
the complex numbers C.

Let σ∗ be the sign string obtained by reversing the string σ and flipping all its signs.
When each Pσσ∗ is a ∗-algebra, the adjoint T ∗ ∈ Pσ∗ of a tangle T ∈ Pσ is defined by
reflecting the whole tangle about the horizontal line that passes through its centre and
reversing all orientations. The labels xk ∈ Pσk

of T are replaced by labels x∗k in T ∗,
where x∗k is the unique element in Pσ∗

k
such that m(xk, y)

∗ = m(y∗, x∗k) for some tangle
y ∈ Pσk

with no internal discs, and where m(·, ·) inPσkσ
∗
k
is the tangle defined in [16,

Section 4.4].. For any linear combination of tangles in Pσ the involution is the conjugate
linear extension. Then P is an A2-planar ∗-algebra if each Pσσ∗ is a ∗-algebra, and for a
σ-tangle T with internal discs Dk with patterns σk, labelled by xk ∈ Pσk

, k = 1, . . . , n, we
have Z(T )∗ = Z(T ∗), where the labels of the discs in T ∗ are x∗k, and where the definition
of Z(T )∗ is extended to linear combinations of σ-tangles by conjugate linearity. Note a
typographical error in the definition of an A2-planar ∗-algebra in [16, Section 4.4], with
Pσσ∗ above incorrectly given as Pσ.

4 A2-Planar Modules and A2-ATL

We extend Jones’s notion of planar algebra modules and the annular Temperley algebra
to our A2-planar algebras, parallel to [29, Section 2].
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Figure 2: The m-tangle Wi, i = 1, . . . , m− 1.

An A2-annular tangle T will be a tangle in P with the choice of a distinguished
internal disc, which we will call the inner disc. In particular, T will be called an A2-

annular (σ, σ′)-tangle if it is an A2-annular tangle with pattern σ on its outer disc and
pattern σ′ on its inner disc. If σ = ∅ or σ′ = ∅, we replace the ∅ with a, a ∈ {0, 1, 2},
corresponding to the colour of the region which meets the outer or inner disc respectively.
When σ = σ′ we will call T an A2-annular σ-tangle. This notion of annular tangle is
different to those defined in [16]- here more than one internal disc is allowed, but one
of those is chosen to be the distinguished disc (the inner boundary of the annulus). If
P is an A2-planar algebra, a module over P , or P -module, will be a graded vector
space V = (Vσ,a| sign strings σ, a ∈ {0, 1, 2}) with an action of P . Given an A2-annular
(σ, σ′)-tangle T in P with outer disc marked by ∗a, with a distinguished (V input) internal
disc D1 marked by ∗a′ and with pattern σ′, and with other (P input) internal discs Dp,
p = 2, . . . , n, marked by ∗ap , with patterns σ(p), there is a linear map Z(T ) : Vσ′,a′ ⊗(
⊗n

p=2P
ap
σ(p)

)
→ Vσ,a. The map Z(T ) satisfies the same compatability condition (8) for the

composition of tangles as P itself. We write Vσ for the σ-graded part of V : Vσ =
⊕2

a=0 Vσ,a.
An A2-planar algebra is always a module over itself, called the trivial module. Any
relation (i.e. linear combination of labelled A2-planar tangles) that holds in P will hold
in V , e.g. K1-K3 hold in V where α, δ have the same values as in P .

A module over an A2-planar algebra P can be understood as a module over the A2-
annular algebra A2-AP , which is defined as follows. We define the associated annular
category A2-AnnP to have objects (σ, a), where σ is any sign string and a ∈ {0, 1, 2}, and
whose morphisms are A2-annular labelled tangles with labelling set all of P . A morphism
from (σ, a) to (σ′, a′) will be an annular (σ, σ′)-tangle with outer disc marked by ∗a and
inner disc by ∗a′. Let A2-FAP be the linearization of A2-AnnP - it has the same objects,
but the set of morphisms from object (σ, a) to object (σ′, a′) is the vector space having
as basis the morphisms in A2-AnnP from (σ, a) to (σ′, a′). Composition of morphisms in
A2-FAP is by linear extension of composition in A2-AnnP . The A2-annular algebra A2-
AP = {A2-AP ((σ, a), (σ

′, a′))} is the quotient of A2-FAP by relations K1-K3. We define
A2-APσ to be the algebra {A2-AP ((σ, a), (σ, a′))| a, a

′ ∈ {0, 1, 2}}, and define A2-AP
a
σ to

be the algebra A2-AP ((σ, a), (σ, a)).
For for fixed δ ∈ C, we apply this procedure to the A2-planar algebra A2-PTL defined

in [16], which contains the algebra VA2 = alg(1,Wi, i ≥ 1) as a subalgebra, where Wi

are the tangles illustrated in Figure 2. It was shown in [16] that for real δ > 2, VA2 is
isomorphic to the A2-Temperley-Lieb algebra, which is the universal algebra generated

9



Figure 3: A basis A2-annular −−++-tangle containing hexagons, and the possibility of
an infinite number of hexagons

by self-adjoint operators 1, Ui, i ≥ 1, with relations

U2
i = δUi, UiUj = UjUi, |i− j| > 1,

UiUi+1Ui − Ui = Ui+1UiUi+1 − Ui+1,

(Ui − Ui+2Ui+1Ui + Ui+1) (Ui+1Ui+2Ui+1 − Ui+1) = 0.

For the A2-planar algebra A2-PTL, the labels for the internal discs are now just A2-
annular tangles. Let A2-AnnTL(σ, σ

′) be the set of all basis A2-annular (σ, σ′)-tangles
with no other internal discs. Elements of A2-AnnTL(σ, σ

′) define elements of A2-ATL
by passing to the quotient of A2-FATL by relations K1-K3. The objects of A2-ATL are
pairs (σ, a) of a sign string σ and a colour a ∈ {0, 1, 2}. The vector space A2-ATLσ has
as basis the set of A2-annular σ-tangles with no internal discs, contractible circles, digons
or embedded squares. However, non-contractible circles are allowed, making each vector
space A2-ATL((σ, a), (σ

′, a′)) infinite dimensional. Multiplication in A2-ATLσ(δ) is by
composition of tangles (where this makes sense), then reducing the resulting tangle using
relations K1-K3 to remove closed loops (K1), digons (K2) or embedded squares (K3).

For σ, σ′ sign strings of length ≥ 3, the algebras A2-ATL((σ, a), (σ, a′)) are also infinite
dimensional due to the possibility of an infinite number of embedded hexagons in basis
tangles in the annular picture, as illustrated in Figure 3.

We have a notion of the rank of a tangle. A minimal cut loop γ in an annular (σ, σ′)-
tangle T will be a clockwise closed path which encloses the distinguished internal disc and
crosses the least number of strings. We associate a weight wγ = (t1, t2) to a minimal cut
loop γ, where t1 is the number of strings of T that cross γ with orientation from left to
right, and t2 the number of strings that have orientation from right to left, as we move
along γ in a complete clockwise loop. For a weight (t1, t2), let tmax = max{t1, t2} and
tmin = min{t1, t2}. We write (t′1, t

′
2) < (t1, t2), if t

′
1 + t′2 < t1 + t2, and if t′1 + t′2 = t1 + t2

then (t′1, t
′
2) < (t1, t2) if 2t

′
max + t′min < 2tmax + tmin. The rank of T is then given by the

smallest weight wγ associated to a minimal cut loop, such that wγ ≤ wγ′ for all other
minimal cut loops γ′.

We define the weight w(σ) of a sign string σ to be (s+, s−), where s± is the number
of signs ‘±’ in σ. The weights w(σ) are given the same ordering as the weights wγ of

minimal cut loops. For an A2-planar algebra P , we denote by A2-AP
(t1,t2)
σ the linear span

in the algebra A2-APσ of all labelled A2-annular σ-tangles with rank (t′1, t
′
2) < (t1, t2), for

10



Figure 4: ϕ(3k,0) and ϕ(0,3k)

any rank (t1, t2) ≤ w(σ). Since the rank cannot increase under composition of tangles,

A2-AP
(t1,t2)
σ is a two-sided ideal in A2-APσ. Note that the quotient of A2-APσ by the ideal

A2-AP
(t1,t2)
σ is not in general finite dimensional, for (t1, t2) ≤ w(σ). For example, consider

the quotient of A2-APσ by A2-AP
(3k,0)
σ (or A2-AP

(0,3k)
σ ), for 3 ≤ 3k ≤ w(σ). The elements

ϕ(3k,0), ϕ(0,3k) in Figure 4 have ranks (3k, 0), (0, 3k) respectively, and can be composed an
infinite number of times, but the resulting tangle cannot be reduced using K1-K3.

The weight wt(V ) of a P -module V is the smallest weight w(σ) for which Vσ is non-
zero. Elements of Vσ′ for any σ′ such that w(σ′) = wt(V ) will be called lowest weight
vectors in V , and Vσ′ is an A2-APσ′-module which we call a lowest weight module.

Let +m denote the sign string + + · · ·+ (m copies), and −n = − − · · ·− (n copies).
Note that Vσ ∼= V+m−n for all sign strings σ which are a permutation of the sign string
+m−n, m ≡ n mod 3, where an isomorphism is given by using the braiding (see [16]) to
permute the vertices on the outer disc of every element in Vσ so that the outer disc has
pattern +m−n. In this situation we will say that σ is of type +m−n.

A P -module V is indecomposable if and only if Vσ is an indecomposable A2-APσ-
module for each sign string σ.

4.1 Hilbert P -modules

We define Hilbert P -modules, parallel to [29, Section 3]. Let P be a C∗-A2-planar

algebra, that is, a non-degenerate finite-dimensional A2-planar ∗-algebra with positive
definite partition function Z(T ) : ⊗kPσk

−→ P∅ = C, for any ∅-tangle T . The ∗-algebra
structure on P induces a ∗-structure on A2-AP , where the involution ∗ is defined by
reflecting an A2-annular (σ, σ′)-tangle T about a circle halfway between the inner and
outer disc, and reversing the orientation. Thus T ∗ will be an A2-annular (σ

′, σ)-tangle. If
P is a C∗-A2-planar algebra this defines an antilinear involution ∗ on A2-FAP by taking
the ∗ of the underlying unlabelled tangle for a labelled tangle T , replacing the labels of
T by their ∗’s, and extending by antilinearity. Since P is an A2-planar ∗-algebra, all
the A2-planar relations are preserved under ∗ on A2-FAP , so ∗ passes to an antilinear
involution on the algebra A2-AP . In particular, all the A2-APσ are ∗-algebras.

Let P be a C∗-A2-planar algebra. A P -module H will be called a Hilbert P -module

if each Hσ is a finite dimensional Hilbert space with an invariant inner-product 〈·, ·〉, i.e.

〈av, w〉 = 〈v, a∗w〉, (9)

for all v, w,∈ H and a ∈ A2-AP . As in the case of A1-planar algebras, a P -submodule
of a Hilbert P -module is a Hilbert P -module. Also, the orthogonal complement of a P -
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submodule is a P -module, so that indecomposability and irreducibility are the same for
Hilbert P -modules. The following Lemma follows immediately from Lemma 3.4 in [29]:

Lemma 4.1 Let P be an A2-C
∗-planar algebra and H a Hilbert P -module. If W ⊆ Hσ

is an irreducible A2-APσ-submodule of Hσ for some σ, then A2-AP (W ) is an irreducible
P -submodule of H.

From the invariance of 〈·, ·〉 it is easy to see that if V and W are orthogonal A2-APσ

invariant subspaces of Hσ for some σ, then A2-AP (V ) is orthogonal to A2-AP (W ). As in
[29], an irreducible Hilbert P -module H is determined by its lowest weight modules. In
particular H is determined by a lowest weight module H+m−n.

We now determine which A2-APσ-modules can be lowest weight modules.

Lemma 4.2 Let P be an A2-C
∗-planar algebra and H a Hilbert P -module of rank (t1, t2).

For σ such that w(σ) = wt(H), any element w ∈ Hσ can be written, up to a scalar, as
aw for some a ∈ A2-APσ with rank(a) = rank(w).

Proof: First form ww∗ ∈ A2-APσ. Then dividing out by the relations K1-K3 we obtain
a linear combination of elements in A2-APσ, and we remove those elements that have
rank < (t1, t2). Ignoring the scalar factor we are left with a single element a ∈ A2-APσ

with rank(a) = (t1, t2). If we form aw, then dividing out by K1-K3 we obtain aw =
µw +

∑
i µiwi, where µ, µi ∈ C and wi ∈ Hσ with rank(wi) < (t1, t2) for each i. Then in

H the wi are all zero, so that µ−1aw = w. �

Then the proof of Lemma 3.8 in [29] gives the following result:

Lemma 4.3 Let P be an A2-C
∗-planar algebra and H a Hilbert P -module. For σ any

sign string of type +t1−t2 , let H
(t1,t2)
σ be the A2-APσ-submodule of Hσ spanned by the

σ-graded pieces of all P -submodules with rank < (t1, t2). Then

(H(t1,t2)
σ )⊥ =

⋂

a∈A2-AP
(t1,t2)
σ

ker(a).

Thus we see that the lowest weight modules of an irreducible P -module of rank (t1, t2)

are A2-APσ/A2-AP
(t1,t2)
σ -modules, for all σ of type +t1−t2 . In fact, for an A2-C

∗-planar
algebra P , to determine all Hilbert P -modules it is sufficient to first determine the algebras

A2-AP
0
+t1−t2

/A2-AP
0,(t1,t2)

+t1−t2
and their irreducible modules, where A2-AP

0,(t1,t2)
σ is the two-

sided ideal in A2-AP
0
σ given by the linear span of all labeled A2-annular σ-tangles in

A2-AP
0
σ with rank < (t1, t2).

4.2 Irreducible A2-PTL-modules

In this section we will describe all zero-weight irreducible modules, parallel to the con-
struction of zero-weight modules in [29].

For i ∈ {0, 1, 2}, ε ∈ {±}, and non-negative integers k1 ≡ k2 mod 3, let

σ
(i,ε)
(k1,k2)

= (σi,iε1σiε1,iε2 · · ·σiεk1−ε1,iεk1)(σiεk1,iεk1−ε1σiεk1−ε1,iεk1−ε2 · · ·σiεk1−εk2ε1,iεk1−εk2),
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where the 0-tangles σj,j±1 are illustrated in Figure 5, j ∈ {0, 1, 2}. The algebra A2-ATL
a
∅

is generated by the ∅-tangles σ
(i,±)
(k1,k2)

. Let H be an irreducible Hilbert A2-PTL-module

of lowest weight zero. For any i ∈ {0, 1, 2}, ε ∈ {±}, and non-negative integers k1 ≡

k2 mod 3, Z(σ
(i,±)
(k1,k2)

) = λ ∈ C since Z is a positive definite partition function for any

∅-tangle, and Z(σ
(i,±)∗
(k1,k2)

) = Z(σ
(i,±)
(k1,k2)

)∗ = λ. Then since the partition function is multi-

plicative on disconnected components, we see that Z((σ
(i,±)
(k1,k2)

− λ1∅)
∗(σ

(i,±)
(k1,k2)

− λ1∅)) =

Z(σ
(i,±)∗
(k1,k2)

)Z(σ
(i,±)
(k1,k2)

)−λZ(σ
(i,±)
(k1,k2)

)−λZ(σ
(i,±)∗
(k1,k2)

)+ |λ|2Z(1∅) = 0, thus σ
(i,±)
(k1,k2)

acts by the
scalar λ in any Hilbert A2-PTL-module of lowest weight zero.

Figure 5: σj,j+1 and σj,j−1

Suppose σ
(0,+)
(3,0) , σ

(0,+)
(1,1) , σ

(0,−)
(1,1) act as scalars a, b+, b− ∈ C respectively. Since σ

(0,+)
(0,3) =

σ
(0,+)∗
(3,0) , we see that σ

(0,+)
(0,3) acts as the scalar a, and since σ

(0,±)
(1,1) are self-adjoint we must

have b± ∈ R. Consider the ∅-tangle σ
(0,+)
(0,3) σ

(0,+)∗
(3,0) which acts as the scalar |a|2. However,

this tangle contains three copies of the tangle σ
(0,+)
(1,1) , which acts as a scalar b3+. Thus b+

must be the real cubic root of |a|2. If we let a = β3 for some β ∈ C, then b+ = |β|2.

Similarly, from considering the ∅-tangle σ
(0,+)∗
(0,3) σ

(0,+)
(3,0) , we find that b− = |β|2 = b+. The

scalar β is unique up to a choice of third root of unity, but the Hilbert A2-PTL-module
H does not depend on this choice as the only factors of β which appear are of the form
β3 or |β|2. Then we obtain the following result:

Proposition 4.4 An irreducible Hilbert A2-PTL-module H of weight zero in which the

maps σ
(i,+)
(k1,k2)

, σ
(i,−)
(k1,k2)

, i ∈ {0, 1, 2}, act as the complex number βk1β
k2
, βk2β

k1
respectively,

for some fixed β ∈ C, is determined up to isomorphism by the dimensions of H∅,a, a ∈
{0, 1, 2}, and the number β, where we require |β| ≤ α.

Proof: The uniqueness of the A2-PTL-module is a consequence of the fact that an irre-
ducible Hilbert P -module H is determined by its lowest weight modules (see Section 4.1),
since at least one of H∅,0, H∅,1 and H∅,2 is non-zero. Let E1, E2 be the tangles

so that α−1E1, α
−1E2 are projections. Then since E1E2E1 = |β|2E1 we have ||α−1E1 ·

α−1E2 · α
−1E1|| = |β|2α−2||α−1E1|| so that 1 ≥ |β|2α−2. Hence |β| ≤ α. �
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For β = α, V α
σ = A2-PTLσ (since when β = α there is no distinction between

contractible and non-contractible circles). For α > 3 (which corresponds to δ > 2),
the inner product is positive definite by [16, Lemma 3.10] and [50, Theorem 3.6], and
Hα

σ = V α
σ is a Hilbert A2-PTL-module. For 0 < α ≤ 3, if the inner product is positive

semi-definite on V α
σ we let Hα

σ be the quotient of V α
σ by the subspace of vectors of length

zero; otherwise Hα
σ does not exist.

Now consider the case when 0 < |β| < α. We define the set Thσ to be the set of all
(σ, 0)-tangles with no contractible circles and at most two non-contractible circles. For
each β we form the graded vector space V β, where V β

σ has basis Thσ, and we equip it
with an A2-PTL-module structure as follows. Let T ∈ A2-ATL(σ

′, σ) and R ∈ A2-ATLσ.
We from the tangle TR and reduce it using K1-K3, so that TR =

∑
j δ

bjαcj(TR)j, for

some basis A2-annular (σ
′, 0)-tangles (TR)j , where bj , cj are non-negative integers. Let

♯aj , ♯
c
j denote the number of non-contractible circles in the tangle (TR)j which have anti-

clockwise, clockwise orientation respectively. We define integers dj, fj and gj as follows:
dj = min(♯aj , ♯

c
j), fj = ♯aj − ♯cj − γfj if ♯

a
j ≥ ♯cj and fj = 0 otherwise, and gj = ♯cj − ♯aj − γgj if

♯aj ≤ ♯cj and gj = 0 otherwise, where γfj , γgj ∈ {0, 1, 2} such that fj , gj ≡ 0 mod 3. Then

we set T (R) =
∑

j δ
bjαcjβdj+fjβ

dj+gj
(T̂R)j, where (T̂R)j is the tangle (TR)j with dj + fj

anti-clockwise non-contractible circles removed, and dj + gj clockwise ones removed.

Proposition 4.5 The above definition make V β into an A2-PTL-module of weight zero

in which σ
(a)
(k1,k2)

= βk1β
k2

for a = 0, 1, 2.

The choice of (σ, 0)-tangles rather than (σ, 1)- or (σ, 2)-tangles to define V β was ar-

bitrary. For these other two choices, the maps T → β−1Tσ01, T → β
−1
Tσ02 respectively

would define isomorphisms from those modules to the one defined above.

Definition 4.6 Given two tangles S, T ∈ Thσ, we reduce T
∗S using K1-K3 so that T ∗S =∑

j δ
bjαcj(T ∗S)j, where (T ∗S)j are basis tangles in A2-ATL∅. Define dj, fj and gj for

each (T ∗S)j as above. We define an inner-product by 〈S, T 〉 =
∑

j δ
bjαcjβdj+fjβ

dj+gj
.

Invariance of this inner-product follows from the fact that T ∗S = 〈S, T 〉1∅ where 1∅ is
the annular (0 : 0)-tangle with no strings at all. When the above inner-product is positive
semi-definite, we define the Hilbert A2-PTL-module Hβ of weight zero to be the quotient
of V β by the subspace of vectors of length zero. Otherwise Hβ does not exist.

Proposition 4.7 For the above Hilbert A2-PTL-moduleHβ of weight zero, the dimension
of Hβ

∅,a is either 0 or 1 for any β ∈ C \ {0}.

Proof: For a = 0 the result is trivial since V β

∅,0
is the linear span of the empty tangle 1∅

given in Defn. 4.6. For a = 1, V β

∅,1
= span(σ10, σ12σ20). Let w = |β|2σ12σ20−β3σ10. Then

〈w,w〉 = |β|4〈σ12σ20, σ12σ20〉 − |β|2β
3
〈σ12σ20, σ10〉 − β3|β|2〈σ10, σ12σ20〉+ |β|6〈σ10, σ10〉

= |β|4(|β|4)− |β|2β
3
β3 − β3|β|2β

3
+ |β|6|β|2 = 0.

Then σ10 = |β|2β−3σ12σ20 = ββ−2σ12σ20 in Hβ

∅,1
. Similarly when a = 2, σ21σ10 =

β
2
β−1σ20. �
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So we may write a basis for Hβ which does not contain any clockwise non-contractible

circles, where we replace every σ10 by ββ−2σ12σ20 and every σ21σ10 by β
2
β−1σ20.

Proposition 4.8 The Hilbert A2-PTL-module Hβ, 0 < |β| < α, is irreducible.

Proof: Since Hβ
∅,a is at most one-dimensional it must be irreducible, for each a ∈ {0, 1, 2}.

The maps σj,j+1 moves a non-zero element in Hβ

∅,j
to an element in Hβ

∅,j+1
, and hence the

lowest weight module Hβ
∅ = Hβ

∅,0
⊕ Hβ

∅,1
⊕ Hβ

∅,2
is irreducible as an A2-ATL∅-module.

Since Hβ = A2-ATL(H
β
∅), the result follows from Lemma 4.1. �

Now we consider the case when β = 0. For each σ, the set Thaσ is defined to be the set
of all (σ, a)-tangles with no contractible or non-contractible circles at all. The cardinality
of Tha

b
is δa,b. We form the graded vector space V 0,a, where V 0,a

σ has basis Thaσ. We equip it
with anA2-PTL-module structure of lowest weight zero as follows. Let T ∈ A2-ATL(σ

′, σ)
and R ∈ Thaσ. We form TR and reduce it using K1-K3, so that TR =

∑
j δ

bjαcj(TR)j

as in the case 0 < |β| < α. We define (T̂R)j to be zero if there are any non-contractible

circles in (TR)j, and (TR)j otherwise. Then T (R) =
∑

j δ
bjαcj(T̂R)j .

Proposition 4.9 The above definition make V 0,a into an A2-PTL-module of weight zero
in which σj,j±1 = 0 for j = 0, 1, 2 mod 3.

Definition 4.10 Given basis tangles S, T ∈ Thaσ, we reduce T ∗S using K1-K3 so that
T ∗S =

∑
j δ

bjαcj(T ∗S)j for basis (a : a)-tangles (T ∗S)j. We define 〈S, T 〉j to be 0 if
there are any non-contractible circles in (T ∗S)j, and 1 otherwise. Then we define an
inner-product by 〈S, T 〉 =

∑
j δ

bjαcj〈S, T 〉j.

This inner-product is invariant as in the case 0 < |β| < α. Again, if the inner product
is positive semi-definite we define H0,a to be the quotient of V 0,a by the subspace of
vectors with length zero; otherwise H0,a does not exist. The Hilbert A2-PTL-module
H0,a, a ∈ {0, 1, 2}, is irreducible, where the proof is as for Hβ.

5 The A2-graph planar algebra of an ADE graph

We now describe the construction of the A2-graph planar algebra P G for an ADE graph.
We will then determine a partial decomposition of P G into irreducible A2-PTL-modules.

Let G be any finite SU(3) ADE graph with vertex set VG = VG
0 ∪ VG

1 ∪ VG
2 , where

VG
a is the set of a-coloured vertices of G, a = 0, 1, 2. Let sa = |VG

a | denote the number
of a-coloured vertices and let s = |VG|, the total number of vertices of G. For a three-
colourable graph, s = s0+s1+s2, and we have s1 = s2 due to the conjugation property of
the SU(3) ADE graphs. For the non-three-colourable graphs we discard any colouring of
the vertices, so that s = sa, a = 0, 1, 2. Let α = [3]q, q = eiπ/n, be the Perron-Frobenius
eigenvalue of G and let φ = (φv) be the corresponding eigenvector.

Ocneanu [43] defined a cell systemW on G, associating a complex numberW
(
△(αβγ)

)
,

called an Ocneanu cell, to each closed loop of length three △(αβγ) in G as in Figure 6,
where α, β, γ are edges on G, and such that these cells satisfy two properties, called Oc-
neanu’s type I, II equations respectively, which are obtained by evaluating the Kuperberg
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Figure 6: Cells associated to trivalent vertices

relations K2, K3 respectively, using the identification in Figure 6:

(i) for any type I frame in G we have

(10)

(ii) for any type II frame in G we have

(11)

The existence of these cells for the finite ADE graphs was shown in [14] with the exception

of the graph E
(12)
4 .

We denote by Gop the reverse graph of G, which is the graph obtained by reversing
the direction of every edge of G. For an edge γ on G we will denote the reverse edge on
Gop by γ̃. Let P G

σ =
⊕2

a=0 P
G,a
σ where P G,a

σ is the space of closed paths on G, Gop which
begin at vertices in VG

a , and with pattern σ where a ‘−’ denotes that an edge is on G
and ‘+’ denotes that an edge is on Gop. Note that for a non-three-colourable graph G, P G

contains three copies of the the space of closed paths on G, Gop, one for each a = 0, 1, 2.
We now define a presenting map Z : P(P G) → P G in a similar way to the definition

of Z : P(P ) → P in [16] for a subfactor planar algebra P where there is a flat connection
[40, 41] defined on the graph G. The difference is that in the present definition for P G

we do not need to use the connection, and hence we can define P G for any SU(3) ADE
graph G and not just those for which a flat connection exists. We define a ∗-operation on
P G by γ∗ = γ̃ ∈ P G

σ∗ for γ ∈ P G
σ .

Let T be a labelled tangle in PG
σ with m internal discs Dk with pattern σk and labels

xk ∈ P G
σk
, k = 1, . . . , m. We define Z(T ) as follows. First, convert all the discs Dk to

rectangles (including the outer disc) so that its edges are parallel to the x, y-axes, and
such that all the vertices on its boundary lie along the top edge of the rectangle. Next,
isotope the strings of T so that each horizontal strip only contains one of the following
elements: a rectangle with label xk, a cup, a cap, a Y-fork, or an inverted Y-fork (see
Figures 7 and 8). For a tangle T ∈ PG

σ with l horizontal strips sl, where s1 is the highest
strip, s2 the strip immediately below it, and so on, we define Z(T ) = Z(s1)Z(s2) · · ·Z(sl),
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Figure 7: left and right cups; left and right caps

Figure 8: incoming and outgoing Y-forks; incoming and outgoing inverted Y-forks

which will be an element of P G
σ . This algebra is normalized in the sense that for the empty

tangle ©, Z(©) = 1. We will need to show that this definition only depends on T , and
not on the decomposition of T into horizontal strips.

For any horizontal strip s we have sign strings σ1, σ2 given by the endpoints of the
strings along the top, bottom edge respectively of the strip (we will call these endpoints
vertices), where, along the top edge ‘+’ is given by a sink and ‘−’ by a source, and along
the bottom edge ‘+’ is given by a source and ‘−’ by a sink. Each vertex along the top (or
bottom) with downwards, upwards orientation respectively, corresponds to an edge on G,
Gop respectively. Then the top, bottom edge of the strip is labelled by elements in P G

σ1
,

P G
σ2

respectively. Then Z(s) defines an operator Ms ∈ End(P G
σ2
, P G

σ1
).

For a strip s containing one of the elements in Figures 7 and 8, the definition of Z(s)
is equivalent to that given in [16] for a subfactor A2-planar algebra, which we summarize
here. We define annihilation operators cl, cr by:

cl(αβ) = δs(α),s(β)

√
φr(α)√
φs(α)

s(α), cr(βα) = δr(α),r(β)

√
φs(α)√
φr(α)

r(α), (12)

and creation operators c∗l , c
∗
r as their adjoints, where α is an edge on G and β an edge on

Gop, and (φv)v is the Perron-Frobenius eigenvector for the Perron-Frobenius eigenvalue α
of G. We normalize (φv) so that

∑
v∈VG

0
φ2
v = 1. Define the following fork operators g, g,

f and f by:

g(α) =
1√

φs(α)φr(α)

∑

β1,β2

W (△
(α,β1,β2)
ijk )β1β2, (13)

g(α) =
1√

φs(α)φr(α)

∑

β1,β2

W (△
(α,β1,β2)
ijk )β1β2, (14)

and f = g
∗ and f = g

∗. Then Z assigns to the left, right caps the annihilation
operators cl, cr respectively, given by (12), to the left, right cups the creation operators
c∗l , c

∗
r respectively, to the incoming, outgoing Y-forks the operators g, g respectively

given in (13), (14), and to the incoming, outgoing inverted Y-forks the operators f, f
respectively.

For a strip s containing a rectangle with label x =
∑

γ λγγ, where γ are single paths

in P G
σ , we define the operator Ms = Z(s) differently to the definition of Z(s) given in [16]

for a subfactor A2-planar algebra. The definition here is simpler as it does not involve
the connection. Let p, p′ be the number of vertical strings to the left, right respectively of
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Figure 9: tr(ab) = tr(ba)

the rectangle in strip s, with orientations given by the sign strings σ(p), σ(p′) respectively.
Then

∑
γ,µ,ν λγ(µ ·γ ·ν, µ ·ν) defines a matrixMs, where the summation is over all paths µ

of length p with edges on G, Gop as dictated by the sign string σ(p), and paths ν of length
p′ with edges on G, Gop as dictated by the sign string σ(p′).

Theorem 5.1 The above definition of Z(T ) for any A2-planar tangle T makes P G =⋃
σ P

G
σ into an A2-C

∗-planar algebra, the A2-graph planar algebra, with dim(P G,a
∅ ) = na,

a = 0, 1, 2, and parameter [3].

Proof: This follows as in the proof of Theorem 5.4 in [16], where the only difference occurs
for isotopies of the tangle which involve rectangles. Here the invariance of Z under these
isotopies is simpler as the connection is not used – it follows from the fact that Z assigns
vertices to each region in the tangle T , and any such assignment does not change under
these isotopies. �

The partition function Z : PG,a
∅ −→ C is defined as the linear map which takes the

basis path v ∈ VG
0 to φ2

v, i.e. the map whose matrix entries, labelled by the vertices of G,
are φ2

v. Thus there is a multiplicative factor φ2
v for the external region, which is required

for spherical isotopy. As in the case of the planar algebra of a bipartite graph [28], the
partition function of a closed labelled tangle T depends only on T up to isotopies of the
2-sphere. The partition function of an empty tangle is equal to

∑
v∈VG

0
φ2
v = 1. Then we

have the analogue of Theorem 3.6 [28] for the A2-planar algebra of an ADE graph:

Theorem 5.2 Let P G be the A2-graph planar algebra of an ADE graph G, with (normal-
ized) Perron-Frobenius eigenvector (φv). Then for x ∈ P G

σσ∗ , tr(x) = [3]−|σ|Z(x̂) defines
a normalized trace on the union of the P ’s, where x̂ is any ∅-tangle obtained from x by
connecting the first |σ| boundary points to the last |σ|. The scalar product 〈x, y〉 = tr(x∗y)
is positive definite.

Proof: The normalization makes the definition of the trace consistent with the inclusions.
The property tr(ab) = tr(ba) is a consequence of planar isotopy when all the strings
added to x to get x̂ go round x in the same direction, as in Figure 9. Spherical isotopy
reduces the general case to the one above. Positive definiteness follows from the fact that
the matrix units e = γ · γ̃′ ∈ P G

σσ∗ are mutually orthogonal elements of positive length:
〈e, e〉 = [3]−|σ|φv1φv2 > 0, where γ, γ′ are paths of length |σ| with edges on G, Gop as
dictated by the sign string σ, which start at vertex v1 and end at vertex v2, and φv > 0
for all v since φ is a Perron-Frobenius eigenvector. �
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5.1 P G as an A2-PTL-module

We will now determine all the irreducible weight-zero A2-ATL-submodules of the A2-
graph planar algebra P G. Let ∆G = Gρ denote the adjacency matrix of the graph G. If G
is three-colourable then by permuting the labels ∆G may be written in the form

∆G =




0 ∆01 0
0 0 ∆12

∆20 0 0


 ,

where ∆01, ∆12 and ∆20 are matrices which give the number of edges between each 0,1,2-
coloured vertex respectively of G to each 1,2,0-coloured vertex respectively. By a suitable
ordering of the vertices the matrix ∆12 may be chosen to be symmetric. These matrices
satisfy the conditions ∆T

01∆01 = ∆20∆
T
20 = ∆2

12, ∆01∆
T
01 = ∆T

20∆20, which follow from the
fact that ∆G is normal [15, p.924]. For non-three-colourable G, we define ∆01 = ∆12 =
∆20 = ∆G .

Let β3
l , l ∈ VG

0 , be the eigenvalues of ∆01∆12∆20, and v
(l) their corresponding eigenvec-

tors. Then (∆01∆12∆20)
Tv(l) = β

3

l v
(l) and (∆01∆

T
01)

3v(l) = ∆01∆12∆20(∆01∆12∆20)
Tv(l) =

|βl|
6v(l). Then if λl are the eigenvalues of ∆01∆

T
01 with corresponding eigenvectors v(l)′,

l ∈ VG
0 , we have (∆01∆

T
01)

3v(l)′ = λ3l v
(l)′ so that v(l)′ = v(l) and λl = |βl|

2. For the vertices
l ∈ VG

a , where a ∈ {1, 2}, we also have eigenvalues β3
l of ∆a,a+1∆a+1,a+2∆a+2,a. However,

comparing ∆20∆01∆12v
(l′) = β3

l′v
(l′) where l′ ∈ VG

2 , and ∆20∆01∆12∆20v
(l) = β3

l ∆20v
(l)

where l ∈ VG
0 , we see that for each βla 6= 0, where la ∈ VG

a , a = 1, 2, we have β3
la
= β3

l for
some l ∈ VG

0 .
The dimension of P G

+m−n is given by the trace of ∆m(∆T )n, which counts the number of
pairs of paths on G, Gop, and is given by the sum

∑
l β

m
l β

n

l of its eigenvalues, l = 1, 2, . . . , s.
We can deduce all the irreducible weight-zero A2-ATL-submodules of P G in a similar way
to [47, Prop. 13]:

Proposition 5.3 Let G be one of the finite SU(3) ADE graphs, let ζl be the non-zero
eigenvalues of ∆01∆12∆20, counting multiplicity, and let βl be any cubic root of ζl, l =
1, 2, . . . , s′ where s = min{s0, s1}. For all the three-colourable graphs except E

(12)
5 , we

have s0 ≥ s1, all the irreducible weight-zero A2-ATL-submodules of the A2-graph planar
algebra P G are Hβl, l = 1, 2, . . . , s1, and (s0− s1) copies of H

0, and these can be assumed

to be mutually orthogonal. For E
(12)
5 we have s1 > s0, and all the irreducible weight-

zero A2-ATL-submodules of P E
(12)
5 are Hβl, l = 1, 2, . . . , s0, and 2(s1 − s0) copies of H0,

which can again be assumed to be mutually orthogonal. If G is not three-colourable, all
the irreducible weight-zero A2-ATL-submodules of P G are Hβl, l = 1, 2, . . . , s0, where s0
is the total number of vertices of G.

Proof: Consider the case where s0 > s1 (the case for E
(12)
5 where s1 > s0 is similar).

For l = 1, 2, . . . , s′, each βl-eigenvector v
(l) = (v

(l)
w ), w ∈ VG

0 of ∆01∆
T
01 spans a one-

dimensional subspace of P G,0
∅ that is invariant under A2-ATL

0
∅. To see this, first consider

the element σ01σ12σ20:

σ01σ12σ20v
(l) = σ01σ12σ20

∑

w∈VG
0

v(l)w =
∑

w′,w

(∆01∆12∆20)w′,wv
(l)
w =

∑

w′

β3
l v

(l)
w′ = β3

l v
(l), (15)
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since β3
l is an eigenvalue for ∆01∆12∆20 for eigenvector v(l). Similarly for σ∗

20σ
∗
12σ

∗
01.

Next consider the general element σ given by the composition of 2k elements σ =
σ01σ12σ20σ01 · · ·σk−1,kσ

∗
k−1,k

· · ·σ∗
12σ

∗
01:

σv(l) =
∑

w′,w

(∆01∆12 · · ·∆k−1,k∆
T
k−1,k

· · ·∆T
01)w′,wv

(l)
w

=
∑

w′,w

((∆01∆
T
01)

k)w′,wv
(l)
w =

∑

w′

|βl|
2kv

(l)
w′ = |βl|

2kv(l). (16)

Any element of A2-ATL
0
∅ is a linear combination of products of elements σj,j±1 such

that the regions which meet the outer and inner boundaries have colour 0. Let σ be
such an element. Then the action of σ on the βl-eigenvector v

(l) is given by σv(l) =∑
w′,wM(w′, w)v

(l)
w , where M is the product of matrices ∆G , ∆

T
G given by replacing every

σj,j+1, σj′,j′−1 in σ by ∆G , ∆T
G respectively. Then by (15) and (16), this gives some

scalar multiple of v(l). Similarly σa,0v
(l) spans a one-dimensional subspace of P G,a

∅ that
is invariant under A2-ATL

a
∅, a = 1, 2. Then for each l = 1, 2, . . . , s′, the βl-eigenvector

v(l) generates the submodule Hβl by Proposition 4.4. The inner product on Hβl coincides
with the inner product on P G. To see this we only need to check its restriction to the
zero-weight part because of (9). For any element A ∈ A2−ATL

0
∅, 〈Av, v〉Hβl = c〈v, v〉Hβl

whilst 〈Av(l), v(l)〉PG = d〈v(l), v(l)〉PG . The element A is necessarily a combination of non-
contractible circles, which gives the same contribution in P G as in Hβl by (15), (16). So
c = d. This shows that the inner product on the Hβl is positive definite, since the inner
product on P G is.

Similarly, a 0-eigenvector generates the submodule H0, where for s0 > s1, dim(H0,0

∅,0
) =

1 and dim(H0,1

∅,1
) = dim(H0,2

∅,2
) = 0, whilst for E

(12)
5 we have dim(H0,1

∅,1
) = dim(H0,2

∅,2
) = 1

and dim(H0,0

∅,0
) = 0. As in [47], in order to make the resulting submodules orthogonal we

take an orthogonal set of eigenvectors. �

For an ADE graph G with Coxeter number n, let β(l1,l2) be the eigenvalue given by

β(l1,l2) = exp

(
2iπ

3n
(l1 + 2l2 + 3)

)
+exp

(
−
2iπ

3n
(2l1 + l2 + 3)

)
+exp

(
2iπ

3n
(l1 − l2)

)
(17)

for exponent (l1, l2) of G (see, e.g. [18]). Then for the graphs A(n),

PA(n)

⊃
⊕

(l1,l2)

Hβ(l1,l2) , (18)

for n 6≡ 0 mod 3, whilst for n = 3k, k ≥ 2,

PA(3k)

⊃
⊕

(l1,l2)

Hβ(l1,l2) ⊕H0,0, (19)

where in both cases the summation is over all (l1, l2) ∈ {(m1, m2)| 3m2 ≤ n − 3, 3m1 +
3m2 < 2n− 6}, i.e. each β(l1,l2) is a cubic root of an eigenvalue of ∆01∆12∆20. We believe

that we in fact have equality here, so that PA(n)
=

⊕
(l1,l2)

Hβ(l1,l2). In the A1-case this was
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achieved by a dimension count of the left and right hand sides [47, Thm. 15]. However,
we have not yet been able to determine a similar result in our A2-setting.

For the other ADE graphs, Prop. 5.3 gives the following results for the zero-weight
part of P G . For the D graphs, we have

PD(3k)

⊃
⊕

(l1,l2)

Hβ(l1,l2) ⊕ 3H0,0, (20)

for k ≥ 2, where the summation is over all (l1, l2) ∈ {(m1, m2)|m2 ≤ k − 1, m1 + m2 <
2k − 2, m1 −m2 ≡ 0 mod 3}, whilst for n 6≡ 0 mod 3,

PD(n)

⊃
⊕

(l1,l2)

Hβ(l1,l2) , (21)

where the summation is over all (l1, l2) ∈ {(m1, m2)|3m2 ≤ n − 3, 3m1 + 3m2 < 2n− 6}.
The path algebras forA(n)∗ andD(n)∗ are identified under the map which sends the vertices
il, jl and kl of D

(n)∗ to the vertex l of A(n)∗, l = 1, 2, . . . , ⌊l/2⌋. We have

PA(n)∗

= PD(n)∗

⊃
⊕

(l1,l2)

Hβ(l1,l2), (22)

where the summation is over all (l1, l2) ∈ {(m,m)|m = 0, 1, . . . , ⌊(n − 3)/2⌋}. Similarly,
the path algebras for E (8) and E (8)∗ are identified, and

P E(8)

= P E(8)∗

⊃ Hβ(0,0) ⊕Hβ(3,0) ⊕Hβ(0,3) ⊕Hβ(2,2). (23)

For the graphs E
(12)
i , i = 1, 2, 3, we have

P E
(12)
i ⊃ Hβ(0,0) ⊕ 2Hβ(2,2) ⊕Hβ(4,4). (24)

For the remaining exceptional graphs we have

P E
(12)
4 ⊃ Hβ(0,0) ⊕Hβ(2,2) ⊕Hβ(4,4) ⊕ 2H0,0, (25)

P E
(12)
5 ⊃ Hβ(0,0) ⊕Hβ(3,0) ⊕Hβ(0,3) ⊕Hβ(2,2) ⊕Hβ(4,4) ⊕H0,1 ⊕H0,2, (26)

P E(24)

⊃ Hβ(0,0) ⊕Hβ(6,0) ⊕Hβ(0,6) ⊕Hβ(4,4) ⊕Hβ(7,4) ⊕Hβ(4,7) ⊕Hβ(6,6) ⊕Hβ(10,10) . (27)

The A2-planar algebra P ∼= PTL associated to the subfactor double complex for A(n)

[16], clearly has decomposition P = Hα as an A2-ATL-module, since PTL is equal to
the A2-ATL-module Hα (see Section 4.2). Since every A2-planar algebra contains PTL,
the A2-C

∗-planar algebra associated to the subfactor double complex for any ADE graph
with a flat connection will contain the zero-weight module Hα. The graphs A(n), D(n),
n < ∞, have a flat connection [13], and it is expected that the only other graphs with a

flat connection are E (8), E
(12)
1 and E (24) [16, pp.359-360].
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Figure 10: Two paths sharing a common string Figure 11: A tangle in A(2,2)

5.2 Irreducible modules with non-zero weight

In this section we present some irreducible A2-ATL-modules with non-zero weight.

Let A(m,n) := A2-ATL+m−n/A2-ATL
(m,n)
+m−n and A

(m,n)
0 := A2-ATL

0
+m−n/A2-ATL

0,(m,n)
+m−n ,

where A2-ATL
0,(m,n)
+m−n is the two-sided ideal in A2-ATL

0
+m−n given by the linear span of

all labeled A2-annular +m−n-tangles in A2-ATL
0
+m−n with rank < (m,n). A through

string in a tangle in A(m,n) will be a choice of a path along strings from a vertex on the
outer disc of the tangle to a vertex on its inner disc, such that this choice allows each
vertex on the outer and inner disc to be the endpoint of disjoint through strings, that
is, no two through strings share a common string. It is always possible to make such a
choice of m+n through strings in any tangle T in A(m,n). To see this, note that the rank
at the inner and outer disc of T is (m,n), thus if two paths from the outer disc to the
inner disc share a common string, the rank of T would necessarily be less than (m,n), as

illustrated in Figure 10, and thus T is in the ideal A2-ATL
(m,n)
+m−n .

Thus we will draw any basis tangle in A(m,n) with m + n through strings (denoted
by thick strings). These through strings will be connected by other strings, which must
be single strings which do not have any trivalent vertices along them otherwise digons
or embedded squares must necessarily be created- we will call these connecting strings
rungs. An example of a tangle in A(2,2) is illustrated in Figure 11.

5.2.1 The case m,n 6= 0

For m,n 6= 0, we will show that there is a unique choice of through strings in any tangle
in A(m,n). First we need some more definitions and a lemma. We will call a region in a
tangle a through space if its boundary contains a segment of both the inner and outer
disc, e.g. the regions R, S are through spaces in the following tangle:

If there is a regionR whose boundary contains a segment of the outer or inner discs, and
the rest of its boundary consists of three strings joined together at two trivalent vertices
(see Figure 12), we will call the string between the two trivalent vertices a bottom rung.

Lemma 5.4 Any basis tangle in A(m,n), where m,n 6= 0, contains either a through space
or a bottom rung.
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Figure 12: A bottom rung

Proof: Let T be any basis tangle in A(m,n). There are two pair of adjacent vertices (vj , v
′
j)

on the outer disc which have opposite orientations, i.e. vj = ±, v′j = ∓, where j = 1, 2.
Suppose T does not contain any through spaces, and consider the region R which meets
the outer disc at the segment between vertices v1 and v′1. If this region is only bounded
by three strings, as in Figure 12, then T contains a bottom rung. Now suppose the region
R is bounded by five strings:

The through strings cannot be both s1 and s2 (and similarly for both s3 and s4), as in the
left-hand side of Figure 13, since then both s3 and s4 must be connected to the adjacent
through string, which creates an embedded square, contradicting the assumption that T
is a basis tangle. A similar argument can also be used to show that this region R cannot
be bounded by more than five strings in a basis tangle. Thus the through strings must
be s2 and s3, as illustrated on the right-hand side of Figure 13.

Figure 13: Choices of through strings for a region R bounded by five strings

Recall that v1, v
′
1 have opposite orientations. Due to the orientations of the adjacent

boundary points, we must have the following situation:
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where the orientations of the boundary points are ε = v1, ε
′ = v′1, and thus at (v2, v

′
2) we

must have a bottom rung:

�

A similar argument gives the following:

Corollary 5.5 Let σ be any permutation of +m−n, for any m,n 6= 0. Then any basis
((σ, a), (+m−n, a′))-tangle of rank (m,n) contains either a through string of a bottom rung.

Then we have the following result:

Lemma 5.6 When m,n 6= 0, there is only one possible choice of m+ n disjoint through
strings in any basis tangle in A(m,n).

Proof: Let T be any basis tangle in A(m,n). Suppose first that T contains a through space.
Since the rungs in T must connect two distinct through strings, the strings which form
the boundaries of the through space must be a pair of adjacent through strings, and by
the same argument the other through strings are uniquely determined.

Now suppose that the basis tangle T does not contain a through space. Then by
Lemma 5.4, it must contain a bottom rung. Here there is only one possibility for the
allocation of disjoint through strings:

Here the vertex • has the opposite orientation to the vertex ◦. We now consider the tangle
T ′ obtained by replacing the part of T contained within the dashed rectangle above by

and leaving the rest of the tangle unchanged. Note that T ′ is no longer a +m−n-tangle
as the orientations of the two vertices have been reversed. However, by Corollary 5.5, T ′

must either contain a through space or a bottom rung, and so we proceed as we did for
the original tangle T . This procedure reduces the number of rungs in the tangle by one,
and thus iterating this procedure will lead to a tangle which contains a through space.
Thus we find the unique way of choosing the through strings in T . �

We will now show that any basis tangle in A(m,n) can be written as pi(m,n)p̃
j
(m,n), i, j ∈ Z,

where the +m−n-tangles p(m,n), p̃(m,n) are illustrated in Figure 14. Note that p∗(m,n) =

24



Figure 14: +m−n-tangles p(m,n) and p̃(m,n)

p−1
(m,n), p̃

∗
(m,n) = p̃−1

(m,n). We will usually simply write p, p̃ for p(m,n), p̃(m,n) respectively,

where (m,n) is obvious. It is easy to see by drawing pictures, and using relations K1-K3
if necessary, that p, p̃, p∗, p̃∗ all commute in A(m,n). Note that if T is a +m−n-tangle with
outer disc labeled by ∗a, then pT , p̃T are +m−n-tangles with outer disc labeled by ∗a+1,

∗a−1 respectively, i.e. for some A2-ATL-module V , p, p̃ is a map from V a
+m−n to V a+1

+m−n,

V a−1
+m−n respectively. The tangles p, p̃ can be regarded as some sort of “rotation by one”,

since the through strings connect vertex i on the outer disc to vertex i + 1 on the inner
disc. We will say that a basis tangle T in A(m,n) has rotation number b ∈ N ∪ {0} if
the through strings connect vertex i on the outer disc to vertex i+ b on the inner disc.

By the same argument as was used at the end of the proof of Lemma 5.4, any basis
tangle T in A(m,n) which does not contain a through space may be written as T = XT ′,
where X is a tangle with exactly one rung between each pair of adjacent through strings,
as illustrated in Figure 11. Such a tangle is given by pp̃∗ or its inverse. Repeating this
argument for T ′, we see that any basis tangle T in A(m,n) which does not contain a through
space may be written as T = X iT ′, where X = pp̃∗, i ∈ Z, and T ′ is a basis tangle in
A(m,n) which contains a through space. Thus to show that any basis tangle in A(m,n) can
be written as pip̃j we need only show that any basis tangle T ′ which contains a through
space can be written in this form. We will show this by induction on the rotation number
of such T ′.

We start with rotation number 0. If there is a rung anywhere in T ′, then the orienta-
tions of the vertices on the inner and outer discs dictate that we must have a factor pp̃∗,
which contradicts the fact that T ′ contains a through space. Hence the only basis tangle
T ′ with rotation number 0 which contains a through space is the identity tangle 1+m−n.

Suppose now that for any basis tangle which contains a through space and has rotation
number k can be written as pip̃j for some i, j ∈ Z, and let T ′ be any basis tangle which
contains a through space and has rotation number k+1. Then T ′p∗ has rotation number
k, and thus T ′p∗ = pip̃j for some i, j ∈ Z. Then T ′ = pi+1p̃j as required. Thus we have
proved the following:

Lemma 5.7 Any basis tangle in A(m,n) can be written as pip̃j for some i, j ∈ Z.

Now A
(m,n)
0 = {pip̃j| i − j ≡ 0 mod 3}, thus A

(m,n)
0 is generated by p3, p̃3, p2p̃∗ and

p∗p̃2. We let ϕ(m,n) := p2(m,n)p̃
∗
(m,n) and ϕ̃(m,n) := p∗(m,n)p̃

2
(m,n). These tangles are illustrated

in Figure 15. Then since ϕ2ϕ̃ = p4(p̃∗)2p∗p̃2 = p3, and ϕϕ̃2 = p̃3, we see that A
(m,n)
0 is

generated by ϕ(m,n) and ϕ̃(m,n). Note that we have ϕ∗ = ϕ−1 and ϕ̃∗ = ϕ̃−1.
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Figure 15: +m−n-tangles ϕ(m,n) and ϕ̃(m,n)

Let ρ(m,n) be the +
m−n-tangle given by the image of ϕ(m,n)ϕ̃(m,n) in A

(m,n)
0 , illustrated

in Figure 16. The tangle ρ(m,n) is a “rotation by two”. Indeed, it is easy to see by

drawing pictures and using relation K3 that ρ(m,n) is a rotation of order k in A
(m,n)
0 , i.e.

(ρ(m,n))
k = 1+m−n in A

(m,n)
0 , where k = m+n if m+n is odd and k = (m+n)/2 if m+n

is even.

Figure 16: +m−n-tangle ρ(m,n)

Note that the algebras A(m,n) are infinite dimensional since pip̃j are all distinct tan-
gles in A(m,n), for i, j ∈ Z. However, we can obtain a finite-dimensional A2-ATL-
module V (m,n),γ by imposing the condition that (pp̃)3 acts by multiplication by a scalar

γ ∈ C in the lowest weight module V
(m,n),γ
+m−n , i.e. (pp̃)3 = γ1+m−n in V (m,n),γ . Note

that the A2-ATL-module V (m,n),γ may not be irreducible, but may rather decompose
into irreducible modules. Now ϕm+n = (pp̃)m+2n and ϕ̃m+n = (pp̃)2m+n. We have
ϕm+n = γ(m+2n)/31 and ϕ̃m+n = γ(2m+n)/31 (note that m+ 2n ≡ 2m+ n ≡ 0 mod 3 since
m ≡ n mod 3). Then we have ϕ∗ = γ−(m+2n)/3ϕm+n−1 and ϕ̃∗ = γ−(2m+n)/3ϕ̃m+n−1. Sub-
stituting for ϕ∗ in ϕ∗ϕ̃ = ((pp̃)3)∗ = γ1 we obtain ϕm+n−1ϕ̃ = γγ(m+2n)/31, which gives
the relation ϕ̃∗ = γ−1γ−(m+2n)/3ϕm+n−1. Then we have ϕ̃ = γ−1γ−(m+2n)/3(ϕ∗)m+n−1,
and since ϕ̃∗ = ϕ̃−1, we have ϕ̃ϕ̃∗ = |γ|−2|γ|−2(m+2n)/31 = 1, and thus we must take
γ ∈ T = {γ ∈ C : |γ| = 1}. Then as an A2-ATL

0
+m−n-module

V
(m,n),γ
+m−n = span(ϕl

(m,n)| l = 0, 1, . . . , m+ n− 1),

where ϕm+n
(m,n) = γ(m+2n)/31+m−n and γ ∈ T. For all m,n 6= 0, we can choose a faithful

trace tr′ on A(m,n), which we extend to a trace tr on A2-ATL+m−n by tr = tr′ ◦ π, where
π is the quotient map π : A2-ATL+m−n → A(m,n). We can define an inner product on
A2-ATL(σ : +m−n) by 〈S, T 〉 = tr(T ∗S) for any S, T ∈ A2-ATL(σ : +m−n).
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If γ(m+2n)k/3 6= 1 for any k ∈ N, then dim(V
(m,n),γ
+m−n ) = m + n. The A2-ATL-module

V (m,n),γ is irreducible by Lemma 4.1 since V (m,n),γ = A2−ATL(V
(m,n),γ
+m−n ). If the inner prod-

uct is positive semi-definite, we define the Hilbert A2-ATL-moduleH(m,n),γ, γ(m+2n)k/3 6= 1
for any k ∈ N, to be the quotient of V (m,n),γ by the zero-length vectors with respect to
this inner product; otherwise H(m,n),γ does not exist.

Now suppose γ(m+2n)/3 = 1. Then we see that ϕ(m,n) acts on V
(m,n),γ
+m−n as Zm+n, by

permuting the m + n basis elements ϕl
(m,n), and so the A2-ATL

0
+m−n-module V

(m,n),γ
+m−n

decomposes as a direct sum over the (m+n)th roots of unity ω of A2-ATL
0
+m−n-modules

V
(m,n),γ,ω
+m−n , where V

(m,n),γ,ω
+m−n is the ω-eigenspace for the action of Zm+n with eigenvalue ω.

Since ϕ∗
(m,n)ϕ(m,n) = 1+m−n , the decomposition into V

(m,n),γ,ω
+m−n is orthogonal. If we let

ψγ,ω
(m,n) be the vector in V

(m,n),γ,ω
+m−n which is proportional to

∑m+n−1
j=0 (ωγ)−jϕj

(m,n) such that

〈ψγ,ω
(m,n), ψ

γ,ω
(m,n)〉 = 1, then ϕ(m,n)ψ

γ,ω
(m,n) = ωγψγ,ω

(m,n). We see that dim(V
(m,n),γ,ω
+m−n ) = 1, and

V
(m,n),γ,ω
+m−n is the span of ψγ,ω

(m,n). The A2-ATL-module V (m,n),γ,ω is irreducible by Lemma

4.1 since V (m,n),γ,ω = A2−ATL(ψ
γ,ω
(m,n)).

If the inner product is positive semi-definite, we define the Hilbert A2-ATL-module
H(m,n),γ,ω, γ(m+2n)/3 = 1, to be the quotient of V (m,n),γ,ω by the zero-length vectors with
respect to this inner product; otherwise H(m,n),γ,ω does not exist.

5.2.2 The case n = 0

Figure 17: +3-tangles q(3,0) and q̃(3,0)

We will now consider the case when n = 0. The case when m = 0 is similar. When
n = 0, a basis tangle in A(m,0) will not always have a unique rotation number, as the choice
of through strings is not always unique. Consider the case m = 3. The algebra A(3,0) is
generated by the tangles q(3,0) and q̃(3,0), which are illustrated in Figure 17. Notice that
for q̃(3,0), the first choice of through strings gives rotation number 1, whilst the second
choice gives rotation number 0. We will usually write q, q̃ for q(3,0), q̃(3,0). Again, it is easy
to see by drawing pictures, and using relations K1-K3 if necessary, that q, q̃, q∗, q̃∗ all
commute in A(3,0), and that q̃∗ = q∗q̃. Note that q∗ = q−1, but that q̃, q̃∗ do not have an
inverse in A(3,0). Due to the orientations of the vertices on the inner and outer discs, there
must be an equal number of rungs between any pair of adjacent through strings. Both q
and q̃ can be drawn as tangles with rotation number 1. The only other basis tangle with
rotation number 1 and at most one rung between any pair of adjacent through strings is
the tangle:
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All tangles with more than one rung between any pair of adjacent through strings are
obtained by inserting extra factors of q̃ or q̃∗.

Now suppose that any basis tangle in A(3,0) for which a choice of through strings can be
made so that the tangle has rotation number k, can be written as qiq̃j, where i ∈ {0, 1, 2},
j ∈ N∪ {0}. Then if T can be drawn as a tangle with rotation number k+1, Tq∗ can be
drawn as a tangle with rotation number k, thus Tq∗ = qiq̃j for some i ∈ Z, j ∈ N ∪ {0}.
Then T = qi+1q̃j. Hence we have shown that A(3,0) is generated by q and q̃. Similarly,
A(3k,0) is generated by q(3k,0) and q̃(3k,0), for all k ∈ N.

Then A
(3,0)
0 is generated by ϕ(3,0) := q(3,0)q̃(3,0) and q̃

3
(3,0). Since q̃3(3,0) = ϕ3

(3,0), A
(3,0)
0 is

generated by ϕ(3,0). It is infinite dimensional, but we can construct a finite-dimensional

A2-ATL
0
+3-module V

(3,0),γ

+3,0
by letting ϕ(3,0)(= ϕ∗

(3,0)) count as some scalar γ ∈ R in A
(3,0)
0 ,

i.e. ϕ(3,0) = γ1+3. Then we have an A2-ATL-module V (3,0),γ = A2−ATL(V
(3,0),γ

+3,0
). Note

that for each a ∈ {0, 1, 2}, V
(3,0),γ
+3,a is one-dimensional, V

(3,0),γ
+3,a = Cqa(3,0).

For any two elements S, T ∈ V
(3,0),γ
σ , the tangle T ∗S will have three (source) vertices on

its outer disc and three (sink) vertices on its inner disc. We use relations K1-K3 on T ∗S to
obtain a linear combination

∑
j cj(T

∗S)j of tangles (T
∗S)l which do not contain any closed

circles, digons or embedded squares, where cj ∈ C. We let 〈S, T 〉l be zero if rank((T
∗S)l) <

(3, 0). Otherwise, (T ∗S)l will be equal to ϕ
p
(3,0) for some p = 0, 1, 2, . . . , and we let 〈S, T 〉l

be γp. We then define an inner product on V (3,0),γ by 〈S, T 〉 =
∑

j cj〈S, T 〉j.

The A2-ATL-module V (3,0),γ is irreducible by Lemma 4.1. If the inner product is
positive semi-definite we define the Hilbert A2-ATL-module H(3,0),γ to be the quotient of
V (3,0),γ by the zero-length vectors with respect to this inner product; otherwise H(3,0),γ

does not exist. There is a similar description of modules H(0,3),γ of minimum rank (0, 3),
where there are now three source vertices on the inner disc.

Figure 18: Annular +2−2-tangles U1, Ũ1

We will now conjecture certain irreducible modules of non-zero weight that the A2-
planar algebra P G for the graphs E (8) and D(6) should contain. Let U1, Ũ1 ∈ A2-ATL+2−2

be the annular +2−2-tangles illustrated in Figure 18. From drawing pictures, it appears
that the lowest weight module V

(3,0),γ
+2−2 is the span of v1, v2, illustrated in Figure 19, where
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v2 = ϕ(2,2)v1. These are the only tangles we can find that have rank no smaller than
(3, 0), do not contain any closed circles, digons or embedded squares, and which cannot
be written as a linear combination of tangles of the form v′ϕp

(3,0) for some p ∈ N, where

v′ is v1 or v2, and the tangle ϕp
(3,0) is inserted in the inner disc of v′.

Figure 19: The basis elements v1, v2 of V
(3,0),γ
+2−2

The action of A2-ATL+2−2 on H
(3,0),±1
+2−2 is given explicitly as

ϕ(2,2)v1 = v2, ϕ(2,2)v2 = v1,

Ũ1v1 = δv1, Ũ1v2 = γv1,
ϕ̃(2,2)vl = vl, U1vl = 0, l = 1, 2.

The roles of Ul and Ũl are interchanged for H(0,3),γ .
We were able to conjecture certain irreducible modules of non-zero weight that the

A2-graph planar algebra P G for the graphs E (8) and D(6) should contain, since the action
of the rotation ρ(2,2) on the A2-planar algebras for these graphs was much easier to write
down than for the other graphs.

For the graph E (8), its zero-weight irreducible modules are Hβ(0,0), Hβ(3,0) , Hβ(0,3) and
Hβ(2,2). By computing the inner-products 〈vi, vj〉 of the elements vl ∈ Hβ

0,1 explicitly,
and using Mathematica to compute the rank of the matrix (〈vi, vj〉)i,j, we computed

the dimension of H
β(0,0)

+− , H
β(3,0)

+− , H
β(0,3)

+− and H
β(2,2)

+− and found that P E(8)
did not con-

tain any irreducible modules of lowest weight (1, 1). Similarly, by computing the dimen-

sions of W = H
β(0,0)

+2−2,0
⊕ H

β(3,0)

+2−2,0
⊕ H

β(0,3)

+2−2,0
⊕ H

β(2,2)

+2−2,0
, we find that dim(W ) = 30 whilst

dim(P E(8)

+2−2,0
) = 36, so that the dimension ofW⊥∩P E(8)

+2−2,0
is 6. Then for modules of lowest

weight ≤ (2, 2), we conjecture

P E(8)

+2−2 = H
β(0,0)

+2−2 ⊕H
β(3,0)

+2−2 ⊕H
β(0,3)

+2−2 ⊕H
β(2,2)

+2−2 ⊕H
(3,0),ε1
+2−2 ⊕H

(0,3),ε1
+2−2 ⊕H

(2,2),γ1,ε2i
+2−2 ⊕H

(2,2),γ2,ε3i
+2−2 ,

where εi ∈ {±1}, i = 1, 2, 3, and γ1, γ2 ∈ T, where the exact values of these six parameters
has not yet been determined. This conjecture arises from computing the eigenvalues of
the actions of ρ(2,2), U1 and Ũ1 on W⊥ ∩ P E(8)

+2−2,0
. Each action is a linear transformation,

which we computed by hand, and then computed using Mathematica the eigenvalues of
the matrix which gives this linear transformation. These eigenvalues are

ρ(2,2) : 1 twice, − 1 four times, (28)

U1, Ũ1 : [4]αδ−2, once, 0 five times. (29)
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Eigenvalues of the action of

A2-ATL-module ρ(2,2) U1 Ũ1

H
(2,2),γ,ω

+2−2,a ω2 0 0

H
(3,0),±1
+2−2,a 1, −1 0 (×2) [4]αδ−2, 0

H
(0,3),±1

+2−2,a 1, −1 [4]αδ−2, 0 0 (×2)

H
(0,3),γ
+2−2,a, γ 6= ±1 1 (×3), −1 (×3) 0 (×6) [4]αδ−2 (×3), 0 (×3)

H
(3,0),γ

+2−2,a, γ 6= ±1 1 (×3), −1 (×3) [4]αδ−2 (×3), 0 (×3) 0 (×6)

Table 1: The eigenvalues of the actions of ρ(2,2), U1, Ũ1 on H
(2,2),γ,ω

+2−2,a , H
(3,0),γ

+2−2,a, H
(0,3),γ

+2−2,a.

The eigenvalues of the actions of these elements on H
(2,2),γ,ω
+2−2,a , H

(3,0),γ
+2−2,a and H

(0,3),γ
+2−2,a are

given in the Table 1.

Then we see thatW⊥∩P E(8)

+2−2 should contain one copy of both of H
(3,0),ε1
+2−2 and H

(0,3),ε′1
+2−2 ,

ε1, ε
′
1 ∈ {±1}, and since P E(8)

is invariant under conjugation of the graph E (8), we should

have ε1 = ε′1. Then we need two rank (2, 2) modules H
(2,2),γ1,ω

+2−2 , H
(2,2),γ2,ω

+2−2 such that the

action of ρ(2,2) on both has an eigenvalue ω2 = −1, i.e. ω = ±i. Since P E(8)
is invariant

under complex conjugation, we would either have γ1, γ2 ∈ R or else γ1 = γ2. However,
to determine the exact values of εi, i = 1, 2, 3, and γ1, γ2, we would need to consider the
action of ϕ(2,2) on W⊥ ∩ P E(8)

+2−2 , the computation of which is extremely tedious. So we
have

P E(8)

⊃ Hβ(0,0) ⊕Hβ(3,0) ⊕Hβ(0,3) ⊕Hβ(2,2) ⊕H(3,0),ε1 ⊕H(0,3),ε1 ⊕H(2,2),γ1,ε2i ⊕H(2,2),γ2,ε3i.

Similarly for the graph D(6), PD(6)
contains no irreducible modules of lowest weight

(1, 1). Computing the dimensions of PD(6)

+2−2 and W = H
β(0,0)

+2−2,0
⊕ H0,0

+2−2,0
as for the E (8)

case, we find dim(PD(6)

+2−2,0
) = 16 and dim(W ) = 14. Then the dimension of W⊥∩PD(6)

+2−2 is

2, and hence PD(6)

+2−2 must either contain one copy of H
(3,0),γ
+2−2 or else H

(2,2),γ1,ω1

+2−2 ⊕H
(2,2),γ2,ω2

+2−2 .

By considering the action of ρ(2,2) on W
⊥ ∩ PD(6)

+2−2 , we have the eigenvalue 1 twice. Then

W = H
(2,2),γ1,ω1

+2−2 ⊕H
(2,2),γ2,ω2

+2−2 , where ω2
i = 1, i = 1, 2. Then we see that

PD(6)

⊃ Hβ(0,0) ⊕H0,0 ⊕H(2,2),γ1,ε1 ⊕H(2,2),γ2,ε2,

where ε1, ε2 ∈ {±1}, and either γ1, γ2 ∈ R or else γ1 = γ2. Again, to determine the values
of εi, γi, i = 1, 2, explicitly requires considering the eigenvalues of the action of ϕ(2,2) on

W⊥ ∩ PD(6)

+2−2.
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