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ABSTRACT Power system interconnections using high-voltage direct-current (HVDC) technologies
between different areas can be an effective solution to enhance system efficiency and reliability. Particularly,
the multi-terminal dc grids that could balance and ensure resource adequacy increase asset utilization and
reduce costs. In this paper, the technical feasibility of building dc grids using the line-commutated converter-
based (LCC) and voltage source converter-based (VSC) HVDC technologies is discussed. Apart from
presenting the technical challenges of building LCC dc grids and LCC/VSC hybrid dc grids, the reliability
modeling and analysis of these DC grids are also presented. First, the detailed reliability model of the modular
multi-level converters (MMCs) with series-connected high-voltage and low-voltage bridges is developed.
The active mode of redundancy design is considered for the reliability model. To this end, a comprehensive
whole system reliability model of the studied systems is developed. The reliability model of each subsystem
is modeled in detail. Various reliability indices are calculated using this whole system reliability model. The
impacts of the redundancy design of the MMCs on these indices are presented. The studies of this paper
provide useful guidance for dc grid design and reliability analysis.

INDEX TERMS LCC-HVDC, VSC-HVDC, MMC, multi-terminal dc grid, reliability analysis, k-out-of-n.

I. INTRODUCTION

High-voltage direct-current (HVDC) technology which has
been used for more than 70 years [1]-[3], is suited to transport
large amounts of power over long distances with minimum
losses. Thyristor-based line commutated converter (LCC)
HVDC is used for transferring bulk power (over sev-
eral GW) over long distances due to its mature technology
that is efficient, reliable and cost-effective [1]-[3]. However,
LCC-HVDC brings some inherent problems, such as com-
mutation failure, difficulty in connecting weak AC systems,
and the need for DC voltage polarity reversal during power
flow reversal [4]-[6]. These obstacles make this technology
difficult when considering large-scale DC grids.
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Over the last two decades, the voltage source con-
verter (VSC) based HVDC technology has become more
attractive compared to the LCC-HVDC for building multi-
terminal DC (MTDC) grids [7], [8]. The features of
VSC-HVDC technology include [9]-[11]:

1) compact and flexible station layouts, low space require-
ments, and a scalable system design;

2) fast dynamic performance and stable operation with AC
networks;

3) capability to supply passive networks and of black-start;

4) independent control of active and reactive power;

Even though VSC technology is foreseen to dominate the
future HVDC market, it is still facing challenges in the volt-
age level, converter power losses, transmission capacity and
capital costs. The LCC systems have the self-healing capabil-
ity against DC overhead line faults, while the VSC systems
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would depend on DC circuit breakers (DCCBs) or converters
with fault blocking capability. Moreover, compared to LCC
systems, it is difficult to achieve an overload operation in
VSC systems. These limitations are slowing their wide spread
applications. However, the gaps between LCCs and VSCs are
narrowing on all counts.

Deployment of HVDC is leading to an increasing number
of point-to-point connections in different parts of the world.
The logical next step is to interconnect the links to form
MTDC networks which can improve the reliability of power
supply, reduce power losses, integrate and optimize the use
of renewable energy sources from different regions [12].

As there are and will be many point-to-point LCC HVDC
and ultra HVDC (UHVDC) links in operation, under con-
struction or at the planning stage, one of the solutions to
form MTDC grids is to interconnect the existing LCC-HVDC
links so as to provide more flexible operations [13]-[16].
Two existing links can be directly interconnected through
additional transmission lines if their DC voltages are the
same. Otherwise DC/DC transformers may be needed if the
two links are at different DC voltages. However, the risk
of commutation failure is an important factor that limits the
number of LCC terminals connected in an MTDC grid [13].

In the foreseeable future, the capacity and voltage level
matching of LCCs and VSCs may not be a problem because
of the continuing development of VSCs [17]. Therefore,
the LCC/VSC hybrid DC grid can be a possible and effective
solution to combine the merits of both technologies. Hybrid
DC grids will improve the flexibility and reliability of power
supply and reduce power losses and capital costs [17]—-[22].

The technical feasibility, operation and control strategies
of VSC-based DC grids have been studied widely [7], [13],
[22]-[26]. However, the technical feasibility and reliability
analysis of LCC DC grids and LCC/VSC hybrid DC grids are
still under-researched and are also very important aspects in
future MTDC transmission system design, construction and
operation [27].

Considerable research has been carried out in the area of
reliability analysis of HVDC transmission systems [27]-[33].
In [28] and [29], state-space models of mercury arc valve-
based converter and the whole HVDC transmission system
have been proposed based on the Markov process. A relia-
bility evaluation method based on failure modes and effects
analysis has been proposed in [30] and [31]. This method
uses the event tree and minimal cut-set approach to describe
the system operational behavior and failure modes. Refer-
ences [32] and [33] develop the reliability block diagrams
of HVDC transmission systems with the consideration of the
effects of different components on the overall reliability of
HVDC systems. However, only point-to-point HVDC links
are studied in these published literatures. With an increas-
ing demand for MTDC systems, the reliability evaluation of
MTDC systems becomes essential.

The reliability and outage cost evaluation of a five-terminal
modular multi-level converter MMC) based HVDC network
has been conducted through Monte Carlo simulation method
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in [34]. However, it does not consider the detail reliability
modeling of MMCs and the whole HVDC system. Ref-
erences [35]-[37] investigate the reliability modeling and
redundancy design of MMCs. However, the reliability of
MMCs with series connected high-voltage and low-voltage
bridges are not studied in these references.

In [38], the reliability of a hybrid LCC/VSC HVDC trans-
mission system is studied. The LCC HVDC transmission
system is tapped by a VSC station. The reliability model and
indices of the hybrid system are presented based on reliability
block diagrams. However, the test system is not a DC grid
in which each converter has more than two connections with
other converters. Moreover, the noted literature does not con-
sider the effect of LCC’s commutation failure on the system
reliability.

In this paper, the reliability model for MMCs employed
for UHVDC systems is studied using a hierarchical reliability
model which can clearly illustrate the series-parallel structure
of the studied systems. The active mode of submodules is
considered for the MMC redundancy design. The obtained
reliability results of the MMCs will be applied in the models
of the LCC/MMC hybrid DC grids. The hierarchical relia-
bility model and reliability block diagrams will be used to
analyze the reliability of the LCC DC grids and LCC/MMC
hybrid DC grids. First, the studied systems will be divided
into several subsystems. In each subsystem, series-parallel
reliability principle is used to construct the reliability model.
The effect of LCC’s commutation failure will be considered
in the reliability model of LCCs operating as inverters. Then
the reliability models of all subsystems are combined to
obtain the whole system reliability model. The reliability
indices of the studied systems are calculated and compared.

Il. TECHNICAL FEASIBILITY ANALYSIS OF LCC DC

GRIDS AND LCC/VSC HYBRID DC GRIDS

The existing point-to-point HVDC connections contribute
to bringing power to the customers efficiently and in line
with demand. The next move is to interconnect the links
to form MTDC grids in which multiple (more than two)
converters are interconnected through DC transmission lines
and/or DC/DC transformers in meshed configurations. In this
section, the technical feasibility of LCC DC grids and
LCC/VSC hybrid DC grids are presented.

A. TECHNICAL FEASIBILITY OF LCC DC GRIDS

The successful applications of the existing LCC HVDC links
and networks pave the way for LCC DC grids. An LCC
DC grid may reduce the number of converter stations and
transmission lines compared to point-to-point links. An LCC
DC grid can also reduce the impact of losing a DC line
or a converter on system operation and therefore, improve
the reliability of power supply. Additionally, the flexible
controllability for integrating multiple power sources and
loads makes the MTDC grid a highly competitive solution
to achieve exchange of electricity among different areas.
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An LCC DC grid can be realized by connecting the con-
verter stations in parallel or series configurations or through
DC/DC transformers, as described below.

1) PARALLEL ARCHITECTURE

In the parallel schemes, the converters are connected in paral-
lel and operate at the same DC voltage. The DC network can
be either radial or meshed. A meshed connected MTDC grid
is shown in Figure 1.
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FIGURE 1. Parallel LCC DC grid with a meshed configuration. (a) Meshed
MTDC network; (b) Converter stations’ connection.

The converters in the parallel schemes work with different
operation modes. To achieve the stable operation of the whole
system, the operational characteristics of the converter con-
trol need to intersect at a common point [1], [23]. To achieve
this, one of the converters needs to control the operating
voltage of the DC circuit and the remaining converters operate
on constant current (power) control mode. For a large DC
grid, more sophistication, such as droop control, is needed as
the use of a single converter controlling the DC voltage may
not be effective, due to power limitations. Either a rectifier
or an inverter can operate in the DC voltage control mode.
However, for LCCs, it is always more beneficial if a rectifier
station with a large capacity maintains the DC voltage while
the rest of the stations control the currents. This makes the
system more stable and less dependent on fast communica-
tion [23].

It should be mentioned that there are some drawbacks of
parallel-connected LCC MTDC systems:

o Power reversal at any LCC converter station requires

additional fast switches on the DC side;

« Blocking of a single bridge in a converter consisting
of two or more series-connected bridges requires either
operation of the whole system at reduced voltage or
disconnection of the affected converter station;

o Commutation failure at an inverter can draw large cur-
rents from other terminals and this may affect the system
recovery process.

2) SERIES ARCHITECTURE
Figure 2 shows the series architecture of an LCC DC grid.
The converter stations are connected in series to form a loop.
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FIGURE 2. Series LCC DC grid with a meshed configuration. (a) Meshed
MTDC network; (b) Converter stations’ connection.

The common DC current flows through all the terminals in
the loop. The converter voltage ratings are proportional to
their individual power ratings. The DC network is grounded at
one converter station. However, the insulation of the converter
transformer must be rated for the full DC network voltage [1].

For series-connected systems, the DC current is controlled
by one station, and all other stations either operate at constant-
angle (« or y) control or DC voltage control. The voltage
references of the converters must be balanced in series-
connected systems while the current references must be
coordinated for parallel-connected systems. The protection
methods for a serial LCC DC grid have been investigated
in [39].

The series connected systems allow power reversal at a
converter without the switching operations in the DC net-
work. Converter bridges or the whole converter can be out of
service without affecting the rest of the network. Communi-
cation among terminals is needed for controlling DC currents
to minimize losses [1].

It should be mentioned that the series-connected LCC
MTDC systems also suffer from certain limitations:

« As the converter-to-ground voltages are different for all
terminals, different stations require different levels of
insulation, which makes the insulation coordination very
challenging;

o A permanent DC fault leads to the outage of the entire
system;

« Flexibility for future expansion is highly limited as it
needs a complete redesign of insulation coordination.

Due to above limitations, till date, only LCC MTDC
networks with parallel architecture exist in practice [40]:
Sardinia-Corsica-Italy project (200 kV), Hydro—Québec—
New England (Canada) project (= 450 kV) and North-East
Agra UHVDC project (£ 800 kV).

3) LCC DC GRIDS USING DC/DC TRANSFORMERS

The above section does not consider the employment of
DC/DC transformers to interconnect LCC HVDC links with
different DC voltage levels. References [14]-[16] use an
MMC based DC/DC transformer to connect two existing
LCC-HVDC links to form an MTDC network, as shown
in Figure 3.
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FIGURE 3. Connecting two LCC HVDC links using a DC/DC transformer.
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FIGURE 4. LCC/VSC hybrid DC grids. (a) VSCs as rectifiers and LCCs as
inverters; (b) VSCs as inverters and LCCs as rectifiers.

The interconnected system using DC/DC transformer
enables the interconnection of existing HVDC links with dif-
ferent voltage levels. Moreover, the flexible power exchange
within the network can be used to mitigate commutation fail-
ure. The DC/DC transformer can limit DC fault current using
its inherent control capability and prevent the propagation of
DC faults. Therefore, the impact of losing an LCC terminal
or DC faults on system operation can be mitigated. The
proposed methods in the references [14]-[16] are suitable for
the LCC-HVDC links whose geographic locations are close
to each other.

It should be mentioned that, until now, the design and
manufacturing of DC/DC transformers with large capacity,
large voltage ratio, low losses and fault isolating capability
are still under development. In addition, the high capital cost
of the construction for interconnecting the existing links,
is another key fact limits their potential application.

B. TECHNICAL FEASIBILITY OF HYBRID

LCC/VSC DC GRIDS

The DC voltage, power rating and transmission distance of
VSC HVDC technology have been continuously increasing
since it emerged in the 1990s. There are now more than
40 operational VSC HVDC projects worldwide [42]. The
DC voltage ratings of the MMC is likely to reach up to
4800 kV with a power rating of S000MW [43]. To this end,
the developments in the VSC technology is going to approach
the same level as the LCC technology, thereby enabling the
combination of LCCs and VSCs in both HVDC and UHVDC
applications.

Figure 4 shows two examples of LCC/VSC hybrid DC
grids. In Figure 4(a), the VSCs operate as rectifiers and
the LCCs as inverters. Bidirectional power transfer can be
achieved in this architecture. However, it may be suitable
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for offshore wind power integration wherein MMCs can be
employed as the offshore converter. It is because that the
offshore converter station has strict requirements for space.
Therefore, the devices in the offshore converter platform need
to be designed compactly. MMCs can be employed due to
their compact design and absence of AC filters. Moreover,
the MMC:s have the capabilities of black start and controlling
the active and reactive power independently for the offshore
AC networks. As for the onshore converters, the LCCs have
higher power rating, auto-extinguishing capability for DC
line faults and can minimize the power losses and capital costs
compared to MMCs. Although this architecture still has the
risk of commutation failure, proper control strategies can be
designed to mitigate commutation failure [44]. It should be
mentioned that these strategies can only reduce the probabil-
ity of commutation failure but cannot fully solve it. If com-
mutation failure occurs in the inverters, for example caused
by a severe AC fault, the inverters will be blocked and the
wind farms in sending ends will have to be tripped.

Figure 4(b) shows an LCC/VSC HVDC grid where the
LCCs are rectifiers and the VSCs are inverters. This architec-
ture utilizes the advantages of LCCs in terms of its technical
maturity, high power rating, low manufacture cost, and low
power losses. It also eliminates the risks of commutation
failure as the VSCs operate as the inverters.

The operation, control and protection of LCC/VSC hybrid
DC networks have been studied in [17]-[20]. In real appli-
cations, the Kun-Liu-Long three-terminal LCC/VSC project
is the first multi-terminal UHVDC network using LCC/VSC
hybrid technology in the world [45]. The topology of the
network is shown in Figure 5.

LiuBei VSC Station
in Guangxi, 3000 MW

EENS

%

KunBei LCC Station
in Yunnan, 8000 MW

A0

LongMen VSC Station
In Guangdong, 5000 MW

FIGURE 5. The Kun-Liu-Long hybrid multi-terminal UHVDC project.

In this three-terminal system, the DC voltage is £ 800 kV.
The capacity of the LCC in Wudongde, Yunnan province
is 8000 MW. It will operate as the rectifier and send the
hydropower to the Guangxi (3000 MW) and Guangdong
(5000 MW) provinces. The two receiving converters are
MMCs which use hybrid full-bridge and half-bridge sub-
modules. The system is bipolar configuration. The converter
uses double-series connected high-voltage and low-voltage
converters to achieve 800 kV [46]. The overhead trans-
mission line between Yunnan and Guangdong provinces is
over 1489 km.
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lll. RELIABILITY MODEL OF MMCS
FOR UHVDC APPLICATIONS
Many researches have been carried out for HVDC relia-
bility study [28]-[33]. However, few of them focuses on
the reliability analysis of the MMCs for UHVDC systems.
In this section, the reliability of MMCs with high-voltage and
low-voltage bridges is studied.

Reliability is defined as the probability of a device working
for a time interval under a specified operating condition [41].
Let A(¢) be the failure rate of a component:

R(t) — R(t + At) 1 d[R(1)]
R(t)At T RGt) dt
where R(?) is the reliability function of the component, that is
the probability of a device not failing during an interval [0, ]
with R(0) = 1, R(c0) = 0.
From (1), the reliability function of the component is
derived:

Ar) = lim (1)

R(t)=e~ fot A(t)dt )
The mean time to failure (MTTF) is the mean expected
value of lifetime 7. Based on the probability theory:

MTTF = / R(t)dt 3)
0

It should be noted that electronic equipment’s failure pat-
tern is typically a Bathtub curve [36], [47], in which the
normal operating period is characterized by a constant failure
rate. The reliability function of a component is calculated by:

R(t) = e ™ )

where A is the failure rate of the component.

Wi
Ad t t -ﬂ High voltage
ENSENSEN / bridge

Low voltage

E / bridge

FIGURE 6. Schematic diagrams of an HB-MMC for UHVDC applications.

Similar to LCC-UHVDC systems, MMCs can be con-
nected in series on the DC side to achieve an ultra-high
DC voltage. Figure 6 shows the schematic diagram of an
asymmetrical monopole half-bridge (HB) MMC with two
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series connected bridges, a high-voltage and a low-voltage
bridge. Each phase consists of one upper and one lower arm.
Each arm has N series-connected submodules (SMs) and
one inductor. Each SM contains two IGBTs, two diodes, one
capacitor, one thyristor and one bypass switch.

1" Level : Two bridges
Converter
o] By L |
bridge | | bridge
2" Level: Six arms
Brldge °_| Arm; H Armzl- ‘I Armg I_O

: 34 [ ovel k-out-of-n :
| Am |
" FEEEE-
e g g S ————— I
g i — o= S o |

4 Level IGBTl IGBTZ Cap Power .
I Submodule O—I H H ™ » Control SL} I I

FIGURE 7. Hierarchical reliability model of the HB-MMC for UHVDC
applications.

To calculate the reliability of the converter, it is subdivided
into four hierarchical levels, as shown in Figure 7. In each
hierarchical level, a reliability block diagram is used to rep-
resent the reliability relationship of MMC components.

In normal operation, the sum of the voltages of all SM
capacitors in each arm equals the DC side voltage V.. Then,
the minimum number of SMs can be calculated as follows:

Vdc J
N = &)
{ Vsm
where V. is the DC side voltage of each bridge and Vg, is
the voltage of each SM.

As the high-voltage and low-voltage bridges are in series,
both need to be in good states for normal operation. There-
fore, the two bridges are in series in the first level. The
reliability function of a converter is given by:

Rc(t) = Rp—pgv(t) X Rp—rv(t) (6)

where Rp_pv (t) and Rp_ry(¢) are the reliability functions of
the high-voltage bridge and low-voltage bridge, respectively.

In the second level, each arm is regarded as one combined
reliability block. All six arms are required to be in a good state
for normal operation. Hence, they are connected in series. The
reliability function of a bridge is:

Rp(t) = [Ram(0)]° 7

where Ry4,,(¢) is the reliability function of an arm.

The third level shows the reliability model of one arm. The
k-out-of-n system model is suitable for MMC redundancy
analysis [35]-[37], [41]. A k-out-of-n system is a system that
continues to operate if and only if at least k out of n compo-
nents are in good states. In the third level, the SM; to SM, are
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the k basic SMs required for a normal operation of the MMC.
The SMg41 to SM,, are the redundant cells in each arm.

There are usually two operation modes for the redundant
SMs: active mode and standby mode [37], [41]. The active
redundancy scheme is considered in this paper. In the active
mode, all the n SMs share the DC voltage. Each operating SM
is subjected to a voltage that is lower than the nominal value.
When there is a failure of an SM, the faulty SM is bypassed.
Then the rest of the SMs are assigned a slightly higher voltage
than the original value. The arm continues to operate after the
short transient for setting down at a higher voltage for each
SM [37]. The MMC needs to be shut down if the number of
SMs in good states is less than k. Therefore, the reliability
function of the arm is:

n
Rarm() = ) Cu[Rsu(OI'T1 = Rsy "™ (8)
i=k
where Rgy(¢) is the reliability function of a SM.

The fourth level is the reliability of SMs. The SM needs
to quit operation if any failure occurs in any of the two
IGBTs, the capacitor, the SM control system or the SM power
supply system. The failed SM will be bypassed by its bypass
switch. Therefore, these three components are in series in the
reliability block diagram and their reliability model is:

RSM(I) = [st(t)]z X RCap(t) X RCon(t) X RPow(t) (9)

where R, (1), Rcap(t), Rcon(t) and Rppy,(t) are the reliability
functions of the IGBT, capacitor, SM control system and SM
power supply system of the SM.

Let the failure rates of the IGBT, capacitor, SM control
system and power supply system be Agy, Acap, Acon and
Apow respectively. According to equation (4), the reliability
functions of them are:

Ryy(t) = e ! (10)
Reqp(t) = e et (11)
Reon(t) = e Hcon! (12)
Rpow(t) = e *Pov! (13)

According to equation (3), the MTTF of the converter is
calculated by:

~+00
MTTF = f Re(t)dt (14)
0

According to equation (1), the failure rate of the converter is
given by:
() = — i B0
c(t) dt

In a & 800 kV HVDC system, the bipolar configuration is
used. The voltage of each pole is 800 kV, thus the voltage
of each bridge is 400 kV. IGBT modules with a withstand
voltage of 4.5 kV were considered and a de-rating factor
of 56% for the voltage of IGBT modules was applied in the
SMs. This is to make sure that the IGBT modules have a long
lifetime and have the capability to withstand overvoltage.

15)
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Therefore, the nominal voltage of one single IGBT module
in each SM is 2.52 kV. According to equation (5), each arm
needs to contain at least 159 SMs to meet the requirement
of the DC voltage. To make sure enough redundancy for
normal operation, 8 more (5%) redundant SMs are added in
each bridge. There are 167 x 2 = 334 IGBT modules in
each arm. The failure rate of the IGBT module was assumed
to be 0.004 occ/year based on statistical data in practical
projects [48]. The failure rates of the capacitor, SM con-
trol system and power supply system were assumed to be
0.001752 occlyear, 0.03 occ/year and 0.03504 occ/year [37].

16 T T T T T T T T T

14 -

12

10 -

Failure rate
fo e]
:

O 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Time (year)

FIGURE 8. Failure rate of the studied MMC with different redundancy
design.

The reliability indices of the MMC, the MTTF and failure
rate, are calculated using (14) and (15) respectively. The
calculated MTTF is 3.03 year. The failure rates with different
numbers of redundant SMs are illustrated in Figure 8. The
failure rate in the first 2 years is very low. Then it increases
rapidly over time in the first few years and grows slightly after
15 years. The results also show that the failure rate will reduce
if more redundant SMs are used. However, the capital cost
and power losses will be increased if more redundant SMs
are used. It should be mentioned that Figure 8 just reveals the
theoretical results of the converter reliability. The converter
will be scheduled shut-down for maintenance every one or
two years in real applications. The failed components will be
replaced during the maintenance period.

IV. RELIABILITY ANALYSIS OF LCC DC GRIDS

AND LCC/VSC HYBRID DC GRIDS

In this section, the system reliability of LCC DC grids and
LCC/VSC hybrid DC grids will be investigated. The stud-
ied systems are illustrated in Figure 9. The LCC DC grid
in Figure 9(a) is the base system. The receiving ends and
sending ends are replaced by MMCs in Figure 9(b) and
Figure 9(c), respectively. The capacity of the converters and
lines are shown in the figure as well.
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FIGURE 9. Test systems. (a) LCC DC grid; (b) LCC/MMC DC grid with two
MMCs as inverters; (c) LCC/MMC DC grid with two MMCs as rectifiers.

A. RELIABILITY MODELING OF LCC DC GRIDS
AND LCC/VSC HYBRID DC GRIDS
The DC voltage of the DC grids is = 800 kV. The system is
bipolar configuration, with two series connected converters
in each pole, both for the LCC and the VSC. The reliability
parameters of the LCCs and DC lines are from the literature
for £ 800 kV LCC UHVDC transmission system with slight
changes [27]. It is assumed the lengths of lines 1 and 3 are
the same. The lengths of lines 2 and 4 are the same and are
half of lines 1 and 3. The reliability parameters of the MMCs
are from the previous section. It is assumed that the DCCBs
are available for this voltage level and are applied to the end
terminals of each transmission line. However, in the open
literature there is a lack of information on the reliability data
for DCCBs. For the reliability study performed in this paper
with DCCBs we modified the data from the Zhoushan five-
terminal project considering the installations of DCCBs [34].
To establish the reliability models for the studied systems,
the functions of the systems, the constraints that limit their
operation, and the reasons that cause their failure should
be clearly defined. Each element in the HVDC systems
will affect the availability and reliability of the whole sys-
tem. Therefore, an accurate reliability model needs a precise
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reliability analysis of the system with the consideration of
all the components [38]. This section will establish accurate
and comprehensive reliability models of the studied systems
shown in Figure 9. The models are based on the configura-
tions of the studied systems and their subsystems.

The systems in Figure 9 are complex and therefore, they are
divided into different subsystems. As the circuit topologies
of the studied systems are the same, one reliability model
can be used to represent all of them, as shown in Figure 10.
Each subsystem is divided into several hierarchical levels to
facilitate the modeling process. The details of each subsystem
will be described in the following sections.

Sending Receiving
End 1 1 S 3 End 1
8 6
Sending Receiving
End 2 2 7 4 End 2
FIGURE 10. Whole system reliability model.
SR
Brk Tran

‘p‘,‘/—@—% Viv

ACF :|—{ |1
Brk Tran
SR
Vv
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FIGURE 11. Whole system reliability model.

1 Level :
Converter o— ] o
station
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Bipole pole
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\¥
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I 39 Level:

I
: Slnglepole °—| Brk HTranH Viv H SR |—° :

FIGURE 12. Reliability model of the converter station 1.

B. RELIABILITY MODELING OF CONVERTER STATIONS

Figure 11 shows the main components of converter station 1
(Block 1 in Figure 10). The hierarchical reliability model
of converter station 1 is shown in Figure 12. The con-
verter has two poles. Each pole consists of four components:
AC side filter (ACF), AC side breaker (Brk), converter trans-
former (Tran), valve (V1v), DC side smoothing reactor (SR).
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Each one of these components is represented by an equivalent
reliability model with one or more de-rated states.

The reliability of Blocks 2, 3 and 4 can be modeled in a sim-
ilar way as Block 1. However, if the Blocks 3 and 4 are LCCs
working as inverters, the effect of commutation failure needs
to be considered. Reference [49] proposed a virtual device of
commutation failure (VDoCF) which considers random fac-
tors of AC system faults, including the fault location, the fault
type, the fault close angle, transition resistance. Therefore, the
reliability models of the Blocks 3 and 4 become the structure
as shown in Figure 13. The LCC will be out of service if a
commutation failure occurs. Thus, the VDoCF is in series
with the converters in the second level of the reliability model.
The failure rate of the VDoCF can be calculated through the
algorithm in [49] based on the data of the AC faults at the AC
side of the converter. As the MMCs do not have the problem
of commutation failure, the block of the VDoCF will be
removed if the converters are MMCs.

1* Level :
DC Transmission — 3 |
2™ T evel: Positive
. converter | | ¢°°777777S
Bipole i VDoCF +o
Negative [
converter
__________ [ W— _\é [ P P ——
1

39 Level: |

|
: Single pole 0—| Brk HTranH Vv H SR |—0 |

FIGURE 13. Reliability model of Block 3 with an LCC working as an
inverter.

1 Level :
DC Transmission —~ 5
2" Level: Positive
Bipole pole
Negative
pole
|- :1 ____________ — -
3% Level:

:DCTL ot DCCB 0—|DCCBHDCTLHDCCB|—0 :

FIGURE 14. Reliability model of DC transmission lines.

C. RELIABILITY MODELING OF DC TRANSMISSION LINES
The reliability model of the DC transmission lines is illus-
trated in Figure 14. The DCCBs and the DC transmission
line (DCTL) are in series.

D. CASE STUDY

The overall system reliability evaluation of the three sys-
tems in Figure 9 is quantified using the models developed
in previous sections. To analyze the final reliability model,
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different methods, such as the capacity outage probability
table (COPT) based risk model, network reduction, minimal
cut sets, and Monte Carlo simulation can be used [38]. The
COPT-based method is widely used for the reliability evalua-
tion of an electric power system. An extension of this method
is the equivalent assisting unit approach [50]. For instance, the
generating potential of subsystem 1 is modeled as a multistate
capacity table. This COPT has different capacity levels and
probabilities (availabilities). Then the obtained COPT is com-
bined with other subsystems’ reliability models to calculate
the reliability indices of the whole system.

The component reliability parameters are provided in
Table 1. The reliability parameters are from [27], [38], and [49]
with slight changes. As reliability data of the LCC in the
literature is given for single bridge, the availability of the
whole LCC valve is calculated considering the two bridges
connected in series.

TABLE 1. Component reliability parameters.

Failure rate Repair time P
C
‘omponent (occ/year) (h) Availability

AC circuit breaker (Brk) 0.0028 48 0.9999847
Converter transformer (Tran) 0.015 2400 0.9959072
LCC valve group (5000 MW) 0.13 32 0.9995253
LCC valve group (3000 MW) 0.1 32 0.9996358
LCC valve (VIv_LCC, 5000

MW) - 0.9990508
LCC valve (VIv_LCC, 3000

MW) - 0.9992717
MMC valve (Vlv_MMC, 5000

MW) 0.33 40 0.9984954
MMC valve (Vlv_.MMC, 3000

MW) 0.3 40 0.9986320
Smoothing Reactor (SR_LCC) 0.01 1400 0.9984044
Smoothing Reactor(SR_MMC) 0.015 5 0.9999914
DC circuit breaker (DCCB) 0.05 50 0.9997147
ll)gt;ansmlssmn lines (DCTL) 0.22 3 0.9997991
2Dglt;ansmlssmn lines (DCTL) 0.11 8 0.9998996
VDoCF 0.184 16.8 0.9996472

In the first stage, the reliability models of the subsystems
1 to 8 are calculated as shown in Tables 2 and 3.

It can be seen from Table 2 that the reliability of LCCs as
rectifiers and inverters in the studied systems are different.
The reliability of LCCs as inverters is lower than the ones
as rectifiers because the factor of commutation failure is
considered.

In the next stage, the final reliability models of the
three systems in Figure 9 are calculated as shown in
Tables 4, 5 and 6.

Table 7 unveils the reliability indices of the three systems
with the consideration of the results in Tables 4-6. The load
level of the two receiving ends are both at 0.8 p.u.

The topologies of the DC circuits of the three systems
are the same. Therefore, the impacts from the DC circuits
on the overall system reliability of the three systems are
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TABLE 2. Reliability models of the subsystems 1 to 4.

TABLE 6. Final reliability model of the system (c) in Figure 9.

Subsystems Capacity in (p.u.) Probability States Capacity in (p.u.) Probability
1 0.9867624 1 1 0.9490899
VIv_LCC, S000MW 05 0.0131935 2 0.91 0.0014624
as Subsystem 1
0 0.0000441 3 0.81 0.0226664
Vlv_LCC, 5000MW 1 0.9864142 4 0.78 0.0014624
( j«l; Subsystem 3t . 05 0.0131889 5 0.69 0.0233515
considering commutation
failure) 0 0.0003969 6 0.63 0.0004067
N 0.9871988 7 0.56 0.0000000
Vl‘;;gg&yi O0ONW 05 0.0127600 8 0.38 0.0004110
0 0.0000412 9 0 0.0011492
Viv_LCC, 3000MW 1 0.9868505
as Subsystem 4
(considering Zommutation 05 0.0127555 TABLE 7. Reliability indices of the three studied systems in Figure 9.
failure) 0 0.0003940
1 0.9888015
VIv. MMC, 5000MW s o167 Index System (a) System (b) System (c)
as Subsystem 1 or 3 . . B :
0 0.0000315 Probability of failure . 0.0546613 0.0502401 0.0509101
| 0.9890721 Fxpected encrgy notsubplied | 1171468364 | 105.6433481 | 108.5050468
VIv_MMC, 3000MW 03 00108979 = ( = I> [d [Xrl] -
as Subsystem 2 or 4 - : xpected oad curtarimen 333644113 28.7713468 305585161
0 0.0000300 (ELC) [MWh/yr]
TABLE 3. Reliability models of the subsystems 5 to 8. TABLE 8. Reliability indices of the three studied systems when 4 SMs are
used as redundancy in the MMCs.
Subsystems Capacity in (p.u.) Probability
1 0.9984580 Index System (a) System (b) System (c)
Sor7 0.5 0.0015426 Probability of failure 0.0546613 0.0671127 0.0677708
d 0.00000% Expected energy not supplied | 15 1460364 | 1444724278 | 1473548341
1 0.9986587 (EENS) [MWh/yr] . . i
6or8 0.5 0.0013417 Expected load curtailment | 33 3010113 | 413865616 | 432129314
(ELC) [MWh/yr]
0 0.0000000

TABLE 4. Final reliability model of the system (a) in Figure 9.

States Capacity in (p.u.) Probability
1 1 0.9453387
2 0.91 0.0014566
3 0.81 0.0243749
4 0.78 0.0014566
5 0.69 0.0252174
6 0.63 0.0004158
7 0.56 0.0000000
8 0.38 0.0004215
9 0 0.0013178

*Note: the probability of 0.0000000 indicates the value is less than 10”.

TABLE 5. Final reliability model of the system (b) in Figure 9.

States Capacity in (p.u.) Probability
1 1 0.9497599
2 091 0.0014634
3 0.81 0.0226824
4 0.78 0.0014634
5 0.69 0.0233680
6 0.63 0.0000683
7 0.56 0.0000000
8 0.38 0.0000725
9 0 0.0011215

the same. The differences come from the converters. As the
MMCs in the studied system are more reliable than the LCCs,
the reliability indices in Table 7 show that the system (a) is
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less reliable than the other two systems. The expected energy
not supplied (EENS) [MWh/yr] and expected load curtail-
ment (ELC) [MWh/yr] of the system (b) are slightly lower
than system (c). This is because the reliability of the LCCs
as inverters in the system (c) is lower than rectifiers in
system (b).

In order to test the impact of the converter reliability on the
whole system reliability, the system reliability indices with
4 (2.5%) redundant SMs in the MMCs are calculated and
shown in Table 8. In this case, the LCC DC grid becomes
more reliable than the two LCC/VSC DC grids. The sys-
tem (b) is still more reliable than the system (c) due to the
impact of commutation failure on the LCCs.

V. CONCLUSION

In this paper, the technical feasibility of building LCC DC
grids and LCC/VSC hybrid DC grids was discussed. Then,
the reliability analysis of LCC DC grids and LCC/VSC
hybrid DC grids was conducted.

A hierarchical reliability model of MMCs with high-
voltage and low-voltage bridges for UHVDC applications is
developed in this paper. Impact of the redundant design of
the MMCs on their reliability indices was presented. The
study shows that the MMCs will be more reliable if more
redundant SMs are employed. However, there is a level when
the benefits become minimal, and the cost and power losses
are affected.
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A comprehensive whole system reliability model of the
studied DC grids was developed. The reliability model of
each subsystem of the whole system was modeled in detail.
Various reliability indices were calculated using this whole
system reliability model. The studies show that the consid-
eration of commutation failure affects the reliability results
of LCCs and the LCC/VSC hybrid DC grids. Moreover,
the redundancy design of the MMC:s affects reliability results
of the LCC/VSC hybrid DC grids. More redundant SMs
in the MMCs will improve the reliability of the whole
system.

It should be mentioned that the reliability results may be
changed when the DC grid configurations, voltage level and
converter capacity are changed. An overall reliability analysis
should be carried out case-by-case when the work is applied
in real applications.
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