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Summary 

 

This thesis presents DNA binding studies and our work to develop a double competition 

dialysis assay. 

Chapter 1 describes DNA structure, including duplex, triplex and quadruplex structures, and 

functioning in storing the genetic code. This Chapter also presents an overview of the 

interactions of small molecules with nucleic acids structures. Moreover, the chapter describes 

the techniques that have been used for our DNA-binding studies, viz, UV - visible 

spectroscopy, circular dichroism spectroscopy and isothermal titration calorimetry. The 

chapter also describes potential applictions of small molecule DNA binders. Finally, we 

describe the competition dialysis in this chapter.  

Chapter 2 describes the determination of extinction coefficients for selected 

optoelectronically active π-conjugated molecules in aqueous buffers. Furthermore, we 

established the light sensitivity of the compounds. In addition, the chapter describes the 

binding studies of nucleic acid binders from a library of available ligands using UV-visible, 

circular dichroism, and isothermal titration calorimetry. 

Chapter 3 describes the development of a custom competition dialysis device. We test this 

device to determine affinity and selectivity of ligands for nucleic acids structures. We 

analysed the affinity and selectivity of a single ligand for FS-DNA, specific duplex sequences 

(dAdT)12●(dAdT)12 and (dGdC)12●(dGdC)12, and different quadruplex structures such as c-

myc, 22AG and EAD2. The data agree with the results from UV-vis titrations. 

In Chapter 4 we explore how double competition dialysis allows screening of two ligands 

against an array of nucleic acids structures. Several compounds were tested showing that our 

assay deals reasonably well with fading unless the latter progresses to the extent when 

absorbance is too low to measure reliably. Although we have identified compounds with 

promising affinity profiles, even in the presence of a second binder we are yet to identify 

binders with an orthogonal selectivity profile. 

In Chapter 5 we present general conclusions and suggestions for future work. 
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Abstract 

DNA, the molecule of life, plays a key role in many important fields, for instance medical and 

pharmaceutical science. Moreover, DNA is also used as a building block in directed 

assembly. This chapter provides a brief overview of the importance of DNA in life. 

Furthermore, we present an overview of the binding of small molecules with nucleic acid 

structures such as duplex and quadruplex DNA. The Chapter also describes the typical 

binding modes with duplex DNA, which are electrostatic, intercalation and groove 

interactions. The second part of this chapter describes briefly selected established techniques 

that have been used for DNA-binding studies, viz UV-visible, circular dichroism spectroscopy 

(CD), isothermal titration calorimetry (ITC), fluorescence resonance energy transfer (FRET) 

and competition dialysis. The Chapter finishes with the aim of this project, which is the 

development of an assay that allows the identification of orthogonal recognition elements for 

the directed assembly of functional nanostructures.  
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1.1. DNA structure and functions 
Nucleic acids are one of the most important biomacromolecules. They are vital to all known 

forms of life. All living cells contain both DNA and RNA, except some cells such as red 

blood cells, while viruses contain either DNA or RNA, but usually not both. The function of 

nucleic acids is to encode, store, transmit and express genetic information to the benefit of the 

cell itself and ultimately to pass the information onto the next generation of each organism.1  

In 1869 Johann Friedrich Miescher reported discovering a weakly acidic substance in the 

nuclei of human white blood cells and named the substance "nuclein". He subsequently 

separated nuclein into protein and nucleic acid components. This is known to be the first 

isolation of what we now refer to as deoxyribonucleic acid (DNA).2  

In the 1920's nucleic acids were reported to be major components of chromosomes, gene-

carrying structures in the nuclei of most living cells. Further analysis of nucleic acids showed 

the presence of phosphorus, in addition to carbon, hydrogen, oxygen and nitrogen, but no 

sulphur, unlike proteins.3  

Most scientists, however, remained convinced that the more complex proteins must be the 

carriers of genetic information as DNA is made up of only four different nucleotides – not 

enough, it was believed, to store the huge amount of genetic information. Extensive interest 

in nucleic acids was not rekindled until the 1940-1950s, when in classical experiments it was 

unequivocally demonstrated that DNA is the carrier of genetic information. This culminated 

in creation of the now iconic three-dimensional model of DNA, which was worked out by 

Watson and Crick using the X-ray diffraction photographs taken by Franklin and Wilkins.3-5  

Nucleic acids are linear biopolymers. Their monomers are nucleotides, hence the other name 

of nucleic acids, polynucleotides.6 Each nucleotide consists of three components: a 

nitrogenous base (also known as a nucleobase, or simply as a base), a pentose (5-carbon) 

sugar (ribose in RNA and deoxyribose in DNA) and a phosphate group, associated with the 

acidic nature of the nucleic acid (Figure 1.1).7  
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Figure 1.1 Comparison of DNA and RNA nucleotides. 

Different genes have different sequences of these four nucleotides.8 Since the 

deoxynucleotides differ only in the bases they carry, this sequence can be recorded simply as 

a base sequence. The substructure of a nucleotide, which consists of a nitrogenous base and a 

sugar, is known as nucleoside (Figure 1.2); we find ribonucleosides are found in RNA and 

deoxynucleosides in DNA. In chemical terms therefore, a nucleotide is a phosphate ester of a 

nucleoside.9   

 

Figure 1.2 The structures of the nucleosides. 
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The five nitrogenous bases – Adenine (A), Guanine (G), Cytosine (C), Thymine (T) and 

Uracil (U) - are the fundamental units of the genetic code. The bases A, G, C, and T are 

characteristic for DNA while A, G, C, and U are found in RNA. These bases belong to two 

chemical classes: pyrimidines (C, T, U) are composed of a single carbon-nitrogen ring, while 

purines (A and G) are double-ring structures with two joined carbon-nitrogen rings, but with 

different side-chains (Figure 1.3).6 Thymine and uracil have an identical structure except for 

a methyl group, which is present in T but not in U (Figure 1.3).10  

 

Figure 1.3 The purines and the pyrimidines.  

Several structures can be distinguished for DNA and the structure is described on different 

levels viz. primary, tertiary and quaternary (Figure 1.4).11 
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Figure 1.4 Nucleic acid structures (primary, secondary, tertiary, and quaternary) using DNA 

helices and examples from the VS ribozyme and telomerase and nucleosome. 

1.2. Primary structure of DNA 
The primary structure of DNA consists of the linear sequence of nucleotides that are linked 

together. The different nucleotides are covalently joined to form a long polymer chain by 

covalent bonding between the phosphates and sugars. For any one nucleotide, the phosphate 

attached to the -OH group at the 5’ position of the sugar is in turn bonded to the -OH group 

on the 3’ carbon of the sugar of the of the next nucleotide. As each phosphate-hydroxyl bond 

is an ester bond, the linkage between two deoxynucleotides is a 3’5’ phosphodiester bond 

(Figure 1.5). Thus, in a DNA chain, all of the 3’ and 5’ hydroxyl groups are involved in 

phosphodiester bonds except for the first and the last nucleotide in the chain. The first 

nucleotide has a free 5’ phosphate and the last nucleotide has a free 3’ hydroxyl.12 Therefore, 

each DNA chain has polarity; it has a 5’ end and a 3’ end. Traditionally the base sequence is 

written in the order from the 5’ end of the DNA chain to the 3’ end. 13-15    
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Figure 1.5 3’5’ phosphodiester bonds formed between nucleotides in a DNA molecule. 

1.3. Secondary and tertiary structure of duplex DNA 
Secondary structure is determined by the set of interactions between bases which form the 

primary structure. These interactions are called base pairing and can occur within a single 

polynucleotide chain or between two polynucleotide chains.  

Two nucleotides on opposite complementary DNA strands that are connected through 

hydrogen bonds are called a base pair (bp). In DNA adenine forms a base pair with thymine 

and guanine forms one with cytosine (Figure 1.6).  

 

Figure 1.6 DNA complementary base pairs. (Left), a GC base pair demonstrating three 

intermolecular hydrogen bonds; (Right), an AT base pair demonstrating two intermolecular 

hydrogen bonds shown in green. 

As a result of base pairing, DNA typically exists in the double-stranded helical form ( a 

tertiary structure) proposed by James Watson and Francis Crick in 1953 on the basis of X-ray 

diffraction data by Rosalind Franklin and colleagues.16, 17 The double helix is composed of 

two anti-parallel strands of DNA that contain a phosphate-linked deoxyribose sugar backbone 

with pendant nucleotide bases.18 The two anti-parallel strands of DNA are held together by 
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hydrogen bonds between the adjacent nucleotide bases, where adenine pairs with thymine 

and guanine pairs with cytosine as shown above. Adenine and thymine form a double 

hydrogen bond, whereas between cytosine and guanine there is a triple hydrogen bond. The 

uniquely selective interactions between strands of DNA underpin both the storage of genetic 

information in biological systems and the use of DNA in the directed assembly. The 

hydrogen bonds formed between the two nucleotide bases in a base pair force π–π interaction 

(also called π stacking) between consecutive base pairs. A key driving force for the formation 

of the double helix is provided by the hydrophobic interaction between the stacked base pairs. 

The two anti-parallel strands form a helical structure in which the strands are closer at one 

side than on the other side. The region where the backbones are far apart is called the major 

groove and the region where they are close is called the minor groove.19 The grooves are thus 

unequal in size, the major groove is 22 Ångstrom wide, and the minor groove is 12 Ångstrom 

wide.20 The double helix of DNA is shown in Figure 1.7.   

 

Figure 1.7 B-DNA double helix (Nucleic acid database (NDB) ID: BD0003). 

Many double-helical forms are possible; for DNA the three biologically relevant forms are A-

DNA, B-DNA, and Z-DNA (Figure 1.8 and Table 1.1). The Watson-Crick structure is B-

DNA. The B form is the most stable structure for a random-sequence DNA molecule under 
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physiological conditions and is therefore the standard point of reference in any study of the 

properties of DNA. 21, 22, 23 

 

 

 

 

 

 

 

Figure 1.8 The main DNA conformations (left to right): (A) A-DNA (NDB ID: AD0003), 

(B) B-DNA (NDB ID: BD0003) and (C) Z-DNA (NDB ID: ZD0008). A-DNA, B-DNA, and 

Z-DNA conformations of DNA. 22, 24 

 

Table 1.1. Comparisons of B-form, A-form and Z-DNA.22  

Property A-DNA B-DNA Z-DNA 

Helix handedness Right-handed Right-handed Left-handed 

Repeating helix unit one base pair one base pair two base pair 

Diameter ~23 Å ~20 Å ~ 18 Å 

Rotation per base pair 33.6° 36° 30° 

Base pairs per turn 10.7 10.0 12 

Helix rise per base pair 2.3 Å 3.32 Å 3.8 Å 

Sugar pucker C3’-endo C2’-endo C2’ -endo at C    C3’ -endo at G 

Major groove Narrow and deep Wide and deep Narrow and deep 

Minor groove Wide and shallow Narrow and deep Narrow and deep 
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1.4. Triplex DNA 
 

Nucleic acids can also form triplex structures (Figure 1.9).  

 

Figure 1.9 DNA triplex structure (NDB ID: BD0017). 

The DNA triplex structure consists of three strands of DNA, one of which is wound around 

two other strands (which are in a B-form) through so-called Hoogsteen hydrogen bonds 

(Figure 1.10), hence allowing the formation of triplex DNA. The non-Watson-Crick pairing 

is called Hoogsteen pairing after Karst Hoogsteen, who in 1963 first recognized the potential 

for these unusual pairings.25 The triplex shown is most stable at low pH because the C ≡ G * 

C+ triplet requires a protonated cytosine.26 In Hoogsteen hydrogen bonding, there is pairing 

between two homopyrimidines and one homopurine, where one homopurine in the third 

strand runs parallel to the second homopyrimidine.27, 28  
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Figure 1.10. Schematic illustration of the A: T and G:C Watson-Crick and Hoogsteen base 

pairs. Hydrogen bonds are shown as dashed lines. 

1.5. Quadruplex DNA 
G-quadruplexes (G4s) are formed by DNA sequences that are rich in guanosine nucleotides 

and form four-stranded secondary structures of DNA. Guanosine bases are important for the 

formation of the quadruplex structure,29 where four guanosine nucleotides group together 

through Hoogsteen hydrogen bonding to form a planar quad-structure known as the guanine 

tetrad (G-tetrad) (Figure 1.11). The quadruplex structure is further stabilized by the presence 

of a cation, especially potassium, which sits in a central channel between each pair of 

tetrads.30  

While metal atoms plays largely a structural role in most G4 binders, there are also examples 

where they interact directly with G4s by electrostatic interactions or direct coordination with 

nucleobases (Figure 1.11).31  

  

Figure 1.11 (G-tetrad) as the basis for quadruplex DNA formation. 

The orientation of strands in the tetraplex can vary, as shown in Figure 1.12.   
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Figure 1.12 the several common topologies found in G-quadruplex.32  

‘If G-quadruplexes form so readily in vitro, Nature will have found a way of using them in 

vivo’, said Aaron Klug, British chemist over thirty years ago.33 The evidence emerges that 

their location is non-random, correlating with functionally important genomic regions and 

that they play an impotant role in various cellular pathways including DNA replication, gene 

expression and telomere maintenance.34, 35  

Only a small part of the genome is responsible for coding proteins (for example, only 2% of 

the human genome encode protein sequences), but a rising percentage is being shown to have 

regulatory functions, including most sequences within introns. When there is much non-

coding DNA, a large proportion appears to have no biological function, as predicted in the 

1960s.36, 37 

Telomeres [5′-(TTAGGG)n-3′] and associated proteins form a unique DNA–protein structure 

located at the ends of linear chromosomes.38 These structures are required for capping the 

chromosome ends from being recognized as DNA double-strand breaks, and provide 

protection from chromosomal deterioration during DNA replication. Telomeres also regulate 

telomerase activity.39 This enzyme is a reverse transcriptase that adds TTAGGG repeats to 

the ends of chromosomes and thus plays a vital role in telomere length homeostasis.40 To 

ensure optimal telomerase activity, telomeric G-rich single strands must unfold. On the other 

hand, folding of the unfolded structures into a G-quadruplex structure is expected to hinder 

telomere elongation by telomerase.41, 42  

Since telomerase is overexpressed in human cancer cells, it has emerged as a potential target 

in the development of anti-cancer drugs. One of the several different approaches to 

telomerase inhibition, the stabilization of G-quadruplexes by small molecules, has received 

much attention.43 
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A promoter is a region of DNA that initiates transcription of a gene. Promoters are located on 

the same strand and upstream on the DNA, i.e. towards the 5' region of the sense strand. 

Promoters can be about 100–1000 base pairs long.44 It has been shown that promoter regions 

are significantly enriched in quadruplex motifs relative to the rest of the genome, with more 

than 40% of human gene promoters containing one or more quadruplex motif.44 Furthermore, 

these promoter quadruplexes strongly associate with nuclease hypersensitive sites identified 

throughout the genome via biochemical measurement. Regions of the human genome that are 

both nuclease hypersensitive and within promoters show a remarkable enrichment of 

quadruplex elements, compared to the rest of the genome. These quadruplex motifs identified 

in promoter regions also show an interesting structural bias towards more stable forms.44 

These observations support the proposal that promoter G-quadruplexes are directly involved 

in the regulation of gene expression. It is established that G-quadruplex DNA motifs are 

embedded within the promoters of human oncogenes as well in several genes that encode 

transcription factors but are under-represented in the promoters of housekeeping genes and 

tumor suppressor genes.45 

Two examples of the formation of G-tetrads in promoter regions include c-myc and EAD2 as 

a form of parallel conformation. Moreover, another form of G-quadruplexes formed in human 

telomeres is the mixed-hybrid conformation 22AG. The G-quadruplex structures 22AG, c-

myc and EAD2 are demonstrated in Figure 1.13.46 

(A) (B) (C) 

   

Figure 1.13 (A) G-quadruplex structures of DNA (PDB: ID 2HY9), (B) 22AG and (C) c-

myc (PDB: ID 2HY9). 
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1.6. The genetic code 
According to the central dogma of molecular biology (Figure 1.14), the genetic information 

present in DNA in the form of codons is transferred to messenger RNA (mRNA) by the 

process of transcription and then the information is “translated” into protein sequence by the 

process of translation.47,48 A codon is a triplet of nucleotides that codes for a specific amino 

acid. Translation occurs in such a way that these nucleotide triplets are read in a successive, 

nonoverlapping fashion. A specific first codon in the sequence establishes the reading frame, 

in which a new codon begins every three nucleotide residues. There is no punctuation 

between codons for successive amino acid residues. The amino acid sequence of a protein is 

defined by a linear sequence of contiguous triplets. 

 

Figure 1.14 The central dogma of molecular biology. 

Figure 1.14 shows the two-step process, transcription and translation, by which the 

information in genes flows into proteins: DNA           RNA          protein. Transcription is the 

synthesis of an RNA copy of a segment of DNA. 

The cracking of the genetic code is regarded as one of the most important scientific 

discoveries of the twentieth century.  A striking feature of the genetic code is that an amino 

acid may be specified by more than one codon, so the code is described as degenerate. This 

does not suggest that the code is flawed: although an amino acid may have two or more 

codons, each codon specifies only one amino acid. The genetic code is nearly universal. 

Human, tobacco plant, E. coli, cobra, and Human Immunodeficiency virus share the same 

genetic code. Thus, all life forms have a common evolutionary ancestor, whose genetic code 

has been preserved throughout biological evolution. 
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1.7. Interaction of small molecules with nucleic acids 
The investigation of molecules that target DNA is an interesting field and could prompt 

applications by which it will be much easier to control numerous hereditary illnesses. 

1.7.1.  Interaction of small molecules with duplex DNA  
Many molecules, including proteins interact with DNA via various modes of interaction. 

Furthermore, molecules can interact either reversible or irreversibly with DNA. Irreversible 

binding normally involves non-specific covalent bonding to the phosphate or sugar part of the 

DNA backbone. This typically means that the DNA breakage, for instance in the case of 

cisplatin, an anticancer drug, acts exactly in this manner when it binds to nitrogen atoms 

within DNA bases (Figure 1.15). 

 

Figure 1.15 Cisplatin interactions with DNA (NDB ID: 1A84). 

 

Molecules can bind to DNA reversibly via several binding modes. Reversible DNA binders 

interact with DNA via (a) electrostatic interactions (b) intercalation (c) groove binding (major 

and minor). Electrostatic interactions occur on the backbone of the DNA. Groove binding or 

intercalation between the base pairs are shown in Figure 1.16. 
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(A) (B)  (C) 

Figure 1.16 Examples of different reversible interactions between molecules and DNA, (A) 

minor groove binding (NDB ID: GDLB05), (B) intercalation (NDB ID: DD0070) and (C) 

electrostatic (NDB ID: 2MCJ).    

A brief description of the three modes of interaction is provided further.  

1.7.2.  Electrostatic interaction       
Electrostatic interactions are normally non-specific and occur along the outside surface of the 

double helix structure of DNA. Because the structural framework of nucleic acids is made by 

alternating phosphate and sugar groups, the DNA backbone is negative charged. This 

negative charge allows occurrence of electrostatic interactions between DNA and cationic 

molecules.49  This specific mode of interaction can be affected by the size of the ligand, the 

charge on the ligand and ligand hydrophobicity. Electrostatic interactions normally play an 

important role for stability of the DNA.  Nonetheless, non-specific interaction with, for 

instance, Na+ or Mg2+ leads to partial neutralization of the phosphate backbone’s charge.  For 

that reason, the binding of small molecules to DNA is dependant on the ionic strength of the 

medium. 

 

1.7.3.  Intercalation and intercalators 
The concept of intercalation was introduced by Lerman in 1961. In this mode of binding, 

planar (flat and rigid) molecules slide in between the base pairs. Typically, intercalators are 

not flexible and normally have an aromatic conjugated system. Intercalation occurs between 

base pairs of DNA.50 The driving force in this event is π-π stacking interactions and Van der 

Waals interactions between the planar aromatic molecule and base pairs of DNA. Such 
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compounds as methylene blue, ethidium bromide and coralyne are intercalators (Figure 1.17). 

All these compounds are flat and rigid molecules. Metal complexes have several features that 

make them particularly suitable as G4 DNA binders and therefore as potential drugs. 

As human telomeric single-stranded DNA can fold into several intramolecular G-quadruplex 

structures, the structural features that are considered during the development of ligands 

include the G-tetrad surface, discrete grooves resulting from combinations of syn- and anti-

deoxyguanosine conformations, a central channel with a negative charge and motifs within 

the flexible loop regions.32, 51 Several classes of small molecules that bind and stabilize 

telomeric G-quadruplex structures have been reported. Most of the reported ligands have a 

planar aromatic surface and interact with the external surface of the G-quartet by π-stacking 

interactions. Moreover, selectivity and affinity of a ligand can be enhanced by electrostatic as 

well as H-bonding interactions of the neutral/cationic side chain with the grooves/loops of the 

quadruplex structure.44, 52  

Several techniques can be used to assess whether a compound binds to DNA via 

intercalation. For example, there have been many studies in the literature to investigate 

the mode of binding of ethidium bromide to duplex DNA. 53, 54  These studies have involved 

CD spectroscopy, UV-vis spectroscopy.55  

Coralyne is another example of an intercalating molecule.56 57, 58 There are many studies on 

the interaction between coralyne and DNA.57 The main binding forces are provided by the 

planar surface,59 and the positive charge. In addition, many analytic techniques such as, UV-

vis, CD spectroscopy, viscometry and fluorescence spectral study have been used to 

investigate the intercalation mode of binding.  

Another noteworthy example is daunomycin, an anticancer drug.  X-ray studies have been 

used to investigate the intercalation mode of binding of daunomycin to d (CGTACG) which 

involves insertion of the aromatic system between base pairs (Figure 1.18). 
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Figure 1.17 Chemical formulae of intercalators, (a) methylene blue, (b) ethidium bromide 

and (c) coralyne. 

 

 

Figure 1.18 X�ray structure of daunomycin bound to d (CGTACG) (NDB DDF018).  
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1.7.4 Major and Minor groove binding  
Groove binding involves molecules interacting with DNA in the major or the minor groove. 

Groove binding has the advantage of allowing certain molecules to interact selectid with 

DNA. Major groove binding by proteins plays important roles in transcription and replication 

because the major groove provides a binding region allowing DNA-binding proteins to 

interact in a sequence-selective manner.60  The major groove is wide, which allows large 

biomolecules such as proteins to bind to the major groove predominantly through recognition 

of hydrogen bond donating and accepting sites (Figure A1.19 & B1.20). On the other hand, 

small molecules are often minor groove binders. Minor groove binders have several 

characteristics, for instance they are typically long and flexible. Often, minor groove binders 

are positively charged, and interaction can therefore also occur between the DNA binder and 

the anionic phosphate backbone of the DNA. In addition, these molecules also interact with 

the hydrophobic interior in the minor groove as well as through hydrogen bonding with 

donors and acceptors at the bottomof the minor groove.61  

 

Figure A1.19 nucleic acid base adenine (A), thymidine (C) cytosine and (G) guanine linked 

by hydrogen bonds (dot lines). 
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Figure B 1.20 Major and minor grooves of DNA structure (NDB ID: BD0002). 

A well-known example of a minor groove binder is Hoechst 33258. Hoechst 33258 has a 

crescent shape similar to netropsin and distamycin. Hoechst 33258 also has a π-conjugated 

oligoheteroaromatic framework. Moreover, Hoechst 33258 has enough rotational flexibility 

around the bonds to fit into the minor groove (Figure 1.21).  

 

Figure 1.21 Structure of H33258 (left), binding of H33258 to the minor groove 

d(CGCAAATTTGCG)2 (NDB ID: GDL028) (right). 

 

Studies of the interactions of H33258 to the minor groove show that H33258 interacts 

specifically with A●T-rich sequences, and has a binding site size of 4-5 base pairs. 

Nevertheless, H33258 also binds to G●C-rich sequences in the minor groove but with low 

affinity. Its binding has been studied through a variety of techniques, including Förster 

resonance energy transfer (FRET), UV-visible spectroscopy, isothermal titration calorimetry 
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(ITC), circular dichroism (CD) spectroscopy, fluorescence spectroscopy and pulsed gradient 

spin echo NMR.62  

Similar to H33258, studies have confirmed the interaction between DAPI and DNA by 

several biophysical methods such as UV-vis, fluorescence spectroscopy, viscosity and 

circular dichroism (Figure 1.22). 

 
Figure 1.22 Crystal structure of DAPI bound to DNA sequence D (CGTGAATTCACG) 

(NDB ID: 5T4W).  

 

Further examples of DNA minor groove binders include distamycin and netropsin (Figures 

1.23 and 1.24). Distamycin and netropsin are long, flexible and crescent-shaped. In 1974, 

Wartell et al showed minor groove binding for netropsin.63, 64 The driving force for binding to 

netropsin to A•T rich regions of B-DNA (Figure 1.23) is displacement of water molecules 

that hydrate the minor groove of DNA. The binding selectivity of netropsinto A•T rich 

sequences was attributed to the formation of hydrogen bonds between the NH groups on 

netropsin and the nitrogen in adenine and oxygen of thymine on each adjacent base pair by 

electrostatic and Van der Waals interactions. The binding of netropsin to DNA always occurs 

in a 1:1 ratio along four consecutive A•T base pairs. Distamycin binds to DNA in the minor 

groove by two different modes, viz. 1:1 and 2:1 ratio along five base pairs (Figure 1.23).  
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Figure 1.23 Structure of distamycin (A), the groove binding modes of distamycin with DNA 

duplexes, 1:1 binding of distamycin to DNA (NDB ID: GDL 003) (B); side-by-side binding 

of distamycin to DNA (NDB ID: GDH060) (C). 

 

 
 

Figure 1.24 Structure of netrospin (left), 1:1 binding of netropsin in the minor groove (based 

on NDB ID: GDL B05) (right). 

A partilarly well-known class of polyamide minor groove binders are known as Dervan’s 

hairpin polyamides (DHP). Dervan et al, whose research was inspired by sequence-selective 

natural compounds such asnetropsin and distamycin, provided insight into the molecular 

forces that govern the affinity and specificity of pyrrole-imidazole polyamides. Hairpin 

(A) (B) (C) 
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polyamides are synthetic ligands for sequence-specific recognition in the minor groove of 

double-helical DNA. DHPs are composed of amide-coupled heterocycles, which two 

polyamides binding to double-stranded DNA in the minor groove in a side-by-side manner 

forming 1:1 complexes with A•T base pairs. Furthermore, a 2:1 binding mode for this class of 

compounds was revealed for 1-methylimidazole-2-carboxamide netropsin (2-Im-N) which 

specifically binds to 5’-TGAT (Figure 1.25). 

 

 

 

 

 

 

 

Figure 1.25 X-Ray structure (left) and hydrogen bonds view of side-by-side dimer of 2-Im-N 

bound to d(TGACT) (NDB ID: BDD003).  

 

Recognition of double-stranded DNA by DHPS is limited to five base pairs. The reason for 

that is the curvature polyamide molecules no longer matches with the minor groove of 

DNA.65 Hence, Dervan and co-workers synthesized polyamides to bypass this, and “turn to 

turn” or “turn to tail” tandems recognise longer DNA sequences extending the selectivity to 

10 base pairs (Figure 1.26).66  
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           Turn-to-turn tandem             Turn-to-tail tandem              Candy cane 

 

Figure 1.26 cartoon representations of polyamide models for binding to extended DNA 

sequences. 45 

Additionally, minor groove binders can form hydrogen bonds with nucleotide bases. 

Examples of such groove binders are H33258, GB01, DAPI and DODC (Figure 1.27).                       

 

Figure 1.27 Chemical formulae of minor groove binders (a) H33258, (b) GB01 (c) DAPI and 

(d) DODC. 

On the other hand, some compounds combine two modes of interaction because the typically 

higher flexibility and also flat polycyclic aromatic ring molecules such as basic yellow 

(thioflavin T) and thiazole orange (Figure 1.28).67 
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Figure 1.28 Chemical formulae of minor groove binders and intercalators, (a) basic yellow 

(thioflavin T) and (b) thiazole orange. 

Basic yellow (thioflavin T) is a typical example of a fluorescent dye. The different binding 

modes of basic yellow have been investigated by spectrophotometric and spectrofluorometric 

methods. It has been reported that basic yellow (thioflavin T) displays several binding modes, 

including intercalating and minor groove binding.68 Key intercalated interactions are 

hydrophobic between benzothiazole and dimethylaniline groups and base pairs. Moreover, 

basic yellow is cationic by its nature, also allowing electrostatic interactions.  

1.8. Techniques for studying interactions between small molecules and nucleic acids 
The interaction of DNA binding-small molecules can be studied through a variety of 

techniques, viz. UV-visible, circular dichroism spectroscopy (CD), isothermal titration 

calorimetry (ITC), fuorescence resonance energy transfer (FRET) and competition dialysis.  

These techniques are briefly described below. 

1.8.1. UV-Visible Spectroscopy (UV-vis) 
UV-visible spectroscopy measures the amount of radiation absorbed by a sample at each 

wavelength in the ultraviolet and visible regions of the spectrum. The absorption of 

ultraviolet (200-400 nm) and visible (400-800 nm) light by molecules is associated with the 

excitation of valency electrons from the electronic ground state to higher energy states. The 

absorption of UV-visible radiation by a molecule typically results in the electronic transition 

of an electron from the highest occupied molecular orbital (HOMO) to the lowest unoccupied 

molecular orbital (LUMO). The wavelength of the absorbed radiation depends on the energy 

difference between the orbital originally occupied by the electron and the orbital to which it 
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is promoted. Absorbance (A) often, but not always, increases linearly with the concentration 

(c) of the chromophore as described by the Beer Lambert law (equation 1.1): 

A = ε×c×l     (1.1)                                   

where c is the concentration of the sample in moles per litre of the solution, ε the molar 

extinction coefficient in M-1 cm-1, and l the optical path length.69  

Absorption spectroscopy is an important technique for studying ligand-DNA interactions 

since spectroscopic information can be deconvoluted to yield concentrations of free and 

bound species. Because of interactions of molecules with DNA, modification in structural 

conformations of ligands and changes in the properties of the medium surrounding the binder 

occur, resulting in changes in spectroscopic response. Titration of a ligand with DNA can 

show changes in the position of the wavelength of maximum absorbance (λmax) and in 

extinction coefficient.  

These changes may be an increase (hyperchromicity) or decrease (hypochromicity) in molar 

absorptivity of ligands or conceivably a movement of the wavelength of highest absorption to 

higher wavelength (red shift) or to lower wavelengths (blue shift).70 Plotting these absorption 

spectra in one graph may reveal an isosbestic point which is the wavelength at which two 

species involved in the titration have the same molar absorptivity.71, 72 An example of an 

isosbestic point is demonstrated in Figure 1.29. 

 

Figure 1.29 Spectrum showing an isosbestic point73 

The observation of an isosbestic point suggests that an equilibrium is achieved between two 

species viz. free and bound ligand.74  
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When the spectra have been recorded, titration curves can be extracted from the UV-visible 

data by plotting the absorbance at one or more wavelengths against DNA 

concentration.75Absorbance data is then typically analysed in term of the multiple 

independent binding sites (MIS) model, which is used to determine the binding constant 

Kbinding and binding site size (n) or binding stoichimetries.  The MIS model is derived from 

the complexation equilibrium (equation 1.2). 

 Lf + bsf           Lb      (1.2) 

Lf and bsf, and complex are the concentrations of free ligand, free binding site and bound 

ligand (complex) which are related through Kbinding (equation 1.3). 

Kbinding = [L]b / [L]f . [bs]f      (1.3) 

Each binding site will cover a ligand-specific number of base pairs n for a single ligand 

molecule.  

[bs] = [DNA] / n   (1.4) 

The concentration of binding sites is the concentration of DNA base pairs divided by the 

binding site size n. The concentration of free ligand [L]f, free binding sites [bs]f and complex 

concentration [C] are related through the total ligand concentration [L]tot and total binding 

site concentration [bs]tot (1.5), (1.6). 

 [L]t = [L]f + [C]        [L]f =   [L]t  - [C]                                                    (1.5) 

 [bs]t = [bs]f + [C]     [bs]f =   [L]t  - [C]                                                   (1.6) 

Consequently, it is possible to establish an overall equation describing the equilibrium (1.7) 

[C] = Kbind [bs]t.[L]t – Kbind. [C]. [bs]t – Kbind. [C].[L]t – Kbind.[C]2                      (1.7) 

which is rearranged to give quadratic equation (1.8).    

Kbind [C]2 – (1 + Kbind. [bs]t + Kbind. [L]t). [C] + Kbind. [bs]t.[L]t = 0          (1.8) 

The quadratic equation (1.8) is solved using the classic Equation 1.9 to provide an expression 

for the concentration of complex [C] as a function of total ligand and binding site 

concentrations (1.10). 
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                                                                                            (1.9) 

  (1.10) 

 

By inserting the concentrations into the Beer-Lambert Law (Equation 1.1), modified for 

background absorbance, the observed absorbance is given by Equation 1.11. This equation 

can be fit to a plot of absorption against total DNA concentration to find the best 

approximation for binding constant and binding site size.  

signalobsd = background + signalfree, m.[L]t + ∆binding signalm    

Equation 1.11 

The terms in equation 1.11 are defined as follows.76 The term signalobsd is the observed 

absorbance at the selected wavelength; signalbackground is the background signal (baseline or 

buffer absorbance); signalfree,m is the molar signal of the free ligand (the molar extinction 

coefficient when UV-visible spectroscopy is used); [L]tot is the total ligand concentration; 

∆binding signalm is the change in the molar extinction coefficient signal upon binding;  K is the 

binding constant or equilibrium constant; [DNA]tot is the total DNA concentration in base 

pairs: n is the binding site size in base pairs.  

1.8.2. Circular Dichroism Spectroscopy (CDS) 
Circular dichroism (CD) spectroscopy is a technique that is widely used77 to study chiral 

molecules and for non-chiral molecules interacting with chiral compounds such as 

biomacromolecules.78, 79 Circular dichroism spectroscopy uses the difference in the 

absorption of left–handed circularly polarised light (L-CPL) and right–handed circularly 

polarised light (R-CPL) by chiral chromophores.78, 80, 81 If the molecules contains chiral 

chromophores, or if an achiral chromophore is placed in a chiral environment, then the 

chromophore will absorb one form of circularly polarised light to a higher extent than the 

other. For instance, if right-circularly polarised light (R-CPL) is absorbed to a smaller amount 

extent than left-circularly polarised light (L-CPL), a CD signal will appear at the 

corresponding wavelength.82, 83 Thus, CD spectroscopy has been used to study a wide range 

of biological molecules and processes such as DNA–ligand binding, and protein-ligand 

binding.83 CD spectroscopy can show how the DNA binds with the ligand by varying the 
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environment that a binder experiences.82 The effect where a chiral environment (such as 

DNA) causes a non-chiral molecule to display a circular dichroism signal is called induced 

circular dichroism (ICD). Previous studies have reported that large ICD signals and small 

ICD signals are indicative of groove binding and intercalation, respectively.  For 

intercalation, small ICD signals are common (< 10 M-1 cm-1) and the ICD signals 

(ellipticities) are usually negative. However, for groove binders, the ICD signal is typically 

strong and positive.84 Examples of no change in CD spectrum (sulforhodamine in the 

presence of DNA) and negative ICD (basic fuchsin (4) in the presence of DNA) are shown in 

Figure 1.30.  

 

 

 

 

 

 

 

Figure 1.30 Circular dichroism spectra for (A) no change for sulforhodamine, and (B) 

negative ICD for basic fuchsin.  

1.8.3. Isothermal Titration Calorimetry (ITC)      
Isothermal titration calorimetry (ITC) is a technique that can be used to study biomolecular 

interactions.85 ITC measures the heat generated or absorbed as a result of molecular 

interactions.86 A microcalorimeter contains two identical cells (Figure 1.31), one reference 

cell (filled with water or buffer), and one sample cell which contains the macromolecule. 

These two cells are kept at the same temperature by the microcalorimeter. When a ligand is 

titrated into the sample cell, there are two possible heat effects. If the reaction or interaction is 

exothermic, the temperature in the sample cell will increase relative to the reference cell. 

When this occurs the feedback power to the sample cell decreases. If the reaction is 

endothermic, the temperature in the sample cell decreases and the feedback power to the 

sample cell is increased.87 

400 500 600 700
-4

-2

0

2

4

q
 (
m
d
e
g
)

l/nm

400 500 600 700 800
-4

-3

-2

-1

0

1

2

3

4
q

 (
m
d
e
g
)

l/nm

(A) (B) 



Introduction 

 

30 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.31 Schematic representation of a power compensation ITC88 

1.8.4. Isothermal Titration Calorimetry data analysis through IC-ITC 
In the case of isothermal titration calorimetry experiments, self-aggregation can happen 

because of the high concentration of ligand in the injection syringe.89 This is why the self-

aggregation of the ligand needs to be taken into account during the data analysis in 

conjunction with the consideration of DNA-binding parameters. The group has previously 

developed software called IC-ITC to analyse numerically calorimetric data for combined self-

aggregation and DNA binding.89 Using IC-ITC we can determine thermodynamic parameters 

for the various equilibria involved (Figure 1.32).  

 

                                                    Figure 1.32 90 

The software first calculates the concentrations of ligand and biomolecule after each addition 

of the ligand into the sample cell.62  
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The mass balance equation is expressed in terms of Equation 2.  

-[L]total +  = 0                                                              Equation 2 

The terms in equation 2 are as follows,  

The term [L]total is the total ligand concentration; [L]x is the concentration of ligand in all 

various forms X, for instance free, ligand, DNA-bound ligand, aggregated ligand, etc.  

Equation 3 shows the formal link between the ligand concentrations taken up in the 

complexes and in the aggregates, [L]x, and the free ligand concentration [L]f, which also 

depends on the total macromolecule concentrations [M]t and the interaction parameters ax for 

the complexation events for instance, equilibrium constants and the stoichiometry.  

[L]x = f([L]t, [M]t, ax)                                                           Equation 3 

Using a set of interaction parameters ax, the equilibrium concentrations are determined 

numerically by solving the mass balance equation using the Newton-Raphson algorithm.91 

IC-ITC provides the optimised values for the binding parameters ax, as identified by the 

lowest sum over square deviations. Furthermore, IC-ITC allows the determination of the error 

margins and covariance for various variables. 

1.8.5. Fluorescence resonance energy transfer (FRET) 
Fluorescence resonance energy transfer (FRET) is a physical mechanism of radiationless 

transfer of energy between two dye molecules called chromophores. FRET depends on the 

distance between donor and acceptor molecules. It is most suitable when the donor-acceptor 

distance is within 10 nm range.92  The donor molecule initially absorbs the energy which is 

subsequently transferred to the acceptor molecule.93 The donor fluorophore in a FRET 

experiment can be excited by using light.81 An excited electron can either return to the ground 

state by emitting light (fluorescence) or go through a non-radiative process, which requires an 

acceptor molecule in proximity. This interaction occurs over greater than interatomic 

distances without any molecular collision or any conversion to thermal energy. The energy 

transfer depletes the donor’s fluorescence intensity and its excited state lifetime and increases 

the emission intensity of the acceptor.  

A pair of molecules that interacts in such a manner that FRET occurs is often referred to as a 

donor/acceptor pair. FRET involves the energy transfer between excited states in donor 

molecules to acceptor molecules as a result of non-radiative dipole–dipole coupling.94  
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The process can be described with the following scheme [D-Donor, A-Acceptor]:95 

D + hv→ D* 

D* + A→D +A*  

A*→A + hv’ 

While there are many factors that influence FRET, the primary conditions that need to be met 

for FRET to occur are relatively few.  These include the following: 

• proximity between donor and acceptor molecules,  

• overlap of absorption and excitation spectra of donor and acceptor, respectively. 

• dipole orientations must be approximately parallel to each other,  

• sufficient lifetime of the fluorescence of the fluorophores. 96 

The required spectral overlap integral between the excited states in the donor molecules and 

the absorbance of the acceptor molecules is illustrated in Figure 1.33. 

FRET is actively used in biomedical research and drug discovery.97 For example, FRET is 

used to study structure and conformation of proteins and nucleic acids, spatial distribution 

and assembly of proteins, distribution and transport of lipids, interactions between 

receptor/ligand 

interactions, nucleic acid hybridization, membrane potential sensing, also to detect SNPs, to 

perform imunoassays and real-time PCR etc.98  

 

 
Figure 1.33 The FRET spectral overlap integral. 

Induced Fluorescence Resonance Energy transfer (iFRET) is used for the detection of DNA 

hybridization. This method is perfectly suited for melting curve analysis and entails using a 

double-strand DNA-specific intercalating dye (e.g., SYBR Green I) as the FRET donor, with 
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a conventional FRET acceptor affixed to one of the DNA molecules. Three strategies for 

detecting DNA hybridization with fluorescence are illustrated in Figure 1.34.99 

 

 
Figure 1.34 Three strategies for detecting DNA hybridization with fluorescence. Fluorescent 

outputs are indicated by radiating lines. (i) Intercalating dye, (D) donor moiety, 

and (A) acceptor moiety. 

 

iFRET provides fluorescence signals of enhanced magnitude, implying many advantages. For 

example, smaller volume or weaker PCR reactions will be possible to assay, and less 

sophisticated imaging equipment is used for signal detection. iFRET also reduces cost by 

removing the necessity for a physically attached donor on one of the interacting DNA 

molecules, yet it preserves the spectral-multiplexing potential afforded by FRET. Essentially 

all forms of florenscence background allow for very clean assays with all the benefits that 

naturally follow from this, such as allowing throughputs to increase and automation to 

replace human intervention.  

1.9. Application of small molecule DNA binders. 

1.9.1. Biosensors 
The enormous amount of genetic information brought by extensive genome sequencing 

allowed understanding how life is sustained, how diseases develop or how we can cure 

them.100, 101 Biosensor also has raised the need for simple, cheap and high-throughput 
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analytical devices to attend the growing market of molecular diagnostics for decentralized 

DNA testing.  

Such analytical devices, known as biosensors, convert a biochemical reaction or interaction 

into an analytical signal that can be further amplified, processed and recorded. Among them, 

DNA biosensors consist of an immobilized DNA strand to detect the complementary 

sequence by DNA–DNA hybridization. Biosensors have become extremely popular over last 

20 years.102  

Today biosensors are vitally important and are being used in many applications including 

industrial, clinical, chemical and environmental.103, 104 Some of the significant benefits for 

using biosensors include the high sensitivity and fast response. The most important reasons 

for using a biosensor in medicine are to establish the presence of pathogens or to estimate the 

chances of diseases to occur in the future. 

A typical biosensor includes a bioelement and a transducer. The bioelement is a biological 

molecule, which recognizes the target analyte while the transducer has capacity to convert 

that recognition event into a measurable signal. Transduction could be generated through 

several different mechanisms, or even through a combination of any of these mechanisms 

(Figure 1.35).  

 

Figure 1.35 Classification of biosensors based on type of biotransducer. 

Nucleic acid-based biosensors, also called genosensors, are considered one of the best 

biosensors in medicine due to the high sensitivity of detection.105 The recognition process in 

genosensors is based on the principle of complementary base pairing in DNA. If the target 

sequence is known, complementary sequences can be synthesized, labelled, and then 

immobilized on the sensor. The hybridization probes can then base pair with the target 

sequences, generating an optical signal.106 The favoured transduction principle employed in 
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this type of sensor has been optical detection (Figure 1.36). Genosensors are widely used not 

only in medicine but also in food industry and environmental monitoring.107  

 

Figure 1.36 description of the electrochemical detection of DNA targets, (a) without and (b) 

with non-complementary ss-DNA.108 

The initial efforts that have been carried out to detect the hybridization of DNA through 

electrochemical means were put forth by Garnier and his team, who covalently connected the 

probe of ssDNA to the backbone of polypyrrole.109 The most frequently used approach for 

detection of nucleic acids uses a single-stranded capture strand (ssDNA or ssPNA) which is 

typically immobilised on a transducing element such as an electrode. The capture strand is 

exposed to the sample solution where it finds its complementary target strand if it is 

present.110 The intrinsic sequence selectivity of DNA base pair formation assures the 

sequence specificity. Figure 1.37 illustrates a genosensor design where (a) denotes a surface-

immobilised capture strand and (b) denotes the duplex formed as a result of hybridisation 

with the target strand. The design then uses the fluorescence or redox property of the π-

conjugated DNA binders as a sensitizer. The detection procedure can be either labelled or 

label-free. In labelled detection, the target strands are covalently labelled with the 

sensitiser.111 In case of label-free detection, the nucleic acids are not required to be labelled 
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covalently, rather the sensitizer non-covalently binds to the target strand, as seen in Figure 

1.37 (c).  

 

Figure 1.37 schematic design of a genosensor for the sequence selectivity of the DNA 

detection including a duplex- DNA binding sensitizer.  

A transformation to a more positive potential of oxidation can be seen for the construct of the 

polypyrrole-oligonucleotide in a cyclic voltammogram. Such alterations in the electronic 

characteristics of polypyrrole were linked to the modifications in the conformation of 

polymer that takes place during the formation of duplex resulting from the attachment of a 

strand to the conjugate of polymer-oligonucleotide. Subsequently, several modified 

polythiophenes were used to detect the hybridization of DNA electrochemically. For 

instance, it has been reported by Lee et al.108 that terthiophene can be electropolymerised on 

the glassy carbon electrode surface due to the presence of the electroactive carboxylic acid 

groups (Figure 1. 38).  The incorporation of functional groups like carboxylic group onto the 

polymer backbone in covalently bound by an oligonucleotide may serve as a biosensor for 

DNA recognition involved the studying of genetic disease.112   
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Figure 1.38 Hybridization of terthiophene. 

Another example is provided by peptide nucleic acids (PNA), synthesized synthetic polymer 

similar to nucleic acid but replacing phosphate ester linkages with peptide linkages. Peptide 

nucleic acids are DNA mimics in which the sugar-phosphate backbone is replaced by 2-

aminoethyl-glycine linkages and the nucleotide bases are attached to the peptide nucleic 

acid’s backbone by a methylene bridge and also by a carbonyl group.113 The advantages of 

using PNAs as an example of capture probes in biosensing include elimination of repulsion 

forces between two hybridized strands because of the neutral backbone of PNAs.114 As a 

result, PNA can bind to complementary strands with a higher affinity and selectivity than 

DNA.115-117   

The thermodynamic stability of peptide nucleic acids (PNA) is greater than DNA. This is 

because the lack of electrostatic repulsion forces between the uncharged PNA backbone and 

negatively charged DNA or RNA backbone.118 

Leclerc and his colleagues have developed a ferrocene-functionalised cationic polythiophene 

that was used as a biosensor for free DNA detection paving the way to a new family of 

biosensors potentially useful for monitoring drinking water distribution systems.119, 120 The 

design of a genosensor for the sequence selectivity of the DNA detection is shown in Figure 

1.37. 

1.9.2. DNA in directed assembly  
DNA applications are also useful outside biology and medicine. The development of DNA 

origami and DNA nanotechnology uses the uniquely selective interactions between DNA 

strands for the directed assembly of functional nanostructures.121  
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The challenge in DNA-based self-assembly is the integration of different molecular 

constituents like fluorophores into the groups. DNA-based photonic wire systems have been 

designed, however, they have substantial energy losses during the energy transfer.122 

Inefficient communication between the components during the self-assembling of the 

structure suggests that tools which would help to control the location and spatial 

arrangements of the fluorophores are required. It has been shown, that DHPs can act as a 

controller ligand binding to the DNA duplex with high precision. The resulting DHP-

appended fluorophores are able to exhibit high-energy transfer over distancesof over 27 nm. 

In addition, when tested through FRET, DHP-appended fluorophores were shown to be 

efficient in controlling energy loss during energy transfers (Figure 1.39).  

 

Figure 1.39 schematic of the exemplar DNA-based photonic.122 

Three fluorophores used in a recent study are pacific blue (PB), oxazole yellow (YO) and 

cyanine 3 (Cy3). Pacific blue (PB) is the initial donor chromophore and oxazole yellow (YO) 

the terminal energy acceptor.122 The stepping-stones are the oxazole yellow dyes which are 

central to the design through the processes of homo-FRET. A significant amount of 

remaining energy exist in the YO dyes rather than being transported to the final acceptor dye. 

This results in the dropping off of the efficiencies of ET sharply by increasing the numbers of 

steps of YO-YO ET, as the ET process among the YO dyes is considered to be bi-directional. 

The length of the photonic wires is increased due to the modularity of perfect fluorophore, 

which helps to optimize the interfluorophores distances and increase the photonic lengths. 

Most importantly, the DHPs can target virtually all DNA sequences and thus can be used 

within high throughput multi-dimensional arrays and circuits.  
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For nanophotonic applications, DNA is programmed to compose special scaffolds in order to 

organize and manipulate fluorescence resonance energy transfer (FRET). Moreover, the 

ability to self-assemble into different arrays over small surface areas and with high precision 

makes DNA unique. DNA self-assembly leads to formation of programmable nanostructures 

with wide applications. DNA nanostructures are assembled with different materials through 

different methods. Solid phase chemical synthesis is the most common method, which is used 

to produce modified oligodeoxyribonucleotides (ODNs), where DNA nanostructure is 

assembled with non-natural functionality.123 Furthermore, DHPs are also used to organize the 

non-natural functionality together with DNA nanostructures. The DHPs have high selectivity 

and affinity for the DNA structures and are thus able to construct a DNA-based photonic 

wire. It is clear that “PA-programming” is able to programme a uni-directional FRET 

process. In addition, in order to complete the photonic wire in to the surface, single-molecule 

fluorescence spectroscopy (SMFS) is used and this ensures that 100% FRET is observed. 

DHPs are thus effective in the construction of fluorophore sequences templated by duplex 

DNA so that the FRET process is effectively controlled by the DNA duplex.  

 

1.9.3. Competition dialysis 
This study focuses on the development of a custom competition dialysis device to determine 

affinity and selectivity of ligands for nucleic acids structures. According to Muller and 

Crothers, who first  described competition  dialysis, it was  intended  to  revise  the first 

choice  of  ligand  for the base  pairs of the  G•C  or  A•T.124 The competition dialysis 

experiment is illustrated through a typical device in Figure 1.40.  

 

 

 

 

Figure 1.40 the competition dialysis assay. 125 

The principle of competition dialysis is based on the laws of thermodynamics and is very 

straightforward to put into practice.  
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Ligands that bind to nucleic acids, having structural or sequence selectivity, can be identified 

using a powerful tool called competition dialysis.125 This process is used as a simple and 

common test for affinity and selectivity of ligands and comprises of the dialysis of a ligand 

against an array of nucleic acids with different structures or sequences.124 For example, 

duplex DNA, triplex DNA and quadruplex DNA in dialysis tubing can be placed in a beaker 

with a ligand solution, illustrated in Figure 1.41.  

 

 

 

 

 

 

Figure 1.41 Schematic illustration of the competition dialysis process involving three nucleic 

acid structures, viz. quadruplex (Q), duplex (D) and triplex (T), and a ligand. 

Allowing adequate time for the diffusion to take place allows the ligand to diffuse across the 

dialysis tubing. The uniformly sized pores of the dialysis tubing will allow the ligand 

molecules to diffuse in and out of the dialysis tubing to achieve the equilibrium 

concentrations while the large nucleic acids are retained within the dialysis tubing. The 

equilibrium concentrations are defined by the affinity between the duplex DNA, triplex DNA 

and quadruplex and the ligand.126 

If the ligand binds to duplex DNA, triplex DNA and/or quadruplex DNA,127 when 

equilibrium is reached the ligand molecules are retained within the dialysis tubing. For 

instance, if a molecule has high affinity for triplex DNA, it will accumulate in the dialysis 

tubing with triplex DNA. Analysis of the ligand concentration in the different dialysis tubing 

then gives the affinity of the ligand for the different nucleic acid structures. 
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1.10. Project Aims 
This work aims to establish and identify couples of compounds displaying orthogonal 

selectivity for nucleic acid structures such as duplex, triplex and quadruplex DNA. The 

mutually orthogonal interaction pairs are required for the construction of self-assembled 

functional nanostructures, directing fluorescent molecules into a pre-designed sequence so 

that energy transfer by FRET takes place (illustrated in Figure 1.42). To achieve this, we 

develop and validate the double competition dialysis assay for the identification of mutually 

orthogonal interaction pairs as required for this process. Double competition dialysis can be 

used as a test for affinity and selectivity of ligands and comprises of the dialysis of a two (or 

more) ligands against an array of nucleic acids with different structures or sequences.     

 

Figure 1.42. (A) quadruplex DNA has a high affinity to bind selectively with TF1; duplex 

DNA has a high affinity for H33258; (B) FRET measures the energy which is transferred 

from H33258 on the duplex DNA to TF1 on the quadruplex DNA and will show whether the 

functional nanostructure is formed or not.                                                                                                                      

 

(B)    (A) 
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Abstract 

This chapter provides an overview of our attempts to determine extinction coefficients for 

selected optoelectronically active π-conjugated molecules in our aqueous buffers. 

Compounds eosin b, ponceau s, sulforhodamine, basic fuchsin, basic yellow (thioflavin T), 

ethidium bromide, DAPI, H33258, GB01 and coralyne were found to have extinction 

coefficients of (57063 ± 457), (36355 ± 581), (84469 ± 563), (79644 ± 192), (24073 ± 135), 

(6645 ± 65.27), (23570 ± 786), 42000, 33000 and 14500 M-1 cm-1, respectively. These 

compounds were found to be stable and not sensitive to light. On the other hand, TF1, 

methylene blue, thiazole orange and DODC were found to fade upon exposure of light. 

Moreover, this chapter describes binding studies of a series of potential nucleic acid binders 

from a library of available (commercial and in-house synthesised) ligands. Binding of 

potential ligands to double-stranded FS-DNA and to different quadruplex-forming sequences 

(c-myc, 22AG and EAD2) is studied using UV-visible, circular dichroism spectroscopy (CD), 

and isothermal titration calorimetry (ITC). As anticipated, negatively charged compounds 

were found not to bind to DNA, whereas positively charged compounds all showed binding 

with varying affinities.                                       
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2.1 Introduction 

2.1.1 Solubility and stability 
Solubility is the property which describes the ability of a substance, the solute, to dissolve in 

a solvent. Solubility is defined as the amount of substance that passes into solution to achieve 

a saturated solution at constant temperature and pressure. Solubility is expressed in terms of 

maximum volume, mass or number of moles of the solute that dissolve in a given volume or 

mass of a solvent at equilibrium.128 

Absorbance is a measure of the capacity of a solution to absorb light of a specified 

wavelength. It is equal to the logarithm of the reciprocal of the transmittance and therefore is 

dimensionless. 

Absorbance is not an adequate measure for making comparisons between substances and 

solutions as both concentration and path length have an impact on the absorbance in a similar 

way. If the concentration of solution is increased, then there are more molecules for the light 

to hit when it passes through. As the concentration increases, there are more molecules in the 

solution, and more light is blocked. Both concentration and pathlength of light passing 

through a solution are allowed for in the Beer-Lambert law.  

The Beer–Lambert law relates the attenuation of light to the properties of the material 

through which the light is travelling. This relationship links concentration to absorbance in 

the following equation (Equation 1): 

A = ε×c×l (1) 

Where A is the measured absorbance, c the concentration of the sample in moles per liter of 

the solution, ε is the molar extinction coefficient in M-1 cm-1, and l is the path length.69 

Equation (1), leads to the equation to determine the extinction coefficient if absorbance and 

concentration are known and the compound is sufficiently stable and soluble (Equation 2): 

ε = A/ c×l (2) 

Therefore, the extinction coefficient is determined from the absorbance of the ligand divided 

by the concentration in moles per liter of the ligand and multiplied by the typical 1.0 cm path 

length of cuvette.  In practice, extinction coefficients are determined as the slope of a plot of 

absorbance as a function of concentration of the dye of interest. Any deviations from linearity 

of such plots indicate that solutions may not involve individually solvated and/or stable 

molecules.  
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The Beer-Lambert law maintains linearity under specific conditions only. The law will lead 

to inaccurate measurements at high concentrations because at very high concentrations the 

molecules of the analyte exhibit stronger intermolecular and electrostatics interactions which 

is due to the lesser amount of space between molecules. This can change the molar 

absorptivity of the analyte. Not only do high concentrations change molar absorptivity, but it 

also changes the refractive index of the solution causing departures from the Beer-Lambert 

law. 

Aggregation is the process where assemblages are formed in a solution or suspension leading 

to altered stability of colloidal systems. During aggregation, particles that are dispersed in the 

liquid phase agglomerate leading to a spontaneous formation of irregular particles called 

aggregates, flocs or clusters. Aggregation is usually an irreversible process if covalent 

(chemical) bond formation occurs between the aggregates. However, aggregation is typically 

reversible when weak (physical) bonds are formed between particles that can be broken by 

the change in temperature. The intrinsic rate of the process of bonding is dependent on the 

bond formation kinetics which is controlled by the chemical composition of the system, and 

cluster diffusion that controls the encounter rate of the clusters. These two factors are said to 

be vital limiters of the aggregation process leading to the aspects of chemically-controlled 

and physically-controlled limits.129-131  

Extinction coefficient values depend not only on the chemical structure of a compound, but 

also on its environment. It is well established that many dyes can be strongly solvatochromic. 

Solvatochromism is the ability of a chemical compound to change colour due to a change in 

solvent polarity. For example, Reichardt's dye (Betaine 30) changes colour in response to 

polarity and gives a scale of ET (30) values. The ET (30) value corresponds to the transition 

energy between the ground state and the lowest excited state, in kcal/mol, of Reichardt’s ET 

(30) dye (Betaine 30). Extinction coefficients should therefore be determined in the solvent 

and at the temperature of interest.  

 

2.1.2 The dye chemical structure  
Typical dyes display a pi-conjugated system. A conjugated system is a system of connected 

p-orbitals with delocalized electrons in compounds with alternating single and multiple 

bonds, which in general may lower the overall energy of the molecule and therefore increase 

stability. Lone pairs, radicals or carbonium ions may be part of the system. The compound 

may be cyclic, acyclic, linear or mixed. Conjugation is the overlap of one p-orbital with 
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another across an intervening sigma bond (in larger atoms d-orbitals can be involved). A 

conjugated system has a region of overlapping p-orbitals, bridging the interjacent single 

bonds. They allow a delocalization of pi electrons across all the adjacent aligned p-orbitals. 

The pi electrons do not belong to a single bond or atom, but rather to a group of atoms. 

 

The chemical structure of a dye molecule can be shown as the main skeleton and the 

substituent group. Each type of dyes has a specific skeleton. Generally, the skeleton 

determines lightfastness properties of a dye, and the substituent groups such as -OH and R-

SO₃− groups change the photostability of a dye within a class to a lesser degree.132 

There are over 25 essential classes of dyes, with natural dyes falling within the following 

eight groups: anthraquinones, hydroxyketones, carotenoids, naphthoquinones, indigoids, 

flavonones, flavonols and flavones.133 

One of the most important tools in modern biology are “fluorescent probes” which are often 

based on particles and small molecules that are organic in nature.134 Molecules that 

particularly react with biological molecular particles in order to produce an output in the 

concomitant change, in their photochemical nature are known as fluorescent probes, which 

are characterised by parameters such as fluorescent intensity, excitation and emission 

wavelength.  

Tsien and his colleagues did their research on the Ca2+ probes over 20 years ago. The Journal 

of Biological Chemistry reported on a new generation of calcium probes that Tsien designed 

to replace quin2.135 Since then phenomenal development and increase in the production of 

fluorescent probes across the world took place.135 Today, several strategies for designing 

fluorescent probes, such as photo induced electron transfer (PET) intramolecular charge 

transfer (ICT), spirocyclization as well as fluorescence resonance energy transfer (FRET) are 

used in the producing different kinds of probes.136 

Cyanine dyes are the most common examples used oligonucleotide labelling, which are 

fluorogenic and unsymmetrical in nature.137-140 Upon interaction with certain kinds of 

proteins and nucleic acids, cyanine dyes become fluorescent and result in the formation of 

photochromic compounds.141 Illumination also causes change in their optical properties. 

Fluorescent dyes are available in huge varieties also including the Acridine5 as well as 

Cyanine dye (Cy)4 families. Fluorescent dyes are used widely as oligonucleotide labels 

and/or probes. Cyanine dyes are even capable of non-covalent interactions with DNA either 

by base pair intercalation (acridines, cyanine dyes and monomethine) or through the 
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aggregation into the minor grooves within double stranded DNA (cyanine dyes of trimethine 

and pentamethine groups). Thiazole orange (TO) is a popular cyanine dye which is 

fluorogenic monomethine in nature that is also non-fluorescent when left free within the 

solution (caused by fast deactivation towards the ground state which is nonradiative in 

nature). Thiazole orange (TO) becomes extremely fluorescent where the polymethine chain 

motions are kept under control (e.g., when in viscous solvents or upon DNA intercalation).142 

Therefore, the different interactions between fluorescent dye thiazole orange and the DNA 

(see chapter 1).142, 143 many of fluorescent dyes have negligible fluorescence in solution, and 

on mixing with nucleic acids produce immense fluorescence. The increased fluorescence 

arises when the bond rotations between these aromatic systems is controlled, thereby 

preventing non-radiative decay.67, 144 Supramolecular chemical research of cyanine dyes 

shows that the working of the local environment on TO aggregation has restricted to nucleic 

acids.145  

          

2.1.3 Fading 
TF1, methylene blue, thiazole orange and 3,3′-diethylthiacyanine iodide (DODC) were found 

to fade upon exposure of light as discussed in Chapter 2. Most natural dyes have poor 

lightfastness, while synthetic dyes show the full range from poor to excellent lighfastness. 

These differences are due to their different chemical and physical characteristics. The change 

in colour of dyes due to light exposure is a complex reaction affected by both the chemical 

and physical state of the dye. This phenomenon is called photofading.146-149  

The main factors influencing the photostability of dyes are: 

• the wavelength of initial radiation  

• the dye aggregation 

• the presence of metal ions (bound in dyes or bound in impurities) 

Furthermore, the composition and the concentration of buffer, temperature and pH can also 

influence the rate of fading. 

It has been reported in the literature that the centralized methane hydrogen of TO can be 

substituted with an electron-withdrawing cyano group. This group is reported to decrease the 

sensitivity of the dye to singlet oxygen-mediated deviation.150  

The existence of a low singlet excited state of a long duration can result in a degradation 

reaction. At this point intersystem crossing of molecules takes place where molecules are 
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allowed to cross to their matching triplet state. Triplet states can exist for more duration 

which may further result to production of more photo-degradation.  

The Jablonski diagram shown in Scheme 2.1 is used to clearly demonstrate and analyse the 

effects of photochemistry on dyes, the diagram is used in demonstrating the fundamental 

alterations that exists on the electronic states. In the diagram, the lowest vibration energy 

levels on every electronic state are demonstrated by using thick lines, while other light lines 

shows higher vibrational energy levels that are related to every electronic state. The light that 

is absorbed by the molecule raises it from its ground electronic state (S0) to excited states (S1 

or S2 for next level). Due to the short lifetime of excited state, the molecule will return back 

to the original ground states. The process of transitioning back from the excited electronic 

state to ground electronic state is a result of loss of the energy that was absorbed, due to one 

of the following processes.   

• Intersystem crossing which results to lack of radiative transition  

• Release of the radiation energy  

• photochemical reactions 

• Energy transfer  

 
Scheme 2.1. Jablonski scheme 

 

Scheme 2.1. demonstrates that the singlet excited state has a higher energy level which 

means that it has higher content of energy as compared to triplet state; this makes it more 

reactive. In contrast there exist a long lifetime with the triplet state, which means that it has 

more time to react.151 The existence of reactive groups on dyes enables them to react even in 

the singlet excited state even though it may have a lifetime that is short.  Furthermore, the 
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chances of the dye reacting with oxygen molecule are high in the triplet state, because oxygen 

is able to undergo diffusion on the neighboring molecules of the dye. 

In the process of the dye being in the triplet state, chances are that in presence of oxygen it 

will experience a triplet – triplet annihilation, which results in the formation of singlet oxygen 

as shown in Scheme 2.2. The subsequent initiation of destruction of dye is shown in Scheme 

2.3.  

3HD* + 3O2 1O2 

Scheme 2.2 
1O2 + HD  

Scheme 2.3 

Analysis of photosensitization principles through photo-oxidation has been done by Griffiths 

and Hawkins who explained the pathway of the azo dyes photo – oxidation.152 The singlet 

oxygen sensitiser under the condition of the presence of the methylene blue in the solvent of 

alcohol. The pathway of the photochemical proceeded through the attack of the signet oxygen 

on the dye, by the intermediate unsaturated azo hydro-peroxide as shown in scheme 2.4. The 

signet oxygen attack on the hydrazine dye is presented as a process called type 2 photo – 

oxidation, because radicals are not involved in the primary reaction. The degradation will be 

observed to occur even in the absence of methylene blue.  

 

Scheme 2.4. Mechanism of oxidation of azo dyes by singlet oxygen 

The degradation of dyes is predominantly through singlet oxygen where singlet oxygen 

sensitisers are present in combination with oxygen. Examples of singlet oxygen generator are 

methylene blue, copper (II) and phthalocyanine Their efficiency will depend on the type of 

the solvent that is used because this affects the singlet oxygen lifetime.153, 154 The senstitiser 

are in a position to transfer their own energy from a lowest excited triplet state to an acceptor 

state. In doing so, the donorsmolecules return from their excited state to their ground state 

whereas the acceptor molecules are raised to the excited state.  
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2.1.4 Nucleic acid binding 

In order to compare affinities and selectivities, the interaction of some optoelectronically 

active π-conjugated molecules (described in Chapter 1), with a double-stranded fish sperm 

DNA (FS-DNA) and three well-known quadruplex-forming sequences, specifically, c-myc, 

22AG and EAD2 is studied.  

Depending on the orientation of the strands in a G-quadruplex, oligonucleotides can either 

form parallel conformations (e.g, c-myc and EAD2) and antiparallel conformation or 

mixed/hybrid conformation (22AG) (see chapter 1). 

Noncovalent binding of different compounds with DNA is an object of numerous studies, 

since these substances possess high biological activity and influence on many vitally 

important processes occurring in the cells. Some ligands are mutagens (ethidium bromide 

(EtBr)) and transcription inhibitors (EtBr, some antibiotics) which is determined by the 

ability of these compounds to form stable complexes and hence to obstruct DNA uncoiling. 

Binding can be studied through a range of techniques, including UV-visible and circular 

dichroism spectroscopy and isothermal titration calorimetry (ITC). A brief description these 

methods is provided in Chapter1. 

Photophysical data obtained for methylene blue in complexes with DNA indicate different 

binding modes of the dye depending on base sequences. In addition, electrostatic interactions 

play an important role during DNA binding.53 Previous studies have found a binding affinity 

of methylene blue to duplex DNA (Kbinding) of ~ 2.2 ×105 M-1.155  

Moreover, some ligands are multimodal in the nature of their binding to DNA. For example, 

EtBr (10) has three modes of binding to double-stranded DNA. EtBr also binds very well to 

triplex DNA and quadruplex DNA. Ethidium bromide (EtBr) is commonly used to detect 

nucleic acids from polymerase chain reaction experiments and restriction digests etc. in 

molecular biology laboratories. Previous studies have found a binding affinity (Kbinding) of 

(1.23 ± 0.07) ×105 M (bp)-1 and a (Kbinding) of 1.5 ×105 M-1 for binding site size (n) of (1.0 ± 

0.1) for the duplex and G-quadruplexes DNA, respectively.156, 157 

Coralyne (14) is slightly soluble in water. The structure of coralyne contains four fused 

aromatic rings. It can bind with DNA triplexes poly(dT)●poly(dA)●poly(dT) and poly 

[d(TC)] ●poly-[d(GA)] ●poly[d(C+T)]. Studies have found binding affinitys (Kbinding) of 3.5 

×106 M-1 and  1.5 ×106 M-1 for these two triplexes, respectively.158 

Bisbenzimide H33258 (6) is a water-soluble groove binder with selectivity for A●T-rich 

sequences.159, 160 GB01 (7) is related to the aforementioned minor groove binder H33258.5 
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Hoechst dyes are normally less toxic than DAPI, which ensures a higher viability of stained 

cells. 4′,6-Diamidino-2-phenylindole (DAPI) also is a water soluble fluorescent dye that 

binds strongly to adenine●thymine rich regions in DNA. This simple-to-use fluorescent stain 

visualizes nuclear DNA in both living and fixed cells. Cells stained with DAPI showed no 

ultrastructural changes compared to the appearance of cells not stained with DAPI. Previous 

studies have suggested that DAPI (11) binds by several modes to duplex DNA.29, 161 DAPI 

staining allows multiple use of cells eliminating the need for duplicate samples. The binding 

affinity of DAPI to oligonucleotides containing three A●T base pairs is about 7×106 M-1 

(bp).162 

Another ligand, TF1 (8), has poor aqueous solubility. It is a groove binder with duplex DNA 

perhaps because of its length. Previous studies have found a binding affinity (Kbinding) of 0.12 

×106 M-1 for a binding site size (n) of 2 base pairs. However, TF1 bind strongly to G-

quadruplexes such as 22AG and c-myc with affinity 0.47 and 0.55 ×106 M−1, respectively for 

a binding site size (n) of 2.163  

DODC (13) is water-soluble. Previous studies have found that DODC binds to a quadruplex 

groove, with affinity (Ka) of ∼1–2×105 M−1.164  

Some ligands combine two modes of interaction (e.g. Thioflavin T and thiazole orange).  

Thioflavin T (also known as  basic yellow (5)) is a cationic benzothiazole dye, which  is 

water-soluble.165 For over fifty years, Thioflavin T has been an extremely popular dye in 

biomedical research. This compound has a very high affinity for human telomeric G-

quadruplexes. In addition, it becomes fluorescent upon interaction with such structures as 

duplex DNA, and therefore is often utilized as a light-up probe. Previous studies have found a 

binding affinity (Kbinding) of ~104 M-1. 166 

Thiazole orange (12) is water-soluble and is an example of the oldest synthetic cyanine dyes 

and commonly used in reticulocyte analysis.167 TO binds strongly to triplex- and quadruplex 

DNA. Previous studies have found a binding affinity of TO for G4 structures of ∼ 1-2×106 

M-1. The fluorescence efficiency increases approximately 1000-fold due to the binding of TO 

to DNA. 168  
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2.1.5 Aims  
My aims for this chapter are to determine the extinction coefficients for optoelectronically 

active compounds in our buffer solutions. It is anticipated that these studies will also 

highlight any lack of stability of these dyes. In addition, this chapter also describes the 

binding studies to screen binding between available fluorescent ligands and nucleic acids. 

Binding affinities will be determined using UV-visible spectroscopy, circular dichroism 

spectroscopy and isothermal titration calorimetry (ITC). The resulting data will allow 

validation of the results from our dialysis experiments in Chapter 3.  

Chemical structures of the ligands chosen for this study are shown in Scheme 2.1. Ligands 4-

14 were chosen through the literature review based on their ability to interact with different 

selectivity and affinity with various DNA sequences. Compounds 1-3, namely eosin b (1), 

ponceau s (2), and sulforhodamine (3) are dyes that do not bind significantly with FS-DNA. 

Therefore, these compounds were chosen as reference controls for this study.  

Most small molecules that bind to DNA are largely planar aromatic compounds of 

considerable hydrophobicity. Almost perversely, it is precisely this set of properties that 

makes compounds good intercalators and/or minor groove binders, which also favors self-

aggregation in aqueous solution. The phosphodiester backbone of DNA is negatively charged 

at every nucleotide unit in aqueous conditions. The resulting water solubility is extended to 

many modified oligonucleotides, conferring solubility to hydrophobic molecules conjugated 

to DNA. 

Methylene blue (9) is a water-soluble compound with redox features. There is a large volume 

of published studies describing that methylene blue binds strongly to  DNA through several 

binding modes.159, 169 It binds to DNA and induces photosensitized reactions which can be 

used for sequence-specific cleavage of the DNA backbone. 
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Scheme 2.5 Chemical formulae, (1) eosin b, (2) ponceau s, (3) sulforhodamine (4) basic 

fuchsin, (5) basic yellow (thioflavin T), (6) H33258, (7) GB01, (8) TF1, (9) methylene blue, 

(10) ethidium bromide, (11) DAPI, (12) thiazole orange, (13) DODC and (14) coralyne.         
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2.2 Results and Discussion    
The results of the determination of the extinction coefficients for optoelectronically active 

compounds 1-14 are presented and discussed for each individual compound.                            

                                     

 2.2.1 Extinction coefficient, stability and DNA binding of Eosin B 
We wanted to determine the extinction coefficient of Eosin B (1). A stock solution of 1 (1.2 

mM) in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) was prepared. A series of solutions of 

0.0025, 0.0076, 0.012 and 0.017 mM was prepared from the stock solution and UV-visible 

spectra were recorded for these solutions in a 1.0 cm path length cuvette at 25 °C. 

Absorbances at the λmax of 520 nm were plotted against ligand concentrations (Figure 2.1).    

 

Figure 2.1 Absorbance for 1 as a function of concentration in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl), at 25 °C. 

Figure 2.1 shows a linear correlation between absorbance and concentration. A linear fit to 

the dtata (red line) yields an extinction coefficient of (57063 ± 457) M-1 cm-1.  The error 

margin as a percentage of the extinction coefficient is 0.8 %, which is acceptable.  With the 

extinction coefficient established, we explored the stability of 1, and in particular the 

photochemical stability.  

To study the photochemical stability, we measured the absorbance of 1, exposed to ambient 

light, in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 1 mM EDTA), at 25 °C as a 

function of time (Figure 2.2).  
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Figure 2.2 (A) Spectra for the solution of 0.5 mM 1 exposed to light, in buffer (25 mM 

MOPS, pH 7.0, 50 mM NaCl and 1 mM EDTA), at 25 °C.  (B) The absorbance of 1 at 520 

nm plotted as a function of time.  

Figure 2.2 (A) shows a slight decrease in the spectra, which suggests that 1 has some 

sensitivity to light. Figure (B) confirms the decrease in the absorbance for 1, but the decrease 

appears to stop after approximately 30 minutes with an overall loss of absorbance of around 

10%. The loss of absorbance does not lead to a change in the shape of the spectrum, making 

it unlikely that the decrease corresponds to photochemical fading of 1. 

Binding of 1 to FS-DNA was studied using UV-visible spectroscopy. The changes in 

absorption of 1 upon addition of FS-DNA were recorded in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl, 1 mM EDTA), at 25 °C (Figure 2.3).   

 

Figure 2.3 UV-visible spectra for a 0.015 mM solution of 1 upon addition of 0 – 4.17 mM 

FS-DNA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. 
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Figure 2.3 shows that the absorbance at λmax (520 nm) of 1 decreases slightly upon addition 

of FS-DNA. We further note that the shape of the spectrum does not change significantly. 

This decrease in UV-visible absorption may have occurred as a result of 1 interacting weakly 

with DNA, but it is likely as a result of dilution. 

To quantify the affinity of 1 for DNA, the absorbance at 520 nm was plotted as a function of 

concentration of FS-DNA (Figure 2.4, for numerical data, see Appendix Table A1). 

 

 

Figure 2.4 Absorbance at 520 nm for a 0.015 mM solution of 1 as a function of DNA 

concentration in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. The 

line represents the best fit of a multiple independent binding sites model to the data.  

Figure 2.4 shows that the multiple independent binding sites model generates a straight-line 

fit to the data, suggesting negligible interaction of 1 with the DNA and the decrease therefore 

merely represents the effect of dilution of the ligand that occurs when the DNA solution is 

added.  

The fit of the multiple independent binding sites model to the data gives a binding affinity 

confirms that  bindingKfor a binding site size restricted to 3 base pairs. This  1-) of ~0 MbindingK(

1 does not interact with FS-DNA, as expected considering 1 carries a negative charge. In 

addition, the spiro centre also leads to significant non-planarity of the molecule which likely 

hinders binding as well.                                                                                                                 
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2.2.2 Extinction coefficient, stability and DNA binding of the Ponceau S 

We set out to determine the extinction coefficient of Ponceau S (2). A stock solution of 2 

(0.99 mM) in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) was prepared. A series of 

solutions of 0.0021, 0.0062, 0.010 and 0.014 mM was prepared from the stock solution. UV-

visible spectra were recorded for these solutions in a 1.0 cm pathlength cuvette at 25 °C. 

Absorbances at the λmax of 520 nm were plotted against ligand concentrations (Figure 2.5). 

 

Figure 2.5 Absorbance at 520 nm as a function of concentration of 2 in buffer (25 mM 

MOPS, pH 7.0, 50 mM NaCl and 1 mM EDTA), at 25 °C.   

The data follow a linear trend, suggesting no solubility problems over the range of 

concentrations studied. A linear fit (red line) was applied to the data in Figure 2.5 to obtain 

the extinction coefficient of (36355 ± 581) M-1 cm-1. The error margin as a percentage of the 

extinction coefficient is 1.5 %, which is an acceptable margin of error. The good fit also 

suggests that 2 is stable in the buffer, at least on the timescale of the experiment.  

Binding of 2 to FS-DNA was studied using UV-visible spectroscopy. The changes in 

absorption of 2 upon addition of FS-DNA were measured in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl, 1 mM EDTA), at 25 °C (Figure 2.6).  
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Figure 2.6 UV-visible spectra for a 0.016 mM solution of 2 upon addition of 0 – 4.26 mM 

FS-DNA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. 

Figure 2.6 shows that the absorbance at λmax (520 nm) of 2 decreases upon addition of FS-

DNA. This change in UV-visible absorption might occur as a result of 2 interacting weakly 

with DNA, but it is more likely the result of simple dilution.   

To quantify any affinity of 2 for DNA, the absorbance at 520 nm was plotted as a function of 

concentration of FS-DNA (Figure 2.7, see Appendix Table A2 for data in tabular format). 

 

Figure 2.7 Absorbance at 520 nm for a 0.016 mM solution of 2 as a function of DNA 

concentration in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. The 

solid line represents the best fit of the multiple independent binding sites model to the data.  

Figure 2.7 shows that the fit to the data is mostly a straight-line with only a small apparent 

deviation from linearity at low DNA concentrations. The fit thus suggests that 2 interacts 

weakly with the DNA or not at all, in which case the decrease in absorbance is the result of 

dilution. 
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The fit of the multiple independent binding sites model to the data gives a binding affinity 

for a binding site size restricted to 3 base pairs. This  1-M 310) ×) of (2.14 ± 0.73bindingK(

equilibrium constant again confirms negligible binding of 2 to FS-DNA, as expected for a 

negatively charged compound.                                                                                                      

To confirm limited binding, we calculate the fraction bound ligand at the end of the titration 

Assuming 

total[ligand] free[ligand] 

  

×0.00426/3= 3.033 2.14×10= Therefore, fraction bound  

The calculation thus shows that 75% of the ligand is bound, even in the presence of a high 

DNA concentration of 4.26 mM. The low binding affinity is reasonable in light of the fact 

that 2 is negatively charged.  

2.2.3 Extinction coefficient, stability and DNA binding of Sulforhodamine  

We wanted to determine the extinction coefficient of Sulforhodamine (3). A stock solution of 

3 (0.5 mM) in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl) was prepared. A series of 

solutions of 0.001 mM, 0.003 mM, 0.005 mM and 0.008 mM was prepared by dilution of the 

stock solution. UV-visible spectra were recorded for these solutions in a 1.0 cm pathlength 

cuvette at 25 °C. The absorbance at the λmax of 563 nm was plotted against ligand 

concentration (Figure 2.8). 

 

Figure 2.8 Absorbance for 3 as a function of concentration of 3 in buffer (25 mM MOPS, pH 

7.0, 50 mM NaCl), at 25 °C.   
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Figure 2.8 shows a linear increase in absorbance with concentration. A linear fit (red line) 

was applied to obtain the extinction coefficient of (84.5 ± 0.6) ×103 M-1 cm-1.  The error 

margin as a percentage of the extinction coefficient is 0.6 %, which is acceptable. The good 

fit also suggests that 3 is stable in the buffer, at least on the timescale of the experiment.  

Binding of 3 to FS-DNA was evaluated using UV-visible spectroscopy. Absorption spectra 

for 3 upon addition of FS-DNA were recorded in buffer (25 mM MOPS, pH 7.0, 50 mM 

NaCl, 1 mM EDTA), at 25 °C (Figure 2.9).  

 

 

Figure 2.9 UV-visible spectra for a 0.0097 mM solution of 3 upon addition of 0 – 3.70 mM 

FS-DNA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. 

Figure 2.9 shows that the absorbance at 563 nm decreases slightly upon the addition of DNA 

with no increases between 300 and 700 nm. The shape of the peak remains the same. 

Although this change in absorbance might still occur because 3 interacts very weakly with 

DNA, the decrease in absorbance is likely the result of simple dilution. To distinguish 

between the two possibilities, the absorbance at 563 nm was plotted as a function of 

concentration of FS-DNA (Figure 2.10, see Appendix Table A3 for numerical data). 
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Figure 2.10 Absorbance at 563 nm for a solution of 0.0097 mM 3 as a function of DNA 

concentration in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. The 

line represents the best fit of a multiple independent binding sites model to the data.  

The MIS model fitted to the data in Figure 4.6 is once more a straight line, suggesting very 

weak or no binding between 3 and FS-DNA. In the absence of binding, the decrease merely 

represents the effect of dilution of the ligand. The fit of the multiple independent binding sites 

for the  1-M 2) of (0.66 ± 2.34) ×10bindingKnt (model to the data gives an equilibrium consta

binding site size restricted to 3 base pairs. The binding constant for 3 is small, suggesting no 

binding.                                                                                                                                          

To confirm limited binding, we calculate the fraction bound ligand at the end of the titration. 

This calculation uses the equation.  

  

talto[ligand] freeassume  [ligand]we  iftherefore  

×0.0037/3= 0.082 0.66×10= Therefore, fraction bound   

The calculation thus shows that less than 10% of the ligand is bound. 

In order to further assess the interaction of 3 with FS-DNA, binding was studied using 

circular dichroism spectroscopy. Circular dichroism spectra for 3 were recorded in the 

presence of different concentrations (0 mM to 2.45 mM) of FS-DNA in 25 mM MOPS, pH 

7.0, 50 mM NaCl, 1 mM EDTA, at 25 °C (Figure 2.11).   
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Figure 2.11 Circular dichroism spectra for 0.0097 mM 3 in the presence of different 

concentrations of FS-DNA (0 mM to 2.45 mM) in 25 mM MOPS, pH 7.0, 50 mM NaCl, 1 

mM EDTA at 25 °C.  

The circular dichroism spectra in Figure 2.11 show no change or appearance of an induced 

circular dichroism peak around the wavelength of interest (563 nm) where compound 3 

absorbs upon addition of DNA. This suggests that 3 does not interact with the DNA. (Note:  

the small peak around 563 nm is an artefact that already appears for the ligand only) 

Therefore, the result is in agreement with the result from the UV-visible titration which 

showed no binding.  

 2.2.4 Extinction coefficient, stability and DNA binding of basic fuchsin  

We set out to determine the extinction coefficient of basic fuchsin (4). A series of solutions of 

0.0006 mM, 0.002 mM, 0.003 and 0.004 mM was prepared by dilution of a stock solution. 

UV-visible spectra were recorded for these solutions in a 1.0 cm path length cuvette at 25 °C. 

Absorbance at the λmax of 539 nm was plotted against ligand concentration (Figure 2.12). 
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 Figure 2.12 Absorbance at 539 nm as a function of concentration of 4 in buffer (25 mM 

MOPS, pH 7.0, 50 mM NaCl), at 25 °C.   

Figure 2.12 shows that the absorbance at 539 nm increases linearly with concentration of 4. A 

linear fit (red line) was applied to obtain the extinction coefficient of (79644 ± 192) M-1 cm-1.  

The error margin as a percentage of the extinction coefficient is 0.2 %, which is a small 

margin of error. The extinction coefficient of (79644 ± 192) M-1 cm-1 is lower than the 

previous reported value of 116000 M-1 cm-1 at 544 nm in a different buffer  (20 mM Tris-

HCl, pH 7).170  

2.2.4a Light sensitivity of basic fuchsin 

There is a possibility that the difference in extinction coefficient for 4 is the result of 

exposure to light. To study whether 4 is sensitive to light, we plot the absorbance of 4 as a 

function of time exposed to ambient light, with 4 dissolved in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl and 1 mM EDTA), at 25 °C (Figure 2.13).  

(A) (B) 

 
 

Figure 2.13 (A) Spectra of solutions of 0.013 mM 4 exposed to light, in buffer (25 mM 

MOPS, pH 7.0, 50 mM NaCl and 1 mM EDTA), at 25 °C. (B) The absorbance at 539 nm for 

4 upon exposure to light plotted as a function of time. 

Figure 2.13 (A) shows a very slight increase, which suggests that 4 has limited or no 

sensitivity to light. Figure 2.13 (B) confirms the data. This experiment therefore suggests that 

4 is stable and not sensitive to light. It is therefore clear that the difference in extinction 

coefficients for 4 is not related to light sensitivity of the compound. In this instance, maybe 

the purity of 4 affected the extinction coefficient.  
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Binding of 4 to FS-DNA was studied using UV-visible spectroscopy. The changes in 

absorption of 4 upon addition of FS-DNA were measured in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl, 1 mM EDTA), at 25 °C (Figure 2.14).  

 

Figure 2.14 UV-visible spectra for a 0.0080 mM solution of 4 upon addition of 0 – 4.25 mM 

FS-DNA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. 

Figure 2.14 shows a hypochromic and bathochromic shift upon addition of FS-DNA. This 

change in absorption maximum suggests that the conformation of 4 and/or it is surrounding 

medium changes upon the addition of DNA, suggesting that 4 binds to DNA.  

To quantify the affinity of 4 for FS-DNA, the absorbance at 539 nm was plotted as a function 

of concentration of FS-DNA (Figure 2.15, see Appendix Table A4 for data in tabular format). 

 

Figure 2.15 Absorbance at 539 nm of a solution of 0.0080 mM 4 as a function of DNA 

concentration in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. The 

line represents the best fit of a multiple independent binding sites model to the data.  
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The titration curve in Figure 2.15 shows a decrease in absorbance at 539 nm upon the 

addition of FS-DNA. These changes in the UV-visible spectra occurred because 4 interacts 

with DNA. The titration data obtained for 4 was reproduced satisfactorily by the multiple 

independent binding sites model. Because the original binding site size of 4 was big (10.38 ± 

4.94 basepairs) it was considered unreasonable. Therefore, we decided to restrict the binding 

site size to 3.0 base pairs. This fit of the multiple independent binding sites model to the data 

gives a binding affinity (Kbinding) of (4.93 ± 0.94) ×104 M-1 .  

To investigate the binding mode of 4 with FS-DNA, we used circular dichroism 

spectroscopy. Induced circular dichroism spectra for 4 were recorded at different 

concentrations of FS-DNA (0 mM – 3.392 mM) in buffer (25 mM MOPS, pH 7.0, 50 mM 

NaCl, 1 mM EDTA), at 25 °C (Figure 2.16). 

 

Figure 2.16 Circular dichroism spectra for 0.0120 mM 4 in the presence of different 

concentrations of FS-DNA (0 mM – 3.392 mM) in 25 mM MOPS, pH 7.0, 50 mM NaCl, 1 

mM EDTA at 25 °C.  

The circular dichroism spectra in Figure 2.16 show a negative induced circular dichroism 

signal at 550 nm, which increases upon addition of DNA. This weak negative ellipticity 

suggests an intercalative binding mode for 4 binding to FS-DNA. To quantify the affinity of 4 

for FS-DNA, the ellipticities at 550 nm were plotted as a function of concentration of FS-

DNA (Figure 2.17).  
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Figure 2.17 Ellipticity at 550 nm plotted against FS-DNA concentrations for 0.0120 mM of 

4, in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. The solid line 

represents the best fit of a multiple independent sites model to the data.  

The titration curve in Figure 2.17 was analysed by fitting a multiple independent binding sites 

model, which also takes ligand dilution into account, to the data. The fit gives an equilibrium 

constant (Kbinding) of (1.44 ± 0.30) ×104 M-1 for a binding site size of 3 base pairs. A negative 

ICD signal suggests that 4 intercalates between the base pairs. 

2.2.5 Extinction coefficient, stability and DNA binding of thioflavin T  

To determine the extinction coefficient for thioflavin T (5) in our buffer, three stock solutions 

of 5 were made up in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA). The 

first and second stock solutions were 0.06 mM (by weight) and a series of dilutions of the 

first stock solution was prepared (0.0099 mM, 0.010 mM, 0.011 mM and 0.012 mM). A 

second series of solution (0.0032 mM, 0.0061 mM, 0.0088 mM and 0.011 mM) was prepared 

from the second stock solution. The third stock solution was 0.47 mM (by weight). A series 

of solutions of 0.0092 mM, 0.018 mM, 0.026 mM and 0.034 mM was prepared from this 

stock solution. UV-visible spectra were recorded for all solutions in a 1.0 cm path length 

cuvette at 25 °C. Absorbance at the λmax of 412 nm for all three dilution series were plotted 

against ligand concentration (Figure 2.18). 

0.0 1.0x10-3 2.0x10-3 3.0x10-3 4.0x10-3
-5

-4

-3

-2

-1

 (q
) 5

50
 n

m

[FS-DNA]/ mol dm-3

Model njb_one_to_N_ext (User)

Equation

z=background+sig_free*y + (delta_sig)*((1
+K*(x/stoichiometry)+K*y - sqrt((1+K*(x/sto
ichiometry)+K*y)^2 - 4*(K)^2*(x/stoichiomet

ry)*y) ) / (2*K));

Plot at550

K 14464.37164 ± 3039.3961

delta_sig
-324870.91777 ± 16334.81273

sig_free
-59012.36598 ± 16037.28503

stoichiometry 3 ± 0

background -0.1766 ± 0

Reduced Chi-Sqr 0.06386

R-Square(COD) 0.9345

Adj. R-Square 0.92826



Selection of optoelectronically active π-conjugated compounds 

 

67 
 

 

Figure 2.18 Absorbance at 412 nm as a function of concentration of 5 in buffer (25 mM 

MOPS, pH 7.0, 50 mM NaCl), at 25 °C.   

Figure 2.18 shows that the absorbance at 412 nm increases linearly with concentration of 5. A 

linear fit (red line) was applied to obtain the extinction coefficient of (24073 ± 135) M-1 cm-1. 

The error margin as a percentage of the extinction coefficient is 0.5 % which is a sufficiently 

small error.  

2.2.5a Light sensitivity of thioflavin T 

To study whether 5 is sensitive to light, we plot the absorbance of 5 as a function of time 

exposed to ambient light, with 5 dissolved in buffer (25 mM MOPS, 50 mM NaCl. pH 7.0), 

at 25 °C (Figure 2.19).  
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Figure 2.19 (A) Spectra of a 0.029 mM solution of 5 as a sample exposed to light, in buffer 

(25 mM MOPS, 50 mM NaCl. pH 7.0), at 25 °C. (B) The absorbance at 412 nm for 5 upon 

exposure to light plotted as a function of time. 

Figure 2.19 (A) shows sufficient stability, which suggests that 5 has no sensitivity to light. 

Figure 2.19 (B) confirms the data. This experiment therefore suggests that 5 is stable and not 

sensitive to light.  

We desired to know the affinity of 5 for DNA in our buffers.171 UV-visible spectroscopy has 

been used. The changes in absorption of 5 upon addition of FS-DNA in buffer (25 mM 

MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C are reported in Figure 2.20.  

 

Figure 2.20 UV-visible spectra for a 0.011 mM solution of 5 upon addition of 0 – 0.74 mM 

FS-DNA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C. 

Figure 2.20 shows hypochromic and bathochromic shifts for 5 upon addition of DNA. This 

change in UV-visible absorption indicates interaction of 5 with DNA and the change in 

spectrum may indicate a conformational change of 5 upon binding but it may also be a result 

of a local medium effect.   

To quantify the affinity of 5 for FS-DNA, the absorbance at 412 nm was plotted as a function 

of concentration of FS-DNA (Figure 2.21, see Appendix Table A5 for numerical data). 
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Figure 2.21 Absorbance at 412 nm of a solution of 0.011 mM 5 as a function of DNA 

concentration in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C. 

The solid line represents the best fit of a multiple independent binding sites model to the data.  

The titration data obtained for 5 were reproduced satisfactorily by the multiple independent 

binding sites model. This fit of the multiple independent binding sites model to the data gives 

an equilibrium constant (Kbinding) of (1.18 ± 0.21) ×104 M-1 for the binding site size restricted 

to 3 base pairs. This binding constant is in a good agreement with the reported equilibrium 

constant of (Kbinding) of ~104 M-1. 166 

 

2.2.6 Extinction coefficient, stability and DNA binding of H33258                                           

There have been relatively recent studies on the molar extinction coefficient for H33258 (6) 

in SSC buffer containing 20 mM sodium citrate at pH 6.8. The extinction coefficient was 

found to be 42000 M-1 cm-1 at 343 nm.172 In light of these studies, we opted not to determine 

the extinction coefficient for 6. Compound 6 is also known to be sensitive to precipitation, 

but normally solutions can be prepared that are sufficiently stable to allow UV-visible 

totrations.62  

 
We know from the literature that 6 binds to DNA, and most strongly with A●T sequences.159 

However, we desired to know if the presence of a co-solvent in our chosen buffers affects the 

affinity of 6 for FS-DNA. In order to study the affinity of 6 for DNA UV-visible 

spectroscopy was used as before. The changes in absorption of 6 upon addition of FS-DNA 

were measured in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, 9 vol -% DMSO and 1 mM 

EDTA), at 25 °C and are shown in Figure 2.22. 

0.0 2.0x10-4 4.0x10-4 6.0x10-4 8.0x10-4
0.20

0.22

0.24

0.26

0.28

0.30

A 41
2/ 

a.
u.

[DNA]/ mol dm-3



Selection of optoelectronically active π-conjugated compounds 

 

70 
 

300 350 400 450 500
0.0

0.2

0.4

0.6

0.8

1.0

A
/ a

.u
.

Wavelength(nm)

300 400 500
0.0

0.2

0.4

0.6

0.8

A/
 a

.u
.

Wavelength(nm)

 

Figure 2.22 UV-visible spectra for (A) 0.018 mM 6 upon addition of 0 – 0.17 mM FS-DNA 

and, (B) 0.017 mM 6 upon addition of 0 – 0.65 mM FS-DNA, both in buffer (25 mM MOPS, 

pH 7.0, 100 mM KCl, 9 vol-% DMSO and 1 mM EDTA), at 25 °C. 

Figure 2.22 shows that 6 displays a hypochromic and bathochromic shift in absorbance upon 

addition of DNA with a maximum change in absorbance at 338 nm. This decrease in UV-

visible absorption occurs as a result of 6 interacting with DNA. To quantify the affinity of 6 

for FS-DNA in our buffer, the absorbances at 338 nm for both titrations were plotted as a 

function of concentration of FS-DNA (Figure 2.23 and appendix Tables A6&A6.1). 

 
 Figure 2.23Absorbance at 338 nm (■) for a solution of 0.018 mM 6 and (●) for a solution of 

0.017 mM 6, both as a function of DNA concentration, in buffer (25 mM MOPS, pH 7.0, 100 

mM KCl, 9 vol % DMSO and 1 mM EDTA) at 25 °C. The solid line represents the global fit 

of a multiple independent binding sites model to the data.  

The titration curves in Figure 2.23 were analysed globally using the multiple independent 

binding sites model, which also takes ligand dilution into account. This fit produces an 
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apparent binding affinity (Kbinding) of (8.5 ± 4.5) ×105 M-1 and a binding site size of (0.9 ± 

0.09) base pairs is a reasonable value. Therefore, the binding site size was not restricted to 3.0 

base pairs.     

                                                                                                                                           

 2.2.7 Extinction coefficient of, stability and DNA binding of GB01 

The molar extinction coefficient of GB01 (7) has been reported to be 33000 M-1 cm-1 at 332 

nm, in water containing NaCl (0.1 M), KH2PO4 (10 mM), and EDTA (0.1 mM), (pH not 

reported). This extinction coefficient was used as reported.173  

Compound 7 (Scheme 2.1) is related to the well-known minor groove binder H33258 (6).5 

The binding of 7 to FS-DNA was studied using UV-visible spectroscopy; the changes in 

absorption of 7 upon addition of FS-DNA were measured in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl, 1 mM EDTA), at 25 °C (Figure 2.24).  

 

 

 

 

 

 

 

Figure 2.24 UV-visible spectra for a 0.028 mM solution of 7 upon addition of 0 – 2.90 mM 

FS-DNA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. 

Figure 2.24 shows that the absorbance of 7 changed and the wavelength of maximum 

absorption has shifted upon addition of FS- DNA. This change in absorption spectrum 

suggests that the conformation of 7 and/or the surrounding medium of 7 has changed upon 

at 331 nm was plotted as a  7he absorbance of .  Tand thus suggests binding addition of DNA

function of the concentration of FS- DNA (Figure 2.25, see Appendix Table A7 for data 

intabular ormat).                                                                                                                            



Selection of optoelectronically active π-conjugated compounds 

 

72 
 

 

Figure 2.25 Absorbance at 331 nm for a solution of 0.028 mM 7 as a function of FS- DNA    

 concentration in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C.          

Figure 2.25 shows two events. The first event is a rapid decrease in absorbance upon the 

addition of a small amount of DNA. We attribute this decrease in absorbance to strong 

with DNA in multiple types of binding sites, leading to precipitation of  7interactions of 

ligand-DNA complexes as a result of charge neutralization. When the DNA concentration is 

increased further, a second event occurs. The second event leads to a clear increase in the 

attribute this increase in absorbance to ligands binding to the actual We  .7absorbance of 

preferred binding sites of 7 on DNA. A fit of the multiple independent binding sites model to 

 1-M3 ) of (5.15 ± 0.43) ×10bindingKpparent binding affinity (the second part of data gives an a

for a binding site size restricted to 3 base pairs. This is an apparent affinity because of the 

competition between specific and non-specific binding sites.                                                      

We investigated the binding of 7 with FS-DNA further using isothermal titration calorimetry 

(ITC).                                                                                                                                             

First, the self-aggregation of 7 in buffer was studied using an ITC dilution experiment. The 

differential heat flow and derived integrated heat effects were measured for dilution of a 0.95 

mM solution of 7 into 25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA at 25 °C (Figure 

2.26, Appendix Tables A7.1& A7.2 for numerical data). 
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Figure 2.26 (A) Dilution of a 0.95 mM solution of 7 (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 

mM EDTA), at 25 °C (B) Integrated heat effects for dilution of a 0.95 mM solution of 4.7 

into 25 mM MOPS, 50 mM NaCl, 1 mM EDTA, pH 7.0, at 25 °C, experimental heat effect 

per injection (▀), calculated heat effect per injection (-). 

According to Figure 2.26, the dilution of 7 is endothermic with non-constant heat effects. 

Non-constant heat effects are indicative of self-aggregation of 7.  We analysed this data using 

our ITC data analysis software IC-ITC.62  The reason for using ICITC is that the complexity 

of the data, once dilution will be combined with DNA binding, will require a complex data 

analysis model.  

We analysed the data in terms of a stepwise self-aggregation model, illustrated by model 

eqn.1 (Table 2.1). 

 

 

Table 2.1: Thermodynamic parameters for aggregation of 7 in 25 mM MOPS, pH 
7.0, 50 mM NaCl, 1 mM EDTA at 25 °C 

ΔH dilution / kcal mol-1 Kaggregation / M-1 ΔHaggregation / kcal mol-1 

-0.9 
 

1.48×103 

(900-2200) 

-9.0 

(-12.8  -   -7.2) 

Note: values in brackets indicate confidence intervals. 

 

The affinity of 7 for duplex DNA was studied using ITC. The differential heat flow and 

derived integrated heat effects for titration of a 0.95 mM solution of 7 into a 0.2 mM FS- 
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DNA solution were measured in 25 mM MOPS, 50 mM NaCl, 1 mM EDTA, and pH 7.0, at 

25 °C (Figure 2.27). 

 

(A) (B) 

 
 

 

Figure 2.27 (A) Titration of a 0.95 mM solution of 7 into a 0.2 mM FS-DNA in 25 mM 

MOPS, 50 mM NaCl, 1 mM EDTA, and pH 7.0, at 25 °C. (B) Integrated calorimetric data for 

titration of a 0.95 mM solution of 7 into a 0.2 mM fish sperm DNA in 25 mM MOPS, 50 mM 

NaCl, 1 mM EDTA, pH 7.0, at 25 °C, experimental heat (▀), calculated heat (●). 

Figure 2.27A shows the enthalpogram for binding of 7 to FS-DNA. The enthalpogram for 

binding of 7 to DNA suggests at least one binding event which is followed by ligand dilution. 

There may be a second, high affinity and low stoichiometry, binding event as well but based 

on previous experience we did not attempt to fit this because it appears poorly defined by the 

data. 

The fit of the model (Figure 2.27B) indicates that a binding model involving one type of 

binding event in combination with stepwise aggregation reproduces the data reasonably well. 

The binding constant K and binding site size n for binding of 7 to DNA in 25 mM MOPS, 50 

mM NaCl, pH 7.0, at 25 °C are summarised in Table 2.2. 

Table 2.2 Binding constant K, binding site sizes n, and interaction enthalpy ΔH for 
binding of 7 to DNA in 25 mM MOPS, 50 mM NaCl, pH 7.0, at 25 °C. 

ΔHA1 / kcal mol-1 KA1 / M-1 n=1/nA1 

-6.9 

(-7.3 - 6.4) 

4.48×105 

(1.8 ×105 - 5.8×105) 

1.14 

(1.10-1.18) 
1-cal mol 3and 9.02×10 1-M 3ricted to 1.48×10a) Aggregation parameters rest 
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It is interesting to compare DNA binding of 6 and 7 because they are structurally related and 

both of them bind to DNA as groove binders (Table 2.3) and previous ITC studies for 6 

binding to DNA are available.62 The enthalpogram for binding of 7 to DNA suggests at least 

one binding event. Enthalpograms for binding of 6 to specific sequences of DNA suggests 

two binding modes of which the non-selective electrostatic binding mode has a similar 

binding site size of 1 base pair. 

Table 2.3 Thermodynamic parameter for interaction of 6 to specific sequences of DNA in 0 

mM MOPS, 100 mM NaCl, pH 7.0, at 25 °C, and 7 to FS-DNA in 25 mM MOPS, 50 mM NaCl,  

pH 7.0, at 25 °C. 

Ligand             Kaggregation/ x103 M-1      ΔHaggregation/ kcal mol-1         KA1 / M-1                      ΔHA1 / kcal mol-1 

6                            2.70                  -10.79          8.2×106                                  -3.17 

7                            1.48                  -9.02               4.48×105                               -6.9 

 

Table 2.3 demonstrates that Kaggregation and ΔHaggregation, for 6 and 7 are similar. This 

observation suggests that both compounds aggregate in a similar manner. The binding 

affinity of the compound 6 is ten-fold higher than that of the compound 7. However, the 

value of enthalpy change for the compound 7 is almost twice of the value of the compound 6. 

 

2.2.8 Extinction coefficient, stability and DNA binding of TF1 

We wanted to determine the extinction coefficient of TF1 (8) in aqueous solutions. We 

attempted to dissolve 8 in buffer without added co-solvents but we found limited solubility in 

buffer. Therefore, we added 9 vol-% of DMSO to the buffer (25 mM MOPS pH 7.0, 100 mM 

KCl and 1 mM EDTA).   

A stock mixture of 8 (0.048 mM) in buffer (25 mM MOPS pH 7.0, 100 mM KCl, 1 mM 

EDTA and 9 vol-% DMSO) was prepared. In this mixture, 8 was not fully dissolved. Three 

dilution series were made (0.005 mM, 0.006 mM, 0.008 mM and 0.009 mM; 0.006 mM, 

0.007 mM, 0.008 mM and 0.009 mM; 0.0069 mM, 0.0076 mM and 0.009 mM). UV-visible 

spectra were recorded for those dilution series in a 1.0 cm pathlength cuvette at 25 °C. 

Absorbance at the λmax of 476 nm was plotted against ligand concentration (Figure 2.28).  
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Figure 2.28 Absorbance as a function of concentration of 8 in buffer (25 mM MOPS pH 7.0, 

100 mM KCl, 1 mM EDTA and 9 vol-% DMSO), at 25 °C (■). 

Figure 2.28 shows an increase in absorbance at 476 nm with increasing concentration. This 

increase does not appear to be linear with concentration. A linear fit (red line) was applied to 

obtain the extinction coefficient of (20059 ± 1902) M-1 cm-1.  The error margin as a 

percentage of the extinction coefficient is 9 %.  That is a very large margin of error. This 

large error may be because of limited solubility, and resulting precipitation, of 8 in 25 mM 

MOPS pH 7.0, 100 mM KCl, 1 mM EDTA and 9 vol-% DMSO. 

The error on the extinction coefficient in this work suggests that 9 vol-% of DMSO as a co-

solvent is not enough to keep 8 in solution. Alternatively, the poor correlation may result 

from fading of the colour of 8 during experiments (see below). 

To avoid the challenge of limited solubility, we determined the extinction coefficient of 8 in 

pure DMSO and pure acetonitrile.  

A stock solution of 8 (0.046 mM) (by weight) in DMSO was prepared and a dilution series 

was made (0.006 mM, 0.007 mM, 0.008 mM and 0.0086 mM). A second stock solution of 

the same concentration as the first stock solution was similarly used to prepare a second 

dilution series (0.002 mM, 0.004 mM, 0.006 mM, 0.007 mM and 0.009 mM). UV-visible 

spectra were recorded for the combined dilution series in a 1.0 cm pathlength cuvette at 25 

°C. The UV-visible spectra show that the λmax has shifted from 476 nm in aqueous buffer to 

500 nm in DMSO. Absorbance at the λmax of 500 nm was plotted against ligand concentration 

(Figure 2.29).  
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Figure 2.29 Absorbance at 500 nm as a function of concentration of 8 in DMSO at 25 °C 

Figure 2.29 shows an increase in absorbance at 500 nm with increasing concentration. A 

linear fit (red line) was applied to obtain the extinction coefficient. The extinction coefficient 

is (79579 ± 967) M-1 cm-1. The error margin as a percentage of the extinction coefficient is 

1.2 %, which is acceptable. 

We similarly examined the extinction coefficient for 8 in pure acetonitrile to explore potential 

solvent effects on the extinction coefficient of 8.   

A stock solution of 8 (0.050 mM) (by weight) in acetonitrile was prepared and a dilution 

series was made (0.0072 mM, 0.0079 mM, 0.008 mM and 0.009 mM). A second stock 

solution of the same concentration as the first stock solution led to a second dilution series 

(0.002 mM, 0.004 mM, 0.006 mM, 0.008 mM and 0.01 mM). UV-visible spectra were 

recorded for the combined dilution series in a 1.0 cm pathlength cuvette at 25 °C. Absorbance 

at the λmax of 500 nm was plotted against ligand concentration (Figure 2.30).  

 

Figure 2.30 Absorbance as a function of concentration of 8 in acetonitrile at 25 °C.  
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Figure 2.30 shows an increase in absorbance at 500 nm with increasing concentration. A 

linear fit (red line) was applied to obtain the extinction coefficient. The extinction coefficient 

in acetonitrile is (65962 ± 531) M-1 cm-1. The error margin as a percentage of the extinction 

coefficient is 0.7 %, which is a small margin of error. 

The extinction coefficient in DMSO is bigger than that in acetonitrile; we do not currently 

have an interpretation for this observation.  

We want to know how much co-solvent we need to create a stable solution. we therefore 

determined absorbances of 8 in 10 and 20 vol-% DMSO / buffer (25 mM MOPS pH 7.0, 50 

mM NaCl and 1 mM EDTA), at 25 °C. A stock solution of 8 in DMSO was diluted in buffer 

(25 mM MOPS pH 7.0, 50 mM NaCl and 1 mM EDTA) and DMSO added as required to 

keep the fraction of DMSO constant. 

 The absorbances for 8 in both the buffer containing 10 vol-% DMSO and 20 vol-% DMSO 

were plotted together as a function of concentration of 8 (Figure 2.31).  

 

Figure 2.31 Absorbance as a function of concentration in 10 and 20 vol-% DMSO/ buffer (25 

mM MOPS pH 7.0, 50 mM NaCl and 1 mM EDTA), at 25 °C.  

Figure 2.31 shows that the absorbance increases linearly with concentration of 8 and there is 

no significant difference between the systems involving 10 and 20 vol-% DMSO. A linear fit 

(red line) was applied to obtain the extinction coefficient. The extinction coefficient is (53580 

± 1690) M-1 cm-1. The error margin as a percentage of the extinction coefficient is 3.1 %, 

which is an acceptable margin of error. Compound 8 has sufficient solubility in both 10 and 

20 vol-% DMSO/ buffer (25 mM MOPS pH 7.0, 50 mM NaCl and 1 mM EDTA), at 25 °C. 

The results of this investigation show that aqueous solutions containing 10 and 20 vol-% 
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DMSO work well as a solvent for 8. These experiments also suggest that the scatter in Figure 

2.31 is the result of in solubility of 8 at the concentration of the stock solution.  

We next examine the effect of acetonitrile on the extinction coefficient in aqueous solution 

and compare the extinction coefficient with DMSO-containing aqueous solutions.  

A stock solution of 8 in acetonitrile was diluted in buffer (25 mM MOPS pH 7.0, 50 mM 

NaCl and 1 mM EDTA) and acetonitrile added as required to keep the fraction of acetonitrile 

constant. The absorbance of 8 in 10 and 20 vol-% acetonitrile / buffer (25 mM MOPS pH 7.0, 

50 mM NaCl and 1 mM EDTA) was measured at 25 °C. (Figure 2.32).   

 

Figure 2.32 Absorbance as a function of concentration of 8 in 10 and 20 vol-% acetonitrile / 

buffer (25 mM MOPS pH 7.0, 50 mM NaCl and 1 mM EDTA), at 25 °C.  

Figure 2.32 shows that the absorbance increases linearly with concentration of 8 and that 

there is no significant difference between the systems involving 10 and 20 vol-% acetonitrile. 

A linear fit (red line) was applied to obtain the extinction coefficient. The resulting extinction 

coefficient is (50539 ± 1984) M-1 cm-1. The error margin as a percentage of the extinction 

coefficient is 3.9 %, which is an acceptable margin of error. This work suggests that the 

extinction coefficients for 8 in aqueous acetonitrile and aqueous DMSO are similar. 

Therefore, co-solvent174 does not affect the extinction coefficient much. 

Another factor that can affect the extinction coefficient is the sensitivity of a compound to 

light. We suspected that 8 is light sensitive. In order to study whether 8 is sensitive to light 

we recorded the absorbance spectra for 8 as a function of time exposed to ambient light and 

we compared this with data for a sample shielded from light. Compound 8 was dissolved in 

pure acetonitrile and diluted in buffer (25 mM MOPS pH 7.0, 50 mM NaCl and 1 mM 
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EDTA) and we recorded spectra with one sample exposed to light and the second sample 

shielded from light (Figure 2.33).  

(A) (B) 

  

Figure 2.33 UV-visible spectra for 8 dissolved in pure acetonitrile and diluted in buffer (25 

mM MOPS pH 7.0, 50 mM NaCl and 1 mM EDTA) to give the same concentration for A and 

B, (A) exposed to ambient light for 216 hours and (B) stored in a dark place for 260 hours 

(initial spectra are not shown). 

Figure 2.33 (A) shows a clear decrease in the absorbance of 0.046 mM 8 at the λmax of 476 

nm for the sample exposed to light and shows that a new peak appears around 350 nm. Figure 

(B) shows that a solution of 8 which was stored in a dark place does not fade.  

Moreover, it is clear that light affects 8 from visual observation as well because the solution 

becomes colourless with time, while the solution of 8 that was stored in a dark place does not 

show any visual change.  
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 We repeated the experiment but this time we dissolved 8 in pure DMSO and diluted in buffer 

(25 mM MOPS pH 7.0, 100 mM KCl, 9 vol-% of DMSO and 1 mM EDTA). We plot the 

absorbance spectrum of 8 as a function of wavelength after storing the sample exposed to 

light or protected from light (Figure 2.34). 

 

Figure 2.34 UV-visible spectra for 8 dissolved in DMSO and diluted in DMSO-containing 

buffer (25 mM MOPS pH 7.0, 100 mM KCl, 9 vol-% of DMSO and 1 mM EDTA); final 

concentration for A and B is identical. (A) exposed to light for 216 hours and (B) stored in a 

dark place for 260 hours. Note: initial spectra are not shown. 

Figure 2.34 (A) shows the appearance of a new peak around 350 nm when the sample is 

exposed to light. Figure (B) shows a solution of 0.046 mM 8 which was stored in a dark 

place. No significant changes in the absorbance spectrum are apparent. We conclude that 8 is 

sensitive to the light. To avoid fading it should be stored in a dark place.   

Based on our results, 8 is sparingly soluble in water but it is soluble in some organic solvents 

such as acetonitrile and DMSO. On the basis of it is structure, we suppose that 8 is a groove 

binder with duplex DNA because of it is length.163 In order to study the binding of 8 with 

duplex DNA in the presence of acetonitrile and DMSO, we prepared aqueous solutions 

starting from stock solutions of 8 in acetonitrile and DMSO. We then did two types titrations. 

In the first titration, a stock solution of 0.28 mM 8 in acetonitrile was prepared. A volume of 

this stock solution was added to 2375 µl buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM 

EDTA), in a 1.00 cm pathlength cuvette. In the second and third titrations, stock solutions of 
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0.006 mM 8 and 0.0031 mM 8 were prepared directly in DMSO-containing buffer (25 mM 

MOPS, pH 7.0, 100 mM KCl, 9 vol-% DMSO and 1 mM EDTA). 

In the first titration, binding of 8 to FS-DNA in 25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM 

EDTA in presence of 1.04 % of acetonitrile was studied using UV-visible spectroscopy. The 

changes in absorption of 8 upon addition of FS-DNA in buffer (25 mM MOPS, pH 7.0, 50 

mM NaCl, 1 mM EDTA), at 25 °C are as shown in Figure 2.35.  

 
Figure 2.35 UV-visible spectra for a 0.0029 mM solution of 8 upon addition of   0 – 1.04 

mM FS-DNA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. 

Figure 2.35 shows that the absorbance of 8 changed and shifted upon addition of DNA. This 

change in absorption suggests that the conformation of 8 and/or the surrounding medium of 8 

has changed upon addition of DNA. 

The absorbance of 8 at 476 nm as well as the average absorbance in the range 670-700 nm 

was plotted as a function of the concentration of DNA (Figure 2.36 A, see Appendix Table 

A8 for numerical data). 
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Figure 2.36 (A) Absorbance at 476 nm of a 0.0029 mM solution of 8 in the presence of 1.04 

% of acetonitrile as a function of FS-DNA concentration in buffer (25 mM MOPS, pH 7.0, 50 

mM NaCl, 1 mM EDTA), at 25 °C. (B) The average absorbance in the range 670-700 nm as a 

function of FS-DNA concentration in the same experiment.  

Figure 2.36 (A) shows two events. The first event is accompanied by a rapid decrease in the 

absorbance upon addition of DNA. We attribute this decrease in absorbance to strong 

interactions of 8 with DNA in the regime where the ligand is present in large excess over the 

DNA. In this regime, the ligand binds to all available binding sites, leading to precipitation of 

ligand-DNA complexes as a result of charge neutralization.  

Figure 2.36 (B) shows the average absorbance in the range 670-700 nm and there are 

indications of scattering effects as a results of poor solubility and precipitation of the complex 

formed when DNA is saturated with bound 8. When the DNA concentration is increased, a 

second event occurs (figure 2.36A), leading to an increase in the absorbance of 8. This event 

corresponds to binding of the ligand bound in secondary binding sites (together with any 

remaining free ligand) to the principal binding sites on the DNA. A fit of the multiple 

independent binding sites model to the second part of the data gives an apparent binding 

affinity (Kbinding) of (9.7 ± 1.44) ×103 M-1 for a binding site size restricted to 3 base pairs. The 

first and second binding events as described above are illustrated in Figure 2.36. 
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Figure 2.37 Cartoon representation of the DNA (blue rod) interacting with the ligands (pink 

oblong). 

Figure 2.37 (A) shows that the first event happens when many ligand molecules bind strongly 

to the backbone and the base pairs of the DNA at low concentration of DNA. Figure 4.17 (B) 

shows the second event, which happens when the concentration of DNA increases.   

In the second titration, the binding of 8 to FS-DNA in 25 mM MOPS, pH 7.0, 100 mM KCl, 

9 vol-% DMSO and 1 mM EDTA was studied using UV-visible spectroscopy. The changes 

in absorption of 8 upon addition of FS-DNA at 25 °C are shown in Figure 2.38.  

 

Figure 2.38 UV-visible spectra for (A) a 0.0008 mM solution of 8 upon addition of   0 – 0.44 

mM, FS-DNA and (B) 0.0015 mM solution of 8 upon addition of   0 – 0.45 mM FS-DNA, 

both in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, 9 vol-% DMSO and 1 mM EDTA), at 

25 °C.  

Figure 2.38 shows a hypochromic and a bathochromic shift in absorbance of 8 upon addition 

of DNA. This change in UV-visible absorption may occur as a result of distortion upon 

interaction between 8 and DNA. It also may be a local medium effect. The absorbances of 8 
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at 476 nm for both titrations were plotted as a function of the concentration of DNA (Figure 

2.39, see Appendix Tables A8.1& A8.2 for numerical data). 

 

Figure 2.39 Absorbance at 476 nm (■) for a solution of 0.0015 mM of 8 and (●) for a 

solution of 0.0008 mM 8, as a function of DNA concentration in buffer (25 mM MOPS, pH 

7.0, 100 mM KCl, 9 vol-% DMSO and 1 mM EDTA), at 25 °C. The solid lines represent a 

global fit of a multiple independent sites model to the data.  

In this titration experiment, we did not observe the initial drop in absorbance. This 

observation suggests the absence of the initial precipitation observed in the absence of 

DMSO.  The titration curves in Figure 2.39 were therefore analysed by fitting a multiple 

independent binding sites model to the data. The obtained binding stoichiometry was small 

hence the data were reanalysed at fixed binding site size of 3.0 base pairs, giving an 

equilibrium constant (Kbinding) for 8 binding to FS-DNA of (1.04 ± 0.84) ×105 M-1. Previous 

studies reported a binding affinity (Kbinding) of 0.12 ×106 M-1 for a binding site size (n) of 2, in 

excellent agreement with our data.163  

2.2.9 Extinction coefficient, stability and DNA binding of methylene blue 

Most previous studies have determined the extinction coefficient of 9 in different buffers 

such as phosphate buffer in which the extinction coefficient at 665 nm was found to be 81600 

M-I cm-1. 175 In distilled deionized water containing 5 mM sodium sulfate, 1 mM phosphate 

buffer at pH 7 the extinction coefficient was found to be 82600 M-1 cm-1 at 665 nm.169  

We wanted to know if a co-solvent affects the extinction coefficient of methylene blue (9). 

We therefore determined the extinction coefficient of 9 in the presence of DMSO as a co-

solvent.176 
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A stock solution of 9 (0.15 mM) in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, 9 vol-% 

DMSO and 1 mM EDTA) was prepared. A series of solutions (0.0011 mM, 0.0018 mM, 

0.0025 mM and 0.0033 mM) was prepared from the stock solution. UV-visible spectra were 

recorded for these solutions in a 1.0 cm pathlength cuvette at 25 °C. Absorbance at the λmax of 

663 nm was plotted against ligand concentration (Figure 2.40). 

 

Figure 2.40 Absorbance at 663 nm as a function of concentration of 9 in buffer (25 mM 

MOPS, pH 7.0, 100 mM KCl, 9 % DMSO and 1 mM EDTA), at 25 °C. 

Figure 2.40 shows an increase in absorbance at 663 nm with increasing concentration. A 

linear fit (red line) was applied to obtain the extinction coefficient of (79533 ± 2018) M-1 cm-

1. The error margin as a percentage of the extinction coefficient is 2.5 % which is an 

acceptable margin of error.  
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We also examine the extinction coefficient of 9 in the buffer without co-solvent. A stock 

solution of 9 (0.081 mM) in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA) 

was prepared. A series of solutions of 0.0015, 0.0023 0.0031 and 0.0038 mM was prepared 

by dilution. A second stock solution of 0.13 mM 9 in buffer (25 mM MOPS, pH 7.0, 50 mM 

NaCl, and 1 mM EDTA) was prepared. A second series of solutions (0.0015, 0.0040 0.0064 

and 0.0087 mM) was prepared from the second stock solution. UV-visible spectra were 

recorded for all diluted solutions in a 1.0 cm pathlength cuvette at 25 °C. Absorbance at the 

λmax of 663 nm for both dilution series were plotted against ligand concentrations (Figure 

2.41).  

 

Figure 2.41 Absorbance at 663 nm as a function of concentration of 9 in buffer (25 mM 

MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C. 

Figure 2.41 shows an increase in absorbance at 663 nm with increasing concentration. A 

linear fit (red line) was applied to obtain the extinction coefficient of (78618 ± 1922) M-1 

cm-1. The error margin as a percentage of the extinction coefficient is 2.4 %. That is an 

acceptable margin of error.  The extinction coefficient for 9 in the presence and absence of 

co-solvent is the same, which suggests again that co-solvent does not affect the extinction 

coefficient. 

These extinction coefficients are both roughly within the error margin of our extinction 

coefficient and are therefore in good agreement. 

Based on previous reports we assumed that 9 is light sensitive.177, 178 To study this light 

sensitivity, we plotted the absorbance of 9 as a function of time under exposure to light in 

buffer (25 mM MOPS pH 7.0, 50 mM 50 mM NaCl and 1 mM EDTA) (Figure 2.42).  
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(A) (B) 

  

Figure 2.42 (A) UV-visible spectra for 9 dissolved in buffer (25 mM MOPS pH 7.0, 50 mM 

NaCl and 1 mM EDTA) and exposed to light at 25 °C (B) The absorbance of 9 at 663 nm as a 

function of time. 

Figure 2.42 (A) shows that the spectra for a solution of 9 show a decrease upon exposure to 

light. This decrease suggests that 9 is sensitive to light. Figure 2.42 (B) shows the decrease of 

absorbance of 9 as a function of time.  

We wanted to know whether different buffers affect the fading of 9. To study the effect of 

buffer choice, we prepared an analogous stock solution of 9 but instead of MOPS buffer we 

made the stock solution in phosphate buffer and left out EDTA. The reason for this is that 

MOPS and EDTA contain an amine functional group. This amine could act as an electron 

donor to the excited state of 9 similar to the action of sacrificial amines as electron donors as 

used in development of photovoltaic systems.  

To study whether MOPS caused the light-driven fading, we plotted the absorbance of 9 as a 

function of time exposed to light in phosphate buffer (25 mM Na2HPO4, pH 7.0, and 50 mM 

NaCl) (Figure 2.43). 
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Figure 2.43 (A) UV-visible spectra for 9 dissolved in phosphate buffer (25 mM Na2HPO4, 

pH 7.0, and 50 mM NaCl), at 25 °C and under exposure to ambient light. Figure (B) the 

absorbance of 9 at 663 nm plotted as a function of time of exposure to light. 

Figure 2.43 (A) again shows a decrease. The time trace in Figure 2.43 (B) shows the extent of 

the decrease in absorbance of 9 as a function of time. These results indicate that the buffer 

does not affect significantly the sensitivity of 9 to light, and this indicates that MOPS and 

EDTA do not act as sacrificial electron donors in this particular reaction.  

In order to evaluate the binding of 9 with DNA in our buffers, UV-visible titrations were 

carried out. Binding of 9 to FS-DNA was studied using UV-visible spectroscopy. The 

changes in absorption of 9 upon addition of FS-DNA were measured in buffer (25 mM 

MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C and are shown in Figure 2.44. 

 

 

 

(A) (B) 

  

400 500 600 700 800
0.0

0.2

0.4

0.6

0.8

A 66
3/ 

a.
u.

Wavelength(nm)
0 20 40 60

0.5

0.6

0.7

0.8

0.9

A 66
3/ 

a.
u

time(min)



Selection of optoelectronically active π-conjugated compounds 

 

90 
 

 

Figure 2.44 UV-visible spectra for a 0.0035 mM solution of 9 upon addition of 0 – 4.6 mM 

FS-DNA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C. 

Figure 2.44 shows a hypochromic shift in absorbance (at the λmax of 664 nm) of 9 upon 

addition of DNA. This change in absorption suggest that the conformation of 9 or the 

surrounding medium of 9 has changed upon the addition of DNA. Either way, of these 

changes would be the result of binding of 9 to DNA. The absorbance of 9 at 664 nm was 

plotted as a function of concentration of FS-DNA (Figure 2.45, see Appendix, Table A9 for 

data in tabular format). 

 

Figure 2.45 Absorbance at 664 nm for a solution of 0.0035 mM 9 as a function of DNA 

concentration in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C. 

The line represents the best fit of a multiple independent binding sites model to the data.  

The titration curve in Figure 2.45 shows a decrease in absorbance of 9 upon the addition of 

FS-DNA. This change in absorbance indicates that 9 interacts with DNA. The titration data 

obtained for 9 was reproduced satisfactorily by the multiple independent binding sites model. 

This fit of the multiple independent binding sites model to the data gives a binding affinity 
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(Kbinding) of (3.8 ± 0.78) ×105 M-1 for the binding site size restricted to 3 base pairs. This 

binding constant is in agreement with the reported equilibrium constant of (Kbinding) of ~ 2.2 

×105 M-1.155 

We wanted to know if added co-solvent affects the affinity of 9 for FS-DNA, because co-

solvent may be required in the double competition dialysis assay. Therefore, we did the same 

titration as above but in the presence of DMSO.  

Binding of 9 to FS-DNA was studied using UV-visible spectroscopy. The changes in 

absorption of 9 upon addition of FS-DNA in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, 9 

vol-% DMSO and 1 mM EDTA), at 25 °C are shown in Figure 2.46.                                         

 

Figure 2.46 UV-visible spectra for a 0.004 mM solution of 9 upon addition of 0 – 0.19 mM 

FS-DNA in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, 9 vol-% DMSO and 1 mM EDTA), 

at 25 °C. 

Figure 2.46 shows a hypochromic shift and a bathochromic shift in absorbance (at the λmax of 

664 nm) of 9 upon addition of DNA. This change in UV-visible absorption suggests that the 

conformation or the surrounding medium of 9 changes upon the addition of DNA. To 

quantify the affinity of 9 for FS-DNA, the absorbance at 664 nm was plotted as a function of 

concentration of FS-DNA (Figure 2.47, Appendix, Table A9.1 for data in tabular format). 
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Figure 2.47 Absorbance at 664 nm of a solution of 0.004 mM 9 as a function of DNA 

concentration in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, 9 vol-% DMSO and 1 mM 

EDTA), at 25 °C. The line represents the best fit of a multiple independent binding sites 

model to the data.  

The titration data obtained for 9 were reproduced satisfactorily by the multiple independent 

binding sites model. This fit of the multiple independent binding sites model to the data gives 

a binding affinity (Kbinding) of (8.5 ± 1.35) ×104 M-1 for the binding site size restricted to 3 

base pairs. 

Based on the results from Figures 2.45 and 2.46, DMSO affects the interaction between 9 and 

DNA. The affinity is roughly five-fold weaker in the presence of DMSO then in the absence 

of DMSO.179 

 

Compound 9 is known to have affinity for a range of quadruplex sequences as well. Binding 

of 9 to c-myc180 was studied using UV-visible spectroscopy. The changes in absorption of 9 

upon addition of c-myc were measured in a buffer solution (25 mM MOPS, pH 7.0, 50 mM 

NaCl, and 1 mM EDTA), at 25 °C (Figure 2.48).  
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Figure 2.48 UV-visible spectra for a 0.007 mM solution of 9 upon addition of 0 – 0.006 mM 

c-myc in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C. 

Figure 2.48 shows a hypochromic shift in absorbance (at the λmax of 663 nm) which is 

accompanied by a bathochromic shift of 9 upon addition of c-myc. This change in UV-visible 

absorption may occur as a result of conformational changes when 9 interacts with c-myc, but 

it may also be a result of a local medium effect.  To quantify the affinity of 9 for c-myc, the 

absorbance at 663 nm was plotted as a function of concentration of c-myc (Figure 2.49, 

Appendix Table A9.2 for data in tabular format). 

 

Figure 2.49 Absorbance at 663 nm for a solution of 0.0073 mM of 9 as a function of c-myc 

concentration in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C. 

The line represents the best fit of a multiple independent binding sites model to the data.  

The titration data obtained for 9 were analysed satisfactorily by fitting the multiple 

independent binding sites model to the data. This fit of the multiple independent binding sites 

model to the data gives a binding affinity (Kbinding) of (5.25 ± 7.79) ×106 M-1 for a binding site 
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size (n) of (0.17 ± 0.02), i.e 0.17 quadruplexes per ligand. This suggests that 6 ligands bind 

per quadruplex. 

Binding of 9 to 22AG was studied using UV-visible spectroscopy. The changes in absorption 

of 9 upon addition of 22AG were measured in a buffer solution (25 mM MOPS, pH 7.0, 50 

mM NaCl, and 1 mM EDTA), at 25 °C (Figure 2.50).    

 

Figure 2.50 UV-visible spectra for a 0.0038 mM of a solution of 9 upon addition of 0 – 0.035 

mM 22AG concentration in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), 

at 25 °C. 

Figure 2.50 shows a hypochromic and bathochromic shift of 9 upon addition of 22AG. This 

change in absorption suggests that the conformation of 9 or the surrounding medium of 9 has 

changed upon the addition of DNA. The change in absorption therefore indicates an 

interaction between 9 and 22AG. To quantify the affinity of 9 for 22AG, the absorbance at 

663 nm was plotted as a function of concentration of 22AG (Figure 2.51, Appendix Table 

A9.3 for numerical data). 
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Figure 2.51 Absorbance at 663 nm for a solution of 0.0038 mM 9 as a function of 22AG 

concentration in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C. 

The line represents the best fit of a multiple independent binding sites model to the data.  

The titration data obtained for 9 were analysed by fitting the multiple independent binding 

sites model to the data. This fit of the multiple independent binding sites model to the data 

gives an equilibrium constant (Kbinding) of (5.95 ± 7.64) ×104 M-1 for a binding site size (n) of 

(0.13 ± 0.15). This suggests that 7 ligands bind per quadruplex.  

EAD2 was recently identified as a good target for 9.181 Binding of 9 to EAD2 was studied 

using UV-visible spectroscopy. The changes in absorption of 9 upon addition of EAD2 were 

measured in a buffer solution (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM EDTA), at 

25°C (Figure 2.52).  

 

Figure 2.52 UV-visible spectra for a 0.0051 mM solution of 9 upon addition of 0 – 0.0069 

mM EAD2 in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM EDTA), at 25 °C. 

Figure 2.52 shows a hypochromic and bathochromic shift of 9 upon addition of EAD2. This 

change in absorption suggests that the conformation of 9 or the surrounding medium of MB 

has changed upon the addition of DNA. To quantify the affinity of 9 for EAD2, the 

absorbance at 663 nm was plotted as a function of concentration of EAD2 (Figure, 2.53 

Appendix Table A9.4 for data in tabular format). 
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Figure 2.53 Absorbance at 663 nm for a solution of 0.0051 mM 9 as a function of EAD2 

concentration in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM EDTA), at 25 °C. 

The line represents the best fit of a multiple independent binding sites model to the data.  

The titration data obtained for 9 were reproduced satisfactorily by the multiple independent 

binding sites model. This fit of the multiple independent binding sites model to the data gives 

a binding affinity (Kbinding) of (5.86 ± 0.61) ×105 M-1 for a binding site size (n) of (0.3 ± 0.01) 

which means 3 ligands bind per quadruplex. Previous studies have found a binding affinity 

(Kbinding) of ~ 1.3 ×106 M-1 for a binding site size (n) of 1.0, in reasonable agreement with our 

data.155 

The binding parameters for compound 9 interacting with FS-DNA and quadruplex structures 

are summarised in Table 2.4. 
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Table 2.4 Binding parameters from UV-visible spectroscopy of 9 interacting with FS-

DNA, c-myc 22AG and EAD2, in buffer. 

 FS-DNA c-myc 22AG EAD2 

Compound 

Binding    
constant 

K / M-1 

Binding 
site size 

N 

Binding 
constant 

106 K / 
M-1 

Binding 
site size 

n 

Binding 
constant 

K / M-1 

Binding 
site size 

n 

Binding    
constant 

106 K / 
M-1 

Binding 
site size 

n 

9 (a) 
(3.83 ± 0.78) 

×105 3* / / / / / / 

9 (b) 

 

(8.5 ± 1.35) 
×104 3* / / / / / / 

9 (c) 

 
/ / 

(5.25  ± 
7.79) 

(0.17 ± 
0.02) 

(5.95 ± 
7.64) 
×104 

(0.13 ± 
0.15) 

 

/ / 

9 (d) 

 
/ / / / / / 

(0.586 ± 
0.061) 

(0. 3 ± 
0.01) 

(25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA) in the presence of 1.04 % of 
acetonitrile (a), in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, 9 vol-% DMSO and 1 
mM EDTA) (b) , in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA) (c) and 
in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM EDTA), at 25 °C.  

 

Table 2.4 shows that compound 9 has a higher affinity for c-myc than for 22AG and EAD2. 

The binding stoichiometry for 9 interacting with c-myc was found to be 6 ligands per 

quadruplex. We attribute this high affinity of 9 for quadruplex structures to the presence of more 

aromatic rings, which leads to an increase in hydrophobic interactions between 9 and DNA. 

The weakest binding for 9 is to duplex FS-DNA with a binding constant ~ 104. The affinity is 

roughly five-fold weaker in the presence of DMSO than in the absence of DMSO. DMSO 

thus affects the interaction between 9 and DNA. The binding site size for 9 to duplex FS-

DNA is restricted to 3.0 base pairs in order to obtain a good fit to the titration curve.    
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2.2.10 Extinction coefficient and DNA binding of ethidium bromide 

Two stock solutions of ethidium bromide (10), both of 0.12 mM, were made up in buffer (25 

mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA) and two dilution series (0.014 mM, 

0.018 mM, 0.022 mM and 0.025 mM and 0.004 mM, 0.016 mM, and 0.026 mM) were 

prepared. UV-visible spectra were recorded for these solutions in a 1.0 cm pathlength cuvette 

at 25 °C. Absorbances at the λmax of 481 nm were plotted against ligand concentrations 

(Figure 2.54).  

 

Figure 2.54 Absorbance at 481 nm as a function of concentration of 10 in buffer (25 mM 

MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C.  

Figure 2.54 shows an increase in absorbance at 481 nm with increasing concentration of 10. 

A linear fit (red line) was applied to obtain the extinction coefficient of (6645 ± 65.27) M-1 

cm-1. The error margin as a percentage of the extinction coefficient is 0.9 %, which is a small 

margin of error.  

There have been several studies of the extinction coefficient for 10 in BPES buffer (6 mM 

Na2HPO4, 4 mM NaH2PO4, 1 mM Na2EDTA, and 100 mM NaCl), at pH 7.00,  and this was 

found to be 5680 M-1 cm-1 at 478 nm, and 5860 M-1 cm-1 at 480 nm in aqueous solution.156 

Our extinction coefficient is therefore remarkably higher for currently unknown reasons.  

 

Compound 10 is well known to bind to duplex DNA.182 We set out to determine whether 10 

binds to quadruplex DNA such as c-myc in our buffer. Binding of 10 to c-myc was studied 

using UV-visible spectroscopy. The changes in absorption of 10 upon addition of c-myc were 

measured in a buffer (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM EDTA), at 25 °C 

(Figure 2.55).  
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Figure 2.55 UV-visible spectra for a 0.027 mM solution of 10 upon addition of 0 – 0.023 

mM c-myc concentration in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM EDTA), 

at 25 °C. 

Figure 2.55 shows a decrease in absorbance (at λmax of 481 nm) and a bathochromic shift with 

an isosbestic point at 510 nm upon addition of c-myc.  

To quantify the affinity of 10 for c-myc, the absorbance at 481 nm was plotted as a function 

of concentration of c-myc (Figure 2.56, Appendix Table A10 for numerical data). 

 

Figure 2.56 Absorbance at 481 nm of a solution of 0.027 mM 10 as a function of c-myc 

concentration in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM EDTA), at 25 °C. 

The line represents the best fit of a multiple independent binding sites model to the data.  

The data in Figure 2.56 were analysed in terms of a multiple independent binding sites 

model, given an equilibrium constant (Kbinding) of (4.01 ± 2.60) ×105 M-1 for a binding site 

size (n) of (0.37 ± 0.03) quadruplexes per ligand. This suggests that 3 ligands bind per 
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quadruplex. This binding constant is in agreement with the previously reported equilibrium 

constant of (Kbinding) of 1.5 ×105 M-1 for a binding site size (n) of (1.0 ± 0.1).157  

 

2.2.11 Extinction coefficient and DNA binding of DAPI 

We made two stock solutions of DAPI (11) (3.5 mM) and used these to prepare two dilution 

series (0.012 mM, 0.025 mM, 0.037 mM, 0.05 mM and 0.006 mM, 0.012 mM, 0.019 mM, 

0.025 mM).  A third stock solution of 11 (1.3 mM) was used to prepare a third dilution series 

(0.007 mM, 0.014 mM, 0.02 mM, 0.028 mM). Finally, a fourth stock solution of 11 (2.3 mM) 

was used to create one further dilution series (0.016 mM, 0.024 mM, 0.03 mM, 0.041 mM).  

All solutions were prepared in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl). UV-visible 

spectra were recorded for these solutions in a 1.0 cm path length cuvette at 25 °C. 

Absorbance at λmax of 342 nm for all dilution series were plotted together against ligand 

concentrations (Figure 2.57).  

 

Figure 2.57 Absorbance as a function of concentration of 11 in buffer (25 mM MOPS, pH 

7.0, 50 mM NaCl), at 25 °C.  

Figure 2.57 shows an increase in absorbance at 342 nm with increasing concentration. A 

linear fit (red line) was applied to obtain the extinction coefficient of (23570 ± 786) M-1 cm-1. 

The error margin as a percentage of the extinction coefficient is 3.3 %, which is acceptable. 

Previous studies have reported that the extinction coefficient of 11 in water is slightly higher 

at 27000 M-1 cm-1, more or less in agreement with our extinction coefficient.161  
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DAPI is known to bind to duplex DNA.183 The binding of 11 to 22AG was studied using UV-

visible spectroscopy; the changes in absorption of 11 upon addition of 22AG were measured 

in a buffer solution (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C 

(Figure 3.58).  

 

Figure 2.58 UV-visible spectra for a 0.019 mM solution of 11 upon addition of 0 – 0.007 

mM 22AG in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C. 

Figure 2.58 shows a decrease in absorbance (at the λmax of 342 nm) and a bathochromic shift 

with isosbestic point at 367 nm upon addition of 22AG to 11. This change in UV-visible 

absorption suggests that 11 interacts with 22AG, and it may represent a local medium effect 

exerted by 22AG or a conformational change of 11 caused by the binding event. The affinity 

of 11 for 22AG was quantified by plotting the absorbance at 342 nm as a function of 

concentration of (22AG) (Figure 2.59, Appendix Table A11 for data in tabular format). 

 

Figure 2.59 Absorbance at 342 nm for a solution of 0.019 mM 11 as a function of 22AG 

concentration in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C. 

The line represents the best fit of a multiple independent binding sites model to the data.  
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The titration data obtained for 11 were reproduced satisfactorily by the multiple independent 

binding sites model. This fit of the multiple independent binding sites model to the data gives 

an equilibrium constant (Kbinding) of (9.62 ± 2.88) ×104 M-1 for a binding site size (n) of (0.09 

± 0.01). This suggests that 11 molecules of DAPI ligand bind per 22AG quadruplex. This 

corresponds to one molecule of DAPI for every two bases in the quadruplex structure. This 

ratio is remarkably like the ratio required for full charge cancellation, so the interaction may 

be purely electrostatic. 

 

Binding of 11 to c-myc was also studied using UV-visible spectroscopy. The changes in 

absorption of 11 upon addition of c-myc were measured in a buffer (25 mM MOPS, pH 7.0, 

100 mM KCl, and 1 mM EDTA), at 25 °C (Figure 2.60).  

 

Figure 2.60 UV-visible spectra for a 0.019 mM solution of 11 upon addition of 0 – 0.025 

mM c-myc concentration in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM EDTA), 

at 25 °C. 

Figure 2.60 shows hypochromic and bathochromic shifts in absorbance at the λmax of 342 nm, 

leading to an isosbestic point at 370 nm, upon addition c-myc. This change in UV-visible 

absorption shows that 11 interacts with c-myc.  

The affinity of 11 for c-myc was quantified by plotting the absorbance at 342 nm as a 

function of concentration of c-myc (Figure 2.61, Appendix Table A11.1 for numerical data). 
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Figure 2.61 Absorbance at 342 nm of a solution of 0.019 mM 11 as a function of the 

concentration of c-myc in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM EDTA), at 

25 °C. The line represents the best fit of a multiple independent binding sites model to the 

data.  

The titration data obtained for 11 were analysed in terms of the multiple independent binding 

sites model. This fit of the multiple independent binding sites model to the data gives a 

binding affinity (Kbinding) of (7.4 ± 1.9) ×105 M-1 for a binding site size (n) of (0.27 ± 0.012). 

This suggests that 4 ligands bind per quadruplex. 

 

2.2.12 Extinction coefficient, stability and DNA binding of thiazole orange 

Four stock solutions of thiazole orange (12) were made up in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl, and 1 mM EDTA). The first stock solution of 12 was 0.62 mM and a dilution 

series of the first stock solution was prepared (0.0036 mM, 0.0073 mM, 0.010 mM and 0.014 

mM). The second stock solution of 12 (0.67 mM) was used to prepare a second series of 

solutions (0.0053 mM, 0.0092 mM, 0.01 mM and 0.016 mM). The third stock solution of 12 

(0.83 mM) was used to generate a third series (0.0098 mM, 0.013 mM, 0.016 mM and 0.019 

mM). The final stock solution of 12 (0.69 mM) was used for a final series of solutions 

(0.0054 mM, 0.0095 mM, 0.013mM and 0.017 mM). UV-visible spectra were recorded for 

all solutions in a 1.0 cm path length cuvette at 25 °C. Absorbances at the λmax of 500 nm for 

all solutions were plotted against ligand concentrations (Figure 2.62). 

0.0 6.0x10-6 1.2x10-5 1.8x10-5 2.4x10-5 3.0x10-5
0.2

0.3

0.4

0.5

A 34
2/ 

a.
u.

[c-myc]/ mol dm-3



Selection of optoelectronically active π-conjugated compounds 

 

104 
 

 

Figure 2.62 Absorbance at 500 nm as a function of concentration of 12 in buffer (25 mM 

MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C. 

A linear fit (red line) was applied to the data in Figure 2.62 to obtain the extinction 

coefficient of (44309 ± 2642) M-1 cm-1. This extinction coefficient is different from values 

reported in the literature. For example, in 20 mM Tris-HCl (pH 7.4), 140 mM NaCl, 5 mM 

KCl and 5 mM MgCl2 the extinction coefficient for 12 has been reported to be 63000 M-1 cm-

1 at 501 nm.184  The extinction coefficient for 12 in methanol was found to be > 70000 M-1 

cm-1. 185  

Beased on the scatter in Figure 2.61 and the differences with reported extinction coefficients, 

we assumed that 12 is light sensitive.184 To study the light sensitivity, we recorded the 

absorbance of 12 as a function of time exposed to ambient light in buffer (25 mM MOPS pH 

7.0, 50 mM 50 mM NaCl and 1 mM EDTA) (Figure 2.63). 

 

Figure 2.63 UV-visible spectra for 12 dissolved in buffer (25 mM MOPS pH 7.0, 50 mM 

NaCl and 1 mM EDTA) and exposed to ambient light. 

Figure 2.63 shows a decrease in absorbance without an increase between 600 and 700 nm, 

which suggests that 12 does not precipitate but is sensitive to light.  
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To study the sensitivity to light further we repeated the experiment with 12 dissolved in two 

different buffers because we wanted to check whether the buffers affect fading or not.141 We 

plot the absorbance of 12 as a function of time exposed to light in MOPS-based buffer (25 

mM MOPS pH 7.0, 50 mM 50 mM NaCl and 1 mM EDTA) ( Figure 2.62) and in phosphate-

based buffer with no EDTA (see below, Figure 2.64).  

 

 

 

 

 

 

 

 

Figure 2.64 (A) UV-visible spectra for 12 dissolved in buffer (25 mM MOPS pH 7.0, 50 mM 

NaCl and 1 mM EDTA) exposed to light. (B) Absorbance for 12 as a function of time upon 

exposure to light. 

The spectra in Figure 2.64 show a rapid decrease, in agreement with figure 2.62 12 is 

sensitive to light.  

A solution of 12 of the same concentration as above, but in phosphate buffer, was prepared. 

The absorbance of 12 as a function of time exposed to light in phosphate buffer (25 mM 

Na2HPO4, pH 7.0, and 50 mM NaCl) was recorded (Figure 2.65). 
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Figure 2.65 (A) UV-visible spectra for 12 dissolved in phosphate buffer (25 mM Na2HPO4, 

pH 7.0, and 50 mM NaCl), at 25 °C upon exposure to light (B) The absorbance of 12 at 500 

nm plotted as a function of time. 

Figure 2.65 (A) shows that the spectra display a rapid decrease upon exposure to light. This 

decrease suggests that 12 is sensitive to light in the absence of MOPS and EDTA as well. 

We combined the two time traces to confirm that the buffer does not affect the fading of 12. 

In other words, we checked whether phosphate buffer and MOPS and EDTA buffer influence 

the sensitivity of 12 (Figure 2.66). 

 

Figure 2.66 The absorbance of 12 at 500 nm in buffer (25 mM MOPS pH 7.0, 50 mM NaCl 

and 1 mM EDTA) (black squares) and in phosphate buffer (25 mM Na2HPO4, pH 7.0, and 50 

mM 50), at 25 °C (red dots) as a function of time. 

Figure 2.66 (A) shows that the decrease in absorbance in MOPS-based buffer and in 

phosphate-based buffer are very similar. This shows that the buffer does not affect the fading. 
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Visual inspection also clearly shows the effect of light on the colour of solutions of 12 as 

shown in Figure 2.67.  

 

Figure 2.67 Solutions of 12, as afunction of time exposed to ambient light.  

From Figure 2.67 it is clear the colour of the solution fades in 55 min. 

It has been reported in the literature that thiazole orange (12) has a higher affinity for 

quadruplex and triplex DNA compared with double-stranded DNA.168  This study set out to 

confirm the affinity of 12 for different sequences of quadruplex DNA, namely c-myc and 

22AG, in our buffer.  

Binding of 12 to c-myc was studied using UV-visible spectroscopy. The changes in 

absorption of 12 upon addition of c-myc were measured in buffer (25 mM MOPS, pH 7.0, 50 

mM NaCl, and 1 mM EDTA), at 25 °C (Figure 2.68).  
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Figure 2.68 UV-visible spectra for (A) a 0.0061 mM solution of 12 upon addition of 0 – 

0.0027 mM c-myc and (B) a 0.0083 mM solution of 12 upon addition of 0 – 0.0066 mM c-

myc, in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C.  
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Figure 2.68 shows a decrease in absorbance (at the λmax of 500 nm) and a bathochromic shift 

upon addition c-myc. This change in UV-visible absorption shows that 12 interacts with c-

myc.  

To establish the affinity of 12 for c-myc, the absorbance at 500 nm was plotted as a function 

of concentration of c-myc (Figure 2.69, Appendix Tables A12& A12.1 for data in tabular 

format). 

 

Figure 2.69 Absorbance at 500 nm for (●) a solution of 0.0061 mM of 12 and (■) a solution 

of 0.00083 mM, as a function of c-myc concentration in buffer (25 mM MOPS, pH 7.0, 50 

mM NaCl, and 1 mM EDTA), at 25 °C.  Solid lines represent a global fit of a multiple 

independent sites model to the titration data.  

The titration data obtained for 12 were analysed by globally fitting the multiple independent 

binding sites model to the two titrations. The binding constant (K binding) was found to be 

(1.19 ± 2.38) ×107 M-1 for a binding site size (n) of (0.081 ± 0.008). This suggests that 12 

molecules of ligand bind per quadruplex. However, considering the shape of the titration 

curves in Figure 2.66, these parameters are interpreted as apparent parameters. The reason for 

this is the dip in absorbance followed by a small gradual increase, suggesting multiple 

binding events.  

 

Binding of 12 to 22AG was similarly studied using UV-visible spectroscopy. The absorption 

spectra for 12 upon addition of 22AG were recorded in buffer (25 mM MOPS, pH 7.0, 50 

mM NaCl, and 1 mM EDTA) at 25 °C (Figure 2.70).  
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Figure 2.70 UV-visible spectra for a 0.0048 mM solution of 12 upon addition of 0 – 0.003 

mM 22AG in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C. 

Figure 2.70 shows a decrease in absorbance at the λmax of 500 nm of 12 upon addition of 

22AG. This change in UV-visible absorption is likely a result of 12 interacting with 22AG.  

The affinity of 12 for 22AG was quantified by plotting the absorbance at 500 nm as a 

function of concentration of 22AG (Figure 2.71, Appendix Table A12.2 for numerical data). 

 

Figure 2.71 Absorbance at 500 nm (■) for a solution of 0.0048 mM 12 as a function of 22AG 

concentration, in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C. 

The line represents the best fit of a multiple independent binding sites model to the data.  

The titration data obtained for 12 were analysed by fitting the multiple independent binding 

sites mode to the data. The binding constant (K binding) was found to be 2.29 × 1018 ± 3.63 ×10 
29 M-1. The value of the affinity constant should not be taken literally but indicates that the 

affinity is too high to accurately quantify from these data. The binding site size (n) was found 

to be (0.10 ± 0.009). This indicates that 10 ligands bind per quadruplex. 
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2.2.13 Extinction coefficient, stability and DNA binding of DODC 

A stock solution of 0.16 mM 13 in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl and 1 mM 

EDTA) was prepared. A series of solutions (0.0018 mM, 0.0025 mM, 0.0031 mM and 0.0037 

mM) was prepared from the stock solution and UV-visible spectra were recorded for these 

solutions in a 1.0 cm path length cuvette at 25 °C. Absorbance at the λmax of 576 nm were 

plotted against ligand concentrations (Figure 2.72).    

 

Figure 2.72 Absorbance as a function of concentration of 13 in buffer (25 mM MOPS, pH 

7.0, 50 mM NaCl and 1 mM EDTA), at 25 °C. 

Figure 2.72 shows an increase in absorbance at 576 nm with increasing concentration. A 

linear fit (red line) was applied to obtain the extinction coefficient of (212590 ± 3306) M-1 

cm-1. The error margin as a percentage of the extinction coefficient is 1.5 % which is an 

acceptable margin of error.  

We set out to establish whether 13 is light sensitive. To study the light sensitivity of 13 we 

recorded the absorbance of 13 as a function of time exposed to light 186 in buffer (25 mM 

MOPS pH 7. 0, 50 mM 50 mM NaCl and 1 mM EDTA) (Figure 2.73). 
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Figure 2.73 (A) UV-visible spectra for 13 dissolved in buffer (25 mM MOPS pH 7.0, 50 mM 

50 mM NaCl and 1 mM EDTA) upon exposure to light. (B) The absorbance of 13 at 576 nm 

plotted as a function of time. 

Figure 2.73 shows that when 13 is exposed to light, the UV-visible spectra show a decrease. 

This observation suggests that 13 is indeed sensitive to light.  

In order to find out whether the fading of 13 is dependent on the buffer 187 we repeated the 

experiment using a phosphate buffer. We measured again the absorbance of 13 as a function 

of time exposed to light in phosphate buffer (25 mM Na2HPO4, pH 7.0, and 50 mM NaCl) 

(Figure 2.74). 

 

 

 

 

 

 

Figure 2.74 (A) UV-visible spectra for 13 in phosphate buffer (25 mM Na2HPO4, pH 7.0, 

and 50 mM NaCl) upon exposure to light. (B) The absorbance of 13 at 576 nm plotted as a 

function of time. 

The spectra in Figure 2.74 show a decrease, which suggests that 13 is sensitive to light in a 

phosphate buffer as well. As before, this indicates that the amine functional group in MOPS 

and EDTA is not acting as an electron donor in the fading process.  

The sensitivity of compounds to light may be affected by the presence of oxygen. To study 

the potential effect of oxygen on the fading, we carried out four experiments. The first 

experiment involves exposure of 13 to light and oxygen, the second experiment involves 

exposing 13 to light in the absence of oxygen, while the third experiment involves keeping 13 

in the dark in the absence of oxygen. The fourth experiment involves 13 exposed to oxygen, 

but not to light. 
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For the first experiment, we recorded the absorbance of 13 as a function of time exposed to 

light and oxygen, in buffer (25 mM MOPS pH 7.0, 50 mM 50 mM NaCl and 1 mM EDTA) 

(Figure 2.75, see Appendix Table A13). 

 

 

 

 

 

 

Figure 2.75 (A) UV-visible spectra for 13 in buffer (25 mM MOPS pH 7.0, 50 mM 50 mM 

NaCl and 1 mM EDTA) (B) The absorbance of 13 at 576 nm as a function of time. 

Figure 2.75 shows that the absorbance decreases over time.   

In the second experiment, the solution of 13 was degassed by using the freeze-pump-thaw 

method and placed under a nitrogen atmosphere. Therefore, we can see if the significant 

reduction in oxygen concentration causes any change to the fading.  

We recorded the absorbance of 13 as a function of time exposed to light in the absence of 

oxygen in buffer (25 mM MOPS pH 7.0, 50 mM 50 mM NaCl and 1 mM EDTA) (Figure 

2.76). 
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Figure 2.76 (A) UV-visible spectra for 13 in buffer (25 mM MOPS pH 7.0, 50 mM 50 mM 

NaCl and 1 mM EDTA) exposed to light in the absence of oxygen. (B) The absorbance of 13 

at 576 nm plotted as a function of time. 

Similar to Figure 2.75, Figure 2.76 shows a decrease in absorbance but now in the absence of 

oxygen. This observation suggests that the absence and presence of oxygen do not affect the 

fading kinetics of 13.  

The third experiment examined 13 in the absence of both light and oxygen. The absorbance 

spectra for 13 were again recorded as a function of time in buffer (25 mM MOPS pH 7.0, 50 

mM 50 mM NaCl and 1 mM EDTA) (Figure 2.77). 
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Figure 2.77 (A) UV-visible spectra for 13 in the absence of light and oxygen in buffer (25 

mM MOPS pH 7.0, 50 mM 50 mM NaCl and 1 mM EDTA). (B) The absorbance of 13 at 576 

nm plotted as a function of time. 

The spectra in Figure 2.77 show no significant change in the absorbance of 13 in the absence 

of light and oxygen.  

In the final experiment 13 was exposed to oxygen in the absence of light. As before, we 

recorded the absorbance of 13 as a function of time (Figure 2.78). 
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Figure 2.78 (A) UV-visible spectra for 13 in the absence of light and presence of oxygen in 

buffer (25 mM MOPS pH 7.0, 50 mM 50 mM NaCl and 1 mM EDTA). (B) The absorbance 

of 13 at 576 nm plotted as a function of time. 

The spectra in Figure 2.78 show no significant change in the absorbance of 13 in the absence 

of light but in the presence of oxygen. Overall, these experiments suggest that fading of 13 is 

caused by light, but does not involve oxygen, at least not in the rate-determining step.  

Visual inspection also clearly shows the effect of light on the colour of solutions of 13 as 

shown in Figure 2.79.   
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0 min 2 min 15 min 10 min 5 min 20 min 60 min 
Figure 2.79 Solutions of 13, as afunction of time rxposed to ambient light.  

From Figure 2.79 it is clear the colour of the solution fades in 60 min. 

 

2.2.14 Extinction coefficient of coralyne 

Recent studies on the molar extinction coefficient for 14 in aqueous buffers (128 mM sodium 

cacodylate buffer pH 7) reported it to be 14500 M-1 cm-1 at 420 nm.58, 59 Other research has 

shown the molar extinction coefficient for 14 in 30% ethanolic medium to be 17500 M-1 cm-1 

at 424 nm.188 

Because of the poor solubility of coralyne (14) in buffer (25 mM MOPS, pH 7.0, 100 mM 

KCl, and 1 mM EDTA). We filtered the coralyne solution to remove any particulate matter. 

However, the absorption was low (0.1a.u). This is why we was unable to record the UV-

visible titration.58, 59, 188 
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2.2.15 Summary 

The UV-visible titrations have shown that ligands 1-3 do not bind significantly with FS-

DNA. However, ligands 4-9 show affinity for FS-DNA. The affinities of these compounds 

for FS-DNA are summarised in Table 2.5.   

* restricted. 

Table 2.5 Binding affinities and binding site sizes for binding of 1-9 to FS-DNA in 

buffer 

Ligand 

 

Binding constant 

K / M-1 

Binding site size 

n / bp 

1 negligible n.a. 

2 negligible n.a. 

3 negligible n.a. 

4 (4.93 ± 0.94) ×104 3* 

5 (1.18 ± 0.21) ×104 3* 

6 (a) (8.5 ± 4.5) ×105 0.9 ± 0.09 

7 (5.15 ± 0.43) ×103 3* 

8 (a) (9.79 ± 1.44) ×103 3* 

8 (b) (1.0 ± 0.84) ×105 3* 

9 (a) (3.83 ± 0.78) ×105 3* 

9 (b) (8.5 ± 1.35) ×104 3* 

(25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA) In the presence of 1.04 % of 

acetonitrile (a) and in DMSO-containing buffer (25 mM MOPS, pH 7.0, 100 mM KCl, 9 

vol-% DMSO and 1 mM EDTA), (b) at 25 °C. 
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Ligands 1 - 3 are negatively charged and the lack of binding is because the negative charge 

leads to electrostatic repulsion between ligand and DNA. The interaction of 3 with FS-DNA 

does not result in an important induced circular dichroism signal, which suggests that 3 does 

not interact strongly with DNA.  

At the same time, 4 and 5 have a high affinity (~ 104 M-1) for DNA. When we explored the 

binding mode for 4 with FS-DNA, ICD suggests that 4 binds with FS-DNA through 

intercalation. 84 On the other hand, the high affinity of 9 for DNA is clear from it is binding 

constant of ~ 105 M-1. We attribute the strong binding to the presence of a positive charge on 

9. Moreover, 9 is a planar aromatic compound. The planarity leads to increase in hydrophobic 

interactions between ligand and DNA, stabilising the interaction between 9 and DNA.159  

Table 2.5 shows that organic co-solvents play an important role during the interaction process 

decreasing the affinity between the ligands and DNA. However, DMSO is a useful co-solvent 

to help avoid precipitation of ligands and of ligand-DNA complexes.176   

It is obvious that 6 has a higher affinity for DNA with a binding constant of ~ 105 M-1 in 

DMSO-containing buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA) than in the 

presence of 1.04 % of acetonitrile at 25 °C. 

The data in Tables 2.5 shows that binding is weaker in the presence of acetonitrile. DMSO 

can affect DNA structure and may also improve ligand solubility, thus decreasing binding 

affinity.179  Interestingly, 8 in the presence of DMSO has a higher affinity (~ 105 M-1) 

compared to the apparent affinity of 8 for DNA in presence of acetonitrile (~ 103 M-1). This is 

because the poor solubility and precipitation of the complex formed between 8 and DMSO in 

the presence of acetonitrile.  

All the binding site sizes for 1-9 were restricted to 3.0 base pairs in order to obtain a good fit 

to the titration curve with reasonable binding parameters. However, the binding site size for 6 

was reanalysed at 1.0 base pair per binding site, in order to obtain reasonable binding 

parameters.  

The interactions of 9-12 with specific quadruplex-forming sequences such as c-myc, 22AG and 

EAD2, were quantified using UV-visible spectroscopy titrations. The binding parameters for 

9-12 compounds interacting with quadruplex structures are summarised in Table 2.6. 



Selection of optoelectronically active π-conjugated compounds 

 

118 
 

 

Table 2.6 Binding parameters from UV-visible spectroscopy of 9-12 to c-myc, 22AG, 

and EAD2. 

 c-myc 22AG EAD2 

Compound 

Binding 
constant 

106 K / M-1 

Binding site 
size 

n 

Binding 
constant 

K / M-1 

Binding site 
size 

n 

Binding 
constant 

106 K / M-1 

Binding site 
size 

N 

9 (a) (5.25 ± 7.79) (0.17 ± 0.02) (5.95 ± 7.64) 
×104 

(0.13 ± 
0.15) 

/ / 

9 (b) / / / / 
(0.586 ± 
0.061) 

(0. 3 ± 0.01) 

10(b) 
(0.401 ± 
0.260) 

(0.37 ± 0.03) / / / / 

11(a) / / 
(9.62 ± 2.88) 

×104 
(0.09 ± 
0.01) / / 

11(b) (0.74 ± 0.19) 
(0.27 ± 
0.012) / / / / 

       

12 (11.9 ± 23.8) (0.081 ± 
0.008) 

2.29 × 1018 ± 
3.63 ×10 29 

(0.10 ± 
0.009) / 

/ 

 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA) (a) and in buffer (25 

mM MOPS, pH 7.0, 100 mM KCl, and 1 mM EDTA) (b), at 25 °C. 

 

In general, 9 has a high affinity for c-myc with a binding constant of ~ 106 M-1 which is 

stronger than Kbinding for EAD2 and 22AG. The binding stoichiometry for 9 with c-myc was 

found to be 6 ligands per quadruplex. 

Several studies have revealed that 10 binds very strongly to duplex DNA.125 The interaction 

between 10 and c-myc has a binding constant of ~ 105 M-1 and a stoichiometry of 3 ligands 

per quadruplex.  

Compound 11 also binds more strongly to c-myc than to 22AG with a binding constant of ~ 

105 M-1 and a stoichiometry which suggests that 4 ligands bind per quadruplex of c-myc. The 
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binding stoichiometry for 22AG was found to be 11 ligands per quadruplex. Interestingly, 12 

has a very strong affinity for 22AG comparing to c-myc with a binding constant that is too 

high to quantify from the current data.   
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2.3 Conclusion 

Compounds 1-7 and 9-13 are highly soluble in our aqueous buffers. Compound 8 is sparingly 

soluble in water, but it is soluble in some organic solvents such as acetonitrile and DMSO. To 

avoid the challenge of limited solubility, we determined the extinction coefficient of 8 in pure 

DMSO and pure acetonitrile but also in aqueous solutions containing DMSO and acetonitrile. 

The results show that the extinction coefficients for 8 in aqueous acetonitrile and aqueous 

DMSO are similar. Therefore, co-solvent does not affect the extinction coefficient of 8 much. 

Furthermore, all our compounds are stable except 8, 9 12 and 13; these compounds are found 

to fade upon exposure to light.  

Compounds 4-9 bind to duplex FS-DNA, with a high affinity of 9 for FS-DNA as quantified 

by a binding constant of ~ 105 M-1. However, anionic compounds 1-3 show no significant 

binding to duplex FS-DNA.  Moreover, compounds 6, 8 and 9 bind to duplex FS-DNA in the 

presence of co-solvents such as DMSO and acetonitrile. All DNA binding site sizes for 1-9 

are restricted to 3.0 base pairs in order to obtain a good fit to the titration curve corresponding 

to reasonable binding parameters. The binding site size for 6 was reanalysed at 1.0 base pair 

per binding site, in order to obtain reasonable binding parameters. Moreover, compounds 9-

12 bind to specific quadruplex-forming sequences such as c-myc, 22AG and EAD2. 

Compound 9 has a higher affinity for c-myc than for 22AG and EAD2. The binding 

stoichiometry for 9 with c-myc was found to be 6 ligands per quadruplex. Compound 11 also 

binds more strongly to c-myc than to 22AG. The binding stoichiometry for 11 with c-myc 

was found to be 4 ligands bind per quadruplex. Compound 12 has a strong affinity for 22AG 

than for c-myc. Therefore, its binding to 22AG was not possible to determine. 
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2.4 Materials and Methods 
2.4.1 Buffer preparation  

All experiments were carried out in one of 4 buffers. Buffer A contained 25 mM MOPS, 50 

mM NaCl and 1 mM EDTA, pH 7.0; buffer B contained 25 mM MOPS, 50 mM NaCl, 1 mM 

EDTA and 9 vol-% DMSO, pH 7.0; buffer C contained 25 mM MOPS, 100 mM KCl and 1 

mM EDTA, pH 7.0; phosphate buffer D contained 25 mM Na2HPO4, pH 7.0, and 50 mM 

NaCl. The buffer components were purchased from Melford (CAS 1132-61-2), NaCl was 

purchased from Fisher Scientific (CAS 7647-14-5), KCl was purchased from Sigma Aldrich 

(CAS 7447-40-7), Na2HPO4 was purchased from Melford (CAS 7558-79-4), EDTA was 

purchased from VWR (CAS 60-00-4) and DMSO from Fisher Scientific (CAS 67-68-5). 

Buffers were titrated with aqueous NaOH or KOH to the required pH. The pH of aqueous 

solutions was determined using a Hanna microprocessor pH 113 pH-meter equipped with a 

VWR 662-1382 glass electrode. Materials were weighed out on a Fisherbrand 4-decimal 

balance. De-ionised water was produced using an ELGA water purifier for all solutions. 

Buffer A, containing 25 mM MOPS (3-(N-morpholino) propanesulfonic acid), 50 mM 

sodium chloride (NaCl) and 1 mM EDTA was prepared by dissolving MOPS, sodium 

chloride (NaCl) and EDTA in distilled water and stirring at room temperature until the solid 

dissolved. A solution of sodium hydroxide (NaOH) was used for adjusting the pH to 7.0 and 

the buffer was made up to 2 liters in a volumetric flask. 

Buffer B, containing 25 mM MOPS (3-(N-morpholino) propanesulfonic acid), 50 mM 

sodium chloride (NaCl) and 1 mM EDTA was prepared by dissolving MOPS, sodium 

chloride (NaCl) and EDTA in distilled water and stirring at room temperature until the solid 

dissolved. 9 vol-% of DMSO was add to the buffer solution. Sodium hydroxide (NaOH) was 

used for adjusting the pH to 7.0 and the buffer was made up to 2 liters in a volumetric flask.  

Buffer C, containing 25 mM MOPS (3-(N-morpholino) propanesulfonic acid), 100 mM 

potassium chloride (KCl) and 1 mM EDTA was prepared by dissolving MOPS, potassium 

chloride (KCl) and EDTA in distilled water and stirring at room temperature until the solid 

dissolved. Potassium hydroxide (KOH) was used for adjusting the pH to 7.0 and the buffer 

was made up to 2 liters in a volumetric flask. 

Phosphate buffer D contained 25 mM Na2HPO4 (sodium phosphate) and 50 mM NaCl, and 

was prepared by dissolving Na2HPO4 and NaCl in distilled water and stirring at room 
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temperature until the solid dissolved. Sodium hydroxide (NaOH) solution was used for 

adjusting the pH to 7.0 and the buffer was made up to 2 liters. 

2.4.2 DNA preparation 

Fish sperm DNA was purchased from Acros Organics (CAS 68938-01-2). The stock solution 

of fish sperm DNA was prepared by dissolving approximately 0.1217grams DNA in 10 ml of 

buffer and sonicating the solution of FS-DNA for about 10 minutes. All DNA solutions were 

dialysed against buffer. The dialysis process for the DNA solution was carried out by taking 

the DNA solution and placing it into the dialysis tube of sufficient pore size (3.5 kDa 

MWCO).189 The dialysis tube was suspended for 24 hours inside a beaker that contains the 

MOPS buffer to allow impurities to diffuse out. The DNA concentrations were determined 

using the extinction coefficient for FS-DNA of 12800 M-1 cm-1 (bp) at 260 nm.190 

The concentration of c-myc (dTdGdA dGdGdG dTdGdG dGdTdT dGdGdG dTdGdG 

dGdTdAdA) was determined using UV-visible spectroscopy using the extinction coefficient 

of 228700 M-1 cm-1 at 260 nm.76 The concentration of  22AG (dAdGdG dGdTdT dAdGdG 

dGdTdT dAdGdG dGdTdT dAdGdGdG) was determined using UV-visible spectroscopy 

using the extinction coefficient of 228500 M-1 cm-1 at 260 nm.76 

For double-stranded synthetic DNA, i.e poly (dAdT) and poly (dGdC), we dissolve each 

sequence in 1 ml of buffer. Then, the dialysis process for the DNA solution was carried out 

by taking the DNA solution and placing it into the dialysis tube of sufficient pore size (3.5 

kDa MWCO). The dialysis tube was suspended for 24 hours inside a beaker that contains the 

MOPS buffer until the impurities were completely diffused out. The DNA concentration was 

determined using UV-visible spectroscopy using the extension coefficient of 14800 M-1 cm-1 

at 254 nm for poly (dGdC) and of 12000 M-1 cm-1 at 260 nm for poly (dAdT).127 Then, the 

DNA solutions were annealed by placing each DNA solution into an Eppendorf and placing 

the Eppendorf in a beaker that contains a water at 95 °C, allowing to cool down and finally 

determine the concentration of each solution.  

For single-stranded DNA such as poly (dA) and poly (dT), we dissolve each sequence in 1 ml 

of buffer in (25 mM MOPS, 50 mM NaCl and 1 mM EDTA, pH 7.0, at 25 °C). The dialysis 

process for the DNA solution was carried out by taking the DNA solution and placing it into 

the dialysis tube of sufficient pore size (3.5 kDa MWCO). The dialysis tube was suspended 

for 24 hours inside a beaker that contains the MOPS buffer until the impurities were 

completely diffused out. The DNA concentration was determined using UV-visible 
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spectroscopy and the extinction coefficient of 8600 M-1 cm-1 at 257 nm for single-strand 

purine poly (dA) and 8520 M-1 cm-1 at 264 nm for single-stranded primidine poly (dT). We 

then mixed both sequences to have a 1:1 mixture of strands in an Eppendorf. The duplex was 

annealed by placing the Eppendorf in a beaker that contains water at 95 °C and allowing to 

cool to room temperature.124 Finally, the concentration of each solution was determined using 

UV-visible spectroscopy using the extinction coefficient of 12000 M-1 cm-1 at 260 nm for 

poly (dA)-poly (dT). 127 

2.4.3 Dialysis units 

The dialysis tubing was purchased from (Medicell Membranes Ltd, MWCO 12-14000 and 

3500 Daltons).  

 

2.5 Equipment 

2.5.1 Spectroscopic studies 

UV-visible spectra were recorded using a Jasco V-630BIO spectrophotometer with a Peltier 

temperature controller at 25 °C. All UV-visible titrations were carried out in a 1.0 cm path 

length cuvette starting with the volume of the buffer (2000-2500 µl). After that an aliquot 

from the ligand solution was added and the absorbance was measured. UV-visible titrations 

were carried out by adding the stock solution of DNA into the 1.0 cm cuvette which contains 

the ligand solution. UV-visible spectra in the range 200 - 600 nm were recorded after each 

addition of DNA. The absorption of the ligand was kept in the range of 0.1-0.8 a.u. The 

absorptions at selected wavelength were plotted against DNA concentrations. The multiple 

independent binding sites model was used to analyse the data of UV-visible spectra using 

Origin 9. Circular dichroism spectra CD were recorded using a Chirascan CD spectrometer. 
84  

 

2.5.2 Isothermal titration calorimetry 

ITC experiments were conducted using a Microcal VP-ITC microcalorimeter at 25 °C. 

Concentrations for 7 were determined using UV-visible spectroscopy based on the extinction 

coefficient of 7 of 33000 M-1 cm-1 at 332 nm173 in 25 mM MOPS, 50 mM NaCl, 1 mM 

EDTA, and pH 7.0 at 25 °C. 

First of all we cleaned both cells and the syringe with ethanol and after that with distilled 

water.89 The sample cell was filled with a FS-DNA solution (approximately 1.9 ml) and the 
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syringe was filled with the ligand solution (approximately 300 µl). The concentration of the 

ligand solution is higher than the DNA solution (usually 12-fold higher than DNA solution).  

The ligand solution was added in 1 injection of 5 µl and 19 injections of 15 µl each to the 

sample cell and injecting every 300 second automatically with a stirring speed of 307 rpm. 

Origin (Microcal, Inc) was used to calculate the heat effects per injection (dh). We analysed 

integrated heat effects using our ITC data analysis software IC-ITC. 
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Abstract 

This chapter describes the development of a custom competition dialysis device. We test the 

use of this device to determine affinity and selectivity of ligands for nucleic acids structures. 

We studied the affinity and selectivity of single ligands for FS-DNA, specific duplex 

sequences (dA)24 • (dT)24 and (dG)24• (dC)24, and different quadruplex structures such as, c-

myc, 22AG and EAD2. We compare the results with the results from UV-vis titrations (as 

shown in Chapter 2) and conclude that both results are in agreement.  
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Part A   

3.1 Introduction 

3.1.1 Competition dialysis 

Ligands that bind to nucleic acids, having structural or sequence selectivity, can be identified 

using a powerful tool called “competition dialysis”.125 This process is used as a test for 

affinity and selectivity of ligands for nucleic acids and comprises of the dialysis of a ligand 

against an array of nucleic acids with different structures or sequences.124 In this method, 

separate nucleic acid structures are exposed to a solution of a potential nucleci acid binder 

through a dialysis membrane. As dialysis progresses, equilibration of the system is achieved 

with the binder accumulating where its highest affinity target is. Absorbance or fluorescence 

measurements are then used to determine the amount of ligand bound to each structure. The 

competition dialysis process is amenable to the study of soluble and stable ligands.  

In the traditional setup, dialysis tubing is filled with samples of different nucleic acids. The 

dialysis tubing is placed in a beaker with a ligand solution, allowing enough time for the 

diffusion of the ligand across the dialysis tubing to take place (Figure 3.2). 

 

Figure 3.2 Schematic illustration of the dialysis process involving three different 

concentrations of FS-DNA, and a ligand (orange dots). 

The uniformly sized pores of the dialysis tubing (e.g. 3.5 kDa MWCO) allow the ligand 

molecules to diffuse in and out of the multiple dialysis tubing to achieve the equilibrium 

concentration, while the large nucleic acids are retained within the dialysis tubing.124 The 
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equilibrium concentrations are defined by the affinity between the FS-DNA and the ligand 

(Equation 1). 

K = [ligand]bound / ([ligand]free × [binding sites]free)                                                 Equation 1 

It has been previously reported by Brad Chaires127 that the first generation of the competition 

dialysis enabled the determination of the selectivity and affinity for 13 different samples of 

the nucleic acid structure as shown in Scheme 3.1. In this study, MMQ1, a 

dibenzophenthroline, adriamycin, an anthracycline antibiotic and DODC, a cyanine dye were 

chosen and their selectivities studied (Scheme 3.1). 

 

 Scheme 3.1. First generation of the competition dialysis results for the amount of bound for 

each of the 13 different structure of DNA. A) MMQ1, a dibenzophenthroline. B) Adriamycin, 

an anthracycline antibiotic and c) DODC, a cyanine dye.  

The data show that MMQ1 has different selectivity for different structures of DNA.  

Adriamycin has a selectivity for triplex and quadruplex DNA structure, while DODC has a 

higher affinity toward triplex DNA rather than toward any other structures.  

The second generation of the competition dialysis method enabled evaluation of 14 to 19 

nucleic acid samples. Both methods of the competition dialysis utilized 200 ml of 1 uM ligand 

solution and 0.5 mL of 75 uM of the nucleic acid structures placed in the dialysis units.   
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A quantitative analysis was applied to the competition dialysis data (Scheme 3.2).    

 

Scheme 3.2. The second generation of the competition dialysis assay for different ligands 

such as A) Ethidium bromide has selectivity for the DNA:RNA hybrid polyrAdT and for the 

RNA sequence polyrArU. B) NMM has selectivity for quadruplex structures especially on 

(50G10T4G10) 4. C) DODC has a high selectivity for the triplex DNA polydAdT-dT. D) 

PIPER is selective for the human telomere. E) Methylene blue is also selective for the 

telomere. F) Berberine has a selectivity for the triplex DNA polydAdT-dT and also for 

quadruplex (50G10T4G10)4, Quadruplex 1, (50T2G20T2)4, Quadruplex 2, human telomere. 

The third generation of competition dialysis utilises a 96-well format in Sceme 3.3. The 

volume for each well is around 150-200 uL of 75 um samples of the nucleic acid structure, 

250 mL was the volume of the ligand solution. Examples of data analysis conducted in this 

experiment include competition dialysis assay involving extensive ranges of DNA sequences 

and structures (Scheme 3.4).  

    

 

  

Scheme 3.3. The competition dialysis assay.124 
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   Scheme 3.4. The third generation of competition dialysis result for NMM. NMM is found to 

be selective for the G-quadruplex (50G4T4)3, however NMM has similar affinities for the 

quadruplex (50G10T4G10) and i-motif quadruplex (50C4T4C4).124  

To improve the wetting property of the solution, surfactants were added. Surfactants lower the 

surface tension while improving the wetting and ultimately binding characteristics. The ligand 

solution was added at the end as a surfactant solution to the dialysate solution to introduce 

lower surface tension between the dialysate solutions and to act as an emulsifier in the nucleic 

acid. Hence, the presence of a surfactant results in free flow of the molecules across the 

dialysis unit.  

Scheme 3.5 shows all three generations of the competition dialysis assay for the ethidium 

bromide with 13, 19 and 46 nucleic acids structures. 
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 Scheme 3.5. Development of the competition dialysis results for ethidium bromide. A) The 

first and second generation assays for ethidium bromide with 13 and 19 nucleic acid 

structures. Ethidium bromide appears to be selective for duplex RNA and DNA–RNA hybrid, 

poly (rAdT), and binding strongly to duplex and triplex DNA. B) The third generation assay 

involves 46 structures and ethidium bromide prefers the quadruplex VEGF, also to DNA and 

RNA triplexes, DNA–RNA hybrid forms and finally to duplex DNA with alternating purine-

pyrimidine sequences.125 

A further quantitative analysis was performed for DAPI, this includes the first and third 

generations of the competition dialysis assay (Scheme 3.6).     
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Scheme 3.6. Development of the competition dialysis results for DAPI. A) The first 

generation assay which representing DAPI bound to ATrich duplex DNA, also DAPI has a 

moderate binding to the DNA–RNA hybrid poly(rA)–poly(dT) and the quadruplex 

(T2G20T2)4. B) The third generation assay confirmed that DAPI is still preference to AT-

rich duplex DNA.125  

Selectivity graphs were plotted using difference plots in order to obtain a set of bindings of 

test compounds that fits the structure of the DNA and to offer a selection of compounds that 

have the most preferred target (Scheme 3.7).  

 

Scheme 3.7. The competition dialysis results for the selectivity of BePI (left), coralyne 

(middle), and berberine (right) for different nucleic acid structures.126  
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Scheme 3.7 shows difference plots to discover the selectivity of three compounds for triplex 

DNA structures. The graph on the right is for berberine and shows weaker biding to triplex 

DNA compared with coralyne to triplex DNA. Utilizing difference plots is effective in 

selective compounds having a particular affinity and aimed at a specific target.   

Typically, (UV)-visible spectroscopy, circular dichroism spectroscopy and thermal 

denaturation studies are being used to control all the experiments to determine the 

concentrations and the extinction coefficient of the DNA/ ligand samples.  

3.1.2 An overview of selected nucleic acid binders with structural selectivity 

Table 3.1 shows the properties of ligands chosen for this study and their nucleic acid targets 

like optical emission, absorption, and structural selectivity. 

Table 3.1 lists the properties of selected combinations of ligands and nucleic acid structures 

like optical emission, absorption and selectivity. Basic yellow and methylene blue target G-

quadruplex DNA. Ethidium bromide has affinity toward triplex but also to polyA • polyT. 

Optical emission and absorption for the basic yellow, methylene blue and ethidium bromide 

are very important for selection of the second ligand for double competition dialysis. The 

importance of the optical emission spectrum of the donor and the absorption spectrum of the 

acceptor relative to each other is critical for FRET.  

 

Table 3.1:  Optical emission, absorption and nucleic acid targets for optoelectronically active 
nucleic acid binders.  

Ligand Solubility Nucleic acid target λex 

/nm 

λem 

/nm 

Ref. 

basic yellow (thioflavin) Soluble Quadruplex 22AG 330 450 191 

methylene blue Soluble Telomere G-quadruplex DNA 663 / 124 

ethidium bromide Soluble polyA • polyT  

Triplex  

481 616 125,126 



                    

Development and validation of a custom device for competition dialysis assays     

 

134 
 

3.1.3 Aims 

There are several aims to discuss in this chapter.  

Firstly, in part A, we will validate the traditional approach to competition dialysis for the 

quantification of affinities for FS-DNA using dialysis tubing. We will develop a device which 

allowed me to carry out competition dialysis in a simpler manner, which is compatible with 

UV-vis spectroscopy and which allows us to follow equilibration as a function of time. 

Finally, in part B, we will studiy the affinity of selected ligands for FS-DNA, (dA)24 (dT)24, 

and different quadruplex structures such as c-myc, 22AG and EAD2. For these studies, we 

pre-identified some compounds potentially displaying orthogonal selectivity for nucleic acid 

structures.  

We will compare the selectivity and affinity obtained using both the traditional assay and our 

approach to competition dialysis. We will studiy the affinity and selectivity of a single ligand 

for FS-DNA, specific duplex sequences (dAdT)12 and (dGdC)12, and different quadruplex 

structures, viz c-myc, 22AG and EAD2. Fish sperm DNA, deoxyribonucleic acid sodium salt 

were used to study DNA binding. 

Finally, this chapter will also present the results from our competition dialysis assay for the 

compounds, which were selected based on their previously reported properties such as optical 

emission, absorption and selectivity toward to nucleic acid. 
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3.2 Results and discussion  

Part A 

3.2.1 Development and optimisation of a device for competition dialysis 

3.2.1a Validation of the traditional approach to competition dialysis methods for the 

quantification of affinities of small molecules for FS-DNA. 

We wanted to test the validity of affinities determined using the traditional approach to 

competition dialysis to this end, 500 ml of a solution of known concentration (1.2×10-5 M) of 

methylene blue (9) in buffer (25 mM MOPS, 50 mM NaCl, 1 mM EDTA and pH 7) is placed 

in a beaker. We placed 10 ml of solutions of three different concentrations of FS-DNA (27 

µM, 63 µM, and 248 µM) in dialysis tubing (DT) and placed the dialysis tubing in the beaker. 

We assumed that equilibrium had been achieved after around 48 hours and analysed the 

contents of the dialysis tubing using UV-visible spectroscopy (Table 3.2).  

Table 3.2: Equilibrium constant K for 9 a intreacting with FS-DNAb 

 dialysis tubing DT1 DT2 DT3 

[DNA]total / M 2.7×10-5 6.3×10-5 2.48×10-4 

unit conc bp bp Bp 

bind. sites / unit conc.d 3.33×10-1 3.33×10-1 3.33×10-1 

[binding sites]total / M 9.00×10-6 2.10×10-5 8.27×10-5 

A663 nm 0.1382 0.1795 0.354 

A663 nm, bound c 0.0200 0.0613 0.2358 

C bound / M c 3.66×10-6 1.12×10-5 4.31×10-5 

[ligand]free / M 1.13×10-5 1.13×10-5 1.13×10-5 

[binding sites]free / M 5.34×10-6 9.78×10-6 3.95×10-5 

K / M-1 6.03×104 1.01×105 9.61×104 

a) Concentration of 9 in the beginning was 12 µM. 

b) In buffer (25 mM MOPS, 50 mM NaCl, 1 mM EDTA and pH=7), at 25 
°C.   

c) A663 bg = 0.0295, A663 free = 0.0887, ε free = 78000 M-1 cm -1 and ε bound = 
54618 M-1 cm -1. 

d) We assume the binding site size in base pairs is 3.0.  
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Table 3.2 shows a higher absorbance of 9 with a higher concentration of FS-DNA in the 

dialysis tubing. The average value for the equilibrium constant (Kbinding) is (8.5 ± 2.22) × 104 

M-1. The result is in reasonable agreement with the results from the UV-visible titrations as 

shown in Chapter 2 which gave Kbinding of (3.83 ± 0.78) ×105 M-1. The slightly lower apparent 

affinity may be the result of incomplete equilibration.  

We realised that it it is probably a better idea to repeat the same experiment but for a longer 

time in order to check whether we achieve equilibration. We therefore, carried out the same 

experiment of 9 (12 µM) in 25 mM MOPS, 50 mM NaCl, 1 mM EDTA and pH 7. The 

concentrations and apparent affinities of the ligand were determined after 72 hours, i.e. after 

more time than the previous experiment (Table 3.3). 

Table 3.3: Equilibrium constants K for 9 a interacting with DNAb  

 dialysis tubing DT1 DT2 DT3 

[DNA]total / M 2.7×10-5 7.4×10-5 2.4×10-4 

unit conc. bp bp Bp 

bind. sites / unit conc.d 3.33×10-1 3.33×10-1 3.33×10-1 

[binding sites]total / M 9.00×10-6 2.47×10-5 8.00×10-5 

A663 nm 0.1436 0.2255 0.5321 

A663, bound c 0.0517 0.1336 0.4402 

C bound / M c 9.46×10-7 2.44×10-6 8.05×10-6 

[ligand]free / M 8.84×10-7 8.84×10-7 8.84×10-7 

[binding sites]free / M 8.05×10-6 2.22×10-5 7.19×10-5 

K / M-1 1.33×105 1.24×105 1.27×105 

a) Concentration of 9 in the beginning was 12 µM.  

b) In buffer (25 mM MOPS, 50 mM NaCl, 1 mM EDTA and pH=7), at 25 °C.   

c) A663 bg= 0.0229,  A663 free = 0.069, ε free 78000 M-1 cm -1 = and ε bound = 54618 

M-1 cm -1. 

d) We assume the binding site size in base pairs is 3.0. 
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Table 3.3, shows the higher absorbance of 9 with the higher DNA concentration in DT3. The 

equilibrium constant for the three different FS-DNA concentrations are almost the same with 

an average equilibrium constant (Kbinding) of (12.8 ± 0.4) × 104 M-1. Comparison with the data 

in Table 3.2 shows that the equilibrium has been not achieved after around 48 hours. This 

means that we cannot be sure that the solutions are fully equilibrated by only looking at the 

end point of the experiments. The result is in agreement with the results from the UV-visible 

titrations as shown in Chapter 2 which gave Kbinding of (3.8 ± 0.78) ×105 M-1. 

We wanted to know whether the equilibrium constant was affected by the presence of 9 vol-

% DMSO because DMSO is a useful cosolvent to help avoid ligand precipitation.176 We 

carried out the same experiment, but with MOPS buffer containing 9 vol-% DMSO. The 

concentrations and apparent affinities of the ligand are reported in Table 3.4. 

Table 3.4: Equilibrium constants K for 9 a interacting with DNAb  

 dialysis tubing DT1 DT2 DT3 

[DNA]total / M 2.3×10-5 5.8×10-5 2.49×10-4 

unit conc. bp bp Bp 

bind. sites / unit conc.d 3.33×10-1 3.33×10-1 3.33×10-1 

[binding sites]total / M 7.67×10-6 1.93×10-5 8.30×10-5 

A663 nm  0.1533 0.1804 0.2835 

A663 nm, bound c 0.0160 0.0431 0.1462 

C bound / M c 2.92×10-6 7.89×10-6 2.67×10-5 

[ligand]free / M 1.34×10-5 1.34×10-5 1.34×10-5 

[binding sites]free / M 4.74×10-6 1.14×10-5 5.62×10-5 

K / M-1 4.60×104 5.13×104 3.54×104 

a) Concentration of 9 in the beginning was 14 µM.  

b) In buffer (25 mM MOPS, pH 7.0, 100 mM KCl, 9 vol-% DMSO and 1 

mM EDTA), at 25 °C.   

c) A663 bg = 0.0324, A663 free = 0.1049, ε free = 78000 M-1 cm -1 and ε bound = 

54618 M-1 cm -1. 

d) We assume the binding site size in base pairs is 3.0. 
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As Table 3.4 shows, there is no significant difference between the equilibrium constants 

(Kbinding) for the different concentrations of FS-DNA. The average equilibrium constant 

(Kbinding) is (4.42 ± 0.80) × 104 M-1. The result is in reasonable agreement with the results 

from the UV-visible titrations in the presence of DMSO as shown in Chapter 2 which gave 

Kbinding of (8.5 ± 1.35) ×104 M-1.  The data clearly confirm that binding is weaker compared 

with the result in the absence of DMSO.  

DMSO can affect DNA structure and may also improve ligand solubility, thus decreasing 

binding affinity. Just like in the absence of DMSO, the apparent affinity according to 

competition dialysis may be lower than the affinity according to UV-visible titrations because 

of incomplete equilibration.  

 

3.2.1b Some problems of the traditional approach to competition dialysis  

Competition dialysis relies on solubility and chemical stability of the ligand in the buffer over 

the duration of the experiment. One of the more significant findings to emerge from our first 

experiments is that precipitation occurred when using TF1 (8) (Figure 3.3). 

 

 

 

 

 

 

 

 

 

Figure 3.3 (A) Precipitation of ligand 8 on the dialysis tubing and (B) on the clip but (C) less 

precipitation of 8 in the presence of 9 vol-% DMSO. 

             (A)             (B)  (C) 
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Figure 3.3 Shows that the precipitation can occur during the competition dialysis study. To 

address this challenge, we have to study ligands that have very good solubility in the buffer, 

if necessary in the presence of added DMSO, to avoid precipitation of the ligand.  

In addition, the lack of access to the nucleic acid solutions during the experiment means that 

we cannot follow the equilibration process. This means that we cannot be sure that the 

solutions are fully equilibrated.  

3.2.1c A new competition dialysis device 

To facilitate our competition dialysis studies, we decided to design a new device, based on 

previously available commercial devices.  

The design criteria were as follows: 

• Holes containing nucleic acids compatible with typical volumes required for 1 cm 

pathlength cuvettes. 

• Reservoir containing initial ligand solution compatible with volumetric glassware, and 

the volume must correspond to a large excess over the volume of the initial nucleic 

acid solutions in the top of the device. 

• Easy access to solutions during competition dialysis so that equilibration can be 

followed. 

• Material easy to clean. 

The basic device we designed was made out of Teflon and encompasses three major 

components as shown in Figure 3.4 (B). The bottom of the device contains the ligand 

solution, and has a capacity of just below 100 mL.  

The middle part of the device provides support for the dialysis membrane. Dialysis 

membrane will allow the ligand molecules to diffuse in and out of the holes containing the 

nucleic acid structures to achieve the equilibrium concentration. 

The top of the device has five holes for different concentrations of DNA or for different 

sequences of DNA such as duplex DNA, triplex DNA and quadruplex.192 The maximum 

capacity of each hole is 10 mL. However, in practice, 3 ml was used which is enough volume 

to fill a quartz cuvette. The actual device is shown in Figure 3.4B. 
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Figure 3.4 (A) the design of a new competition dialysis device, (B) a photo of the new 

competition dialysis device. 

To check if there is any leak in any part of the dialysis device, we filled the complete device 

with water. Unfortunately, the device failed this test. Then, we tried to test it part by part and 

it leaked again. We noted that the leaking occurred from the second part of device. Therefore, 

to stop the leaking, we added a rubber O-ring between parts 1 and 2. This modification 

stopped the leaking.  

To test the middle part of the device, we checked the diffusion between the bottom part of the 

device and the top of the device by placing a dye solution of methylene blue (9) in the bottom 

of the device and recording the UV-visible absorbance of the solutions in the holes above as a 

function of time (Table 3.5). 

Table 3.5: Testing the diffusion of a solution of methylene blue (9) in our device a 

time / hours hole 1 hole 2 hole 3 hole 4 hole 5 Buffer 

5 0.0248 0.0233 0.0239 0.0249 0.0243 0.0213 

23 0.0403 0.0303 0.2229 0.074 0.1275 0.0268 

41 0.0359 0.0459 0.2282 0.0838 0.1264 0.032 

48 0.0416 0.0454 0.2217 0.0924 0.1288 0.0323 

72 0.0428 0.0484 0.2217 0.1008 0.124 0.0274 

96 0.0421 0.0462 0.2131 0.109 0.1268 0.0274 

a) In buffer (25 mM MOPS, 50 mM NaCl, 1 mM EDTA and pH=7), at 25 °C.   

b) Concentration of 9 in the beginning was 0.0088 µM. 

                

Table 3.5 shows that the absorbances for some of the holes in the top of the device are close 

to the absorbance for the buffer. Nevertheless, some other holes, in particular hole 3, show a 

A) (B) 
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higher absorbance at 663 nm. We explored several solutions to the failure of the dye to reach 

the top of the device, such as washing the dialysis membrane and the placement of the 

dialysis membrance.   

The success of our method is contingent on the solution in the bottom of the device being in 

contact with the solution in the top part through the dialysis membrane. This means that the 

solution in the device must show a convex surface when the middle part of the device is in 

place as clearly shown in Figure 5.5. If this is the case, no bubbles will form below the 

dialysis membrane. Bubbles break the contact between the liquids.  In addition, it is 

important to clean the dialysis membrane before use by placing it in a beaker of hot water for 

10 min, to remove any impurities. 

 

 

 

 

Figure 3.5 a convex meniscus on the solution on the top of the middle part of the device 

To investigate that the device works well if good contact between the solutions was created, 

we carried out the same experiment involving a solution of 9 in the bottom of the device and 

MOPS buffer in the top of the device. UV-visible spectroscopy was used to determine the 

concentration of 9 at 663 nm as a function of time (Table 3.5). 
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Table 3.6, shows that the absorbance of 9 at 663 nm is similar for all holes. This absorbance 

result suggests that diffusion is now satisfactory. In general, the top and middle part of device 

are working well.  

In order to test the device further, we determined the affinity of 9 for FS-DNA at different 

concentrations of FS-DNA (26 µM, 69 µM, and 230 µM) at a concentration of 9 of 1.4×10-6     

M. The concentrations and apparent affinities of the ligand for DNA in 25 mM MOPS, 50 

mM NaCl, 1 mM EDTA and pH 7 were determined (Table 3.7). 

Table 3.6: for testing the diffusion of solution of  methylene blue (9) a 

 time/ hours  hole 1 hole 2 hole 3 hole 4 hole 5 Buffer 

5 0.594 0.6371 0.8731 0.7035 0.7334 0.0231 

24 1.9726 1.9193 2.1191 2.0445 2.1411 0.0219 

72 2.4015 2.4012 2.4376 2.4296 2.4865 0.0208 

95 2.4148 2.4255 2.4473 2.4452 2.5181 0.022 

a) In buffer (25 mM MOPS, 50 mM NaCl, 1 mM EDTA and pH=7), at 25 °C.   

b) The concentration of 9  in the beginning of this experiment was 0.055 µM.  

c) The concentration of 9 in the end of this experiment was 1.9×10-3 µM. 

d)  A663 bg = 0.0274, A663 free = 0.1542, A reservoir = 0.1816. 
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Table 3.7 presents a higher absorbance of 9 with a higher concentration of FS-DNA. The two 

holes with 2.3×10-4 M-1 FS-DNA give the same absorbance. What is promising in this data is 

that the equilibrium constant K for the three different concentrations of DNA are almost the 

same. The average equilibrium constant (Kbinding) is (5.1 ± 1.2) × 104 M-1. Accordingly, the 

result is in agreement with the results from the UV-visible titrations as shown in Chapter 2. 

However, we also note that the absorbance of the buffer is much higher than the absorbance 

of the ligand solution in the bottom of the device. Unfortunately, our control therefore shows 

us that there is a problem with 9. This problem was later attributed to fading of 9. 

We set to determine if the position of the holes in the top of the device can affect the apparent 

affinity. For example, data from the hole in the middle of the device always suggested a 

higher affinity compared with other holes. To investigate this, the experiment is repeated. 

This experiment focused on the positions of the holes as shown in Figure 3.6. 

Table 3.7: Equilibrium constants K for 9 a interacting with FS-DNAb  

 DNA FS-DNA FS-DNA FS-DNA FS-DNA buffer 

[DNA]total / M 2.6×10-5 6.9×10-5 2.3×10-4 2.3×10-4 0 

unit conc. bp bp bp Bp / 

bind. sites / unit conc. d 3.33×10-1 3.33×10-1 3.33×10-1 3.33×10-1 / 

[binding sites]total 8.67×10-6 2.30×10-5 7.67×10-5 7.67×10-5 / 

A663 nm 0.0815 0.1001 0.1564 0.1566 0.0924 

A663 nm, bound c 0.0165 0.0351 0.0914 0.0916 0.0274 

C bound / M c 6.04×10-7 1.28×10-6 3.35×10-6 3.35×10-6 / 

[ligand]free / M 1.09×10-6 1.09×10-6 1.09×10-6 1.09×10-6 1.09×10-6 

[binding sites]free / M 8.06×10-6 2.17×10-5 7.33×10-5 7.33×10-5 / 

K / M-1 6.84×104 5.41×104 4.17×104 4.18×104 / 

a) Concentration of 9 was 1.4 µM. 

b) In buffer (25 mM MOPS, 50 mM NaCl, 1 mM EDTA and pH 7), at 25 °C.   

c) Abg, = 0.0223, Afree, =  0.0427, A663 reservoir = 0.0650, ε free = 78000 M-1 cm -1 and ε bound = 54618 M-1 

cm -1. 

d) We assume the binding site size in base pairs is 3.0. 
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Figure 3.6 the top of the device with five holes. 

A solution of 1.3×10-6 M 9 was exposed to different concentrations of FS-DNA (25 µM, 69 

µM, and 208 µM) in 25 mM MOPS, 50 mM NaCl, 1 mM EDTA and pH 7 in the top of the 

device. The fifth hole was filled with buffer as a control experiment. After equilibration for 

72h, the concentrations and apparent affinities of the ligand and DNA were determined 

(Table 3.8). 
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Table 3.8 demonstrates that the device is not working well and that the results are not 

independent of the hole used in the experiment. The problem appears from the results that 

show a different absorbance of 9 at 663 nm with the same concentration of DNA (2.08×10-4 

M). The cause is probably evaporation because the lid of the device has a small hole above 

the center hole of the top part of the device as shown that in table 3.13.   

 Furthermore, the data presented a similar equilibrium constant of (6.5 ± 1.17) × 104 M-1. 

However, we observe another problem that appears from the control for this experiment. The 

absorbance of free ligand in the reservoir was 0.0702 and in the control hole it was 0.1106. 

That is a big difference. Unfortunately, our control therefore again shows us there is a 

problem with 9. This problem was later attributed to the fading. 

Table 3.8: Equilibrium constants K for 9 interacting with FS-DNAa  

 DNA FS-DNA FS-DNA FS-DNA FS-DNA Buffer 

[DNA]total / M 2.5×10-5 6.9×10-5 2.08×10-4 2.08×10-4 0 

unit conc. bp bp bp Bp / 

bind. sites / unit conc. d 3.33×10-1 3.33×10-1 3.33×10-1 3.33×10-1 / 

[binding sites]total / M 8.33×10-6 2.30×10-5 6.93×10-5 6.93×10-5 / 

A663 nm 0.1203 0.1644 0.2502 0.3219 0.1106 

A663nm, bound c 0.0284 0.0725 0.1583 0.23 0.0187 

C bound / M c 5.199×10-7 1.32×10-6 2.89×10-6 4.21×10-6 / 

[ligand]free / M 9.00×10-7 9.00×10-7 9.00×10-7 9.00×10-7 9.00×10-7 

[binding sites]free / M 7.81×10-6 2.17×10-5 6.64×10-5 6.51×10-5 / 

K / M-1 7.39×104 6.81×104 4.85×104 7.18×104 / 

a) Concentration of 9 in the beginning was 1.3 µM. 

b) In buffer (25 mM MOPS, 50 mM NaCl, 1 mM EDTA and pH=7), at 25 °C.   

c) Abg, 0.0217, Afree, 0.0702, A663 reservoir was 0.0919, ε free = 78000 M-1 cm -1 and ε bound = 

54618 M-1 cm -1. 

d) We assume the binding site size in base pairs is 3.0. 
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3.2.1c DMSO affects the observed affinities in competition dialysis 

As we have shown in Chapter 2, DMSO affects the interaction between 8 and FS-DNA. Here, 

we want to test this effect again in our competition dialysis assay and compare the results to 

those from UV-visible spectroscopic titrations. The experiment involved different 

concentrations of FS-DNA (25 µM, 60 µM, and 227 µM) and a concentration of 8 of 

1.16×10-6 M in a DMSO-containing buffer (25 mM MOPS, pH 7.0, 100 mM KCl, 9 vol-% 

DMSO and 1 mM EDTA).  The concentrations and apparent affinities of the ligand after 

equilibration were determined and are shown in Table 3.9. 

Table 3.9: for testing the concentration of 8a exposed to different 

concentrations of  FS-DNA b 

 Time / hours buffer FS-DNA FS-DNA FS-DNA FS-DNA 

        24 0.0346 0.0354 0.0352 0.0337 0.0345 

        48 0.0444 0.0458 0.0435 0.0429 0.0456 

        72 0.048 0.0557 0.0469 0.0482 0.0494 

        96 0.0516 0.0595 0.0489 0.0503 0.0516 

       120 0.052 0.0607 0.0522 0.0516 0.0526 

       144 0.0494 0.0648 0.0513 0.0534 0.053 

       168 0.0529 0.0664 0.0523 0.0521 0.0516 

a) Concentration of 8 was 1.1 µM. 

b) In buffer (25 mM MOPS, pH 7.0, 100 mM KCl, 9 vol-% DMSO and 
1 mM EDTA), at 25 °C.   

c) The 8 concentration in the end of this experiment was 0.6 µM. 

d) Abg, 0.0207, Afree, 0.0324 and A476 reservoir was 0.0531. 

 

Table 3.9 shows all the absorbance data for 8 at 476 nm are close to absorbance of the buffer. 

This absorbance result suggests that diffusion is not satisfactory, which may be due to a low 

solubility of 8 and resulting precipitation which can affect our data.  To avoid that error, the 

experiment was repeated using both a magnetic stirrer in the bottom part of the device and 

placing the device inside a Heidolph incubator at 25 °C for all experiments from now on.  
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Table 3.10: Equilibrium constants K for 8 a interacting with FS-DNAb 

 DNA FS-DNA FS-DNA FS-DNA FS-DNA buffer 

[DNA]total / M 2.23×10-4 2.6×10-5 6.8×10-5 2.6×10-5 0 

unit conc. bp bp bp Bp / 

bind. sites / unit conc. d 3.33×10-1 3.33×10-1 3.33×10-1 3.33×10-1 / 

[binding sites]total / M 7.43×10-5 8.67×10-6 2.27×10-5 8.67×10-6 / 

A476 nm 0.5669 0.3969 0.3853 0.4581 0.3838 

A476, bound c 0.2037 0.0337 0.0221 0.0949 0.0206 

C bound / M c 5.53×10-6 9.15×10-7 6×10-7 2.58×10-6 / 

[ligand]free / M 6.57×10-6 6.57×10-6 6.57×10-6 6.57×10-6 6.57×10-6 

[binding sites]free / M 6.88×10-5 7.75×10-6 2.21×10-5 6.09×10-6 / 

K / M-1 1.22×104 1.80×104 4.14×103 6.44×104 / 

a) Concentration of 8 was 6.2 µM. 

b) In buffer (25 mM MOPS, pH 7.0, 100 mM KCl, 9 vol-% DMSO and 1 mM EDTA), 
at 25 °C.   

c) Abg, 0.0254, Afree, 0.3378, A476 reservoir was 0.3632, ε free = 51398 M-1 cm -1 and ε bound = 
36828 M-1 cm-1. 

d) We assume the binding site size in base pairs is 3.0. 

 

To check if we can solve the solubility problem shown above by adding DMSO, two 

experiments were carried out. The first experiment involved different concentrations of FS-

DNA (26 µM, 68 µM, and 223 µM) and 6.2×10-6 M 8, while the The second experiment 

involved FS-DNA (24 µM, 67 µM, and 176 µM) and 7.7×10-6 M 8.  

 Both experiments were in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, 9 vol-% DMSO and 

1 mM EDTA) at 25 °C. The concentrations and apparent affinities of the ligand after 

equilibrium were determined in Tables 3.10 and 3.11. 
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Tables 3.10 and 3.11 present the affinities of 8 for FS-DNA as determined at different 

concentrations of FS-DNA. The data in Tables 3.10 and 3.11 give the same affinities of 8 for 

FS-DNA. These absorbance results suggest that the diffusion is satisfactory. The average 

equilibrium constants (Kbinding) are (2.4 ± 2.7) × 104 M-1 and (2.8 ± 1.8) × 104 M-1, 

respectively. These results are in agreement with the results from the UV-visible titrations as 

shown in Chapter 2 which gave (Kbindin)g of (1.04 ± 0.84) × 105 M-1. 

We further tested whether a magnetic stirrer can be added in the bottom reservoir of the 

device (Tables 3.10 and 3.11). The data show that a magnetic stirrer enhances the experiment. 

The reason to store the device at 25 °C is to keep all the conditions the same to compare this 

data with Chapter 2.  The device was stored at 25 °C during equilibration. Despite the 

precautions, however, the low solubility of 8 causes precipitation, which affects our data as 

shown in Figure 3.7.  

Table 3.11: Equilibrium constants K for 8 a interacting with FS-DNAb  

 DNA FS-DNA FS-DNA FS-DNA FS-DNA buffer 

[DNA]total / M 1.76×10-4 2.4×10-5 1.76×10-4 6.7×10-5 / 

unit conc. bp bp Bp bp / 

bind. sites / unit conc. d 3.33×10-1 3.33×10-1 3.33×10-1 3.33×10-1 / 

[binding sites]total / M 5.87×10-5 8.00×10-6 5.87×10-5 2.23×10-5 / 

A476 nm 0.4935 0.3966 0.4948 0.4547 0.4798 

A476, bound c 0.1672 0.0703 0.1685 0.1284 0.1535 

C bound / M c 4.53×10-6 1.91×10-6 4.58×10-6 3.48×10-6 / 

[ligand]free / M 5.84×10-6 5.84×10-6 5.84×10-6 5.84×10-6 5.84×10-6 

[binding sites]free / M 5.41×10-5 6.09×10-6 5.41×10-5 1.88×10-5 / 

K / M-1 1.44×104 5.36×104 1.45×104 3.17×104 / 

a) Concentration  of 8 was 7.7 µM. 

b) In buffer (25 mM MOPS, pH 7.0, 100 mM KCl, 9 vol-% DMSO and 1 mM EDTA), at 25 °C.   

c) Abg, 0.0259,  Afree, 0.3004, A476 reservoir was 0.3263, ε free = 51398 M-1 cm -1 and ε bound = 36828 
M-1 cm -1. 

d) We assume the binding site size in base pairs is 3.0. 
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Figure 3.7 Precipitate of 8 in the bottom reservoir of the device and on the magnetic stirrer in 

buffer containing 9 vol-% DMSO. 

It is obvious that 9 vol % DMSO was not enough to keep 8 in solution. We avoided using 

more than 10 vol % of any of organic solvents, such as DMSO and acetonitrile, as we have 

shown in Chapter 2 that this can affect the affinities and the literature indicates that higher 

fractions of DMSO may destabilise nucleic acid structures.  

To further explore the validity of affinities determined using dialysis, we employed ligand 6 

together with 23 µM, 64 µM, and 152 µM of FS-DNA at a concentration of 6 of 5.9×10-5 M, 

in 25 mM MOPS, pH 7.0, 100 mM KCl, 9 vol-% DMSO and 1 mM EDTA. The 

concentrations and apparent affinities of the ligand at equilibrium were determined in Table 

3.12. 
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Table 3.12: Equilibrium constants K for 6 a interacting with FS-DNAb  

 DNA FS-DNA FS-DNA FS-DNA FS-DNA buffer 

[DNA]total / M 2.3×10-5 6.4×10-5 1.52×10-4 6.4×10-5 / 

unit conc. bp bp bp Bp / 

bind. sites / unit conc.  3.33×10-1 3.33×10-1 3.33×10-1 3.33×10-1 / 

[binding sites]total / M 7.67×10-6 2.13×10-5 5.07×10-5 2.13×10-5 / 

A338 nm  1.1712 0.944 0.5059 0.8043 1.211 

A338 nm, bound -0.2093 -0.4365 -0.8746 -0.5762 -0.1695 

C bound / M / / / / / 

[ligand]free / M 3.19×10-5 3.19×10-5 3.19×10-5 3.19×10-5 3.19×10-5 

[binding sites]free / M 1.57×10-5 3.81×10-5 8.43×10-5 4.35×10-5 / 

K / M-1 / / / / / 

a) Concentration of 6 was 59 µM. 

b) In buffer (25 mM MOPS, pH 7.0, 100 mM KCl, 9 vol-% DMSO and 1 mM EDTA), at 25 
°C.   

c) Abg, 0.0405, Afree, 1.3406, A338 reservoir was 1.381, ε free = 42000 M-1 cm -1 and ε bound = 26030 
M-1 cm -1. 

d)  we assume the binding site size in base pairs is 3.0. 

 

The table 3.12 shows very strange data. For all DNA concentrations, the absorbance is lower 

than the absorbance of the solution in the hole containing only buffer and lower than the 

solution in the bottom reservoir of the device.  

In this experiment, a very high concentration of ligand 6 was used. Precipitation of ligand 

was observed and this can affect the diffusion. Furthermore, we found some bubbles in the 

middle part of the device that could also have affected our data as shown in Figure 3.8 (C).  
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Figure 3.8 (A) precipitate of 6 on the bottom of the device and on the magnetic stirrer with 9 

vol-% DMSO, (B) the dialysis membrane with clear precipitation of 6 and (C) bubbles in the 

middle part of the device. 

In the next experiment, a more dilute solution of 3.2×10-6 M 6 was used to avoid 

precipitation. In addition different concentrations of synthetic nucleic acids (dA)24 (dT)24  

were used (25 µM, 72 µM, and 176 µM) in 25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM 

EDTA. The absorbance of 6 at 338 nm was plotted as a function of time (Figure 3.9).                       

(A) (B) 

  

 

Figure 3.9 (A) Final UV-visible spectra for 6 with 25, 72 and 176 µM of (dA)24 (dT) (B) The 

absorbance of 6 at 338 nm as a function of time for (dA)24 (dT)24, 25 µM (▲), 176 µM (●), 72 

µM (♦), and buffer (■).            

Figure 3.9A shows the change in absorbance at λmax 338 nm of 6 in the presence of DNA. 

Figure 3.9B shows that the equilibrium has not been achieved. The absorbance at λmax 338 

nm of 6 is higher for the hole filled with 25 µM (dA)24 (dT)24 (▲). This problem was later 
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attributed to the middle hole in the device. The lid of the device had a hole in the middle as a 

result of the fabrication technique used. This hole allowed evaporating of the solution. 

The final test for our method and our device involves a compound that shows no binding to 

DNA, viz. anionic 3, with different concentrations of FS-DNA (24 µM, 68 µM, and 169 µM) 

in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA) at 25 °C. The absorbance of 3 

at 563 nm was plotted it as a function of time (Figure 3.10).                                                                                                                                                        

(A) (B) 

  

Figure 3.10 (A) Final UV-visible spectra for 3 with different concentrations of FS-DNA in 

buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA) at 25 °C. (B) The absorbance of 

3 at 563 nm as a function of time for FS-DNA at 24 µM (♦), 68  µM (▲), 169 µM (■) and 

buffer (●), in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C.           

Figure 3.10A shows the final spectra of 3 at the λmax of 3 in the presence of DNA. Figure 

3.10B shows that the absorbance of 3 for all holes of the device is close to the absorbance for 

the buffer, except for the hole where the DNA concentration is (24 µM) (♦). This problem 

was later attributed to the middle hole in the device where the lid for the device had a hole. 

The Figure shows equilibrium has been achieved after around 269 hours. 

The concentrations and apparent affinities of the ligand for DNA were determined from the 

absorbance data at 563 nm (Table 3.13). 
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Table 3.13: Equilibrium constants K for 3 a interacting with FS-DNAb  

 DNA FS-DNA FS-DNA FS-DNA FS-DNA buffer 

[DNA]total / M 1.69×10-4 6.8×10-5 1.69×10-4 2.4×10-5 0 

unit conc. bp bp bp Bp / 

bind. sites / unit conc. / M d 3.33×10-1 3.33×10-1 3.33×10-1 3.33×10-1 / 

[binding sites]total / M 5.63×10-5 2.27×10-5 5.63×10-5 8.00×10-6 / 

A563 nm 0.6517 0.642 0.6501 0.7579 0.6401 

A563, bound c 0.0072 -0.0025 0.0056 0.1134 -0.0044 

C bound / Mc 7.45×10-8 / 5.79×10-8 1.17×10-6 / 

[ligand]free / M 7.34×10-6 / 7.34×10-6 7.34×10-6 7.34×10-6 

[binding sites]free / M 5.63×10-5 / 5.63×10-5 6.83×10-6 / 

K / M-1 1.80×102 / 1.40×102 2.34×104 / 

a) Concentration of 3 was 8.9 µM. 

b) In buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C.   

c) Abg, 0.0244, Afree, 0.6201, A563 reservoir was 0.6445, ε free = 8683 M-1 cm -1 and ε bound = 10285 
M-1 cm -1. 

d) We assume the binding site size in base pairs is 3.0. 

 

Table 3.13 shows that the absorbance of 3 at 563 nm with the concentration of DNA of 

2.40×10-5 M is higher than the absorbance for the other holes. Accordingly, our calculations 

result in relatively high apparent affinity of 3 for FS-DN. We know that 3 has no affinity for 

DNA. This means that something else increases the concentration of 3 in this hole. The cause 

is probably evaporation because the lid of the device has a small hole above the center hole of 

the top part of the device.  

One more alteration was therefore done to develop the top of this device, which is to close the 

hole in the lid of the device.  
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Part B 

3.3 validation of dialysis and quantification.  

The results of our validation of our dialysis methods for the quantification of affinities of 3, 9, 

5 and 6 for different DNA sequences, viz. FS-DNA, (dA)24 (dT)24, (dAdT)12●(dAdT)12 and 

(dGdC)12●(dGdC)12 are given below. 

3.3.1 Non-binding DNA 

We wanted to confirm that the device works properly with the hole closed and that we can 

get quantitative data from our device.  

We determined the affinity of anionic 3 in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 

1 mM EDTA) for FS-DNA at different concentrations of FS-DNA (23 µM, 69 µM, and 167 

µM). The spectra of 3 after equilibration with different concentrations of DNA are shown in 

Figure 3.11.    

(A) (B) 

 
 

 

 

Figure 3.11 (A) UV-visible spectra after the equilibration for 3 with different concentrations 

of FS-DNA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. (B) The 

absorbance of 3 at 563 nm as a function of time for FS-DNA 23 µM (♦), 69 µM (▲), 167 µM 

(■) and buffer (●), in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C.   

Figure 3.11A and Figure 3.11B show that the different concentrations of FS-DNA give 

spectra that are close to the buffer. Consequently, there is no affinity between 3 and FS-DNA 
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the result is in agreement with the results from the UV-visible titrations as shown in Chapter 

2. Equilibrium has been achieved after around 500 hours.                                                                                                         

The concentrations and apparent affinities of the ligand for FS-DNA after equilibration were 

determined (Table 3.14).     

           

It is apparent from the Table that the absorbance of 3 at 563 nm with the different 

concentrations of DNA are almost the same as the absorbance of buffer only. The low 

apparent equilibrium constant (Kbinding) of (8.3 ± 7.6) ×102 M-1 suggests that no binding is 

taking place. Accordingly, the result is in agreement with the results from the UV-visible 

titrations as shown in chapter 2, which yielded an affinity of (0.66 ± 2.34) ×102 M-1. These 

data also demonstrate what is expected from a non-binding ligand: absorbance as a function 

of time simply mirrors that of the buffer, reaching the same final absorbance.  Our control 

Table 3.14: Equilibrium constants K for 3 a interacting  with FS-DNAb  

 DNA FS-DNA FS-DNA FS-DNA FS-DNA buffer 

[DNA]total / M 1.67×10-4 6.9×10-5 1.67×10-4 2.3×10-5 / 

unit conc. bp bp bp bp / 

bind. sites / unit conc. d 3.33×10-1 3.33×10-1 3.33×10-1 3.33×10-1 / 

[binding sites]total / M 5.57×10-5 2.30×10-5 5.57×10-5 7.67×10-6 / 

A563 nm 0.3142 0.3148 0.3113 0.3127 0.3131 

A563, bound c 0.0060 0.0066 0.0031 0.0045 0.0049 

C bound / M c 5.83×10-7 6.42×10-7 3.01×10-7 4.37×10-7 
 

[ligand]free / M 3.27×10-5 3.28×10-5 3.28×10-5 3.27×10-5 3.28×10-5 

[binding sites]free / M 5.51×10-5 2.24×10-5 5.54×10-5 7.23×10-6 / 

K / M-1 3.23×102 8.76×102 1.66×102 1.85×103 / 

a) Concentration of 3 was 4.4 µM. 

b) In buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C. 

c) Abg, 0.0238, Afree, 0.2844, A563 reservoir was 0.3082, , ε free = 8683 M-1 cm -1 and ε bound = 10285 
M-1 cm -1. 

d) We assume the binding site size in base pairs is 3.0.  
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(Areservoir = 0.3082and Abuffer hole = 0.3131 i.e. 98 %) shows us that the device works well for 

this compound.  

3.3.2 DNA binding                           

We decided to further study the validity of affinities determined using our approach to 

dialysis. We used three different concentrations of FS-DNA (24 µM, 69 µM, and 227 µM) 

together with 1.4 × 10-6 M (methylene blue) 9 in buffer (25 mM MOPS, pH 7.0, 50 mM 

NaCl, and 1 mM EDTA), at 25 °C.  The spectra of 9 after equilibration for 168 hours are 

shown in Figure 3.12.           

  

Figure 3.12 (A) Final UV-visible spectra for 9 with different concentrations of FS-DNA in 

buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. (B) The absorbance of 

9 at 663 nm a function of time for the FS-DNA concentrations 24 µM (■), 69 µM (■) and (♦), 

for 227 µM (▲) and buffer (●).                                                                                                            

Figure 3.12A shows the spectra following equilibration of 9 in the presence of the different 

concentrations of DNA. Figure 3.12B shows the highest absorbance of 9 with the highest 

DNA concentration of 227 µM. The Figure also shows that equilibrium has been achieved 

after around 150 hours. 

The concentrations and apparent affinities of the ligand at equilibrium were determined 

(Table 3.15).   
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Table 3.15 presents a higher absorbance of 9 with a higher concentration of DNA. The 

equilibrium constant (Kbinding) is (9.8 ± 5.5) ×104 M-1, in reasonable agreement with the result 

of (3.83 ± 0.78) ×105 M-1 from UV-visible titrations (Chapter 2). Unfortunately, our control 

(Areservoir = 0.1072 and Abuffer hole = 0.1361 i.e. 78 %) shows us and that there is a problem with 

9. This problem was later attributed to fading of 9. 

 

 

 

 

Table 3.15: Equilibrium constants K for 9 a interacting with FS-DNAb                                                                                                 

 DNA FS-DNA FS-DNA FS-DNA FS-DNA Buffer 

[DNA]total / M 6.9×10-5 2.27×10-4 2.4×10-5 6.9×10-5 0 

unit conc. bp bp bp Bp / 

bind. sites / unit conc.d 3.33×10-1 3.33×10-1 3.33×10-1 3.33×10-1 / 

[binding sites]total / M 2.30×10-5 7.57×10-5 8.00×10-6 2.30×10-5 0 

A663 nm 0.171 0.2884 0.1624 0.1978 0.1361 

A663, bound c 0.0638 0.1812 0.0552 0.0906 0.0289 

C bound / M c 1.16×10-6 3.32×10-6 1.01×10-6 1.66×10-6 0 

[ligand]free / M 8.166×10-7 8.17×10-7 8.17×10-7 8.17×10-7 8.17×10-7 

[binding sites]free / M 2.18×10-5 7.23×10-5 6.99×10-6 2.13×10-5 / 

K / M-1 6.55×104 5.61×104 1.77×105 9.52×104 / 

K average / M-1 (9.85 ± 5.50)×104 

a) Concentration  of 9 was 1.4 µM. 

b) In buffer (25 mM MOPS, 50 mM NaCl, 1 mM EDTA and pH=7), at 25 °C.     

c) Abg, 0.0435,  Afree, 0.0637, A663 reservoir was 0.1072, ε free = 78000 M-1 cm -1and ε bound = 
54618 M-1 cm -1. 

d) Weassume the binding site size in base pairs is 3.0. 
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3.3.2.a Competition dialysis methods for the quantification of affinities and selectivities 

for FS-DNA and specific sequences.  

We wanted to study the selectivity of 5 for duplex DNA of different sequences. We therefore 

exposed 1.5×10-5 M of 5 to different DNA sequences, viz., FS-DNA (151 µM), 

(dGdC)12●(dGdC)12 (24 µM) and of (dAdT)12●(dAdT)12 (55 µM). The spectra of 5 after 

equilibration with different DNA sequences are shown in Figure 3.13.     

 

Figure 3.13 (A) post-equilibration UV-visible spectra for 5 with different DNA sequences in 

buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. (B) The absorbance of 

5 at 412 nm as a function of time, 151 µM FS-DNA (■), 24 µM (dGdC)12●(dGdC)12 (■), 55 

µM (dAdT)12●(dAdT)12 (●), and buffer (▲). 

Figure 3.13A shows a higher absorbance of 5 with FS-DNA. This suggests that 5 has the 

highest affinity for FS-DNA. There is negligible affinity between 5 and (dGdC)12●(dGdC)12 

and (dAdT)12●(dAdT)12. Figure 3.13 also shows that equilibrium has been achieved after 

around 150 hours.  

The concentrations and apparent affinities of the ligand after equilibration were determined 

(Table 3.16).           
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Table 3.16 shows that there is no significant difference between the absorbance of the buffer 

as control and the absorbance of ligand in the reservoir at λmax 412 nm (the ligand absorbance 

of reservoir is 0.2762). This means that our device is working well in this experiment. The 

affinity for FS-DNA 1.09×104 M is in agreement with the results of (1.18 ± 0.21) × 104 M 

from the UV-visible titrations as shown in chapter 2.  

 

 

 

 

  Table 3.16: Equilibrium constants K for 5 a interacting with FS-DNA, (dGdC)12●(dGdC)12 and 

(dAdT)12●(dAdT)12 b   

DNA FS-DNA 

(dGdC)12● 

(dGdC)12 

(dAdT)12● 

(dAdT)12 

(dGdC)12● 

(dGdC)12 Buffer 

[DNA]total / M 1.51×10-4 2.4×10-5 5.5×10-5 2.4×10-5 0 

unit conc. Bp bp bp Bp / 

bind. sites / unit conc. d 3.33×10-1 3.33×10-1 3.33×10-1 3.33×10-1 / 

[binding sites]total / M 5.03×10-5 8.00×10-6 1.83×10-5 8.00×10-6 / 

A412 nm 0.3667 0.2875 0.2992 0.2958 0.2842 

A412 nm,bound c 0.0905 0.0113 0.023 0.0196 0.008 

C bound / M c 5.00×10-6 6.25×10-7 1.27×10-6 1.08×10-6 / 

[ligand]free / M 1.01×10-5 1.01×10-5 1.01×10-5 1.01×10-5 1.01×10-5 

[binding sites]free / M 4.53×10-5 7.37×10-6 1.71×10-5 6.92×10-6 / 

K / M-1 1.09×104 8.40×103 7.39×103 1.55×104 / 

a) Concentartion of 5 was 15 µM. 

b) in buffer (25 mM MOPS, 50 mM  NaCl, 1 mM EDTA and pH=7), at 25 °C.     
c) Abg, 0.0333, Afree, 0.2429, A412 reservoir was 0.2762, ε free = 24073 M-1 cm -1and ε bound = 18073 M-

1 cm -1. 

d) We assume the binding site size in base pairs is 3.0. 
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3.3.2.b Competition dialysis methods for the quantification of affinities and selectivities 

for FS-DNA and (dA)24 ● (dT)24, (dAdT)12●(dAdT)12 and (dGdC)12●(dGdC)12. 

We repeat the previous experiment above, but this time using similar concentrations of the 

different DNA sequences in order to find out whether 5 has a high affinity for FS-DNA or for 

specific sequences such as (dA)24 (dT)24, (dAdT)12●(dAdT)12 and (dGdC)12●(dGdC)12.                                                              

A solution of 1.0×10-5 M of 5 was exposed to FS-DNA (70 µM), (dGdC)12●(dGdC)12 (74 

µM), (dA) 24 (dT)24 (79 µM) and (dAdT)12●(dAdT)12 (68 µM). The spectra of 5 after 

equilibration are shown in Figure 3.14.  

)B( )A( 

 
 

 

Figure 3.14 (A) UV-visible spectra for 5 exposed to different DNA sequences in buffer (25 

mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. (B) The absorbance of 5 at 412 

nm as a function of time, 70 µM FS-DNA (●), 74 µM (dGdC)12●(dGdC)12 (▲), 79 µM (dA)24 

(dT)24 (■), buffer (■) and 68 µM (dAdT)12●(dAdT)12 (♦).                                                                                                                                                                                                        

Figure 3.14A shows the absorbance at 412 nm after equilibration in the presence of the 

various DNA sequences. Figure 3.14B shows that equilibrium has been achieved after around 

150 hours. 

The concentrations and apparent affinities of the ligand for the different sequences were 

determined (Table 3.17).       
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Table 3.17: Equilibrium constants K for 5 interacting with FS-DNA, (dGdC)12●(dGdC)12,  (dA)24 

(dT)24 and (dAdT)12●(dAdT)12 a  

DNA FS-DNA 

(dGdC)12● 

(dGdC)12 (dA)24 (dT)24 

(dAdT)12● 

(dAdT)12 Buffer 

[DNA]total / M 7.0×10-5 7.4×10-5 7.9×10-5 6.8×10-5 0 

unit conc. bp bp bp Bp / 

bind. sites / unit conc. d 3.33×10-1 3.33×10-1 3.33×10-1 3.33×10-1 / 

[binding sites]total / M 2.33×10-5 2.47×10-5 2.63×10-5 2.27×10-5 / 

A412, end 0.2409 0.2409 0.2387 0.2322 0.2161 

error 0.0018 0.003 0.0039 0.0032 0.0028 

A412, bound / M c 0.0371 0.0371 0.0349 0.0284 0.0123 

C bound / M c 2.07×10-6 2.08×10-6 1.95×10-6 1.59×10-6 / 

[ligand]free / M 7.39×10-6 7.39×10-6 7.39×10-6 7.39×10-6 7.39×10-6 

[binding sites]free / M 2.13×10-5 2.26×10-5 2.44×10-5 2.11×10-5 / 

K / M-1 1.32×104 1.24×104 1.08×104 1.02×104 / 

a) Concentration of 5 was 10 µM. 

b) In buffer (25 mM MOPS, 50 mM  NaCl, 1 mM EDTA and pH=7), at 25 °C.         

c) Abg, 0.0258,  Afree, 0.178,  A412 reservoir was 0.2038, ε free = 24073 M-1 cm -1 and ε bound = 17852 
M-1 cm -1. 

d) We assume the binding site size in base pairs is 3.0. 

 

Table 3.17 presents the same affinity of 5 for the sequences FS-DNA, (dGdC)12●(dGdC)12, 

(dA)24 (dT) 24 and (dAdT)12●(dAdT)12. The equilibrium constants are almost the same. The 

affinity for FS-DNA 1.32×104 M, is in agreement with the results of (1.18 ± 0.21) × 104 M 

from the UV-visible titrations. Our control (Areservoir = 0.2038 and Abuffer hole = 0.2161, i.e. 94 

%) shows that the device works well.  
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We desired to know whether H33258 (6)  has affinity for FS-DNA and for specific sequences 

(dA)24 (dT)24, (dAdT)12●(dAdT)12 and (dGdC)12●(dGdC)12.172 193                        

A solution of 2.4×10-6 M of 6 was exposed to FS-DNA (70 µM), (dGdC)12●(dGdC)12 (74 

µM), (dA)24 (dT)24 (79 µM) and (dAdT)12●(dAdT)12 (68 µM). The spectra of 6 after 

equilibration are shown in Figure 3.15.        

 

Figure 3.15 (A) UV-visible spectra for 6 exposed to different DNA sequences in buffer (25 

mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. (B) The absorbance of 6 at 338 

nm as a function of time, 70 µM FS-DNA (■), 74 µM (dGdC)12●(dGdC)12 (●), 79 µM (dA)24 

(dT)24(▲), 68 µM (dAdT)12●(dAdT)12 (♦) and buffer (■).                                                                                                                                                                                        

Figure 3.15A and Figure 3.15B suggest that 6 has the highest affinity for (dA)24 (dT)24(▲). 

Furthermore, the equilibrium was reached after 300 hours. We cannot offer an explanation as 

to why (dA)24 (dT)24(▲) increases and subsequently decreases, but we noted that this 

behavior was typically only observed for (dA)24 (dT)24 sequences. We do not know why this 

is the case. 

The concentrations and apparent affinities of the ligand after equilibration were determined 

(Table 3.18).                                                                                                                                                                                                                                                                                                                                                                                                                             
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From Table 3.18, there is the same affinity of 6 for different DNA sequences. Unfortunately, 

our control (Areservoir = 0.0426 and Abuffer hole = 0.2738, i.e. 61 %) revealed that there was a 

problem with 6, which was later attributed to the fading of 6. 

 

 

 

 

 

Table 3.18: Equilibrium constants K for 6 a interacting with FS-DNA, (dGdC)12●(dGdC)12, 

(dA)24 (dT)24 and (dAdT)12●(dAdT)12 b  

DNA FS-DNA 

(dGdC)12● 

(dGdC)12 (dA)24 (dT)24 

(dAdT)12● 

(dAdT)12 buffer 

[DNA]total / M 7.0×10-5 7.4×10-5 7.9×10-5 6.8×10-5 0 

unit conc. bp bp bp bp / 

bind. sites / unit conc. d 3.33×10-1 3.33×10-1 3.33×10-1 3.33×10-1 / 

[binding sites]total / M 2.33×10-5 2.47×10-5 2.63×10-5 2.27×10-5 / 

A 338, end 0.2072 0.2345 0.2494 0.2378 0.2738 

Error 0.0261 0.0414 0.0211 0.0284 0.091 

A338 bound c 0.1646 0.1919 0.2068 0.1952 / 

C bound / M c 6.32×10-6 7.37×10-6 7.94×10-6 7.50×10-6 / 

[ligand]free / M 1.21×10-7 1.21×10-7 1.21×10-7 1.21×10-7 1.21×10-7 

[binding sites]free / M 1.70×10-5 1.73×10-5 1.84×10-5 1.52×10-5 / 

K / M-1 3.06×106 3.51×106 3.56×106 4.07×106 / 

a) Concentration of 6 was 2.4 µM. 

b) In buffer (25 mM MOPS, 50 mM  NaCl, 1 mM EDTA and pH=7), at 25 °C.            

c) Abg, 0.0375,  Afree, 0.0051,  A338 reservoir was 0.0426, ε free = 42000 M-1 cm -1and ε bound = 
26030 M-1 cm -1. 

d) We assume the binding site size in base pairs is 3.0 

e) Abg and Afree in the beginning were 0.0209 and 0.1013, respectively.   
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Part C 

3.4 Selection of promising ligands for double competition dialysis.  

3.4.1 Competition dialysis methods for the quantification of affinities for quadruplex 

DNA, c-myc and 22AG and specific sequences (dAdT)12●(dAdT)12 and 

(dGdC)12●(dGdC)12.                                                                                                                          

We wanted to select which ligands have the required selectivity for different DNA structures. 

We determine the affinity and selectivity of ethidium bromide (10) for different sequences of 

quadruplex and duplex DNA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM 

EDTA), at 25 °C.  The spectra of 10 after equilibration with different DNA structures are 

reported in Figure 3.16.   

 

Figure 3.16 (A) UV-visible spectra for 10 after equilibration with 8.7 µM c-myc, 8.6 µM 

22AG, and specific duplex forming sequences 33 µM (dAdT)12●(dAdT)12 and 34 µM 

(dGdC)12●(dGdC)12. (B) The absorbance of 10 at 481nm as a function of time for DNA, 8.7 

µM c-myc (●), 8.6 µM 22AG (■), 33 µM (dAdT)12●(dAdT)12 (■), 34 µM of 

(dGdC)12●(dGdC)12 (▲) and buffer (♦).            

Figure 3.16A shows the absorbance of 10 in the presence of the different nucleic acid 

structures. Compound 10 has a slightly higher absorbance with c-myc. Similarly, Figure 

5.16B shows that the absorbance at λmax 481 nm of 10 is slightly higher with c-myc and no 
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increase in absorbance is seem with 22AG. Moreover, the equilibrium has been achieved 

after around 100 hours.  

The concentrations and apparent affinities of the ligand at equilibrium were determined 

(Table 3.19).        

                                               

Table 3.19 shows that 10 has the same affinities for duplex and quadruplex forming 

sequences. Our control (Areservoir = 0.2435 and Abuffer hole = 0.2634, i.e. 92 %) shows us that the 

device works well.  

Table 3.19: Equilibrium constant K for 10 a interacting with (dAdT)12●(dAdT)12 , c-myc, 

(dGdC)12●(dGdC)12, and 22AG b 

DNA 

(dAdT)12● 

(dAdT)12 c-myc 

(dGdC)12● 

(dGdC)12 22AG buffer 

[DNA]total / M 3.3×10-5 8.7×10-6 3.4×10-5 8.6×10-6 0 

unit conc. bp quadruplex bp quadruplex / 

bind. sites / unit conc. d,e 3.33×10-1 3 3.33×10-1 2 / 

[binding sites]total / M 1.10×10-5 2.61×10-5 1.13×10-5 1.72×10-5 / 

A481, end 0.27697 0.2963 0.27583 0.27107 0.26349 

Error 0.00161 0.00168 0.00169 0.00374 0.00308 

A481,bound 0.03347 0.0528 0.03233 0.02757 0.01999 

C bound / M 7.52×10-6 1.19×10-5 7.27×10-6 6.2×10-6 / 

[ligand]free / M 3.32×10-5 3.32×10-5 3.32×10-5 3.32×10-5 3.32×10-5 

[binding sites]free/ M 3.48×10-6 1.42×10-5 4.07×10-6 1.10×10-5 / 

K / M-1 6.52×104 2.51×104 5.38×104 1.70×104 / 

a) Concentration of 10 was 41 µM. 

b) In buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C.                

c) Abg, 0.0213,  Afree,  0.2222,  A481 reservoir was 0.2435, ε free = 6696 M-1 cm -1and ε bound = 4450 M-1 

cm -1. 

d) We assume the binding site size in base pairs is 3.0, which means 1 ligand binds to 3 base pairs. 

e) We have assumed the binding sites per quadruplex of 22AG is  two and we know that the binding 
sites per quadruplex of c-myc is  three. 
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 Next, we studied the affinity of 5 for c-myc and 22AG and specific duplex-forming 

sequences (dAdT)12●(dAdT)12 and (dGdC)12●(dGdC)12, in buffer (25 mM MOPS, pH 7.0, 50 

mM NaCl, and 1 mM EDTA) at 25 °C.  Figure 3.17 shows the spectra for 5 after 

equilibration. 

)B( )A( 

  

 

Figure 3.17 (A) UV-visible spectra for 5 with 8.9 µM c-myc, 8.7 µM 22AG, 34 µM 

(dAdT)12●(dAdT)12 and 34 µM (dGdC)12●(dGdC)12. (B) The absorbance of 5 at 412 nm as a 

function of time for 8.9 µM c-myc (●), 8.7 µM 22AG (♦), 34 µM (dAdT)12●(dAdT)12 (▲), 34 

µM (dGdC)12●(dGdC)12 (■) and buffer (■).        

Figure 3.17A shows the absorbance of 5 in the presence of the different DNA structures. It is 

evident from Figure 3.17B that 5 has a higher affinity for c-myc. The equilibrium has been 

achieved after around 100 hours.  

The concentrations and apparent affinities of the ligand were determined (Table 3.20).      
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Table 3.20 provides the affinities of 5 for quadruplex-forming c-myc and 22AG and for 

duplex-forming (dAdT)12●(dAdT)12 and (dGdC)12●(dGdC)12. There is a significant 

difference between the affinities. For example, 5 has a higher affinity for c-myc than for 

22AG. On the other hand, there is no affinity for (dAdT)12●(dAdT)12. The control hole 

suggests that the experiment did not work well; (Areservoir at the end of the experiment was 

0.7879 while Abuffer hole was 0.9353, (i.e. 84 %).  

 

 

Table 3.20: Equilibrium constants K for 5 a interacting with c-myc,  (dAdT)12●(dAdT)12 , 

(dGdC)12●(dGdC)12, and 22AG b 

DNA c-myc 

(dAdT)12● 

(dAdT)12 

(dGdC)12● 

(dGdC)12 22AG buffer 

[DNA]total / M 8.9×10-6 3.4×10-5 3.4×10-5 8.7×10-6 0 

unit conc. quadruplex bp bp quadruplex / 

bind. sites / unit conc. d,e 2 3.33×10-1 3.33×10-1 2 / 

[binding sites]total / M 1.78×10-5 1.13×10-5 1.13×10-5 1.74×10-5 / 

A412, end 1.0709 0.8643 0.8682 0.9598 0.9353 

Error 0.0132 0.01245 0.0169 0.0058 0.0113 

A412 bound 0.283 0.0764 0.0803 0.1719 / 

C bound / M 1.58×10-5 4.27×10-6 4.49×10-6 9.62×10-6 / 

[ligand]free / M 3.17×10-5 3.17×10-5 3.17×10-5 3.17×10-5 3.17×10-5 

[binding sites]free / M 1.95×10-6 7.05×10-6 6.84×10-6 7.77×10-6 / 

K / M-1 2.57×105 1.91×104 2.07×104 3.91×104 / 

a) Concentration of 5 was 40 µM. 

b) in buffer (25 mM MOPS, 50 mM  NaCl, 1 mM EDTA and pH=7), at 25 °C.     

c) Abg, 0.0241,  Afree, 0.7638,  A412 reservoir was 0.7879, ε free = 24073 M-1 cm -1and ε bound = 17852 M-1 

cm -1. 

d) We assume the binding site size in base pairs is 3.0, which means 1 ligand binds to 3 base pairs. 

e) We have assumed the binding sites per quadruplex of c-myc and 22AG are two. 
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3.4.1.a Competition dialysis methods for the quantification of affinities of 9 for different 

nucleic acid structures. 194 195 194 

The present experiment was designed to determine the affinity of methylene blue (9) for 

quadruplex sequences c-myc and 22AG, and duplex sequences (dAdT)12●(dAdT)12 and 

(dGdC)12●(dGdC)12 in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 

°C. The spectra of 9 after equilibration with different DNA structures are shown in Figure 

3.18.   

 

Figure 3.18 (A) UV-visible spectra for 9 with 4.5 µM c-myc, 4.9 µM 22AG, 24 µM 

(dAdT)12●(dAdT)12 and 39 µM (dGdC)12●(dGdC)12. (B) The absorbance of 9 at 663nm as a 

function of time for 4.5 µM c-myc (▲), 4.9 µM 22AG (■), 24 µM (dAdT)12●(dAdT)12 (■), 39 

µM (dGdC)12●(dGdC)12 (●) and buffer (♦).        

Figure 3.18A shows the spectra of 9 after equilibration, the highest absorbance, in the 

presence of c-myc. Figure 3.18B shows the absorbance at λmax 663 nm of 9 is highest with c-

myc. The equilibrium has been achieved after around 300 hours. Surprisingly, the absorbance 

goes through a maximum after 100 hours, before decreasing again. Again, we cannot explain 

this, but we noted that this behavior is typically observed only for quadruplex-forming 

sequences. 

The concentrations and apparent affinities of the ligand after equilibrium were determined 

(Table 3.21).                
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Table 3.21 shows that the affinity of 9 is for (dAdT)12●(dAdT)12 with a binding constant of 

2.96×105 M-1. The lowest affinity of 9 is for 22AG. Unfortunately, our control (Areservoir = 

0.4599 and Abuffer hole = 0.7418, i.e. 61 %) shows us that there is a problem with 9. This 

problem was later attributed to the fading of 9. 

We repeated the experiment and recorded the spectra of 9 after equilibration with different 

DNA sequences are shown in Figure 3.19.  

 

Table 3.21: Equilibrium constant K for 9 a interacting with (dGdC)12●(dGdC)12, (dAdT)12●(dAdT)12 , 

22AG and,  c-myc b 

 DNA 

(dGdC)12● 

(dGdC)12 

(dAdT)12● 

(dAdT)12 22AG c-myc buffer 

[DNA]total / M 3.9×10-5 2.4×10-5 4.9×10-6 4.5×10-6 0 

unit conc. bp bp quadruplex quadruplex / 

bind. sites / unit conc. d,e 3.33×10-1 3.33×10-1 7 6 / 

[binding sites]total / M 1.30×10-5 8.00×10-6 3.43×10-5 2.70×10-5 / 

A663, end 0.7409 0.732 0.8718 1.0693 0.7418 

Error 0.014 0.0131 0.0185 0.0417 0.0213 

A 663 bound 0.281 0.2721 0.4119 0.6094 0.2819 

C bound / M 5.14×10-6 4.98×10-6 7.54×10-6 1.11×10-5 / 

[ligand]free / M 5.56×10-6 5.56×10-6 5.56×10-6 5.56×10-6 5.5×10-6 

[binding sites]free / M 7.86×10-6 3.02×10-6 2.68×10-5 1.58×10-5 / 

K / M-1 1.18×105 2.96×105 5.06×104 1.26×105 / 

a) Concentration of 9 was 8.1 µM. 

b) In buffer (25 mM MOPS, 50 mM  NaCl, 1 mM EDTA and pH 7), at 25 °C.   

c) Abg, 0.0255, Afree, 0.4344, A663 reservoir was 0.4599, ε free = 78000 M-1 cm -1 and ε bound = 54618 M-1 cm 
-1. 

d) We assume the binding site size in base pairs is 3.0. 

e) We know the binding sites per quadruplex of 22AG is seven and six for c-myc. 
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Figure 3.19 (A) UV-visible spectra for 9 with c-myc 5.6 µM, 22AG 6 µM, and specific 

sequences such as, (dAdT)12●(dAdT)12 40 µM and 40 µM (dGdC)12●(dGdC)12. (B) The 

absorbance of 9 at 663 nm as a function of time for 5.6 µM (■) c-myc, 6 µM 22AG (■), 40 

µM (dAdT)12●(dAdT)12 (●), 40 µM (dGdC)12●(dGdC)12 (♦) and buffer (▲).        

Figure 3.19A shows the spectra of 9 at λmax 663 nm with the highest absorbance for the hole 

containing c-myc. It is apparent from B that the equilibrium has been achieved after around 

200 hours. We also note that the maximum in absorbance observed in the previous 

experiment has now disappeared. The absorbance at λmax 663 nm suggests that 9 has the 

highest affinity for c-myc, but this needs to be confirmed taking nucleic acid concentrations 

into account in the determination of the apparent affinities. The concentrations and apparent 

affinities of the ligand were determined (Table 3.22).        
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Table 3.22 presents the affinities of 9 for different nucleic acid sequences and confirms Table 

20. Compound 9 has the highest affinity toward (dGdC)12●(dGdC)12. The results are in 

agreement with the results from the UV-visible titrations as shown in Chapter 2 which gave 

Kbinding of (5.25 ± 7.79) ×106 M-1 with c-myc and Kbinding of (5.95 ± 7.64) ×104 M-1 with 22AG. 

Similarly, the result of Table 5.22 is also in reasonable agreement with Table 5.21. However, 

the control hole clearly shows a problem again; our control (Areservoir = 0.3954 and Abuffer hole = 

0.5922, i.e. 66 %).  This problem was later attributed to the fading of 9 as discussed in 

Chapter 2.  

Table 3.22: Equilibrium constants K for 9 a interacting with c-myc, (dAdT)12●(dAdT)12 , (22AG) 

and (dGdC)12●(dGdC)12 b   

  DNA c-myc 

(dAdT)12● 

(dAdT)12 22AG 

(dGdC)12● 

(dGdC)12 buffer 

[DNA]total / M 5.6×10-6 4.0×10-5 6.0×10-6 4.0×10-5 0 

unit conc. quadruplex bp quadruplex bp / 

bind. sites / unit conc. d,e 6 3.33×10-1 7 3.33×10-1 / 

[binding sites]total / M 3.36×10-5 1.33×10-5 4.20×10-5 1.33×10-5 / 

A663, end 1.1483 0.6717 0.8729 0.7153 0.5922 

Error 0.0156 0.0062 0.0172 0.0124 0.0165 

A663 bound 0.7529 0.2763 0.4775 0.3199 0.1968 

C bound / M 1.37×10-5 5.06×10-6 8.74×10-6 5.86×10-6 / 

[ligand]free / M 4.73×10-6 4.74×10-6 4.74×10-6 4.74×10-6 4.74×10-6 

[binding sites]free / M 1.98×10-5 8.27×10-6 3.33×10-5 7.48×10-6 / 

K / M-1 1.47×105 1.29×105 5.55×104 1.65×105 / 

a) Concentration of 9 was 7.7 µM. 

b) In buffer (25 mM MOPS, 50 mM  NaCl, 1 mM EDTA and pH=7),  at 25 °C.       

c) Abg, 0.0258,  Afree, 0.3696,  A663 reservoir was 0.3954, ε free = 78000 M-1 cm -1 and ε bound = 54618 M-1 

cm -1. 

d) We assume the binding site size in base pairs is 3.0. 

e) We know the binding sites per quadruplex of 22AG is seven and six for c-myc. 
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A recent study suggested that 9 interacts with quadruplex EAD2. We therefore repeated the 

competition dialysis of 9 in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM EDTA) 

but using EAD2 instead of c-myc and in a buffer containing KCl instead of NaCl buffer 

because potassium chloride is widely accepted to stabilise G-quadruplex structures. 196, 197 198 

The spectra of 9 after equilibration with the different DNA structures are shown in Figure 

3.20.  

(A) (B) 

  

 

Figure 3.20 (A) UV-visible spectra for 9 after equilibration with 10 µM EAD2, 10 µM 

22AG, 39 µM (dAdT)12●(dAdT)12 and 32 µM (dGdC)12●(dGdC)12. (B) The absorbance of 9 

at 663 nm as a function of time for 10 µM (♦) EAD2, 10 µM 22AG (▲), 39 µM 

(dAdT)12●(dAdT)12 (●), 32 µM of (dGdC)12●(dGdC)12 (■) and buffer (■).         

Figure 3.20A shows the spectra of 9 and the highest absorbance is observed with EAD2. It is 

apparent from B that the equilibrium has been achieved after around 355 hours, but 

surprisingly the absorbance has gone through a maximum again.  

The concentrations and apparent affinities of 9 for the different nucleic acid structures were 

determined (Table 3.23).             
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Table 3.23 shows that 9 has very high affinity for (dAdT)12●(dAdT)12 with binding constant 

of 1.83×105 M-1, in agreement with the previous two experiments. Affinity for EAD2 was 

also high, albeit not as high as expected.  However, the absorbance of the control does not 

match with the absorbance of 9 in the reservoir (57% recovery). This problem was later 

attributed to the fading. 

 

 

Table 3.23: Equilibrium constants K for 9 a interacting with (dAdT)12●(dAdT)12 , 22AG, 

(dGdC)12●(dGdC)12, and EAD2 b   

  DNA 

(dAdT)12● 

(dAdT)12 22AG 

(dGdC)12● 

(dGdC)12 EAD2 buffer 

[DNA]total / M 3.9×10-5 1.0×10-5 3.2×10-5 1.0×10-5 0 

unit conc. bp quadruplex bp quadruplex / 

bind. sites / unit conc. d,e 3.33×10-1 7 3.33×10-1 3 / 

[binding sites]total / M 1.30×10-5 7.00×10-5 1.07×10-5 3.00×10-5 0 

A663, end 0.3985 0.5438 0.3402 0.6593 0.3344 

Error 0.0107 0.0121 0.01 0.0227 0.011 

A663 bound 0.2067 0.352 0.1484 0.4675 0.1426 

C bound / M 3.78×10-6 6.44×10-6 2.72×10-6 8.56×10-6 / 

[ligand]free / M 2.24×10-6 2.24×10-6 2.24×10-6 2.24×10-6 2.24×10-6 

[binding sites]free / M 9.22×10-6 6.36×10-5 7.95×10-6 2.14×10-5 / 

K / M-1                                                                      1.83×105 4.52×104 1.52×105 1.78×105 / 

a) Concentration of 9 was 3.2 µM. 

b) In buffer (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM EDTA), at 25 °C.       

c) Abg, 0.0167,  Afree, 0.1751,  A663reservoir was 0.1918, ε free = 78000 M-1 cm -1 and ε bound = 54618 
M-1 cm -1. 

d) We assume the binding site size in base pairs is 3.0. 

e) We  know the binding sites per quadruplex of 22AG is seven and three for EAD2. 
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To find out whether the results are reproducible, we repeated the experiment, replacing 

(dGdC)12●(dGdC)12 with c-myc. The spectra of 9 after equilibration with different DNA 

sequences are shown in Figure 3.21.   

(A) (B) 

  

 

Figure 3.21 (A) UV-visible spectra for 9 after equilibration with EAD2, 22AG, c-myc and 

(dAdT)12●(dAdT)12 (B) The absorbance of 5.9 at 663nm as a function of time for 10 µM 

EAD2 (♦), 10 µM 22AG (▲), 10 µM c-myc (■), 39 µM (dAdT)12●(dAdT)12 (●), and buffer 

(■).    

Figure 3.21A shows the spectra of 9 following equilibration. A higher absorbance is observed 

with c-myc and 22AG. It is apparent from B that the equilibrium has been achieved after 

around 240 hours. The absorbance at λmax 663 nm of 9 suggests affinity toward quadruplexes 

sequences c-myc, 22AG and EAD2.  The concentrations and apparent affinities of 9 were 

determined (Table 3.24).                
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Table 3.24: Equilibrium constants K for 9 a interacting with 22AG, (dAdT)12●(dAdT)12, EAD2 

and c-mycb 

 DNA 22AG 

(dAdT)12● 

(dAdT)12 EAD2 c-myc buffer 

[DNA]total / M 1.0×10-5 3.9×10-5 1.0×10-5 1.0×10-5 0 

unit conc. Quadruplex bp quadruplex quadruplex / 

bind. sites / unit conc. d,e 7 3.33×10-1 3 6 / 

[binding sites]total / M 7.00×10-5 1.30×10-5 3.00×10-5 6.00×10-5 0 

A663, end 0.7107 0.5692 0.6810 0.7114 0.5773 

Error 0.0105 0.0088 0.0794 0.0113 0.011 

A663 bound 0.498 0.3565 0.4683 0.4987 0.3646 

C bound / M 9.11×10-6 6.53×10-6 8.57×10-6 9.13×10-6 / 

[ligand]free / M 2.44×10-6 2.44×10-6 2.44×10-6 2.44×10-6 2.44×10-6 

[binding sites]free / M 6.09×10-5 6.47×10-6 2.14×10-5 5.09×10-5 / 

K / M-1    6.13×104     4.13×105 1.64×105   7.35×104 / 

a) Concentration of 9 was 4.3 µM. 

b) In buffer (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM EDTA), at 25 °C.           

c) Abg, 0.0221, Afree,  0.1906, A663 reservoir was 0.2127, ε free = 78000 M-1 cm -1 and ε bound = 54618 
M-1 cm -1. 

d) We assume the binding site size in base pairs is 3.0.        

e) We know the binding sites per quadruplex of 22AG is seven and three for EAD2 and six for c-
myc. 

 

From Table 3.24, it is still clear that 9 has high affinity for (dAdT)12●(dAdT)12. However, 

compound 9 also has high affinity for EAD2.  However, our control (Areservoir = 0.2127 and 

Abuffer hole = 0.5773 i.e. 36 %) shows us there is once more a problem with 9. This problem 

was later attributed to the fading of 9. 
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3.5 Conclusion 

The result of the traditional approach to dialysis methods for the quantification of affinities 

for FS-DNA produces results that are similar to those from UV-visible titrations. The average 

value for the equilibrium constant of 9 without co-solvent (Kbinding) is (8.5 ± 2.22) × 104 M-1. 

The result is in reasonable agreement with the results from the UV-visible titrations, as 

shown in Chapter 2, which gave Kbinding of (3.83 ± 0.78) ×105 M-1. The average equilibrium 

constant of 9 in the presence of 9 vol-% DMSO (Kbinding) is (4.42 ± 0.80) × 104 M-1. The 

result is in reasonable agreement with the results from the UV-visible titrations, as shown in 

Chapter 2, which gave Kbinding of (8.5 ± 1.35) ×104 M-1. It clearly shows that DMSO can affect 

the binding of hydrophobic compounds to DNA. However, use of 9 vol-% DMSO is 

sufficient to reduce any ligand precipitation as we have shown in Chapter 2. Therefore, we 

preferred more diluted solutions of compounds to avoid precipitation of the ligand.  

We have successfully developed a device that allows us to study affinities using dialysis in an 

easy way. The final test for our method and our device involves a compound that shows no 

binding to DNA, viz. anionic 3, with different concentrations of FS-DNA. The result is in 

agreement with the results from the UV-visible titrations as shown in chapter 4, which was 

(0.66 ± 2.34) ×102 M-1. The competition dialysis assay has been successfully used.  

We found optimal experimental conditions for the competition dialysis for promising ligands 

such as 5 and 10 for the quantification of affinities for quadruplex DNA c-myc and 22AG and 

specific sequences (dAdT)12●(dAdT)12 and (dGdC)12●(dGdC)12. Compound 5 has a high 

affinity toward c-myc 2.57×105 M-1. Moreover, 10 has the same affinities to duplex and 

quadruplex forming sequences which is ~ 104 M-1. On the other hand, problems with 

unpromising ligands such as 9 were later attributed to the fading. Compound 9 shows a 

higher affinity for (dAdT)12●(dAdT)12 gives a binding constant of 2.96×105 M-1 and binding 

to (dGdC)12●(dGdC)12 is accompanied by a binding constant of 1.65×105 M-1. The results are 

in agreement with the results from the UV-visible titrations as shown in Chapter 4 which 

gives Kbinding of (5.25 ± 7.79) ×106 M-1 with  c-myc  and Kbinding of (5.95 ± 7.64) ×104 M-1 with 

22AG. Moreover, our control shows that this device works well with promising compounds 

such as 5 and 10. However, our control shows us there is a problem related to the stability of 

the ligand of 9 as we mentioned that before.  
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3.6 Materials and Methods 

3.6.1 Buffer preparation 

All experiments were carried out in one of 3 buffers. Buffer A contained 25 mM MOPS, 50 

mM NaCl and 1 mM EDTA, pH 7.0; buffer B contained 25 mM MOPS, 50 mM NaCl, 1 mM 

EDTA and 9 vol-% of DMSO, pH 7.0; buffer C contained 25 mM MOPS, 100 mM KCl and 

1 mM EDTA, pH 7.0. The buffer components were purchased from Melford (CAS 1132-61-

2), NaCl was purchased from Fisher Scientific (CAS 7647-14-5), KCl was purchased from 

Sigma Aldrich (CAS 7447-40-7), EDTA was purchased from VWR (CAS 60-00-4) and 

DMSO from Fisher Scientific (CAS 67-68-5). Buffers were titrated with aqueous NaOH and 

KOH to the required pH. The pH of aqueous solutions was determined using a Hanna 

microprocessor pH 113 pH-meter equipped with a VWR 662-1382 glass electrode. Materials 

were weighed out on a Fisherbrand 4-decimal balance. De-ionised water was produced using 

an ELGA water purifier for all solutions. 

Buffer A, containing 25 mM MOPS (3-(N-morpholino) propanesulfonic acid) and 50 mM 

sodium chloride (NaCl) was prepared by dissolving MOPS and sodium chloride (NaCl) in 

distilled water and stirring at room temperature until the solid dissolved. The solution of 

sodium hydroxide (NaOH) was used for adjusting the pH to 7.0 and the buffer was made up 

to 2 liters. 

Buffer B containing 25 mM MOPS (3-(N-morpholino) propanesulfonic acid), 50 mM sodium 

chloride (NaCl) and 1 mM EDTA was prepared by dissolving MOPS, sodium chloride 

(NaCl) and EDTA in distilled water and stirring at room temperature until the solid dissolved. 

9 vol-% of DMSO was add to the buffer solution. Sodium hydroxide (NaOH) was used for 

adjusting the pH to 7.0 and the buffer was made up to 2 liters.  

Buffer C, containing 25 mM MOPS (3-(N-morpholino) propanesulfonic acid) and 100 mM 

potassium chloride (KCl) was prepared by dissolving MOPS and potassium chloride (KCl) in 

distilled water and stirring at room temperature until the solid dissolved. Potassium hydroxide 

(KOH) was used for adjusting the pH to 7.0 and the buffer was made up to 2 liters. 

3.6.2 DNA preparation 

Fish sperm DNA was purchased from Acros Organics (CAS 68938-01-2). The stock solution 

of fish sperm DNA was prepared by dissolving the DNA in buffer and then sonicating the 

suspension of FS-DNA for about 10 minutes to get a homogeneous solution. All DNA 
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solutions were dialysed against buffer. The dialysis process for the DNA solution was carried 

out by taking the DNA solution and placing it into the dialysis tube of appropriate pore size 

(3.5 kDa MWCO).189 The dialysis tube was suspended for 24 hours inside a beaker that 

contains the MOPS buffer until the impurities were completely diffused out. The DNA 

concentrations were determined from the absorbance using the extinction coefficient of FS-

DNA of 12800 M-1 cm-1 in terms of base pair molarity as recorded using UV-visible 

spectroscopy at  260 nm.190 

The concentration of c-myc (dTdGdA dGdGdG dTdGdG dGdTdT dGdGdG dTdGdG 

dGdTdAdA) was determined using UV-visible spectroscopy in terms of quadruplex molarity 

by using the extinction coefficient of 228700 M-1 cm-1 at 260 nm. The concentration of 22AG 

(dAdGdG dGdTdT dAdGdG dGdTdT dAdGdG dGdTdT dAdGdGdG) was determined using 

UV-visible spectroscopy in terms of quadruplex molarity using the extinction coefficient of 

228500 M-1 cm-1 at 260 nm.76 The concentration of EAD2 (CTG-GGA-GGG-AGG-GAG-

GGA) was determined using UV-visible spectroscopy in terms of quadruplex molarity by 

using the extinction coefficient of 189900 M-1 cm-1 at 260 nm.181 

For the double-stranded synthetic DNA, i.e. poly (dAdT) and poly (dGdC), we dissolve each 

sequence in 1 ml of buffer. Then, the dialysis process for the DNA solution was carried out 

by taking the DNA solution and placing it into dialysis tubing of sufficient pore size (3.5 kDa 

MWCO). The dialysis tube was suspended for 24 hours inside a beaker that contains the 

MOPS buffer until the impurities were completely diffused out. The DNA concentration was 

determined using UV-visible spectroscopy in terms of base pair molarity using the extinction 

coefficient of 14800 M-1 cm-1 at 254 nm for poly (dGdC) and of 12000 M-1 cm-1 at 260 nm for 

poly (dAdT).127 Then the DNA solutions were annealed placing each DNA solution into an 

Eppendorf and placing the Eppendorf in a beaker that contains water at 95 °C, allowing to 

cool down and finally determine the concentration of each solution.  

For single-stranded DNA such as poly (dA) and poly (dT), we dissolve each sequence in 1 ml 

of buffer in (25 mM MOPS, 50 mM NaCl, 1 mM EDTA and 9 vol-% of DMSO, pH 7.0, at 

25 °C). The dialysis process for the DNA solution was carried out by taking the DNA 

solution and placing it into the dialysis tube of sufficient pore size (3.5 kDa MWCO). The 

dialysis tube was suspended for 24 hours inside a beaker that contains the MOPS buffer until 

the impurities were completely diffused out. The DNA concentration was determined using 

UV-visible spectroscopy and using the extinction coefficient of 8600 M-1 cm-1 at 257 nm for 
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single-stranded (dA)24 and 8520 M-1 cm-1 at 264 nm for single stranded of (dT)24. We then 

mixed both sequences to have a 1:1 mixture of strands in an Eppendorf. The duplex was 

annealed by placing the Eppendorf in a beaker that contains water at 95 °C and allowing to 

cool down. Finally, the concentration of each solution was determined using UV-visible 

spectroscopy in terms of base pair molarity using the extinction coefficient of 12000 M-1 cm-1 

at 260 nm for poly (dA) ●poly (dT).127 

3.6.3 Dialysis units 

Dialysis using dialysis tubing was carried out by taking the DNA solution and placing it into 

the dialysis tube of sufficient pore size (3.5 kDa MWCO). The dialysis tube was suspended 

for 24 hours inside a beaker that contains the MOPS buffer until the impurities were 

completely diffused out.  The dialysis tubing was purchased from Medicell Membranes Ltd, 

MWCO 12-14000 Daltons. Dialysis membrane was also purchased from Medicell 

Membranes Ltd, (MWCO 3500 Daltons) and was used for the dialysis device, in the middle 

part of the device.124 

3.6.4 Competition dialysis data analysis. 

For duplex DNA, [DNA]total is the DNA concentration of FS-DNA, (dAdT)24 and (dGdC)24 in 

terms of base pairs. For quadruplex DNA, [DNA]total equals the concentration of quadruplex 

structures such as c-myc, 22AG and EAD2 (i.e. not in terms of quartets). Depending on the 

unit of DNA concentrations, we use a binding site size (if the concentrations are in units of bp 

for duplex DNA) or a stoichiometry in units of quadruplex-1 for the different quadruplexes.  

We expressed the binding site size in term of base pairs and this was typically set to 3.0, 

which means 1 ligand binds to 3 base pairs. For the quadruplexes we have typically assumed 

two binding sites per quadruplex structure. For 9, we knew the number of binding sites per 

quadruplex for c-myc, 22AG and EAD2 (Chapter 4). The stoichiometries are 6 ligands per 

quadruplex of c-myc, 7 ligands per quadruplex of 22AG and 3 ligands per quadruplex of 

EAD2.  

The total concentration of binding sites in solution is given as follows; 

[binding sites] total is defined as “binding sites per unit concentration” × the total concentration 

of DNA in the selected unit of concentration. 
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 A is the ligand absorbance observed at a specific wavelength (λmax) 

Abound is given by: 

Abound = Aobs-(Abg+Afree) 

Aobs = Abg+Afree+Abound 

Aobs= Abg+ ε free × c free × l + ε bound × c bound × l 

Aobs-(Abg+Afree) = ε bound × c bound × l 

Subsequently:  

Aobs-(Abg+Afree)  

Aobs is the observed signal for the ligand  

Abg is the background signal or the buffer absorbance  

Afree is the difference (Aobs - Abg) 

We can determine [ligand] bound from A bound / epsilonbound × pathlength 

ligand free = Afree / epsilonfree × pathlength 

 [binding site] free is given by: 

 [binding site size] free = [binding site size] total - [ligand] bound  

To calculate K value: 

K = [ligand]bound / [ligand]free × [binding sites] free 

The absorption is plotted against time to obtain the optimal approximation for signalend and 

kobs from the best fit of a pseudo-first-order kinetic rate model to the data 199 (Equation 1). 

  (signalstart -  signalend) × exp (- 1× kobs × time) + signalend    

(Δ#) e−%&'() × t + signalend                        Equation 1 

The terms in the equation are defined as follows.   

ΔA is the difference between the ligand absorbance and the buffer absorbance, kobs is the 

observed pseudo-first-order rate constant, t is defined as the time in hours.  
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3.7 Equipment 

3.7.1 Spectroscopic studies 

UV-visible spectra were recorded using a Jasco V-630BIO spectrophotometer with a Peltier 

temperature controller at 25 °C. All UV-visible absorbances were determined using a 1.0 cm 

path length cuvette at 25 °C, except for experiments involving 9 (in tables 5.1 and 5.2) where 

experiments were carried out in a 1 mm path length cuvette. The ligand concentrations were 

determined using the extinction coefficient.   
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Abstract 

In this Chapter, we explore how double competition dialysis allows simultaneous screening 

of two potentially competing ligands against an array of nucleic acids structures. We 

describe how couples of ligands are selected for screening based on selectivity, optical 

emission, absorption and stability. The use of a control buffer allows facile identification of 

problematic experiments. Several of the tested compounds [TF1 (8), methylene blue (9), 

thiazole orange (12) and DODC (13)] fade upon exposure to light and we show that our 

assay deals with this reasonably well unless fading progresses to the extent that absorbances 

become too low to measure reliably. Although we have identified individual compounds with 

interesting affinity profiles, even in the presence of a second binder, we have not yet 

identified a couple of binders with the orthogonal selectivity profile required for construction 

of a self-assembled nanostructure.   
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4.1 Introduction  

 The G-Quadruplex structures are able to protect the internal sequences of the 

chromosomes.200 Research of functions and structure of G-quadruplexes intensified since 

discovery of G-quadruplexes and G-tetraplexes telomeric DNA.201 This is due to the fact that 

these structures are substrates for telomerase, therefore stabilizers of quadruplex can 

antitumor action as shown in Chapter 1.202, 203 

Scientists have explored the use of small ligands which target the nucleic acids for example 

as future therapeutic agents. In a sequence-specific manner, duplex groove binding molecules 

can recognize DNA during the binding process. On the side of quadruplex-binding ligands, 

some molecules show a degree of selectivity between G-quadruplex and duplex DNA.204, 

205,206  

 

4.1.1 Competition dialysis  

Competition dialysis is a powerful tool for studying ligand binding selectivity.125 We explore 

how double competition dialysis allows screening of two ligands against an array of nucleic 

acids structures.  

4.1.2 Double competition dialysis as a high throughput tool for identifying orthogonal 

host-guest pairs. 

Double competition dialysis is very similar to competition dialysis but we will use multiple 

ligands simultaneously. A few examples of simultaneous binding to nucleic acid structures 

have been reported in the literature. These will be discussed briefly. 

4.1.2a Simultaneous binding of a groove binder and an intercalator to a duplex DNA.  

Hoechst 33258 (H33258) and ethidium bromide (EtBr) are widely used fluorescent 

cytological stains.207 The literature suggests that resonance energy transfer (FRET) could 

occur between H33258 (donor) and EtBr (acceptor). H33258 and ethidum bromide area 

minor groove binder and an intercalator, respectively. H33258 and EtBr bind to DNA.205, 208, 

209 the application of X-ray crystallography, NMR analysis, Raman and spectroscopy in 

combination with theoretical calculations have shown that the specific binding of the 

molecules are very much sensitive to the polarity environment.210 Simultaneous binding 

ligands to DNA may find application in drug design because it provides an opportunity to 

maintain molecular weights low (thus fitting with Lipinski’s rules).  FRET has been used to 

study the distance between the bound ligand, H33258 (donor) and EtBr (acceptor) in genomic 
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DNA. To explain more, the minor groove binding of the H33258 and the intercalation by the 

EtBr have the capability to take place independently in a particular site of the dodecamer. 

When bound to DNA H33258 and ethidum bromide have their transition dipoles oriented at 

an angle of about 66 degrees. The majority of the acceptor molecules are placed at a distance 

of around 0.92nm from the donor in the central position of the DNA. A smaller number of 

acceptors are intercalated in the end of the dodecamer at a distance of 1.92nm. Different 

types of DNA offer binding sites of binding nature. The two types of genomic DNA are 

separated with the help of the base pair with a persistence length or a formation of a loop at a 

distance of 3.3nm. The calculated value of the orientation parameter of 0.04 is very important 

for the estimation of the distance between the donor and the acceptor which are bound to the 

dodecamer. 211 The application of the value of the orientation parameter allows for the 

random distribution of an acceptor. At the same time it can be concluded that DNA partially 

restricts the effective distribution of the acceptors and these restrictions can lead to different 

kinds of errors in the final analyses.211  

 

4.1.2b System combining a groove binder and a quadruplex binder.  

To provide more direct evidence for the existence of quadruplex structures, fluorescent signal 

detection with potential G-quadruplex targeting fluorophores can be used to make the 

structures visible under fluorescence microscopy. The fluorescent image detection method is 

popular because of its convenience and visibility. For this method, it is important to have a 

good G-quadruplex stabilizer or recognizer with fluorescent emission in the visible region. 

Researchers have found that the G-quadruplex structure of the human telomere (TTAGGG)4 

can be stabilized with the help of the organic small molecule BMVC .212 In addition, 

fluorescence yield and the distinct fluorescence properties of BMVC bound to various DNA 

structures has been increased as a result of binding. This has been allowing the mapping of 

the G-quadruplex structure within the choromosomes of human metaphase. The 

distinguishable properties have also allowed observing the bright fluorescence spots from 

BMVC in the cancer cell nucleus in comparison to the weak fluorescence as observed within 

the normal cell BMVC. Furthermore, a simple handheld device incorporating the BMVC 

molecule was designed for low cost point-of-care screening of cancer cells (a). Athough 

BMVC is a potent quadruplex recognizing fluorophore, its fluorescent signal cannot be 

detected by microscopy due to interference with duplex structures, which are in excess in 

chromosomes. Additionally, the emission wavelength comes to a difference in nature when 
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BMVC binds with duplex and, as a result, the quadruplex is observed to be less than 20 nm 

shift in fluorescence wavelength. It means that the fluorescent color assortment sandwiched 

between quadruplex and duplex is imperceptible when BMVC stains the chromosome. 

Therefore, a strategy has been developed to increase the color contrast of the image using 

FRET to resolve this challenge in the molecular imaging of quadruplexes. This is why 

researchers have chosen Hoechst and propidium iodide (PI) as duplex-binding fluorophores 

and present the predictable results with suitable staining procedure. 

To summarize, based on FRET studies, it can be said that the binding modes of duplex-

binding molecules are intercalation or groove binding, while the binding modes of 

quadruplex-binding molecules are stacking or groove binding. Furthermore, the number of 

quadruplex structures is very low with respect to the duplexes in the chromosome. Hence, 

research has shown that the duplex structures spread everywhere around the quadruplex 

structure unit in chromosome. Based on the results it has been proposed that the FRET of 

quadruplex binding molecule might occur with Hoechst, which binds to the same quadruplex 

structure unit with different binding modes and the free Hoeschst that binds to duplex 

structures around the quadruplex structures. Thus, the research proves that the experiment 

results in increasing the contrast of the fluorescent colors.  

 4.1.3 Summary and objectives 

Our self-selection approach uses different types of nucleic acid structures such as single-

stranded and double–stranded DNA; quadruplex and triplex, each of those structures have its 

own functionalities associated with them. The other types of hybrid duplexes involve PNA 

and RNA. A specific type of technique such as the orthogonal recognition are applied so that 

the multiple nucleic acid structures are differentiated and evaluated.   

The importance of different in structures of the types of nucleic acids and the selectivity of 

the structure is very much different for each properties such as the optoelectronic properties. 

Some examples for the different types of opto-electronic properties are tetra substituted 

phenanthrolines, and berberine have a selectivity for the quadruplex. Another example, 

neomycin has selectivity for triplex structures. 

Glenn Burley’s optical gradient was the photonic waveguide described in Chapter 1.123 In this 

waveguide, the routing of FRET is unidirectional and lateral to a track of a double-stranded 

DNA. It is very important that the duplex-binding fluorophore recognizes specific sequence 
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in this approach. Hence, PAs were the minor groove binding molecular ligands that provided 

control. The PAs bind within the minor groove of the duplex DNA, and enable targeting of 

sequences of 6 to 10 base pairs. Binding for these systems has high affinity and effectively 

modulates the efficiency of FRET by fluorophores which have been supramolecularly 

organised laterally to the double-stranded DNA. The enhancement of the FRET that is uni-

directional evidences the whole association of all the integral parts, leading to the discerning 

routing of light along DNA duplexes that are simple as the three-way junction. As they 

mentioned in their report the designing of the experiments for the testing of the PAs was done 

to check the programmable nature of the PAs for programming FRET processes that are uni-

directional along DNA duplex and a 3-way junction. The base stacking of the Cy3.5 dye is 

possible. There may be unfavourable orientations but the observed FRET results from the 

average orientations and is relatively efficient, even though this may not be applicable to the 

other dyes.122  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Double competition dialysis studies 

 

188 
 

4.1.4 Aims 

Our aim is to identify couples of compounds displaying orthogonal selectivity for nucleic 

acids structures such as duplex, triplex and quadruplex DNA. The mutually orthogonal 

interaction pairs are required for the construction of self-assembled functional nanostructures. 

We will, for example, use common redox indicators and fluorescent molecules such as 6 and 

8 (orange and blue dots) as illustrated in Figure 4.1. 

 

Figure 4.1. Schematic illustration of the double competition dialysis process involving three 

nucleic acid structures, viz. quadruplex (Q), triplex (T) and duplex (D) and two ligands 

(orange and blue dots). 

The reason to use these compounds in this process is that they have been reported to have 

selectivity127 toward nucleic acid structures while their optoelectronic properties will allow us 

to confirm assembly formation by FRET. In this case, we will see if 6 and 8 selectively bind 

with different nucleic acid structures. To explain further, in the hypothetical example shown 

in Figure 4.1, 8 (blue dots) has a high affinity and selectivity for the quadruplex DNA, 6 

(orange dots) has a high affinity and selectivity for the duplex DNA, while 6 and 8 both bind 

to the triplex. Therefore, the quadruplex192 and the duplex will provide high affinity and 

selectivity binding sites for 6 and 8, respectively. However, the triplex DNA has affinity for 

both ligands and binds with both ligands 6 and 8. Therefore, in this hypothetical example we 

would select the quadruplex and duplex DNA based on the dialysis results because each 

nucleic acid structure uniquely binds with one binder only. We would then use the duplex 

DNA and the quadruplex DNA as building blocks for a template (or scaffold) for self-

assembly. The template will place 6 and 8 in a pre-determined arrangement. We will then use 

FRET to measure the energy which is transferred from 6 on the duplex DNA to 8 on the 
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quadruplex DNA.196 The observation of energy transfer would therefore provide the evidence 

that the self-assembled nanostructure has been formed successfully. In order to select pairs of 

binders for testing, we require an overview of spectroscopic properties and binding 

selectivities for optoelectronically active nucleic acid binders (Table 4.1). 

 

Table 4.1 shows properties like optical emission, absorption and selectivity for nucleic acids 

for the chosen ligands. We chose basic yellow and methylene blue because it has been shown 

that methylene blue can bind by several modes to nucleic acids. Optical emission and 

absorption for the basic yellow and methylene blue are highly important in the selection of 

the competition because the emission of the donor needs to overlap with the absorption of the 

acceptor.  

The primary aim of this system is to direct the opto-electronically active compound into a 

judicious sequence alongside a chain of nucleic acid structures. The feasibility of the 

transportation of the electrons and/or excitation energy are focused in this system. Our system 

is applied only forunidirection transport of excitation energy. Other potential uses involve 

Table 4.1:  Optical emission, absorption and nucleic acid targets for optoelectronically 
active nucleic acid binders. 

ligand Solubility Nucleic acid target 
λex 

/nm 
λem 

/nm 
Ref. 

basic yellow (thioflavin) Soluble Quadruplex  22AG 330 450 191 

H33258 Soluble Duplex 
A·T 

338 454 62 

methylene blue Soluble 
Telomere G-quadruplex 

DNA 
663 / 124 

ethidium bromide Soluble 
polyA • polyT 

Triplex 
481 616 125,126 

DAPI Soluble 
AT- rich duplex 

c-myc quadruplex 
342 470 125 

thiazole orange Soluble Duplex DNA 500 527 213 
DODC 

 
Soluble 

Quadruplex and Triplex 
DNA 

576 603 127 

coralyne 
Slightly 
soluble 

Poly(A) 
Quadruplex 

Triplex DNA 
423 565 158 
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self-assembled catalytic systems which involves the redirection of the reactivity with the help 

of the nucleic acid structures. The main determinants of this step is the positioning of the 

reactants. Careful reaction design will be used in this system in order to prevent multivalency. 

The application of our systems will help in the having a perception about the self-selection 

approach considering the different structures of the nucleic acids. The self-selection criteria 

of the orthogonal and modified completion dialysis approach can be implemented to yield 

more accurate results. 

Our system shows how orthogonal pairs of recognition elements can be made to self-select 

using a modified competition dialysis approach. We have targeted nucleic acid structures to 

take advantage of the relative ease of identifying selective binders, that means that different 

nucleic acids can have very different shapes so that a duplex binder does not necessarily bind 

to quadruplex DNA. Identification of the selective binders is an important ability of our 

device as the selection of the nucleic acid structures is vital for this research.  

A modified competition dialysis approach can be implemented. The prime purpose of this 

device is to compare the current use of the different structures of the nucleic acid in the 

competition and double competition dialysis. Measuring the affinities of nucleic acid binders 

individually and in combination is challenging. This is because some binders have two types 

of binding i.e. stronger and weaker binding and this can have a significant impact on the 

apparent affinity. 

Glenn Burley’s gradient focus on only one shape of nucleic acid structure which is duplex 

DNA. The application Glenn Burley’s gradient was just to transfer the energy from one place 

to another place. On the other hand, our gradient can make a big difference due to different 

nucleic acid structures e.g. single-stranded, duplex, triplex, quadruplex DNA, DNA•PNA and 

DNA•RNA hybrid duplexes. In addition, our gradient can be applicable to the other dyes (see 

chapter 2). 
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 4.2 Results and discussion  

This section is divided into two parts. Sections 4.2.1a – 4.2.1b deal with compounds which 

lack stability and in particular with fading compounds. Sections 4.2.2a and 4.2.2b report on 

studies on stable compounds. At the time of carrying out these experiments, we had not yet 

established the fact that these compounds fade on exposure to light.  

4.2.1a Validation of the double competition dialysis method for the simultaneous 

quantification of affinities of basic yellow (5) and methylene blue (9) for different 

sequences of duplex DNA.  

It is essential that the ligands used in the proposed assay are carefully chosen, based on 

their optoelectronic properties, such as optical emission and absorption. The first experiment 

was a test run performed to investigate the affinity and selectivity of two ligands, basic 

yellow (5) and methylene blue  (9), against an array of nucleic acids structures.166 Compouds 

5 and 9 have a high selectivety to different nucleic acid structures. 

Ligands 5 and 9 were exposed to FS-DNA and different sequences of duplex DNA, viz. 

(dGdC)12●(dGdC)12, (dAdT)12●(dAdT)12 and (dA)24 (dT)24 in buffer (25 mM MOPS, pH 7.0, 

50 mM NaCl, and 1 mM EDTA), at 25 °C. The equilibration kinetics and the spectra of 5 and 

9 after equilibration with the different DNA structures are reported in Figure 4.2.   
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Figure 4.2 (A) UV-visible spectra for  basic yellow (5) and methylene blue (9) following 

equilibration in the presence of FS-DNA, (dA)24 (dT)24, (dGdC)12●(dGdC)12 and 

(dAdT)12●(dAdT)12  (B) free and bound ligands at 412 nm and 663 nm (also see Section 

4.2.1e and 4.2.1i in Chapter 2 (C) the absorbance at 663 nm (mainly 9) as a function of 

equilibration time and (D) the absorbance at 412 nm (mainly 5)  as a function of equilibration 

time for 75 µM FS-DNA (♦), 70 µM (dA)24 (dT)24 (●), 72µM (dGdC)12●(dGdC)12 (▲), 77 

µM (dAdT)12●(dAdT)12 (■)  and buffer (■). 

Figure 4.2A presents the final spectra for the solutions in the 5 holes of the device after 

equilibration. For reference, Figure 4.2B shows the spectra for the free and bound forms of 

both, both in the free and bound forms. Figures 4.2C and D show the changes in absorbance 

at 412 nm and 663 nm as a function of time. Figure 4.2 shows that the absorbances at 412 nm 
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and 663 nm remain constant after approximately 100 hours. Therefore, Figures 4.2C and D 

show that equilibrium has been achieved after around 100 hours. Figure 4.2C shows that the 

absorbance at 663 nm, which is mainly caused by 9, is highest with (dGdC)12●(dGdC)12 (▲). 

On the other hand, Figure 4.2D shows that the absorbance at 412 nm, which is mainly caused 

by 5, is similar for all sequences and for the buffer, suggesting that 5 has low affinity and 

selectivity for the different DNA sequences. The concentrations and apparent affinities of the 

ligands at equilibrium were determined (Table 4.2).           
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Table 4.2: Apparent equilibrium constants K for 5 and 9 a interacting with FS-DNA, (dGdC)12●(dGdC)12, (dAdT)12●(dAdT)12
  and 

(dA)24 (dT)24 b 

DNA (dA)24 (dT)24 
(dGdC)12● 

(dGdC)12 

(dAdT)12● 

(dAdT)12 
FS-DNA buffer 

[DNA]total /  µM 70 72 77 75 / 
unit conc. bp / 

bind. sites / unit conc. i 3.33×10-1 / 
[binding sites]total / M 2.33×10-5 2.40×10-5 2.57×10-5 2.50×10-5 / 

Ligand 9 5 9 5 9 5 9 5 9 5 

A663nm,end(9); A412nm,end(5) 0.291 0.116 0.441 0.111 0.359 0.111 0.357 0.115 0.231 0.104 

Error 0.003 0.001 0.005 0.001 0.003 0.001 0.003 0.001 0.002 0.001 
A663nm,bound ; A412nm,bound 0.083 0.023 0.233 0.018 0.152 0.018 0.149 0.022 0.023 0.011 

Cbound / µM 1.52 1.32 4.28 1.04 2.79 1.04 2.73 1.27 / / 
[ligand]free / µM 33 28 33 28 33 28 33 28 33 28 

[binding sites]free / µM 21 22 19 23 22 24 22 23 / / 
K / M-1 2.07×104 2.14×104 6.40×104 1.61×104 3.59×104 1.51×104 3.62×104 1.91×104 / / 

e) Concentrations of 5 = 8.5 µM  and 9 = 8.1 µM.  
f) In buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C.     

g) A412nm,bg= 0.0256, A412nm,free = 0.0676 and A412nm,reservoir was 0.0932, εfree = 24073 M-1 cm -1and εbound = 18073 M-1 cm -1. 

h) A663nm,bg= 0.0227, A663nm,free =  0.1851 and A663nm,reservoir was 0.2078, εfree = 78000 M-1 cm -1 and εbound = 54618 M-1 cm -1.  

i) We assume the number of binding site size in base pairs is 3.0. 
j) The absorbances of the solution in the reservoir at the beginning of the experiment were 0.2312 (A412 nm) and 0.6565 (A663 nm). 
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As shown in Table 4.2, 9 has the highest affinity for (dGdC)12●(dGdC)12, giving a binding 

constant of 6.40×104 M-1. Nevertheless, there was no significant difference between the 

calculated affinities for DNA and equilibrium constants of 5 and 9 for all sequences are 

almost equal. Moreover, the fact that the absorbance in the hole containing the buffer is also 

slightly higher than in the reservoir indicates that some of the increases observed for the 

nucleic acid solutions may be within the error of the experiment. 

At the end of the experiment, the absorbances in the reservoir and in the buffer control hole 

for 5 and 9 are similar, suggesting good equilibration. However, comparison with the 

absorbances at the beginning of the experiments show that both compounds faded a lot. 

Overall, the experiment is working well if fading is ignored.  

To explore the reproducibility of the data, we repeated the experiment involving 5 and 9 and 

the same DNA sequences. The spectra of 5 and 9 after equilibration with different DNA 

seuences and the absorbances at 412 and 663 nm are shown in Figure 4.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Double competition dialysis studies 

 

196 
 

Figure 4.3 (A) UV-visible spectra for 5 (basic yellow) and 9 (methylene blue) following 

equilibration in the presence of DNA (B) free and bound ligands at 412 nm and 663 nm also 

see Section 4.2.1e and 4.2.1i in Chapter 2. (C) the absorbance at 412 nm (mainly 5) as a 

function of equilibration time and (D) the absorbance at 663 nm (mainly 9) as a function of 

equilibration time for 75 µM FS-DNA (♦), 70 µM (dA)24 (dT)24 (●), 72µM 

(dGdC)12●(dGdC)12 (▲), 77 µM (dAdT)12●(dAdT)12 (■) and buffer (■). 

Figure 4.3A presents the final spectra for the solutions in the 5 holes of the device after 

equilibrium. For reference, Figure 4.3B shows the spectrafor the free and bound forms of 

both ligands. Figures 4.3C and D show that the changes in absorbance at 412 nm and 663 nm 

as a function of time. Figure 4.3 shows that the absorbance at 412 nm and 663 nm remain 

constant after approximately 150 hours. Therefore, Figures 4.3B and C show that equilibrium 
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has been achieved after around 150 hours.   Figure 4.3B shows the absorbance at 412 nm of 

5, this suggests that 5 has the same affinity for all different DNA sequences. Figure 6.3D the 

absorbance at 663 nm, which is mainly caused by 9, which is highest with 

(dGdC)12●(dGdC)12 (▲). 

The concentrations and apparent affinities of the ligands at equilibrium were determined 

(Table 4.3). 
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Table 4.3: Apparent equilibrium constants K for 5 and 9 a interacting with FS-DNA, (dGdC)12●(dGdC)12, (dAdT)12●(dAdT)12
 and 

(dA)24 (dT)24 b 

DNA FS-DNA 
(dGdC)12● 

(dGdC)12 

(dAdT)12● 

(dAdT)12 
(dA)24 (dT)24 buffer 

[DNA]total /  µM 75 72 77 70 / 
unit conc. bp / 

bind. sites / unit conc. e 3.33×10-1 / 
[binding sites]total /M 2.50×10-5 2.40×10-5 2.57×10-5 2.33×10-5 / 

Ligand 9 5 9 5 9 5 9 5 9 5 

A663nm,end(9); A412nm,end(5) 0.323 0.233 0.388 0.216 0.308 0.219 0.265 0.228 0.215 0.204 

Error 0.006 5.15×10-3 0.004 3.8×10-3 0.007 3.9×10-3 0.003 0.004 0.003 3.9×10-3 
A663nm,bound; A412nm,bound 0.137 0.053 0.202 0.036 0.122 0.039 0.079 0.048 0.029 0.024 

Cbound /µM 2.52 2.9 3.7 2.06 2.24 2.21 1.46 2.69 / / 
[ligand]free  /µM 2.98 6.3 2.98 6.3 2.98 6.3 2.98 6.3 2.98 6.3 

[binding sites]free  /µM 22. 22 20. 21 23. 23 21. 20 / / 
K / M-1 3.77×104 2.12×104 6.15×104 1.48×104 3.21×104 1.48×104 2.24×104 2.05×104 / / 

a) Concentrations of 5 = 25 µM  and 9 = 7.1 µM.  
b) In buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C.     

c) A412nm,bg= 0.0271 A412nm, free = 0.153 and A412nm, reservoir was 0.1801, εfree = 24073 M-1 cm -1and εbound = 18073 M-1 cm -1. 

d) A663nm,bg= 0.0232 A663nm, free =  0.1625 and A663nm, reservoir was 0.1857, εfree = 78000 M-1 cm -1 and εbound = 54618 M-1 cm -1. 

e) We assume the number of binding site size in base pairs is 3.0. 

f) The absorbances of the solution in the reservoir at the beginning of the experiment were 0.6431 (A412 nm) and 0.5817 (A663 nm). 
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Table 4.3 is in good agreement with Table 4.2 and confirms that 9 has a higher affinity for 

(dGdC)12●(dGdC)12 than for other types of DNA. However, these data also confirm that 5 has 

no selectivity for one of the four different types of duplex DNA because affinities are 

very similar.  Finally, comparison of the absorbances of the solution in the reservoir at the 

beginning and the end of the experiment and the buffer in the control hole still show us that 

fading of both 5 and 9 occurred during this experiment.  
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4.2.1b Double competition dialysis methods for the quantification of affinities of 9 and 

11 for duplex and quadruplex DNA.  

In Chapter 3 we have seen that 11 binds to quadruplex structures such as c-myc and 22AG. 

As mentioned before, 9 has already shown fading in competition dialysis.  

In order to estimate the affinities of methylene blue  (9) and DAPI (11) for duplex-forming 

sequences (dGdC)12●(dGdC)12, (dAdT)12●(dAdT)12, and quadruplex-forming sequences214 

22AG and c-myc, the two compounds were dialysed against these structures in our device in 

buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C.  The spectra for 

11 and 9 after equilibration with different types of DNA are reported in Figure 4.4.  
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Figure 4.4 (A) UV-visible spectra for 9 and 11 following equilibration in the presence of 

DNA (B) free and bound ligands at 342 nm and 663 nm also see Section 4.2.4e and 4.2.1i in 

Chapter 2. (C) the absorbance (mainly 9) at 663 nm as a function of equilibration time and 

(D) the absorbance at 342 nm (mainly 11) as a function of equilibration time for 9.7 µM 

22AG (♦), 9.3 µM c-myc (●), 38 µM (dGdC)12●(dGdC)12 (▲), 37 µM (dAdT)12●(dAdT)12 

(■) and buffer (■). 

Figure 4.4A shows the final spectra for the solutions in the 5 holes of the device after 

equilibration. For reference, Figure 4.4B shows the spectra for the free and bound forms of 

both ligands. Figure 4.4C show that changes in absorbance at 342 nm and 663 nm as a 

function of time.  Figure 4.4 shows that the absorbances at 342 nm and 663 nm remain 

constant after approximately 100 hours. Therefore, Figures 4.4 C and D show the equilibrium 

has been achieved after around 100 hours. Figure 4.4C shows the absorbance at 342 nm, 

which is dominated by 11 which shows 11 has affinity toward 22AG (♦).  

The concentrations and apparent affinities of the ligands at equilibrium were determined 

(Table 4.4).    
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Table 4.4: Apparent equilibrium constants K for 9 and 11a simultaneously interacting with 22AG, (dAdT)12●(dAdT)12
 , (c-myc) and 

(dGdC)12●(dGdC)12 
b 

DNA 22AG 
(dAdT)12● 

(dAdT)12 
c-myc 

(dGdC)12● 

(dGdC)12 
buffer 

[DNA]total /  µM 9.7 37 9.3 38 / 
unit conc. quadruplex bp quadruplex bp / 

Ligand 9 11 9 11 9 11 9 11 9 11 

bind. sites / unit conc. 7 11 3.33×10-1 6 4 3.33×10-1 / 

[binding sites]total /M 6.7×10-5 1.07×10-4 1.1×10-5 1.23×10-5 5.5×10-5 3.7×10-5 1.2×10-5 1.27×10-5 / 

A663nm,end(9); A342nm,end(11) 0.4280 0.3865 0.2927 0.3078 0.5200 0.3745 0.3516 0.3070 0.31716 0.2458 

Error 0.0051 0.0046 0.0043 0.0042 0.0096 0.0069 0.0032 0.0057 0.0079 0.0065 
A663nm,bound A342nm, bound 0.1669 0.2084 0.0316 0.1297 0.2589 0.1964 0.0905 0.1289 0.0560 0.0677 

Cbound /µM 3.05 17 0.57 10 4.74 16 1.66 10 / / 
[ligand]free /µM 4.32 7.1 4.32 7.1 4.32 7.1 4.32 7.1 4.32 7.1 

[binding sites]free /µM 64.8 89 11.8 1.68 51.1 21.1 11 2.08 / / 
K / M-1 1.09×104 2.6×104 1.14×104 8.9×105 2.15×104 1.08×105 3.48×104 7.1×105 / / 

a) Concentrations of 11 = 22 µM  and 9 = 8.0 µM. 
b) In buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA)), at 25 °C. 
c) A663nm,bg= 0.0249 A663nm,free =  0.2113 and A663nm, reservoir was 0.2362, εfree = 78000 M-1 cm -1 and εbound = 54618 M-1 cm -1. 
d) A342nm,bg= 0.0107 A342nm,free = 0.1567 and A342nm, reservoir was 0.1674, εfree = 23570 M-1 cm -1 and εbound = 12180 M-1 cm -1. 
e) We assume the number of binding site size in base pairs is 3.0, which means 1 ligand binds to 3 base pairs. 
f) For 9 and 11, we know  the number of binding sites per quadruplex of c-myc are six, four and  for 22AG are seven and eleven, respectively.   
g) The absorbances of the solution in the reservoir at the beginning of the experiment were 0.578(A342 nm) and 0.6568 (A663 nm). 
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Table 4.4 presents the affinities of 9 and 11 for different types of nucleic acid structures. The 

affinity of 9 toward (dGdC)12●(dGdC)12 was confirmed. DAPI (11) has affinity toward 

(dAdT)12●(dAdT)12. Unfortunately, our control shows us and there is a problem related to the 

fading of both 9 and 11. Table 6.4 shows useful affinity differences for 11, but for this couple 

to become an applicable system in a self-assembled nanostructure, 9 should have a higher 

affinity for one of the structures as well.  

4.2.1C Double competition dialysis methods for the quantification of affinities of 11 and 

12 for duplex and quadruplex DNA. 

We became interested in testing other ligands like 12 and to compare it with previous 

competition experiments. we decided to find out whether DAPI (11) and thiazole orange (12) 

have the required relative affinities toward duplex-forming sequences, (dGdC)12●(dGdC)12, 

(dAdT)12●(dAdT)12, and quadruplex-forming sequences 22AG and c-myc, in buffer (25 mM 

MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C. The spectra of 11 and 12 at 

equilibrium, as well as the changes in absorbance as a function of time during equilibration 

for the different types DNA are shown in Figure 4.5.  
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Figure 4.5 (A) UV-visible spectra for 11 and 12 exposed to DNA sequences (B) free and 

bound ligands at 342 nm and 500 nm also see Section 4.2.1e and 4.2.4g in Chapter 2. (C) the 

absorbance at 342 nm (primarily 11) as a function of equilibration time and (D) the 

absorbance at 500 nm (primarily 12) as a function of equilibration time for 12 µM 22AG (♦), 

11 µM c-myc (●), 40 µM (dGdC)12●(dGdC)12 (▲), 40 µM (dAdT)12●(dAdT)12 (■) and buffer 

(■).  

Figure 4.5 presents the final spectra for the solutions in the 5 holes of the device after 

equilibration. For reference, Figure 4.5B shows the spectra for the free and bound forms of 

both ligands. Figures 4.5C and D show the changes in absorbance at 342 nm and 500 nm as a 

function of time. Figure 4.5 shows that the absorbances at 342 nm and 500 nm remain 

constant after approximately 200 hours. Therefore, Figures 4.5C and D show that equilibrium 
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has been achieved after around 200 hours. Figure 4.5C shows that the absorbance at 342 nm, 

which is mainly caused by 11, is highest with c-myc (●). Figure 4.5D shows that the 

absorbance at 500 nm, which is mainly caused by 12, is also highest c-myc (●). Therefore, 11 

and 12 both have their highest affinity for c-myc (●). The concentrations and apparent 

affinities of the ligands at equilibration were determined (Table 4.5).              
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Table 4.5: Apparent equilibrium constants K for 11 and 12 a  interacting with c-myc, (dAdT)12●(dAdT)12
 , (22AG) and 

(dGdC)12●(dGdC)12 
b 

DNA c-myc 
(dAdT)12● 

(dAdT)12 
22AG 

(dGdC)12● 

(dGdC)12 
buffer 

[DNA]total /  µM 11 40 12 40 / 
unit conc. quadruplex bp quadruplex bp / 

Ligand 11 12 11 12 11 12 11 12 11 6.12 
bind. sites / unit conc. 4 12 3.33×10-1 11 10 3.33×10-1 / 
[binding sites]total / M 4.4×10-5 1.3×10-4 1.3×10-5 1.3×10-5 1.3×10-4 1.2×10-4 1.3×10-5 1.3×10-5 / 
A342nm,end(11);A500,end(12) 0.4289 0.3289 0.2318 0.0679 0.2832 0.1297 0.2249 0.1512 0.1084 0.0505 

Error 0.0173 0.0059 0.0035 0.0027 0.0098 0.0024 0.0040 0.0025 0.0024 0.1038 
A342nm,boud; A500nm,bound 0.3184 0.2932 0.1213 0.0322 0.1727 0.0940 0.1144 0.1155 / / 

Cbound /  µM 6.9 6.7 2.6 0.74 3.7 2.1 2.5 2.6 / / 
[ligand] free /  µM 1.05 0.034 1.05 0.034 1.05 0.034 1.05 0.034 1.05 0.034 

[binding sites] free /  µM 37 120 10 12 128 118 10 10 / / 
K / M-1 1.7×105 1.5×106 2.3×105 1.7×106 2.7×104 5.3×105 2.1×105 7.3×106 / / 

a) Concentrations of 11 = 13 µM  and 12 = 1.8 µM. 
b) In buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C.                
c) A342nm, bg= 0.0430 A342nm, free =  0.0675 and A342nm, reservoir was 0.1105, εfree = 64095 M-1 cm -1 and εbound = 45826 M-1 cm -1. 

d) A500nm, bg= 0.0335 A500nm, free = 0.0022 and A500nm, reservoir was 0.0357, εfree = 46095 M-1 cm -1 and εbound = 43185 M-1 cm -1. 

e) We assume the number of binding site size in base pairs is 3.0, which means 1 ligand binds to 3 base pairs. 

f) For 11 and 12, we know  the number of binding sites per quadruplex of c-myc are four, twelve and  for 22AG are eleven and ten, 
respectively.  

g) The absorbances of the solution in the reservoir at the beginning of the experiment were 0.3633(A342 nm) and 0.1386 (A500 nm). 
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Our control shows us that 12 has faded almost entirely during the experiment, meaning that 

concentrations of remaining 12 are very low. This makes our data difficult to interpret 

because error margins on affinities are high. This observation suggests that 11 and 12 are not 

a useful couple for a nanostructure, because of fading.  

4.2.2 Double competition dialysis with stable ligands.   

In this section, we present examples of compounds that are stable when exposed to light. We 

chose the compounds in this section based on properties such as emission and absorption and 

known affinities for nucleic acid structures.  

4.2.2a Double competition dialysis for the quantification of affinities of 5 and 10 for 

duplex- and quadruplex-forming DNA  

Compounds 5 and 10 are promising based on their know affinities, stability as well as optical 

emission and absorption. Both of them are soluble in water and stable. Compounds 5 and 10 

can bind to different nucleic acid structures. Compound 5 has a high affinity to binds to 

quadruplex-forming sequences 22AG. However, Compound 10 binds to poly A●polyT and 

triplex.   

We employed basic yellow (5) and ethidium bromide (10) in combination with duplexes 

(dGdC)12●(dGdC)12, (dAdT)12●(dAdT)12, and quadruplexes 22AG and c-myc, in buffer (25 

mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C.  The spectra of 5 and 10 after 

equilibration were determined and are shown in Figure 4.6. Similarly, the evolution of the 

absorbance at 412 nm and 481 nm is shown in Figure 4.6.  

 

 

 

 

 

 

 

 



Double competition dialysis studies 

 

208 
 

 

Figure 4.6 (A) UV-visible spectra for 5 and 10 following equilibration in the presence of 

DNA (B) spectra for free and bound ligands also see Section 4.2.1e and 4.2.4d in Chapter 2. 

(C)the absorbance at 412 nm (mainly 5) as a function of equilibration time and (D) the 

absorbance at 481 nm (mainly 10) as a function of equilibration time for 8.7 µM 22AG (♦), 

8.9 µM c-myc (●), 34 µM (dGdC)12●(dGdC)12 (▲), 34 µM (dAdT)12●(dAdT)12 (■) and 

buffer (■).  

Figure 4.6A presents the final spectra for the solutions in the 5 holes of the device after 

equilibration. For reference, Figure 4.6B shows the spectra for the free and bound forms of 

both ligands. Figures 4.6C and D show the changes in absorbance at 412 nm and 481 nm as a 

function of time. Figure 4.6 shows that the absorbances at 412 nm and 481 nm remain 

constant after approximately 100 hours. Therefore, Figures 4.6C and D show that equilibrium 
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has been achieved after around 100 hours. Figure 4.6C shows that the absorbance at 412 nm, 

which is mainly caused by 5, is highest with c-myc (●). Figure 4.6D shows that the 

absorbance at 481 nm, which is mainly caused by 10, suggests that 10 has a high affinity for 

c-myc (●). The concentrations and apparent affinities of the ligands after equilibration were 

determined (Table 4.6). 
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Table 4.6: Apparent equilibrium constants K for 5 and 10 a  interacting with 22AG, (dAdT)12●(dAdT)12
 , c-myc and 

(dGdC)12●(dGdC)12
b 

DNA 22AG 
( dAdT)12● 

(dAdT)12 
c-myc 

(dGdC)12● 

(dGdC)12 
buffer 

[DNA]total /  µM 8.7 34 8.9 34 / 
unit conc. quadruplex bp quadruplex bp / 

Ligand 5 10 5 10 5 6.10 5 10 5 10 
bind. sites / unit conc. e,f,g 2 3.33×10-1 2 3 3.33×10-1 / 

[binding sites]total / M 1.7×10-5 1.7×10-5 1.1×10-5 1.1×10-5 1.7×10-5 2.6×10-5 1.1×10-5 1.1×10-5 / 

A412nm,end(5); A481nm,end(10) 0.3544 0.1217 0.3043 0.1235 0.5416 0.1715 0.3256 0.1286 0.3031 0.1046 

Error 0.0027 0.00181 0.0001 0.0005 0.0006 0.002 0.0060 0.0009 0.0017 0.00162 

A412nm, bound;A481nm,bound 0.067 0.0244 0.0169 0.0262 0.2542 0.07424 0.0382 0.0313 0.01577 0.00731 
Cbound /  µM 3.76 5.48 0.949 5.91 14.2 1.67 2.14 7.04 / / 

[ligand] free /  µM 11.1 11.7 11.1 11.7 11.1 11.7 11.1 11.7 11.1 11.7 
[binding sites]free /  µM 13.6 11.9 10.4 5.43 3.56 10 9.19 4.29 / / 

K / M-1 2.4×104 3.9×104 8.2×103 9.3×104 3.5×105 1.4×105 2.09×104 1.4×105 / / 

a) Concentrations of 5 = 28 µM  and 10 = 28 µM. 
b) In buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 25 °C.                
c) A412nm, bg= 0.0191 A412nm, free = 0.2683 and A412nm, reservoir was 0.2874, εfree = 24073 M-1 cm -1 and εbound = 17850 M-1 cm -1. 
d) A481nm, bg= 0.0191 A481nm, free =  0.0782 and A481nm,  reservoir was 0.0973, εfree = 6696 M-1 cm -1 and εbound = 4450 M-1 cm -1. 
e) We assume the binding site size in base pairs is 3.0. 
f) For 5 and 10,  we assume the number of binding sites per quadruplex of 22AG are two and for 5  of c-myc is two.  
g) For 10, we know the number of binding sites per quadruplex of c-myc is three.  
h) The absorbances of the solution in the reservoir at the beginning of the experiment were 0.7081(A412 nm) and 0.2131 (A481 nm). 
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Table 4.6 shows that both 5 has the highest affinity toward c-myc while 10 has the highest 

affinities for c-myc and (dGdC)12●(dGdC)12. Equilibration has been successful considering 

the similar absorbance in the reservoir and in the control hole containing the buffer. However, 

there is a big different between the absorbance in the reservoir at the beginning and the end of 

the experiment. Because these compounds should be stable upon exposure to light, the 

decrease is not attributed to fading but may represent either precipitation of these compounds 

or the compounds stick to the materials used in the device. The affinity for 5 is in reasonable 

agreement with the results from the UV-visible titrations as shown in Chapter 2 which gave 

(Kbinding) of of (1.18 ± 0.21) ×104 M-1. The affinity for 10 is in reasonable agreement with the 

results from the UV-visible titrations as shown in Chapter 2 which gave (Kbinding) of (4.01 ± 

2.60) ×105 M-1. 
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We wanted to evaluate the affinities and selectivities of H33258 (6) and ethidium bromide 

(10) for duplex-forming (dAdT)12●(dAdT)12 and (dGdC)12●(dGdC)12 and quadruplex-

forming 22AG and c-myc in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM 

EDTA), at 25 °C using double competition dialysis. The spectra of 6 and 10 after 

equilibration with the different DNA sequences are shown in Figure 4.7.  Figure 4.7 also 

shows the evolution of the absorbance at 338 nm and at 481 nm. 

 

Figure 4.7 (A) UV-visible spectra for 6 and 10 following equilibration in the presence of 

DNA (B) spectra for the free and bound forms of both ligands (also see Section 4.2.1f and 

4.2.4d in Chapter 2).  (C) the absorbance at 338 nm (mainly 6) as a function of equilibration 

time and (D) the absorbance at 481 nm (mainly 10) as a function of equilibration time for 10 

µM 22AG (♦), 10 µM c-myc (●), 32 µM (dGdC)12●(dGdC)12 (▲), 39 µM 

(dAdT)12●(dAdT)12 (■) and buffer (■). 
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Figure 4.7A presents the final spectra for the solutions in the 5 holes of the device after 

equilibration. For reference, Figure 4.7B shows the spectra the free and bound forms of both 

ligands. Figures 4.7C and D show the changes in absorbance at 338 nm and 481 nm as a 

function of time. Figure 4.7 shows that the absorbances at 338 nm and 481 nm remain 

constant after approximately 300 hours. Therefore, Figures 4.7C and D show that equilibrium 

has been achieved after around 300 hours. Figure 4.2C shows that the absorbance at 338 nm, 

which is mainly caused by 6, is highest with c-myc (●). Figure 4.7D shows that the 

absorbance at 481 nm, which is mainly caused by 10, also suggests the highest for c-myc (●). 

The concentrations and apparent affinities of the ligands at equilibrium were determined 

(Table 4.7). 
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Table 4.7: Apparent equilibrium constants K for 6 and 10 a interacting with 22AG, (dGdC)12●(dGdC)12, c-myc and 
(dAdT)12●(dAdT)12

  b 

DNA 22AG 
(dGdC)12● 

(dGdC)12 
c-myc 

(dAdT)12● 

(dAdT)12 
buffer 

[DNA]total /  µM 10 32 10 39 / 
unit conc. quadruplex bp quadruplex bp / 

Ligand 6 10 6 10 6 10 6 10 6 10 
bind. sites / unit conc. e,f 2 2 3.33×10-1 3 3 3.33×10-1 / 
[binding sites]total /  µM 20 10.7 30 13 / 

A338nm,end(6); A481nm,end(10) 0.3278 0.1248 0.3397 0.123 0.5083 0.1406 0.3027 0.1244 0.2012 0.10207 

Error 0.0073 0.0016 0.0078 0.0016 0.0097 0.0021 0.0063 0.0012 0.0046 0.0018 

A338nm,bound ;A481nm,bound 0.15 0.0209 0.17 0.0191 0.34 0.0367 0.13 0.0205 0.0331 0.00183 
Cbound /  µM 6.14 4.7 6.5 4.2 13 8.2 5.17 4.6 / / 

[ligand]free /  µM 2.99 11.1 2.99 11.1 2.99 11.1 2.99 11.1 2.99 11.1 
[binding sites]free /  µM 13.9 15 4.07 6.3 16.9 21 7.83 8.3 / / 

K / M-1 1.4×105 2.77×104 5.4×105 6.07×104 2.5×105 3.4×104 2.2×105 4.9×104 / / 

a)  Concentrations of 6 = 9.2 µM  and 10 = 27 µM. 
b)  In buffer (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM EDTA), at 25 °C.                
c)  A338nm, bg= 0.0427 A338nm, free = 0.1254 and A338nm, reservoir was 0.1681,  εfree = 42000 M-1 cm -1 and εbound = 26030 M-1 cm -1. 
d)  A481nm, bg= 0.0296  A481nm, free =  0.0743 and A481nm, reservoir was 0.1039, εfree = 6696 M-1 cm -1 and εbound = 4450 M-1 cm -1. 
e)  we assume the binding site size in base pairs is 3.0.  
f) For 10,  we know the number of binding sites per quadruplex of c-myc is three and for 6 and 10 we assume the number of binding 
sites per   quadruplex of 22AG are two. 
g) The absorbances of the solution in the reservoir at the beginning of the experiment were 0.4209(A338 nm) and 0.2006 (A481 nm). 
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Table 4.7 indicates that 6 and 10 have similar affinities toward all nucleic acids with 6 

consistently binding a bit more strongly than 9. On other hand, Table 4.7 shows that the 

absorbance of the buffer as a control and the absorbance of ligands in the reservoir at the end 

are relatively similar, but both differ significantly from the absorbances of the ligands in the 

reservoir at the start of the experiment. Therefore, 6 and 10 faded a lot. That might be related 

to fading or to precipitation, because we keep the solutions inside the device for long time.  

The result of 10 is in agreement with the results from the UV-visible titrations as shown in 

Chapter 3 which gave Kbinding of (4.01 ± 2.60) × 105 M-1.  

4.2.2b Double competition dialysis for the quantification of affinities of 6 and 14 for 

duplex and quadruplex.  

Compounds H33258 (6) and coralyne (14) might form a useful couple of compounds that 

have different affinity to different sequences and also display the required stability.  

Consequently, to explore whether 6 and 14 have the required relative affinities toward nucleic 

acids structures, this experiment involved 6 and 14 in combination with duplex-forming and 

quadruplex-forming sequences c-myc, (dAdT)12●(dAdT)12, 22AG, and (dGdC)12●(dGdC)12 

in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM EDTA), at 25 °C. The spectra of 

6 and 14 after equilibration are shown in Figure 4.8. Figure 4.8 also shows the evolution of 

the absorbance at 338 nm and 423 nm.  

 

Figure 4.8 (A) UV-visible spectra for 6 and 14 following equilibration in the presence of 

DNA. (C) the absorbance at 338 nm as a function of equilibration time and (D) the 
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absorbance at 423 nm as a function of equilibration time for 10 µM 22AG (♦), 10 µM c-myc 

(●), 32 µM (dGdC)12●(dGdC)12 (▲), 39 µM (dAdT)12●(dAdT)12 (■) and buffer (■). 

Figure 4.8A presents the final spectra for the solutions in the 5 holes of the device after 

equilibration. For reference, Figure 4.8B and C show the changes in absorbance at 338 nm 

and 423 nm as a function of time. Figure 4.8B shows that the absorbance at 338 nm is highest 

with c-myc, suggesting that 6 has highest affinity toward c-myc (●) while Figure 4.8C shows 

the higest final absorbance with 22AG, suggesting that 14 has the highest affinity toward 

22AG.  Figures 4.8B and C also show that the absorbance as a function of time shows a lot of 

scatter. We are unsure what caused this scatter.  Unfortunately, we cannot analyse this data to 

find the apparent affinities of the ligands after equilibration. We cannot recorded the UV-

visible titration because the poor solubility of coralyne (14) in buffer. 58, 59, 188 
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4.2.2c Double competition dialysis methods for the quantification of affinities of 10 and 

11 for duplex and quadruplex DNA.  

We select 10 (ethidium bromide) and 11 (DAPI) because of the stability of these compounds. 

To know whether 10 and 11 have different affinities toward duplexes (dAdT)12●(dAdT)12, 

(dGdC)12●(dGdC)12 and quadruplex DNA c-myc and 22AG in buffer (25 mM MOPS, pH 

7.0, 100 mM KCl, and 1 mM EDTA), at 25 °C we carried out a double competition dialysis 

experiment.  The spectra of 10 and 11 after equilibration with different DNA structures are 

shown in Figure 4.9. Figure 4.9 also shows the evolution of the absorbance at 342 nm and 

481 nm.  
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Figure 4.9 (A) UV-visible spectra for 10 and 11 following equilibration in the presence of 

DNA (B) spectra for the free and bound forms of both ligands (also see Section 4.2.4d and 
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4.2.4e in Chapter 2). (C) the absorbance at 342 nm (mainly 11) as a function of time and (D) 

the absorbance at 481 nm (mainly 10) as a function of equilibration time for 10 µM 22AG 

(♦), 10 µM c-myc (●), 32 (dGdC)12●(dGdC)12 (▲), 39 µM  (dAdT)12●(dAdT)12 (■) and  

buffer (■). 

Figure 4.9A presents the final spectra for the solutions in the 5 holes of the device after 

equilibration. Figures 4.9C and D show that equilibrium has been achieved after around 300 

hours. Figure 4.9C shows the absorbance at 342 nm is also similar to the hole containing 

buffer only, this suggests that 11 has negligible affinity for the different DNA sequences. 

Figure 4.9D shows that the absorbance at 481 nm is more or less the same for all sequences 

and for buffer only. This suggests no affinity of 10 for these sequences. The concentrations 

and apparent affinities of the ligands after equilibration were nevertheless determined (Table 

4.8).              
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Table 4.8: Apparent equilibrium constants K for 10 and 6.11a  interacting with 22AG, c-myc, (dGdC)12●(dGdC)12 and 
(dAdT)12●(dAdT)12

 b 

DNA 22AG c-myc 
(dGdC)12● 

(dGdC)12 

( dAdT)12● 

(dAdT)12 
buffer 

[DNA]total /  µM 10 10 32 39 / 
unit conc. quadruplex quadruplex bp bp / 

Ligand 10 11 10 11 10 11 10 11 10 11 
bind. sites / unit conc. e,f,g 2 11 3 4 3.33×10-1 3.33×10-1 / 

[binding sites]total / M 2.0×10-5 1.1×10-4 3.0×10-5 4.0×10-5 1.07×10-5 1.30×10-5 / 

A481nm,end(10); A342nm,end(11) 0.1192 0.3223 0.1189 0.3703 0.1198 0.34255 0.1274 0.32221 0.1177 0.33198 

Error 0.0014 0.0052 0.0014 0.0157 0.0010 0.01084 0.00088 0.00978 0.0024 0.0070 
A481nm,bound ;A342nm,bound 0.0157 0.13585 0.0154 0.1838 0.0163 0.1560 0.0239 0.1357 0.0142 0.1454 

Cbound /  µM 3.54 11 3.47 15 3.68 12 5.37 11 / / 
[ligand]free /  µM 12 6.87 12 6.87 12 6.87 12 6.87 12 6.87 

[binding sites]free /  µM 16 98.8 26 24 6.99 2.15 7.63 1.86 / / 
K / M-1 1.7×104 1.6×104 1.09×104 8.8×104 4.3×104 8.6×105 5.8×104 8.7×105 / / 

a) Concentrations of 10 = 29 µM  and 11 = 14 µM. 
b) In buffer (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM EDTA), at 25 °C.                
c) A481nm, bg= 0.0228 A481nm, free = 0.0807 and A481nm, reservoir was 0.1035, εfree = 6696 M-1 cm -1 and εbound = 4450 M-1 cm -1. 

d) A342nm, bg= 0.0245  A342nm, free =  0.162 and A342nm,  reservoir was 0.1865, εfree = 64095 M-1 cm -1 and ε bound = 45826 M-1 cm -1. 
e) We assume the binding site size in base pairs is 3.0. 
f) For 10 and 11, we know that the number of binding sites per quadruplex of c-myc is three and four, respectively.  
g) for 11 we also know the number of binding sites per quadruplex of 22AG is eleven, but we assume the number of binding 

sites per quadruplex of 22AG is two for 10.  
h) Absorbances of the solution in the reservoir at the beginning of the experiment were 0.3683(A342 nm) and 0.2191 (A481 nm). 
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It appears from Table 4.8 that the 10 has a high affinity toward to (dAdT)12●(dAdT)12 and 

(dGdC)12●(dGdC)12.  However, 11 has no affinity toward DNA. There is a big difference 

between the absorbance of the reservoir and the absorbance in the control hole for ligand 11. 

The control therefore shows us that there is a problem with 11. Therefore, these two ligands 

are not useful for the double competition dialysis.  
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4.3 Conclusion 

We show data for a series of nucleic acid binders, comparing selectivity and affinity obtained 

using double competition dialysis. We show that the assay works well and the results are in 

agreement with the results from the UV-visible titrations (Chapter 2).  The quantification of 

affinities of 5 and 10 for duplex- and quadruplex-forming DNA shows that 5 has affinity 

toward c-myc and 10 has affinity to c-myc and (dGdC)12●(dGdC)12. Equilibration has been 

successful considering the similar absorbance in the reservoir and in the control hole 

containing the buffer. The result for 5 is in reasonable agreement with the results from the 

UV-visible titrations as shown in Chapter 2 which gave (Kbinding) of of (1.18 ± 0.21) ×104 M-1. 

The result for 10 is in reasonable agreement with the results from the UV-visible titrations as 

shown in Chapter 2 which gave (Kbinding) of (4.01 ± 2.60) ×105 M-1. However, the affinities of 

10 and 11 for duplex and quadruplex DNA are not a successful example for the double 

competition dialysis. This is because a big difference between the absorbance of the reservoir 

and the absorbance in the control hole for ligand 11. On the other hand, the control buffer can 

identify problems in this experiment. The typical problem in these experiments is the fading 

of compounds such as methylene blue, thiazole orange and coralyne upon the exposure of 

light. Therefore, stability for the compounds is a very important selection criterion when 

selecting compounds for the competition.  
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4.4 Materials and Methods 

4.4.1 Buffer preparation 

All experiments were carried out in one of 2 buffers, viz. (25 mM MOPS, 50 mM NaCl and 1 

mM EDTA, pH 7.0) or (25 mM MOPS, 100 mM KCl and 1 mM EDTA, pH 7.0). The buffer 

components were purchased from Melford (CAS 1132-61-2), NaCl was purchased from 

Fisher Scientific (CAS 7647-14-5), KCl was purchased from Sigma Aldrich (CAS 7447-40-

7), EDTA was purchased from VWR (CAS 60-00-4). Buffers were titrated with aqueous 

NaOH and KOH. The pH of aqueous solutions was determined using a Hanna 

microprocessor pH 113 pH-meter equipped with a VWR 662-1382 glass electrode. Materials 

were weighed out on a Fisherbrand 4-decimal balance. De-ionised water was produced using 

an ELGA water purifier for all solutions. 

A buffer containing 25 mM MOPS (3-(N-morpholino) propanesulfonic acid) and 50 mM 

sodium chloride (NaCl) was prepared by dissolving MOPS and sodium chloride (NaCl) in 

distilled water and stirring at room temperature until the solid dissolved. A solution of 

sodium hydroxide (NaOH) is used for adjusting the pH to 7.0 and the buffer was made up to 

2 liters in a volumetric flask. 

A buffer containing 25 mM MOPS (3-(N-morpholino) propanesulfonic acid) and 100 mM 

potassium chloride (KCl) was prepared by dissolving MOPS and potassium chloride (KCl) in 

distilled water and stirring at room temperature until the solid dissolved. Potassium hydroxide 

(KOH) was used for adjusting the pH to 7.0 and the buffer was made up to 2 liters in a 

volumetric flask. 

4.4.2 DNA preparation 

Fish sperm DNA was purchased from Acros Organics (CAS 68938-01-2). The stock solution 

of fish sperm DNA was prepared by placing the DNA in buffer and then sonicating the 

suspension of FS-DNA for about 10 minutes to get a homogeneous solution. All DNA 

solutions were dialysed against buffer. The dialysis process for the DNA solution was carried 

out by taking the DNA solution and placing it into dialysis tubing of appropriate pore size 

(3.5 kDa MWCO).189 The dialysis tube was suspended for 24 hours inside a beaker that 

contains the MOPS buffer until the impurities were completely diffused out. The DNA 

concentrations were determined from the absorbance using the extinction coefficient of FS-

DNA of 12800 M-1 cm-1 in terms of base pair molarity as recorded using UV-visible 

spectroscopy at  260 nm.190 
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 The concentration of quadruplex DNA c-myc (dTdGdA dGdGdG dTdGdG dGdTdT 

dGdGdG dTdGdG dGdTdAdA) was determined using UV-visible spectroscopy in terms of 

quadruplex molarity by using the extinction coefficient of 228700 M-1 cm-1 at 260 nm. The 

concentration of 22AG (dAdGdG dGdTdT dAdGdG dGdTdT dAdGdG dGdTdT 

dAdGdGdG) was determined using UV-visible spectroscopy in terms of quadruplex molarity 

by using the extinction coefficient of 228500 M-1 cm-1 at 260 nm.76 The concentration of 

EAD2 (CTG-GGA-GGG-AGG-GAG-GGA) was determined using UV-visible spectroscopy 

in terms of quadruplex molarity by using the extinction coefficient of 189900 M-1 cm-1 at 260 

nm.181 

For the preparation of double-stranded DNA solutions of poly (dAdT) and poly (dGdC), we 

dissolve each sequence in 1 ml of buffer. Then the dialysis process for the DNA solution was 

carried out by taking the DNA solution and placing it into dialysis tubing of sufficient pore 

size (3.5 kDa MWCO). The dialysis tube was suspended for 24 hours inside a beaker that 

contains the MOPS buffer until the impurities were completely diffused out. The DNA 

concentration was determined using UV-visible spectroscopy in terms of base pair molarity 

using the extinction coefficient of 14800 M-1 cm-1 at 254 nm for poly (dGdC) and 12000 M-1 

cm-1 at 260 nm for poly (dAdT).127 Duplexes were then annealed by placing the each DNA 

solution into an eppendorf and placing the eppendorf in a beaker that contains water at 95°C 

allowing to cool down. Finally, we determine the concentration of each solution.  

For single stranded DNA such as poly (dA) and poly (dT), we dissolve each sequence in 1ml 

of buffer in (25 mM MOPS, 50 mM NaCl and 1 mM EDTA, pH 7.0). The dialysis process 

for the DNA solution was carried out by taking the DNA solution and placing it into the 

dialysis tubing of sufficient pore size (3.5 kDa MWCO). The dialysis tube was suspended for 

24 hours inside a beaker that contains the MOPS buffer until the impurities were completely 

diffused out. The DNA concentration was determined using UV-visible spectroscopy and 

using the extinction coefficient of 8600 M-1 cm-1 at 257 nm for single-stranded (dA)24 and 

8520 M-1 cm-1 at 264 nm for single stranded of (dT)24. We then mixed both sequences to form 

one solution in an eppendorf that was then placed in a beaker that contains water at 95°C 

allowing to cool down to room temperature. Finally, the concentration of each solution was 

determined using UV-visible spectroscopy in terms of base pair molarity using the extinction 

coefficient of 12000 M-1 cm-1 at 260 nm for poly (dA) ●poly (dT).127 
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4.4.3 Dialysis units 

Dialysis using dialysis tubing was carried out by taking the DNA solution and placing it into 

the dialysis tube of sufficient pore size (3.5 kDa MWCO). The dialysis tube was suspended 

for 24 hours inside a beaker that contains the MOPS buffer until the impurities were 

completely diffused out.  The dialysis tubing was purchased from Medicell Membranes Ltd, 

MWCO 12-14000 Daltons. Dialysis membrane was also purchased from Medicell 

Membranes Ltd, (MWCO 3500 Daltons) and was used for the dialysis device (double 

competition dialysis), in the middle part of the device.124 

 4.4.4 Competition dialysis data analysis. 

For duplex DNA, [DNA]total is the DNA concentration of FS-DNA, (dAdT)12●(dAdT)12 and 

(dGdC)12●(dGdC)12 in terms of base pairs. For quadruplex DNA, [DNA]total equals the 

concentration of quadruplex structures such as c-myc, 22AG and EAD2 (i.e. not in terms of 

quartets). Depending on the unit of DNA concentrations, we use a binding site size (if the 

concentrations are in units of bp for duplex DNA) or a stoichiometry in units of quadruplex-1 

for the different quadruplexes.  

We expressed the binding site size in term of base pairs and this was typically set to 3.0, 

which means 1 ligand binds to 3 base pairs. For the quadruplexes we have typically assumed 

two binding sites per quadruplex structure. For 9, we knew the number of binding sites per 

quadruplex for c-myc, 22AG and EAD2 (Chapter 2). The stoichiometries are 6 ligands per 

quadruplex of c-myc, 7 ligands per quadruplex of 22AG and 3 ligands per quadruplex of 

EAD2.  

The total concentration of binding sites in solution is given by [binding sites] total. 

[binding sites] total is defined as “binding sites per unit concentration” × the total concentration 

of DNA in the selected unit of concentration. 

 A is the ligand absorbance observed at a specific wavelength (λmax) 

Abound is given by: 

Abound = Aobs-(Abg+Afree) 

Aobs = Abg+Afree+Abound 

Aobs = Abg+ ε free × c free × l + ε bound × c bound × l 
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Aobs-(Abg+Afree) = ε bound × c bound × l 

Subsequently:  

Aobs-(Abg+Afree)  

Aobs is the observed signal for the ligand  

Abg is the background signal or the buffer absorbance  

Afree is the difference (Aobs - Abg) 

We can determine [ligand] bound from A bound / epsilonbound × pathlength 

ligand free = Afree / epsilonfree × pathlength 

 [binding site] free is given by: 

 [binding site size] free = [binding site size] total - [ligand]bound  

To calculate K value: 

K = [ligand]bound / [ligand]free × [binding sites] free 

The absorption is plotted against time to obtain the optimal approximation for signalend and 

kobs from the best fit of a pseudo-first-order kinetic rate model to the data 199 (Equation 1). 

  (signalstart -  signalend) × exp (- 1× kobs × time) + signalend    

(Δ!) e−#$%&' × t + signalend                        Equation 1 

 

The terms in the equation are defined as follows.   

ΔA is the difference between the ligand absorbance and the buffer absorbance, kobs is the 
observed pseudo-first-order rate constant and t is defined as the time in hours. 
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4.5 Equipment 

4.5.1 Spectroscopic studies 

UV-visible spectra were recorded using a Jasco V-630BIO spectrophotometer with a Peltier 

temperature controller. All concentrations were determined in a 1.0 cm cuvette path length at 

25 °C. Ligands concentrations were determined using the extinction coefficient. The stock 

solutions of different ligands were added into 2500 µl of buffer in a 1.0 cm cuvette path 

length at 25 °C. UV-visible spectra in the range 200 - 600 nm were recorded. The absorption 

was kept in the range of 0.1-0.8 a.u. to avoid any non-linearity of signals and precipitation or 

self-aggregation of ligand. The absorptions at selected wavelength λmax were plotted against 

time. The evolution of absorbances as a function of time were analysed in terms of a first-

order kinetics model using Origin 9. 
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Abstract 

This chapter presents an overview and general conclusions of the work described in this 

thesis and an outlook for future work. 

5.1 General conclusions 

The main objective of this project was the development of a custom competition dialysis 

device that allows us to carry out double competition dialysis assays conveniently.                                    

Chapter 2 of this thesis describes our work to determine the extinction coefficients for 

selected optolectronically active π-conjugated molecules in our aqueous buffer solutions. 

These studies also established that eosin b, ponceau s, sulforhodamine, basic fuchsin, basic 

yellow (thioflavin T), ethidium bromide and DAPI are sufficiently stable and soluble in 

aqueous solutions. The extinction coefficients were determined successfully are summarised 

in Table 5.1. 

  

TF1, methylene blue, thiazole orange and DODC were found to fade significantly upon 

exposure to light. We found that different buffers do not affect significantly the sensitivity to 

light, indicating that the buffer does not affect the fading.  Because of limited solubility, we 

also determined the extinction coefficient of TF1 (8) in pure DMSO and pure acetonitrile and 

in aqueous mixtures containing these cosolvents. The extinction coefficients for TF1 (8) in 

aqueous acetonitrile and aqueous DMSO are similar.  

In addition, we describe the binding studies of a series of potential nucleic acid binders from 

a library of available (commercial and in-house synthesised) ligands to double-stranded FS-

DNA and to different quadruplex-forming sequences (c-myc, 22AG and EAD2).                                                                                                                                         

According to UV-visible spectroscopy titrations, eosin b, ponceau s and sulforhodamine 

Compound Extinction coefficients / M-1 cm-1 

eosin b  (57063 ± 457) 
ponceau s  (36355 ± 581) 

Sulforhodamine (84469 ± 563) 
basic fuchsin (79644 ± 192) 

basic yellow (thioflavin T) (24073 ± 135) 
ethidium bromide (6645 ± 65.27) 

DAPI (23570 ± 786) 
H33258 42000 
GB01 33000 

Coralyne 14500 
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show no binding affinity for duplex FS-DNA. For these compounds, the lack of binding is 

because the negative charge of the sulphonate group leads to increase in electrostatic 

repulsion between ligand and DNA. On the contrary, compounds methylene blue (9) with a 

high affinity of 9 duplex FS-DNA with a binding constant of ~ 105 M-1 and TF1 (8) shows a 

moderate affinity for duplex FS-DNA with a binding constant of ~ 103 M-1. At the same time, 

basic fuchsin (4) and basic yellow (thioflavin T) (5) have a high affinity (~ 104 M-1) for DNA.                          

We also investigated the effect of added cosolvents on affinities and we show decreasing 

binding affinity of methylene blue (9) for DNA in the presence of DMSO comparing with 

only buffer. Moreover, the DNA-binding affinity of compound 8 in the presence of DMSO is 

higher (~ 105 M-1) than in the presence of acetonitrile (~ 103 M-1).                                                           

Moreover, compounds 9-11 bind to a specific quadruplex-forming sequences such as c-myc, 

22AG and EAD2. Compound 9 has a higher affinity for c-myc than for 22AG and EAD2. 

The binding stoichiometry for 9 with c-myc was found to be 6 ligands per quadruplex. 

Compound 11 also binds more strongly to c-myc than to 22AG. The binding stoichiometry 

for 11 with c-myc was found to be 4 ligands bind per quadruplex.                                                                            

To investigate the binding mode of 3, 4 and 7 with FS-DNA, we used circular dichroism 

spectroscopy. The interaction of 3 with FS-DNA does not result in an important induced 

circular dichroism signal, which suggests that 3 does not interact strongly with DNA. 

However, we found that the binding modes for 4 and 7 with FS-DNA are intercalation and 

groove binding, respectively.  Finally, ITC shows the affinity of 7 for FS-DNA and suggests 

the presence of at least one binding event.                                                                                               

In Chapter 3, we describe the creation of a dialysis device that works very well and gives 

good affinity data for ligands interacting with nucleic acid structures as evidenced by 

agreement with affinities from UV-visible spectroscopy. Furthermore, we used competition 

dialysis as a test for affinity and selectivity of ligands for nucleic acid structures such as 

quadruplex, c-myc, 22AG and specific duplex-forming sequences such as, 

(dAdT)12●(dAdT)12 and (dGdC)12●(dGdC)12.  We compare the results with the results from 

UV-vis titration (as shown in Chapter 2) and conclude that the results are in reasonable 

agreement.                                                                                                      

Finally, in Chapter 4, we show data for couples of nucleic acid binders, comparing selectivity 

and affinity obtained using double competition dialysis. We show that the assay works well 

and   the results are in agreement with the results from the UV-visible titrations (Chapter 2).  
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On the other hand, the control buffer identifies problems in this experiment. The typical 

problem in these experiments is the fading of compounds such as methylene blue, thiazole 

orange and DODC upon the exposure to light for the long duration of these experiments. 

Therefore, stability for the compounds is very important in order to select compounds for the 

competition.   

5.2 Suggestion and future work 

Important future goals include modifications to the competition dialysis device, such as 

keeping the device inside a closed box during the experiment to reduce exposure of the 

binders to light. Alternatively, we could explore using a less transparent material to construct 

the device. It is also a good idea to test individual dyes and pairs of dyes in the device with 

just buffer in all holes. This experiment will allow us to identify problematic dyes, but will 

also give us a quantitative understanding of intrinsic variability in post equilibration 

absorbances. Moreover, we should understand the fading more. This can be achieved by 

studying fading kinetics and determining the reaction mechanisms of fading of these 

compounds (such as TF1, methylene blue and DODC)  

In addition, other important future goals include the double competition dialysis. We should 

try more compounds with selectivity for different sequences of quadruplex, duplex and 

DNA● PNA hybrid duplexes. We should identify more candidate compounds and potential 

target sequences to enhance the chances of identifying orthogonal recognition couples. A 

further way by which this may be achieved is through further development of the dialysis 

device to hold more different solutions of nucleic acid solutions than the current four (with 

the fifth hole used for the buffer control solution).  

In addition, we have to repeat experiments more than one time to determine the affinity of 

H33258 for quadruplex sequences such as c-myc and 22AG and duplex sequences, such as 

(dAdT)12●(dAdT)12 and (dGdC)12●(dGdC)12.  

Once orthogonal recognition elements have been identified, the self-assembled nanostructure 

can be created. 
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This Appendix to Chapter 2 

 

 

A1 UV-visible titration of compound of 1 

 

 

 

 

 

Table A1 UV-visible titration of 0.015 mM 1 upon addition of 0 – 4.17 mM FS-DNA in 
buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. [DNA]stock = 16.1 
mM, [Ligand]stock = 1.2 mM 

Cumulative added 
volume DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 

[DNA] 
(M) 

[ligand] 
(x10-5 M) 

A520 nm 

0 0 0 0 0 0.024963 

0 30 2405 0 1.51 0.860931 

10 30 2415 6.67E-05 1.5 0.854969 

20 30 2425 0.000133 1.49 0.851524 

35 30 2440 0.000231 1.49 0.847892 

55 30 2460 0.00036 1.47 0.841878 

85 30 2490 0.00055 1.46 0.833937 

125 30 2530 0.000796 1.43 0.8212 

175 30 2580 0.001093 1.4 0.807157 

240 30 2645 0.001462 1.37 0.790369 

315 30 2720 0.001866 1.33 0.770511 

400 30 2805 0.002298 1.29 0.747155 

495 30 2900 0.00275 1.25 0.725424 

600 30 3005 0.003217 1.21 0.702668 

715 30 3120 0.003692 1.16 0.67644 

840 30 3245 0.004171 1.12 0.651607 
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A2UV-visible titration of compound of 2 

 

 
 
 

 

 

Table A2UV-visible titration of 0.016 mM. 2 upon addition of 0 – 4.26 mM FS-DNA in buffer (25 
mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. [DNA]stock = 16.1 mM, [Ligand]stock = 
0.9 mM. 

Cumulative added 
volume DNA (µL) 

Added volume ligand 
(µL) 

Total volume 
(µL) [DNA] (M) [ligand] (x10-5 

M) A520 nm 

0 0 0 0 0 0.0295219 

0 40 2415 0 1.639 0.608532 

10 40 2425 6.64412E-05 1.632 0.607947 

15 40 2430 9.94568E-05 1.628 0.607103 

30 40 2445 0.000197693 1.618 0.606371 

45 40 2460 0.000294732 1.609 0.601195 

65 40 2480 0.00042229 1.596 0.598383 

90 40 2505 0.000578874 1.580 0.593598 

120 40 2535 0.000762698 1.561 0.591259 

155 40 2570 0.000971735 1.540 0.582787 

195 40 2610 0.00120377 1.516 0.575538 

240 40 2655 0.001456452 1.490 0.56534 

290 40 2705 0.001727349 1.463 0.555694 

345 40 2760 0.002014 1.434 0.546512 

405 40 2820 0.002313957 1.403 0.53702 

470 40 2885 0.002624832 1.372 0.527928 

540 40 2955 0.002944325 1.339 0.51264 

615 40 3030 0.003270257 1.306 0.504382 

695 40 3110 0.003600592 1.272 0.490638 

780 40 3195 0.003933446 1.238 0.481089 

870 40 3285 0.004267105 1.204 0.46755 
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A3 UV-visible titration of compound of 3 

 

Table A3 UV-visible titration of 0.0097 mM 3 upon addition of 0 – 3.70 mM FS-DNA in 
buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. [DNA]stock = 16.1 
mM, [Ligand]stock = 0.58 mM. 

Cumulative added 
volume DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 

[DNA] 
(M) 

[ligand] 
(x10-6 M) A563 nm 

0 0 0 0 0 0.0230762 

0 40 2415 0 9.74 0.845436 

5 40 2420 3.33E-05 9.72 0.844315 

20 40 2435 0.000132 9.66 0.839522 

50 40 2465 0.000327 9.54 0.82932 

95 40 2510 0.00061 9.37 0.817463 

150 40 2565 0.000942 9.17 0.799077 

225 40 2640 0.001373 8.91 0.779044 

320 40 2735 0.001885 8.6 0.753538 

435 40 2850 0.002459 8.25 0.725201 

570 40 2985 0.003077 7.88 0.694903 

720 40 3135 0.0037 7.5 0.663657 
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A4 UV-visible titration of compound of 4 

 

 

 

 

 

 

 

 

 

 

Table A4 UV-visible titration of 0.0080 mM 4 upon addition of 0 – 4.25 mM FS-DNA in 
buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. [DNA]stock = 16.1 mM, 
[Ligand]stock = 0.9 mM. 

Cumulative added 
volume DNA (µL) 

Added 
volume 

ligand (µL) 

Total volume 
(µL) [DNA] [ligand] 

(x10-6 M) A539 nm 

0 0 0 0 0 0.027419 

0 20 2395 0 8.021 0.957865 

5 20 2400 3.35667E-05 8.004 0.922753 

10 20 2405 6.69938E-05 7.987 0.898413 

15 20 2410 0.000100282 7.971 0.884886 

25 20 2420 0.000166446 7.938 0.85869 

35 20 2430 0.000232066 7.905 0.848627 

45 20 2440 0.000297148 7.873 0.842011 

60 20 2455 0.000393776 7.825 0.831079 

95 20 2490 0.000614715 7.715 0.807193 

160 20 2555 0.001008971 7.518 0.78183 

310 20 2705 0.001846477 7.101 0.739657 

460 20 2855 0.002595979 6.728 0.70928 

610 20 3005 0.003270656 6.392 0.680763 

860 20 3255 0.004256934 5.901 0.636237 
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A5 UV-visible titration of compound of 5 

 

Table A5 UV-visible titration of 0.011 mM 5 upon addition of 0 – 0.74 mM FS-
DNA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. 
[DNA]stock = 11 mM, [Ligand]stock = 0.070 mM. 

Cumulative 
added 

volume 
DNA (µL) 

Added volume 
ligand (µL) 

Total 
volume 

(µL) 
[DNA] [ligand] (x10-5 

M) A412 nm 

0 0 0 0 0 0.017465 

0 400 2400 0 1.1709 0.29165 

1 400 2401 4.58E-06 1.170 0.28866 

2 400 2402 9.16E-06 1.170 0.297099 

3 400 2403 1.37E-05 1.169 0.286899 

4 400 2404 1.83E-05 1.169 0.284639 

5 400 2405 2.29E-05 1.168 0.286469 

7 400 2407 3.2E-05 1.167 0.280367 

10 400 2410 4.56E-05 1.166 0.27812 

14 400 2414 6.38E-05 1.164 0.273843 

19 400 2419 8.64E-05 1.161 0.268764 

29 400 2429 0.000131 1.157 0.262926 

39 400 2439 0.000176 1.152 0.252965 

54 400 2454 0.000242 1.145 0.245867 

74 400 2474 0.000329 1.135 0.23909 

124 400 2524 0.00054 1.113 0.222239 

174 400 2574 0.000744 1.091 0.212333 
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A6 UV-visible titrations of compound of 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A6 UV-visible titration of 0.018 mM 6 upon addition of 0 – 0.17 mM FS-
DNA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. 

[DNA]stock = 16 mM, [Ligand]stock = 0.44 mM. 

Cumulative 
added 

volume 
DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 
[DNA] [ligand] 

(x10-5 M) A338 nm 

0 0 0 0 0 0.052425 

0 100 2400 0 1.87 0.839554 

1 100 2401 6.66E-06 1.87 0.707175 

2 100 2402 1.33E-05 1.87 0.657087 

3 100 2403 2E-05 1.87 0.606835 

4 100 2404 2.66E-05 1.87 0.585521 

5 100 2405 3.33E-05 1.87 0.570176 

6 100 2406 3.99E-05 1.87 0.558692 

8 100 2408 5.32E-05 1.86 0.546678 

11 100 2411 7.3E-05 1.86 0.551399 

16 100 2416 0.000106 1.86 0.548176 

26 100 2426 0.000171 1.85 0.548244 
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Table A6.1 UV-visible titration of 0.017 mM 6 upon addition of 0 – 0.65 mM FS-
DNA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. 
[DNA]stock = 10 mM, [Ligand]stock = 0.43 mM. 

 

Cumulative 
added 

volume 
DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 
[DNA] [ligand] 

(x10-5 M) A338 nm 

0 0 0 0 0 0.038435 

0 100 2400 0 1.8 0.794067 

1 100 2401 4.1649E-06 1.8 0.730034 

2 100 2402 8.3264E-06 1.79 0.665407 

3 100 2403 1.2484E-05 1.79 0.616172 

4 100 2404 1.6639E-05 1.79 0.580509 

5 100 2405 2.079E-05 1.79 0.556638 

7 100 2407 2.9082E-05 1.79 0.533729 

9 100 2409 3.736E-05 1.79 0.519196 

12 100 2412 4.9751E-05 1.79 0.512089 

17 100 2417 7.0335E-05 1.78 0.508502 

27 100 2427 0.00011125 1.78 0.510529 

42 100 2442 0.00017199 1.76 0.520502 

62 100 2462 0.00025183 1.75 0.519449 

87 100 2487 0.00034982 1.73 0.516946 

122 100 2522 0.00048374 1.71 0.518197 

167 100 2567 0.00065056 1.68 0.514737 
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A7 UV-visible titration of compound of 7 

 

Table A7 UV-visible titration of 0.028 mM 7 upon addition of 0 – 2.90 mM FS-DNA in 
buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. [DNA]stock = 17 
mM, [Ligand]stock = 0.98 mM. 

Cumulative 
added volume 

DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 
[DNA] [ligand] 

(x10-5 M) A331 nm 

0 0 0 0 0 0.033005 

0 70 2445 0 2.83 0.966682 

5 70 2450 3.61E-05 2.82 0.7262 

10 70 2455 7.21E-05 2.82 0.725121 

15 70 2460 0.000108 2.81 0.735498 

20 70 2465 0.000144 2.81 0.749349 

30 70 2475 0.000215 2.8 0.763345 

40 70 2485 0.000285 2.78 0.772927 

50 70 2495 0.000355 2.77 0.780035 

65 70 2510 0.000458 2.76 0.785839 

80 70 2525 0.000561 2.74 0.792399 

105 70 2550 0.000729 2.71 0.796304 

130 70 2575 0.000894 2.69 0.798039 

165 70 2610 0.001119 2.65 0.799567 

200 70 2645 0.001339 2.62 0.799893 

245 70 2690 0.001612 2.57 0.793153 

290 70 2735 0.001877 2.53 0.789441 

340 70 2785 0.002161 2.48 0.781579 

405 70 2850 0.002516 2.43 0.769321 

480 70 2925 0.002905 2.37 0.757858 
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A7.1 ITC of compound of 7 

 

Table A7.1 Thermodynamic parameters for diluting of  7 into MOPS 
buffer, pH 7.0, at 25 °C 

variable initial change? avoid 
0? fit value att. 

changes 

DHdil -1.00E+03 1 y -9.39E+02 196696 

offset 0.00E+00 0 n 0.00E+00 0 

Kdim 0.00E+00 0 n 0.00E+00 0 

DHdim 0.00E+00 0 n 0.00E+00 0 

Kagg 1.00E+04 1 y 1.48E+03 196922 

DHagg -6.00E+03 1 y -9.02E+03 196382 

KA1 0.00E+00 0 y 0.00E+00 0 

DHA1 0.00E+00 0 y 0.00E+00 0 

nA1 0.00E+00 0 y 0.00E+00 0 

KA2 0.00E+00 0 n 0.00E+00 0 

DHA2 0.00E+00 0 n 0.00E+00 0 

nA2 0.00E+00 0 n 0.00E+00 0 

KB1 0.00E+00 0 n.d. 0.00E+00 0 

DHB1 0.00E+00 0 n.d. 0.00E+00 0 

nB1 0.00E+00 0 n.d. 0.00E+00 0 
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Table A7.2 Thermodynamic parameters for binding of 7 to DNA in 
MOPS buffer, pH 7.0, at 25 °C 

 

variable initial change? avoid 
0? fit value att. changes 

DHdil -9.39E+02 0 n -9.39E+02 0 

offset 0.00E+00 0 n 0.00E+00 0 

Kdim 0.00E+00 0 n 0.00E+00 0 

DHdim 0.00E+00 0 n 0.00E+00 0 

Kagg 1.48E+03 0 n 1.48E+03 0 

DHagg -9.02E+03 0 n -9.02E+03 0 

KA1 5.00E+04 1 y 4.48E+05 196696 

DHA1 2.00E+03 1 y -6.45E+03 196922 

nA1 3.00E-01 1 y 8.48E-01 196382 

KA2 0.00E+00 0 n 0.00E+00 0 

DHA2 0.00E+00 0 n 0.00E+00 0 

nA2 0.00E+00 0 n 0.00E+00 0 

KB1 0.00E+00 0 n.d. 0.00E+00 0 

DHB1 0.00E+00 0 n.d. 0.00E+00 0 

nB1 0.00E+00 0 n.d. 0.00E+00 0 
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Figure 1 normalised Ʃdev2/dof for a stepwise self-aggregation model fitted to ITC data for 

dilution of a 0.95 mM solution of 7 into a 25 mM MOPS, 50 mM NaCl, pH 7, 1 mM EDTA 

at 25 °C as a function of ∆Hagg. 

 
 

Figure 2 normalised Ʃdev2/dof for a stepwise self-aggregation model fitted to ITC data for 

dilution of a 0.95 mM solution of 7  into a 25 mM MOPS, 50 mM NaCl, pH 7, 1mM EDTA 

at 25 °C as a function of ΔHdil.                                                                                           
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Figure 3 normalised Ʃdev2/dof for a stepwise self-aggregation model fitted to ITC data for 

dilution of a 0.95 mM solution of 7  into a 25 mM MOPS, 50 mM NaCl, pH 7, 1 mM EDTA 

at 25 °C as a function of Kgg.  

 

Figure 4 normalised Ʃdev2/dof for a stepwise self-aggregation model fitted to ITC data for 

dilution of a 0.95 mM solution of 7  into a 25 mM MOPS, 50 mM NaCl, pH 7, 1 mM EDTA 

at 25 °C as a function of ΔGagg. 
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A8 UV-visible titration of compound of 8 

 

 

 

 

 

 

Table A8UV-visible titration of 0.0029 mM 8 in presence of 1.04 % of acetonitrile 
upon addition of 0 – 1.04 mM FS-DNA in buffer (25 mM MOPS, pH 7.0, 50 mM 
NaCl, 1 mM EDTA), at 25 °C. [DNA]stock1 = 17 mM and  [DNA]stock2 = 1.7 mM, 
[Ligand]stock = 0.28 mM. 

Cumulative 
added volume 

DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 
[DNA] [ligand] 

(x10-6 M) A476 nm 

0 0 2375 0 0 0.027701 

0 25 2400 0 2.93 0.178401 

1 25 2401 7.08E-07 2.93 0.163616 

2 25 2402 1.42E-06 2.93 0.157205 

3 25 2403 2.12E-06 2.93 0.148839 

5 25 2405 3.53E-06 2.93 0.143132 

8 25 2408 5.65E-06 2.92 0.134969 

12 25 2412 8.46E-06 2.92 0.125868 

17 25 2417 1.2E-05 2.91 0.120721 

22 25 2422 1.54E-05 2.91 0.122923 

27 25 2427 1.89E-05 2.9 0.118094 

7.7 25 2432 5.61E-05 2.89 0.109457 

12.7 25 2437 9.23E-05 2.89 0.120128 

22.7 25 2447 0.000164 2.88 0.128531 

32.7 25 2457 0.000236 2.86 0.136591 

47.7 25 2472 0.000342 2.85 0.143664 

72.7 25 2497 0.000515 2.82 0.153688 

107.7 25 2532 0.000753 2.78 0.160581 

152.7 25 2577 0.001049 2.73 0.162239 
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Table A8.1 UV-visible titration of 0.0008 mM 8 upon addition of 0 – 0.44 mM FS-
DNA in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, 9 vol-% DMSO and 1 Mm 
EDTA), at 25 °C. [DNA]stock = 15 mM, [Ligand]stock = 0.0031 mM 

Cumulative 
added 

volume 
DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 
[DNA] [ligand] 

(x10-7 M) A476 nm 

0 0 0 0 0 0.026018 

0 800 2800 0 8.897 0.071762 

1 800 2801 5.36594E-06 8.893 0.070785 

2 800 2802 1.07281E-05 8.890 0.067611 

3 800 2803 1.60863E-05 8.887 0.066927 

5 800 2805 2.67914E-05 8.881 0.066881 

8 800 2808 4.28205E-05 8.871 0.064229 

11 800 2811 5.88154E-05 8.862 0.063979 

15 800 2815 8.00888E-05 8.849 0.063239 

20 800 2820 0.000106596 8.834 0.062852 

25 800 2825 0.000133009 8.818 0.062423 

35 800 2835 0.000185556 8.787 0.06248 

45 800 2845 0.000237733 8.756 0.06083 

55 800 2855 0.000289545 8.725 0.062236 

70 800 2870 0.000366585 8.680 0.060135 

85 800 2885 0.000442825 8.635 0.059629 
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Table A8.2 UV-visible titration of 0.0015 mM 8 upon addition of 0 – 0.45 
mM FS-DNA in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, 9 vol-% 
DMSO and 1 mM EDTA), at 25 °C. [DNA]stock = 15 mM, [Ligand]stock 
= 0.0060 mM 

Cumulative 
added 

volume 
DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 
[DNA] [ligand] 

(x10-6 M) A476 nm 

0 0 0 0 0 0.02038 

0 700 2700 0 1.57 0.10083 

1 700 2701 5.56E-06 1.56 0.09741 

2 700 2702 1.11E-05 1.56 0.09466 

3 700 2703 1.67E-05 1.56 0.09417 

5 700 2705 2.78E-05 1.56 0.09334 

8 700 2708 4.44E-05 1.56 0.08948 

11 700 2711 6.1E-05 1.56 0.08936 

15 700 2715 8.3E-05 1.56 0.08796 

20 700 2720 0.000111 1.55 0.08722 

25 700 2725 0.000138 1.55 0.08718 

35 700 2735 0.000192 1.55 0.08565 

45 700 2745 0.000246 1.54 0.08345 

55 700 2755 0.0003 1.53 0.08337 

70 700 2770 0.00038 1.53 0.08255 

85 700 2785 0.000459 1.52 0.08213 
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A9 UV-visible titrations of compound of 9 

 

Table A9UV-visible titration of 0.0035 mM 9 upon addition of 0 – 4.6 mM 
FS-DNA in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 
25 °C. [DNA]stock = 14 mM, [Ligand]stock = 1.4 mM 

Cumulative 
added 

volume 
DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 
[DNA] [ligand] 

(x10-6 M) A663 nm 

0 0 2000 0 0 0.02248 

0 5 2005 0 3.57 0.30085 

1 5 2006 7.33E-06 3.57 0.269774 

3 5 2008 2.2E-05 3.56 0.252462 

5 5 2010 3.66E-05 3.56 0.240762 

7 5 2012 5.12E-05 3.56 0.232359 

9 5 2014 6.57E-05 3.55 0.228138 

11 5 2016 8.03E-05 3.55 0.22493 

16 5 2021 0.000116 3.54 0.222443 

21 5 2026 0.000152 3.53 0.220084 

26 5 2031 0.000188 3.52 0.218901 

31 5 2036 0.000224 3.51 0.215157 

36 5 2041 0.000259 3.51 0.21633 

46 5 2051 0.00033 3.49 0.214286 

66 5 2071 0.000469 3.46 0.212827 

116 5 2121 0.000805 3.37 0.211435 

166 5 2171 0.001125 3.3 0.208606 

316 5 2321 0.002003 3.08 0.198093 

516 5 2521 0.003011 2.84 0.184381 

716 5 2721 0.003871 2.63 0.174674 

916 5 2921 0.004613 2.45 0.165187 
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Table A9.2 UV-visible titration of 0.0037 mM 9 upon addition of 0 – 0.006 
mM c-myc in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), 
at 25 °C. [c-myc]stock = 0.43 mM, [Ligand]stock = 0.37 mM 
Cumulative 

added 
volume 

DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 
[DNA] [ligand] 

(x10-6 M) A663 nm 

0 0 0 0 0 0.025621 
0 50 2550 0 7.3 0.595289 
1 50 2551 1.69E-07 7.3 0.547168 
2 50 2552 3.37E-07 7.3 0.514325 
3 50 2553 5.05E-07 7.29 0.482571 
5 50 2555 8.41E-07 7.29 0.434554 
7 50 2557 1.18E-06 7.28 0.397027 

10 50 2560 1.68E-06 7.27 0.357836 
13 50 2563 2.18E-06 7.27 0.338535 
17 50 2567 2.85E-06 7.26 0.3342 
22 50 2572 3.68E-06 7.24 0.340724 
27 50 2577 4.51E-06 7.23 0.350041 
37 50 2587 6.15E-06 7.2 0.367759 

Table A9.1UV-visible titration of 0.004 mM 9 upon addition of 0 – 0.19 mM 
FS-DNA in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, 9 vol-% DMSO and 
1 mM EDTA), at 25 °C. [DNA]stock = 19 mM, [Ligand]stock = 0.14 mM 
Cumulative 

added 
volume 

DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 
[DNA] [ligand] 

(x10-6 M) A663 nm 

0 0 2000 0 0 0.019418 
0 70 2070 0 4.88 0.400304 
1 70 2071 9.24E-06 4.88 0.385613 
3 70 2073 2.77E-05 4.88 0.365823 
5 70 2075 4.61E-05 4.87 0.351676 
7 70 2077 6.45E-05 4.87 0.342728 
9 70 2079 8.29E-05 4.86 0.343271 

11 70 2081 0.000101 4.86 0.336805 
16 70 2086 0.000147 4.85 0.327029 
21 70 2091 0.000192 4.83 0.322373 
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Table A9.3 UV-visible titration of 0.0038 mM 9 upon addition of 0 – 0.035 
mM 22AG in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM 
EDTA), at 25 °C. [22AG]stock = 0.37 mM, [Ligand]stock = 0.38 mM 

Cumulative 
added 

volume 
DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 
[DNA] [ligand] 

(x10-6 M) A663 nm 

0 0 0 0 0 0.024336 

0 25 2525 0 3.81 0.321684 

1 25 2526 1.46E-07 3.81 0.317579 

3 25 2528 4.39E-07 3.81 0.311755 

6 25 2531 8.77E-07 3.8 0.298048 

10 25 2535 1.46E-06 3.8 0.2904 

15 25 2540 2.19E-06 3.79 0.283499 

25 25 2550 3.63E-06 3.77 0.271128 

35 25 2560 5.06E-06 3.76 0.262249 

50 25 2575 7.18E-06 3.74 0.255163 

70 25 2595 9.98E-06 3.71 0.248022 

120 25 2645 1.68E-05 3.64 0.2391 

170 25 2695 2.33E-05 3.57 0.233499 

270 25 2795 3.57E-05 3.44 0.223599 
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Table A9.4 UV-visible titration of 0.0051 mM 9 upon addition of 0 – 0.0069 
mM EAD2 in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM 
EDTA), at 25 °C. [EAD2]stock = 0.089 mM, [Ligand]stock = 0.26 mM 

Cumulative 
added 

volume 
DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 
[DNA] [ligand] 

(x10-6 M) A663 nm 

0 0 0 0 0 0.02317 

0 50 2550 0 5.17 0.426721 

5 50 2555 1.74E-07 5.16 0.415568 

10 50 2560 3.48E-07 5.15 0.405448 

15 50 2565 5.2E-07 5.14 0.393989 

20 50 2570 6.93E-07 5.13 0.383441 

25 50 2575 8.64E-07 5.12 0.374234 

30 50 2580 1.03E-06 5.11 0.367119 

40 50 2590 1.37E-06 5.09 0.351191 

50 50 2600 1.71E-06 5.07 0.337987 

60 50 2610 2.05E-06 5.05 0.328734 

70 50 2620 2.38E-06 5.04 0.320336 

80 50 2630 2.71E-06 5.02 0.313191 

90 50 2640 3.03E-06 5 0.307767 

105 50 2655 3.52E-06 4.97 0.300127 

120 50 2670 0.000004 4.94 0.294553 

135 50 2685 4.47E-06 4.91 0.291214 

150 50 2700 4.94E-06 4.89 0.287755 

170 50 2720 5.56E-06 4.85 0.284336 

190 50 2740 6.17E-06 4.81 0.278467 

215 50 2765 6.92E-06 4.77 0.274208 
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      A10 UV-visible titration of compound of 10        

 

  
 

 

 

 

 

Table A10 UV-visible titration of 0.027 mM 10 upon addition of 0 – 0.023 
mM c-myc in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM 
EDTA), at 25 °C. [ c-myc ]stock = 0.34 mM, [Ligand]stock = 0.37 mM 

Cumulative 
added 

volume 
DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 
[DNA] [ligand] 

(x10-5 M) A481 nm 

0 0 0 0 0 0.037602 

0 200 2700 0 2.76 0.221167 

2 200 2702 2.52E-07 2.75 0.213641 

7 200 2707 8.79E-07 2.75 0.21181 

12 200 2712 1.5E-06 2.74 0.207669 

17 200 2717 2.13E-06 2.74 0.204787 

27 200 2727 3.37E-06 2.73 0.197448 

37 200 2737 4.6E-06 2.72 0.191412 

47 200 2747 5.82E-06 2.71 0.185026 

57 200 2757 7.03E-06 2.7 0.179755 

72 200 2772 8.83E-06 2.68 0.172849 

87 200 2787 1.06E-05 2.67 0.166421 

102 200 2802 1.24E-05 2.66 0.162605 

122 200 2822 1.47E-05 2.64 0.156249 

142 200 2842 1.7E-05 2.62 0.15702 

162 200 2862 1.92E-05 2.6 0.154009 

182 200 2882 2.15E-05 2.58 0.149465 

202 200 2902 2.37E-05 2.56 0.153578 
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A11 UV-visible titrations of compound of 11 

 

Table A11 UV-visible titration of 0.019 mM 11 upon addition of 0 – 0.007mM 
22AG in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), at 
25 °C. [22AG]stock = 0.37 mM, [Ligand]stock = 0.7 mM 

Cumulative 
added 

volume 
DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 
[DNA] [ligand] 

(x10-5 M) A342 nm 

0 0 0 0 0 0.028171 

0 70 2570 0 1.95 0.488855 

1 70 2571 1.44E-07 1.95 0.477623 

3 70 2573 4.31E-07 1.95 0.461553 

5 70 2575 7.18E-07 1.95 0.445539 

7 70 2577 1.01E-06 1.95 0.432206 

9 70 2579 1.29E-06 1.95 0.419181 

11 70 2581 1.58E-06 1.95 0.406492 

13 70 2583 1.86E-06 1.94 0.395623 

15 70 2585 2.15E-06 1.94 0.389088 

18 70 2588 2.57E-06 1.94 0.376518 

21 70 2591 3E-06 1.94 0.369977 

26 70 2596 3.71E-06 1.93 0.358677 

36 70 2606 5.11E-06 1.93 0.338019 

46 70 2616 6.51E-06 1.92 0.330084 

56 70 2626 7.89E-06 1.91 0.327357 
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Table A11.1 UV-visible titration of 0.019 mM 11 upon addition of 0 – 
0.025mM c-myc in buffer (25 mM MOPS, pH 7.0, 100 mM KCl, and 1 mM 
EDTA), at 25 °C. [c-myc]stock = 0.34 mM, [Ligand]stock = 2.4 mM 

Cumulative 
added 

volume 
DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 
[DNA] [ligand] 

(x10-5 M) A342 nm 

0 0 0 0 0 0.047873 

0 20 2520 0 1.96 0.510126 

2 20 2522 2.69627E-07 1.96 0.497406 

4 20 2524 5.38827E-07 1.96 0.481601 

6 20 2526 8.07601E-07 1.96 0.47021 

8 20 2528 1.07595E-06 1.95 0.457545 

13 20 2533 1.74497E-06 1.95 0.433789 

18 20 2538 2.41135E-06 1.95 0.411758 

23 20 2543 3.07511E-06 1.94 0.390788 

33 20 2553 4.39483E-06 1.94 0.355235 

43 20 2563 5.70425E-06 1.93 0.324969 

53 20 2573 7.0035E-06 1.92 0.304024 

68 20 2588 8.93354E-06 1.91 0.289233 

83 20 2603 1.08413E-05 1.9 0.282941 

98 20 2618 1.27273E-05 1.89 0.281062 

118 20 2638 1.52085E-05 1.87 0.282079 

138 20 2658 1.76524E-05 1.86 0.276557 

158 20 2678 2.00597E-05 1.85 0.272735 

183 20 2703 2.30189E-05 1.83 0.270489 

208 20 2728 2.59238E-05 1.81 0.26825 
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A12UV-visible titrations of compound of 12 

Table A12 UV-visible titration of 0.0061 mM 12 upon addition of 0 – 
0.0027mM c-myc in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM 
EDTA), at 25 °C. [c-myc]stock = 0.24 mM, [Ligand]stock = 0.7 mM 
Cumulative 

added 
volume 

DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 
[DNA] [ligand] 

(x10-6 M) A500 nm 

0 0 0 0 0 0.022018 
0 20 2520 0 6 0.418617 
1 20 2521 9.52E-08 6.1 0.392908 
2 20 2522 1.9E-07 6.1 0.363493 
3 20 2523 2.85E-07 6.09 0.343658 
4 20 2524 3.8E-07 6.09 0.319716 
5 20 2525 4.75E-07 6.09 0.303139 
7 20 2527 6.65E-07 6.08 0.280882 
9 20 2529 8.54E-07 6.08 0.271141 

14 20 2534 1.33E-06 6.07 0.263451 
19 20 2539 1.8E-06 6.06 0.268503 
24 20 2544 2.26E-06 6.04 0.277617 
29 20 2549 2.73E-06 6.03 0.284707 

 

Table A12.1 UV-visible titration of 0.0083 mM 12 upon addition of 0 – 0.0066 
mM c-myc in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), 
at 25 °C. [c-myc]stock = 0.4 mM, [Ligand]stock = 0.42 mM 
Cumulative 

added 
volume 

DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 
[DNA] [ligand] 

(x10-6 M) A500 nm 

0 0 0 0 0 0.022866 
0 50 2550 0 8.33 0.564345 
1 50 2551 1.57E-07 8.33 0.509113 
2 50 2552 3.13E-07 8.32 0.463323 
3 50 2553 4.7E-07 8.32 0.43757 
4 50 2554 6.26E-07 8.32 0.423453 
6 50 2556 9.39E-07 8.31 0.391805 
8 50 2558 1.25E-06 8.3 0.374462 

10 50 2560 1.56E-06 8.3 0.374582 
13 50 2563 2.03E-06 8.29 0.385841 
18 50 2568 2.8E-06 8.27 0.391768 
33 50 2583 5.11E-06 8.22 0.398861 
43 50 2593 6.63E-06 8.19 0.396215 
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Table A12.2 UV-visible titration of 0.0048 mM 12 upon addition of 0 – 0.003 
mM 22AG in buffer (25 mM MOPS, pH 7.0, 50 mM NaCl, and 1 mM EDTA), 
at 25 °C. [22AG]stock = 0.28 mM, [Ligand]stock = 0.61 mM 

Cumulative 
added 

volume 
DNA (µL) 

Added 
volume 
ligand 
(µL) 

Total 
volume 

(µL) 
[DNA] [ligand] 

(x10-6 M) A500 nm 

0 0 0 0 0 0.021377 

0 20 2520 0 4.88 0.338487 

1 20 2521 1.11E-07 4.88 0.310966 

2 20 2522 2.22E-07 4.87 0.285808 

3 20 2523 3.33E-07 4.87 0.285808 

4 20 2524 4.44E-07 4.87 0.252222 

5 20 2525 5.54E-07 4.87 0.244721 

7 20 2527 7.76E-07 4.87 0.239943 

9 20 2529 9.96E-07 4.86 0.240551 

14 20 2534 1.55E-06 4.85 0.24065 

19 20 2539 2.1E-06 4.84 0.242608 

24 20 2544 2.64E-06 4.83 0.245497 

29 20 2549 3.19E-06 4.82 0.249563 

 

Table A13 the absorbance of 13 and the time exposed to light and oxygen in buffer (25 

mM MOPS, pH 7.0, 50 mM NaCl, 1 mM EDTA), at 25 °C. 

 

 

 

 

 

 

Time (min) Absorbance 
0 0.1355 
2 0.1343 
5 0.1261 

10 0.1127 
15 0.0936 
20 0.0790 
60 0.0598 
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