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Abstract

Background: The biophysical characteristics of cells determine their shape in isolation and when packed within
tissues. Cells can form regular or irregular epithelial structures, round up and form clusters, or deform and attach to
substrates. The acquired shape of cells and tissues is a consequence of (i) internal cytoskeletal processes, such as actin
polymerisation and cortical myosin contraction, (ii) adhesion molecules within the cell membrane that interact with
substrates and neighbouring cells, and (iii) processes that regulate cell volume. Although these processes seem
relatively simple, when combined they unleash a rich variety of cellular behaviour that is not readily understandable
outside a theoretical framework.

Methods: We perform a mathematical analysis of a commonly used class of model formalisms that describe cell
surface mechanics using an energy-based approach. Predictions are then confirmed through comparison with the
computational outcomes of a Vertex model and 2D and 3D simulations of the Cellular Potts model.

Results: The analytical study reveals the complete possible spectrum of single cell behaviour and tissue packing in
both 2D and 3D, by taking the typical core elements of cell surface mechanics into account: adhesion, cortical tension
and volume conservation. We show that from an energy-based description, forces and tensions can be derived, as
well as the prediction of cell behaviour and tissue packing, providing an intuitive and biologically relevant mapping
between modelling parameters and experiments.

Conclusions: The quantitative cellular behaviours and biological insights agree between the analytical study and the
diverse computational model formalisms, including the Cellular Potts model. This illustrates the generality of
energy-based approaches for cell surface mechanics and highlights how meaningful and quantitative comparisons
between models can be established. Moreover, the mathematical analysis reveals direct links between known
biophysical properties and specific parameter settings within the Cellular Potts model.
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Background
The assembly of a multicellular organism is achieved,
alongside cell division, apoptosis and differentiation, by
changing cell shape and tissue topology. Such cellular
and tissue dynamics are highly determined by the cell’s
physical properties. Therefore, to increase our under-
standing of morphogenesis, we need quantitative analyses
and descriptions of the biomechanical properties of cells
and tissues. However, despite the recent advances in this
field [1-12], we still lack detailed knowledge as well as
computational power to approach cell mechanics from
a molecular perspective. Accordingly, there are several
multicellular modelling approaches that waive the fine
detail of specific molecular interactions by describing cell
properties on a biophysical cellular level (see [13] for a
review). Such approaches are analogous to the simplifica-
tion of considering the surface tension of a liquid droplet,
instead of explicitly specifying the molecular interac-
tions involved. These cellular models maintain the desired
mesoscopic cell features, while facilitating the compar-
ison between simulations and experimental data, given
its reduced number of variables and effective parameters
[14-16]. Although suchmesoscopic approaches lack direct
links between the molecular level and the macroscopic
biological outcome, they remain powerful instruments
for comprehending cellular behaviour, since they allow
the investigation of novel regulatory elements and bio-
chemical processes. Lecuit and Lenne [17] evaluated an
overarching class of such mesoscopic biophysical models,
the Cell SurfaceMechanics (CSM)models. These describe
how biologically-generated tensions – namely adhesion-
derived tension, cortical tension and tension due to the
cell’s internal pressure – affect (i) the displacement of the
cell’s membrane, (ii) modify the cell’s shape and (iii) influ-
ence its dynamics. Nevertheless, major issues prevent us
from gaining optimal understanding from these models.
Firstly, it is not always clear how to quantitatively link

experimental observations to model implementations.
We will therefore discuss how biophysical properties are
linked to subcellular components, such as the structure
and mechanics of the cytoskeleton and the interactions
between adhesion molecules among neighbouring cells.
On a pragmatic level, this leads us to derive a protocol
for CSM class simulations [17], to determine and modify
expected cell behaviour in simulations and help establish
a link with experimental observations.
A second source of confusion relates to the wide vari-

ety of computational implementations used to describe
tissues. It is not yet evident how a model-to-model com-
parison can be drawn, confusing the biology community
when trying to compare common insights and features
between different theoretical studies. Likewise, modellers
are frequently not aware of the common features and arte-
facts of their implementations, making them susceptible

to overlooking valuable information from parallel studies.
We address this second concern in two ways: (i) we ini-
tially discuss in detail how a commonly used lattice-based
model formalism – the Cellular Potts model (CPM) – can
(and should) be seen as being part of the CSM class, and
how to determine its parameters and expected dynamics,
whilst ensuring appropriate scaling; and (ii) we compare
CPM simulations to analytical predictions as well as other
CSM implementations, and highlight overlaps and inter-
esting deviations.
We use the CPM as a reference model formalism

from the CSM class. Originally, CPM was proposed to
describe cellular dynamics based on differential adhesion,
thereby defining tissue surface tension relations [18,19],
to consolidate Steinberg’s Differential Adhesion Hypoth-
esis (DAH) [20]. Classical CPM simulations, in which
cells display an internal pressure and positive adhesion
coupling constants, successfully captured cell sorting phe-
nomena [18,19,21]. However, in the classical formulation
the CPM did not include the effects of cortical tension.
Ouchi et al. [22] have proposed an extension with a term
representing the surface constraint tension (to modify the
relationship between cell motility within aggregates and
adhesion strength [23]), alongside using negative instead
of positive coupling constants for the adhesion (discussed
later). Recently, such a surface constraint term has been
identified as the cortical tension, the third “ingredient”
underlying cell surface mechanics [17,24]. Since then, cor-
tical tension within the extended CPM has been used in
several multicellular modelling studies, for example, in
the description of cortical-tension dependent cell shape
alterations in dendritic cells [14]; in reverse engineering
of the critical parameters determining Drosophila’s eye
geometry [24]; and to understand germ-layer organisa-
tion in zebrafish [15]. A number of other computational
model formalisms have been proposed which, analogous
to the CPM, use an energy-based description for volume
conservation, adhesion and cortical tension [25-28]. They
adopt, however, different ways of describing the cell shape
as well as its dynamics. Such models have been used to
explore the role of the interfacial tension, reproducing,
through parameter changes of the CSM, different forms of
epithelial cell packing [25]; plausible mechanisms under-
lying cell intercalation [27]; and again, the Drosophila’s eye
geometry [26].
Surprisingly, despite the growing acceptance of the con-

cept and importance of cortical tension from both mod-
elling and cell biology communities, a clear explanation
for the role of cortical tension in cell surface mechan-
ics is still lacking. In fact, although several analytical
studies regarding CSM have been published [29,30], it is
still unclear what cell behaviour can be expected even
when just a single cell is considered in terms of its cor-
tical tension. For multicellular modelling, such a baseline
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understanding is vital to pinpoint the role of each bio-
physical parameter, allowing us to distinguish and predict
beforehand individual- and collective-cell-driven mecha-
nisms. We used the CPM formalism to numerically verify
our analytical predictions and to determine their implica-
tions in actual cell dynamics, highlighting the fact that the
analytical results are independent of the specific simula-
tion framework.

Methods
The cell surface mechanics model
From empirical evidence, it is well known that cells
maintain and regulate their size through osmotic pres-
sure control [31]; that internal cellular cortical regulation,
through myosin contraction, deforms cells; and that inter-
actions with other cells influence individual shapes, since
when two cells are brought together to adhere, their
contact interface will extend dependent on their adhe-
sion strengths [32]. Energy-based models for cell surface
mechanics bring these three main observations together
through a description of three independent energy-terms
(Figure 1A). Pressure is described by the energy variation
due to volume deviation relative to the cell’s target vol-
ume (resting volume). The contractility driven by the cell
cortex actin-myosin complex is described by an elastic
(Hookean) tension applied to its membrane, i.e. the energy
increases quadratically with the deviation from the mem-
brane’s resting length. The adhesion between two inter-
faces, such as cell-cell or cell-extracellular contacts, can
be simply described as a constant surface tension term.
An in-depth comparison how and to which extent those
biophysical processes can be linked to the underlying cell
biology can be found in [17]. Although the effective sur-
face tension – interfacial tension – that follows from these

terms is an equilibrium property, it also proves to be a
powerful concept in understanding the dynamics of cells
and tissues [17,33]. Most studies until now considered 2D
epithelial cell layers, although some work has been done
on 3D tissue (e.g. [14]). Because in epithelial tissue cell
adhesion and cell-cell contacts are typically restricted to
a small zone close to the apical cell surface, it is generally
considered reasonable to treat epithelial cell packing as a
2D problem [24,25].
Although the nomenclature varies throughout the lit-

erature, in all 2D studies mentioned above the energy
function E takes the form of

E (p, a
∣∣ J , λp,P, λa,A) = Jp+λp (p − P)2+λa (a − A)2 ,

(1)

where p and a are the perimeter and area of the cell (see
Figure 1A). The function uses five parameters for the cel-
lular properties: J, an energy per contact length due to
adhesion to other cells or the surrounding medium; P,
the membrane resting length; and A, the target cell area
(resting area); while the constraints are modulated by the
Lagrangemultipliers λp and λa (comparable to elastic con-
stants), which weigh the relative tension contributions of
actin-myosin contraction and cell deformations, respec-
tively. Although modifications of the above energy func-
tion could and have been proposed (see, e.g., [34]), almost
all studies on CSM have been using this basic frame-
work, sometimes further simplified (see, e.g., [19,25]), or
extended with additional terms that, for example, cap-
ture chemotaxis, the microstructure of the extracellular
matrix or fluid dynamics [35-37]. These extensions, such
as combining CSM with chemotaxis, can trigger highly
intricate and sophisticated dynamics [38]. Nevertheless,

Figure 1 Cell surface mechanics. (A) Illustration of the three main forces regulating the cell surface mechanics: adhesion-driven tension, cortical
tension and pressure. Adhesion is described as a constant tension J along the surface (green arrows). The cortical tension is described by an elastic
tension with equilibrium length P and elasticity constant of λp (orange spring). (B) The interfacial tension is defined as the altogether adhesion-
driven and cortical tensions. (C) Deformations away from the cell’s target area A generates a pressure � (white arrows).
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understanding the dynamics of the core CSM model is
an essential ground step to enable understanding of the
full process and in interpreting the meaning and conse-
quences of any subsequent model extension.
Note that the above equation is a simplification which

assumes that the cell is completely surrounded by homo-
geneous contacts (which could be other cells or medium).
In the case of an heterogeneous cell environment, the
first term, in its most general form, should be written
as

∑
σ ′ Jσ ′pσ ′ , where σ ′ indicates surrounding medium

and/or neighbouring cells; Jσ ′ the energy per contact
length specifically for the interface between the cell and
σ ′; and pσ ′ the length of that given interface. The sum
over all of the cell interfaces’ lengths gives its perimeter
p = ∑

σ ′ pσ ′ . For the initial analysis we will assume the
environment to be homogeneous. There has been ample
discussion whether it is more reasonable to use positive
or negative J-values [22,24]. Part of the issue is that J-
values may be used to encode several biological processes,
making it a challenge to quantify or ascribe to them a bio-
logical meaning (see [29] for a detailed discussion). We
therefore assume that its sign (as well as the sign of P, see
discussion on mapping between J and P below) is unde-
termined. It is nonsensical, however, to consider negative
values for the perimeter and area constraints, and it seems
unreasonable to use a negative target area. Moreover,
while in many modelling studies no perimeter constraint
is being used (corresponding to λp = 0), it is nonsensical
to have no area constraint. We therefore assume that λp
and A are always non-negative and λa is positive. We ini-
tially focus on a 2D cell, and later extend our analysis to
3D tissues.
Note that the formalism, besides discarding any intra-

cellular detail, also describes cell surfaces without explicit
“surface elements”, whose movement could be followed
over time and would require energy to move closer/away
from each other (when not affecting its perimeter or area).
While clearly being a coarse simplification, this reduced
level of membrane complexity is what allows CSMmodels
to capture complex tissue dynamics involving many cells.
(Note that while numerically CSM dynamics might be
calculated through displacements of introduced surface
elements, they are not relevant for the energy calculation
of the configuration, and hence for the dynamics itself.)
From the energy function above, we can derive impor-

tant quantities that will greatly facilitate the understand-
ing of cell and tissue dynamics. Firstly, the cell’s interfacial
tension γ — the work required to extend the membrane
by a unit area— is expressed in 2D as the change in energy
per unit perimeter length (Figure 1B) and depends on both
the adhesion and the cortical tension,

γ = ∂E
∂p

= J + 2λp (p − P) . (2)

We want to emphasise that while both forces contribute
to the cell interfacial tension, only adhesion is specific to
the cell-cell or cell-medium interactions at the interface.
Also, although on a regulatory level adhesion and cortical
tensionmight be biologically linked, they can be physically
separated within this energy description. The interfacial
tension can be split up into a length-independent compo-
nent, J − 2λpP, and a component which depends linearly
on the perimeter length, 2λpp. We can thus write

γ = τ + 2λpp , (3)

where τ is defined as the length-independent component
of the interfacial tension. The sign of τ is undetermined,
while the length-dependent component is always non-
negative.
The pressure�within the cell that contributes to a force

per unit membrane area can be represented as the work
required per unit volume decrease or, equivalently, the
decrease in energy per unit volume increase (in 2D, area
increase) (Figure 1C):

� = −∂E
∂a

= −2λa (a − A) . (4)

The force �F applied at a certain point of the cell’s mem-
brane due to the above energy function (Eq. 1) is the
negative of the local gradient of the function at that point,
∇E, which can be elegantly rewritten in terms of changing
area and perimeter:

�F = −∇E = �∇a − γ∇p . (5)

The force �F represents a vector at a point �x on the
membrane, which can be decomposed into an interfacial
tension force �Fγ = −γ∇p and a pressure driven force
�F� = �∇a. An imbalance between these forces should
lead to a dynamical change of the cell shape. It is impor-
tant to note that biological cells are highly dissipative
objects, for which viscous forces greatly exceed inertial
forces (low Reynolds number, see [39]). Thus, the motion
of cell deformations due to the force �F acting on the cell
membrane is usually assumed to be overdamped, with
inertial terms being negligible when compared to dissipa-
tive terms, leading to first-order dynamics, i.e. �F ∝ d�x/dt
[13,40].
As one of our aims is to clarify how model parameters

determine cell and tissue behaviour, we will first charac-
terize the equilibrium states of single cells. To do so, we
use the above definitions and derived variables.

Results
Single cell analysis
To understand the role of the biophysical parameters on
the cell mechanics we started asking two basic questions.
Firstly, what are all the possible equilibrium cell sizes,
what is their stability, and how are these defined by the
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parameters; and secondly, what is the parameter regime
for which, at equilibrium, the cell’s interfacial tension (γ )

is positive. The answer to the former question tells us for
which cell size(s) the forces acting on the cell are in bal-
ance, while the answer to the latter question enables us to
determine whether the cell shape is stable. In 2D, when
γ > 0 the cell tends to minimise its perimeter relative to
the enclosed area a. Under this condition, the circle is the
cellular shape that best minimises the a/p ratio [41].
We begin by assuming that the cell has a circular shape,

as this is the minimal-energy solution given positive inter-
facial tension. In such a scenario, the cell’s perimeter and
area cannot be independently specified. Instead both can
be specified as a function of the cell radius r, with p =
2πr and a = πr2, respectively. Given the circular shape
assumption, the energy E can be expressed as a function
of r, where Rp = P/2π and Ra = √

A/π are the reciprocal
target radii of P and A,

E
(
r| J , λp,Rp, λa,Ra

) = 2πrJ + λp
(
2πr − 2πRp

)2
+ λa

(
πr2 − πR2

a
)2 .

(6)

Once again, from this energy function we can extract the
cell’s interfacial tension (γ ) and pressure (�), but now as
a function of the radius. For the circular cell, Eq. 2, Eq. 4
read as

γ = J + 4πλp
(
r − Rp

)
, (7a)

� = −2πλa
(
r2 − R2

a
)
. (7b)

Positive interfacial tension at the equilibrium cell radii
Under positive interfacial tension, energy reduction leads
to surface minimization. When the interfacial tension is
negative, the tendency of reducing the surface for a deter-
mined area is lost, as there is no energy cost to additional
surface – in fact, the tendency is to increase the length of
the interface, causing cells which are constrained in area
to adopt different non-circular and ruffled shapes. Thus,
to predict the qualitative behaviour of the cell regarding
shape, it is therefore important to determine the sign of
the interfacial tension at the equilibrium radius.
To determine the equilibrium cell radii, we first take the

derivative of E with respect to the radius of the cell,

∂E
∂r

= 2π
(
J + 4πλp

(
r − Rp

)) + 2πr
(
2πλa

(
r2 − R2

a
))

.

(8)

By definition, at equilibrium the energy gradient is zero
(provided r∗ > 0, because an equilibrium radius r∗ < 0 is
nonsensical, and r∗ = 0 is always an equilibrium, indepen-
dent of the energy gradient). Therefore, the equilibrium
radius can be found by solving for ∂E

∂r = 0 (Eq. 8). To
avoid directly analysing this cumbersome cubic equation,
we rewrite Eq. 8 into a form from which we can directly

determine the sign of the interfacial tension at equilib-
rium. The first step is to substitute Eq. 7 into Eq. 8, which
yields

∂E
∂r

= 2π (γ (r) − r�(r)) . (9)

Then we bring in the equilibrium radius r∗ (for which
the energy gradient is zero) giving us

∂E
∂r

∣∣∣∣
r=r∗

= 2π
[
γ

(
r∗

) − r∗�
(
r∗

)] = 0 . (10)

For a cell to have a stable circular shape, the interfa-
cial tension at the equilibrium radius has to be positive,
i.e. γ (r∗) > 0. From the requirement γ (r∗) > 0 it follows
that

J + 4πλp
(
r∗ − Rp

)
> 0 , (11a)

r∗ >
−τ

4πλp
, (11b)

where, as before, τ describes the perimeter-independent
component of the interfacial tension, τ = J − 4πλpRp.
Moreover, from Eq. 10 we find that at equilibrium γ (r∗) =
r∗� (r∗). The requirement γ (r∗) > 0 therefore also
implies that r∗� (r∗) > 0, and thus

− 2πλar∗
(
r∗2 − R2

a
)

> 0 , (12a)
r∗ < Ra , (12b)

again provided r∗ > 0. By combining inequalities Eq. 11
and Eq. 12, the requirement for an equilibrium radius to
have a positive interfacial tension becomes

−τ

4πλp
< r∗ < Ra . (13)

Two conclusions can be drawn from this inequality.
First, a solution is only possible when

−τ

4πλp
< Ra , (14a)

τ > −4πλpRa . (14b)

Consequently, the interfacial tension at r∗ > 0 is going
to be negative for any τ < −4πλpRa, independently of
the specific value of r∗. Secondly, when τ > −4πλpRa,
Eq. 13 is always fulfilled, and hence it follows that the
interfacial tension at r∗ has to be positive. This can be
concluded in the following way: When τ > −4πλpRa,
it is not immediately clear that the interfacial tension is
positive, but it does directly imply that −τ

4πλp
< Ra. Only

when −τ
4πλp

< r∗ < Ra the interfacial tension is positive,
but there seem to be other possibilities which could give a
negative interfacial tension, namely r∗ < −τ

4πλp
< Ra and

−τ
4πλp

< Ra < r∗. Now let’s assume that the first situation
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applies, i.e. r∗ < −τ
4πλp

< Ra. Because of r∗ < −τ
4πλp

, we
know from Eq. 11b that γ (r∗) < 0. Consequently, to ful-
fil Eq. 10, r∗� < 0 as well. But this implies that (Eq. 12)
r∗ > Ra, which renders this approach inconsistent. Using
the inverse reasoning, it is clear that the other situation,
i.e. r∗ > Ra, is also not possible. Therefore, when τ >

−4πλpRa, it automatically follows that −τ
4πλp

< r∗ < Ra,
and so the interfacial tension at r∗ is always positive. This
allows for a straightforward calculation to determine if the
interfacial tension at r∗ is positive. This is the case when

τ > −4πλpRa , (15a)
J + 4πλp

(
Ra − Rp

)
> 0 . (15b)

The condition τ > −4πλpRa thus determines an impor-
tant parameter range in which the circular shape is stable.
When the circular shape is unstable, the shape of the cell
is hard to predict and will critically depend on the specific
implementation of the cell surface and surface dynamics
within the diverse CSM model formalisms. Even though
the cell shape will be unpredictable, in this parameter
regime there is no inherent conflict between fulfilling the
area constraint (equivalent to solving �(a∗) = 0) and
fulfilling the effective perimeter constraint (equivalent to
solving γ (p∗) = 0); hence, it is expected that for the shape
that will be taken up, a∗ = A and p∗ = P − J/

(
2λp

)
. In

contrast, when the circular shape is stable, we can analyse
the cell radius equilibria for any CSM implementation, as
follows next.

Cell equilibrium radii and their stability
The cell equilibria radii are determined by finding the radii
for which ∂E/∂r = 0, which involves the solving of a
reduced cubic equation on r. We start by rewriting Eq. 8,
separating the terms that are dependent on r from the
r-independent term, τ (see Figure 2):

∂E
∂r = 2π

(
J − 4πλpRp︸ ︷︷ ︸ + 4πλpr + 2πλar

(
r2 − R2

a
)︸ ︷︷ ︸
)

,
∂E
∂r = 2π

(
τ + 2πλar

(
r2 − 3ε

))
.
(16)

With Eq. 16 we can assess how the number of equilibria
depends on the two composite parameters, τ and ε = R2a

3 −
2λp
3λa . If ε < 0, the right-hand side term 2πλar

(
r2 − 3ε

)
cannot become negative (it is nonsensical to consider r <

0), so by itself this term does not give rise to non-trivial
equilibria. The only non-trivial equilibrium then occurs
when τ balances the monotonically increasing right-hand
side term (see Figure 2A). This solution is unique and sta-
ble, the equilibrium radius is positive if τ < 0 (r∗ = ρ3,
Figure 2C), but negative and therefore nonsensical if τ >

0. Consequently, when ε < 0 and τ > 0 the only equilib-
rium is the trivial solution r∗ = ρ0 = 0, which is stable,

while when τ < 0 the trivial solution r∗ = ρ0 = 0 is unsta-
ble (Figure 2A, C). In contrast, if ε > 0, the right-hand side
term 2πλar

(
r2 − 3ε

)
is not monotonically increasing and

hence there can be three real roots (see Figure 2B). Never-
theless, the possible equilibria, their sign and their stability
can be easily understood if one recognizes that modifying
the value τ corresponds to a vertical shift in the function
∂E/∂r (Figure 2A, B). By starting with τ = 0 (for which
∂E/∂r is an antisymmetric function) and then shifting the
graph vertically, all possible equilibria combinations occur
successively (Figure 2A, B). For two parameter combina-
tions the number of equilibria changes (Figure 2B, not
taking negative r-values into account). The lower dotted
line shows the transition, at τ = 0, from two to three
equilibria, while the upper dotted line shows the transition
from three equilibria to one equilibrium. The latter tran-
sition corresponds to a fold bifurcation, while the former
transition is a non-standard bifurcation that bears resem-
blance to a transcritical bifurcation, but formally does not
correspond to one. We will therefore henceforth refer to
it as a ‘pseudo-transcritical’ bifurcation. The fold bifurca-
tion takes place when the minimum of the ∂E/∂r function
equals zero. The radius at which ∂E/∂r has a minimum
is given by r = √

ε, which can be easily determined by
setting ∂2E

∂r2 = 0:

∂2E
∂r2

= 2π
(
2πλa

(
r2 − 3ε

) + 4πλar2
)
, (17a)

= 2π
(
2πλa

(
3r2 − 3ε

))
, (17b)

= 12π2λa
(
r2 − ε

)
. (17c)

Therefore, the transition from two to zero positive equi-
libria takes place when

∂E
∂r

∣∣∣∣
r=√

ε

= 0 ⇔ τ = 4πλaε
3
2 , (18)

when ε > 0. (As discussed above, when ε < 0, ∂E
∂r is mono-

tonically increasing, which means that there is no such
transition, see Figure 2A).
The stability of the solutions is given by the second

derivative (Eq. 17). When τ < 0, the non-trivial solution
ρ1 is stable while the trivial solution, r∗ = ρ0 = 0, is
unstable; when τ > 0, both the non-trivial solution ρ1
and the trivial solution, r∗ = ρ0 = 0 are stable, while the
non-trivial solution r∗ = ρ2 is unstable (Figure 2C).
To obtain convenient expressions of the above-

mentioned equilibria, we define here the aggregate param-
eter α = ∂E

∂r

∣∣∣
r=√

ε,τ=0
= −8π2λaε

3
2 . When ε > 0,

τ < − α
2π , the stable non-trivial positive equilibrium is
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Figure 2 Derivation of possible equilibrium cell sizes using the shape of the energy gradient function ∂E/∂r. (A) The energy gradient function
∂E/∂r for ε < 0. The lower and upper dotted lines refer to τ = 0 and τ = 4πλaε

3
2 , respectively. For τ < 0 there is one stable positive equilibrium

(red line), otherwise r∗ = 0 is the only stable equilibrium (blue and purple lines). Stable equilibria are indicated by solid circles, unstable equilibria by

open circles. (B) The energy gradient function ∂E/∂r for ε > 0. The lower and upper dotted lines refer again to τ = 0 and τ = 4πλaε
3
2 ,

respectively. For τ < 0, only one stable equilibrium exists (red line). The interval 0 < τ < 4πλaε
3
2 defines the bistable region (blue line); when

τ > 4πλaε
3
2 , r∗ = 0 is the only stable equilibrium (purple line). The lines in (A) and (B) have the same parametrisation, except for ε , which has the

opposite sign. (C) Bifurcation diagram showing the cell equilibria as a function of τ . Stable equilibria are indicated by solid lines, unstable equilibria
by dashed lines. The solutions ρ1, ρ2 and ρ3 are defined by Eq. 19, Eq. 20 and Eq. 21; whereas the trivial solution is defined by ρ0 = 0.

given by the following equation (note that in this case α is
a negative real number)

ρ1 = 2
√

ε cos
(
1
3
arccos

(
2πτ

α

))
. (19a)

When τ < α
2π the above equation is still correct, but

inconvenient if used in a non-symbolic computational
environment. This is because in this parameter regime
arccos

( 2πτ
α

)
returns a complex number, with the cos()

operation returning again real numbers. Therefore, in
order to prevent calculations involving complex numbers
in the intermediate step, we rewrite ρ1 for τ < α

2π as
(again, note that α is still a negative real number)

ρ1,alt = 2
√

ε cosh
( 1
3arccosh

( 2πτ
α

))
. (19b)

Note that both equations aremathematically equivalent,
differing only in how promptly they can be numerically

evaluated. When ε > 0, 0 < τ < − α
2π , the second

non-trivial equilibrium, which is non-stable (again, α is a
negative real number), is given by

ρ2 = 2
√

ε sin
( 1
3 arcsin

(− 2πτ
α

))
. (20)

Finally, as discussed above, when ε < 0, τ < 0 there is
only one non-trivial positive equilibrium, which is stable
(Figure 2A). In this case α is a positive imaginary num-
ber. We therefore introduce another aggregate parameter
ζ , which is positive and real when ε < 0, namely ζ =
− (

α
2π

)2. The equilibrium radius is then given by

ρ3 =
√−ε

6√ζ

(
3
√

−τ +
√

τ 2 + ζ − 3
√

τ +
√

τ 2 + ζ

)
. (21)

The parameter conditions for the four possible dynamic
behaviours of a 2D circular shaped cell are summarised in
Table 1. These conditions determine regions of different
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Table 1 Parameter conditions for the four possible
dynamic behaviours of a 2D circular shaped cell

Region Condition(s)

I τ < −4πλpRa

II −4πλpRa < τ < 0

III 0 < τ < 4πλaε
3
2

IV τ > 4πλaε
3
2

cell behaviour, as shown in Figure 3A. The analysis reveals
that, within a cell surface mechanics description, all pos-
sible cell behaviours are captured by four modes only, and
that these can be distinguished based only on the two
aggregate parameters, τ and ε.

3D spherical cell
When an equivalent analysis is performed for the 3D
case, we again find that there are only four qualitatively
different behaviours possible for a single cell. Moreover,
these behaviours can again be fully determined by only
two aggregate parameters. Below, we briefly present the
outline of the analysis, leaving the details for Appendix A.

Energy function, interfacial tension and pressure
In 3D, the energy function becomes

E (s, v| J , λs, S, λv,V ) = Js + λs (s − S)2 + λv (v − V )2 ,
(22)

Figure 3 All possible dynamics for a 2D circular cell and a 3D spherical cell within the CSM formalisms can be captured by two aggregate
biophysical parameters. (A) Bifurcation diagram showing the dynamics as a function of τ and ε . Region I (purple area): the interfacial tension is
negative. The absence of positive tension along the membrane will lead to an unpredictable cell shape, at which a∗ = A, and p∗ = P − J/

(
2λp

)
.

Region II (green area): The cell has a positive interfacial tension at the equilibrium radius. However, when the radius is sufficiently smaller than the
equilibrium radius, the interfacial tension is negative. Region III (blue area): a circular cell shape is always stable. There are two possible stable
equilibria (bistable regime), a positive r∗ = ρ1 and r∗ = 0, separated by an energy maximum at ρ2. Region IV (pink area): the only stable equilibrium
is r∗ = 0, i.e. cells shrink and disappear. (B) Bifurcation diagram for a 3D spherical cell, plotted as a function of the aggregate parameters μ and ν .
Qualitatively, the same four regions as obtained for the 2D case are observed for the spherical cell. Again, the cell behaviour is fully determined by
two degrees of freedom, here shown for the (ν ,μ)-space.
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where s and v are the surface area and volume of the
cell, respectively. Again, five parameters describe the cel-
lular properties: J, an energy per surface area unit due to
adhesion with the surrounding medium or neighbouring
cells; S, the membrane rest surface area; V , the target cell
volume. The constraints are modulated by the Lagrange
multipliers λs and λv, which weigh the relative tension
contributions of actin-myosin contraction and cell defor-
mations, respectively. Again we consider that J-values can
be both positive and negative, but that negative values
for the Lagrange multipliers are nonsensical. Using the
surface and volume of a sphere (s = 4πr2 and v =
4
3πr

3 respectively), we re-write E for a spherical cell as a
function of r,

E = 4π Jr2 + λs
(
4πr2 − 4πR2

s
)2 + λv

(
4
3
πr3 − 4

3
πR3

v

)2
,

(23)

where Rs = 1
2

√
S
π
and Rv = 3

√
3V
4π . As before, interfacial

tension and pressure can be defined as

γ = ∂E
∂s = J + 8πλs

(
r2 − R2

s
)
, (24a)

� = − ∂E
∂v = −8

3
πλv

(
r3 − R3

v
)
. (24b)

Again, the interfacial tension has a surface-area-
dependent and a surface-area-independent component,
8πλsr2 and J − 8πλsR2

s , respectively. As in 2D, we denote
the surface-area-independent component of the interfa-
cial tension by τ , i.e. τ = J − 8πλsR2

s and γ = τ + 8πλsr2.
(Note that the expression for τ differs from the 2D case.)

Cell equilibrium radii, their interfacial tension and stability
The first step is to determine whether the interfacial ten-
sion at an equilibrium radius is expected to be positive. As
discussed for the 2D case, this does not require specific
knowledge regarding the radius at equilibrium. Follow-
ing a comparable analysis as performed for the 2D case,
we derive in Appendix A the following condition for a
positive interfacial tension in 3D:

τ > −8πλsR2
v , (25)

which is very comparable to the condition expressed in
Eq. 14b for the 2D case.
In the next step we look at the equilibrium radii them-

selves. As for the 2D case, the cell radii are determined by
finding the radii for which ∂E/∂r = 0, which now involves
solving a quintic equation of r. In Appendix A we show
that the derivative of E with respect to the radius of the
cell can be written as

∂E
∂r

= 8π
(
ar5 + br3 − cr2 + τ r

)
, (26)

where τ is, as previously, the surface-area-independent
part of the interfacial tension, here given by J − 8πλsR2

s ,
which can be either positive or negative; and the other
lumped parameters are respectively a = 4

3πλv, b = 8πλs,
and c = 4

3πλvR3
v , with a strictly positive and b and c

strictly non-negative for any reasonable parameter choice.
The first observation is that ∂E

∂r

∣∣∣
r=0

= 0 for any param-
eter choice. This is an important difference with the 2D
case. It implies that in 3D, a cell with a radius close to zero
slows down its rate of shrinkage or expansion (depending
on the stability of the zero-radius equilibrium), while in
2D, the rate of shrinkage or expansion typically remains
non-zero for very small radii (given by ∂E

∂r

∣∣∣
r=0

= τ ). This
difference has a clear impact on the cell dynamics, and
plays a role in computational implementations of CSM
formalisms.
The closed-form solutions to ∂E

∂r = 0 for the 3D case are
not included here because their full expressions are hardly
informative. Note, however, that its numerical evaluation
can be easily performed if needed.
As in 2D, the number of equilibria and their stability

depend on the sign of τ . If τ is negative, there is only
one stable positive equilibrium radius, whereas if τ is pos-
itive two scenarios are possible: no equilibrium at all or
two non-trivial equilibria, one lower and unstable, and
another greater and stable, as summarized in Figure 3B,
and derived in Appendix A.
The two regimes for which τ > 0 are separated by

a fold bifurcation. The transition from two to no equi-
libria implies that, at the bifurcation, ∂E

∂r

∣∣∣
r=r∗

= 0

and ∂2E
∂r2

∣∣∣
r=r∗

= 0. The bifurcation lines that separate
all the possible dynamical regimes can be captured by
defining a two-dimensional parameter (μ, ν)-plane (see
Appendix A), where ν = (J−8πλsR2s )λv

16πλ2s
= τλv

16πλ2s
= 3aτ

b2 , and

μ = R3v

8
(

λs
λv

) 3
2
. In this plane, the bifurcation lines are defined

by

ν = −λvR2
v

2λs
, (27a)

ν = 0 , (27b)
ν = f (μ)

(
μ − f (μ)

)
, (27c)

where f (μ) = sinh
( 1
3 arcsinh (μ)

)
. Figure 3B shows the

full 3D bifurcation diagram.
Thus, by calculating μ and ν, which are dependent on

the parameters of the CSM, one can immediately establish
(without the need for simulations) the expected behaviour
of a single spherical cell. The distinguishing feature from
the 2D case regards the dynamics (but not the stability)
close to zero radius.
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Cellular Potts model (CPM)
The CPM, a prominent member of the class of cell sur-
face mechanics formalisms, distinguishes itself by being
a lattice-based formalism. This property requires special
attention on how to relate the CPM numerical descrip-
tors to the variables of the analytical description of CSM.
Specifically, it is crucial to explain how the variables p and
a of the analytical description relate to the lattice-based
descriptors of perimeter and area in a CPM simulation.
A cell within the CPM consists of a set of lattice (or grid)

points that together define a region in a two dimensional
(2D) or three dimensional (3D) lattice. In 2D, the set of
lattice points (i, j) that define a specific cell are indicated
by a unique identifier σi,j. There are as many possible cell
shapes as the degrees of freedom defined by the num-
ber of permutations of lattice points composing the cell σ ,
i.e. the bulk area nσ = ∑

ij δσij ,σ (where δ is Kronecker’s
delta function). This is an important feature of the CPM
compared to other methods that treat cells as points or
centre-of-mass based entities, as it allows an indefinite
freedom for cell deformation, being only limited by the
spatial resolution. Although many CPM studies explic-
itly relate the lattice spatial unit �x to a physical length
(e.g. 1μm), relevant model parameters, such as target area
or adhesion energies are still often expressed in terms of
the lattice arbitrary spatial unit only. To link such lattice-
point-based parameters to the above analysis, as well as
to understand how a change in spatial resolution affects
the parameters, we here explicitly take the resolution of
the lattice k = 1/�x into account. We thus distinguish
between the bulk area nσ , expressed in number of lattice
points, and the actual area of a CPM cell aσ , expressed in
�x2. These two areas only differ in that nσ is the num-
ber of lattice points composing the CPM cell σ , whereas
aσ = nσ /k2 is the physical area of a CPM cell, and k the
factor describing the resolution of the lattice. The area a in
the analytical description maps to the CPM area aσ . The
explanation on how the CPM cell perimeter pσ relates to
the perimeter p of the analytical description is not as sim-
ple as for the area, and is therefore deferred to the next
section.
In a CPM simulation the cell shape dynamics are cal-

culated using a Monte Carlo algorithm. In a random
sampling through the lattice, for each lattice point a local
shape change (σij → σi′j′) is considered, i.e. a pro-
trusion/retraction of a cell into a neighbouring cell or
medium. An energy change �E = E(σi′j′) − E(σij) is cal-
culated which defines a probability p(σij → σi′j′) for that
event to happen,

p(σij → σi′j′) =
{

1 if �E < −Y ,

e
(
− �E+Y

T

)
if �E ≥ −Y .

(28)

The energy function E from which the dynamics are
computed is either Eq. 1 for 2D lattices or Eq. 22 for 3D
lattices, as explained previously. In Eq. 28, the parame-
ter Y represents a yield – the ability of the membrane to
resist a force, in many studies, including this one, set to
zero – and T a simulation temperature which determines
the extent of fluctuations. The higher the temperature, the
more probable it is to observe energetically unfavourable
cell shape deformations.

Contact length perimeter and contact surface area in the CPM
The CPM cell perimeter pσ does not have a straightfor-
ward connection to the perimeter p (or surface area s in
3D) of the analytical description. In fact, the CPM cell
perimeter is a source of much confusion and implementa-
tion errors within the community, requiring clarification.
The source of the confusion stems from the fact that
there is no direct way of mapping the perimeter or surface
area of a cell onto a 2D or 3D lattice (although the area
(in 2D) and volume (in 3D) are readily available). When
determining the (local) perimeter, one can not simply take
the total edge length between neighbouring lattice points
belonging to different cells, because this leads to large
grid effects, with diagonally oriented edges presenting a√
2 ≈ 41% larger edge length than horizontally or verti-

cally oriented edges [35,42]. It could seem that the cell’s
discrete boundary could be approximated by a continuous
description, i.e. using interpolation techniques. However,
not only can these techniques be computationally expen-
sive, they also presume that there is a clear definition of
the ordered set of points belonging to the cell bound-
ary, which, for two reasons, does not hold for the CPM.
Firstly, the CPM does not keep track of “boundary sites”,
the boundary being solely a consequence of the set of lat-
tice points constituting the cell, therefore not providing
any ordering. Secondly, the boundary of a CPM cell is not
necessarily a single simple closed curve. Rather, the frac-
tion of lattice points occupied by the cell drops from unity
to zero when passing the edge of the cell, allowing for
discontinuities in the boundary at the level of the lattice
site, while still capturing a single, continuous boundary at
the interface level. Thus, interpolation techniques render
themselves ill-defined in the context of the CPM, and can
therefore not be used. In short, the perimeter p (or sur-
face area s in 3D) does not follow directly from the lattice
where cells are embedded. Nevertheless, it is an important
quantity which has to be determined in CPM simulations,
because both the adhesion-driven tension and the cortical
tension depend on it. Therefore an alternative method has
to be used to compute the perimeter in the CPM, to ensure
that comparisons can be drawn between the CPM and the
more general CSM. To understand how to correctly cal-
culate it, we have to look at how these tensions are imple-
mented in the CPM formalism. Solving the forces is done
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implicitly via the energy variation �E caused by a local
deformation (σij → σi′j′), which involves an effective com-
putation of the local perimeter variations, i.e.�p = pσi′ j′ −
pσij . Instead of calculating �p in terms of a change of
contour length, a local neighbourhood is defined around
the lattice point σi,j for which the state change is eval-
uated. Then the algorithm sweeps all the lattice points
defined by this neighbourhood, summing the number of
lattice points that do not belong to this cell before and
after the evaluated state change to obtain a measure of
the change in contact between the cell and its neighbours.
Usually, a radial neighbourhood is used. Figure 4A shows
neighbourhoods of different sizes. The set of lattice points
(x, y) around a site (x0, y0) that form the neighbourhood is
determined by the neighbourhood radius:N (r) = {(x, y) :√

(x − x0)2 + (y − y0)2 ≤ r}, where r is the lowest radius
that satisfies this inequality [43]. Note that often neigh-
bourhood level rather than radius is used, based on the
sequence of all possible neighbourhoods ranked by size.
It is clear that while the neighbourhood is grid-based,
at larger neighbourhoods the shape approximates a cir-
cle. This is quantified in Figure 4B, indicating that the
area divided by πr2, the expected area if it were a cir-
cle, converges to unity for larger neighbourhood levels.
In the CPM the perimeter of the cell is approximated by
counting for each lattice point belonging to the cell within
the predefined neighbourhood all the lattice points not
belonging to that cell. Therefore this computation involves
two nested loops, each with the algorithmic complexity
of the specific spatial dimensions, i.e., O(n2) for 2D and
O(n3) for 3D. This approach leads to neighbouring lattice
points being counted multiple times. Figure 4C illustrates
this effect when a second level (or Moore) neighbourhood
is being used. While for this configuration some lattice
points are counted only once, others are counted up to 5
times. For a 20th level neighbourhood (Figure 4D), there is
an effective zone around the cell, with decreasing contri-
bution to the cell’s perceived perimeter at larger distance
from the cell. So how can such a proxy for perimeter be
related to the geometric length measure? To make the link
between the perceived perimeter and the true perimeter,
we consider a cell whose cell edge can be approximated
by a non-curved interface at the scale of the neighbour-
hood, while the neighbourhood itself is sufficiently large
to be considered to be more or less circular. Figure 4E
illustrates for such a scenario how the perceived perime-
ter within the CPM is calculated. It shows for a number
of lattice points, indicated in red, their contribution to
the perceived perimeter, indicated in blue. The upper row
illustrates the discrete process as is performed in a CPM
simulation, while the lower row illustrates a continuous
approximation of this process. Two important features are
noteworthy. First, any lattice point whose distance to the
cell edge lies within the neighbourhood radius contributes

to the perceived perimeter, but the lattice points close to
the cell boundary contribute more than the lattice points
further away from the boundary. Secondly, each lattice
point should be regarded to occupy a specific area. Given
that for each lattice point this area is multiplied with the
area within its neighbourhood that extends outside of the
cell, the used proxy for perimeter length in the CPM,
pCPM , has dimensions of area times area, or L4, where L
indicates dimension of the quantity length. This implies
that a correction factor ξ (with dimension L3) is needed
to scale back from this proxy with dimension L4 to the
effective length p, with dimension L. This correction fac-
tor corresponds to a scaling factor ξ that multiplies per
infinitesimal perimeter length. For large neighbourhoods,
in 2D, this factor converges to:

ξ =
∫ 0

x=−r

∫ r+x

x′=0
2
√
r2 − (x′ − x)2dx′dx = 2

3
r3 , (29)

as illustrated in Figure 4E. In this equation, r indicates the
radius of the used neighbourhood; x gives the position of
the ‘lattice sites’ contributing to the perceived perimeter
(red dots in Figure 4E), relative to the cell edge, with nega-
tive values indicating internal and positive values indicat-
ing external to the cell; and x′ is varied over the interval
[ 0, r + x], defining the distance to the cell edge within
the neighbourhood’s protruding region (i.e., the position
within the blue circular segments in Figure 4E). The first
integral captures the fact that contributions to the per-
ceived perimeter are generated by lattice sites located
from a distance equivalent to the neighbourhood radius
inwards, up to the cell edge. The second integral cap-
tures the area of the neighbourhood extending outside of
the cell. Often in CPM studies, the neighbourhood level
instead of the radius is reported. Therefore, in order to
determine ξ via Eq. 29, the level has to be mapped to the
radius first (see Table 2). This problem is equivalent to the
sum of two squares representation, and hence an analytic
expression for such a conversion does not exist, neither in
2D nor in 3D, and needs to be calculated iteratively [44].
Once ξ is determined, the 2D actual geometric perimeter
p can be approximated by

p = pCPM

ξ
. (30)

Given that Jp equates to JCPMpCPM , it follows that for the
actual adhesion energy

J = ξ JCPM . (31a)

Similar relationships for the actual geometric membrane
rest length and perimeter constraint follow, namely

P = PCPM

ξ
, (31b)

λp = ξ2λp CPM . (31c)
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Figure 4 Perimeter determination in a lattice-based environment like CPM. (A) Examples of neighbourhoods. From left to right, top to bottom:
von Neumann neighbourhood (m = 1), Moore neighbourhood (m = 2), third-, fourth-, twentieth- and hundredth-level neighbourhoods. Orange
site indicates origin, neighbourhood (sites in blue) is determined by the neighbourhood radius (light blue circle). (B) Lattice points within a certain
radius, relative to the expected area of a circle, as a function of neighbourhood radius.m indexes the corresponding neighbourhood levels. (C,D)
Cell neighbouring regions used for perimeter-related computations in the CPM, for neighbourhood levelsm = 2 (C) andm = 20 (D). Colour
gradients denote the number of times neighbouring lattice points are taken into account in the perimeter computation. (E) The CPM cell perimeter
in 2D (or surface area in 3D) is calculated by summing all lattice points falling within the given neighbourhood which have a different state (blue
lattice points) than that of the cell (grey lattice points), for all lattice sites of the cell (red lattice points). The upper row illustrates the discrete process
as is performed in a CPM simulation, while the lower row illustrates the continuous approximation of this process. (F–I) Precision of the CPM
perimeter correction factor ξ depends on the neighbourhood level used in the CPM simulations. The graphs show the fractional difference
between the numerical and analytical estimate of ξ as a function of the neighbourhood radius. (F,G) 2D numerical estimate compared with Eq. 29.
(H, I) 3D numerical estimate compared with Eq. 33. For the numerical estimates a flat cell boundary is used with increasing neighbourhood levels,
from 1 to 1,000. (G) and (I) are magnifications of (F) and (H), respectively.
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Table 2 Theoretical andmeasured values of the perimeter scaling factor ξ for small neighbourhood sizes, needed for
calculating the effective J value in the CPM

2D 3D

neigh. neigh. ξ , estimated ξ , numer. % error neigh. ξ , estimated ξ , numer. % error
number radius using Eq. 29 determined radius using Eq. 33 determined

1 1 0.67 1 50.00 1 0.79 1 27.32

2
√
2 1.89 3 59.10

√
2 3.14 5 59.15

3 2 5.33 5 -6.25
√
3 7.07 9 27.32

4
√
5 7.45 11 47.58 2 12.57 11 -12.46

5 2
√
2 15.08 15 -0.56

√
5 19.64 23 17.14

6 3 18.00 18 0
√
6 28.27 39 37.93

7
√
10 21.08 26 23.33 2

√
2 50.27 47 -6.50

8
√
13 31.25 36 15.21 3 63.62 70 10.03

12 2
√
5 59.63 68 14.04

√
13 132.73 134 0.96

20 2
√
10 168.66 173 2.58

√
22 380.13 410 7.86

100 3
√
29 2811.06 2850 1.39

√
118 1.09 · 104 11127 1.75

1000
√
3365 130133 130181 0.037 3

√
133 1.13 · 106 1127539 0.20

Reciprocally, known adhesion energies, membrane rest
lengths, and perimeter constraints, respectively, can be
appropriately scaled within the CPM formalism by apply-
ing the corrections

JCPM = J
ξ
, (32a)

PCPM = ξP , (32b)

λp CPM = λp
ξ2

. (32c)

In 3D, the proxy used for surface area in CPM simula-
tions has dimensions volume times volume, or L6, while
the required correction factor ξ to scale back to the
effective surface area, with dimensions L2 is given by

ξ =
∫ 0

x=−r

∫ r+x

x′=0
π

(
r2 − (x′ − x)2

)
dx′dx = π

4
r4 . (33)

The ways to scale s, J, S, and λs between the geometric
and CPM parameters in 3D are analogous to the scaling of
p, P, and λp in 2D,

s = sCPM
ξ

, sCPM = ξ s , (34a)

J = ξ JCPM , JCPM = J
ξ
, (34b)

S = SCPM
ξ

, SCPM = ξS , (34c)

λs = ξ2λs CPM , λs CPM = λs
ξ2

. (34d)

If one aims for a fair comparison between CPM simu-
lations and either the analytical results shown throughout

this paper, or the simulations performed with other CSM-
based formalisms, the factor ξ has to be determined for
the chosen neighbourhood and the parameters adapted
accordingly. Moreover, without applying such a correction
no direct quantitative link can be made between biophysi-
cal parameters used in CPM simulations and experimental
measurements.
The analytical results given in Eq. 29 and Eq. 33 assume

a perfectly circular neighbourhood. Small neighbour-
hoods can deviate substantially from this approximation,
as shown in Figure 4B. We therefore measured the resid-
ual error in perimeter length after applying the correction
factor. Figure 4F and H show the residual error for 2D
and 3D, respectively, while Figure 4G and I show the
same data magnified. For neighbourhoods with a radius
equal or larger than 5, both in 2D and in 3D, the error
remains within 6%. For small neighbourhoods, however,
the errors can be large, with a 59% mismatch for a 2nd
level neighbourhood (see Table 2). Good choices are the
5th level neighbourhood (0.56% error) and the 6th level
neighbourhood (0% error). In 3D, the often used 3rd level
neighbourhood presents a 27% error, while the 7th level
neighbourhood presents a 6% error. In general it is best to
use a numerically established correction factor ξ for small
neighbourhoods, rather than directly applying Eq. 29 and
Eq. 33 (see Table 2).
The choice of the neighbourhood is therefore very

important, because it defines both the “localness” of the
interfacial tension computation as well as its dependence
on the grid geometry, which can be a source of angular
bias in the cell’s shape [35]. In general, a radial neigh-
bourhood spanning a wider region will take more lattice
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points into account and will be closer to the circle (or
sphere in 3D), leading to a better approximation of the
perimeter. However, the neighbourhood should be suffi-
ciently small compared to the size of the cells themselves,
as with increasing neighbourhood radius the information
integration becomes less local. Hence, there is a trade-off
between being local, which is desired as it improves spatial
resolution, and isotropy of the computation itself. More-
over, larger neighbourhoods are computationally more
costly.
In addition, the same neighbourhood level/radius needs

to be used in all computations involving perimeter, such as
the energy change calculations stemming from adhesion
as well as from perimeter conservation.
In order to prevent anisotropic bias stemming from the

neighbourhood choice, one may opt to increase its radius
while concurrently increasing the spatial resolution (e.g. a
20th level neighbourhood would already be very close to
being perfectly isotropic for most CPM studies). This way,
a good compromise between the localness and isotropy of
the interfacial tension computation can be achieved.

CPM spatial resolution
In many of the previous CPM studies (e.g. [21,45]), the
absolute space scale was not always deemed crucial and
hence often not reported. However, due to a wider appli-
cation of the CPM, including its role as a predictive tool
of experimental data, it has become important to explic-
itly state the spatial scale (e.g. [14,46,47]). Particularly, it is
often relevant to run simulations at different levels of res-
olution, to allow for more precision, to reduce anisotropy,
or to achieve a different spatial scale of temperature-
driven fluctuations (the latter being directly linked to the
lattice space scale). We therefore present here how one
can easily adapt the simulation parameters to a change
in the spatial resolution. After deciding on a certain scal-
ing for each lattice point in the simulation, all parameters
should be changed in such a way that the cell dynam-
ics remain similar. This corresponds to deriving a new
parametrisation, J ′, λ′

p,P′, λ′
a,A′ (or J ′, λ′

s, S′, λ′
v,V ′ in 3D),

such that the energy derivative (Eq. 5) remains equal to
that prior to the scaling. When the space scale is refined
by a factor k, then any 2D cell σ with a perimeter pσ and
area aσ will have both a new perimeter p′

σ = kpσ and a
new area a′

σ = k2aσ after rescaling by k. To keep the bal-
ance between the different forces as given in Eq. 5 when
the spatial resolution is changed, the following equalities
should hold:

�∇(a) − γ∇(p) = �∇(a′) − γ∇(p′) , (35a)

− ∂E(p, a)
∂a

∇(a) − ∂E(p, a)
∂p

∇(p) =

− ∂E(p′, a′)
∂a′ ∇(a′) − ∂E(p′, a′)

∂p′ ∇(p′) . (35b)

By substituting p′
σ = kpσ and a′

σ = k2aσ into Eq. 1, it
follows that

∂E(p′, a′)
∂p′ = J ′ + 2kλ′

p

(
p − P′

k

)
, (36a)

−∂E(p′, a′)
∂a′ = −2k2λ′

a

(
a − A′

k2

)
, (36b)

which, substituted into Eq. 35b gives

− 2λa (a − A) ∇(a) − (
J + 2λp (p − P)

) ∇(p)

= −2k2λ′
a

(
a − A′

k2

)
∇(k2a)

−
(
J ′ + 2kλ′

p

(
p − P′

k

))
∇(kp) , (37a)

− 2λa (a − A) ∇(a) − (
J + 2λp (p − P)

) ∇(p)

= −2k4λ′
a

(
a − A′

k2

)
∇(a)

−
(
kJ ′ + 2k2λ′

p

(
p − P′

k

))
∇(p) . (37b)

Hence, in order to generate an equivalence with the cell
dynamics before scaling, the following adjustments have
to be made to the parameters:

J ′ = J/k , (38a)
λ′
p = λp/k2 , (38b)

λ′
a = λa/k4 , (38c)
P′ = kP , (38d)
A′ = k2A . (38e)

This analysis can be extrapolated to 3D, giving the
following parameter correspondence:

J ′ = J/k2 , (39a)
λ′
s = λs/k4 , (39b)

λ′
v = λv/k6 , (39c)
S′ = k2S , (39d)
V ′ = k3V . (39e)

Note that the validity of this scaling does not
depend on any assumptions regarding the shape of
cells. Figure 5 shows simulations at different resolutions
(k ∈ {1, 2, 5, 10}), with respective scaled parameters. We
observe similar cell shape, perimeter length, and area, as
well as the same overall patterning, namely the forma-
tion of three tissue rings driven by differential-adhesion
cell sorting. Note, however, that the time-scale changes,
with dynamics slowing down when the spatial resolution
increases. For instance, the rounding up of initial clusters,
driven by a negative energy gradient and happening on a
short time-scale, is, expressed in lattice points, inversely
related to the spatial scale, hence k times slower in terms
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Figure 5 CPM dynamics at different resolutions. (A) Simulations of a single cell at different resolutions (k = 1, 2, 5, 10). For visual comparison, each
panel shows the simulation after 10,000 MCS, but rescaled with the k-value used for the simulation. See Appendix C for parameter details. Scale bars
indicate a length of 50 lattice points. The dashed red lines indicate the analytically predicted cell diameter, a very close correspondence is found for
all resolutions. (B) Simulations of a tissue containing three different cell types, G(reen), Y(ellow), and B(lue), as well as M(edium), again at four
different resolutions. As before, each panel shows the simulation rescaled with the k-value used for visual comparison, with time (expressed in
Monte Carlo time steps (MCS), in which each point of the lattice is considered for an update once) indicated below, and scale bars representing a
length of 50 lattice points. The time required for formation and rounding up of clusters scales with k2 (see upper row), while the time required for
the drift and merging of small clusters, eventually leading to complete cell sorting, scales with k3 (middle rows and lower row). Further parameter
details are given in Appendix C.

of lattice points, but k2 times slower in terms of actual
geometric length (Figure 5B, upper row). The coalescence
of small clusters into larger ones happens on an even
slower time-scale. This results from the comparatively
lower amplitude of the temperature-driven fluctuations
when the spatial resolution is increased. Many small, neu-
tral or almost neutral fluctuations allow cells and small
clusters to slowly move around, alike a random walk.
Therefore, the mean distance travelled by cells, expressed
in lattice points, scales with �x2 = 1/k2, which in actual

geometric length implies a slowing down of the displace-
ment by a factor k3, as shown in the simulations (see
Figure 5B, remaining rows). Consequently, simulations
at a 10-fold higher resolution evolve 1000 times slower,
requiring 105 more computational time in 2D (given that
the field is 10×10 = 100 times larger), and 106 more com-
putational time in 3D. The computational strength of the
CPM lies in the fact that an energy change �E caused by
a local shape change can be calculated locally and hence
very efficiently, in both both 2D and 3D simulations. As
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a consequence, both in 2D and 3D computational time
scales linearly with the number of cells. The observation
that, in sharp contrast, a 10-fold higher resolution requires
a 100,000 or even a million times more calculations (in
2D and 3D, respectively), shows that to obtain a reason-
able and feasible time-scale for simulations, it is essential
to very carefully choose the resolution (which can cause
simulations to run either much faster or much slower
than other CSM implementations), with increasing cell
numbers inflicting much less a computational time cost.

One-to-one mapping between adhesion energies J and
target perimeter P
An important insight that follows from the mathematical
analysis is that all possible dynamics within a CSM model
can be perfectly captured by two descriptors only, which is
significantly smaller than the number of parameters defin-
ing the model itself. Because of this, a degenerate mapping
can be derived for different sets of adhesion energies (J)
and perimeter constraints (P) that perfectly conserve the
dynamics (i.e. not only in the limit close to target radius,
not only for circular cells, but for any possible configu-
ration). This result is highly relevant, since it has been
claimed in the literature that the dynamics for negative
J-values would be fundamentally different from simula-
tions which use positive J-values [22]. We here show, both
analytically and through simulations, that a simple scaling
allows for using positive or negative values (or amixture of
both) without affecting the dynamics. The energy descrip-
tion for each individual cell σ in a tissue, neighbouring
one or more cells σ ′ and/or medium M can be written as
follows:

Eσ =
∑

σ ′ Jτ(σ ),τ(σ ′)pσ ,σ ′

2
+ Jτ(σ ),Mpσ ,M + λp (pσ − Pσ )2

+ λa (aσ − Aσ )2 .
(40)

The term
∑

σ Jτ(σ ),τ(σ ′)pσ ,σ ′ depicts the total tension
associated with all the adhesion contacts between the
cell σ and the neighbours σ ′, while the term Jτ(σ ),Mpσ ,M
depicts the tension with the medium. The division by two
captures that the energy linked to the tension between
cells is shared by both cells, while this not the case for
the tension with the medium [19]. Note that this divi-
sion simply represents the fact that all interfacial energy
contributions are only counted once. The adhesion ener-
gies Jτ(σ ),τ(σ ′) and Jτ(σ ),M are assigned to the contacts
between the two cell types τ(σ ) and τ(σ ′), and between
the cell type τ(σ ) and the medium M, respectively. Sim-
ilarly, the variables pσ ,σ ′ and pσ ,M denote the contact
length between cells σ and σ ′, and between cell σ and
the medium M, respectively. So the total perimeter of the
cell σ is pσ = pσ ,M + ∑

σ ′ pσ ,σ ′ . All the other variables

and parameters retain the same meaning as described
before for Eq. 1. We first define an energy description
withmodified J- and P-values, after which we require both
descriptions to be equivalent (except for a possible vertical
offset in the energy landscape, which does not affect the
dynamics). With � offsets to the parameters, the energy
description looks as follows:

E
′
σ =

∑
σ ′

(
Jτ(σ ),τ(σ ′) + �Jτ(σ ),τ(σ ′)

)
pσ ,σ ′

2
+ (

Jτ(σ ),M + �Jτ(σ ),M
)
pσ ,M

+ λp (pσ − (Pσ + �Pσ ))2 + λa (aσ − Aσ )2 .

(41)

The equation presented above can be expanded into

E
′
σ =

∑
σ ′ Jτ(σ ),τ(σ ′)pσ ,σ ′

2
+ Jτ(σ ),Mpσ ,M + λp (pσ − Pσ )2

+ λa (aσ − Aσ )2 +
∑

σ ′ �Jτ(σ ),τ(σ ′)pσ ,σ ′

2
+ �Jτ(σ ),Mpσ ,M − 2λppσ �Pσ + 2λpPσ �Pσ

+ λp�P2σ ,
(42)

which is simply

E
′
σ = Eσ +

∑
σ ′ �Jτ(σ ),τ(σ ′)pσ ,σ ′

2
+ �Jτ(σ ),Mpσ ,M

− 2λppσ �Pσ + 2λpPσ �Pσ + λp�P2σ .
(43)

Because the dynamics of the system described by E′
σ

will not be different from Eσ if E′
σ = Eσ + const., it is

easily recognizable that the terms 2λpPσ �Pσ + λp�P2σ ,
which do not depend on any variable, do not contribute
at all to the dynamics. Therefore, in order for the dynam-
ics of both systems to be equal, the remaining terms
1
2

∑
σ ′ �Jτ(σ ),τ(σ ′)pσ ,σ ′ + �Jτ(σ ),Mpσ ,M − 2λppσ �Pσ will

have to vanish:∑
σ ′ �Jτ(σ ),τ(σ ′)pσ ,σ ′

2
+�Jτ(σ ),Mpσ ,M−2λppσ �Pσ = 0 .

(44)

One can find now what �Pσ should become to compen-
sate for the change in the adhesion-energies �Jτ(σ ),τ(σ ′):

�Pσ =
∑

σ �Jτ(σ ),τ(σ ′)pσ ,σ ′ + 2�Jτ(σ ),Mpσ ,M
4λppσ

, (45)

which, put in a more simplified form, gives:

�Pσ = �Jw
2λp

, (46)

where�Jw=( 1
2

∑
σ ′ �Jτ(σ ),τ(σ ′)pσ ,σ ′ + �Jτ(σ ),Mpσ ,M

)
/pσ

is the weighted mean adhesion-driven interfacial tension.
This simple expression shows the balance that has to exist
to keep the dynamics the same if the adhesion energies are
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to be changed, negative- or positive-wise. The equation
shows that in general this compensation depends on the
extent of the contact length of cell σ with other neigh-
bouring cells, i.e. pσ ,σ ′ (this dependence is implicit in
�Jw), and it is therefore not possible to find a unique
mapping between a change in one specific adhesion
energy Jτ(σ ),τ(σ ′) and the perimeter constraints Pσ . The
reason is that if one changes a specific adhesion energy by
adding �Jτ(σ ),τ(σ ′) (Jτ(σ ),τ(σ ′) → Jτ(σ ),τ(σ ′) + �Jτ(σ ),τ(σ ′)),
the equilibrium contact lengths may change for that cell.
This changes the weights (of the weighted average �Jw),
i.e. pσ ,σ ′ , and probably also the cell shape, as the cell will
now have a new equilibrium partitioning of its contact
lengths with the neighbouring cells.
In contrast, in the specific case that all adhesion ener-

gies are changed concomitantly there is a perfect one-
to-one mapping between the change in adhesion and the
change in perimeter constraint. By choosing�Jτ(σ ),τ(σ ′) =
�Jcell,cell to be equal for all σ , σ ′, and �Jτ(σ ),M =
�Jcell,medium = 1

2�Jcell,cell to be equal for all σ , Eq. 45 can
be rewritten as

�Pσ =
1
2�Jcell,cell

(∑
σ �pσ ,σ ′ + pσ ,M

)
2λppσ

= �Jcell,cell
4λp

.

(47)

In short, increasing or decreasing all cell-cell adhesion
energies with a constant �Jcell,cell (and all cell-medium
adhesion energies with half of this value) can be perfectly
compensated by concurrently increasing or decreasing
all perimeter constraints with the same value divided by
4λp. CPM simulations confirm this one-to-one mapping
between the change �J and the corresponding change
�Pσ needed to keep the dynamics the same (Figure 6).
Importantly, even in the case that �J is sufficiently neg-
ative to change all initially positive J-values into negative
J-values, the dynamics remain unaffected (Figure 6B). In
3D the same correspondence holds, provided the obvious
changes in notation are made, so the relationship is

�Sσ = �Jw
2λs

(48)

for the general case, and

�Sσ = �Jcell,cell
4λs

(49)

for the specific case of a concurrent change of all J-values
with �Jcell,cell (but cell-medium adhesion energies with
half of this value).
When applying this method, it is important to realize

that there is no such scaling possible for the parameter
λp. One consequence is that one cannot rescale a model
which does not take a perimeter constraint into account

(λp = 0) into one which does. That is, the rescaling only
works once the perimeter constraint is already taken into
account. Likewise, to be explicit, rescaling the model such
that Pσ = 0 does not mean that perimeter constraint
has been taken out of the equation. It rather implies a
perimeter constraint with a rest length of zero.

Single cell simulations
Having discussed fundamental issues regarding anisotro-
py, perimeter and scaling, we next study whether the ana-
lytical results can be corroborated by CPM simulations.
To illustrate all predicted qualitatively distinct dynamics,
we performed 2D single cell CPM simulations for each of
the four described regions. Given that the type of dynam-
ics is only dependent on two aggregate parameters, τ

and ε, we arbitrarily defined four sets of parameters, one
for each of those regions, indicated in Figure 7A. The
expected equilibrium area a∗ and perimeter p∗ are shown
in Figure 7B.
In region I, a cell of initial radius 50�x grows rapidly

in size (Figure 7C1). In this region, the cell is expected to
have a negative interfacial tension at the circular shape.
Therefore, the circular shape is unstable and the area
and perimeter constraints can be both fulfilled indepen-
dently, while the cell takes up a complex shape. In such
a case, the stable equilibrium area a∗ is directly defined
by the cell’s target area (a∗ = A), while the equilibrium
perimeter p∗ is determined by an interfacial tension of
γ = 0 (p∗ = − τ

2λp = P − J
2λp ). Figure 7C2 shows

the time dynamics of the perimeter and radius of four
cells with different initial sizes, the blue line indicating the
cell (Figure 7C1). The dashed lines indicate the expected
perimeter and radius at the unstable equilibrium with cir-
cular cell shape, while the solid lines indicate the expected
perimeter and radius when both constraints are fulfilled
independently in a complex cell shape. After 500 Monte
Carlo Step (MCS), the predicted p∗ = 2000�x and a∗ =
31416�x2 (or r∗ = 100�x) perfectly match the simula-
tions, while the cell shapes are clearly deviating from being
circular.
In region II, the simulated cell shows a more isotropic

shape that approaches a circular shape (Figure 7D1). The
simulated cells starting at different radii all converge to
the same equilibrium perimeter and area (Figure 7D2).
While the analytical equilibrium area a∗ is approached
very closely by the numerical simulations, the analytical
equilibrium perimeter p∗ = 619�x deviates considerably
from what is observed in the simulations (which is around
800�x, see Figure 7D2). This deviation can be explained
by the membrane fluctuations that are due to the stochas-
tic nature of the CPMupdate scheme. Close to region I the
interfacial tension at equilibrium is only marginally larger
than zero. Consequently, stochasticity can easily cause the
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Figure 6 One-to-one mapping between adhesion energy J and target perimeter P. (A) Simulation using positive J-values only, showing cell sorting
of three different cell types, G(reen), Y(ellow), and B(lue), in a tissue surrounded by M(edium). Parameters used are JG,G = JY ,Y = JB,B = 400,
JG,M = 600, JY ,M = 1, 200, JB,M = 1, 800, JG,Y = JY ,B = 800, JG,B = 1, 400; A = 30; P = 67; λa = 1, 000; λp = 20; and T = 600. (B) Simulation using
negative J-values only, presenting exactly the same dynamics as the simulation shown in (A). (Note that the same initial conditions and random seed
were used.) Parameters are the same as in (A), except for JG,G = JY ,Y = JB,B = −3, 200, JG,M = −1, 200, JY ,M = −600, JB,M = 0, JG,Y = JY ,B = −2, 800,
JG,B = −2, 200; and P = 22. Here, only the CPM parameters are given, which can be translated into the actual values using Eq. 31.

formation of excess perimeter, causing its length to deviate
from the analytical, deterministic prediction. This effect
strongly depends on the simulation temperature param-
eter T. When this parameter is lowered, the difference
between the predicted and numerical observed perimeter
at equilibrium is reduced. Note, however, that low sim-
ulation temperatures can also introduce undesirable grid
effects [35].
In region III, the cell dynamics exhibits bistability. In

Figure 7E2, the dashed lines indicate the analytical unsta-
ble equilibrium (p∗ = 194�x, a∗ = 2995�x2) and
the solid lines the stable non-trivial equilibrium (p∗ =
482�x, a∗ = 18468�x2), with the other stable equi-
librium given by p∗ = 0�x, a∗ = 0�x2. Figure 7E1
shows the simulations of two different cells, one starting
below the unstable steady-state (initial radius r = 30�x),
the other starting above the unstable equilibrium (initial
radius r = 36�x). While the larger cell increases in size,
the smaller cell eventually disappears. Note that in this
region there is hardly any discrepancy between the analyt-
ical and observed values, due to a much higher interfacial
tension at equilibrium.
In region IV, the simulated cells exhibit a very smooth

membrane, due to an even higher interfacial tension. The
interfacial tension dominates over the cell’s pressure at
any cell size, triggering a continuous size decrease until
the cell vanishes (Figure 7F1). Both the perimeter and
area concomitantly decrease until the trivial equilibrium
p∗ = 0�x, a∗ = 0�x2 is reached (Figure 7F2).
To further determine the level of agreement between

the CPM simulations and the mathematical analysis, we

performed 10,000 simulations of a single cell, varying the
J-value as well as the initial radius of the cell. From the
analysis, we know that cells should either shrink to a zero
size (in region IV, as well as too small cells in region III),
or should reach an equilibrium area and perimeter. We
therefore registered after 10,000 MCS whether the cell
had disappeared, and, if not, what its size and perimeter
had become (averaged over the last 1,000 MCS). We then
plotted those measurements on top of the analytically
predicted bifurcation diagram, using the corresponding
τ -value as the bifurcation parameter (Figure 8), in the fol-
lowing way. For each cell that had disappeared, we plotted
the initial perimeter and area (yellow and pink regions,
respectively). The boundary between initial sizes that do
or do not lead to shrinkage should correspond to the
unstable equilibrium in region III (solid red line), while in
region IV cells should always disappear. For each cell that
did not disappear, we plotted the mean and standard devi-
ation of the final perimeter and area (blue dots, intensity
indicates fraction of cells not disappearing). Those points
should correspond to the stable equilibrium in region I,
II and III (solid blue line). We indeed find a close cor-
respondence between the analytical and computational
results (Figure 8), but with some remarkable differences.
First, we find that region IV, in which cells are never sus-
tained, starts at slightly lower τ -values in the numerical
simulations, and that the stable equilibrium in region III
lies at slightly lower values and the unstable equilibrium
at slightly higher area values. Both are due to the fact
that, while the analysis was done for a perfectly round
cell, such a shape is not actually obtained in the CPM.
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Figure 7 CPM simulations of individual cells within the four parameter regions. (A) Parameter settings at which the simulations are performed. In
all simulations, ε = 3, 065. In regions I–IV, τ = −105, −2 · 104, 105, and 2 × 105, respectively. (B) Analytically derived bifurcation diagram of the cell
dynamics as a function of τ (or equivalently J), with ε fixed at 3,065. Both equilibrium perimeter p∗ and area a∗ are shown. For J > 68, 584 (see
Eq. 14b) cells take up a circular shape, so p∗ and a∗ are trivially related; for J < 68, 584, p∗ and a∗ vary independently of each other. Solid and dashed
lines represent stable and unstable equilibria, respectively. Dots refer to the equilibria at simulation parameter settings, which can be stable (blue
circles), unstable with respect to size (open circles), or unstable with respect to shape (open diamonds). Boundaries between the four parameter
regions are defined by black dashed lines. (Note the discontinuity in the p∗-axis.) (C1–F1) Snapshots of single cell simulations in different regions:
Region I with initial radius r = 50 (C1); Region II with initial r = 50 (D1); region III with initial r = {30, 36} (E1); Region IV with initial r = 150 (F1).
(C2–F2) Time evolution of the perimeter (top) and radius (bottom) of simulated cells for different initial conditions with variable initial cell radius.
Blue line(s) correspond to the individual cell dynamics shown in the snapshots (C1–F1). Black solid lines indicate the analytically derived stable
equilibria, dashed lines the unstable equilibria. Further parameter details are given in Appendix C.
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Figure 8 Comparison between the analytically derived equilibria and
the equilibria observed in CPM simulations. Shown are the analytical
predictions of the equilibrium perimeter (A) and equilibrium area (B)
as a function of τ , together with the numerically observed equilibrium
distributions. (Parameters were chosen in such a way that ε > 0,
which ensures that varying only τ allows for passing through all four
qualitatively different regions.) Solid blue lines indicate predicted
stable equilibria, solid red lines predicted unstable equilibria with
respect to size, and dashed blue lines unstable equilibria with respect
to shape. Dots correspond to the numerical results. The mean and
standard deviation for each τ -value were calculated by averaging
over the last 1,000 MCS of 100 independent simulations. The intensity
of the dots indicates the fraction of cells not disappearing. The yellow
and pink area indicate the combinations of τ -value and initial
perimeter and area for which in more than 50% of the simulations the
cells disappeared. All simulations used a 6th level neighbourhood
and Ra = 100 (A = 31, 416); P = 2, 000 (PCPM = 36, 000); λa = 0.0625;
λp = 25 (λp CPM = 0.07716); and T = 20, 000. The J parameter was
swept over the interval [0, 2.5 · 105] (JCPM over [0, 13, 889]).

This stems from the stochastic fluctuations that form
an intrinsic part of the CPM, rather than from the fact
that the CPM is lattice-based (as discussed before, this
only causes a small deviation, especially when using 6th
level neighbourhood, as done here). Those fluctuations
cause the cell to temporarily deviate from a round shape,
increasing the amount of perimeter per area. As will be
discussed in the next section, this causes small changes
in the position of the bifurcation lines, as well as in the
equilibrium area and perimeter.
Secondly, in the analysis we find a sharp transition from

region I (with a negative interfacial tension for an equi-
librium circular cell, leading to a non-circular cell shape)

and region II (with a positive interfacial tension, in which
a circular shape is preferred). In the computer simula-
tions we find that this transition is more blurred: when
the interfacial tension becomes small, the forces restor-
ing a round shape from thermally-driven shape deforma-
tions become small as well. Hence, close to the region
I/II boundary the cell shape increasingly deviates from a
round shape, resulting in a smooth transition. Still, over-
all, those simulations present a close match between the
expected perimeter and area from the mathematical anal-
ysis. It illustrates that the CPM, albeit a lattice-based,
discrete and stochastic model formalism, still presents
equilibrium dynamics as expected from the basics of cell
surface mechanics.
Likewise, the analytical 3D bifurcation diagram (Figure 3B)

correctly predicts the single cell dynamics in 3D CPM
simulations (Figure 9A), although again small devia-
tions are observed close to region boundaries (data not
shown).

Epithelial cell packing
In the previous section we have pointed out deviations
from the analytical results when cell shapes differ too
much from a perfect circle (in 2D) or perfect sphere
(in 3D). Clearly, within a packed tissue context such an
assumption of circularity is invalid. We therefore ques-
tioned whether the analysis could be extended to non-
circular shapes.
For 2D we focus on epithelial tissue. Simple epithe-

lium is normally a cell monolayer tissue made of cells
strongly adhering to each other in a plane of cell junc-
tions. The cellular organization of the epithelium derives
from the mechanical properties, particularly at the level
of cell junctions. Several modelling studies have looked
whether the morphological properties of epithelial tis-
sue can be derived from simple rules describing its
mechanical properties [24,25]. Here, we try to approach
the characterization of epithelial cell packing using the
CSM description. We explore the assumption that the
behaviour of an epithelial sheet is no more than the
collective behaviour of its individual cells. Due to high
cell density within epithelial tissues, cells are typically
densely packed and exhibit hexagonal shapes. We there-
fore seek how a cell behaves when it is constrained to a
hexagonal shape.
Du et al. [28] numerically solved the energy function for

an infinite system of hexagonal cells. Instead of writing the
energy function for the hexagonal cell, we rather consider
a broader class of shapes, which includes the hexagon, but
also the circle, through a parametrisation which links the
amount of perimeter to the amount of surface area. We do
so by choosing for any cell shape an arbitrary length factor
l (which could be the longest radius, the length of a rib



Magno et al. BMC Biophysics  (2015) 8:8 Page 21 of 37

Figure 9 3D CPM simulations of single cells and tissues, within the four qualitatively different regions. (A) Single cell dynamics. All simulations used
a 12th level neighbourhood (ξ = 169

4 π ≈ 132.73) and V = 5, 000 (Rv = 10.6); S = 500 (SCPM = 66, 366); λv = 50; λs = 25 (λs CPM = 0.001419); and
T = 10, 000. The J-value was modified to set τ : In region I, J = −55, 000 (JCPM = −414); in region II, J = 20, 000 (JCPM = 150); in region III,
J = 1, 000, 000 (JCPM = 7, 533); and in region IV, J = 1, 400, 000 (JCPM = 10, 547). Initial radii are: region I and II, r = 1; region III, top, r = 4; region III,
bottom, r = 5; region IV, r = 30. (B) Tissue dynamics. Shown are 13 individual cells located within a larger aggregate of cells (C). All parameters are
the same as in (A), except for the J-values to set τ to be within the right zones (since the zone boundaries are different for spherical and rhombic
dodecahedronal cell shapes). Note that JCPM = JC,M = 2JC,C , capturing the fact that in the CPM formalism the contribution by J to the interfacial
tension along cell-cell boundaries — but not cell-medium boundaries — is shared between neighbouring cells. In region I, J = −65, 000
(JCPM = −489); in region II, J = 20, 000 (JCPM = 150); in region III, J = 900, 000 (JCPM = 6, 780); and in region IV, J = 1, 400, 000 (JCPM = 10, 547). Initial
radii are: region I and II, r = 5; region III, top, r = 3; region III, bottom, r = 5; region IV, r = 20.

or any other convenient choice), and then introducing the
constants kp and ka, which scale the length factor l to the
perimeter p and area a, respectively:

p = kpl , (50a)
a = kal2 . (50b)

For example, a hexagonal cell can be described by kp = 6
and ka = 3

√
3

2 , which can be derived when taking for l the
polygon’s side length (but any choice for l will lead to the

same result). Likewise, a circular cell can be described by
kp = 2π and ka = π , typically taking for l the radius r.
The energy E as function of l reads as

E
(
l| J , λp, Lp, λa, La, kp, ka

) = Jkpl + λp
(
kpl − kpLp

)2
+ λa

(
kal2 − kaL2a

)2 . (51)

While the parameters kp and ka are constants that relate
the perimeter and area with l, Lp and La are the reciprocal
target lengths of the target perimeter P and area A.
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The analysis from the single cell case can be easily
performed for this more general case, see Appendix B,
yielding

∂E
∂l

= kp
(

γ − 2
ka
kp

l�
)

, (52a)

γ = J + 2kpλp
(
l − Lp

)
, (52b)

� = −2kaλa
(
l2 − L2a

)
, (52c)

τ = J − 2kpλpLp , (52d)

ε = L2a
3

− k2pλp
6k2aλa

, (52e)

γ
(
l∗

) = 0 ⇒ τ = −2kpλpLa , (52f)
∂E
∂l

∣∣∣∣
l=0

= 0 ⇒ τ = 0 , (52g)

∂2E
∂l2

∣∣∣∣
l=l∗

= 0 ⇒ τ = 8k2aλa
kp

ε
3
2 . (52h)

The analysis shows that not only for the circular shape
but for any choice of specific cell shape, all possible
dynamics within the class of CSMmodels can be fully cap-
tured by a two-parametric bifurcation diagram, defined by
the aggregate parameters τ and ε and determined by its
perimeter/area balance. Due to the generalization, τ and
ε, as well as the bifurcation lines between region I and
II (γ (l∗) = 0) and between III and IV ( ∂2E

∂l2

∣∣∣
l=l∗

= 0)
become a function of the perimeter/area balance itself.
The overall structure of the bifurcation diagram, however,
does not change; the same qualitative results as obtained
for the circular cell hold for any other cell shape, includ-
ing the hexagonal shape. Figure 10A shows the bifurcation
diagram specifically for the hexagonal case. Comparing
it with Figure 3A indeed shows that the specific param-
eter values for the bifurcations change, but the overall
structure does not.
We next determined whether this analytical result can

indeed correctly describe cell behaviour of hexagonal cells
in amulticellular context.We therefore compared the ana-
lytical predictions to published simulation results of a ver-
tex model [25], as well as to a series of tissue simulations
using the CPM formalism.

Vertexmodel cell packing simulations
To show that the results regarding the epithelial cell
packing are a general consequence of the CSM model
and not a quality particular to the CPM or any other
numerical implementation, we took published data about
the modelling of epithelial cell packing that uses a
different mathematical formalism and compared it to
our analytical predictions. For this, we used the work
reported in Farhadifar et al. [25], where the authors
used the Vertex model to investigate the mechanical

Figure 10 The biophysical parameter space in the context of 2D
cell-packing. (A) Biophysical parameter space for the hexagonal cell

following p = kpl and a = kal2, with kp = 6 and ka = 3
√
3

2 .
(B) Biophysical parameter space for the hexagonal cell in terms of �
and �, adopting the notation of Farhadifar et al. [25]. Blue lines depict
the analytically derived bifurcation lines, red and green circles are
extracted through image analysis of Figure 1 in [25]. The green dots
perfectly match the bifurcation line � = − 1

4
√
2 4√3

�; likewise the red

dots perfectly match the bifurcation line � = 2−3 6√3
(
�

) 2
3

8
√
3

. We predict

one more bifurcation line, � = 0, while in [25] region II and III are
considered a single region, the so called “Hexagonal Network”.

properties of epithelial cell packing. Their approach
describes the CSM tensions using the same energy
description as presented here, compare Eq. 1 with Box 1
in [25].
To compare with the results from [25], we introduce the

correspondence between their notation and ours: J = �,
λp = �, λa = K , A = A0 and P = 0. The fact that they
assumed P = 0 in their approach means that our descrip-
tion of the CSM holds more generally, because with such
an assumption the influence of the cortical tension on
the interfacial tension is always positive. The authors also
introduced a normalised tension � and normalised con-
tractility � (see Eq. 84), which were used to depict their
biophysical parameter space.
The derivation of the conditions defining regions I–IV

for this parametrization is straightforward from Eq. 52f,
Eq. 52g and Eq. 52h, and is given in Appendix D. From the



Magno et al. BMC Biophysics  (2015) 8:8 Page 23 of 37

condition γ (l∗) > 0 one derives � > −
√
ka

2kp �; the condi-

tion ∂E
∂l

∣∣∣
l=0

= 0 simply yields � = 0; and the condition

∂2E
∂l2

∣∣∣
l=l∗

= 0 gives � = 4ka−3
(
kakp�

) 2
3

2k2p
. As is shown in

Figure 10B, for the particular case of the hexagon, for
which kp = 6 and ka = 3

√
3

2 , the three bifurcation lines
become:

� = − 1
4
√
2 4√3

� , (53a)

� = 0 , (53b)

� = 2 − 3 6√3
(
�

) 2
3

8
√
3

. (53c)

By representing the bifurcation diagram of Figure 10A
in the equivalent (�,�)-space, we show that the analyt-
ical results are perfectly matched by the Vertex model
simulations of [25] (Figure 10B): Eq. 53a, which separates
the positive from the negative interfacial tension regime,
matches the boundary obtained by simulation (green dots
in Figure 10B, extracted from [25]). Eq. 53b, which sepa-
rates the regime with a single positive stable equilibrium
from the bistable regime in our analysis, is not present in
their simulation bifurcation diagram. Nevertheless, when
we follow our analysis, the so-called Case II of their
parameter space should be located within the bistable
regime. Indeed, a snapshot of their simulation reveals a
huge variation in cell size, strongly suggesting bistability
(see Figure 2H in [25]). Finally, Eq. 53c, which separates
region III and IV, lies right on top of their numerically-
derived line that separates the “Hexagonal network” and
“cell vanishing” regimes. Please note that a comparable
analytical effort has been published to understand the
boundaries between the different observed behaviours
[30]. That study, however, did not note the distinction
between region II and III, and they derived an approxi-
mation of the boundary between region III and IV, while
the solution presented here is exact. Consequently, unlike
[30], our analytically derived boundary between region III
and IV matches perfectly the numerical simulations over
their full domain.
These results show that the tissue properties which were

defined in [25] as “Soft Network”, “Hexagonal Network”
and “Cell Vanishing” perfectly correspond to region I,
region II/III, and region IV, respectively, as presented in
this paper. It highlights that such tissue properties are
basically a manifestation of the mechanical properties of
individual cells and not due to collective cell behaviour per
se (except that collective cell behaviour is needed to give
rise to the hexagonal cell shapes). In fact, knowledge on

the expected cell shape combined with single cell analysis
turned out to be sufficient to account for the whole range
of observed tissue behaviour.

CPM cell packing simulations
We then asked if a comparable level of correspondence
can be found between the CPM simulations and themath-
ematical analysis when considering a homogeneous tissue.
As for the single cell case, we performed several simu-
lations in order to illustrate and compare the different
parameter spaces. Again we defined four sets of param-
eters, one for each region (Figure 11A). A bifurcation
diagramwith the expected equilibria in each region, under
the assumption of a hexagonal cell shape, is shown in
Figure 11B. (For comparison, the equilibria for the circular
case are shown as well.)
In region I the cells in the cluster show a fringed bor-

der (Figure 11C1). In this region, the cells are expected
to have a negative interfacial tension when taking up a
hexagonal shape. Consequently, the hexagonal shape is
unstable, and the tissue is formed by dynamically chang-
ing, non-hexagonal cells, with tissue topology alterations
by neighbour changes, during which some cells loose their
contact, while others come into contact with each other
(so-called T1 transitions, see [19]). In this regime, both
perimeter and area constraint are fulfilled independently,
the equilibrium area a∗ defined by the cell’s target area
and the equilibrium perimeter p∗ determined by a zero
cell interfacial tension, as shown in Figure 11B, C2. The
predicted p∗ = 2, 000�x and a∗ = 31, 416�x2 (or l∗ =
110�x) are perfectly matched by the simulations.
In region II, the simulated cell cluster takes up a hon-

eycomb shape, with each individual cell approaching the
expected hexagonal shape (Figure 11D1). After initiation
of the simulation, all cells rapidly converge to the same
equilibrium perimeter and area (Figure 11D2). As was
also observed for the single cell simulations, the observed
equilibrium perimeter is larger than the expected equi-
librium perimeter p∗ = 648�x, due to the stochas-
ticity of the CPM update scheme. For this particular
parameter choice the difference is around 20%, but it
increases when the equilibrium is followed towards region
I and decreases when followed towards region IV, with
lower simulation temperatures yielding a much closer
match.
In region III, the cells exhibit bistability (Figure 11E1,

F1). Figure 11E1 illustrates that when a simulation is
initiated with cells that are larger than the unstable
equilibrium (p∗ = 221�x, a∗ = 3, 509�x2), the cells
evolve towards the non-trivial stable equilibrium (p∗ =
490�x, a∗ = 17, 336�x2, Figure 11E2). In contrast, in a
simulation initiated with cells below the unstable equilib-
rium (Figure 11F1), most cells vanish (p∗ = 0�x, a∗ =
0�x2), but some, due to stochastic fluctuations, pass the
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Figure 11 CPM simulations of epithelial packing within the four parameter regions. (A) Parameter settings at which the simulations are performed.
In all simulations, ε = 3, 675. In regions I–IV, τ = −105, −2 · 104, 105, and 2 · 105, respectively. (B) Blue lines: Analytically derived bifurcation diagram
of the cell dynamics, assuming hexagonal cell shape, as a function of τ (or equivalently J), with ε fixed at 3,675. Orange lines: corresponding
bifurcation diagram for circular cell shape. Both equilibrium perimeter p∗ and area a∗ are shown. For J > 67, 011 cells take up a hexagonal shape, so
p∗ and a∗ are trivially related; for J < 67, 011, p∗ and a∗ vary independently. Solid and dashed lines represent stable and unstable equilibria,
respectively. Dots refer to the equilibria at simulation parameter settings, which can be stable (blue circles), unstable with respect to size (open
circles), or unstable with respect to shape (open diamonds). The bifurcation points are indicated by black dashed lines. (Note the discontinuity in the
p∗-axis.) (C1–G1) Snapshots of epithelial packing simulations in the different regions, as indicated. Initial cell size in (E1) was larger than the
unstable equilibrium (p∗ = 221, a∗ = 3, 509), whereas in (F1) it was smaller. All snapshots are displayed at the same scale, except for (F1), enlarged
by a factor 1.75. Hexagonal cells, defined as cells with exactly six neighbours, are coloured green, all others light blue. (C2–G2) Time evolution of the
perimeter (top) and area (bottom) of a subset of individual cells within the simulated epithelial tissue. Green and blue again indicate whether cells
have six neighbours. Black solid lines indicate the analytically derived stable equilibria, dashed lines the unstable equilibria. Further parameter details
are given in Appendix C.

unstable equilibrium to end up in the non-trivial sta-
ble one (Figure 11F2). Note that due to the increased
interfacial tension compared to the previous simulations,

fluctuations that deviate the cell shape from perfect
hexagonality are much less pronounced, and hence the
simulations match the analytical results more precisely.
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In region IV, the cell edges are even smoother due to
the high interfacial tension (Figure 11G1). However, all
cells vanish rapidly, reaching the trivial equilibrium (p∗ =
0�x, a∗ = 0�x2, Figure 11G2).
Overall, the predicted behaviour for a hexagonal cell

closely matches the numerical CPM simulations of mul-
tiple cells, illustrating that again the tissue behaviour can
be captured by CSM considerations at the cellular level. A
complete overview of the parameters used in the 2D anal-
ysis, the general results for any cell shape, and the specific
ones for circular and hexagonal cells, are given in Table 3.

3D cell packing
In densely-packed 3D tissues, cells take up the form
of rhombic dodecahedrons (equivalent to the hexagonal
shape in 2D tissues), which is the most efficient space-
filling packing as it requires the smallest amount of surface
area per volume. Again we first derive a general solu-
tion for any cell shape, introducing a surface scaling fac-
tor, ks = s

l2 , and a volume scaling factor kv = v
l3 . In

Appendix E we find that after introducing such a gen-
eralization for cell shape, the bifurcation lines we found
previously for the spherical shape (Eq. 27) become

ν = −9k2vλvL2v
2k2s λs

, (54a)

ν = 0 , (54b)
ν = f (μ)

(
μ − f (μ)

)
, (54c)

where ν = (J−2ksλsL2s )9k2vλv
4k3s λ2s

= τ
12aφ2 , μ = 27k3vλ

3
2
v L3v

8k3s λ
3
2s

= ψ

φ
3
2
,

and f (μ) = sinh
( 1
3 arcsinh (μ)

)
.

Again, we find that the bifurcation diagram does not
qualitatively change due to this generalization of cell
shape, and that the specific shape of individual cells only
modifies the precise parameter values at which the bifur-
cations occur. Given that for the rhombic dodecahedron
ks = 8

√
2 and kv = 16

3
√
3 , the analytical expectation of the

behaviour of 3D densely-packed tissue becomes defined
by the two aggregate parameters

ν =
(
J − 16

√
2λsL2s

)
λv

48
√
2λ2s

, (55a)

μ = L3vλ
3
2
v

6
√
6λ

3
2
s

, (55b)

with the bifurcation lines located at

ν = −λvL2v
3λs

, (56a)

ν = 0 , (56b)
ν = f (μ)(μ − f (μ)) . (56c)

Again, when the analytical results are compared to CPM
simulations of a cell tissue, we find a very close cor-
respondence between them. Figure 9B shows 3D CPM
simulations of a small tissue for each of the four possible
regions. It shows the individual cells within a cluster that
is not in direct contact with the medium. As for the 2D
case, in region I the cells take up an irregular shape, fulfill-
ing both the surface area and the volume requirement. In
region II, the cell shape is very regular, indeed very closely
corresponding to a rhombic dodecahedron. In region III,
the initial size of the individual cells determines whether
the cells disappear or not, while in region IV all cells even-
tually disappear. The boundaries between those regions of
different qualitative behaviour, as observed in the 3DCPM
simulations, again closely match the analytical predictions
(data not shown).

Discussion
Our analytical results, in combination with computer sim-
ulations, have elucidated how the biophysical parameters
of CSM models can be translated into qualitative cell
dynamics. Some observations and underlying assump-
tions made during this process merit further discus-
sion. To start with, in region I of the cellular dynamics,
the observed behaviour is driven by a negative interfa-
cial tension. However, it is questionable whether such
a parameter regime is biologically and physically rea-
sonable; the main issue being that negative interfacial
tension implies the intermingling of neighbouring cells.
This phenomenon is not observed in low resolution cell
shape CSM models, which often use, for example, a sin-
gle line element for the whole interface between two cells
(e.g. [25]), effectively inhibiting cells from intermingling.
However, in the CPM the cell’s interface is resolved at
much higher detail, clearly exposing the intermingling
between cells (see Figure 11C1). From a biological per-
spective, such dynamics might be considered patholog-
ical and unrealistic, and one should be weary of using
such a dynamical regime to capture normal biological
processes.
On the other range of the spectrum, it is also worth

discussing whether it is reasonable to assume that cells
can completely disappear (i.e. shrink to zero) due to
their cell surface mechanics. One could argue that the
elastic description of area and perimeter conservation
becomes unreasonable when deviations become large, and
that while water can freely enter and leave the cell, ulti-
mately the dry cellular mass should prevent full disappear-
ance. Nevertheless, experimental biological studies have
been showing pressure-driven apoptosis [48,49], which
has been used as a possible interpretation for vanishing
cells in the CPM [50]. Another explanation has been pro-
posed by Marinari et al. [16], in a combined experimental
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Table 3 Parameters used in the 2D analysis and their meaning

Parameter Meaning General Circle Hexagon

E Energy function or Hamiltonian Jp + λp (p − P)2 + λa (a − A)2

J
Adhesion energy
(per contact length)

J J J

p Cell perimeter kpl 2π r 6l

a Cell area kal2 π r2 3
√
3

2 l2

P Membrane rest length kpLp 2πRp 6Lp

A Target cell area kaL2a πR2a
3
√
3

2 L2a

λp Perimeter constraint λp λp λp

λa Area constraint λa λa λa

l Basic length scale l r (radius) l

kp Perimeter scaling factor p
l 2π 6

ka Area scaling factor a
l2

π
3
√
3

2

Lp
Membrane rest length,
using basic length scale

P
kp

Rp = P
2π

P
6

La
Target cell area,
using basic length scale

√
A
ka Ra =

√
A
π

√
2A
3
√
3

E
Energy function or Hamiltonian,
using basic length scale

Jkpl + λp(kpl − kpLp)2

+λa(kal2 − kaL2a)
2

2π rJ + λp(2π r − 2πRp)2

+λa(π r2 − πR2a)
2 6lJ + λp(6l − 6Lp)2 +λa(

3
√
3

2 l2 − 3
√
3

2 L2a)
2

∂E
∂ l

Energy variation
per length change

kp(γ − 2 ka
kp
l�) 2π(γ − r�) 6(γ −

√
3
2 l�)

γ Enterfacial tension J + 2kpλp(l − Lp) J + 4πλp(r − Rp) J + 12λp(l − Lp)

� Pressure −2kaλa(l2 − L2a) −2πλa(r2 − R2a) −3
√
3λa(l2 − L2a)

τ
Length-independent component
of interfacial tension

J − 2kpλpLp J − 4πλpRp J − 12λpLp

ε l2 at which ∂2E
∂ l2

= 0 L2a
3 − k2pλp

6k2aλa

R2a
3 − 2λp

3λa

L2a
3 − 8λp

9λa



M
agno

etal.BM
C
Biophysics

 (2015) 8:8 
Page

27
of37

Table 3 Parameters used in the 2D analysis and their meaning (continued)

Parameter Meaning General Circle Hexagon

α
∂E
∂ l

∣∣∣
l=√

ε ,τ=0 −8k2aλa

(
L2a
3 − k2pλp

6k2aλa

) 3
2 −8π2λa

(
R2a
3 − 2λp

3λa

) 3
2 −54λa

(
L2a
3 − 8λp

9λa

) 3
2

β Aggregate parameter 4 k2aλa
kp

2πλa
9λa
2

ζ Aggregate parameter 64k4aλ
2
a

k2p

(
k2pλp
6k2aλa

− L2a
3

)3

16π2λ2a

(
2λp
3λa

− R2a
3

)3
81λ2a

(
8λp
9λa

− L2a
3

)3

Bifurcation 1 (γ (l∗) = 0)
Transition from negative to
positive interfacial tension at
equilibrium

τ = −2kpλpLa τ = −4πλpRa τ = −12λpLa

Bifurcation 2
(pseudo-transcritical)

Transition of l∗ = 0 from
unstable to stable

τ = 0 τ = 0 τ = 0

Bifurcation 3 (fold)
Transition from 2 to 0
non-trivial equilibria

τ = 8k2aλa
kp

ε
3
2 τ = 4πλaε

3
2 τ = 9λaε

3
2

�
Normalised tension,
as used in [25]

J

k
3
2
a λaL3a

J

π
3
2 λaR3a

2
√
2J

9 4√3λaL3a

�
Normalised contractility,
as used in [25]

λp

kaλaL2a

λp

πλaR2a

2λp
3
√
3λaL2a

Bifurcation 1 (γ (l∗) = 0)
Transition from negative to
positive interfacial tension at
equilibrium

� = −
√
ka

2kp
� � = − 1

4
√

π
� � = − 1

4
√
2 4√3

�

Bifurcation 2
(pseudo-transcritical)

Transition of l∗ = 0 from
unstable to stable

� = 0 � = 0 � = 0

Bifurcation 3 (fold)
Transition from 2 to 0
non-trivial equilibria � = 4ka−3

(
kakp�

) 2
3

2k2p
� = 4π−3

(
2π2�

) 2
3

8π2
� = 2−3 6√3

(
�

) 2
3

8
√
3
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and modelling study of the Drosophila notum. They
showed that in a 2D CSM description of the notum an
increased pressure resulted in the local disappearance of
cells, which was then attributed to the process of delami-
nation, when cells leave the epithelial plane and enter the
(non-described) underlying tissue.
Given that the most reasonable dynamics are found for

(a large range of) well-balanced parameter choices, it will
be important for most theoretical studies which are based
upon CSM concepts — including the CPM — to apply
the insights derived from our study: (i) to choose param-
eters sensibly, (ii) to ensure model behaviour matches
experimental data, and (iii) to prevent potential modelling
artefacts.
Although the analysis presented here is relevant for the

large class of CSM models that use the same underlying
building blocks, there is obviously a wide range of differ-
ent model descriptions in use to capture cell dynamics.
These alternative models cannot always be easily encapsu-
lated within the same theoretical framework. For instance,
other common strategies to describe the biophysics of
cells is using the so-called subcellular elements method
[51,52] or by modelling of cellular material as a contin-
uous medium taking stress and strain tensors explicitly
into account [53]. These modelling strategies grant a finer
description of forces, not just at the membrane, as with
CSM formalisms, but also within the cell. Although this
level of detail is important when studying the cell rheol-
ogy, quite often the simplifications defining CSM models
make them better suited for morphodynamical simula-
tions, where part of the individual cell detail may be
exchanged for the feasibility of many-cell simulations.
Finally, we argue that the proposal suggested by Ouchi

et al. [22] — to use negative instead of positive J-
values (adhesion energy constant) to solve the apparent

mismatch (regarding the relationship between adhesion
and cell motility) between models and experiments —
fails to reconcile experiments and simulations. Using both
theory and simulations, we have shown here that this lim-
itation is not particular to the CPM, but rather present in
any modelling framework that describes the strength of
adhesion through an effective lower tension.

Conclusions
The analytical results presented here have numerous prac-
tical applications. First, they allow researchers to deter-
mine the expected dynamics due to interactions between
volume conservation, adhesion and cortical tension in 2D
and 3D CSM models. Table 4 presents a hands-on guide
to be used as a protocol for determining the dynamics of
any CSM study. Additionally, this study has shown how
the CPM formalism fits within the realm of CSM mod-
els, and how biophysically quantitative simulations should
be performed within this formalism. Table 5 provides a
guide for the usage of the CPM in such a quantitative fash-
ion. Furthermore, our analytical results directly predict
the (change in) dynamics, given specific (modifications
in) cellular properties, which can be used when linking
simulations to biophysical experiments and predicting the
experimental outcome. Finally, we have shown that the
amount of possible dynamics is much more limited than
the parameter space involved originally suggested. This
implies that there is no unique combination of volume
conservation, adhesion and cortical tension that leads to
a given dynamical behaviour. One consequence is that it
is impossible to derive from a single set of experimental
observations a unique set of specific parameters that cap-
ture those dynamics. Using the analysis presented here,
however, it becomes possible to specifically define the set

Table 4 For the perplexed: how to determine the expected dynamics in any CSMmodel

Step 1. Write the Hamiltonian or energy function in the standard form as used in this paper (i.e. E = Jp + λp (p − P)2 + λa (a − A)2

for 2D; E = Js + λs (s − S)2 + λv (v − V)2 for 3D).

Step 2. When using CPM, first the effective values of J, and P and λp in 2D, or S and λs in 3D, have to be determined, or inversely
the correct values of JCPM etc. have to be assigned. This is done by calculating the perimeter scaling factor ξ , which depends
on the neighbourhood radius, in its turn depending on the neighbourhood level. The value of ξ can be obtained either by
using the theoretical formulae Eq. 29, Eq. 33, for 2D and 3D respectively, in the case that the neighbourhood is sufficiently
large, or by using the numerical estimates given in Table 2, for small neighbourhoods that can present significant deviations
from those theoretical values. Transformations between the effective and CPM parameter values are then given by Eq. 31,
Eq. 32 for 2D, and Eq. 34 for 3D. Note that because of the way interfacial tension is implemented in the CPM, J = ξ JCPM for
cell-medium interfaces and ξ

2 JCPM for cell-cell interfaces.

Step 3. Calculate kp , ka (for 2D) cq. ks , kv (for 3D) for the cell shape of interest. The values for typical shapes in 2D and 3D, namely
circle and hexagon, cq. sphere and rhombic dodecahedron, are given in Table 3 and Table 6.

Step 4. Calculate τ and ε (for 2D), ν and μ (for 3D when λs �= 0), or ν′ and μ′ (for 3D when λs = 0), using the formulae given in
Table 3 (for 2D) and Table 6 (for 3D).

Step 5. The expected behaviour of a single cell or tissue is given by Figure 3; the bifurcation lines which form the transitions between
the different zones are given in Table 3 (for 2D) and Table 6 (for 3D).
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Table 5 For the perplexed: how to correctly rescale a CPMmodel

Rescale spatial
resolution

When the spatial resolution of a CPMmodel is k-fold increased, the required changes in the standard set of kinetic
parameters are given in Eq. 38 and Eq. 39.

Resizing
neighbourhood

When the neighbourhood used in a simulation is changed, the value of JCPM , and PCPM and λp CPM in 2D, or SCPM
and λs CPM in 3D, have to be modified, such that the effective values remain the same (Eq. 31, Eq. 32, Eq. 34). This
can be achieved by setting J′

CPM
= ξold

ξnew
JCPM , where ξold and ξnew are the perimeter scaling factor before and after

resizing the neighbourhood, respectively. Likewise, P′
CPM

= ξnew
ξold

PCPM , λ
′
p CPM

= ξ2old
ξ2new

λp CPM , S
′
CPM

= ξnew
ξold

SCPM , and

λ′
s CPM = ξ2old

ξ2new
λs CPM . Details on calculating ξ are in Step 2 of Table 4.

Concurrent rescaling
of J and P

It is possible to concurrently change all J values (for example from all being positive to all being negative) in a CPM,
or in fact any CSM simulation, without causing any change in the dynamics of the model (Figure 6), by means of
well-chosen shifts in the membrane rest lengths of all cells (Pσ and Sσ in 2D and 3D, respectively). The required
shifts in the rest lengths are given in Eq. 47 (for 2D) and Eq. 49 (for 3D). In contrast, it is not possible to change only
a subset of the J values without causing changes in dynamics. Specifically, in such a case, it is still possible to keep
for a specific configuration the weighted mean adhesion-driven interfacial tension constant (using Eq. 46 for 2D
and Eq. 48 for 3D), but those weighted means are expected to change over time (for example due to cell sorting),
generating an imbalance and hence a change of dynamics on the long run.

of combinations of cellular properties that could explain
the observed behaviour. It enables the pinpointing of the
critical relationship between cell surface mechanics and
tissue dynamics, which are not immediately clear from
computational studies alone.

Appendix
A 3D Spherical Cell
Positive interfacial tension at the equilibrium radii
We can express the derivative of E with respect to r in
terms of the interfacial tension γ and the pressure �

∂E
∂r

= J
∂s
∂r

+ 2λs
∂s
∂r

(s − S) + 2λv
∂v
∂r

(v − V ) , (57a)

= ∂s
∂r

(
J + 8πλs

(
r2 − Rs

)) + 8π
3

λv
∂v
∂r

(
r3 − R3

v
)
,

(57b)

= 8πrγ + 8π
3

λv4πr2
(
r3 − R3

v
)
, (57c)

= 4πr
(
2γ + 8π

3
rλv

(
r3 − R3

v
))

, (57d)

= 4πr (2γ − r�) . (57e)

At equilibrium r∗, γ (r∗) is positive when

τ + 8πλsr∗2 > 0 , (58a)

τ > 0 ∨ r∗ >

√ −τ

8πλs
. (58b)

Given that at equilibrium

∂E
∂r

∣∣∣∣
r=r∗

= 4πr∗
(
2γ

(
r∗

) − r∗�
(
r∗

)) = 0 , (59)

this yields

γ
(
r∗

)
> 0 , (60a)

r∗�
(
r∗

)
> 0 , (60b)

0 < r∗ < Rv . (60c)

Combined, Eq. 58 and Eq. 60 give the condition

τ > −8πλsR2
v , (61)

which is very comparable to the condition expressed in
Eq. 14b of the 2D case.

Equilibrium radii and their stability
The derivative of E with respect to the radius of the cell is

∂E
∂r

= 8π Jr + 16πλsr
(
4πr2 − 4πR2

s
)

+ 8πλvr2
(
4
3
πr3 − 4

3
πR3

v

)
, (62a)

= 8π
(
Jr + 8πλsr

(
r2 − R2

s
) + 4

3
πλvr2

(
r3 − R3

v
))

,

(62b)

= 8π
(
4
3
πλvr5 + 8πλsr3 − 4

3
πλvR3

vr
2

+ (J − 8πλsR2
s )r

)
, (62c)

= 8π
(
ar5 + br3 − cr2 + τ r

)
, (62d)

where τ = J − 8πλsR2
s , which can be both positive or

negative; a = 4
3πλv, strictly positive; and b = 8πλs and

c = 4
3πλvR3

v , both strictly non-negative.
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We can use Descartes’ rule of signs to determine the
highest number of equilibria larger than zero (remember
that r∗ < 0 is nonsensical). When τ < 0, there is only one
sign change, limiting the number of equilibria larger than
zero to at most one, while when τ > 0, two sign changes
limit it to at most two.
Further insights can be obtained by looking at the sec-

ond derivative of the energy E,

∂2E
∂r2

= 8π
(
5ar4 + 3br2 − 2cr + τ

)
. (63)

The slope of the function ∂E
∂r at the equilibrium r∗ = 0

is 8πτ , implying that this equilibrium is always stable for
τ > 0 (positive slope), and always unstable for τ < 0 (neg-
ative slope). (Recall that the force on the cell membrane
is positive in the direction of the energy gradient steepest
descent.)
Moreover, because ∂E

∂r

∣∣∣
r=0

= 0 and ∂E
∂r

∣∣∣
r→∞ = ∞, a

negative slope implies an odd number of equilibria larger
than zero, while a positive slope implies an even number.
Combined with the insights derived from Descartes’ rule
of signs, we can therefore conclude that when τ < 0, there
is at least and at most one equilibrium for r > 0, i.e. there
is always one single equilibrium. Also, this equilibrium has
to be stable, since the slope at the equilibrium has to be
positive. When τ > 0, there can be either no equilibria,
or two positive equilibria. When there are two equilibria,
the lower one will be the unstable and the higher one the
stable.
The next step is to determine those parameter regimes

for τ > 0 without and with two positive equilibria.
Both regimes are separated by a bifurcation for which we
want to find a parametrisation. We only need to anal-
yse the subset of our parameter space for which τ > 0.
The bifurcation is a fold bifurcation, and the transition
from two to no equilibria implies that, at the bifurca-
tion point, ∂E

∂r

∣∣∣
r=r∗

= 0 and ∂2E
∂r2

∣∣∣
r=r∗

= 0. More-
over, we know that r∗ > 0. Hence, at the bifurcation
point

This reduces, at the bifurcation point, the fifth and
fourth order equations into a cubic and a quadratic
equation, respectively. The cubic equation is a reduced
cubic equation (see Eq. 64g, left-hand side). If we define
φ = b

6a = λs
λv

and ψ = c
8a = R3v

8 , the cubic equation can be
written as

r3 + 3φr − 2ψ = 0 . (65)

Given that b is strictly non-negative and a strictly posi-
tive, φ ≥ 0. We first study when φ > 0. The only positive
solution of this cubic equation is then given by [54,55]

r∗ = 2
√

φ sinh
(
1
3
arcsinh

(
ψ

φ
3
2

))
, (66a)

r∗ = 2
√

φ sinh
(
1
3
arcsinh (μ)

)
, (66b)

r∗ = 2
√

φf (μ) , (66c)

whereμ = ψ

φ
3
2

= R3v

8
(

λs
λv

) 3
2
and f (μ) = sinh

( 1
3 arcsinh (μ)

)
.

From the quadratic equation (Eq. 64g, right-hand side)
one can derive the value of τ ,

τ = 1
4
r (3c − 2br) , (67a)

τ = 1
4
r
(
24a

3c
24a

− 24a
1
2

4b
24a

r
)

, (67b)

τ = 6ar
(

ψ − 1
2
φr

)
, (67c)

τ = 12a
√

φf (μ)
(
ψ − φ

3
2 f (μ)

)
, (67d)

τ = 12aφ2f (μ)

(
ψ

φ
3
2

− f (μ)

)
, (67e)

τ

12aφ2 = f (μ)
(
μ − f (μ)

)
, (67f)

ν = f (μ)
(
μ − f (μ)

)
, (67g)

where ν = τ
12aφ2 = (J−8πλsR2s )λv

16πλ2s
. Because both a and φ

are positive, it still holds that when ν < 0, there is only
one, stable positive equilibrium, while when ν > 0, the

ar5 + br3 − cr2 + τ r = 0 ∧ 5ar4 + 3br2 − 2cr + τ = 0 , (64a)
ar5 + br3 − cr2 + τ r = 0 ∧ 5ar5 + 3br3 − 2cr2 + τ r = 0 , (64b)

3ar5 + 3br3 − 3cr2 + 3τ r = 0 ∧ 5ar5 + 3br3 − 2cr2 + τ r = 0 , (64c)
4ar5 + 2br3 − cr2 = 0 ∧ 8ar5 + 6br3 − 5cr2 + 4τ r = 0 , (64d)

r2
(
4ar3 + 2br − c

) = 0 ∧ 2r2
(
4ar3 + 2br − c

) + 2br3 − 3cr2 + 4τ r = 0 , (64e)
r2

(
4ar3 + 2br − c

) = 0 ∧ r
(
2br2 − 3cr + 4τ

) = 0 , (64f)
4ar3 + 2br − c = 0 ∧ 2br2 − 3cr + 4τ = 0 . (64g)
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bifurcation line ν = f (μ)
(
μ − f (μ)

)
separates the region

with two positive from the region without equilibria. Since
f (μ) < μ for any positive μ, the line lies in the first quad-
rant of the (μ, ν)-plane. There are two equilibria as long as
ν < f (μ)

(
μ − f (μ)

)
, or ν − f (μ)

(
μ − f (μ)

)
< 0. The dif-

ferent regimes are shown in Figure 3B, and the bifurcation
lines are given in Table 6.
Alternatively, for the specific case when φ = 0 (meaning

that λs = 0), the solution of Eq. 65 is simply

r∗ = 3
√
2ψ . (68)

Moreover, in this case the quadratic equation (Eq. 64g,
right-hand side) reduces to a linear equation, allowing
again to derive the value of τ at which the bifurcation
occurs,

τ = 3
4
cr , (69a)

τ = 6aψ 3
√
2ψ , (69b)

τ

12a
= ψ

4
3

2
2
3
, (69c)

ν′ = μ′ 43

2
2
3
, (69d)

where ν′ = τ
12a = J

16πλv
(taking into account that the spe-

cific case of φ = 0 only occurs when λs = 0, and hence
τ is equal to J) and μ′ = ψ = R3v

8 . When φ = 0, due to
the absence of a surface constraint, the γ (r∗) = 0 bifurca-
tion takes place at ν′ = 0. This is the same condition as for
the pseudo-transcritical bifurcation, while the bifurcation

line ν′ = μ
′ 43
2
2
3
separates the region with two positive equi-

libria from the region without equilibria, again located in
the first quadrant of the (μ′, ν′)-plane.

B Cell packing: derivation of the equations for the
hexagonal cell

In order to derive the equations for a hexagonal cell shape,
we write the equations for a general family of shapes, for
which the perimeter and area can be parametrised as p =
kpl and a = kal2, respectively, with l being a basic length
scale. Substituting a = kal2, p = kpl, A = kaL2a and P =
kpLp into the general equation E (p, a) = Jp+λp (p − P)2+
λa (a − A)2 yields

E
(
l| J , λp, Lp, λa, La, kp, ka

) = Jkpl + λp
(
kpl − kpLp

)2
+ λa

(
kal2 − kaL2a

)2 . (70)

The interfacial tension γ and pressure� are then given by

γ = ∂E
∂p = J + 2kpλp(l − Lp) = τ + 2kpλpl , (71a)

� = − ∂E
∂a = −2kaλa(l2 − L2a) , (71b)

where τ = J − 2λpkpLp, with the same meaning as before.
From Eq. 71a, it follows that the length l at which the
interfacial tension is zero, is given by

lγ=0 = − τ

2kpλp
. (72)

The derivative of the energy function E (l) is easily
obtained by differentiation of Eq. 70:

∂E
∂l

= Jkp + 2λpk2p
(
l − Lp

) + 2λak2a
(
l2 − L2a

)
2l , (73a)

= kp
(
J + 2λpkp

(
l − Lp

)) + 2kal
(
2kaλa

(
l2 − L2a

))
,

(73b)
= kpγ − 2kal� . (73c)

Thus, as before, at equilibrium zero tension implies
zero pressure. The first bifurcation line can therefore be
determined by combining Eq. 71b and Eq. 72:

� = 0 , (74a)
l = La , (74b)
τ = −2kpλpLa . (74c)

Using a same reasoning as for the circular shape (see
Eq. 11b, Eq. 12b and text below it), it follows that the
interfacial tension at any non-trivial equilibrium is always
positive when τ > −2λpkpLa, and negative otherwise.
The stability of the trivial equilibrium l∗ = 0 can be

determined as follows. Evaluating the derivative of the
energy function (Eq. 73c) at l∗ = 0 gives

∂E
∂l

∣∣∣∣
l∗=0

= kpγ (0) = τ . (75)

Consequently, as for the circular cell shape, the condi-
tion τ = 0 defines the second bifurcation line, with τ < 0
implying an unstable trivial equilibrium, and τ > 0 a sta-
ble one. To find the third bifurcation line requires analysis
of the second derivative of the energy function, given by

∂2E
∂l2

= kpγ ′ − 2ka� − 2kal�′ , (76a)

= kp(2λpkp) − 2ka2λaka(L2a − l2) + 8k2aλal2 ,
(76b)

= 2k2pλp − 4k2aλa(L2a − l2) + 8k2aλal2 , (76c)

= kp
(
2kpλp − 4k2aλaL2a

kp
+ 12

k2aλa
kp

l2
)

, (76d)

= 3kpβ
(
l2 − ε

)
, (76e)

where β = 4 k2aλa
kp and ε = L2a

3 − k2pλp
6k2aλa

are aggregate
parameters. We have pointed out before that the third
bifurcation line can be found when the inflection point
of the energy function coincides with the equilibrium cell
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Table 6 Parameters used in the 3D analysis and their meaning

Parameter Meaning General Sphere Rhombic dodecahedron

E Energy function or Hamiltonian Js + λs (s − S)2 + λv (v − V)2

J
Edhesion energy
(per contact length)

J J J

s Cell surface ksl2 4π r2 8
√
2l2

v Cell volume kvl3 4
3π r3 16

3
√
3
l3

S Rest surface area ksL2s 4πR2s 8
√
2L2s

V Ttarget cell volume kvL3v
4
3πR3v

16
3
√
3
L3v

λs Surface constraint λs λs λs

λv Volume constraint λv λv λv

l Basic length scale l r (radius) l

ks Surface scaling factor s
l2

4π 8
√
2

kv Volume scaling factor v
l3

4
3π

16
3
√
3

Ls
Rest surface area,
using basic length scale

√
S
ks Rs = 1

2

√
S
π

√
S

8
√
2

Lv
Target cell volume,
using basic length scale

3
√

V
kv Rv = 3

√
3V
4π

3
√

3
√
3V

16

E
Energy function or Hamiltonian,
using basic length scale

Jksl2 + λs(ksl2 − ksL2s )
2

+λv(kvl3 − kvL3v )
2

4πJr2 + λs(4π r2 − 4πR2s )
2

+λv(
4
3π r3 − 4

3πR3v )
2

8
√
2Jl2

+λs(8
√
2l2 − 8

√
2L2s )

2

+λv(
16
3
√
3
l3 − 16

3
√
3
L3v )

2

∂E
∂ l

Energy variation
per length change

2ksl
(
γ − 3kv

2ks
l�

)
4π r (2γ − r�) 16

√
2l

(
γ − l√

6
�

)
γ Interfacial tension J + 2ksλs(l2 − L2s ) J + 8πλs(r2 − R2s ) J + 16

√
2λs(l2 − L2s )

� Pressure −2kvλv(l3 − L3v ) − 8
3πλv(r3 − R3v ) − 32

3
√
3
λv(l3 − L3v )

∂E
∂ l

Energy variation per length
change, full expansion 2ks

(
al5 + bl3 − cl2 + τ l

)
8π

(
ar5 + br3 − cr2 + τ r

)
16

√
2
(
al5 + bl3 − cl2 + τ l

)
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Table 6 Parameters used in the 3D analysis and their meaning (continued)

Parameter Meaning General Sphere Rhombic dodecahedron

a
Aggregate parameter
in ∂E

∂ l equation
3k2vλv
ks

4
3πλv

16
9

√
2λv

b
Aggregate parameter
in ∂E

∂ l equation 2ksλs 8πλs 16
√
2λs

c
Aggregate parameter
in ∂E

∂ l equation
3k2vλvL

3
v

ks
4
3πλvR3v

16
9

√
2λvL3v

τ
Length-independent component
of interfacial tension

J − 2ksλsL2s J − 8πλsR2s J − 16
√
2λsL2s

φ b
6a

k2s λs
9k2vλv

λs
λv

3λs
2λv

ψ c
8a

L3v
8

R3v
8

L3v
8

ν (when φ > 0) τ
12aφ2

(J−2ksλsL2s )9k
2
vλv

4k3s λ
2
s

(J−8πλsR2s )λv
16πλ2s

(
J−16

√
2λsL2s

)
λv

48
√
2λ2s

μ(when φ > 0)
ψ

φ
3
2

27k3vλ
3
2
v L3v

8k3s λ
3
2
s

R3vλ
3
2
v

8λ
3
2
s

L3vλ
3
2
v

6
√
6λ

3
2
s

ν′(when φ = 0) τ
12a

Jks
36k2vλv

J
16πλv

3J
64

√
2λv

μ′(when φ = 0) ψ L3v
8

R3v
8

L3v
8

Bifurcation 1 (γ (l∗) = 0)
Transition from negative
to positive interfacial tension
at equilibrium

ν = − 9k2vλvL
2
v

2k2s λs
ν = − λvR2v

2λs
ν = − λvL2v

3λs

ν′ = 0 ν′ = 0 ν′ = 0

Bifurcation 2 (pseudo-transcritical)
Transition of l∗ = 0 from
unstable to stable

ν = 0 ν = 0 ν = 0

ν′ = 0 ν′ = 0 ν′ = 0

Bifurcation 3 (fold)
Transition from 2 to 0
non-trivial equilibria

ν = f (μ)(μ − f (μ)), where
f (μ) = sinh

( 1
3 arcsinh (μ)

) ν = f (μ)(μ − f (μ)) ν = f (μ)(μ − f (μ))

ν′ = μ
′ 43
2
2
3

ν′ = μ
′ 43
2
2
3

ν′ = μ
′ 43
2
2
3
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length l∗ (see Figure 2). We therefore first find the cell
length l at the inflection point:

∂2E
∂l2

= 0 , (77a)

l2 − ε = 0 , (77b)
l = √

ε . (77c)

Thus, the aggregate parameter ε can be interpreted as
the inflection point of the energy function squared, with
negative values of ε implying that there is no inflection
point.We next rewrite the first derivative, now using those
aggregate parameters:

∂E
∂l

= kpγ − 2kal� , (78a)

= kp(γ − 2
ka
kp

l�) , (78b)

= kp(τ + 2λpkpl − 2
ka
kp

l�) , (78c)

= kp

(
τ + 4

k2aλa
kp

l
(
l2 − L2a + λpk2p

2k2aλa

))
, (78d)

= kp
(
τ + βl

(
l2 − 3ε

))
. (78e)

The third bifurcation line is then given by:
∂E
∂l

∣∣∣∣
l=√

ε

= 0 , (79a)

kp
(
τ − 2βε

3
2
)

= 0 , (79b)

τ = 2βε
3
2 . (79c)

In conclusion, two equilibria with positive, real values
requires that 0 < τ < 2βε

3
2 .

To obtain convenient expressions of the equilibria them-
selves, we introduce again the aggregate parameter α, the
slope at the inflection point given that τ = 0:

∂E
∂l

∣∣∣∣
l=√

ε,τ=0
= kp

(
β
√

ε(ε − 3ε)
)
, (80a)

α = −2kpβε
3
2 , (80b)

α = −8k2aλaε
3
2 . (80c)

After introducing α, the first derivative can be written as

∂E
∂l

= kp

(
τ − α

2kpε
3
2
l(l2 − 3ε)

)
. (81)

When ε > 0, τ < − α
kp , the stable, non-trivial positive

equilibrium is then given by (note that in this case α is a
negative real number)

l1 = 2
√

ε cos
(
1
3
arccos

(
τkp
α

))
, (82a)

rewritten when τ < α
kp into

l1,alt = 2
√

ε cosh
(
1
3
arccosh

(
τkp
α

))
, (82b)

to prevent trigonometry involving complex numbers.
When ε > 0, 0 < τ < − α

kp , there is a second non-trivial
equilibrium, which is non-stable,

l2 = 2
√

ε sin
(
1
3
arcsin

(
−τkp

α

))
, (82c)

and when ε < 0, τ < 0 there is one non-trivial positive
equilibrium, which is stable. Because in the latter case α is
a positive imaginary number, we again use the aggregate
parameter ζ = −

(
α
kp

)2
, which is positive and real when

ε < 0. The equilibrium radius is then given by

l3 =
√−ε

6√ζ

(
3
√

−τ +
√

τ 2 + ζ − 3
√

τ +
√

τ 2 + ζ

)
.

(82d)

For the hexagon, the perimeter p and area a can be
parametrised as p = 6l and a = 3

√
3

2 l2. Thus, kp = 6
and ka = 3

√
3

2 . The first bifurcation then becomes τ =
−12λpLa. The second bifurcation is given by τ = 0 and
the third by τ = 2βε

3
2 , with kp = 6 and ka = 3

√
3

2 sub-
stituted into τ , β and ε. Table 3 gives an overview of all
parameters used and their meaning, for the general cell
shape as well as specifically for the circle and hexagon.

C Additional parameter information regarding
the CPM simulations

Figure 5
In the single cell CPM simulations, a 6th level neighbour-
hood was used (and hence a correction factor ξ = 18 for
scaling corrections, see Table 2). For the first simulation,
k = 1; J = 80, 000 (JCPM = 4, 444); A = 7, 854 (Ra =
1, 250); P = 0 (PCPM = 0); λa = 2; and λp = 25 (λp CPM =
0.07716) (for switching between actual and CPM param-
eters, see Eq. 31, Eq. 32). For all other simulations the
parameters were rescaled using Eq. 38.
In the cell sorting CPM simulations, a Moore neigh-

bourhood was used. For the first simulation, k = 1;
JG,G = JY ,Y = JB,B = 400, JG,M = 600, JY ,M = 1, 200,
JB,M = 1, 800, JG,Y = JY ,B = 800, JG,B = 1, 400; A = 30;
P = 100; λa = 1, 000; λp = 20; and T = 600. (Here, only
the CPM parameters are given, which can be translated
into CSM values using Eq. 31.) In the k �= 1 simulations
the parameters were rescaled using Eq. 38.

Figure 7
The initial cell radii used to illustrate the dynamics in the
different regions were as follows: For Region I (C2), r =
{10, 50, 70, 150}; for Region II (D2), r = {10, 50, 70, 150};
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for Region III (E2), r = {10, 20, 30, 36, 50, 70, 115, 150};
and for Region IV (F2) r = {50, 70, 100, 150}. All simu-
lations used a 6th level neighbourhood and A = 31, 416
(Ra = 100); P = 2, 000 (PCPM = 36, 000); λa = 0.0625;
λp = 25 (λp CPM = 0.07716); and T = 20, 000. The J-value
was modified to set τ ; in regions I–IV, J = 0 (JCPM = 0),
J = 80, 000 (JCPM = 4, 444), J = 200, 000 (JCPM = 11, 111),
and J = 300, 000 (JCPM = 16, 667), respectively.

Figure 11
As the initial condition, all cells were positioned within a
region of 300 × 300 lattice points, except for (F1), which
utilized 100 × 100 lattice points. All simulations used a
6th level neighbourhood and A = 31, 416 (La = 110,
Ra = 100); P = 2, 000 (PCPM = 36, 000); λa = 0.0625;
λp = 25 (λp CPM = 0.07716); andT = 20, 000. The J-values
were modified to set τ , in which JCPM = JC,M = 2JC,C . In
regions I–IV, J = 0 (JCPM = 0), J = 80, 000 (JCPM = 4, 444),
J = 200, 000 (JCPM = 11, 111), and J = 300, 000 (JCPM =
16, 667), respectively.

D Notation correspondence to Farhadifar
et al. (2007)

In the paper of Farhadifar et al. [25] a same CSM energy
description was used to simulate epithelial cell packing.
In order to make a straightforward comparison, we intro-
duce a mapping to their notation. In their study, Lp = 0,
and consequently τ = J . The parameter equivalences are

τ(= J) → � , (83a)
λp → � , (83b)
λa → K , (83c)

kaL2a → A0 , (83d)
Lp → 0 . (83e)

The authors also define the composite parameters nor-
malised tension � and normalised contractility �, which
are used to depict their biophysical parameter space.
These are defined as:

� = �

K
(
A0) 3

2
→ J

k
3
2
a λaL3a

, (84a)

� = �

KA0 → λp
kaλaLa2

. (84b)

� can be expressed as a function of �:

� = �
√
A0

�
� . (85)

The bifurcation line defining negative or positive inter-
facial tension is given by τ = −2kpλpLa. Given that Lp =

0, both τ = J and � = J , and thus this condition can be
expressed in their notation as

� = −
√
ka

2kp
� . (86)

For the hexagon this yields

� = − 1
4
√
2 4√3

� , (87)

which was also derived in [30]. Because Lp = 0, the bifur-
cation line at τ = 0 is simply given by � = 0. Using the
derivation in the previous section, the third bifurcation
line is given by

� = 4ka − 3
(
kakp�

) 2
3

2k2p
, (88)

which for the hexagon yields

� = 2 − 3 6√3
(
�

) 2
3

8
√
3

. (89)

The bifurcation line defined by Eq. 89 has the �-intercept
at � = 2

8
√
3 and �-intercept at � = 2

√
2

3·3 3
4
.

E 3D cell packing: derivation of the equations for
the rhombic dodecahedronal cell

After introducing the surface and volume scaling factors
s = ksl2 and v = kvl3, the general equation yields

E = Jksl2 + λs(ksl2 − ksL2s )
2 + λv(kvl3 − kvL3v)

2 . (90)

The interfacial tension and pressure are then given by

γ = ∂E
∂s = J + 2ksλs(l2 − L2s ) = τ + 2ksλsl2 , (91a)

� = − ∂E
∂v = −2kvλv(l3 − L3v) , (91b)

where τ = J −2ksλsL2s . The first step is to find the cell size
l for which the interfacial tension is zero:

γ = 0 = τ + 2ksλsl2 , (92a)

l =
√

− τ

2ksλs
. (92b)

Because zero tension implies zero pressure, the first
bifurcation line is given by

� = 0 , (93a)
l = Lv , (93b)
τ = −2ksλsL2v . (93c)
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The second bifurcation line is, as usual, given by τ = 0.
For the third bifurcation line, we take the derivative of the
energy function

∂E
∂l

= 2ksl
(

γ − 3kv
2ks

l�
)

, (94a)

= 2Jksl + 4λsksl
(
ksl2 − ksL2s

)
+6λvkvl2

(
kvl3 − kvL3v

)
, (94b)

= 2ks
(
3λvk2v
ks

l5 + 2λsksl3 − 3λvk2v L3v
ks

l2

+ (
J − 2ksλsL2s

)
l
)

, (94c)

= 2ks
(
al5 + bl3 − cl2 + τ l

)
. (94d)

In Appendix A we already showed that the roots of this
equation correspond to the solutions of the cubic equation
l3+3φl−2ψ = 0, where φ = b

6a andψ = c
8a . The specific

value of those aggregate parameters, however, becomes
more complex for the general case:

φ = b
6a

= 2λsk2s
18λvk2v

= k2s
9k2v

λs
λv

, (95a)

ψ = c
8a

=
3k2v
ks λvL3vks
24λvk2v

= L3v
8

. (95b)

The further derivation is equivalent to the spherical
case, with the second and third bifurcation located at
ν = 0 and ν = f (μ)(μ − f (μ)), respectively, where
f (μ) = sinh

( 1
3 arcsinh (μ)

)
, when φ > 0; and at ν′ = 0

and ν′ = μ
′ 43
2
2
3

when φ = 0. Nevertheless, the aggregate
parameters obtain a slightly different meaning:

ν = τ
12aφ2 =

(
J − 2ksλsL2s

)
9k2vλv

4k3s λ2s
, (96a)

μ = ψ

φ
3
2

= 27k3v L3vλ
3
2
v

8k3s λ
3
2
s

, (96b)

ν′ = τ
12a = Jks

36k2vλv
, (96c)

μ′ = ψ = L3v
8

. (96d)

Finally, to depict the bifurcation diagram (Figure 3B),
the first bifurcation has to be expressed in ν:

τ = −2ksλsL2v , (97a)

ν = τ

12aφ2 = −2ksλsL2v
12aφ2 , (97b)

ν = −9k2vλvL2v
2k2s λs

. (97c)

When φ = 0, the bifurcation is simply at ν′ = 0. Having
derived the general equations, the specific equations for
a rhombic dodecahedronal cell can be straightforwardly
derived using ks = 8

√
2 and kv = 16

3
√
3 , and are given in

Table 6.
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