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Abstract 13 

BACKGROUND: Strawberry is one of the most highly consumed fruits worldwide. 14 

However, it is highly perishable fruit postharvest.  15 

OBJECTIVE: To assess the effect of dipping strawberry fruits after harvest in plant growth 16 

regulators to maintain postharvest quality. 17 

METHODS: Treatments tested were: 2 and 4 mM salicylic acid (SA), 0.25 and 0.50 mM 18 

abscisic acid (ABA) and methyl jasmonate at 0.25 and 0.50 mM (MeJA). Bioactive 19 

compounds and fungal growth were assessed over 12 days of storage at 4 °C.  20 

RESULTS: Both concentrations of SA and MeJA significantly suppressed weight loss, decay 21 

and respiration rate and 0.50 mM ABA also reduced decay. Both concentrations of SA 22 

retarded color development, and total soluble solids content was enhanced by 0.50 mM ABA 23 

and MeJA treatments. The most effective treatments for preserving firmness were 0.25 mM 24 

MeJA and 4 mM SA. Reduction in loss of ascorbic acid and bioactive compounds during 25 
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storage was achieved using the highest concentrations of SA, ABA, and MeJA. Fungal 26 

growth was suppressed by all treatments but the best treatment was MeJA at both 27 

concentrations.  28 

CONCLUSIONS: All three plant growth regulators reduce postharvest changes in strawberry 29 

but effects differ amongst the treatments.  30 

 31 

Keywords: Fragaria ananassa, quality, postharvest storage, bioactive compounds. 32 

1. Introduction 33 

Strawberry fruit is considered one of the most popular horticultural crops world-wide and is a 34 

rich source of important minerals, vitamins (vitamin C), and phytochemicals (anthocyanins 35 

carotenoids and polyphenols), that play a significant role in human health [1]. However, 36 

strawberry, a non-climacteric fruit, is highly perishable with limited shelf-life due to its high 37 

water content, respiration rate, susceptibility to mechanical injury, and to microbial attack 38 

(especially by Botrytis cinerea) during storage [2]. Strawberry fruit deteriorates rapidly after 39 

harvest with loss of economic and nutritional value, and it needs to be harvested at a precise 40 

stage of maturity in order to obtain maximum postharvest quality. Hence, there is a demand 41 

not only from the producers but also from the consumers to extend shelf-life and reduce decay 42 

of strawberry fruit. 43 

Recently, many postharvest techniques have been applied for reducing decay of strawberry 44 

fruit such as edible coating with Aloe vera and ascorbic acid [3], dipping in essential oils [4], 45 

melatonin treatment [5], controlled atmosphere storage [6], γ-irradiation [7], hot air and hot 46 

water dipping [2, 8], Nano-ZnO treatment [9], pulsed light [10], and ethylene action inhibitor 47 

(1-MCP) treatment [11]. However, some of these treatments are not realistic due to low 48 

customer acceptance or high treatment price. Therefore, it is important to develop novel 49 

effective methods to reduce senescence and enhance quality of strawberry fruit. One of the 50 
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postharvest treatments for reducing senescence of fruits is application of exogenous plant 51 

growth regulators. However, relatively few previous studies have compared the effects of 52 

different plant growth regulators on postharvest decay and quality of strawberry fruits.  53 

Salicylic acid (SA) is a natural compound and is responsible for suppressing ethylene 54 

production and fungal growth such as that of B. cinerea. It was reported that SA 55 

concentrations of 1 and 2 mmol L-1 were the most effective for reducing ethylene production, 56 

microbial load and retaining overall quality of strawberry fruits [12]. Moreover, postharvest 57 

treatment with SA enhanced total antioxidant content in strawberry fruit [13]. It also reduced 58 

weight loss, decay and redness, maintained firmness, and increased hue angle [14].  59 

Abscisic acid (ABA) is one of the most important plant hormones, acting as an inhibitor of 60 

growth and metabolism. Previous studies indicated that ABA plays an important role in fruit 61 

ripening and senescence not only in climacteric fruits such as tomatoes [15] but also in non-62 

climacteric fruits such as strawberry [16]. Previous reports indicated also that ABA might 63 

increase postharvest quality of some fruits such as tomato by enhancing suberin accumulation 64 

[17], and increasing soluble sugar concentrations [18]. In strawberry postharvest treatment 65 

with 1, 10 or 100 mM ABA resulted in increased accumulation anthocyanin and softening 66 

mediated by an increase in PAL activity [19, 20, 21].  67 

Methyl jasmonate (MeJA) is found naturally in higher plants and plays a key role in plant 68 

defense against pathogen infection. For example, application of exogenous MeJA reduced 69 

postharvest decay of peppers by enhancing tissue resistance to Botrytis cinerea [22] and 70 

reduced decay development in strawberry fruit [23, 24, 25]. Previous studies indicated that 71 

crop quality traits were also improved following exogenous MeJA treatment. For example, 72 

treatment of Fragaria chiloensis with MeJA also maintained fruit firmness and anthocyanin 73 

levels [23]. Indeed MeJA treatment was also shown to enhance strawberry aroma while 74 

retaining nutritionally important compounds [26].  75 
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To our knowledge, no previous studies have been performed, however, to compare the effects 76 

of SA, ABA, and MeJA on storability, physico-chemical and sensory quality parameters of 77 

strawberry fruits. Thus, the aim of the current study was to evaluate comparatively the effects 78 

of postharvest treatment with SA, ABA, and MeJA on retarding senescence, reducing decay, 79 

and improving quality traits of strawberry fruit during storage at 4 °C for 12 days. 80 

 81 

2. Materials and methods: 82 

 83 

2.1. Plant materials and treatments: 84 

 85 

Strawberry (Fragaria × ananassa) cv. ‘Festival’ fruits were harvested at commercial ripeness 86 

stage (¾ of fruit surface showing red colour) from the Faculty of Agriculture, Cairo 87 

University experimental station and transported to the postharvest laboratory within 2 h. The 88 

fruits were selected for uniformity of size and being free from any visual defects, and they 89 

were randomly divided into seven groups (about 100 fruits per group).  The strawberry fruit 90 

groups were immersed in the following six solutions for 5 min at room temperature (20 °C). 91 

The six solutions for treatments were prepared in distilled water as follows: SA-2 (2 mmol L-1 92 

salicylic acid), SA-4 (4 mmol L-1 salicylic acid), MeJA-0.25 (0.25 mmol L-1 methyl 93 

jasmonate), MeJA-0.50 (0.50 mmol L-1 methyl jasmonate), ABA-0.25 (0.25 mmol L-1 94 

abscisic acid), and ABA-0.50 (0.50 mmol L-1 abscisic acid). The concentrations used were 95 

selected based on preliminary experiment and previous work [SA (14), MeJA (23), and ABA 96 

(16)]. The seventh group was the control (CON) and was dipped in distilled water. After 97 

immersion, the fruit were recovered using autoclaved forceps and allowed to dry in a laminar 98 

air flow hood at room temperature for 60 min. After drying, the fruit for each treatment were 99 

packed in clamshells (each containing about 200 g of fruit) and stored at 4 °C and 90% RH 100 
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for 12 d. Clamshells for each treatment were divided into two groups. The first group was 101 

stored continuously throughout the experimental storage period to determine weight loss and 102 

decay. The second group was used to determine fruit quality parameters (firmness, total 103 

soluble solids, respiration rate, and colour intensity), chemical parameters (pH, titratable 104 

acidity, vitamin C, anthocyanin, total phenolic content and antioxidants capacity), and fungal 105 

counts. All the measurements were performed at time intervals of 0, 4, 8 and 12 days after the 106 

treatments and each treatment was replicated three times. All physical and chemical analyses 107 

were performed on fresh fruits on the day of assay. The experiment was repeated twice. 108 

 109 

2.2. Chemicals 110 

 111 

Salicylic acid, methyl jasmonate, abscisic acid, ethyl alcohol, ACS spectrophotometric grade, 112 

95.0%, methyl alcohol, gallic acid and Folin & Ciocalteu’s phenol reagent were purchased 113 

from Sigma-Aldrich (USA). Potato dextrose Agar, sodium carbonate, potassium acetate and 114 

hydrochloric acid were purchased from Al Gomhoria CO, Cairo, Egypt. 115 

 116 

2.3. Weight loss 117 

 118 

Weight loss percentage was determined by weighing strawberry fruits using digital scales on 119 

each sampling day during storage and calculated using the following equation:  120 

Weight loss (%) = (Initial weight - Final weight/ Initial weight) × 100. 121 

 122 

 123 

 124 

2.4. Decay percentages 125 
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 126 

The decay percentage was determined at each sampling point and calculated according to the 127 

following equation:  128 

Decay percentage (%) = (Number of decayed fruits / Total number of fruits) × 100. 129 

 130 

2.5. Firmness (N) 131 

 132 

Ten random strawberry fruits from each treatment were used for determining firmness at two 133 

points. The two points tested were located in the central zone on opposite sides of fruits. 134 

Firmness was measured using a FT011 penetrometer (Wagner Instruments, Italy) and values 135 

are presented as Newtons (N). 136 

 137 

2.6. Soluble solids content (SSC)   138 

 139 

Five strawberry fruits were selected for measuring SSC from each treatment (with three 140 

replicates). The fruits were mixed in a blender for 2 mins and SSC was determined using a 141 

digital refractometer (model PR101, Co. Ltd., Japan) at room temperature (25°C). Readings 142 

were taken as % of total soluble solids in the fruit. The same juice was used for determining 143 

titratable acidity and pH. 144 

 145 

2.7. Titratable acidity (TA) and pH 146 

 147 

TA of strawberry juice was measured using a digital burette and determined by titrating 5 g 148 

(diluted with 50 mL distilled water) of strawberry juice sample with 0.1 mol L-1 sodium 149 

hydroxide to an end point of pH 8.1 and expressed as percent of citric acid in the fruit juice. 150 
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The pH of the juice was determined using a pH-meter (EuTech, Instruments, pH 510, 151 

Singapore). 152 

 153 

2.8. Skin fruit colour 154 

 155 

Skin colour of strawberry fruit was measured with a Minolta colorimeter (Model CR-400, 156 

KonicaMinolta, INC, Tokyo, Japan) on five fruit per replicate. L*, a*, b*, chroma (C*) and 157 

hue angle (h°) were determined. Each measurement was taken at three locations for each 158 

individual fruit. A standard white calibration plate was used to calibrate the colorimeter. 159 

 160 

2.9. Respiration rate 161 

 162 

Five separate single fruits were placed in separate gas-tight jars (200 ml) at 5°C for 2 h. After 163 

2 h, 1 mL of air sample was removed from the headspace and was analyzed using an O2/CO2 164 

gas analyzer (model 902D, MA, USA). Respiration rate was expressed as mmol CO2 165 

kg−1FWh−1. 166 

   167 

2.10. Ascorbic acid and total anthocyanin content 168 

 169 

Ascorbic acid (AA) content was determined using a titrimetric method with 2, 6-170 

dichlorophenol indophenol [27]. The results of AA content are expressed as mg/100 g fresh 171 

weight. 172 

Five strawberry fruits were selected randomly from each replicate and homogenized in a 173 

laboratory blender (Heidalph DGH Rundfunk- Fernsehen, Typ-DR 22054, Germany) at high 174 

speed to determine anthocyanin and total phenolic compounds. Anthocyanin content was 175 



8 

 

determined using the pH-differential method described by Tonu et al. [28]. Briefly, 4 g of 176 

strawberry puree was extracted with 40 ml of solvent, ethanol: 0.1 M HCl (85:15%, V:V). 177 

The mixture was centrifuged at 6.000 × g for 20 min and then the supernatant was filtered 178 

using Whatman No.1 filter paper; the supernatant was collected and used for anthocyanin 179 

determination. Extractions were done in triplicate. Extracts (3 ml) were diluted in 5 ml of two 180 

different buffers; pH = 1.0 and pH = 4.5. After 30 minutes of incubation at room temperature, 181 

absorption (A) was measured at 510 nm and at 700 nm. The absorbance values of the diluted 182 

samples (A) were calculated as follows: 183 

A = (A510 – A700) pH 1.0  - (A510 – A700) pH 4.5 184 

Total anthocyanin content was calculated as follows: 185 

TAC =A × MW × df × 1000/(ε x λ x m) 186 

Total anthocyanin content was calculated as mg cyanidin-3-glucoside equivalent per kg dry 187 

extract (mg C3GE/kg) by using (A) the difference of absorbance between pH 1 and pH 4.5 188 

solutions, a dilution factor (df ), conversion factor to kg (1000), a molar absorptivity (ε) of 189 

24,825 M−1 cm−1 (at 510 nm), a molecular weight (MW) of 484.82, cuvette optical path length 190 

(λ)(1 cm), and weight of the sample (m)(g). 191 

 192 

2.11. Total phenolic content 193 

 194 

The total phenolic content (TPC) was determined according to Aaby et al. [29] using Folin- 195 

Ciocalteau reagent with gallic acid as standard. Aliquots of strawberry puree were centrifuged 196 

at 8000 × g for 20 min at room temperature. The resulting homogenate was filtered through 197 

filter paper to obtain a clear juice. One mL of collected clear juice was mixed with 5 mL of a 198 

1/10 dilution of Folin-Ciocalteau reagent and 4 mL sodium bicarbonate (7.5% w/v), and the 199 

mixture was diluted to 100 mL with distilled water. The solution was kept in the dark at room 200 
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temperature for 2 h; the absorbance was then measured at 765 nm with a spectrophotometer 201 

(model UV-2401 PC, Shimadzu, Milano, Italia). TPC was expressed as gallic acid equivalents 202 

in mg per 100 g fresh weight (mg GAE/100 g FW) using a gallic acid standard curve. 203 

 204 

2.12. Antioxidant capacity  205 

 206 

The effect of different treatments on strawberry fruit antioxidant capacity was determined 207 

according to the method of Yen and Chen [30]. Strawberry samples (10 g) were homogenized 208 

in 200 mL of distilled water, and then filtered using Whatman No.1 filter paper and 5 mL of 209 

filtrate was diluted into 25 mL of distilled water. Strawberry extract (1 mL) was added to 3 210 

mL of methanol and 1 mL of 2,2-diphenyl-1-picrylhydrazyl (DPPH) (0.012 g DPPH in 100 211 

mL-1 of methanol). The mixture was shaken in the dark at room temperature for 10 min. The 212 

absorbance was measured at 517 nm. The antioxidant capacity was expressed as % of 213 

inhibition according to the formula: 214 

Inhibition (%) = (Acontrol - Asample/Acontrol) × 100 215 

where A control and A sample are the absorbance of the control and sample, respectively [31].  216 

 217 

2.13. Microbiological evaluation 218 

 219 

Fruit samples (10 g) were crushed and diluted (1:10 w/v) in 0.1% buffered peptone water, 220 

homogenized by hand massaging for 5 min and serially diluted with buffered peptone water. 221 

The homogenate (0.1 ml) was plated on potato dextrose agar in duplicate. Fungal counts (log 222 

CFU/g) were determined after incubation at 25-28 °C for 5 days [32]. 223 

2.14. Statistical analysis 224 
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The whole experiment was repeated twice and the data were pooled. Data were subjected to 225 

analysis of variance (ANOVA) with SPSS software. Sources of variation were storage period 226 

(days) and treatments. A Duncan test at p < 0.05 was used to compare means among 227 

treatments. 228 

 229 

3. Results 230 

  231 

3.1. Weight loss, respiration rate, and decay were reduced by postharvest treatments 232 

 233 

The effect of dipping strawberry cv. ‘Festival’ fruit in different concentrations of SA, ABA, 234 

and MeJA on weight loss, respiration rate, and decay percentage during 12 days of storage at 235 

4°C is shown in Fig. 1. Weight loss n increased during the storage period following all 236 

treatments (Fig. 1A). After 8 days of storage, all treatments significantly (p < 0.05) reduced 237 

weight loss compared to the control except the two concentrations of ABA.  However, at the 238 

end of the storage period (12 days), only treatment with 0.25 mM MeJA significantly reduced 239 

weight loss compared to the control.  240 

The 2 and 4 mM SA treated fruits showed significant (p < 0.05) reduction of respiration rate 241 

at all storage period time points compared to the control fruits (Fig. 1B). After 4 and 8 days of 242 

storage, there were no differences in respiration rate between fruit treated with 0.25 and 0.50 243 

mM ABA and the control. However, after 12 days of storage, treatment of strawberry fruit 244 

with 0.50 mM ABA resulted in greater respiration rate than the control or the other 245 

treatments. MeJA at 0.50 mM significantly reduced respiration rate at all storage period time 246 

points. 247 

No decay was observed on the surface of strawberry fruit after 4 days of storage after any of 248 

the treatments, however, strawberry fruit treated with 2 and 4 mM SA showed greater 249 
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resistance against decay when compared with the control and the other treatments after both 8 250 

and 12 days of storage (Fig. 1C). Treatment with the higher concentration of SA resulted in 251 

less surface decay than the lower concentration after 8 days of storage, however, the 252 

difference between two concentrations of SA was not significant after 12 days of storage. 253 

Treatment with ABA showed the same trend of results as SA but after 12 days, treatment with 254 

0.25 mM ABA was not effective at reducing decay compared to the control. Treatments with 255 

MeJA (0.25 and 0.50 mM) significantly delayed the development of decay compared to 256 

control fruits throughout the storage periods. However, no significant difference was observed 257 

in decay between 0.25 and 0.50 mM MeJA treated fruit. 258 

 259 

3.2. Changes in colour  260 

 261 

The effect of dipping strawberry cv. ‘Festival’ fruit in different concentrations of SA, ABA, 262 

and MeJA on L*, a*, and ascorbic acid content during 12 days of storage at 4°C is shown in 263 

Fig. 2. The L* value is an indicator for brightness of the fruit surface:  high values indicate 264 

less pigment accumulation and less ripening while the lower values indicate more intense 265 

colour and more ripening. Results shown in Supplementary Table (1) indicate that L* values 266 

of fruit surfaces generally decreased during storage. After 4 days of storage, the L* values of 267 

fruit subjected to all treatments were significantly higher (lighter colour) than those of the 268 

control except for the 0.25 mM MeJA treatment. After 8 days only the SA treated fruit and 269 

after 12 days the SA treated and the 0.25 mM JA treated fruit, had higher L* values than the 270 

control. (p < 0.05).  271 

A positive (+) a* value is an indicator for redness while, negative (-) values are a sign of 272 

greenness. Thus a positive a* value is correlated with anthocyanin concentration in strawberry 273 

fruits [17]. Here, a* values increased with storage duration from 4 to 8 days following all 274 
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treatments (Supplementary Table 1). Both SA treatments resulted in significantly lower a* 275 

values than the control at all time points (Fig. 2B). There were no differences in a* values 276 

between the two concentrations of ABA or the lower concentration of MeJA treatment and 277 

the control after 8 storage. However, no differences were recorded between control and either 278 

concentration of ABA and MeJA after 12 days of storage. 279 

 280 

3.3. Strawberry fruit quality is affected by treatments 281 

 282 

Firmness, SSC, pH, and titrable acidity (TA) were determined as indicators of strawberry fruit 283 

ripening and quality as well as their metabolic activity (Table 1). SSC was significantly (p < 284 

0.05) influenced by treatments. SSC at harvest was 10.87±0.13 Brix, and decreased 285 

significantly after 4 d of storage in both control and most treated fruits (Supplementary Table 286 

1). Treatment with both ABA concentrations reduced SSC loss compared to the control while 287 

the other treatments had no effect after 4 days of storage. After 8 and 12 d of storage, both 288 

treatments with ABA (0.25 and 0.50 mM) and MeJA (0.25 and 0.50 mM) showed 289 

significantly higher SSC values compared to control. 290 

Fruit firmness was 4.71±0.03 N at harvest time and decreased during storage after all 291 

treatments (Supplementary Table 1). No significant difference was observed between treated 292 

fruit and the control after 4 days of storage (Table 1). After 8 and 12 days of storage, fruit 293 

firmness was found significantly (p < 0.05) higher in all treated fruits when compared with 294 

control. Among all treatments, MeJA at 0.25 mM and SA at 4 mM showed highest fruit 295 

firmness at both time points during the storage period. 296 

In the controls, pH rose from dya0 to day 8 and then fell back, while TA contents rose from 297 

day 0 to day 8 and thereafter remained constant (Supplementary Table 1). However, 298 
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postharvest treatments with SA, ABA, and MeJA had no clear effect on either character 299 

during storage.  300 

 301 

3.4. Effect of treatments on bioactive compounds and antioxidant capacity 302 

 303 

3.4.1. Changes in ascorbic acid  304 

Ascorbic acid decreased with increasing storage time (Fig. 2C). No significant difference was 305 

observed in AA amongst all treated fruit and the control after 4 days of storage. However after 306 

8 and 12 days of refrigerated storage, treatment of fruit with 4 mM SA, 0.50 mM ABA, and 307 

0.25 mM MeJA significantly reduced (p < 0.05) the loss of AA compared to the control. 308 

Neither the lower concentration of SA or ABA was able to reduce AA loss after 8 or 12 days 309 

of storage. Both concentrations of MeJA also reduced loss of AA after 12 days and when used 310 

at 0.25 mM a loss reduction was also seen after 8 days of storage. 311 

 312 

3.4.2. Changes in antioxidant capacity  313 

 314 

Antioxidant capacity was 78.32±2.27 % at the beginning of the storage period and decreased 315 

with increasing storage periods at 4°C in all treated fruits (Supplementary Table 1). However, 316 

all treated strawberry fruit retained more antioxidant capacity compared to the control 317 

treatment at each time point (Fig. 3A). Furthermore, strawberries treated with the higher 318 

concentration of SA, ABA, and MeJA showed higher values of antioxidant capacity at each 319 

time point compared to the lower concentrations, although the difference was not significant 320 

for ABA at day 8 of storage. 321 

 322 

3.4.3. Changes in TPC   323 
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 324 

A slight increase in TPC was observed after 4 days of storage at 4°C in strawberry fruits with 325 

most of the plant hormone treatments, which ranged from (211- 224) mg GAE/100g FW, 326 

compared to the untreated control (206 GAE/100g FW) (Fig. 3B). After 4 days of storage, 327 

there was a decrease in TPC in all treated fruit and control (Supplementary Table 1). 328 

However, the fruit treated with the higher concentrations of all three hormones retained 329 

significantly higher TPC after both 8 and 12 days of storage compared to the control. 330 

 331 

3.4.3. Changes in total anthocyanin content 332 

  333 

Total anthocyanin content was significantly affected by treatment with SA, ABA, and MeJA 334 

(Fig. 3C). Anthocyanin content increased slightly between 4 and 8 days of storage following 335 

treatment with the lower concentrations of SA, ABA, and MeJA, but by day 12, it had 336 

decreased (Supplementary Table 1). However, anthocyanin content of all treated fruits was 337 

significantly greater at 8 and 12 days of storage compared to the control. Strawberries treated 338 

with the lower concentration of ABA showed the highest anthocyanin content at the end of 339 

storage period followed by the strawberries treated with 2 mM SA and 4 mM SA. 340 

 341 

3.5. Fungal count (log CFU/g) was affected by postharvest treatments  342 

 343 

The effect of dipping strawberry cv. ‘Festival’ fruit in different concentrations of SA, ABA, 344 

and MeJA on fungal counts (log CFU/g) during storage for 12 days at 4°C is presented in 345 

Table 2. The principal decay fungi detected were Botrytis cinerea and Rhizopus stolonifer. No 346 

fungal growth was detected from fruit treated with SA (4 mM), ABA (0.50 mM), and MeJA 347 

(0.25 and 0.50 mM) at day 0. At all storage time points (4, 8 and 12 days) fungal growth in all 348 
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treated fruits was either absent or significantly lower than in the control (p > 0.05). After 8 349 

days of storage, fruit treated with the higher concentration of SA and both concentrations of 350 

MeJA recorded significantly lower fungal counts than the other treatments or control and 351 

ranged from 2.5 – 2.6 log CFU/g. At the end of the storage period, the control sample reached 352 

4.2 log CFU/g followed by the SA and ABA treated fruit (3.9 log CFU/g). The most effective 353 

treatments for controlling fungal growth were the two concentrations of MeJA without any 354 

significant difference between them.   355 

 356 

4. Discussion 357 

4.1. Weight loss, respiration rate, and colour changes 358 

 359 

Our results showed that the most effective treatments for reduction of weight loss were SA 360 

and MeJA. Application of SA has been found to reduce water loss during refrigerated storage 361 

of various crops including strawberry [14]. The positive effects of SA for reducing weight 362 

loss are related to its overall effects in maintaining fruit quality [13, 14]. This in turn is likely 363 

due to the effect of SA treatments in reducing respiration rate and ethylene production 364 

[12,13]. In this study respiration rate was significantly reduced by the SA treatments.   365 

The effect of MeJA in reducing weight loss is likely related to its effect in reducing loss of 366 

firmness (Table 1). This in turn may be due to effects on total antioxidants [33] that result in 367 

increasing lignin content as observed in previous work on Fragaria chiloensis fruit [23]. 368 

Treatment with 0.50 mM MeJA also significantly reduced the respiration rate during storage 369 

of the strawberry fruit, presumably related to the maintenance of firmness and fruit quality. 370 

This is in agreement with previous work [34] showing that whereas in unripe fruit MeJA 371 

increased respiration, at later stages of ripening MeJA treatment had the opposite effect. The 372 

increased of respiration rate induced by 0.5 mM ABA could be due to enhanced ethylene 373 
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production elicited by ABA treatment which was previously reported in strawberry cv. 374 

‘Everest’ [20]. 375 

Here treatment with 4 mM SA resulted in a shinier/lighter skin colour (higher L* values) 376 

compared to the control throughout storage at 4 oC. Effects of post-harvest treatments on 377 

strawberry colour appear to vary [14]. For example, 2 mM SA treatment of F. ananassa cv 378 

‘Camarosa’ fruit did not affect lightness (L*) [14]. The difference to the results presented here 379 

may be due to the cultivar, or the different SA concentration used. In other fruit, lower 380 

moisture loss leads to higher brightness (higher L* values) [35]. This would fit here with the 381 

reduction in weight loss, but would need further verification. No difference was observed in 382 

L* with ABA treatment at later storage time points. In previous work exogenous application 383 

of 0.1 mM ABA to strawberry fruit, accelerated colour development by increasing 384 

anthocyanin content and phenylalanine ammonia-lyase (PAL) activity [21]. The difference 385 

with our results could be explained by the difference in the fruit maturity stage used, or the 386 

method of ABA application, which in the case of Chen et al. [21] was via the peduncle.  387 

In this study, the lowest a* values were obtained by both SA treatments during all storage 388 

periods. This could be due to the reduction in weight loss (Fig 1.A) and respiration rate (Fig 389 

1.B) leading to a delay in the accumulation of anthocyanin. Again this contrasts with results 390 

reported by Shafiee et al. [14], who did not find any changes in a* values when strawberry cv. 391 

‘Camarosa’ fruit were dipped in SA. The different cultivar used in this study could again 392 

explain the differences with our results. Compared to the control, treatment with ABA had no 393 

significant effect on a* value. However, Li et al. [19] reported a significant increase in a* 394 

value of strawberry fruits using a 1 mM ABA treatment compared to controls. The difference 395 

with our results could be due to the use of a higher concentration of ABA (1 mM) compared 396 

to our study (0.50 mM).  397 

 398 
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4.2. SSC, Firmness, pH, and TA 399 

 400 

SA treatment did not significantly affect SSC content, in agreement with Shafiee et al. [14]. 401 

However, in our study, ABA treatments did significantly increase SSC content. This is in 402 

agreement with previous work [19] where ABA treatment also increased colour formation, 403 

and anthocyanin accumulation while decreasing firmness. This combined effect was ascribed 404 

to an overall acceleration of ripening. Here firmness was actually increased by ABA 405 

treatment. The difference to the previous study may relate to the stage of maturity used for the 406 

studies: in this study fruit were treated at commercial ripeness while in the previous study the 407 

fruit were at the large green stage of maturity.  408 

Firmness is a key factor for strawberry fruit quality. In this study, compared with controls, 409 

strawberry fruit treated with 4 mM SA showed higher firmness (Table 1), in agreement with a 410 

previous report showing that strawberry cv. ‘Camarosa’ fruits treated with SA had higher 411 

firmness than controls [14]. This result might be related to the effects of SA in reducing the 412 

activity of the main cell wall degrading enzymes (pectin methylesterase, cellulase, 413 

polygalacturonase) and reducing the activity of enzymes such as lipoxygenase which leads to 414 

higher firmness of fruits [13]. Here MeJA also increased firmness, in agreement with a 415 

previous study that tested pre-harvest applications of MeJA on postharvest qualities of F. 416 

chiloensis. In contrast Concha et al [36] found that application of MeJA decreased firmness, 417 

however in their study fruit were treated at a less mature stage which may account for the 418 

difference.  419 

Our results show that SA treatment resulted in a higher TA than the control after 8 and 12 420 

days of storage. This result does not agree with Shafiee et al. [14] or Ayub et al [37] who 421 

found that postharvest treatment with SA did not significantly affect TA, however these 422 

studies different in the treatment combinations used [14] and length of treatment [37] making 423 
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a full comparison difficult. Our results do however support the hypothesis that SA conserves 424 

acidity in fruits via a reduction in respiration rate [13, 37].  425 

 426 

4.3. Ascorbic acid, Total Phenolics, anthocyanin and antioxidant capacity 427 

The positive effect of SA in reducing loss of AA is in agreement with previous studies [13, 428 

33] and is likely due to its stimulation of the biosynthesis of ROS scavenging enzymes [13]. 429 

Treatment with 0.50 mM ABA also significantly increased AA retention. This result is in 430 

agreement with Li et al. [19] who found an increase in antioxidant capacity in the first few 431 

days post-harvest but not at later time points. On the other hand, Ayub et al. [37] did not find 432 

any changes in AA related to ABA treatment. This could be due to the method of ABA 433 

application, which was performed by injecting 100µL of 1 mM ABA diluted in 2% ethanol 434 

solution into the fruit receptacles. In our study, MeJA also reduced AA loss in strawberry 435 

fruits after longer term storage. This is in agreement with, Lolaei et al. [38] who reported a 436 

significant increase in AA by treating strawberry cvs. ‘Selva’ and ‘Queen Elisa’ fruits with 437 

0.50 and 1 mM MeJA. 438 

The antioxidant capacity of all treated fruits was already higher than the control after only 4 439 

days of storage. Moreover effects were most pronounced with the highest concentration of 440 

each of the growth regulators. This contrasts with the ascorbic acid levels which were not 441 

affected by the treatments at day 4 and suggests that the antioxidant effects of the treatments 442 

were not mediated by changes in ascorbic acid. Phenolics are an important class of 443 

antioxidant compounds in berries [9, 29]. In accordance with Ayala-Zavala et al., [40] MeJA 444 

significantly increased retention of TPC at all time points.  445 

The pattern of the effects of treatments on TPC do follow quite closely the pattern of 446 

antioxidant capacity changes, although at day 4 the effects of all the treatments on antioxidant 447 

capacity seemed to be more pronounced compared to the trend of TPC change, suggesting 448 
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that other antioxidant pathways may also be stimulated by the treatments. The retention of 449 

TPC by treatments with high concentrations of SA and MeJA are consistent with previous 450 

studies indicating that both growth regulators enhance the efficiency of antioxidant systems in 451 

plants [40, 13].  452 

Anthocyanin is one of the major compounds present in strawberries. In our study we observed 453 

few differences in total anthocyanin content after 4 days of storage with the treatments tested. 454 

However, at later time points all the treatments significantly improved anthocyanin retention. 455 

This result is in agreement with the study by Ayala-Zavala et al., [40], where strawberries 456 

treated with MeJA showed the highest values of anthocyanin after 12 days of storage at 457 

7.5°C. Moreover, Yueming and Daryl [41] reported that treatment with ABA stimulated 458 

accumulation of anthocyanin and increased ethylene production, and suggested that this may 459 

be due to the effects of ABA in enhancing PAL activity. 460 

The antioxidant capacity of anthocyanins may be one of their most significant biological 461 

properties [42], however in our study the pattern of effects of the treatments on anthocyanin 462 

content did not match antioxidant activity closely, indicating that other antioxidants are also 463 

affected by the treatments 464 

 465 

4.5. Decay and fungal count (log CFU/g) 466 

Results presented here show that treatment of fruits with SA, ABA, or MeJA reduced decay 467 

development during storage at 4°C. Plants use several mechanisms to protect themselves from 468 

pathogenic attack; one of them is accumulation of SA [13, 43]. Botrytis cinerea and Rhizopus 469 

stolonifer were the main decay fungi detected in our study. Our results are in agreement with 470 

those previously reported [12] showing that postharvest treatment with SA reduced fungal 471 

decay of strawberry cv. ‘Selva’ fruits caused by Botrytis cinerea. The role of SA in 472 

controlling postharvest spoilage is likely due to its role in increasing hydrogen peroxide 473 
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(H2O2) in plants which acts as a signal molecule to activate plant resistance systems against 474 

pathogen attack [13]. To our knowledge, no previous work has studied the effect of 475 

exogenous ABA postharvest treatment on the decay development of strawberry fruit. Our 476 

results indicate that 0.50 mM ABA retards decay during cold storage. This result could be due 477 

to induced activity of defence enzymes by the ABA such as phenylalanine ammonia-lyase 478 

(PAL) [20]. Our results also showed that MeJA at the two tested concentrations could delay 479 

the development of decay in strawberry fruits, in agreement with previous studies [24, 25, 480 

44]. The action of MeJA here is likely due to its activation of defence pathways [45]. 481 

 482 

5. Conclusions 483 

 484 

In summary, a comparison of our results with the literature clearly indicates the need for 485 

comparative studies using fruit of the same maturity and equivalent application methods. Our 486 

results confirm and expand on previous studies showing that application of SA, ABA and 487 

MeJA are potentially useful postharvest treatments to enhance strawberry shelf life. However, 488 

the direct comparison of their effects provided in this study, indicates subtly different 489 

responses that are worthy of further investigation to understand underlying mechanisms and 490 

potential synergies.  491 
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Tables 
 

Table 1: Effect of salicylic acid (2 and 4 mM), abscisic acid (0.25 and 0.50 mM), and methyl 

jasmonate (0.25 and 0.50 mM) on TSS, firmness, pH, and acidity of strawberry fruits stored for 12 

d at 4 °C. Data are mean of three replicates ± standard errors. Different letters indicate significant 

differences amongst treatments at each time point (Duncan test, p <0.05%).  

Time  Treatment SSC Firmness pH TA 

(day) (mM) Brix N % citric acid 

0 10.87±0.63 4.71±0.03 3.54±0.06 0.98±0.06 

4 2 SA  9.23±0.88  bc 4.11±0.05 a 3.62±0.03 bc 0.92±0.01 ab 

4 4 SA  9.23±0.06  bc 4.16±0.03 a 3.57±0.01 c 0.97±0.01 a 

4 0.25 ABA   9.76±0.16 ab 4.03±0.37 a 3.57±0.02 c 0.91±0.00 ab 

4 0.50 ABA  10.43±0.23  a 4.13±0.08 a 3.66±0.00 b 0.89±0.01 b 

4 0.25 MeJA    8.63±0.12  c 4.20±0.05 a 3.62±0.01 bc 0.95±0.01 ab 

4 0.50 MeJA  9.46±0.08  bc 4.16±0.12 a 3.74±0.01 a 0.93±0.01 ab 

4 Control 8.63±0.63  c 4.13±0.14 a 3.64±0.02 b 0.89±0.03 b 

8 2 SA  9.46±0.09 bc 3.66±0.03 bc 3.69±0.00 ab 0.92±0.01 ab 

8 4 SA  9.46±0.17 bc 3.78±0.04 ab 3.58±0.01 c 0.96±0.01 a 

8 0.25 ABA   9.61±0.19 b 3.50±0.06 c 3.67±0.03 ab 0.91±0.03 bc 

8 0.50 ABA  10.56±0.19 a 3.60±0.06 bc 3.69±0.00 ab 0.87±0.01 cd 

8 0.25 MeJA    9.96±0.30 ab 3.90±0.10 a 3.65±0.03 b 0.90±0.00 bc 

8 0.50 MeJA  10.03±0.49 ab 3.70±0.06 b 3.72±0.01 a 0.88±0.01 cd 

8 Control 8.68±0.09 c 3.28±0.04 d 3.71±0.02 a 0.84±0.01 d 

12 2 SA  9.80±0.06 cd 3.50±0.16 bc 3.57±0.01 a 0.89±0.02 a 

12 4 SA  9.70±0.10 cd 3.70±0.06 a 3.50±0.01 a 0.89±0.01 a 

12 0.25 ABA   10.11±0.07 bc 3.34±0.03 d 3.60±0.07 a 0.86±0.01 ab 

12 0.50 ABA  11.23±0.35 a 3.43±0.03 cd 3.56±0.03 a 0.87±0.00 ab 

12 0.25 MeJA    10.76±0.46 ab 3.60±0.06 ab 3.59±0.07 a 0.89±0.03 a 

12 0.50 MeJA  10.18±0.09 bc 3.48±0.04 bcd 3.64±0.05 a  0.88±0.01 ab 

12 Control 9.16±0.44 d 3.13±0.03 e 3.50±0.01 a 0.84±0.00 b 
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Table 2: Effect of salicylic acid (2 and 4 mM), abscisic acid (0.25 and 0.50 mM), and methyl jasmonate 

(0.25 and 0.50 mM) on mold and yeast (log CFU/g)  of strawberry fruits stored for 12 d at 4 °C. Data 

are mean of 3 replicates ± stander errors. Different letters indicate significant differences (Duncan test, 

P<0.05%). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

*ND : mean (not detected ) there is no fungal growth found.   

Treatments Storage period (Days) 

0 4 8 12 

2 SA 2.60± 0.05 b 2.6 ± 0.05 c 3.70  ± 0.06  b 3.93  ± 0.03 b 

4 SA ND* ND 2.53  ± 0.03 d 3.86  ± 0.03 b 

0.25 ABA 2.53 ± 0.03 b 2.7 ± 0.03 b 3.53  ± 0.03 c 3.86  ± 0.03 b 

0.50 ABA ND 2.6  ± 0.05 c 3.53 ± 0.03 c 3.86 ± 0.03 b 

0.25 MeJA ND ND 2.43  ± 0.03 d 3.63  ± 0.03 c 

0.50 MeJA ND ND 2.53  ± 0.03 d 3.66  ± 0.03 c 

Control 2.9 ± 0.03 a 3.1  ± 0.05 a 4.00  ± 0.06  a 4.23  ± 0.03 a 
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Figures 

 

 

Figure 1: Effect of salicylic acid (SA) (2 and 4 mM), abscisic acid (ABA) (0.25 and 0.50 mM), and 

methyl jasmonate (MeJA) (0.25 and 0.50 mM) on (A) weight loss (%), (B) respiration rate (mmol CO2 

kg−1FWh−1 ), and (C) decay % of strawberry fruits stored for 12 d at 4 °C. Respiration rate at start of 

the storage was 24.75±0.32 mmol CO2 kg−1FWh−1. No decay was observed at 4 d from start of the 

storage, hus, panel (C) shows just 8 and 12 d. Data are mean of three replicates. Different letters for 

every storage point indicate significant differences (Duncan test, p < 0.05).  
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Figure 2: Effect of salsylic acid (2 and 4 mM), abscisic acid (0.25 and 0.50 mM), and methyl 

jasmonate (0.25 and 0.50 mM) on (A) L* value, (B) a* vlaue, and (C) ascorbic acid (mg/100g FW) of 

strawberry fruits stored for 12 d at 4 °C. L* value, a* value, and ascorbic acid value at start of the 

storage were 34.52±0.23, 33.60±  0.20, and 54.66±1.33 (mg/100g FW), respectively. Data are mean of 

3 replicates. Different letters for every storage point indicate significant differences (Duncan test, 

P<0.05%).  
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Figure 3: Effect of salicylic acid (2 and 4 mM), abscisic acid (0.25 and 0.50 mM), and methyl 

jasmonate (0.25 and 0.50 mM) on (A) antioxidant activity %, (B) total phenolic compunds (mg 

GAE/100 g fw), and (C) total anthocyanin content (mg C3GE/Kg) of strawberry fruits stored for 12 d 

at 4 °C. Antioxidant activity, total phenolic compunds, and total anthocyanin content at start of the 

storage were 78.32±2.27 %, 210.33±2.72 (mg GAE/100 g fw), and 26.22±0.91 (mg C3GE/Kg), 

respectively. Data are means of three replicates. Different letters indicate significant differences within 

each time point (Duncan test, P<0.05%). 

 

 


