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ABSTRACT Cytotoxic T lymphocyte (CTL)-mediated killing involves the formation of a synapse with a target cell, followed by
delivery of perforin and granzymes. Previously, we derived a general functional response for CTL killing while considering that
CTLs form stable synapses (i.e., single-stage) and that the number of conjugates remains at steady state. However, the killing of
target cells sometimes requires multiple engagements (i.e., multistage). To study how multistage killing and a lack of steady
state influence the functional response, we here analyze a set of differential equations as well as simulations employing the
cellular Potts model, in both cases describing CTLs that kill target cells. We find that at steady state the total killing rate
(i.e., the number of target cells killed by all CTLs) is well described by the previously derived double saturation function.
Compared to single-stage killing, the total killing rate during multistage killing saturates at higher CTL and target cell densities.
Importantly, when the killing is measured before the steady state is approached, a qualitatively different functional response
emerges for two reasons: First, the killing signal of each CTL gets diluted over several targets and because this dilution effect
is strongest at high target cell densities; this can result in a peak in the dependence of the total killing rate on the target cell
density. Second, the total killing rate exhibits a sigmoid dependence on the CTL density when killing is a multistage process,
because it takes typically more than one CTL to kill a target. In conclusion, a sigmoid dependence of the killing rate on the
CTLs during initial phases of killing may be indicative of a multistage killing process. Observation of a sigmoid functional
response may thus arise from a dilution effect and is not necessarily due to cooperative behavior of the CTLs.
INTRODUCTION
Cytotoxic T lymphocyte (CTL)-mediated killing of tumor
and virus-infected cells generally involves four steps: local-
ization of the target cell; formation of a specialized junction
with the target (called a ‘‘cytotoxic synapse’’); delivery of
effector molecules, such as perforin and granzymes; and
detachment from the dying target, followed by resumption
of the search for new targets. The functional response of
CTL-mediated killing is defined as the rate at which a single
CTL kills target cells as a function of the CTL and target cell
frequencies, and has been studied using mathematical
models that are analogous to enzyme-substrate kinetics
(1–4). In such models, the conjugates (i.e., CTLs and target
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cells that are bound by a synapse between them) either
dissociate prematurely resulting in a naı̈ve target cell, or
proceed to target cell death. Thus, targets were assumed to
be killed after a single cytotoxic synapse during which a
lethal hit is delivered.

However, recent in vivo experiments using intravital two-
photon microscopy revealed that virus-infected cells break
their synapses with CTLs, and tend to be killed during sub-
sequent conjugates with other CTLs (5). In these experi-
ments, CTLs rarely formed stable synapses and remained
motile after contacting a target cell. The probability of death
of infected cells increased for targets contacted by more
than two CTLs, which was interpreted as evidence for
CTL cooperation (5). Similarly, with in vitro collagen gel
experiments, ~50% of the HIV-infected CD4þ T cells re-
mained motile and broke their synapses with CD8þ

T cells (6). This study further suggested that the avidity be-
tween TCRs and pMHCs plays an important role in the
stability of the synapse: an increase in the peptide concen-
tration used for pulsing the target cells, or an increase of
Biophysical Journal 112, 1221–1235, March 28, 2017 1221

mailto:skgadhamsetty@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2017.02.008&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.bpj.2017.02.008


Gadhamsetty et al.
the avidity of the peptide, increased the killing efficiency of
the first target cell encounter by a CTL (6). In analogy to the
short-lived kinapses between T cells and dendritic cells
presenting antigen with intermediate or low affinity (7–9),
these short-lived cytotoxic synapses have been called ‘‘kin-
apses’’ (5). Thus, depending on the antigen concentration
and the avidity of the interaction, the killing of a target
cell may take several short kinapses (hereafter referred to
as ‘‘multistage’’ killing), rather than the one long synapse
(hereafter referred to as ‘‘single-stage’’ killing) that was
assumed in the modeling hitherto (1–4).

Additionally, models of CTL-mediated killing typically
derive the functional response of CTL-mediated killing
by making a quasi-steady-state assumption (QSSA) and
consider situations where the number of conjugates remains
close to steady state, or changes slowly (1,2,4). This
assumption is likely to be violated in experiments where
fresh target cells and CTLs are mixed, because the first con-
jugates can only be formed after these cells have found each
other. When synapses are long lived, it may take a long time
before the number of conjugates in the experiment ap-
proaches steady state (4). Moreover, during the acute stage
of an infection the number of target cells is increasing, and
additional CTLs are arriving from the circulation, which
may undergo further clonal expansion. In these examples,
it seems unlikely that the total number of conjugates is at
(quasi) steady state, and it is unclear how the lack of steady
state influences the functional response.

Here, we study how multistage killing and the early
killing kinetics before reaching steady state affect the func-
tional response. To this purpose, we adapt our previous sim-
ulations in which realistically shaped CTLs and targets
migrate and interact in a two-dimensional (2D) environment
(4) in two ways. First, the target cells accumulate the killing
signal during consecutive short-lived kinapses rather than
long-lived synapses with CTLs, until a threshold of killing
signal is reached upon which they are killed. Second, we
study the effect of the steady state by comparing the killing
during the last and the first period of the simulations, repre-
senting the scenarios when the killing kinetics are or are not
at steady state, respectively. To corroborate the spatial simu-
lation results, we also analyze a set of ordinary differential
equations (ODEs) for a well-mixed system.

When the killing is at steady state, our simulations show
that the multistage killing only affects the results in a quan-
titative manner. Thus, the double saturation function, previ-
ously identified to describe single-stage killing (4), also well
describes the numbers of cells killed observed in multistage
killing simulations. For a given killing signal threshold, we
find higher saturation constants during multistage than in the
single-stage killing simulations—a result that we confirm
analytically. In contrast, when the CTL-mediated killing is
not at steady state, the functional response exhibits a sig-
moid dependence of the killing rate on the CTL density,
and the dependence on the target cell density contains a
1222 Biophysical Journal 112, 1221–1235, March 28, 2017
peak. Both modifications to the functional response can
mathematically be described by phenomenologically adding
exponents to the double saturation function. We conclude
that the observed killing rate critically depends on the phase
during which measurements are taken, i.e., before or after
approaching steady state. Importantly, short-lived cytotoxic
synapses are expected to result in a sigmoid dependence of
the killing rate on CTL densities that looks like cooperative
killing.
MATERIALS AND METHODS

Spatial simulations

To determine the functional response of CTL-mediated killing resulting

from multistage killing, we perform 2D cellular Potts model (CPM) simu-

lations (10,11) that are similar to those in our earlier study (4). The major

differences are 1) the stability of the synapse, and 2) the time at which the

killing rate is assessed. Briefly, each cell in the CPM is a collection of mul-

tiple lattice sites, with surface energies on the edges of a cell determining its

interactions with neighbors. We consider a 2D torus of 500 � 500 pixels,

where the length of each pixel corresponds to 1 mm, and is composed of

static circular elements representing the reticular network in lymph nodes,

2250 CTLs, 2250 B cells as targets, and an extracellular matrix. We perform

simulations with different numbers of antigen-bearing target cells and their

cognate CTLs, while keeping the total number of CTLs and target cells con-

stant (2250 cells each). After initializing the simulation field with CTLs and

target cells at random locations, we let the CTLs and target cells migrate for

40 s. After this burn-in phase, CTLs are allowed to kill target cells. Each

CTL and B cell is assigned a preferred direction of migration, which is

updated once in every 3 min based on its recent direction of migration, re-

sulting in a self-adjusting motility (12). We consider four scenarios of

killing depending on the number of CTLs and target cells in a conjugate:

monogamous, joint, simultaneous, and mixed. All the names of these sce-

narios are chosen from the perspective of CTLs. In monogamous killing,

only conjugates of one CTL and one target cell are allowed to form. In joint

killing, a target cell can be bound and jointly killed by multiple CTLs but a

CTL can only kill a single target cell at a time. Simultaneous killing is the

inverse scenario to joint killing, in which a single CTL can simultaneously

bind and kill multiple target cells but a target cell can only be killed by one

CTL. Finally, in the mixed killing scenario (i.e., a mix of joint and simul-

taneous scenarios), there are no restrictions and conjugates of multiple

CTLs and multiple target cells are allowed to form. In all our simulations,

we specify whether more than one CTL or target cell are allowed in a con-

jugate, but the maximum number of CTLs and target cells in a conjugate

emerges in the simulations.

As in our earlier study (4), we mimicked single-stage killing by aiming

for stable conjugates through increasing the adhesion upon contact forma-

tion (where a contact occurs when a cell has at least one pixel that directly

touches the neighboring cell), and by stopping the active migration of cells

in conjugates. However, note that in such CPM simulations conjugates still

occasionally dissociate due to random membrane fluctuations (13,14). To

simulate multistage killing, we used a low adhesion strength between cells

in a conjugate and considered that they continued to migrate independently

even when in conjugate (see below for the default parameters used).

Together, this results in conjugates of short duration (i.e., cytotoxic kinap-

ses). Note that the adhesion values are chosen empirically to modulate the

strength of preference for CTL-target cells to be together in conjugates.

Target cells remember the accumulated duration in conjugates after disso-

ciation, and accrue upon this existing signal when a subsequent kinapse is

formed with another (or the same) CTL, thus mimicking multistage killing.

This memory of the killing signal represents the best-case scenario from the

perspective of CTLs as the signal does not decay between consecutive



TABLE 1 Summary of Simulation Parameters Used

Parameter Symbol Value Used

Time required to kill a target tD 15 min (15,21)

Inelasticity of the cells l 200

Membrane fluctuation amplitude of cells D 6

Directional propensity of CTLs mCTL 450

Directional propensity of targets mtgt 220

Target direction update interval — 3 min

Number of static elements representing

the reticular network

— 1050

Diameter of a reticular network element — 8 mm

Total number of CTLs — 2250

Total number of target cells — 2250

Target area of CTLs and target cells A 44 mm2

Parameters are chosen such that the simulated CTLs and B cells recapitulate

migration properties observed in vivo. Surface energy parameters are

mentioned in Table 2.

Sigmoid Functional Response of CTL Killing
kinapses. Because there is no experimental evidence comparing the times

required to induce target cell death involving synapses or kinapses, we

here choose this best-case scenario and examine its implications (yet this

does not qualitatively affect our results; see Discussion). In our default sin-

gle- and multistage killing simulations, we used a fixed total killing time of

tD ¼ 15 min, representing the total conjugation time required to induce

target cell death. Moreover, we investigate the effect of stochasticity in

the killing times by drawing the killing time for new target cells randomly

from a Gaussian distribution with mean mk and sk (requiring the resulting

killing time to be positive).

Depending on the killing regime, targets accumulate the killing signal

independently from all CTLs with which they share a synapse or kinapse,

and CTLs can contribute killing signal to all the targets in their conjugate.

For example, a target cell that has a synapse or kinapse with three CTLs at

all times is killed three times faster, i.e., requires tD/3 ¼ 5 min. When a

killed target disappears from the field, a new target cell is introduced at a

random location in the field to maintain the same target cell numbers within

a simulation. To prevent creating the new target cells inside another cell, the

randomly chosen position is forced to be either within the free extracellular

space (which is ~5% of the field in our simulations), or at the interface be-

tween two cell boundaries. The number of CTLs also remains constant

within a simulation, thus preventing confounding effects due to changing

cell numbers. Each simulation corresponds to 450 min, and to study the

initial transient we measure the number of target cells killed over the first

75 min, unless otherwise specified. To study killing at steady state, we mea-

sure the number of target cells killed over the last 75 min.
Default model parameters

The CPM describes the cell behavior and its parameters, which include the

surface energies and surface adhesions, have no direct biological meaning,

and are chosen such that we approximate the CTL migration properties

observed in experiments (15). At each time step, all pixels are considered

for extension into a random neighboring site, and one time step in the simu-

lation (i.e., attempting to update all the lattice sites) corresponds to 1 s in

real-time. The change in surface energy due to an extension is calculated

by the difference in Hamiltonians H of two configurations. The Hamilto-

nian is given by

H ¼
X
ij

X
i0 j0

J
tðsijÞ;tðsi0 j0 Þ

�
1� dsij ;si0 j0

�

þ
X
s

l
�
as � AtðsÞ

�2
;

(1)

where JtðsijÞ;tðsi0 j0 Þ is the surface energy associated between a lattice site (of

state sij and cell type tðsijÞ) and the neighboring lattice site (of state si0 j0
TABLE 2 Default Surface Energies and Surface Tensions

Used in the Simulations

ECM RN CTL Tgt

ECM JECM,ECM ¼ 0 gECM,RN ¼ 0 gECM,CTL ¼ 0 gECM,tgt ¼ 0

RN JRN,ECM ¼ 0 JRN,RN ¼ 0 gRN,CTL ¼ 150 gRN,tgt ¼ 150

CTL JCTL,ECM ¼ 150 JCTL,RN ¼ 300 JCTL,CTL ¼ 300 gCTL,tgt ¼ 0
and cell type tðsi0 j0 Þ), l is the inelasticity, d is the Kronecker delta, as is

the actual area of the cell s, and AtðsÞ is the target area of cells of type

tðsÞ. The probability that a lattice site is copied into the neighboring

site obeys a Boltzmann equation (i.e., is 1 if DH < 0, and e�DH/D other-

wise), where D represents the membrane fluctuation amplitude of cells

(see Table 1 for the list of parameters used). The surface energies J and

the surface tensions g are chosen such that the noncognate interactions be-

tween any pair of cells are neutral (see Table 2), i.e., there is no preferen-

tial adhesion. The entire model is implemented in the C programming

language.

Tgt Jtgt,ECM ¼ 150 Jtgt,RN ¼ 300 Jtgt,CTL ¼ 300 Jtgt,tgt ¼ 300

Surface energies are represented by J, and surface tensions by g. Upon

conjugate formation, we decrease the surface tension between CTL-target

pairs with empirically chosen adhesion strength: by gadhesion ¼ 60 for sin-

gle-stage killing, and by gadhesion¼ 5 for multistage killing. Thus, the effec-

tive surface tension between CTLs and targets in a conjugate becomes

gCTL,tgt � gadhesion. ECM, extracellular matrix; RN, reticular network;

Tgt, tgt, target cell.
Mathematical models of CTL-mediated killing

For steady-state conditions, we have previously shown that a double satu-

ration (DS) function with two saturation constants (one for CTL and one

for target cell densities) describes the CTL-mediated killing rate resulting

from all scenarios (4). The DS function is given by
KDS ¼ Dt
kET

1þ E
�
hE þ T

�
hT

; (2)

where Dt is the duration over which killing is measured; E and T values are

the total number of CTLs and target cells, respectively; and h and h are
E T

the Michaelis-Menten saturation constants for CTL and target cell den-

sities. This DS function was mechanistically derived for monogamous

and simultaneous killing regimes using a Pad�e approximation of the full

solution.
Nonlinear regression (or fit) to the data

For all the nonlinear regression analysis of models to the data, we used the

functions nlinfit in MATLAB (TheMathWorks, Natick, MA) and/or modFit

in the flexible modeling environment package of the software environment

R (https://www.r-project.org/), implementing the Levenberg-Marquardt

algorithm. The 95% confidence intervals are estimated using the nlparci

function in MATLAB, which uses an algorithm based on asymptotic normal

distributions for the parameter estimates, and/or in R by bootstrapping the

data with replacement from 1000 independent samples.
RESULTS

Multistage killing at steady state

We start our analysis by studying the differences between
short- and long-lived synapses at steady state, i.e., when
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the functional response can be derived using a QSSA. To
this purpose, we analyze a system of ODEs, and perform
CPM simulations under steady-state assumptions for the
monogamous killing regime. After confirming our results
analytically, we consider the three other nonmonogamous
killing regimes (joint, simultaneous, and mixed killing;
see Materials and Methods for the description of regimes).
In all cases, we assess the functional response by measuring
the total number of target cells killed after the killing rate
has approached steady state.

An ODE model for multistage monogamous killing

In monogamous simulations, only conjugates of one CTL
and one target are allowed to form. Multistage killing in
this case implies that a target cell is killed by multiple
CTLs in a sequential manner. To study the effect of multi-
stage killing in a fair manner, the expected time a target in
total spends conjugated to CTLs before being killed should
be the same for single- and multistage killing (i.e., should be
independent of the number of stages). For n stages, this is
achieved by setting the killing rate to nk2. The reaction
scheme for multistage killing thus becomes

Eþ T0#
k1

k�1

½ET1�!nk2Eþ T1 ;

Eþ T1#
k1

k�1

½ET2�!nk2Eþ T2 ;

«

Eþ Tn�1#
k1

k�1

½ETn�!nk2Eþ T� ;

(3)

where E, T0, T1,...,Tn�1, and T* represent free cognate

CTLs, naı̈ve target cells, partially lysed targets, and dead
targets, respectively. Furthermore, ½ET1�.½ETn� represent
the conjugates during the various stages of killing, k1 and
k�1 are the rates of conjugate formation and dissociation,
and nk2 is the rate at which targets transit each stage (i.e.,
k2 is the killing rate of target cells during single-stage
killing, n ¼ 1). The dynamics of conjugates, ½ETi�, are given
by

dCi

dt
¼ k1ETi�1 � ðnk2 þ k�1ÞCi for i ¼ 1;.; n; (4)

where Ci values represent the number of ½ETi� conjugates.

The corresponding dynamics of the target cells, Ti, are

dTi

dt
¼ nk2Ci þ k�1Ciþ1 � k1ETi for i ¼ 1;.; n� 1:

(5)

Finally, the rate at which dead target cells appear is
dT�

dt
¼ nk2Cn : (6)

We first consider steady-state killing with a fixed total num-

ber of target cells, T, and a fixed number of CTLs, E. When
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every target cell, T*, that dies is immediately replaced by a
fresh target cell, the number of naive target cells, T0, and the
number of free CTLs, E, can be solved from the conserva-
tion equations as follows:

T ¼ Pn
i¼ 1

Ci þ
Xn�1

i¼ 0

Ti ;

E ¼ Eþ Pn
i¼ 1

Ci :

(7)

Thus, T0 ¼ T � CT � P and E ¼ E� CT , where CT ¼Pn

i¼1Ci is the total number of conjugates, and P ¼Pn�1
i¼1 Ti is the total number of partially targets.

To determine the influence of multistage killing on
the functional response, we numerically solve the ODEs
(Eqs. 4–7), with different numbers of antigen-specific
CTLs, E, and cognate target cells, T. Thus, we run the model
until it approaches steady state, and subsequently measure
the number of target cells killed, T*, over the next 75 min,
for both single-stage killing (setting n ¼ 1) and multistage
killing (setting n¼ 5). In both scenarios, the number of cells
killed saturates to the same extent with an increase in CTL
or target cell densities (Fig. 1, symbols), which is consistent
with the earlier proposed DS functional response (see Eq. 2)
for single-stage monogamous killing (1,4). The DS model
describes the single- and multistage killing data reasonably
well (except when CTL and target cell densities are high;
see the lines in Fig. 1). Importantly, the best-fit saturation
constants suggest that killing saturates at higher CTL and
target cell densities in multistage than in single-stage killing
(Table 3).

Mechanistic derivation of the functional response for multi-
stage monogamous killing

To better understand why multistage killing results in a satu-
ration of the killing rate at higher cell frequencies than sin-
gle-stage killing, we next derive the functional response of
CTL-mediated killing in the ODE model by extending the
total quasi-steady-state approach proposed by Borghans
et al. (1) for multistage killing. Thus, similar to our earlier
studies (1,4), we rewrite Eq. 4 in terms of total cell numbers:

dC1

dt
¼ k1

�
E� CT

�zfflfflfflfflffl}|fflfflfflfflffl{free CTLsðEÞ�
T � P� CT

�zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{na€ıve targetsðT0Þ

� ðnk2 þ k�1ÞC1 ;

dC2

dt
¼ k1

�
E� CT

�zfflfflfflfflffl}|fflfflfflfflffl{free CTLsðEÞ

T1

z}|{partially lysed targets

� ðnk2 þ k�1ÞC2 ;

«

dCn

dt
¼ k1

�
E� CT

�zfflfflfflfflffl}|fflfflfflfflffl{free CTLsðEÞ

Tn�1

z}|{partially lysed targets

� ðnk2 þ k�1ÞCn ;

(8)

where CT ¼ Pn
i¼1Ci is the total number of conjugates, andPn�1
P ¼ i¼1 Ti is the total number of partially targets. One
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FIGURE 1 Number of cells killed in the ODE

model during the steady state of monogamous killing.

(A and B) Number of cells killed over 75 min during

single-stage and multistage (with five stages) killing,

respectively. (Markers) Observations from the ODE

simulations; (solid lines) best-fit DS model predic-

tions of Eq. 2 (see Table 3 for the best-fit parameters).

To see this figure in color, go online.
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can sum these equations to obtain the total number of
conjugates:

dCT

dt
¼ k1

�
E� CT

��
T � CT

�� ðnk2 þ k�1ÞCT : (9)

At steady state, this delivers a quadratic equation
C2
T �

�
h0 þ Eþ T

�
CT þ ET ¼ 0 ; (10)
TABLE 3 Summary of Best-Fit Parameters of the DS Model (Eq. 2)

Parameter k (�105)

Dimension cells�1 min�1

Single-stage killing

Monogamous (ODE) 17.3 (13.4–21.4)

Monogamous 18 (16.6–19.4)

Simultaneous 18 (9.9–26.1)

Joint 18 (14.0–22.0)

Mixed 17 (16.5–17.5)

Multistage killing

Monogamous (ODE) 2.0 (1.1–9.2)

Monogamous 6.7 (6.5–6.8)

Simultaneous 7.1 (6.9–7.1)

Joint 7.4 (7.2–7.5)

Mixed 6.5 (6.4–6.6)

Confidence intervals are given in parentheses in columns 2–4 (based on asympto

killing under steady-state conditions, obtained from nonspatial dynamical (mark

eters for single-stage killing in CPM simulations are taken from our previous s
where h0 ¼ ðnk2 þ k�1Þ=k1 is the Michaelis-Menten
constant.

Next, we observe that at steady state one can add each
dTi=dt in Eq. 5 to the corresponding dCiþ1=dt from Eq. 4
to obtain that nk2ðCi � Ciþ1Þ ¼ 0, which implies that
Ci ¼ Ciþ1 for all i. Hence, the total number of conjugates is
given by CT ¼ Pn

i¼0Ci ¼ nC, where C is the number of con-
jugates at each stage of killing. Eq. 10 therefore simplifies into
and the Corresponding 95% Confidence Intervals

hE hT

cells cells

hE ¼ hT ¼ 682 (477–887)

hE ¼ hT ¼ 571 (503–639)

523 (487–559) 2979 (2418–3540)

2051 (1907–2195) 458 (443–473)

hE ¼ hT ¼ 1945 (1814–2076)

hE ¼ hT ¼ 1047 (892–1202)

hE ¼ hT ¼ 1950 (1884–2018)

1602 (1560–1644) N
12,792 (9922–15,661) 1364 (1314–1415)

hE ¼ hT ¼ 70,385 (47,172–93,598)

tic normal distributions for the parameters) for single-stage and multistage

ed with ODE in column 1) and CPM simulation models. The best-fit param-

tudy (4).
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n2C2 � �
h0 þ Eþ T

�
nCþ ET ¼ 0 ; (11)

which is similar to what we previously derived for single-
stage killing (1,4). Indeed, setting n ¼ 1 we obtain the

same quadratic equation as before. Therefore, we also
obtain similar expressions for C for the full solution, or
for the Pad�e approximation:

Cfull ¼ 1

2n

�
h0 þ Eþ T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
h0 þ Eþ T

�2 � 4ET

q 

;

(12)

C ¼ 1 ET
: (13)
Pade

n h0 þ Eþ T

The rate at which the target cells are killed is given by
dT�=dt ¼ nk C ¼ nk C. Therefore, over a time period Dt
2 n 2

the number of target cells killed for either the full solution
or for the Pad�e approximation is given by

Kfull ¼ Dt nk2Cfull

¼ Dt
k2
2

�
h0 þ Eþ T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
h0 þ Eþ T

�2 � 4ET

q 

;

(14)

K ¼ Dt nk C ¼ Dt
k2ET
Pade 2 Pade
h0 þ Eþ T

¼ Dt
k0ET

1þ E
�
h0 þ T

�
h0

; (15)

where k0 ¼ k2/h
0 is the mass action killing rate realized at low
target and CTL densities (4). Interestingly, because the full
solution is identical to the one derived before for single-stage
killing (compare Eq. 14 to Eq. 4 in Gadhamsetty et al. (4)),
multistage killing at steady state only differs in a quantitative
manner from single-stage killing. Specifically, the maximum
killing rate is approached at high CTL densities, where
KPade/Dt k2T, which thus remains independent of the num-
ber of stages. However, the definition of the saturation con-
stant, h0 ¼ ðnk2 þ k�1Þ=k1, explains why the saturation
during multistage killing sets in at higher CTL and target
cell densities than during single-stage killing, despite the
same maximum killing rate k2 as in single-stage killing.
Moreover, the mass-action killing rate k0 does decrease for
multistage killing because k0 ¼ k2/h

0. In conclusion, under
steady-state conditions the functional response for multi-
stage killing remains qualitatively the same as the one for sin-
gle-stage killing. Increasing the number of stages for target
cells to be killed results in a lower mass action killing rate
and saturation at higher CTL and target cell frequencies,
without altering the maximum killing rate.

Generalization to the DS model

As in single-stage killing (4), the above Pad�e approximation
(Eq. 15) can be phenomenologically generalized for the four
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killing scenarios, into the previous general DS model that
was already given in Eq. 2, i.e.,

KDS ¼ Dt
kET

1þ E
�
hE þ T

�
hT

; (16)

where k remains a mass-action killing rate, and hE and hT are

saturation constants for increasing CTL and target cell den-
sities. For the simplest case where h¼ hE ¼ hT and k¼ k2/h,
this DS model reduces back to the Pad�e solution of Eq. 15.
At very high CTL densities, i.e., when E=hE [ 1þ T=hT ,
the total killing rate becomes independent of the CTL den-
sity, and now approaches khET, where khE gives the
maximum killing rate experienced by a single target cell.
At low densities of CTLs and target cells, or when both
saturation constants are very large (hE, hT / N), the
total killing rate approaches the mass-action term, kET,
showing that the killing rate k has the same interpretation
as a mass-action killing rate (4). Thus, whenever a fitting
procedure leads to parameter estimates where hE / N
and hT / N, one should conclude that the data are
well described by a mass-action process. If hE / N or
hT / N, the DS model reduces to

KDS j hE/N ¼ Dt
kET

1þ T
�
hT

and

KDS j hT/N ¼ Dt
kET

1þ E
�
hE

;

(17)

which only has saturation in target cells, T, or effector cells,

E, respectively. For single-stage killing, we previously
showed that simulation data from a mixed killing scenario
are well described by symmetric saturation constants,
hT ¼ hE; that simultaneous killing leads to stronger satura-
tion in CTL densities, hE < hT; and that joint killing leads
to stronger saturation in target cell densities, hT < hE (4).

CPM simulations for multistage killing during steady state

An analytical derivation of the functional response was
not possible for single-stage joint and mixed killing re-
gimes (4). Moreover, a multistage analytical derivation be-
comes cumbersome for simultaneous killing. Therefore,
we perform CPM simulations in which conjugates of
CTL-targets dissociate frequently, to examine whether the
above findings can be generalized to all killing regimes.
To determine the functional response during steady state,
we vary the number of antigen-specific CTLs and cognate
targets between simulations. The dissociated target cell re-
tains the killing signal already developed and the killing
signal by subsequent conjugates with CTLs accrues on the
existing signal, which represents transit through multiple
stages to be killed. We measure the number of cells killed
over the last 75 min from three independent simulations.
Because we measure killing over such a relatively long
period, the variation between simulation repeats is very
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low, which can be appreciated from the almost overlapping
markers (see figures described below). First, we perform
multistage monogamous killing simulations and find that
the number of cells killed saturates with an increase in
both CTL and target cell densities (Fig. 2 A, markers), and
the DS model describes the killing well except at high
CTL and target cell densities (Fig. 2 A, solid lines). This
is consistent with the results from the ODE model (Fig. 1).
A

B

C

D

To quantify the saturation during monogamous killing,
we fit the DS model of Eq. 2. to the CPM simulation data,
and find that a DS model with hT ¼ hE describes the data
well (Fig. 2, lines). In multistage killing, we find that the
killing rate (as assessed by the total number of target cells
killed over 75 min) saturates at approximately threefold
higher CTL and target cell densities compared to single-
stage killing (see Table 3 and compare to dashed lines in
FIGURE 2 Number of cells killed during the

steady state of multistage killing from CPM simula-

tions. (A–D) Number of cells killed over 75 min

during monogamous, joint, simultaneous, and

mixed killing, respectively. (Markers) Observations

from three independent simulations; (solid lines)

best-fit DS model predictions of Eq. 2 (see Table 3

for the best-fit parameters); (dotted lines) average

number of cells killed observed in single-stage

killing simulations (also shown in Gadhamsetty

et al. (4)). To see this figure in color, go online.

Biophysical Journal 112, 1221–1235, March 28, 2017 1227



Gadhamsetty et al.
Fig. 2 A, which show the simulation results for single-stage
killing). Thus, the maximum killing rate during multistage
killing is only achieved at very high cell densities, showing
that multistage killing is inefficient compared to single-
stage killing. Because the mass-action killing rate, k, is
defined as k2/h for monogamous killing (see Eq. 15),
k directly depends on the saturation constant. Consistent
with this, the best-fit values for k are lower during multistage
than during single-stage killing.

Next, we examine whether these findings can be general-
ized to nonmonogamous killing regimes. When performing
multistage killing simulations for simultaneous, joint, and
mixed killing regimes (see Materials and Methods for a
detailed explanation of the scenarios), CTL killing generally
saturates with an increase in both CTL and target cell den-
sities. Consistent with our previous study (4), the onset of
saturation is asymmetric in simultaneous and joint killing
regimes (Fig. 2, B and C), and in the mixed killing regime
the number of cells killed increases almost linearly with
an increase in CTL or target cell numbers, i.e., there is no
evidence for saturation at these densities (Fig. 2 D,
markers). Best fits of the DS model of Eq. 2 describe the
data well (see solid lines in Fig. 2), and all saturation con-
stants are higher than those of the corresponding single-
stage killing (Table 3 and compare to dashed lines in
Fig. 2, which show the simulation results for single-stage
killing). Taken together, these results demonstrate that the
DS model provides an excellent description of the CTL-
mediated killing even if multiple hits are required to induce
target cell death. Importantly, the influence of multistage
killing at steady state can be generalized: the saturation of
killing sets in at higher cell densities, and consequently
the mass-action killing rate k decreases. This is interesting
because it may contribute to explaining why there is little
evidence for saturation in in vivo data (16).
Killing before the steady state is established

The functional response of CTL-mediated killing is typi-
cally derived by making a QSSA for the number of conju-
gates (1,2,4). A steady-state killing rate is likely to be
approached during chronic infections, where the number
of infected cells and CTLs remain constant over long pe-
riods of time. However, during acute infections or in exper-
iments where fresh targets and CTLs are mixed together,
they will initially not be conjugates. The kinetics of binding,
dissociation, and killing together determine how rapidly the
steady-state number of conjugates is approached and main-
tained. Moreover, it depends on the dynamics of targets and
CTLs (e.g., proliferation, ingress, and egress) themselves
whether a quasi-steady state is approached during the course
of the experiment or infection. Because the validity of the
QSSA under experimental conditions is unclear, we here
study the killing activity during the initial phase of ODE
and CPM simulations.
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The functional response in the ODE model for monogamous
killing

To determine the functional response before steady state is
established, we numerically solve the ODE model for
monogamous killing (Eqs. 4–7), now starting with all fresh
targets (i.e., T0 ¼ T), for various CTL and target cell den-
sities. As above, fresh targets are replaced when target cells
die, i.e., T0 is solved from the conservation equation (Eq. 7).
Data are obtained by counting the number of dead targets,
T*, that accumulates over the first period of the simulation.
For single-stage killing in this model (n ¼ 1), the number of
cells killed saturates with increases in both CTL and target
cell densities in a manner that is qualitatively similar to that
observed during steady state (data not shown). In contrast,
for multistage killing (employing n¼ 5), the number of cells
killed exhibits a sigmoid dependence on the CTL densities
(Fig. 3, markers). Moreover, an increase in target cells re-
sults in a normal saturation at high CTL densities, but in a
peak of the killing efficiency at low densities. This peak in
the relationship between the number of cells killed and the
total number of targets becomes more pronounced at early
time points (compare Fig. 3, A–C), and at high values of
the off-rate k�1 (data not shown).

To also study the more natural situation where target cells
are not replaced, we perform the same set of simulations for
a model in which the term representing replacement of dead
by fresh targets is omitted. As a result, the fresh targets
now obey

dT0

dt
¼ k�1C1 � k1ET0 : (18)

As before, we set T0 ¼ T as the initial condition, solve E
from the conservation equation (Eq. 7), and otherwise use
the same set of ODEs (Eqs. 4 and 5). This modification gives
very similar results as the case with replacement of dead tar-
gets, i.e., a sigmoid dependence on CTL densities and a
peak in the dependence on the initial number of targets
(Fig. S1 in the Supporting Material). Therefore, we
conclude that these dependencies are due to initial transient
effects that disappear as soon as steady state is approached.

Explaining the dependencies on cell numbers intuitively

The sigmoid relationship between the number of cells killed
and the CTL density in the ODE simulations suggests some
form of cooperation between the CTLs (although we have
not incorporated explicit cooperation in the model). This
emerges because at low CTL densities most target cells
receive so few hits from the CTLs that they survive after
the initial period of 75 min. On the contrary, at high CTL
densities many target cells are killed within that time frame
because they form sequential kinapses with multiple nearby
CTLs. Target cells remember the accumulated killing signal
after dissociation from a CTL, and can therefore be killed by
subsequent interactions with CTLs. For instance, if the
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FIGURE 3 Number of cells killed during the

beginning of multistage ODE model simulations.

(A–C) Measurements taken over the first 25, 50,

and 75 min, respectively. (Markers) Observations

from ODE simulations; (solid lines) best-fit predic-

tions of the dilution function (Eq. 19). The ODE

model was run for 25, 50, or 75 min with a conserved

total number of target cells, and with parameters

k1 ¼ 0.001, k�1 ¼ k2 ¼ 1/15, and n ¼ 5. The best-

fit parameters in (A) are k ¼ 5.16 � 10�12, hE ¼
574, hT ¼ 458, nE ¼ 3.56, and nT ¼ 2.23; in (B)

are k ¼ 8.14 � 10�8, hE ¼ 422, hT ¼ 509, nE ¼
2.18, and nT ¼ 1.64; and in (C) are k ¼ 7.54 �
10�7, hE ¼ 422, hT ¼ 573, nE ¼ 1.83, and nT ¼
1.49. To see this figure in color, go online.
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killing of a target were to require two independent contacts
with distinct CTLs, one would expect that at low densities
the killing rate takes the form of a term with a quadratic
dependence on the CTLs, i.e., a kTE2 term. At high CTL
densities, the quadratic dependence disappears because
CTLs no longer need to search for targets. Each target
then rapidly forms a new conjugate with one of the many
CTLs around them and is killed in ~tD ¼ 15 min, which
leads to saturation at high CTL densities. Overall, this leads
to a sigmoid functional response. Because a much smaller
fraction of the synapses is expected to break during sin-
gle-stage killing than during multistage killing, one indeed
expects a much stronger sigmoid effect when CTLs form
short kinapses (Fig. 3 A versus Fig. 3 B).

A similar reasoning explains the peak of the killing effi-
ciency at low CTL densities when the target cell density is
increased. This happens because at low CTL and high target
cell densities the CTLs that break up a conjugate tend to
form conjugates with novel targets. Because of this distrac-
tion by other targets, on average target cells acquire less
killing signal for an excess of targets than for an optimal
number of targets. Thus, this is a dilution effect where the
presence of other targets decreases the overall rate at which
each target is killed. Because conjugates dissociate
frequently during multistage killing, increases in the target
cell densities tend to dilute the effect of the CTLs whenever
the target cells are clearly outnumbering the CTLs. CTLs
are then likely to hop from one target cell to another, result-
ing in many partially lysed target cells and few dead target
cells.

In conclusion, the breaking up of conjugates during
multistage killing before the steady state is approached
leads to two effects that can be intuitively understood. First,
the sigmoid dependence on CTLs emerges because multiple
consecutive CTLs are required to kill individual target cells.
Second, the killing activity of CTLs is diluted among many
Biophysical Journal 112, 1221–1235, March 28, 2017 1229
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targets, leading to a peak in the killing efficiency when
target densities are increased.

Quantifying the sigmoid and the dilution effects

To quantify and compare data with a sigmoid dependence on
CTL densities, and a peak in the dependence on target den-
sities, we propose a dilution function, i.e., a phenomenolog-
ical extension of the DS function:

Kdilution ¼ Dt
kE

nE
T

1þ �
E
�
hE
�nE þ �

T
�
hT
�nT ; (19)

where hE and hT remain constants measured in dimensions

of CTL and target cell densities, and nE and nT are nondi-
mensional exponents allowing for a sigmoid dependence
on CTLs and a peak in the dependence on targets (note
that nT is only present in the denominator). The advantage
of this function is that for nE ¼ nT ¼ 1, the k, hE, and hT pa-
rameters keep the mechanistic interpretation of the previous
DS function (4), and nE defines the sigmoid nature in a
manner similar to a conventional Hill function. Addition-
ally, one can test various extensions of the DS model in a
nested manner, such that variations can be compared by
an F-test. For example, the data in Fig. 3 suggest that
nE > 1 to have a sigmoid dependence on CTL, and
nT > 1 to have a peak in the dependence on the target cell
densities. Moreover, in general it is expected now that
hE s hT because hE is a saturation constant and hT defines
the density of targets where the dilution effect starts to
have an impact. Note that the k parameter loses its interpre-
tation of a mass action killing rate (with dimension per CTL
per time) whenever nE> 1, whereas hE and hT continue to be
measured in cell numbers.

Because killing data obtained at early time points reveal
dependencies with a sigmoid and peaked nature (Fig. 3),
we fit all non-steady-state data with the novel (to our knowl-
edge) dilution function of Eq. 19. Note that steady-state
data are expected to lead to parameter estimates where
nE x nT x 1. However, because the DS function is only
an approximation of the full solution (Eq. 14) (4), the expo-
nents might slightly differ from 1, because there is room for
the phenomenological dilution function to improve the qual-
ity of the fit by slightly changing the shape of the saturation
function. Fitting the model to the non-steady-state killing
data, we find that both exponents are estimated to be mark-
edly larger than 1 (see legend of Fig. 3 for parameters), and
that the function describes the data well (compare lines and
markers in Fig. 3). Very similar results are found when
target cells are not replaced (see Fig. S1).

The parameter estimate nE > 1 confirms that multistage
killing leads to sigmoidal functional responses before steady
state is approached. Because we did not incorporate such
cooperativity in the assumptions underlying the ODE
model, this implies that observation of a sigmoid effect in
functional response data should not be taken as evidence
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for cooperation between CTLs. Below, we will estimate
nE at various time points during the approach to steady state.
The parameter estimate nT > 1 confirms that multistage
killing leads to a dilution effect, leading to a peak in the
killing efficiency when target cell densities are increased.
However, in the ODE simulations this dilution effect could
be exaggerated because they consider well-mixed CTL and
target cells. This implies that a CTL dissociating from a
particular target will subsequently bind to any other target
with equal likelihood. In real collagen gels and in vivo,
CTLs are more likely to bind to nearby target cells, and
are hence also more likely to rebind the target that they
just dissociated from. We will therefore test our findings
in our spatially explicit CPM simulations.

Killing during the initial period of spatial simulations

To examine whether the dependencies on cell densities with
sigmoid and peaked nature also arise in spatial environ-
ments, we perform CPM simulations and measure the num-
ber of target cells killed during the initial period of
monogamous simulations. Because simulations are starting
with fresh target cells, killing does not occur at all during the
first tD ¼ 15 min. In all cases, the total number of CTL-
target conjugates rapidly approaches steady state (blue lines
in Fig. 4), yet the number of cells killed (measured over
5 min intervals) takes a long time to approach steady state
(red lines in Fig. 4). The approach of the steady-state killing
rate is slowest for low CTL densities and for multistage
killing (compare red lines among the panels in Fig. 4).
This is again due to the dilution effect occurring during
multistage killing: Because CTLs deliver killing signals to
several target cells sequentially, this delays the onset of
death of the first target cells as well as the approach to
steady state. Thus, the killing signal of a CTL is diluted
over several targets, which leads to target cell death only
after a period that is typically much longer than the consid-
ered killing time (15 min).

Surprisingly, at high CTL, densities dampened oscilla-
tions occur with a period of ~tD ¼ 15 min (Fig. 4). This is
because during single-stage killing all target cells are
rapidly bound by one of the CTLs in their neighborhood,
die after ~15 min, and are replaced by fresh in silico targets.
These new target cells also rapidly bind one of the many
CTLs in their local neighborhood, after which a next wave
of dead targets follows. This synchronized killing due to
the initial condition only slowly vanishes. The larger the
amount of CTLs present, the stronger the oscillatory effect
because the search time becomes ultimately negligible
(Fig. 4, A–D). During multistage killing the oscillations
are less pronounced because the dilution effect leads to
cell death after a more variable period than the rigid
15 min of single-stage killing. However, for multistage
killing with an excess of CTLs the oscillations again
become strong because targets that lose contact are immedi-
ately attacked by another CTL (Fig. 4 H). In summary, these



A

E F G H

B C D

FIGURE 4 Dynamics of the single- and multistage killing CPM simulations. The total number of synapses (blue) and number of cells killed during 5-min

time periods (red) for monogamous single-stage (top row) and multistage (bottom row) killing. (A and E) E0 ¼ 100 and T0 ¼ 1500; (B and F) E0 ¼ 100 and

T0 ¼ 750; (C and G) E0 ¼ 750 and T0 ¼ 100; and (D and H) E0 ¼ 1500 and T0 ¼ 100 CTL and targets. (Solid lines) Observations from three independent

simulations. To see this figure in color, go online.
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observations suggest that the oscillations are due to the
same, fixed killing time tD for all target cells. During in vivo
and in vitro studies the killing of target cells will be more
asynchronous than in our CPM simulations, because of sto-
chasticity in the killing time and the arrival times of CTLs.
Therefore, we performed additional simulations in which
the killing times tD of individual target cells are chosen
from a Gaussian distribution (with mean and standard devi-
ation of 15 and 5 min, respectively). As expected, the damp-
ened oscillations are not present in these simulations with a
Gaussian killing time distribution (see Fig. S2), demon-
strating that they are indeed due to the fixed killing times.
Summarizing, the simulations in Fig. 4 highlight that the
killing rates may differ considerably between the initial
phase of killing and the final steady state.

The functional response during the initial period of spatial
simulations

To determine the functional response during the initial phase
of the simulations, we again vary the antigen-bearing target
cell and their cognate CTL densities, but now count the
number of cells killed during the initial period of the simu-
lation (25, 50, and 75 min), rather than during the final
period of the simulations (i.e., at steady state). In agreement
with the data from the ODE model, simulation data from the
CPM also suggest a sigmoid relationship between the num-
ber of cells killed and the number of CTLs during multistage
killing (Fig. 5, markers). Importantly, this sigmoid nature
becomes less apparent with longer durations of the measure-
ments. Likewise, there is a slight peak in the dependence of
the killing efficiency on the number of target cells, which is
best visible in the left panel of Fig. 5 A. Compared to the
ODE simulations (Fig. 3 B), the dilution effect seems
slightly weaker in the CPM simulations, which can be ex-
plained by the higher probability for CTLs to rebind to the
target that they just dissociated from in the latter case.

Both the sigmoid and the dilution effect can now be quan-
tified by fitting the dilution function (Eq. 19) to the data, and
estimate the exponents, nE and nT. Above we have shown
analytically that the exponent nE should be close to unity
for single- and multistage killing when the system is at
steady state. Because this predicts that the exponent should
decline for longer measurement periods, we next study how
the fitted nE and nT depend on the measurement interval and
whether this differs for the ODE and CPM simulations.
Indeed, these exponents depend on the measurement inter-
val, and get closer to unity when the killing is measured
during such long intervals that most of the killing occurs
at steady state (see Fig. 6). This occurs because target
cells slowly approach a steady-state distribution of accumu-
lated killing signals, implying that a constant fraction of
all targets will be killed upon the next encounter with
a CTL. Note that nT is estimated to be higher in the ODE
simulations compared to the CPM simulations (compare
Biophysical Journal 112, 1221–1235, March 28, 2017 1231
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FIGURE 5 Number of cells killed during the

beginning of multistage monogamous CPM simula-

tions. (A–C) Measurements taken over the first 25,

50, and 75 min, respectively. (Markers) Number of

cells killed from three independent simulations;

(solid lines) best-fit predictions of the dilution model

(Eq. 19). The best-fit parameters in (A) are k¼ 1.99�
10�12, hE ¼ 854, hT ¼ 686, nE ¼ 3.52, and nT ¼ 1.91;

in (B) are k¼ 7.72� 10�8, hE ¼ 707, hT ¼ 973, nE ¼
2.04, and nT ¼ 1.50; and in (C) are k ¼ 7.18 � 10�7,

hE ¼ 727, hT ¼ 1069, nE ¼ 1.71, and nT ¼ 1.33. To

see this figure in color, go online.
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Fig. 6, B and D), which is consistent with the expectation
that the dilution effect is strongest in the well-mixed case.

Because the CPM simulations with fixed killing times ex-
hibited dampened oscillations in the numbers of cells killed
during the initial period of the simulations (Fig. 4), this may
affect the sigmoid dependence on CTL numbers and the
peak in the dependence on target cell numbers quantita-
tively. However, we still expect these dependencies to be
present in scenarios without oscillations for three reasons.
First, for multistage killing the artificial oscillations only
occur at very high CTL densities whereas the sigmoid and
dilution effect occur already at low cell densities. Second,
we count the number of killed cells over periods longer
than the cycle time of the oscillations, thus diminishing
the impact of the oscillations. Third, we also observed these
effects in the ODE simulations that do not exhibit oscilla-
tions. Consistent with this reasoning, we obtained qualita-
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tively similar results in the simulations with normally
distributed killing times (Fig. S3), although the sigmoid
effect does depend quantitatively on the distribution of
killing times (Fig. 6 C). In conclusion, the spatially explicit
CPM simulations confirm that during the initial period of
killing, the functional response is sigmoid in CTL density
and has a peak in the dependence on target density. More-
over, the best-fit exponent nE decreases over time, eventu-
ally approaching 1 when the killing is measured during
such long intervals that most of the killing occurs at steady
state.
DISCUSSION

We have shown that the killing of target cells by the accu-
mulation of several short-lived cytotoxic kinapses at steady
state results in a similar functional response as killing by
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FIGURE 6 Dependence of the sigmoid and dilu-

tion effects on the measurement time window in

ODE and CPM simulations. The best-fit exponents

nE (A and C) and nT (B and D) were determined

for different measurement periods in the ODE

(A and B) and CPM (C and D) simulations.

(Markers) Best estimate for the exponents; (shaded

regions) their 95% confidence intervals (estimated

by bootstrapping the data). The ODE model was

run with a conserved total number of target cells,

and with parameters k1 ¼ 0.001, k�1 ¼ k2 ¼
1/15, and n ¼ 1 (for single-stage killing; red) or

n ¼ 5 (for multistage killing; blue). The CPM

simulations were run for single-stage killing with

tD ¼ 15 min (red), for multistage killing with

tD ¼ 15 min (blue), and for multistage killing

with normally distributed tD (mk ¼ 15 min, sk ¼
5 min; green). (Dashed lines) Expected nE ¼ 1

and nT ¼ 1 at steady state. To see this figure in

color, go online.
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long-lived synapses: a previously defined double saturation
function saturating in both CTL and target cell densities (4)
describes simulation data from both a CPM and an ODE
model well. If the total contact time required for killing is
the same in single-stage and multistage killing, the main dif-
ference between the two cases is that saturation occurs at
lower cell densities in the former case. This qualitative sim-
ilarity no longer holds for simulation data collected during
the initial period of killing when fresh targets are mixed
with CTLs. In that case, we find a sigmoid dependence of
the killing rate on the CTL density, and a peak in the depen-
dence on the target cell density. These dependencies are due
to a dilution effect that can be well described by a phenom-
enological extension of the DS function with two exponents.
When the classical DS model is fitted to killing data with a
sigmoid relation between the killing rate and the CTLs, this
leads to a compromise in the fit involving a saturation in
higher CTL than target cell densities, because of the slow
killing rate increase at low CTL densities. Importantly,
this can be confused with a joint killing scenario (as in
Fig. 2 B), which also leads to a difference in the two satura-
tion constants in that direction (4). Therefore, it is important
to visually check whether the killing rate has a sigmoid
dependence on CTL density, to know if the killing is
measured during an initial transient stage or at steady state,
and if appropriate to then use the novel (to our knowledge)
dilution model we described here.

In enzyme-substrate kinetics, i.e., the analogy that we
applied to CTL-mediated killing, cooperativity occurs
when the binding of molecules (CTLs, in our case) to a
target increase the probability of the binding of subsequent
molecules (CTLs), or when the reaction greatly speeds up
due to the binding of subsequent molecules (CTLs). It is
well known that such cooperativity in enzyme binding re-
sults in a more-than-linear increase in the reaction speed
with an increase in the enzyme concentration, i.e., leads
to a sigmoid dose response (in our case, called ‘‘func-
tional’’ response). Yet in our simulations the sigmoid
dependence of the killing rate on CTL densities arises
without underlying cooperative mechanisms: conjugates
of only a single CTL and a single target cell are
allowed to form, and the killing signal is simply added be-
tween consecutive conjugates (i.e., a linear increase). For
example, one synapse of 15 min has the same effect as
two subsequent kinapses of 7.5 min. Additionally, we did
not find evidence for a sigmoid dependence in killing
data acquired at steady state, even when multiple CTLs
bind a single target and kill faster than a single CTL
(i.e., during joint killing). Taken together, our results sug-
gest that there are alternative mechanisms, other than coop-
eration, that result in a sigmoid dependence. Importantly,
this implies that observing a sigmoid functional response
in killing assays involving kinapses provides no proof for
cooperativity, but may simply be a consequence of dilution
of the killing signals provided by CTLs. Thus, the recent
work demonstrating that CTLs cooperate during the multi-
ple sequential kinapses they form with MCMV-infected
cells (5) does show that multiple kinapses with CTLs are
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required to kill target cells, yet is insufficient to demon-
strate true underlying cooperativity.

We considered targets to remember the total duration of
time they already spent in conjugation with CTLs when
they break a synapse, i.e., during every contact targets
advance a killing stage. To our knowledge, there is no exper-
imental evidence supporting or denying this, and touched
target cells might be able to recover during the intervals
they are not conjugated with a CTL. Although such an infin-
ite memory of the killing signal is the best-case scenario
from the perspective of CTLs, our conclusions are indepen-
dent of that memory, because our extended ODEmodel sim-
ulations with recovery of partially lysed target cells also
resulted in qualitatively similar effects (sigmoid and peaked
nature; see Fig. S4). Even without memory loss, multistage
killing markedly reduces the killing efficiency compared to
single-stage killing, and much higher CTL densities are
required to obtain the same, maximum killing rate. This sit-
uation is even worse during the initial phase of killing fresh
target cells because the killing signals that CTLs deliver dur-
ing short kinapses are distributed over several target cells. It
therefore takes a long time before the first target cell dies.
Consistent with this, it was recently shown that CXCR3�/�

T cells, compared to wild-type T cells, have shorter interac-
tions with virus-infected target cells as well as reduced
control of the virus (17). Although the lack of CXCR3 on
T cells also affects T cell chemotaxis toward target cells
(18) (and thus diminishes killing through less efficient target
cell detection), our results suggest that the reduced control
could be partly due to less-stable synapses leading to ineffi-
cient killing.

The aim of this study was to identify the qualitative nature
of the functional response when the killing is not at steady
state and/or involves multiple stages, and not to provide
quantitative predictions of in vivo killing rates. This allowed
us to restrict our analysis to 2D simulations and to avoid
three-dimensional (3D) simulations that are prohibitively
expensive for such a comprehensive analysis. Nevertheless,
our qualitative conclusions are also valid for 3D simulations
for two reasons. First, the differences between 2D and 3D
killing rates are quantitative rather than qualitative because
encounter of targets by CTLs is more efficient in 3D spaces
(19,20). Second, we find similar results in ODE models that
consider well-mixed environments of arbitrary dimension.
Apart from robustness with respect to dimensionality of
the spatial environment in which killing takes place, our re-
sults do not depend on variations in the definition of the
killing time, as we find similar results in ODEs with expo-
nentially distributed killing times, in CPM simulations
with fixed killing times, and in CPM simulations with nor-
mally distributed killing times.

Summarizing, our previous DS function (4) can be
phenomenologically extended with two parameters allow-
ing for a sigmoid dependence of the killing rate on CTL den-
sities and a peak in the dependence on target cell densities.
1234 Biophysical Journal 112, 1221–1235, March 28, 2017
This extension is probably required to quantify data ac-
quired in the absence of a steady state, and which clearly
exhibit a functional response with a sigmoid or peaked
nature. Most importantly, we have shown that during
initial transients a sigmoid dependence on CTLs can emerge
as the mere consequence of sequential killing of a target
cell by several CTLs, without having true cooperation be-
tween CTLs.
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