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Abstract 

Flame cleaning followed by wire brushing is a common treatment for wrought iron; the flame 

combusts existing coatings and spalls oxides while wire brushing removes any debris, producing a 

sound surface for recoating. Although frequently applied, little is known about the effects of the 

treatment on the substrate material and its post-treatment corrosion rate. This study reports scanning 

electron microscope backscattered electron imaging (SEM-BEI) and oxygen consumption corrosion 

rate testing of wrought iron flame cleaned by three practitioners. 

Wrought iron samples treated by two practitioners corrode up to 4 times faster than uncleaned 

control samples. Samples cleaned by one practitioner exhibit no increase in corrosion rate. Torch fuel 

type and temperature attained by the iron are identified as parameters potentially contributing to 

differences in corrosion rates. 

Comparing oxide morphology of treated and untreated samples reveals extensive cracking and 

fragmentation following flame cleaning. This offers multiple pathways for ingress of oxygen and water 

to the metal core to support corrosion. This data simultaneously calls into question the ethics of flame 

cleaning and offers evidence that a ‘safe’ method exists, prompting further research into this popular 

treatment. 
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1. Introduction 

1.1 Conservation of historic wrought iron 

Effective management of heritage assets requires that decision-making is underpinned by empirical 

evidence of the impact of treatments on long-term survival of materials. Historic ironwork, which 

occupies a niche position between heritage and engineering, is frequently exposed to outdoor 

atmospheric corrosion and, in the case of bridges, gates and similar structures, may be required to 

perform a distinct structural function. Sector guidance to direct practice is based largely on anecdotal 

evidence and established methods (Ashurst and Ashurst 1988; Blackney and Martin 1998; Davey 2007; 

Davey 2009; Mitchell 2005; Schütz and Gehrke 2008; Watkinson et al. 2005; Wilson et al. 2010). 

International and British Standards relate to modern steels (ASTM 2008; British Standards Institute 

2000; 2007), their application to historic ferrous metals being complicated by differences in metallurgy 

and lack of concession to conservation ethics (Canadian Association for the Conservation of Cultural 



Property 2000; American Institute for Conservation of Historic and Artistic Works 1994; International 

Council of Museums 1984). 

Recognition that corrosion of iron degrades its functional and aesthetic properties, leading to failures 

of structures and objects, is long standing with treatments applied to iron historically to increase its 

useful lifespan. In theory, reducing the rate of atmospheric corrosion of metals is achievable by: 

modifying the environment to make it less corrosive; exploiting electrochemical principles to suppress 

anodic or cathodic reactions; or by separating the metal from the corrosive environment and 

introducing a large resistance to impede ion transport between anode and cathode (Scully 1990; 

Mayne 1954). In practice, modern techniques for corrosion prevention of historic iron continue to 

centre on the application of organic coatings, effectively separating the metal from its exposure 

environment and exploiting electrochemical principles. 

Adhesion is crucial for successful anti-corrosion performance of organic coatings and can be 

maximised by thorough surface preparation, with clean metal surfaces or sound metal oxides ideal for 

wetting due to their high surface energies (Bierwagen and Huovinen 2010). Surface preparation 

techniques are therefore integral to conservation treatments for historic ironwork and aim to remove 

existing paint layers and corrosion products prior to recoating, optimising performance and longevity 

of protective coatings. Methods of surface preparation include: blasting at high pressure with abrasive 

media or dry ice; immersion in alkaline solution baths to dissolve paint layers; wire brushing or needle-

gunning to abrade flaking coatings and corrosion products; and flame cleaning. 

 

1.2 Flame cleaning 

Flame cleaning uses a torch flame to combust paint layers and heat the surface of the object. The 

metal core expands more than the overlying corrosion products with the increased temperature, 

causing the corrosion products to spall from the surface. Wire brushing removes any remaining loose 

corrosion products. Increasing focus on ethical and environmentally friendly practices have sparked a 

resurgence in popularity of flame cleaning thanks to its perceived advantages over alternative 

techniques. These include: minimal loss of original historic material; retention of protective oxides; 

ease of use on-site; controllability; ready availability of equipment; minimal detritus of operation; and 

cost effectiveness. 

Despite anecdotal treatment successes, prior research identified increased corrosion rates of wrought 

iron following flame cleaning (Emmerson and Watkinson 2016) as measured via oxygen consumption 

(Emmerson and Watkinson 2014; 2016; Watkinson and Rimmer 2014). Laboratory flame cleaned iron 

corroded up to four times faster than untreated, abrasive blasted or chemically stripped iron. The 

widespread use of flame cleaning and its potential to drive corrosion rates of ironwork, ultimately 

leading to loss of heritage structures, makes empirical investigation of the treatment an important 

issue for conservation science. 

 

1.3 Aim and objectives 

This research investigated the impact of flame cleaning on the post-treatment corrosion of historic 

wrought iron by: 

• Recording flame cleaning of historic wrought iron samples by three historic ironwork 

conservation practitioners; 



• Imaging oxide morphology pre- and post-treatment by scanning electron microscopy; 

• Measuring oxygen consumption of individual flame cleaned and uncleaned samples at high 

relative humidity (RH) as a proxy corrosion rate; 

• Correlating experimental results to practitioner treatment methods. 

 

2. Method 

2.1 Sample material 

Historic wrought iron was used as the sample material to avoid the pitfalls of analogous samples and 

ensure direct applicability of results to heritage practices. Mid-19th century rolled wrought iron plate 

from the Kings Cross/St Pancras gasometer was sourced. Optical and scanning electron (CamScan 

Maxim 2040) microscopy confirmed this to be wrought iron due to the presence of stringers of slag. 

X-ray diffraction (PANalytical X’Pert Pro (Cu Kα)) of the corrosion products on untreated samples 

identified magnetite, goethite and lepidocrocite consistent with corrosion products reported on iron 

subjected to atmospheric corrosion (Bouchar et al. 2014). 

The gasometer plates are of consistent thickness (4mm) and samples (30mm x 40mm x 4mm) were 

cut using a water-cooled cutting process to minimise temperature increase and associated changes in 

microstructure of the iron. Historic wrought iron is by nature an inhomogeneous material (Dillmann 

et al. 2004) and local differences in microstructure and slag distribution are possible. Producing all 

samples from the same rolled sheet minimised likelihood of large compositional variations. 

 

2.2 Flame cleaning 

Eight samples were flame cleaned by each of three practitioners according to their preferred method. 

All practitioners applied the flame to the surfaces of the samples and intermittently brushed the 

samples surfaces with a steel wire brush. Duration of application of the flame varied between 

practitioners. The colour of the metal during cleaning was recorded as an indicator of temperature. 

The specifics of these methods were recorded for comparison. 

 

2.3 Examining corrosion product morphology 

Samples of uncleaned and practitioner cleaned samples were embedded in Struers Epofix resin and 

cross-sectioned using a Struers Minitom precision cut-off machine. Sections were polished (600-

0.25μm polishing cloths), carbon coated and imaged in BEI mode using a CamScan Maxim 2040 

scanning electron microscope (SEM) equipped with Oxford Instruments energy and wavelength 

dispersive X-ray spectrometers (Oxford Link Pentafet 5518 Caesium™ 7.2.17). 

 

2.4 Oxygen consumption corrosion rate measurement 

Flame cleaned and uncleaned control samples were enclosed individually in airtight reaction vessels 

(250ml Mason Ball glass jars with plastic coated brass sealing discs tightened with threaded outer 

sealing rings of brass) containing 160g silica gel conditioned to 90% RH. To the interior wall of each 

vessel was adhered an oxygen sensitive spot (World Precision Instruments (WPI) part #503090 

adhered with Radio Spares RTV silicone rubber compound). A watch glass separated each sample from 



the silica gel. The reaction vessels were stored in a Binder KBF240 climate chamber at a constant 20 

±0.5oC to avoid RH fluctuations within vessels due to temperature change. MadgeTech RHTemp 101A 

dataloggers recorded internal vessel conditions confirming 90 ±3% throughout the test period for all 

vessels. 

Oxygen concentration within each vessel was measured at regular intervals over a 108-day period 

using a WPI OxyMini meter with fibre optic cable (WPI OXY-MINI-AOT with cable #501644). The 

accuracy of the oxygen measurements is ±2mbar at 210mbar (atmospheric oxygen pressure) and 

increases with decreasing oxygen pressure. Negligible ingress of oxygen has been shown in control 

vessels filled with nitrogen over this time period, indicating a low leakage rate (Watkinson and Rimmer 

2014). 

 

3. Results 

3.1 Practitioner methods and prepared samples 

Examining the video recordings of practitioner flame cleaning allowed identification of parameters of 

operation and individual methods (Table 1). There were notable differences which centred on the 

variables of torch fuel, temperature of the metal and duration of flame application which is linked to 

determination of end point. Prepared samples show a distinct colour change to red oxides after 

treatment (Figure 1). 

 

Table 1: Parameters of flame cleaning by practitioners A, B and C 

PRACTITIONER TORCH METAL 
COLOUR 
DURING 
CLEANING 

ESTIMATED 
MAX. 
TEMPERATURE 
OF THE METAL 
(OC) 

DURATION 
OF FLAME 
APPLICATION 
TO SURFACE 
(SECONDS) 
 

DETERMINATION 
OF END POINT 

A Oxypropane 
(oxygen 
cutting 
boost) 
 

Dull red 500 c.20-30  Visual cleanliness 

B Oxypropane 
(oxygen 
cutting 
boost) 
 

Grey <150 <10 Cessation of 
luminescence of 
coatings and 
oxide vestiges 
under flame  
 

C Oxyacetylene 
(no oxygen 
boost) 
 

Dull/ 
cherry red 

700 c.50-60 No further 
corrosion 
removable or 
coating visible 
 

 



 

Figure 1. Samples after preparation by practitioner A (a), practitioner B (b) and practitioner C (c) and 

uncleaned sample (d) 

 

3.2 Post-treatment oxide morphologies 

SEM-BEI images of cross-sectioned treated and untreated samples (Figure 2) evidence a reduction in 

oxide layer thickness for all treated samples relative to untreated. Reduction in thickness is least 

evident in the sample prepared by Practitioner B (Figure 2c,g) and most evident for Practitioner A 

(Figure 2b,f). Oxides remain in pits on all treated samples. Whilst a small degree of oxide layer micro-

cracking can be observed for the uncleaned sample (Figure 2a,e), cracking and fragmentation is 

extensive for oxide layers on all treated samples. Cracks have increased in both number and size post-

treatment. 

 



 

Figure 2. SEM-BEI of untreated (a,e), and practitioner A (b,f), practitioner B (c,g) and practitioner C 

(d,h) cleaned samples at 50x (a-d) and 150x (e-h) magnification 

 

3.3 Oxygen consumption measurements 

All practitioner flame cleaned and uncleaned samples consumed oxygen during the test period (figures 

3-6). Consumption is characterised by a faster initial rate which slows over time for all flame cleaned 

samples (figures 3-5). Uncleaned samples exhibit a more constant oxygen consumption rate over the 

test period (Figure 6). 



 

Figure 3. Oxygen consumption of wrought iron samples flame cleaned by practitioner A over the 

test period of 108 days. The shape of the plot for sample A2 indicates failure of the reaction vessel 

seal 

 

 

Figure 4. Oxygen consumption of wrought iron samples flame cleaned by practitioner B over the 

test period of 108 days 
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Figure 5. Oxygen consumption of wrought iron samples flame cleaned by practitioner C over the 

test period of 108 days 

 

 

Figure 6. Oxygen consumption of uncleaned wrought iron samples over the test period of 108 days 
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Examining boxplots of oxygen consumption calculated by sample mass (to minimise influence of minor 

discrepancies in sample dimension) over the test period for all flame cleaned and uncleaned samples 

(Figure 7) indicates that uncleaned samples and those prepared by practitioner C share similar, lower 

oxygen consumption rates, with smaller consumption ranges between samples. Samples prepared by 

practitioners A and B exhibit comparable oxygen consumption ranges if outlier A8 is included (sample 

numbers argue for this) with practitioner B samples having a slightly larger range around a similar 

median value and particularly above it. 

 

 

 
 

Figure 7. Boxplot showing the oxygen consumption rate of the wrought iron samples flame cleaned 

by practitioners A, B and C and of uncleaned samples over the test period of 108 days calculated as 

mbar yr-1 g-1 for all samples. Sample A2 has been removed from the dataset as leakage of the 

reaction vessel was identified (Figure 3) 

 

4. Discussion 

4.1 Corrosion product morphology 

Macroscopically, the extent and form of corrosion products on wrought iron surfaces is not altered 

greatly by flame cleaning, a colour change (to brighter orange/red) being the most noticeable aspect 

(Figure 1). At high magnification, an extensive fragmentation of corrosion product layers is evident 

relative to uncleaned samples (Figure 2). While differential expansion of oxides and metal substrate 

describes the mechanism by which loosely adhering corrosion products are spalled from the surface 

of wrought iron, it has likely also caused this fracturing and cracking of closely adhering oxide layers. 



This then offers pathways for ingress of oxygen and water to the metal surface which allows corrosion 

to occur. Capillaries of small diameter increase corrosion risk by reducing the RH at which 

condensation can occur (down to 50% RH in capillaries of 1.5nm) (Garverick 1994), hence increasing 

the number of micro-cracks may increase corrosion in treated samples. 

 

4.2 Oxygen consumption and corrosion rates 

As tests have shown that nothing in the experimental set-up consumes oxygen (Emmerson and 

Watkinson 2014; Watkinson and Rimmer 2014; Emmerson and Watkinson 2016), any oxygen 

consumed during the test period may be attributed to corrosion. Thus, rate of oxygen consumption is 

a proxy measure for corrosion rate. Samples cleaned by practitioners A and B showed a considerably 

higher corrosion rate than uncleaned samples and those cleaned by practitioner C (Figure 7). This 

indicates that the flame cleaning methods employed by practitioners A and B have increased the 

corrosion rate of the wrought iron relative to leaving the material untreated. Corrosion rates of 

uncleaned samples and those cleaned by practitioner C are not significantly different, with ranges 

overlapping and practitioner C cleaned samples having a slightly lower median value. The clear 

implication is that the flame cleaning method employed by practitioner C has not increased the 

corrosion rate of the wrought iron samples beyond their uncleaned corrosion rate.  

 

4.3 Influence of practitioner methods on post-treatment oxide morphologies and corrosion rates 

Temperature attained during cleaning is likely more important than duration of flame application. No 

practitioner could state with confidence the metal temperature during cleaning but there were 

noticeable differences between methods. Samples cleaned by practitioner B did not exceed 150oC and 

oxides are unlikely to have been affected beyond the influence of differential thermal expansion. 

Samples cleaned by practitioner A and C reached approximately 500 and 700oC respectively. It is 

unlikely that changes in the microstructure of this wrought iron would arise from heating to these 

temperatures (North et al. 1976). 

Corrosion product transformations may occur at elevated temperatures; goethite to haematite has 

been reported at 240-250oC (Ruan et al. 2002) and lepidocrocite to maghemite at c. 200oC which is 

metastable and transforms again to haematite at 500oC (Gehring and Hofmeister 1994). 

Transformation of oxides may explain the characteristic bright red/orange colour of the corrosion 

products observed within c.60 seconds of flame cleaning a sample (Figure 1). Decomposition of 

chloride-containing iron oxides at temperatures above 380oC has been reported (North and Pearson 

1977; Kanungo and Mishra 1996). It is not expected that these samples contain large quantities of 

chloride and the duration of high temperature exposure during flame cleaning may not be sufficiently 

long to support decomposition. Should this be a factor influencing corrosion rates of these samples, 

the increased corrosion rate of practitioner A samples suggests that the temperature required is 

perhaps towards the 700oC attained by practitioner C samples. 

Clear differences in the extent of oxide remaining post-treatment are evident between practitioners 

(Figure 2). Least reduction in oxide thickness is evident on samples treated by practitioner B, likely due 

to low treatment temperatures and short duration of cleaning. Higher temperatures and longer 

treatment durations for practitioners A and C led to greater reduction in oxide thickness. There is no 

direct correlation between these parameters and the extent of oxide removal (being greater for 

practitioner A than practitioner B despite slightly reduced treatment time and temperature). It is 



worth noting that the treatment variable not considered here is length and vigour of wire brushing 

which probably influences removal of oxides. 

The treatment parameter which separates practitioners A and B from C, possibly accounting for 

corrosion rate differences, is the nature of the torch and its fuel. Practitioners A and B used 

oxypropane torches with oxygen boost settings to increase flame temperature. Practitioner C used an 

oxyacetylene torch with no oxygen boost. Oxyacetylene flame temperature is generally higher than 

oxypropane although the temperature of the oxypropane torches with oxygen cutting boost is not 

known. The combustion reaction equations for acetylene [1] and propane [2] support anecdotal 

reports from practitioners that propane burns with a ‘wetter’ flame which is feared to introduce water 

to oxide layers and increase post-treatment corrosion. 

2H2C2 (g) + 5O2 (g) → 4CO2 (g) + 2H2O (g)        [1] 

C3H8 (g) + 5O2 (g) → 3CO2 (g) + 4H2O (g)       [2] 

 

4.4 Flame cleaning in practice 

Examining practitioner methods reveals that flame cleaning is carried out in an ad hoc manner with a 

range of methods employed and different philosophical approaches. Torch choice may be based on 

availability and cost; oxyacetylene is more expensive than oxypropane. Use of the oxygen boost flame 

with the oxypropane torch was deliberate to increase flame temperature and burn off paint layers 

more quickly. Flame application time must relate to extent of corrosion product and amount and 

nature of existing coatings but also to the philosophy of the practitioner. Practitioner B was concerned 

with conservation ethics, preserving historic evidence within the metallographic structure and the 

concept that the metal last attained red heat during forging. This concern led to the shortest treatment 

duration and lowest metal temperature. Practitioners A and C did not express concern over the 

heating of the historic iron in relation to the material or conservation principles. This divergence, one 

practitioner using ethics to dictate end points and two others using appearance, apparently ignores 

any interpretation or conception of physical or chemical outcome for the metal and relation to 

subsequent application of coatings. 

A high level of experience and knowledge of the materials and their properties does not prevent a 

‘technician’ approach to work. Unless an agreement is in place for maintenance work by the same 

practitioner, an individual may never be in situ to judge long-term implications of decisions and 

practices. Training directs practitioner thought processes; conservation trained practitioner B was 

more thoughtful regarding impacts of decisions on retention of historic evidence, for example. It may 

be through training that a synergy of practical experience and understanding of chemical and physical 

processes can be produced to improve both practice and researcher knowledge. Practitioners are an 

invaluable source of information regarding wrought iron, its properties and responses to treatment. 

Flame cleaning is a precursor to application of protective coatings. Although it is important to 

understand the corrosion rate of the substrate material, what is missing from this study is investigation 

of the performance of coatings applied to the flame cleaned substrates. Differences in adhesion of 

coatings to these sample surfaces pre- and post-treatment, plus measurement of their corrosion rates 

once coated, is required.  

 

5. Conclusion 



The popularity of flame cleaning is due to numerous practical and ethical advantages over other 

surface preparation techniques for historic wrought iron. This study has demonstrated that 

practitioner methods are variable and are highly influential when considering post-treatment oxide 

morphology and corrosion rates of uncoated material. It has been shown that there is a method by 

which flame cleaning can be applied without increasing the corrosion rate of the iron but as yet the 

parameters of this method cannot be identified. Results reported here indicating an increased post-

treatment corrosion rate must introduce a note of caution to recommendations for use of flame 

cleaning. With the support of the practitioners, work continues at Cardiff University to identify optimal 

treatment parameters for flame cleaning and produce guidelines for the safe treatment of historic 

wrought iron. 
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