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a lot of jobs and then you had the urge to pass it on.”

- Terry Pratchett



CARDIFF UNIVERSITY

Abstract

Condensed Matter and Photonics Group

Cardiff School of Physics & Astronomy
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This thesis describes both experimental and theoretical work on the electronic transport

properties of 30 nm InSb/AlInSb quantum well 2DEG heterostructures. Advances in the

epitaxial growth of large lattice constant III-V materials using mismatched substrates

like GaAs or Si has generated renewed interest in developing high mobility devices.

Similarly, narrow gap semiconductors are promising candidates for the advancement of

spintronic devices taking advantage of their extreme material parameters, such as the

small effective mass and large effective Landé g-factor. An investigation of the low tem-

perature Hall effect and Shubnikov-de Haas oscillations of asymmetrically doped InSb

quantum well heterostructures has been made to determine the scattering mechanisms

present for carriers in the 2D system. Modelling these oscillations by calculation of the

density of states at the Fermi energy as a function of magnetic field was performed to

analyse the effects of parameter variation on the observed oscillation. Application of

a dielectric layer and gate electrode to the material surface has allowed for a carrier

density dependent investigation of the transport properties to be performed. These in-

vestigations have provided a detailed understanding of the transport limiting scattering

mechanisms over a range of carrier densities and temperatures.

A novel study of the current-voltage characteristics of high resistance contacts has been

performed to investigate the energetic distribution of electron states in the quantum well

under the application of large magnetic fields. Clear Landau level quantisation of the 2D

density of states for the first subband of the quantum well has been observed. Analysis

of the high field asymmetry of the fundamental Landau level has revealed the presence of

significant spin dependent broadening within the heterostructure, which has previously

been suggested to exist from an asymmetry of the Fourier transform of Shubnikov-de

Haas oscillation.
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Chapter 1

Introduction

1.1 Motivation for using Indium Antimonide in semicon-

ductor research

In 1947 Physicists Shockley, Bardeen, and Brattain at Bell labs first demonstrated an

observable power gain in a semiconductor point contact transistor using a slab of Germa-

nium (Ge) with gold contacts to amplify electrical signals from a microphone [1]. Though

first demonstrated using Germanium, Silicon quickly became the material of choice for

commercialisation of these properties as its native oxide made for simple application of

low leakage-current gate electrodes. This layed the foundation for complementary metal-

oxide semiconductor (CMOS) technology which is the basis for low power consumption

digital logic, eventually resulting in the Si integrated circuit revolution which underpins

the modern communications age.

Gordon Moore noticed a trend in the 1960’s that the size of Si transistor devices halved

approximately every 18 months[2]. This drive for component miniaturisation is as a

result of the desire to increase the processing abilities of modern computers. The begin-

ning of the 21st century gave commercial sub-100 nm transistor gate lengths with 5 nm

gate technology predicted to be on the market by 2020, pushing Moore’s Law to the

limit of what may be physically possible for standard transistor architectures and fabri-

cation techniques. At these scales quantum transport phenomena significantly degrade

the performance of established technology. Thermal power dissipation and gate leakage

due to quantum tunnelling, which were insignificant processes in larger structures with

1
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thicker oxides, are now limiting factors requiring novel physics and engineering to meet

the demand for ever increasing processing power.

Novel physics and device engineering technologies have long been used as tools to com-

pensate for the slowing down of Moore’s law, mainly due to decreasing node size and

increasing architecture complexity. The low dimensionality of current architectures has

encouraged research into the prospect of single atom transistors and their incorpora-

tion into existing Si technologies [3]. The incorporation of III-V semiconductors into

existing high-volume, low-cost Si manufacturing technologies is also an area of vigorous

research. Advances in epitaxy technologies have allowed the growth of III-V materials

directly on Si and the creation of high frequency electronics, which take advantage of the

high mobility conducting channels which can be created in III-V materials like GaAs

and InGaAs [4, 5]. The small effective mass of carriers exhibited by III-V materials

at room temperature gives significant improvements over Si where the high mobilities

allow for low power consumption devices to be realised. Integrating these materials onto

Si has significant challenges. Lattice mismatch makes the growth of low defect density

structures a challenge and the lack of a native oxide for III-V materials makes for more

complex processing.

A comparison between fundamental properties for some of the III-V compound materi-

als and intrinsic semiconductors Si and Ge is shown in table 1.1. InSb has the smallest

effective mass of all of the III-V semiconductor materials, consequently it has the largest

room temperature mobility of all of the bulk semiconductors making it extremely attrac-

tive for high frequency technologies such as high electron mobility transistors (HEMTs)

[6]. In spite of the high temperature transport qualities of bulk InSb, traditionally

material research and development has favoured GaAs especially in the field of het-

erostructure devices. This is due to it being almost perfectly lattice matched to the

AlGaAs alloys, easing the development of low defect density heterostructures. Indeed

throughout the 1980’s the state of the art low temperature electron mobility for modu-

lation doped GaAs/AlGaAs heterostructures increased by three orders of magnitude, a

rate of development that has not since been matched for any other material system.

The large lattice constant of InSb has posed a significant engineering challenge for further

material development using low cost existing processing techniques. Growth of InSb

crystals on existing Si or GaAs wafers introduces significant strain into the crystal,
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Table 1.1: Fundamental material properties of popular semiconductor materials. The
direct band-gap Eg, electron effective mass m∗, static dielectric contact εR and electron
g-factor at T = 300 K are shown for bulk Si, Ge, GaAs, InAs and InSb. Data was taken
from [13–16].

Eg(Γ) (eV) m∗ (m0) εR (ε0) g∗

Si 3.21 0.190 11.9 1.9
Ge 0.80 0.081 16.2 1.6

GaAs 1.42 0.064 12.9 -0.4
InAs 0.35 0.023 15.2 -15.6
InSb 0.18 0.014 16.8 -50.6

and the inevitable large dislocation densities adversely impacting the mobility of the

material. Significant effort is being made to decrease the defect densities of large lattice

constant III-V materials on cheaper lattice mismatched wafers. The incorporation of

complex supperlattice structures, stepped buffer layers and dislocation filtering are being

used to improve material mobility while minimising the depth of the buffer layer which

minimises the complexity of processing, driving drown cost [7–12]. These technological

improvements are making InSb an economical choice for the exploitation of high mobility

dependent devices, such as high sensitivity magnetic field sensors and high frequency

electronics, while using standard Si or GaAs production techniques.

1.2 InSb for spintronic applications

The potential for the exploitation of the spin degree of freedom for information transfer

has been an area of investigation since the 1970’s when Tedrow and Meservey observed a

spin dependent tunnelling current into a magnetic contact [17]. Studies of multi-layered

magnetic materials gave rise to the discovery of giant magnetoresistance in 1988 by

Grünberg and Fert independently [18]. This phenomenon is now used extensively for

magnetic field sensing such as in hard disk drives, which has helped drive the increasing

storage densities over the past few decades. Exploitation of the spin of an electron

instead of traditional charge transfer electronics has been suggested to hold the key for

lower power consumption computational hardware with similar performance [19].
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Semiconductor spintronics has many potential advantages over metallic spin devices.

The large spin lifetimes and long spin coherence lengths [20] results in the possibil-

ity of larger structures or the ability to perform more operations on a particle while

maintaining coherence. The ability to engineer the bandstructure of semiconductors

gives exceptional control of the energetic separation between the spin states within the

heterostructure. Exploitation of the Rashba effect (discussed in chapter 4) in two dimen-

sional electron gasses (2DEGs) has been demonstrated to give control of the energetic

separation of spin states by the application of a gate bias to the surface of a heterostruc-

ture [21]. This emphasises the possibility of controlling an electron’s spin electrically in

lieu of the usual approach of using external magnetic fields.

The large spin orbit interaction of narrow gap semiconductors, in conjunction with

the increasing incorporation of III-V materials into traditional Si based architectures,

highlights the possibility that the future of computing technologies may be a union

between traditional low cost charge based devices with high frequency spin based devices

based on III-Vs. The large g-factors of InSb and InAs make them attractive materials

for research into spin based devices due to the low energies required for observation of

spin dependent phenomena. The ability to generate and observe a spin polarised current

in semiconductors is of fundamental importance to the development of semiconductor

spintronics. The use of in-plane gates to generate a polarised spin current via the

Rashba interaction has similarly been reported for InGaAs [22] and InSb [23] based

heterostructures. The extreme material properties of InSb make it a promising candidate

for the creation of an entirely self contained spin device, theoretically being able to be

used to generate a spin polarised current, manipulate those spins and, selectively read

out the particle spin states simply through electrical manipulation.

1.3 Outline of this Thesis

The work presented in this thesis was undertaken as part of the EPSRC funded project

“Spin manipulation in narrow band semiconductors”. This work was performed at

Cardiff University, with the intention to study the transport properties of InSb quantum

well two-dimensional electron gasses grown at the EPSRC National Epitaxy Facility, III-

V growth facilities at Sheffield University. The structure of the thesis is organised as

follows.
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Chapter 2 introduces the relevant physical concepts behind the classification of semicon-

ductors, the notion of an electronic band structure and valuable approximations which

allow for the estimation of band parameters such as the electron effective mass and

Fermi energy to be calculated. Due to the narrow band gap of InSb particular emphasis

is placed on the incorporation of the effects of non-parabolicity and how they affect the

extracted values when compared to a parabolic model. A brief summary of the concepts

behind the creation of semiconductor heterostructures and their use in creating quantum

wells for electron confinement and two-dimensional transport is made.

Chapter 3 addresses the growth of such heterostructures using MBE technology and

the subsequent processing steps which occur to create devices which have the desired

geometry to be mounted and measured. The measurement facilities used to characterise

the devices are discussed and the equipment involved in creating low temperature envi-

ronments. The hardware used to perform these measurements is introduced along with

the wiring schematic required to perform the measurements. Lastly, a summary of all

the heterostructures studied in this thesis is given.

Chapter 4 introduces the first group of results obtained by investigation of the low tem-

perature magnetoresistance of InSb Hall bars. The chapter begins with the introduction

of relevant physics behind transport behaviour in the presence of electric and magnetic

fields and how these measurements may be used to extract information about the prop-

erties of the system being measured. Analysis of the magnetoresistance behaviour for

a number of different heterostructures is made and, by modelling such behaviour, esti-

mates for the carrier density and carrier mobilities in both gated and ungated Hall bar

devices are presented. Observation of the temperature dependence is then compared

with scattering models to identify dominant scattering mechanisms over a range of tem-

peratures. The examination of oscillations in the magnetoresistance of such structures is

used to extract information about the quantum lifetime of particles and compared with

the predictions of a transport model [24]. The ratios between the classical and quantum

transport lifetimes are presented over a range of carrier densities to determine the likely

limiting scattering mechanism within these structures. The chapter is concluded by a

determination of the lifetime broadening of carriers.

Chapter 5 details how estimating the density of states as a series of Lorentzian or Gaus-

sian broadened distributions may be used to model the magnetoresistance oscillations
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shown in the previous chapter. The effects of variation of model parameters such as

the carrier density, single particle broadening and electron g-factor are explicitly shown

and where appropriate compared with measured data. A comparison of the incorpora-

tion of non-parabolic effects is made when calculating the distribution in the density of

states and its effect on the modelled oscillation in the density of states. Zero-field spin

splitting due to the inclusion of the Rashba effect into the model is introduced and the

consequent emergence of a beat pattern in the oscillation is discussed. The concept of

spin dependent broadening is introduced and the effects that such broadening has on the

oscillating density of states are modelled. The chapter concludes with a comparison be-

tween the modelled density of states and the magnetoresistance oscillations of a typical

InSb heterostructure in an effort to determine the magnitude of the Rashba interaction

strength.

Chapter 6 presents measurements made across a high resistance contact to reveal the

energetic distribution of states within the quantum well beneath the contact. The depo-

sition of certain metals onto semiconductor surfaces is known to create Schottky contacts

with asymmetric current-voltage characteristics due to the significant effect the metal

has on the band structure of the material. The vertical transport of electrons through

such a barrier is discussed and techniques for the measurement of the density of states

is briefly covered. Differential conductance measurements of a high resistance Schottky

contact are presented and the energetic distribution of states is examined. The chapter

concludes with a discussion of how the data is fit with a model using state distributions

and parameters estimated from previous chapters, values for the electron g-factor and

the particle lifetimes are subsequently extracted.

Chapter 7 concludes the work presented in this thesis, summarising the results obtained

in each chapter. A potential program of further work is presented with regard to each

chapter.
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Chapter 2

InSb Crystals and Semiconductor

Heterostructures

2.1 Crystal Structure

Neglecting the III-Nitrides, the majority of III-V binaries crystallise into a zincblende

structure comprised of two interpenetrating face-centered cubic (fcc) lattices each pop-

ulated with atoms of a single group. InSb is no exception, each atom has four nearest

neighbours arranged tetrahedrally around the lattice point and bonds covalently with

atoms from the opposite group. Repeated translation of the unit cell of InSb (figure

2.1(a) by a lattice constant along each of the primitive lattice vectors constructs a crys-

tal of increasing size with the fundamental periodicity of the unit cell.

Though the crystal is physically defined in real space it is informative to construct the

reciprocal lattice and consider the crystal structure in momentum (k) space due to the

wave-like properties of carriers in the crystal. Analogous to the unit cell of the real

lattice; the reciprocal lattice has a unit cell known as the first Brillouin zone (FBZ),

which contains all reciprocal lattice vectors closer to one reciprocal lattice point than

to any other. It is possible to show that any k-vector that lies outside the FBZ at a

specific reciprocal lattice point can be transformed by a reciprocal lattice vector such

that it lies within the FBZ around another reciprocal lattice point. Using this formalism

9
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it is sufficient to describe the entirety of the crystal structure by merely considering the

FBZ. This allows for the complete description of a crystal lattice in an idealised form,

though any physically realised crystal differs from this simplification considerably due

to the presence of defects in the crystal lattice, presence of localised strain and presence

of boundaries to the single crystal size. The FBZ for a zincblende crystal takes the form

of a truncated octahedron as shown in figure 2.1(b).

2.2 Band Structure of InSb

When considering fundamental electronic properties of materials it is necessary to have

an understanding of the distribution of electronic states within the system. This dictates

where electrons are likely to be within a structure, the kinetic energy they possess, and

how massive they might appear. As such it is informative to discuss the physics behind

the distribution of electronic states in InSb and how significantly they differ from other

more common III-V compounds such as GaAs.

An electron considered in isolation may be described by a plane wave whose wavefunction

has the form ψ(r) = eik·r, this wavefunction satisfies the real-space time-independent

Schrödinger equation, [
−~2

2me
∇2

]
ψ(r) = Eψ(r) (2.1)

where ~ is the reduced Planck constant, me is the mass of the electron, ∇ is the differ-

ential operator, and E is the electron energy. This produces the familiar form for the

energy of an electron E = ~2k2/2me and is known as the free-electron model.

In contrast to the free-electron model, where electron energies are considered in an

infinite, unchanging background potential; electrons in a crystal do not exist in such

an ideal system and experience potential energy variations which oscillate with the

periodicity of the crystal due to the presence of ionic nuclei as represented in figure 2.2.

The full real-space Schrödinger equation includes a term to take account of the effect

of any perturbing potentials (V (r)) to the free electron system such as the background

potential or carrier-carrier interactions,
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(a) (b)

Figure 2.1: a) A diagram showing the primitive unit cell of the zincblende structure.
b) A schematic of the first Brillouin zone for a zincblende crystal, highlighting points
and lines corresponding to real space crystal symmetries.

[
−~2

2me
∇2 + V (r)

]
ψ(r) = Eψ(r). (2.2)

Though at first glance this appears to present a headache for solving the Schrödinger

equation to describe the quantum mechanical properties of electrons in a crystal, the

problem can be simplified with the introduction of the Bloch theorem. Bloch showed

that eigenfunctions of the Schrödinger equation for a periodic potential system are the

product of a plane wave component and a function that has the same periodicity as the

periodic potential, having the mathematical form

ψk(r) = uk(r) exp (ik · r) (2.3)

where ψ is the electron wavefunction, r is the spatial coordinate of the electron and k its

wave vector. This elegant expression means that an electron’s motion within a periodic

potential can be described as if it were a free electron whose motion is described as a

plane wave but modified due to the presence of the periodic potential, known as the

nearly free-electron model. An important consequence of the Bloch equation is that

there exist regions of energy with an absence of electron states corresponding to certain
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Figure 2.2: Illustration of the simplification of the Bloch function, though the actual
wavefunction varies rapidly due to the periodic potential the electron wavefunction can
be described sufficiently by a more slowly varying plane wave solution indicated by the
dashed line. This envelope function shown is created by the confinement of carriers in
a structure such as a quantum well.

wave vectors which are coincident with the boundaries of each BZ. The energy states

which exist between these forbidden regions are classified as energy bands since they

form bands of states which are available for electron occupation. Justification for these

forbidden regions is treated exhaustively throughout the literature [25–27] and may be

attributed to Bragg reflections at the zone boundaries.

Once the spatial variation and symmetries of the crystal are taken into account the band

structure of the crystal becomes quite complex far away from the zone centre. Figure 2.3

shows the bandstructure of InSb, band structure calculations may be performed using

ab initio methods such as density functional theory or from more empirical methods,

which require fitting parameters such as the k.p method. Close to the zone centre

the conduction and valence bands are quite symmetric and, to a first approximation,

may be described by a parabolic potential model. Though for semiconductors with

narrower band gaps the k-vector to which the parabolic approximation is valid reduces

considerably.
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Figure 2.3: The band structure for InSb calculated using density functional theory
by Kim, Hummer and Kresse, 2009[28]

2.2.1 Parabolic band approximation

In contrast to the free-electron model, carriers in a crystal have energy described by

an effective mass instead of the mass of the bare electron, which arises due to electron

interactions with the crystal. Thus the energy of an electron in the conduction band

will have an energy described by,

Ec(k) = Eg +
~2k2

2m∗cb
(2.4)

where Eg is the band gap energy and m∗cb is the effective mass of carriers that occupy the

conduction band. The effective masses of carriers in the valence and conduction bands

are typically very different. Carriers in the conduction band can be thought of as being

delocalised from any particular atom, whereas valence band conduction occurs through

electrons “hopping” between empty states around atoms, the more common perspective

is to consider the empty states (referred to as holes) traversing through the crystal. A

comparison between the conduction band and valence band effective masses for a few

common semiconductor materials is given in table 2.1.
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Material m∗cb m∗lh m∗hh
GaAs 0.067 0.082 0.51
GaSb 0.041 0.050 0.40
InAs 0.023 0.026 0.41
InSb 0.014 0.015 0.43

Table 2.1: Comparison between the effective masses of the electron and hole states
in common III-V semiconductors. In most systems the electron and light hole effective
masses are similar though the heavy holes are far more massive. All values are in units
of electron mass.

The effective mass of the band is described by the amount of curvature the band has at

a finite wave vector and is given by,

1

m∗
=

1

~2

(
d2E

dk2

)
. (2.5)

In the case of the parabolic approximation this curvature is constant regardless of wave

vector resulting in an energy independent effective mass. At small wave vectors, this

approximation describes the energy and mass of particles well; however, in the real world

at increasing k the approximation deviates further from reality and the effects of any

non-parabolicity must be considered.

2.2.2 Band non-parabolicity and the Kane model

The influence of band non-parabolicity in narrow-gap semiconductors can be estimated

through the inclusion of band mixing between valence and conduction band states.

This representation was first used by Kane [29] in a matrix formalisation and has been

shown to accurately describe the conduction band profiles of narrow-gap materials. The

interaction between the Γ6c − Γ7v (conduction - spin split-off bands) and Γ6c − Γ8v

(conduction - valence bands) contribute most significantly to the non-parabolicity of a

system. The effects of more remote bands must be taken into account for wider gap

semiconductors (such as GaAs) to give an accurate approximation to the extent of non-

parabolicity due to the less significant perturbation from the more remote states.

The Kane model has been extremely well studied and is most intuitively represented in

its four-band form, which allows coupling between the conduction band and the three

nearest valence band states but neglects the effects of spin on the system. The four-band
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Kane Hamiltonian matrix can be presented as,

H(k) =



Eg + ε(k) i ~Pm0
kx i ~Pm0

ky i ~Pm0
kz

−i ~Pm0
kx ∆− ε(k) 0 0

−i ~Pm0
ky 0 −ε(k) 0

−i ~Pm0
kz 0 0 −ε(k)


(2.6)

where Eg is the band gap, ∆ the spin split-off energy, ε(k) is the free particle energy ~2k2

2m0
,

kx,y,z represent the wavevector in the three Cartesian coordinates, and P is the Kane

interband momentum matrix element and is approximately constant for all materials

[15]. Since a 2D system only has the two degrees of freedom, we can alter the form to

ignore the momentum (energy) outside of the 2D plane.

H2D(k⊥) =



Eg + ε(k‖) i ~Pm0
k‖ i ~Pm0

k‖ 0

−i ~Pm0
k‖ ∆− ε(k‖) 0 0

−i ~Pm0
k‖ 0 −ε(k‖) 0

0 0 0 −ε(k‖)


(2.7)

Here k‖ no longer represents the full 3D wavevector but now represents the quadrature

sum of the wavevectors parallel to the 2D plane, i.e. k‖ =
√

(k2x + k2y). For the sake of

simplicity k‖ shall be referred to as k from this point. Inspection of equation 2.7 shows

three coupled bands (conduction, spin split-off and the light hole) and a single decoupled

band (the heavy hole) with the energy of the free particle. Accurate application of

this model can be cumbersome and the pertinent effects can be crystallised by further

reduction to the two-band model, neglecting coupling from the remote split-off band

and the (effectively) dispersionless heavy hole band equation 2.7 reduces to

H2D(k) =

Eg + ε(k) i ~Pm0
k

−i ~Pm0
k −ε(k)

 . (2.8)

This model has the benefit of being analytically solvable and accurately describes the

particle energies close to the zone center in both the conduction and light-hole bands,
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Figure 2.4: Conduction band (red) and light-hole valence band (blue) profiles for
first 10% of the FBZ for InSb, calculated using the two-band model (solid line) and
four-band model (dotted line). Also plotted is the parabolic band approximation (black
dashed lines) of the electron and light hole states to highlight the rapid deviation away
from the zone center.

with their dispersion relations described by

Ec(k) = Eg +

√
E2
g +

~2P 2k2

m2
0

+ ε(k), (2.9)

Elh(k) = −

√
E2
g +

~2P 2k2

m2
0

− ε(k). (2.10)

A comparison between this simple analytical expression and the results of a full four-band

treatment is shown in figure 2.4 for the two bands. The two-band model clearly shows

the deviation from the parabolic approximation at extremely small wavevectors (∼ 2 %

of the BZ) before tending to a linear relation with k. The four-band model has more

complex behaviour, no longer being linear at finite wave vector, though it maintains the

significant deviation from the parabolic band. Consequently the analytical expressions of

the two-band model can be used to determine other useful characteristics of narrow-gap

materials without the headache of performing more cumbersome numerical calculations.

Combining equations 2.5 and 2.9 we can extract an expression for the effective mass of

the material at the Γ point that purely depends upon the free electron mass and the
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coupling between the two states. Leaving the simple relation,

1

m∗CB
=

1

m0
+

2P 2

m2
0Eg

. (2.11)

This gives an explanation for one of the most remarkable characteristics of narrow-gap

semiconductors, the light effective masses of carriers can be attributed to interband

coupling. Using this we arrive at the common form for the non-parabolic conduction

band dispersion relation,

E(1 + λE) =
~2k2

2m∗
(2.12)

where λ = 1/Eg (known as the non-parabolicity factor), and for the sake of simplicity

the zero energy position is redefined to be at the conduction band edge.

Using a full eight-band model it is possible to calculate the energy separation between

the two spin states for each band, though accurate estimation of these energies requires

knowledge of remote band energies which for InSb are not well understood [30].

2.3 Heterostructures and Band Structure Engineering

The band structure and approximations used to describe the physical properties of

carriers within a single crystal are well understood, though further complexity is added

when crystals with dissimilar properties are placed in contact with one another. So called

heterostructures can be engineered to have a wide range of electrical characteristics,

detectors, switches, diodes, lasers, modulators all can be created by taking advantage of

the electrical properties of material interfaces.

2.3.1 Heterojunctions

Three distinct types of heterojunctions can be formed which depend on the alignment

of the conduction and valence bands (figure 2.5), the relative alignment of the band

structure is determined by the electron affinity (χ) of each material and dictates the

distribution of charge within the structure. Type I heterojunctions are formed when the
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Figure 2.5: The three types of possible band alignment for a heterojunction.

Figure 2.6: A comparison of the band alignments for a selection of materials, taken
from [31]. The variation in energy of the valence band edge and size of the band gap
hint at the variety of heterostructures that can be created.

band gap of one material is contained entirely within the band gap of the other mate-

rial, this allows electrons and holes in the conduction and valence bands to decrease in

potential energy by transferring from the wide gap material to the narrow gap material.

Type II interfaces on the other hand decrease the potential energy of electrons in the

conduction band in one material and decreases the valence band hole potential in the

other material forming the junction. This introduces a charge separation at the interface

as low energy electrons and holes are on different sides of the junction. Type III struc-

tures have an overlap between the valence and conduction bands across the interface,

though the carriers are spatially separated they are energetically equal which allows for

easy charge transfer across the interface.
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2.3.2 Alloying

Heterostructures are not merely limited to the band structures or alignments available

to us through the growth of binary materials. The introduction of a ternary material

into the crystal has allowed for a great range of materials exhibiting different band gaps,

band offsets and lattice constants. Figure 2.7 shows the relationship between III-V

materials, their respective alloys, lattice constants and band gaps. AlSb has a lattice

constant and bandgap of 6.14 Å and 1.7 eV respectively while similar properties of InSb

are 6.48 Å and 0.18 eV. If the fraction of Indium in the crystal is altered to incorporate

a percentage x of Al the resultant properties of that crystal are altered reflective of the

ratio. This is summarised neatly as Vegard’s law,

aalloy = xaA + (1− x)aB (2.13)

where aalloy, aA and aB are the lattice constants of the alloy, material A and material

B respectively. This linear relationship between composition and band parameters is

idealistic in many cases with many materials having significant curvature depending

upon their composition. AlxIn1−xSb displays this ideal linearity up to a composition of

around 60 % beyond which the bandstructure is no longer direct and the band parameters

change quite differently with composition.

Growth technologies such as molecular beam epitaxy (MBE) or metal-organic chemical

vapour deposition (MOCVD) have allowed for precise control of the alloy fraction of the

materials grown allowing for dissimilar materials to be grown sequentially into the same

structure. This potentially abrupt change in lattice constant introduces challenges to

growth, the lattice mismatch between two materials introduces strain into the crystal

structure that can disrupt the periodicity of the crystal and introduce defects as the

atoms rearrange to minimise the strain. InSb has no lattice matched alloy so can only

be grown unstrained on InSb substrates, which are significantly more expensive than

more common GaAs or Si substrates.
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Figure 2.7: The conduction-valence band separation Eg as a function of lattice con-
stant for the common III-V semiconductors and their alloys at room temperature. The
small band gap of InSb is accompanied by one of the largest lattice constants of any
semiconductor material.

2.3.3 Quantum Wells

Clearly by careful selection of materials and ordering of the growth process it is possible

to grow crystals which have very specific band structures that can be tailored to suit spe-

cific device purposes. Growth of a narrow gap material such as InSb between two wider

gap materials like AlInSb creates a region of electron states which are confined between

two regions with an absence of states. Such a region of locally low potential energy is

known as a quantum well due to the obvious analogy with the low gravitational potential

energy of water well. If the physical dimension of this region is small enough (smaller

than the thermal deBroglie wavelength of the carrier) the allowed states available to the

carriers become quantised for particle motion in the growth direction, perpendicular to

the growth direction the states remain unchanged. This state quantisation significantly

alters the energy distribution of carriers in the well as well as their properties.
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Figure 2.8: Schematic of the first two solutions for the confined states in both an
infinite and a finite square well structure. The wavefunction solutions are drawn to
highlight the penetration of the wavefunction into the barrier material in the case of
the finite barrier height.

In the case of a well with an infinite barrier height an analytic solution to the energy of

the quantised states is found to be,

En =
~2π2n2

2m∗L2
(2.14)

where n is the integer of quantisation and L is the width of the quantum well. This is

significant since the lowest energy quantised state is no longer coincident with the band

edge observed in bulk materials, increasing the energy separation between the quantised

conduction and valence band states.

In the case of the infinite square well the wave function of the carrier is contained purely

inside the well region and cannot penetrate into the barrier material. The total energy

of a particle is the sum of its kinetic and potential energies, with the infinite barrier

potential the particle would require an infinite amount of energy to exist within the

barrier material. A realistic case involves barriers of finite height, in this situation the

wavefunction is no longer restricted to exist purely within the well and can penetrate by

a finite amount into the barrier. As such we can no longer describe the wavefunction of

the particle using the simple free particle Hamiltonian and must introduce the effective

mass Hamiltonian, which takes the form,
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[
−~2

2

d

dz

1

m∗
d

dz
+ V (z)

]
ψ = Eψ . (2.15)

This imposes further restrictions onto the solutions to the Schrödinger equation. Not

only does the wavefunction have to be continuous over the entire structure but also

the derivative of the wavefunction in both materials has to be continuous to account

for the difference in the effective masses of carriers in both the barrier and the well.

Since there is now a finite chance of a particle existing inside the barrier the properties

of the particle exhibit a mixture of the properties of particles in each material, hence

particles described by wavefunctions that penetrate more deeply into the barriers exhibit

more barrier like properties. The penetration of a wavefunction into the barrier depends

upon the energy of the solution relative to the barrier height, more energetic solutions

penetrate more deeply, and can be manipulated through the application of a bias to the

structure, slewing the wavefunction toward one side of the quantum well.

In the plane of the quantum well there is no quantisation and the energy dispersion of

carriers remains the same as if it were bulk material. The confinement of particles to a

small region of space fundamentally changes the density of states (g(E)), defined as the

number of states available per unit energy per unit volume, in a bulk 3D material the

density of states is continuous and energy dependent,

g3D(E)dE =
1

2π2
2m∗

~2
3/2

E1/2dE . (2.16)

When confined in one dimension the quantisation of energy introduces discontinuities

in the density of states at certain energies (figure 2.9(a)). Under the parabolic approx-

imation the density of states is constant within each sub band and increases each time

another subband becomes occupied. The expression for the parabolic 2D density of

states is given by,

g2D(E)dE =
m∗

π~2
Σnθ(E − En)dE . (2.17)
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Importantly the density of states is no longer energy dependent and the step discon-

tinuities are represented by the Heaviside theta function θ(E − En). When the effects

of non-parabolicity are taken into account the 2D density of states recovers an energy

dependence since the effective mass of carriers increases at higher energies, hence the

density of states also increases. A full derivation of the parabolic and non-parabolic 2D

density of states is given in appendix A. A comparison between the density of states

and the effective mass at the Fermi energy in the parabolic and non-parabolic approxi-

mations are shown in figure 2.9(a) and 2.9(b) respectively. Consequently carriers at the

Fermi energy will have a larger effective mass than the low energy carriers at the band

edge.
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Figure 2.9: a) A comparison between the 2D density of states using the parabolic
approximation and the non-parabolic density of states calculated using the two band
model. The non-parabolic density of states rapidly increases lowering the Fermi energy
of such materials. b) The effective mass of electrons extracted from the curvature of
the conduction band for the 2 and 4-band Kane models. The band edge effective mass
of m∗ = 0.013 is shown to emphasise how significantly non-parabolicity can affect the
properties of carriers in the conduction band.



Chapter 3

Samples, Fabrication and

Measurement

The purpose of this chapter is to highlight the complete life cycle of the samples used in

this Thesis, from the growth stages through processing and finally into the measurements

performed to investigate the materials.

3.1 Growth of heterostructures

High quality, epitaxially grown crystals are an area of vigorous study for all manner

of material systems, developments in molecular beam epitaxy (MBE) technologies have

facilitated precise incorporation of impurity atoms into crystal structures in a technique

known as modulation doping which have, in turn, facilitated the fine control of het-

erostructure band alignments allowing for surprising control over the electrical, optical

and thermal properties of materials.

3.1.1 Epitaxy

MBE systems are ultra high vacuum (UHV) chambers where crystalline substrates in-

serted into the vacuum environment are exposed to elements in an atomic or molecular

25
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form, these elements then coalesce epitaxially on the substrate surface in a desired sto-

ichiometric composition. The sources of these compositional atoms are solid source

effusion cells, elementally pure material sources which are heated to evaporate atoms

from the surface. The intensity of this incident beam is controlled both by temperature

and mechanically through the use of a shuttering system which physically impedes the

beam. Each MBE chamber is equipped with a certain range of effusion cells to grow a

range of materials with specific dopants, independently controlling the temperatures of

the effusion cells and the substrate, the shutter positions for each cell and the timing

allows for precise control of material composition and layer thickness. All materials

investigated in this thesis were grown by MBE at the EPSRC national epitaxy facility,

Sheffield.

3.1.2 Studied Materials

The structures studied in this thesis were grown on semi-insulating GaAs substrates,

which nominally had the following layer structure,

i. 25 nm Al15In85Sb top cap

ii. Te δ-doping layer

iii. 25 nm Al10In90Sb barrier

iv. 30 nm InSb quantum well

v. 3µm AlInSb barrier layer

vi. 200 nm AlSb buffer layer

A self-consistent Schrödinger-Poisson solution to the above layer structure is shown in

figure 3.1. A type I heterostructure is formed, localising electrons and holes in the quan-

tum well, Te δ-doping ensures n-type dopant is incorporated into the crystal structure.

The low potential region of the QW makes it energetically favourable for electrons to

exist in the QW ionising the dopant atoms, the positive ions are spatially removed from
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Figure 3.1: A self-consistent Schrödinger-Poisson solution for the typical layer struc-
ture of this material. The δ-dopant plane is heavily doped with Te and consequently
contributes significantly to the carrier density of the quantum well. In this instance
sufficient charge has been contributed for occupation of the second subband to occur,
corresponding to a sheet carrier density of n2D ≈ 3×1015 m−2. The inset is a schematic
representation of the layer structure.

the QW reducing the scattering potential experienced by electrons and minimising scat-

tering from the ionised impurities. Though there are reports of high mobility materials

which incorporate Si doping both above and below the well [32], a single dopant plane

above the QW is used in this heterostructure due to dragging of Te along the growth

plane. This prevents high densities of impurities being located in the quantum well and

minimises impact on the channel mobility. A number of samples with this layer structure

were grown and an investigation into the effect of the dopant density was carried out.

3.2 Device Fabrication

Six-terminal gated and ungated Hall bar devices were fabricated using standard lithog-

raphy techniques, acid etching and metal evaporation using the clean room facilities at

Cardiff University. Dielectric depositions were done at the EPSRC national processing

facility at Glasgow university and using facilities at Cardiff University.
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3.2.1 Contact Photolithography

Photolithography is the technique of transferring a specific geometric pattern onto a

material through the use of UV light, a patterned “mask” and a photosensitive polymer.

When the polymer is illuminated through a mask, the UV light imprints the pattern

into the polymer, which may then be removed to leave behind the original pattern. At

each processing step a unique mask (a glass plate covered in an opaque chrome pattern)

is used to pattern regions or features to allow further processing. Using these methods

complex structures can be built up over multiple processing steps. The photosensitive

polymer (more commonly referred to as photoresist) is dispensed as a liquid onto the

sample surface and subsequently spun at high RPM to achieve an even coating across

the entire surface. Once uniformly coated the sample is then baked to drive solvent

off from the resist and leave behind a solid film. Contact photolithography is typically

used to define patterns with features down to ∼ 1µm, limited by the wavelength of

the UV light and the extent of local vibration. After exposure the sample is chemically

developed (in the photographic sense) to reveal the pattern left behind by the mask.

This developed pattern can be either an exact copy of the mask pattern or a negative

copy depending on the type of resist used (positive tone or negative tone respectively),

this pattern can then be used as an etch mask or to confine deposition onto a region of

the surface.

In processing samples used in this thesis, a Karl Suss contact mask aligner was used

(either the MJB3 or MJB4 model) in concert with positive tone photoresists Microposit

S1813 and Microchem PMGI SF11. These were baked at a temperature of no higher

than 95 ◦C to minimise the chance of the resist reflowing and distorting the developed

pattern, this hard baking of photoresist is also used to preserve material and minimise

defect creep. When used as an etch mask, a single layer of S1813 was used (typically

∼ 1.3µm thick). However, for the deposition of metal or dielectric a bi-layer resist profile

must be employed, a thin initial layer of PMGI SF11 followed by a layer of S1813 (total

thickness ∼ 1.5µm). The SF11 underlayer produces an undercut to the S1813 when

developed and minimises the chance of contiguous coating when metal is deposited,

improving metal lift-off after deposition.
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3.2.2 Hall bar devices

The magnetoresistance measurements presented in this thesis were performed using a

conventional 6-terminal Hall bar design as shown in figure 3.3, the salient features of

this design are:

i. The current probes (A & D) are sufficiently remote from the voltage probes (B,C,E

& F) that carriers are adequately thermalised to the lattice temperature before

reaching the voltage probes and a fully developed Hall voltage exists at the voltage

probes.

ii. The length of the bar is much greater than its width such that any geometric com-

ponent of the Hall voltage can be neglected. Typically an aspect ratio of 5:1 is used

which allows for full formation of the Hall potential while minimising the length of

the device .

iii. The Hall voltage probes exist at an electrical equipotential when B = 0 T so the

longitudinal and transverse components of the magnetoresistance measurements are

orthogonal.

Figure 3.3: Scanning electron microscope images of a large ungated Hall bar and small
gated Hall bar structure, both structures have a 5:1 ratio of length to width between
the voltage probes. The gate is positioned such that the voltage probes measure the
potential of the 2DEG underneath the gate.

Hall devices of 2 different sizes were fabricated using photolithography and wet etching,

a large bar with an active region between voltage probes of length 200µm and width
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40µm and a small bar with length 100µm and width 20µm. Investigations of the carrier

density dependency were realised through the application of a gate electrode over the

active region of the Hall bar, isolated by a low leakage dielectric barrier.

3.2.2.1 Ohmic contacts

Ohmic contact to the 2DEG was accomplished by thermal evaporation of metals using

an Edwards E306 Thermal evaporator with a working distance of 20 cm. A Zn keying

layer (around 10 nm) is initially deposited to improve adhesion to the surface followed

by a thick Au layer (300 nm). These are evaporated while the substrate is heated to

100 ◦C to introduce more diffuse metal ions on the surface and minimise Schottky contact

formation.

3.2.2.2 Gate contacts

Two types of dielectric were used for investigation throughout this thesis. A dielectric

layer of Si3N4 was deposited at the James Watt Nanofabrication Centre (JWNC) at the

University of Glasgow using an inductively coupled plasma - chemical vapour deposition

(ICP-CVD) technique. A 20 nm dielectric film was deposited onto the surface at room

temperature, a cold deposition technique was used to prevent lift-off issues due to reflow

of the resist defining the gate aperture. A MgO dielectric was also used for a number

of samples deposited using a sputter system at Cardiff University, these devices had a

thicker dielectric layer of 30 nm.

Gate metal was subsequently deposited on top of the dielectric layer at Cardiff University

by thermal evaporation using an Edwards E306 Thermal evaporator. A 10 nm Cr keying

layer was deposited followed by a thick 300 nm Au layer whilst the substrate was attached

to a water cooled stage.

Despite the thin dielectric layers, good, low leakage current dielectrics were achieved and

modulation of the carrier density in the 2D system was observed.
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3.3 Measurement Systems

All measurements described in this thesis were performed at Cardiff University using

either a pulse tube, or cryogen free dilution refrigeration system.

3.3.1 Low field measurement system

Temperature dependent measurements between 300 K and 3 K were made using an Ox-

ford Instruments Optistat AC-V12, a closed cycle, cryogen free, pulse tube refrigeration

system. Compressed zero-grade He4 gas is supplied by a water cooled Cryomech CP830

compressor to a modified Cryomech PT403 cold head providing 0.25 W of cooling power

at 4.2 K capable of reaching base temperatures of ∼ 2.8 K, as measured by a calibrated

rhodium-iron thermometer. The cryostat consists of two heat exchanger plates at the

ends of two pulse tubes connected in parallel. Oscillating gas pressure provided by the

compressor passes through two regenerators (a type of heat exchanger) in series provid-

ing cold gas to the first and second stages and extracting heat from the system. The

second stage has been modified with an ∼ 30 cm cold finger attachment to allow samples

mounted inside the cryostat to be positioned between the poles of an electromagnet. A

simplified schematic of the pulse tube cryostat is shown in figure 3.4, more details on the

design and operation of pulse tube coolers can be found in [33]. The refrigerated volume

is held under vacuum provided by a Leybold vacuum TURBOLAB 80 turbomolecular

pumping system. Thermal variation is provided by a resistive heater mounted to the

3 K plate operated by an Oxford Instruments Mercury iTC. Temperature sweeps are

controlled via software with incorporated delays to ensure samples at the end of the

cold finger are in thermal equilibrium with the cold plate. Electrical connections to the

cryostat were made by 10 pin Fischer connectors to braided, twisted pair, copper wires

connecting to the DUT, thermometer and heater. Samples were mounted into a 20-way

sprung contact chip carrier, thermal contact between the sample and the cold finger was

provided by two bolts which force the sample package into contact with a copper block

on the cold finger.
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Figure 3.4: A simplified schematic of the closed cycle, cryogen free, pulse tube refrig-
eration system.

Operating in conjunction with this cryogenic system is a 0.85 T solid pole electromagnet

with current control provided by an Agilent N5769A programmable DC power supply

controlled through a GPIB interface. This refrigeration set-up provides a relatively rapid

test system which can go from room temperature to 2.8 K in as little as 90 minutes and

allows for low-field material characterisation at all temperatures in-between.

3.3.2 High field measurement system

Ultra-low temperature (10 mK measurements were carried out in a Bluefors LD250 cryo-

gen free dilution refrigeration system (DR) with integrated superconducting solenoid

magnet (8T ). The majority of the cooling power is provided by a Cryomech PT-410RT

pulse tube cryocooler with a Cryomech CP2880 compressor, which cools all components

of the DR to either 50 K or 4 K in the same manner as described for the previous system

and provides 1 W of cooling power at 4 K. The volume of the DR is evacuated using an
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Agilent SH-110 scroll pump and a Pfeiffer HiPace 400 turbomolecular pump. Further

cooling beyond 4 K is achieved by dilution refrigeration, a room temperature mixture

of He3 and He4 gasses is compressed and circulated to the 4 K stage where it undergoes

Joule-Thomson expansion and begin condensing into liquid He inside the mixing cham-

ber. Once a critical temperature is reached the He3 and He4 undergo a phase change and

begin to separate into a dilute phase composed ∼ 6.4% He3 in He4 and a concentrated

phase of pure He3, since the He3 isotope is less massive the concentrated phase floats on

top of the dilute phase. He3 is then evaporated from the dilute phase in the still by use

of a heater To maintain the concentration of He3 in the dilute phase some of the He3

in the concentrated phase must cross the phase boundary, this provides cooling power

that is proportional to the rate of flow of He3 within the system and can supply up to

12µW of cooling power at 20 mK.

Thermometry for the various stages was performed using a Lakeshore 370 resistance

bridge, the 4 K and Still plate thermometers were Cernox thin film resistance sensors

and the mixing chamber temperature was extracted from a RuOx thin film resistor. To

estimate the accuracy of the RuOx calibration a Coulomb blockade thermometer (CBT)

was used to directly measure the thermal energy of electrons in the wires at the end

of the cold finger. The two thermometers were found to be in agreement of ±1 mK at

12 mK. To allow the sample to be mounted in the region of uniform magnetic field an

extension stick was designed to be mounted directly to the mixing chamber flange. This

was then made at Cardiff University out of gold plated copper, consisting of a block

which bolts directly to the mixing chamber flange, a tube with staggered slots milled

into it to prevent eddy current heating during field sweeps and a smaller block to mount

the sample holder. Samples were mounted into a CMR-Direct mPuck mounting system

with 20 sprung contact pins, again thermal contact was provided by bolting the sample

holder onto the copper block of the mounting stick.

To provide high magnetic fields an American Magnetics 8 T 3-inch NbTi superconducting

magnet was used. Cooling is provided to the magnet through conduction by connection

to the 4 K plate. Manipulation of the magnetic field is controlled by an American Mag-

netics 430 power supply programmer via a RS232 interface which controls the American
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Magnetics 4Q12125PS-430 four quadrant power supply.

Figure 3.5: Image of the LS-250 dilution refrigerator interior, the impressively low
temperatures are achieved by sequential staging of pulse tube and dilution refrigeration
technology. The polished Au coating on the low temperature stages is to minimise
thermal emissivity and limit absorption of any incident thermal radiation.

This system has the advantage of providing extremely low temperatures and large fields,

minimising the need to consider any thermal aberration to a measurement and enables
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the distinct observation of spin states due to Zeeman interaction. The large volume of

the DR means that rapid cool down is not an option, a full thermal cycle of the DR

with the magnet attached takes a minimum of four days without including measurement

time. As such this system was not used to characterise all samples measured in the low

field measurement system.

3.4 Magnetotransport Measurements

3.4.1 Hall effect measurements

Gated and ungated Hall bar devices were mounted inside 20-pin ceramic chip carriers

allowing up to 3 devices to be measured during a single cool down. Electrical connection

between the chip and the carrier was made using a wedge wire bonder and 13µm Au

wire. A schematic of the measurement set-up is given in figure 3.6. A delta-mode∗

constant current measurement technique with a current amplitude of up to ±1µA was

supplied by a Keithley 6221 current source. Currents in excess of 1µA were avoided to

limit Joule heating in the device. The field control and data acquisition was controlled

using bespoke computer software, written in either Python or Labview. Longitudinal

and transverse differential voltages were measured using a Keithley 2182A dual channel

precision voltmeter and gate control was provided by an Agilent E5281B precision,

medium power SMU module. To ensure all voltage levels were recorded relative to a

common ground potential the circuit ground of the Agilent E5281B was connected to

the ground potential of the Keithley 6221. The benefits of sourcing a constant current

becomes apparent in the context of the Shubnikov-de Haas effect where the material

resistivity varies as a function of magnetic field. The current source provides the bias

necessary to source the chosen current and the voltages measured are true reflections of

the magnetoresistance of the sample.

∗A delta-mode measurement consists of DC current of alternating polarity synchronised to a voltage
measurement. This removes both thermoelectric and geometric aberrations to the measured voltage.
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Figure 3.6: A typical schematic for a gated magnetoresistance measurement. The
differential inputs Vxx and Vxy represent the longitudinal and Hall voltages respectively.
Non-gated structures are measured in the same manner excluding the gate connection.

3.4.2 Three terminal IV measurements

Using the same gated Hall bar structures DC current-voltage (I(V)) measurements were

performed using a National Instruments Compact Data Acquisition Card (DAQ) system

while a low frequency AC differential conductance measurement was simultaneously

made using the same equipment. To measure the DC and AC currents the circuit path

to ground is completed through a Stanford Research Systems SR570 low-noise current

pre-amplifier with no AC filters applied, converting the small signal current into an easily

measurable voltage. The differential voltage measurement was made using a Stanford

Research Systems SR560 low-noise voltage preamplifier. A current limiting (10 kΩ)

resistor placed in series with the DUT ensured that none of the low noise equipment was

overloaded. The AC signal to measure the differential conductance was extracted using

software lock-in techniques using Labview software†.

The three terminal measurement is performed to remove the effects of the series resis-

tance of the 2D channel from the voltage measured between the common contact and the

remote voltage probe. This allows information about the contact to be extracted from

†The Labview software used for data acquisition in all three terminal measurements was written by
Dr. Steve Clowes.
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the I(V) data. In the limit where the contact resistance dominates, all of the voltage

measured by the remote probe is dropped across the contact.

A schematic of the measurement set-up is given in figure 3.7 as well as the equivalent

circuit.

Figure 3.7: (a) A schematic of the three terminal I(V) measurement set-up and (b) its
equivalent circuit. The common contact for the voltage measurement and the current
drain was chosen to be the most resistive contact on the device to maximise the voltage
drop across the contact.
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3.5 Sample summary

Table 3.1: A Table summarising the nominal high and low temperature classical
transport properties for some of the heterostructures studied in this thesis. The val-
ues quoted for the gated samples were calculated from data measured with the gate
electrode connected to ground.

300K 3K

Sample No. QW

(nm)

dopant

spacer

(nm)

n

(×1015/m2)

µ

(m2/Vs)

n

(×1015/m2)

µ

(m2/Vs)

SF0963 30 25 3.0 4.7 2.5 18.0

SF0968 30 25 2.7 5.1 2.1 16.8

SF1054 30 25 3.9 4.7 3.5 25.0

SF1055 30 25 3.1 4.9 3.1 23.5

SF1056 30 25 3.0 5.0 2.1 19.5

Gated Samples

SF1055 30 25 3.6 4.2 3.1 14.1

SF1056 30 25 3.1 4.4 2.1 10.4





Chapter 4

Magnetotransport measurements

on 30nm InSb/AlInSb quantum

well heterostructures

The extreme electronic properties of bulk InSb have long been acknowledged as im-

portant for the study of fundamental transport physics. The possibility of creating a

two-dimensional electron gas in InSb that capitalises on the improved transport prop-

erties observed in other heterostructures has also made it a prime candidate for the

observation of spin related effects. In spite of this, due to growth difficulties, InSb

quantum wells have received relatively little investigation compared to other narrow gap

semiconductors such as InAs.

Understanding the transport mechanisms which dominate within these heterostructures

is important for the continued development of material quality and subsequently improv-

ing the transport properties. The work presented in this chapter highlights characteri-

sation techniques used to study these transport phenomena in a number of modulation

doped InSb/AlInSb quantum wells. Magnetotransport measurements at low and moder-

ate fields are compared to extract electron lifetimes while thermal effects are considered

to determine the effective mass of carriers.

41
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Section 4.1 introduces the fundamentals of carrier transport under the influence of small

magnetic fields, discussing the physics underlying the Hall effect and highlighting the

carrier properties which can be inferred from field dependent and temperature dependent

measurements. Following this, section 4.2 details transport properties in the limit of

high magnetic fields and provides a brief discussion of the effects of non-parabolicity

and sample inhomogeneity.

4.1 Classical electron transport

Two key metrics used to determine the transport quality of a 2D material are the

sheet carrier density (n2D) and the mobility (µ). These describe the relative abundance

of charge carriers and how prone they are to undergoing scattering events within the

material, and combined they define the conductivity of a material. These properties

as well as the charge of the majority carrier can be inferred by electrical measurement

while the carriers are under the influence of electric and magnetic fields. While under the

influence of a magnetic field perpendicular to the carrier momentum, charged particles

experience a Lorentz force perpendicular to both their motion and to the magnetic field

which causes them to undergo cyclotronic motion. When the rate of carriers undergoing

significant scattering events (1/τ) is greater than the cyclotron frequency (ωc) carriers

are considered to be in a low field regime of magnetotransport. Within this regime

carrier transport can be accurately described by the classical description of electrical

transport defined by Drude [25], indeed this is where the concept of a characteristic

scattering time comes from.

4.1.1 Fundamental transport equations

In the presence of thermal excitations the ensemble of electrons within a material have

a distribution of momenta which carry no net charge within the material. Under the

influence of an electric field (E) these electrons experience a force that is proportional

to E i.e. FE = −eE. This force accelerates electrons in the opposite direction of

applied field and introduces a net current flow throughout the region where the field is
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applied which can be described as a drift velocity (vd) of carriers. The Drude assumption

that electrons are non-interacting particles except when they undergo a scattering event

means that (on average) electrons have to be accelerated to this drift velocity within

the characteristic scattering time. The combination of the drift velocity and the number

density of carriers present in a material dictates the current density,

J = nevd =
ne2τE

m∗
. (4.1)

This is Ohm’s law, describing the current density arising for a given electric field. The

other terms in equation 4.1 defines the conductivity of the medium. The conductivity

of a material under the influence of only an electric field may thus be described by the

equation,

σ0 =
ne2τ

m∗
= neµ (4.2)

where µ is defined as the mobility of carriers in a material and is proportional to the

characteristic scattering time and inversely proportional to the effective mass. The mag-

nitude of the mobility of a material is therefore dependent upon the dominant scattering

mechanisms and the type of carrier contributing to conduction. The considerable dif-

ference between the electron and heavy-hole effective mass is the primary reason why

n-type materials are considered preferable to p-type for high frequency applications.

The assumption that carriers undergo diffusive transport that can be described by Drude

theory therefore depends upon the scale of the devices being measured being significantly

greater than the distance traversed by electrons between scattering events, known as

a carriers mean free path (`). This characteristic length scale can be estimated by

considering carriers at the Fermi energy with a velocity vF and how far they travel

within the scattering time. For high quality InSb 2DEGs the mean free path can be of

the order of many µm [34–37] in the highest quality materials. Within the parabolic

band approximation∗ the mean free path can be described by,

∗When the consequences of non-parabolicity are considered the increasing density of states at higher
energies reduces vF and subsequently reduces the mean free path.
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` = vF τ =
~µ
e

√
2πn2D, (4.3)

evidently the mean free path is proportional to the mobility and to the square root

of the carrier density. The sample sizes considered in this thesis are at least an order

of magnitude larger than the mean free path of the electrons in the highest mobility

material, hence the transport can safely be considered to be in the diffusive transport

regime.

4.1.2 The Hall effect

The motion of charge carriers through both electric and magnetic fields was first de-

scribed by Edmund Hall in the 19th century. He observed that in the presence of a

magnetic field a voltage perpendicular to both the current and magnetic field is estab-

lished. This has proved to be a remarkable tool and is still a standard technique for

the characterisation of material quality, while also being exploited for many commercial

applications pertaining to magnetic field sensing.

If a 2D sheet of material (figure 4.1), oriented in the x, y-plane has a voltage applied to

the sheet along the x-axis, this produces an electric field Ex. The conventional current

created due to the presence of the electric field Ix travels parallel to Ex. Perpendicular to

the x, y-plane and to Ex is the magnetic field Bz, and under the influence of these fields

electrons are subject to both an electrostatic and Lorentz force with the net force being

described by FTot = (−eEx,−evdBz, 0). The electrons experience a net force in the x, y-

plane directed away from the x-axis. Carriers subject to this force are directed toward

the edge of the sheet, accumulating charge. This charge build up establishes a transverse

electric field which opposes the Lorentz force. Charge continues to accumulate until the

forces from the transverse electric field and the Lorentz force reach an equilibrium and

charge continues to flow only along the x-axis once again. The polarity and magnitude of

the transverse electric field can be measured as a voltage between the opposing sides of

the sheet. This is known as the Hall voltage VH . The polarity of VH indicates the charge

of the majority carrier contributing to conduction. Negative VH indicates majority
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Figure 4.1: A schematic representation of the forces present on charges moving
through a magnetic field to produce the Hall effect.

electron conduction while positive VH indicates hole conduction. The magnitude of VH

is given by the equation,

VH =
BzIx
en2D

, (4.4)

intuitively the magnitude of the Hall voltage is proportional to the strength of the

magnetic field, the magnitude of the current, and inversely proportional to the sheet

carrier density. However, the presence of the magnetic field has the complicating effect

of altering the conductivity of the material, at non-zero field the conductivity splits into

discrete components described by the conductivity tensor,

σ =

σxx σxy

σyx σyy

 (4.5)

where σxx,yy is the tensor component of a material’s conductivity along a coordinate axis

due to forces along the same axis, and σxy,yx is the tensor component of a material’s

conductivity due to orthogonal forces. These off-diagonal components arise due to the
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perpendicular forces acting on carriers in the magnetic field contributing to the material

conductivity in the direction perpendicular to the electric fields. This perpendicular

force causes carriers to undergo cyclotronic motion which has a characteristic length scale

(`cyc = m∗vF /eB) known as the cyclotron radius. Any geometric aberration between

voltage probes can lead to inaccurate measurement of the longitudinal or transverse

conductivities. The geometry of the Hall bar structures studied in this thesis allow for

simultaneous measurement of both the Hall voltage and the voltage drop along the Hall

bar with negligible deviations from the true values arising from geometric error[38].

4.1.3 Carrier analysis

The samples investigated in this thesis were grown with a variety of doping densities in

the δ-dopant layer to characterise the material as a function of the sheet carrier density.

Figure 4.2 shows the quantum well mobility as a function of the sheet carrier density

for all measured materials extracted from a simple single carrier model at 3 K. A peak

in mobility of 23 m2V−1s−1 occurs at a density of n2D ≈ 3.5 × 1015 m−2, away from

this peak the mobility decreases rapidly indicating that scattering processes increase.

These can be attributed to two distinct scattering mechanisms. At low temperature the

dominant scattering mechanism comes from interaction of electrons with the Coulomb

potential of the ionised dopants in the δ-dopant plane. The bare Coulomb potential has

a 1/r dependency and since the δ-dopant plane is spatially removed from the 2DEG

by nominally 25 nm the Coulomb potential encountered by electrons is reduced. This

is known as remote ionised impurity scattering and can be the dominant scattering

mechanism in 2DEGs. Due to the presence of electrons in the quantum well the Coulomb

potential is further reduced due to the effects of Thomas-Fermi screening [26]. This

screening causes the Coulomb potential to fall off exponentially faster than the 1/r

dependence of the bare potential. Higher carrier densities in the quantum well lead to

greater screening of the Coulomb potential and a reduction in the scattering rate from

the remote ionised impurities. This screening effect increases with the amount of charge

in the well until some other scattering mechanism becomes dominant.
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Figure 4.2: Carrier mobility against sheet carrier density extracted from single carrier
fitting for all InSb/AlInSb quantum well samples. The dashed lines are a guide to the
eye to highlight the fall off in mobility at low and high carrier densities. The red data
are ungated samples while green and blue were fabricated with a CrAu gate electrode
on top of amorphous MgO and Si3N4 dielectrics respectively. Square or triangular
markers indicate structures made using the same material.

The energy separation between the first and second subbands for the quantum well have

been calculated from Schrödinger-Poisson modelling to be around 40 meV. Estimation

using equation 2.12 and the band edge effective mass means the carrier density in the well

only has to reach ∼ 2.8× 1011 cm−2 before the second subband becomes occupied. Inter

subband scattering has been shown to reduce the overall mobility of samples[39, 40]

when the Fermi energy is close to the second subband. There is also evidence that

the mobility decrease is due to states in the δ-dopant layer becoming occupied and the

reduced mobility of the state in the heavily doped region adversely affecting the quantum

well mobility [34].

In this second regime estimation of the carrier mobility and sheet carrier density from

the simple single carrier estimation is not ideal. The presence of a second carrier with a

different mobility and carrier density can be discerned from the Hall data through the use

of multi-carrier fitting to the now non-linear Hall response and longitudinal resistivity.

The total conductivity can be expressed as the sum of the individual contributions from
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each carrier for each medium [41, 42], i.e.

σTot =

σaxx + σbxx σaxy + σbxy

σayx + σbyx σayy + σbyy

 (4.6)

where σa,b represents the conductivity contributions from the different carriers. This

treatment proves useful at high temperatures when donor impurities in the buffer layer

are ionized and significant parallel conduction through the buffer material occurs. It is

particularly adept at discerning parallel conduction channels with similar conductivities

but very different mobilities and carrier densities. Figure 4.3 shows a comparison be-

tween the simple single carrier approximation and the more complex two carrier model.

Clearly for high carrier density materials the single carrier method provides an indica-

tion of the transport properties but importantly also shows the limitations of a single

field Hall measurement. The presence of a second parallel conduction path requires the

use of more complicated models and Hall measurements at multiple fields to accurately

determine values for the carrier transport properties.

Uncertainties in the transport properties extracted using this method were determined

by a rudimentary resampling procedure. Longitudinal and Hall voltage data were ran-

domly varied by up to a standard deviation and the fitting procedure was performed,

this was done iteratively to build up statistics for the transport properties. All samples

which displayed parallel transport at low temperature were well characterised by two

n-type carriers as we would expect if the parallel channel was the second subband of the

quantum well.

4.1.4 Temperature dependence of the transport properties

Characterisation of the transport properties as a function of temperature can help de-

termine the dominant scattering mechanism. Matthiessen’s rule[25] describes the mean

scattering rate of a material as being the sum of all individual scattering rates for each

scattering mechanism, i.e.

1

τtot
=
∑
i

1

τi
. (4.7)
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Figure 4.3: A comparison between single and two carrier fitting to magnetoresistance
data at 130 K for sample SF1054. The single carrier model is most valid when the
cyclotron radius (`c) is larger than the mean free path (`). The single carrier model
extracts a carrier density and mobility of 3.9×1015 m−2 and 22.7 m2V−1s−1 respectively,
while the two carrier model extracts a high mobility carrier with density 3.5×1015 m−2

and mobility 25.0 m2V−1s−1.

This assumes that all scattering rates considered are independent. Different scattering

mechanisms have a variety of energy dependencies and many of them contribute to the

transport properties.

The following are short descriptions of a number of the scattering mechanisms that con-

tribute significantly to the transport properties of these InSb/AlInSb heterostructures.

Phonon scattering

At finite temperature atoms in the crystal have thermal kinetic energy. This atomic

motion leads to local deformation in the periodicity of the crystal lattice and inhomo-

geneity in the local density of states. In diatomic crystals both acoustic and optical

phonons occur. Acoustic phonons are produced by in-phase crystal oscillations while

optical phonons are created by out of phase oscillations which lead to local polarisation.
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The acoustic phonon scattering rate is proportional to the deformation potential of the

crystal (Ξ) and the temperature, described by [24, 43–45],

1

τac
=

3kBT

2

m∗Ξ2

~3ρdv2sw
(4.8)

where ρd is the crystal density, vs is the speed of sound in the crystal, w is the width

of the quantum well and kB is the Boltzmann constant. The deformation potential for

InSb varies greatly in the literature and is not well known ranging between 4.2 - 33 eV

[46] depending on the measurement technique. This large variation in deformation

potential allows for a modification of the room temperature acoustic phonon scattering

time between 1− 60 ps. The scattering rate from optical phonons is given by,

1

τop
=
e2m∗ω0w

4πεp~2
1

exp
(

~ω0
kBT

)
− 1

(4.9)

where ω0 is the phonon frequency and εp = ε0ε∞/(ε∞ − ε0) where ε0 and ε∞ are the

DC and infinite frequency dielectric constants respectively. It is important to note that

τ−1op is exponentially proportional to temperature and quickly becomes insignificant at

temperatures < 100 K [24].

Ionised impurity scattering

As mentioned in section 4.1.3 ionised impurity scattering is a Coulombic interaction

which is analogous to Rutherford scattering. Most interactions consist of shallow angle

scattering which does not significantly affect the flow of charge but occasionally there

is a significant back scattering event due to a “head on” collision. In modulation doped

heterostructures the dopant charge lies outside of the 2D channel (aside from uninten-

tional doping inside the 2DEG) and the ionised impurity scattering becomes dominated

by shallow angle scattering. The scattering rate from remote ionised impurities in a

δ-plane is given by [24],

1

τrii
= n2Dimp

m∗

2π~3k3F

(
e2

2ε0εr

)2 ∫ 2kF

0

exp(−2q|d|)
(q +QTF )2

q2dq√
1− (q/2kF )2

(4.10)
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where n2Dimp is the 2D impurity density from ionised donors, kF is the Fermi wave vector,

ε0 and εr are the permittivity of free space and the relative permittivity respectively, q

is the scattering wave vector, QTF = 2m∗e2/ε0εR~2 is the 2D Thomas-Fermi screening

wavevector and d is the distance between the δ-dopant plane and the position expectation

value for electrons in the well.

Unintentional doping within the heterostructure can also provide a source of scattering

due to ionised impurity scattering potential which is no longer solely dependent upon a

single plane of charge but as a result of the 3D distribution of impurities n3Dimp, described

by

1

τbkg
= n3Dimp

m∗

2π~3k3F

(
e2

2ε0εr

)2 ∫ 2kF

0

1

(q +QTF )2
qdq√

1− (q/2kF )2
. (4.11)

Importantly, aside from any small deviations arising from the non-parabolic effective

mass of InSb the scattering from ionised impurities is independent of temperature.

Figure 4.4 shows the typical mobility trend of these heterostructures as a function of

temperature. Below 30 K the mobility is almost completely temperature independent

indicating that at low temperature we are dominated by a temperature independent

scattering mechanism, such as ionised impurity scattering.

Structural defect scattering

While investigating these heterostructures Hayes et al. [34] determined that for realistic

3D background doping densities the transport mobility predicted from modelling with

typical InSb parameters did not agree with previous modelling [24, 47]. They therefore

suggested an additional scattering mechanism was required for the transport model to fit

the measured data. McIndo et al. [35, 48] have suggested that the grain size of the InSb

might be this limiting scattering mechanism. If the average grain size is smaller than

the mean free path of electrons between remote ionised impurity scattering events then

this can account for the mismatch between measurement and theory. There is currently

some debate whether this scattering mechanism or remote ionised impurity scattering

is dominant at low temperature [45].
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Figure 4.4: The carrier mobility and sheet carrier density extracted from single carrier
fitting as a function of temperature. The reduction in carrier density is consistent with
the freeze out of intrinsic carriers at low temperature.

4.2 Electron transport in the high field regime

Under the effects of large magnetic fields the resistivity of a material undergoes some

non-intuitive effects. Figure 4.5 shows the longitudinal and Hall resistivity for a sample

up to 8 T. The longitudinal resistivity oscillates with a single period as the magnetic

field strength increases while the Hall resistivity increases with increasing field but also

displays distinct plateaux. These are known as Shubnikov-de Haas (SdH) and integer

quantum Hall (IQH) effects respectively and are not predicted by the classical theory of

transport in the presence of a magnetic field.

These phenomena can be explained by introducing magnetic field interactions into the

Schrödinger equation using the substitution p → p + eA, where p is the momentum

operator −i~∇ and A is the magnetic vector potential. Unlike the magnetic field the

vector potential is not invariant under translation or rotation in the x, y-plane, using

the Landau gauge, where A =


0

xB

0

 the Schrödinger equation becomes

Hψ =
1

2m∗

[
−i~ ∂

∂r
+ eA

]2
ψ . (4.12)
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Solutions to this equation take the form of an harmonic oscillator,

E = ~ωc
(
N +

1

2

)
(4.13)

where ~ω is the cyclotron energy (ω is the cyclotron energy eB⊥/m
∗) and N is an integer

starting at 0. This elegant solution means that under a perpendicular magnetic field

the density of states in the transport plane becomes quantised into a ladder of discrete

energy states with separation ∆E = ~eB⊥/m∗ = ~ωc. These discrete states are known as

Landau levels. The energy of each Landau level defines the kinetic energy of the electrons

in the x, y-plane and hence the radius of the Landau level orbit. This leads to another

characteristic length scale known as the magnetic length

(
`B =

√
~
eB

)
which describes

the orbital radius of the fundamental Landau level and is only ∼ 25 nm at 1 T. This

quantisation of the density of states means that, without modification, an electron’s

energy would increase linearly with B⊥; however, simultaneously the magnetic field

increases the degeneracy of states by an amount proportional to B⊥. The degeneracy of

states is defined as [49]

N =
eB⊥
2π~

. (4.14)

When spin is introduced into the system the degeneracy of each spin state is lifted and

the energies are modified by E = ±1
2gµBB due to the Zeeman interaction of the electron

spin states with the applied magnetic field, g∗ is the effective g-factor and µB is the Bohr

magneton. The effects of Zeeman splitting can clearly be discerned in figure 4.5 at fields

& 1.5 T.

In a dispersionless system the energy of a Landau level would be described by a δ-function

with all electron states occupying that level being completely degenerate; however, real

systems are far from this ideal. The presence of scattering mechanisms in a material

leads to broadening of the Landau levels which can be described by Gaussian functions

[50, 51] with a width Γ. It is this broadening which explains why the effects caused

by the discretisation of energy states are not observed at low fields. When the energy

separation between Landau levels is smaller than the broadening then the density of

states is quasi-continuous, Shubnikov-de Haas oscillations become observable once the
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Figure 4.5: The Shubnikov-de Haas (red) and IQH (blue) effects measured at 12 mK
for sample SF0968.

Landau level separation becomes comparable to the broadening. Figure 4.6 shows the

evolution of the Landau level density of states with increasing magnetic field, the zero-

field parabolic 2D DOS is shown for comparison.

The resistivity oscillations in the Shubnikov-de Haas effect are caused by a corresponding

oscillation in the DOS at the Fermi energy. When a Landau level is coincident with EF

there are many states available for momentum scattering events to occupy and fewer

when EF lies between Landau levels. The variation of EF as a function of field is

discussed in more detail in chapter 5. As the magnetic field increases the number of

Landau levels below EF decreases, this is described by the filling factor [52],

ν =
2πn2D~
eB⊥

(4.15)

which indicates how many Landau levels are occupied for a given carrier density at a spe-

cific field. This highlights a powerful analytical tool of SdH oscillations, the relationship

between the periodicity of oscillation and the carrier density allows for the extraction of

the carrier density simply by inspecting the periodicity in 1/B. A Fourier transform of

an ideal, single carrier SdH oscillation in 1/B will yield a single peak the frequency of
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Figure 4.6: A Gaussian broadened Landau level model of the evolution of the 2D
density of states for a single subband in InSb with increasing magnetic field. The 2D
oscillations become significant when Γ ≤ ~ω. Spin split oscillations can be observed
when the Zeeman contribution is larger than the broadening.

which is related to the carrier density by,

n2D =
2eBF
h

(4.16)

where BF is the peak frequency from the Fourier transform. The Fourier transform is a

powerful tool for identification of periodicities in a magnetoresistance oscillation which

can contain multiple oscillations of different frequency. Indeed, in high carrier density

systems where a second subband is occupied, Fourier transform techniques can be used

to determine the relative carrier densities of the two subbands [53]. This has been

used extensively to investigate Rashba and Dresselhaus contributions to spin splitting

in materials with large g∗ such as InSb or InAs [54, 55]. However this oscillation in the

DOS is not sufficient to describe the phenomena of the IQHE. First observed by von

Klitzing et al. [56] in a Si inversion layer, the Hall resistivity displays plateau over a

range of magnetic fields, the conductance of which is quantised into steps of ie2/h, where

i is any positive integer. These plateaux have been shown to be due to the existence

of extended and localised states within the material, localised states carry no current

while the extended states move toward the edges of the material to conduct via edge

states. The presence of impurities in the 2D system has been shown to have no effect on
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the resistance values of each plateaux in the Hall measurement [57–59]. These striking

results means that the IQHE is independent of material, purity and geometry and has

been observed in many 2D systems [32, 36, 56, 60].

4.2.1 Quantum lifetime extraction

The scattering lifetime, τ , discussed earlier is the mean time between an electron un-

dergoing a significant momentum scattering event. This is not, however, necessarily

an accurate estimate of the actual time between an electron undergoing any individual

scattering event. In remote doped heterostructures an electron can encounter many

long range scattering potentials which only perturb the carriers momentum slightly be-

fore it undergoes a critical back scattering event which contributes significantly to the

measured resistivity [61]. The characteristic lifetime τ is therefore highly dependent

upon the scattering angle θ, such that τ−1 ∝ (1 − cos(θ)) and can be a considerable

overestimate of the actual carrier lifetime or quantum lifetime (τq).

Extracting a value for τq can be achieved by analysis of the amplitude of the low-field

Shubnikov-de Haas oscillations shown in figure 4.7. The amplitude of oscillation ∆R in

terms of the zero-field resitance value R0 is described by [62]

∆R

R0
= 4χT e

(
−π
ωτq

)
(4.17)

where χT = A
sinh(A) is the thermal damping factor of the oscillation with A = 2π2kBT

~ω .

This approximation ignores the effects of higher harmonics from the periodic expansion

of the cosine term in [61]. As one would expect the thermal damping term is strongly

temperature dependent, hence accurate quantum lifetime measurements require low tem-

peratures to allow for low-field oscillations to be discernible. χT is also dependent on

effective mass. The small effective mass of InSb means oscillations are still observable at

temperatures where the damping factor would dominate in other materials [34]. Figure

4.8 compares χT for InSb and GaAs at different temperatures using band edge param-

eters, and highlights the low field extent to which low temperature oscillations could

potentially be observed in InSb.
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Figure 4.7: Typical low field resistivity trace of sample SF1055. The obvious
Shubnikov-de Haas oscillations at 3 K are noticeably diminshed by 7 K.

Figure 4.8: Thermal damping factor χT for InSb (solid) and GaAs (dashed) at 1 K
(blue) and 5 K (red) calculated using the band edge effective masses of 0.014 m∗ and
0.043 m∗ respectively. Clearly the damping factor for InSb at 5 K is similar to that of
GaAs at 1 K highlighting why the quantum lifetime in InSb can be discerned at higher
temperatures.
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Figure 4.9: The thermal damping term as a function of temperature for ungated
sample SF1055. The data are extracted from a field value of B = 0.75 T, the dashed
line is fit using a least squares minimisation.

4.2.1.1 Thermal dependence of the quantum lifetime

Analysis of the SdH oscillation amplitude at various fields as a function of temperature

allows us to extract a value for the in-plane effective mass. The amplitude is proportional

to the damping factor, where the only free fitting parameters are the effective mass and

finite temperature normalisation. This assumes that all oscillations are manifestations of

a single quantum lifetime such that τq is independent of temperature, which is not neces-

sarily true for low density heterostructures[32, 63]. Figure 4.9 shows the clear agreement

between the damping factor and temperature, using a least squares minimisation a best

fit to the data was achieved with an effective mass of m∗/m0 = 0.018± 0.003, the error

estimation was again achieved using a simple bootstrapping† method. The carrier den-

sity for this sample extracted by both the two-carrier and FT methods discussed earlier

yield densities of n2D = 3.15× 1015 m−2 and n2D = 3.11× 1015 m−2 respectively. Using

a 4-band k.p method (see chapter 2) at this density carriers at the Fermi energy are

expected to have a mass of m∗/m0 = 0.019, which is in excellent agreement with the

value extracted here.

†A bootstrapping procedure is a statistical confidence test where data are replaced by randomly
deviating each data point by up to a standard deviation from the mean value.
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Figure 4.10: Dingle plot for sample SF1055 at various temperatures. The dashed
lines are linear fits forced to an intercept of 1 to highlight the data quality. Elevated
temperatures have been offset by integer values for clarity.

Rearrangement of equation 4.17 allows the quantum lifetime to be extracted from the

gradient of a so called Dingle plot, ln (∆R/(4R0χT )) versus B−1 (figure 4.10). Using

this method samples which show ideal single carrier behaviour are expected to have an

intercept of 1 and be well described by a straight line, though sample inhomogeneity [64]

and parallel conduction [39] can cause deviation from this idealistic behaviour. Figure

4.10 shows Dingle plots for a range of temperatures, even up to 13 K the linear trend

of the data is obvious though deviations from the straight line fits become apparent

at lower fields. Peaks and troughs in the SdH oscillations were deduced from a graph

of −∂
2ρxx
∂B2 . The small amount of data at higher temperatures is due to the oscillation

amplitude becoming indiscernible below a threshold value of 1/10th the peak amplitude.

At low field values all data show a rapid upward turn in the Dingle plot, the point of

curvature moves to higher field as the temperature increases corresponding with the

exponential drop off of χT .

The extracted values of τq are shown in figure 4.11 for various temperatures. The

data shows no obvious dependence upon temperature, suggesting that the dominant

scattering mechanism is a temperature independent one such as remote ionised impurity

scattering. Murphy [63] measured the electron lifetimes in GaAs/AlGaAs double well

heterostructures with approximately one third to one half the carrier density of the
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Figure 4.11: The extracted quantum lifetime and corresponding quantum mobility
as a function of temperature for sample SF1055. The dashed line is a guide showing
the mean value while the cross-hatched region highlights a standard deviation around
the mean.

samples studied here. They observe a strong T 2 dependence of τ−1q which becomes more

pronounced at low carrier densities, which is attributed to enhanced inelastic electron-

electron scattering events. Giuliani and Quinn [65] determined the scattering rate from

e-e interactions in an ideal 2DEG to be

1

τe−e
≈ −EF

2π~

(
kBT

EF

)2 [
ln

(
kBT

EF

)
− ln

(
QTF
kF

)
− ln(2)− 1

]
. (4.18)

This predicts electron-electron limited quantum lifetimes of ∼ 200 ps at 3 K and ∼ 6 ps

at 20 K for a carrier density of n2D = 1×1015 m−2 similar to these InSb heterostructures.

This approximation is only valid at temperatures where kBT << EF , the fact that our

structures are degenerately doped means this approximation holds well beyond room

temperature. The dependency of τ−1e−e on EF means that it is subject to the effects

of non-parabolicity, substituting EF into expression 2.12 gives a perturbation to EF

which decreases the scattering rate and increases the quantum lifetime even further

emphasising how the limiting scattering mechanism cannot be due to e− e effects.
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4.2.1.2 Carrier density dependence of the quantum lifetime

Investigation of the quantum lifetime as a function of carrier density allows for variation

of the Fermi energy while in principle keeping the effects of scattering mechanisms

constant. Figure 4.12 shows the extracted quantum lifetimes of gated samples SF1055 &

SF1056 as a function of carrier density extracted from a single carrier fit. The extracted

lifetimes of both samples show a strong dependence on carrier density similar to that

observed in the characteristic transport lifetime shown in figure 4.2 and consistent with

observations in other material systems [60]. This is characteristic of enhanced screening

of the scattering potential experienced by carriers in the 2DEG, as the charge density

increases kF increases ∝ n1/22D this decreases the interaction time between carriers at the

Fermi energy and the scattering potential.

In studies of high mobility (µ > 100 m2V−1s−1) GaAs/AlGaAs quantum wells the

quantum lifetime has been observed to increase linearly with carrier densities below

1× 1015 m−2 before reaching a plateau [66, 67]. They attribute this to enhanced screen-

ing before reaching limiting scattering from background impurities in the 2DEG. The

absence of any plateau in this data would suggest that transport in these samples is lim-

ited by scattering from remote ionised impurities. This result is not surprising since the

δ-plane is only 25 nm above the QW interface. In similar structures the carrier lifetime

has been observed to increase with greater separation between the δ-plane and the QW

[24]. The quantum lifetime of both samples appears to belong to a single limiting mech-

anism, this is counter-intuitive since the 2D impurity potential should be proportional

to the dopant in the δ-plane and we would expect an increase in remote ionised impurity

scattering for a greater dopant density. However, investigation of this mechanism using

the transport model described in [24, 35] reveals that doubling the scattering potential

only yields a ∼ 2 % decrease in the quantum lifetime, this is attributed to increased

Thomas-Fermi screening of carriers in the quantum well.

A summary of the transport properties for studied samples is given in table 4.1. An

important figure of merit for electrical transport in modulation doped heterostructures is

the ratio between the transport and quantum lifetimes. A large ratio indicates that the

most significant source of scattering is from long range potentials which do not adversely
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Figure 4.12: The extracted quantum lifetime and corresponding quantum mobility
as a function of carrier density for samples SF1055 (triangles) & SF1056 (squares) at
3K. The dashed fit line is a guide to indicate the upward trend in the data. Hollow
markers indicate data taken from gated samples over a range of carrier densities while
solid markers are measurements of ungated devices. The red dotted line is the predicted
quantum lifetime from a relaxation time approximation model including the effects of
remote ionised impurities, background impurities and non-parabolicity.

affect the conductivity, whereas small ratios indicate that the transport and quantum

lifetimes are limited by similar mechanisms. It is noteworthy that the transport ratio

for these heterostructures are all consistent with those reported by Hayes [34].

Figure 4.13 shows the behaviour of the lifetime ratio for these samples as a function of

carrier density. The lower ratios of the gated samples are consistent with the reduced

transport lifetime while the quantum lifetime remains largely unchanged. The presence

of a dielectric layer clearly has a negative impact on the quality of the transport. To

account for this in the transport model a second plane of defects was positioned at

the surface 60 nm above the QW, with a density ∼ ×1017 m−3. Including this second

plane of defects gives a closer agreement between the calculated transport ratios and

those predicted from the transport model. The inclusion of a second plane of defects
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Table 4.1: Summary table of the classical and quantum transport properties for two
samples investigated. The range of lifetimes reveal an almost constant ratio between
transport lifetimes.

Vg n µ τ τq τ/τq Γ
(V) (×1015/m2) (m2/Vs) (ps) (fs) (meV)

SF1055
Ungated 3.06 23.5 1.87 93 20.0 2.3

-0.5 2.63 6.2 0.50 74 6.7 2.8
-0.4 2.79 8.7 0.69 80 8.7 2.6
-0.3 2.88 11.3 0.90 79 11.5 2.7
-0.2 2.99 13.1 1.04 81 12.9 2.6
0.0 3.07 14.1 1.12 84 13.4 2.5
0.1 3.13 14.5 1.15 90 12.8 2.3
0.1 3.15 14.3 1.14 87 13.1 2.4
0.0 3.06 14.2 1.13 85 13.3 2.5
-0.2 3.00 13.1 1.05 82 12.8 2.6
-0.3 2.89 11.3 0.90 76 11.9 2.8
-0.4 2.75 8.9 0.71 74 9.6 2.8
-0.5 2.65 6.2 0.49 73 6.8 2.9

SF1056
ungated 2.14 19.5 1.56 67 23.2 3.1

-0.4 1.68 9.0 0.72 44 16.5 4.8
-0.2 1.99 10.0 0.79 59 13.6 3.6
0.0 2.14 10.4 0.83 64 12.9 3.3
0.2 2.41 10.5 0.84 62 13.4 3.4
0.4 2.68 11.1 0.89 69 12.8 3.0
0.6 2.82 11.3 0.90 74 12.2 2.8

contributing to the overall scattering potential seen by carriers in the QW is not unre-

alistic, the presence of a dielectric creates interface traps which collect charge and could

plausibly contribute to the overall scattering potential. The impurity density required

to improve the fit of the model is similar to interface state densities reported through-

out for the literature [68, 69]. Though work regarding interface quality between high

κ dielectrics and antimonide ternaries is sparse, values reported for InGaAs which has

a similar band gap to the top barrier AlInSb report defect densities ranging anywhere

between 1015 − 1017 m−2eV−1.

4.2.2 Estimation of the Landau level broadening

The observation of Shubnikov-de Haas oscillations at low fields is highly dependent upon

the single particle broadening Γ, also known as the Landau level broadening parameter
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Figure 4.13: The transport and quantum lifetime ratio dependence on carrier density.
The ungated samples (solid markers) have a distinctly higher ratio than the gated sam-
ple (hollow markers). The dotted line is the lifetime ratio predicted from the transport
model with a single impurity with a density of n2D = 1× 1016m−2 in the δ-plane. The
dashed line shows the predicted lifetime ratio when a 2nd plane of charged impurities
with a density of ∼ 1017 m−2 is included at the samples surface.

it dictates the minimum field required to separate Landau levels by more than the

broadening Γ. Under the assumption that Γ is independent of temperate (a reasonable

assumption since τq shows no obvious T dependence) a value can be determined by

scrutiny of the longitudinal resistivity where oscillations become resolved, defined here

as BSdH and given by equation 4.19.

Γ =
~eBSdH
m∗

. (4.19)

This method has some distinct disadvantages as the ability to discern where the onset of

SdH starts is up to interpretation. Figure 4.14 shows ρxx and its corresponding second

differential, though the oscillations are almost unobservable in the low field resistiv-

ity, in the second differential the oscillations are apparent to significantly lower fields.

Determining this point is therefore highly dependent on data quality.

In agreement with the trend observed for the quantum lifetime the broadening parameter

is observed to be highly dependent on carrier density as shown by figure 4.15 with values
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Figure 4.14: The low field longitudinal resistance of ungated sample SF1055 and
the corresponding second differential. The onset of Shubnikov-de Haas oscillation are
highlighted, this correspond to the point were oscillations are no longer periodic in 1/B.
The second differential highlights shows an apparent beat pattern with a non-zero beat
amplitude, this phenomenon will be addressed in chapter 5.

ranging from 3−8 meV, this is unsurprising since the broadening is dependent upon the

quantum lifetime. It is also possible to estimate the broadening from the quantum

lifetime itself [70] since the broadening is inversely proportional to the quantum lifetime

as shown in equation 4.20.

Γ ∝ ~
τγq
. (4.20)

Here γ is highly dependent on the form of the scattering potential, in modulation doped

heterostructures the scattering potentials are all long range and γ ∼ 1 [70]. The values

for Γ extracted here are consistent with values extracted in other narrow-gap material

systems [21], though are somewhat surprising when compared to other high mobility

materials [60, 67] which display almost an order of magntiude smaller broadening. The

combination of large transport lifetimes and large single particle broadening suggest that

the scattering process dominating the quantum lifetime does not limit the transport

lifetime. This is consistent with evidence in other materials [66, 67] where the transport

mobility is observed to increase long after a plateau in quantum lifetime is reached. This

is the “smoking gun” indicating that the dominant scattering mechanism is from a long
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Figure 4.15: The broadening parameter Γ as a function of carrier density determined
from the onset of SdH oscillations and calculated from the quantum lifetime.

range potential which is likely from the superposition of the scattering potential from

surface charge trapped in the dielectric layer and from the δ-dopant layer.

4.3 Summary

Low and high field magnetotransport data have been presented in high quality InSb

quantum wells for both gated and ungated samples. The effect of temperature on trans-

port mechanisms has been discussed and it was highlighted that no significant tempera-

ture dependence was observed in either the classical transport lifetime below 30 K or the

quantum lifetime before thermal broadening made observations of the quantum states

impossible.

It was noted that the application of a gate dielectric severely degraded the classical

transport quality of a heterostructure, while only a small degradation in the quantum

transport was observed. Using a top gate electrode, the 2DEG potential was modulated

to observe the effects of carrier concentration on transport properties. Both the classical

and quantum transport were observed to be highly dependent on carrier density and
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the quantum lifetime of carriers was observed to vary between 50− 100 ps over a carrier

density range of 1.5− 3.2× 1015 m−2.

Using a transport lifetime model described by Orr et al. [24], close agreement between

the observed ratio between classical and quantum lifetimes was achieved. The degrada-

tion in the quantum mobility with the application of gate dielectric was accounted for

by the incorporation of a second plane of charge at the interface between the dielectric

and the top barrier. A charge density of the order ∼ 1017 m−2, consistent with defect

densities observed in materials with similar bandgaps [69], was required to obtain good

agreement between data and theory.





Chapter 5

Density of states modelling

5.1 Introduction

Modelling of the magnetoresistive behaviour in the quantum Hall regime might, at first

glance, seem complex. However, an effective, simple model can be constructed by numer-

ical calculation of the evolution of the density of states as a function of the magnetic field.

The following model can be an informative tool in investigating the effect of changes

to various parameters on the density of states. Comparison between the model and

measured magnetoresistance data for these heterostrucures provides valuable insights,

aiding the extraction of accurate material parameters.

Using properties for the Landau level broadening and the electron effective mass ex-

tracted in the previous chapter, alongside carrier densities extracted via fourier trans-

formation of the SdH behaviour the number of free fitting parameters in the model is

reduced. Improving the quality of fit between the observed magnetoresistance and the

model can subsequently yield material information.

In section 5.2 the model is introduced and progressive layers of complexity such as band

non-parabolicity are introduced observing the effects on the density of states. Section

5.3 addresses the inclusion of inversion asymmetry arising from the electric fields present

within these materials and heterostructure designs predicted from Schrödinger-Poisson

69
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modelling. Comparisons between the modelled oscillations in the density of states at

the Fermi energy and measurement are discussed in section 5.4.

5.2 Modelling Shubnikov-de Haas oscillations by conduc-

tivity

The physical principles responsible for the observation of Shubnikov-de Haas oscillations

were discussed in the previous chapter, though for completeness a brief summary of

the important principles will be restated here. The application of a magnetic field

perpendicular to a transport plane forces charged particles to experience a Lorentz force

and undergo cyclotronic motion. Solutions to the Schrödinger equation incorporating

the magnetic vector potential take the form of a harmonic oscillator, a ladder of allowed

states are formed known as Landau levels. Each Landau level consists of states for both

spin up and spin down electron’s, the degeneracy of which are lifted by the magnetic field

due to the Zeeman interaction. The energy of each spin split Landau level is described

by

E = ~ω
(
N +

1

2

)
± 1

2
g∗µBB, (5.1)

simply a reiteration of equation 4.13 including the Zeeman energy, while the Landau

level degeneracy is given by 4.14. Both the energy of each Landau level and the degen-

eracy of levels are proportional to the applied magnetic field. Increasing the magnetic

field decreases the number of Landau levels which exist below the Fermi energy while

increasing the DOS. The oscillation in the DOS which exists at the Fermi energy is

subsequently responsible for the modulation of the conductivity and observation of SdH

oscillations.

A given spin split Landau level has an energy described by equation 5.1, the density of

states can be approximated by a series of broadened Landau levels, each contributing a

number of states determined by the level degeneracy at a certain field. The nature of this

broadening has been suggested to take multiple forms such as Gaussian or Lorentzian

profiles and its dependency on the magnetic field are contentious. A series of Gaussian

broadened Landau levels as considered in [50] would create a DOS distribution described
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by equation 5.2,

g(E,B) =
eB

π~
1

Γ

1√
2π

∞∑
N=0

exp

(
−(E − EN )2

2Γ2

)
, (5.2)

whereas a series of Landau levels with a Lorentzian broadening profile would be described

by the equation

g(E,B) =
eB

π2~

∞∑
N=0

1
2Γ

(E − EN )2 −
(
1
2Γ
)2 . (5.3)

The energy which contains sufficient states to accommodate all electrons in a material

is the Fermi energy EF , this can also be considered the minimum energy an electron

would require to be added to the system. The carrier density of the material is assumed

to be constant with magnetic field, hence, EF can be calculated from the criteria

n2D =

∫ EF

0
g(E,B) dE (5.4)

i.e. the Fermi energy is where the sum off all states below it is equal to the carrier

density.

The longitudinal magnetoconductivity of a material can be calculated numerically from

this simple expression using a method similar to that used by Englert et al. [50] while

investigating the effective g-factor in a GaAs-AlGaAs system. At zero temperature, the

longitudinal conductivity is proportional to the number of states available within the

broadening width of the Fermi energy, each state contributing a unit of conductance and

described by [50]

σxx =
e2

2π~

∫
−d f(E,EF )

dE

∞∑
N=0

(
N +

1

2

)
exp

(
−(E − EN )2

Γ2

)
dE (5.5)

where f(E,EF ) = [exp(E − EF /kBT ) + 1]−1 is the Fermi-Dirac distribution.

The tensor relation which describes the resistivity of a material is given by

ρxx =
1

σ2xx + σ2xy

σxx σxy

σyx σyy

 . (5.6)
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Most models regard the transverse conductivity as the simple low field estimation of the

Hall conductivity σxy = −n2De/B. Even at moderate fields where quantisation effects

from the extended and confined states are only just discernible the model is sufficient

as an estimation of the conductivity. At greater fields where the effects of the quantum

Hall effect are more pronounced the validity of this estimation breaks down.

It is important to note from inspection of equation 5.5 that the longitudinal conductivity

is proportional to the density of states at the Fermi energy. As such many important

parameters can be extracted simply by considering the variation of the DOS at the Fermi

energy, g(EF ), as a function of field. Though this method does not provide resistivity

values for direct numerical comparison with measurement it still clearly highlights the

effects of parameter variation.

The following sections discuss the effects of varying parameters on the observed density

of states at the Fermi energy. Unless otherwise stated the simulations were made using a

Lorentzian broadening to the density of states with further parameters used summarised

in table 5.1

Table 5.1: The default parameters used for modelling the DOS at the Fermi energy.

Parameter Value

n2D 2.5× 1015 m−2

m∗ 0.013 m0

Γ 2.5 meV

g∗ 30

5.2.1 Modelling of high field magnetoresistance oscillations

Figure 5.1 compares the Fermi energy and corresponding DOS created by Landau levels

with Gaussian and Lorentzian lineshapes. There is debate in the literature as to which

broadening profile most accurately describes the Landau level [71–82]. Both broadening
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profiles show the amplitude of the DOS oscillation increases with magnetic field as

expected due to the increasing degeneracy of states in each Landau level.

There are a number of interesting differences between the two broadening profiles. The

Gaussian broadening has an oscillation amplitude larger than that of the Lorentzian

broadening due to the higher concentration of states at the center of the Landau level.

The spin split Landau levels are resolved at much lower fields with Lorentzian broadening

whereas the Gaussian lineshape of the spin split Landau levels have already coalesced into

a single broad peak. The implication of this is that for Gaussian broadening, a smaller

value for Γ is required to discern spin split states at low field, where they are observable

when considering Lorentzian broadening. The long tails of the Lorentzian lineshape

(∼ E−2) cause a smooth oscillation of the DOS at the Fermi energy while the Gaussian

DOS oscillation appears to have discontinuous minima. This sharp discontinuity is

also observed in the Fermi energy where it transitions abruptly between Landau levels

compared with a more gradual transition from Lorentzian broadening.

The Landau level spectrum given by equation 4.13 is derived using a parabolic approx-

imation for the energy dispersion for electrons in the conduction band. The effects of

non-parabolicity on the Landau level energy spectrum in narrow-gap materials such as

InAs and InSb has been investigated using a 4-band Kane model by Askenazy et al. [83].

Their approach is valid when the energies considered are significantly smaller than the

spin split-off energy of the material, E � ∆. InSb has one of the largest spin split-off en-

ergies of the III-V materials [15], 800 meV compared to 340 meV for GaAs and 110 meV

for InP. All structures available for investigation had a Fermi energy EF < 100 meV,

well within the region of validity for this approximation.

The increasing effective mass of carriers at higher energies causes the Landau levels

to behave sub-linearly with magnetic field, subsequently resulting in a decrease in the

energies of each Landau level. The non-parabolic dispersion of carriers increases the

average DOS, which causes a reduction in the Fermi energy since more states exist per

unit energy.

Figure 5.2 shows a comparison between parabolic and non-parabolic energy dispersions

for both Lorentzian and Gaussian broadening profiles. The peaks in the DOS at high
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Figure 5.1: Magnetic field evolution of the Fermi energy (red) and DOS at the Fermi
energy (black) for both Lorentzian (solid) and Gaussian (dashed) broadened lineshapes,
the lower plot is zoomed in at lower fields. The energies of the first ten spin split
Landau levels are plotted to highlight that a peak in the DOS occurs when a Landau
level crosses the Fermi energy. A carrier density of n2D = 2.5×1015 m−2, effective mass
m∗ = 0.013m0, a LL broadening of Γ = 2.5 meV and effective g-factor g∗ = 30 were
used in the calculation.

fields are unaffected by the introduction of non-parabolic effects, however, at low field

the maxima in the non-parabolic DOS coincides with minima in the parabolic calculation

for both Gaussian and Lorentzian broadening. This occurs because the non-linearity of

the Landau level energy spectrum in the non-parabolic case leads to decreasing energy

separation between Landau levels ∆EN,N+1 ∝ 1/N . This introduces a degeneracy be-

tween the high and low energy spin states of different Landau levels at certain fields.

Observation of this effect would be highly dependent on the single particle broadening,

carrier density and g-factor of the system.

As described in the previous chapter, the frequency of Shubnikov-de Haas oscillations

is defined by the carrier density of the material and oscillations are periodic in 1/B. A
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Figure 5.2: Comparison between both Lorentzian and Gaussian broadening types
in both the parabolic (black) and non-parabolic (red) approximations for the Landau
level energies. (Top) The DOS at the Fermi energy (Bottom) as a function of field. A
carrier density of n2D = 2.5× 1015 m−2, effective g-factor of g∗ = 30 and broadening of
Γ = 2.5 meV were used in the simulation.

spin degenerate system will oscillate with a single frequency proportional to the carrier

density, described by equation 4.16 [84]. A Fourier transform of a spin degenerate oscil-

lation will yield a single large peak and harmonics of diminishing amplitude. Figure 5.3

shows the DOS oscillation and associated Fourier transform for spin-split DOS oscilla-

tions with different carrier densities. The Fourier transform of an oscillation including

spin splitting introduces a higher frequency peak which is twice the fundamental fre-

quency, hence, when analysing the Fourier transform of a non spin-degenerate oscillation

the factor of 2 in equation 4.16 must be removed.

The ability to accurately estimate the carrier density through the use of a Fourier trans-

form is sensitive to the number of oscillations sampled in a given field region. Lower

carrier density samples yield fewer oscillations at energies high enough to resolve indi-

vidual Landau levels, broadening the frequency response and decreasing the amplitude

of the Fourier transform. In very high mobility GaAs heterostructures with similar car-

rier densities [67], resistivity oscillations have been resolved at fields as low as 15 mT

due to the long quantum lifetimes and subsequently small Landau level broadening

(Γ ∼ 20µeV). The relatively large broadening of the heterostructures studied in this
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Figure 5.3: (Bottom) A calculation of the DOS at the Fermi energy as a function of
magnetic field at different carrier densities. The periodicity of the DOS oscillations are
highly carrier density dependent as shown by the Fourier transform plot above. (Top)
The corresponding Fourier transform of each oscillation, the amplitude of the FT peak
typically increases with carrier density due to a greater number of oscillations being
sampled within a given field region.

thesis yield resolvable Landau levels at fields as low as ∼ 300 mT, significantly reducing

the number of observable oscillations when compared with higher quality samples. This

is clearly emphasised in figure 5.4 where the effects of variation in Γ are modelled using

values similar to those extracted in the previous chapter. This comparison highlights

that for a given material, the quantity of observed Shibnikov-de Haas oscillations is a

consequence of both the carrier density and the transport qualities of the system.

A variety of DOS oscillations calculated using different values of the effective g-factor are

shown in figure 5.5. As expected the onset of spin resolved oscillations occurs at lower

fields in simulations with a larger value for g∗. The large effective g-factor of InSb means

that even though the transport qualities of these heterostructures are comparable to

those of similar GaAs/AlGaAs heterostructures in 1980 [85], the effects of spin splitting

can be resolved at relatively low fields. By comparison, a GaAs heterostructure with

|g∗| = 0.44 [15] and an equivalent broadening would not show spin split oscillations until

B ∼ 100 T. The amplitude of oscillation decreases at larger g-factors since there is less
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Figure 5.4: Investigation of the effects of variation in broadening parameter Γ as a
function of magnetic field. Smaller broadening results in larger DOS oscillations and
spin split peaks being resolved at lower magnetic fields. The broadening has no obvious
effect on the FT peak position, though clearly affects the amplitude.

overlap between the DOS of the spin split energies. Changing the sign of g∗ has no

effect on the observed DOS oscillation since the spin states are assumed to have equal

broadening, this assumption will be explored further later in the chapter.

Analysis of the field where a peak in oscillation occurs against peak number reveals a

gradient change when spin split states are no longer resolved. A method commonly

used for estimating the strength of a materials effective g-factor is to compare this field

and the field where SdH oscillations become observable [86]. These fields are where

the Landau level separation ~ω and the separation between spin states g∗µBB become

comparable to Γ. This allows a simple expression for g∗ to be inferred,

g∗ =
~e

µBm∗
B1

B2
(5.7)

where B1 is the field where SdH oscillations become observable and B2 the field where

spin splitting is resolved.

This provides a good estimate for the magnitude of g∗ but has significant disadvantages



Ch 5: Density of states modelling 78

Figure 5.5: (Bottom) A plot comparing the effects of different g-factors on the ob-
served DOS at the Fermi energy. (Middle) A plot of the peak number against peak
field for the calculated DOS (triangles), compared to actual data (squares) from sample
SF0968 with similar carrier density. The field at which the gradient turnover occurs is
dependent upon the g-factor of the material and the broadening of the Landau levels.
(Top) The calculated FT of the different oscillations.

compared to more elegant methods such as tilted field or optical injection measurements

[87–89]. Electrically the two spin states are indistinguishable and equally contribute to

conduction, hence no information about the sign of g∗ can be extracted. This drawback

is also encountered in tilted field measurements. A more visible downside is the fact that

it requires the estimation of the onset fields and this is highly dependent upon quality of

data. Most fundamentally it assumes that the Landau level broadening is independent of

magnetic field, which is debated in the literature. Some authors suggest the broadening

is independent of field, while others report a B−1/2 dependency. Theoretically it has

been suggested that the broadening changes from being field dependent to independent

depending on the the magnetic length of the occupied Landau levels and the average

disorder separation in the structure [90, 91].
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5.3 The effects of inversion asymmetry on density of states

oscillations

When the potential through which an electron moves within a quantum well lacks a valid

center for an inversion transformation it is said to be inversion asymmetric. Under this

condition the spin degeneracy of states is lifted even when no magnetic field is applied,

this results in electrons in the conduction band with the same spin having different

energies dependent upon the direction they are travelling i.e.

E↑(k) 6= E↑(−k) (5.8)

with E↑ representing the energy of a single spin state. This is a manifestation of rela-

tivistic effects of electromagnetic fields on charged particles.

Bulk Inversion Asymmetry

The zincblende crystal is one such structure which lacks a center of inversion, resulting

in most III-V compounds having some form of zero-field spin splitting. This inversion

asymmetry is known as bulk inversion asymmetry and results from the microscopic

potential of the zincblende unit cell being non-zero. This type of inversion asymmetry

in bulk crystals was first described by Dresselhaus [92], who showed that the spin-

splitting between conduction band states was proportional to k3 and defines the material

parameter γ [eVm3] known as the cubic Dresselhaus term. As the crystal potential is

dependent upon the direction of carrier motion in the crystal, the magnitude of the

spin-splitting is highly anisotropic. The maximum splitting is observed along the [110]

direction, with zero splitting along both the [100] and [111] directions.

The strength of the Dresselhaus splitting is expected to increase for narrow-gap materials

with large spin-orbit gaps [93] such as InSb. Estimation of γ for different materials can

be made using band parameters, and for InSb is expected to be γInSb = 760.1 eVÅ3

compared with GaAs which is predicted to have γGaAs = 27.6 eVÅ3 [93, 94]. The values

for γ for bulk InSb predicted throughout the literature vary somewhat [93, 95–97] but
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all anticipate values γ > 200 eVÅ3. These discrepancies arise from uncertainties in the

parameters of the theoretical models used to calculate them.

The confinement of electrons in a quantum well and subsequent quantisation of kz was

shown by Eppenga and Shuurmans [98] to separate the Dresselhaus splitting into two

contributions, the k-cubic term and a further k-linear term (β [eVm]). An estimation

for β for wide wells can be given in terms of the bulk value γ,

β ≈ γ
( π
W

)2
(5.9)

where W is the width of the well. For 30 nm quantum wells studied here this is a rea-

sonable approximation, but for narrower wells the W−2 dependence leads to significant

overestimation of β when more sophisticated models are considered [36].

It has been asserted that the contribution to spin splitting from the Dresselhaus term

in quantum well heterostructures is insignificant and can be neglected in most mate-

rial systems [99, 100]. Though recent work in InSb claims that the contribution from

the Dresselhaus term can be a significant source of spin splitting in narrow quantum

well heterostructures [36], for the purposes of this model the effects of bulk inversion

asymmetry are not included.

Structural Inversion Asymmetry

The other primary source of inversion asymmetry in a quantum well is from the presence

of any built-in electric field due to the band structure of the heterostructure interface.

Since this phenomenon is dependent upon the arrangement of the heterostructure it is

known as structural inversion asymmetry. A built-in electric field introduces another

source of spin splitting known as Rashba spin splitting, which is linear in k and charac-

terised by the Rashba coefficient α [eVm]. The Rashba coefficient is proportional to the

strength of the electric field and can be (naively) described by the equation [93],

α = α0 〈Ez〉 (5.10)
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where α0 [eVm2] is a material constant dependent upon band structure parameters and

〈Ez〉 is the expectation value of the built-in electric field for electrons in the conduction

band. This model was shown by Pfeffer and Zawadski [100] to be an oversimplification

and the measured Rashba parameter cannot be directly related to the electric field,

though it provides a useful estimation for α in terms of the α0, which has been discussed

extensively throughout the literature. Using Kane model parameters, Winkler [93] pre-

dicts InSb to have α0 = 523 eVÅ2 compared to α0 = 117 eVÅ2 for InAs and α0 = 5 eVÅ2

for GaAs. The large value for InSb highlights how sensitive the spin splitting is to the

electric field, small potential variations such as those provided by electrostatic gating

can result in easily observable changes in the splitting. This large spin orbit interaction

is the primary reason InSb has received attention with regards to spintronic applications

[101, 102].

The Hamiltonian describing the strength of the Rashba interaction is given by [93],

HR = α0σ · k ×E (5.11)

where σ are the Pauli spin matrices, k is the in-plane wave vector and E is the built-

in electric field in the heterostructure. Applied to a quantum well with growth in the

z-direction and considering only the electric field out of plane, equation 5.11 can be

reduced to

HR = α(kxσy − kyσx) (5.12)

which has the familiar solution

E↑↓(k) =
~2k2

2m∗
± αk, (5.13)

leading directly to the linear spin splitting ∆E = 2αk, where k =
√
k2x + k2y. The

dispersion relation arising from the inclusion of the Rashba interaction is shown in figure

5.6. A striking feature of Rashba spin splitting is that the dispersion relation for the

two spin states are horizontally offset in k and degenerate at k = 0 m−1 unlike Zeeman

split states which have an equal energy separation at all k.



Ch 5: Density of states modelling 82

Figure 5.6: The 1D parabolic dispersion relation for electrons in the conduction band
including the effects of the Rashba interaction. The inset shows the linear energy
separation of the two spin states for the parabolic approximation. A Rashba parameter
of α = 2 eVÅwas used for the calculation.

It is more common to restate the Rashba and Zeeman interactions in the form of a

precession vector from an effective magnetic field

Ω(k||) =
1

~


αky

−αkx
1
2g
∗µBB

 . (5.14)

This vector defines a k-dependent rate of precession which is determined by the material

parameters governing the spin orbit interaction within the material. The implications of

this for a system dominated by diffusive transport is that any spin polarisation will relax

due to the randomisation of wave vectors during momentum scattering events. Known

as D’yakonov-Perel spin relaxation [103], the rate at which a spin polarised current

decoheres depends upon the precession rates of individual particles about the effective

field.

To include the effects of structural inversion asymmetry in the model the equation for

the Landau level energies needs to include contributions from both the Zeeman term
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and the k-dependent Rashba term. The equation for the Landau level energy is then

E = ~ω
(
N +

1

2

)
± ~|Ω| (5.15)

where |Ω| = 1
~

√
α2k2 + 1

4g
∗2µ2BB

2. Using the parabolic approximation we can substitute

the expression for k2 = 2m∗E/~2 with E being the energy of the Landau level, giving

k2 = 2eB/~ (N + 1/2). Substitution of these back into equation 5.15 leaves

E = ~ω ±

√
2α2eB

~

(
N +

1

2

)
+

1

4
g∗2µ2BB

2, (5.16)

which is functionally equivalent to the form used in [93]. The implications of including

the Rashba term in the Landau level energy spectrum can be seen in figure 5.7. Low

energy Landau levels with small k display the characteristic Rashba dispersion by being

degenerate at E = 0. Lou et al. [86] considered the effects of both a constant and

an energy dependent splitting, the constant splitting was found to display all of the

pertinent features created by the energy dependent splitting but the oscillations are

shifted in B. They found excellent agreement between the measured SdH oscillations for

an InAs/GaSb quantum well and the oscillations predicted by a Landau level spectrum

including an energy dependent spin slitting.

Spin splitting necessarily introduces a net spin population due to the unequal density of

states below the Fermi energy, the relative proportion of carriers in each spin states being

proportional to the amount of spin splitting present in the system. The carrier density

of a system has already been shown to dictate the frequency of oscillation in the DOS,

with the individual spin split Landau levels giving rise to oscillations with frequencies

determined by the relative populations of the two spin states. In the limit that the spin

splitting is larger than the Fermi energy (for example a very low density sample) a single

set of oscillations would be observed and a completely polarised spin population would

exist since only one set of spin states are occupied. The Fermi energy in these structures

is considerably larger than the magnitude of the spin splitting hence the frequency of

oscillation for the two spin states will be comparable, oscillations created by multiple

similar frequencies display beating patterns with the beat frequency being dependent on



Ch 5: Density of states modelling 84

Figure 5.7: The spin splitting due to the Rashba interaction of the first two Landau
levels as a function of magnetic field. At very low fields the energies are highly non-
linear and degenerate at B = 0 T. The vertical dashed line shows the point of a Landau
level crossing, a distinct feature of zero-field spin splitting.

the difference between the individual frequencies. The frequencies of these can still be

extracted by Fourier transform if sufficient beat oscillations are observed and will yield

two narrowly separated peaks. Engels et al. [104] derived a simple density of states

correction which included the effects of spin splitting and formulated an expression to

determine α from the relative carrier densities of the two spin states and is given by the

equation

α =
∆n2D~2

m∗

√
π

2(n2D −∆n2D)
, (5.17)

∆n2D being the relative difference in carrier densities of the two spin states determined

by the separation of the two frequency components. This expression was derived ne-

glecting the effects of any Dresselhaus contribution to the spin splitting, though is a

good method for extracting the magnitude of the total spin splitting of a system from

the Fourier transform.

The beating effects observed from spin orbit coupling have been investigated extensively

in many material systems [21, 36, 86, 104–118] , generally with narrower wells and

significantly greater carrier densities than those investigated here in order to maximise

the spin splitting in the system. Surprisingly, compared to materials such as InAs and
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InGaAs [21, 86, 104, 105, 107–116, 118] InSb has received relatively little attention

[23, 36, 101] due to growth and processing challenges in creating high mobility samples

with small broadening comparable to those found in other materials.

The effects due to a variation in α are shown in figure 5.8. As expected, beating patterns

present themselves clearly in the oscillation in the density of states. The number of beat

nodes observed in the data is found to be proportional to the strength of the spin splitting

which is in good agreement with results expected from theory [86] and observations

[21, 36]. Increasing the strength of the spin orbit coefficient has a curious effect on

the phase of certain peaks in the density of states oscillation, introducing a change of

phase of the oscillation.This change of phase occurs due to the degeneracy of different

spin states between two different Landau levels, where an absence of states would be

anticipated when not considering spin orbit interaction. An example of this can be

observed at B ≈ 14 mT, indicated in figure 5.7 by the dashed vertical line. Subsequently

the amplitude of oscillations and peak locations can be modulated by the strength of the

g-factor of the material, though this does not affect the position of the nodes as these

are purely a consequence of the relative spin populations. The Fourier transform of the

oscillations yield the expected twin peak response with a peak separation proportional

to the strength of the spin splitting.

The small effective mass of InSb in conjunction with the large broadening means that

even moderate carrier density samples often yield only one or two beat nodes. This means

that more sophisticated methods of estimating the spin splitting are not practicable. In

samples where multiple nodes are observed, Das et al. [119] proposed that an estimate of

the spin splitting can be made through analysis of the node minima. The node frequency

is directly related to the spin splitting and scrutiny of the node position in 1/B gives a

direct estimate for the spin splitting.

The simulations modelled here consider purely the oscillations arising from the occupa-

tion of the spin states of a single subband, though beating patterns may also arise due

to the effects of magneto inter-subband (MIS) scattering [120–123], where carriers may

scatter elastically between subbands. The primary experimental method for determining

whether oscillations are due to MIS scattering is to analyse the temperature dependence
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Figure 5.8: Investigation of the effects of variation of the Rashba coupling strength
α as a function of magnetic field. The frequency of the beat oscillations is determined
by the magnitude of the spin-orbit coupling parameter. An large Rashba parameter
is associated with significant separation between the peak frequencies in the Fourier
transform.

of the oscillations, which are relatively insensitive to temperature when compared with

the heavily thermally damped oscillations in the density of states as discussed in the

previous chapter.

The concept of a single particle broadening time, introduced in the previous chapter,

arising from a single period oscillation in the density of states subsequently stumbles with

the introduction of spin splitting to the density of states. The observed Shubnikov-de

Haas oscillations behave with an amplitude proportional to

∆R ∝ exp

(
−π
ωτq

)
. (5.18)

This oscillation is no longer created by a single frequency but has a complex form

bringing into question the interpretation of both spin states being characterised by

the same amount of broadening when they have different carrier densities and thus

different oscillation frequencies. The concept of spin dependent broadening mechanisms

has been discussed by various authors [36, 86], the primary experimental evidence for
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spin dependent broadening is by investigation of the amplitude of beat nodes in the

beating patterns observed in the oscillation of the density of states. If the two spin

states have an equal amount of broadening the point where their oscillations are π

radians out of phase would have zero amplitude. If these amplitudes were unequal then

a beat node would have a finite amplitude. Experimental evidence for this phenomenon

has been observed in InSb, InAs and InGaAs systems [36, 86, 113] all of which have

significant spin orbit coupling interactions.

Figure 5.9 shows the effects of unequal Landau level broadening on the observed density

of state oscillation at the Fermi energy. Any inequality in the magnitude of the broaden-

ing materialises as a considerable asymmetry in the amplitude of the Fourier transform

of the density of states oscillation. Larger broadening results in a suppression of the

FT amplitude for that spin state. Peaks in the density of states resulting from a spin

state with a larger broadening have diminished amplitude, thus the presence of unequal

scattering may also become apparent in resistivity data as a significant suppression of

peak amplitudes in addition to the beat amplitude modulation caused by the spin orbit

interaction.

5.4 Comparison between model and measured data

Having discussed some of the mechanisms affecting the Landau level energy spectrum in

InSb and how these manifest as periodic oscillations in the density of states at the Fermi

energy, it is pertinent to compare the model to observed Shubnikov-de Haas oscillations.

The following discussion attempts to extract realistic values for some of the heterostruc-

ture parameters in order to confirm whether, by simply considering the density of states

at the Fermi energy, a realistic agreement between observed and measured oscillation

can be achieved.

A typical example of Shubnikov-de Haas oscillations for these structures is shown in

figure 5.10, the raw data shows no clear beating effects consistent with reports for similar

structures reported in the literature [36, 55]. The second differential of the resistivity

data with respect to magnetic field shows a clear beat oscillation consistent with the
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Figure 5.9: A comparison between the density of states at the Fermi energy created
by Landau levels with both equivalent and unequal broadening. While peak positions
remain unchanged the peaks corresponding to the spin state with larger broadening have
a smaller amplitude. The presence of unequal broadening also causes the oscillation
amplitude at a beat node to increase significantly. A carrier density of n2D = 6.0 ×
1015 m−2 was used in the simulation to increase the number of oscillations between
nodes to emphasise the non-zero amplitude.

formalism described above. The second differential was interpreted as the gradient of a

linear fit to m neighbouring points at each field. The quality of the second differential is

highly susceptible to the size of m and the resolution of the measured data. It is worth

noting that most samples (including all gated structures) measured did not display an

observable beating pattern, this is attributed to large Landau level broadening.

Estimation of the spin splitting in a number of samples with different carrier densities

is shown in figure 5.11. All samples yield values for the spin splitting around 0.14 eVÅ

displaying a clearly linear trend with increasing carrier density, this is consistent with

reports from similar samples in the literature [36]. The increasing strength of the spin

splitting with increasing carrier density can be attributed to the increased asymmetry of

the quantum well in samples with greater doping. The larger transfer of charge causes

an increase in the magnitude of the built-in electric field and a corresponding increase

in the Rashba spin splitting. Interestingly, for samples which have a dopant plane below

the 2DEG the observed variation of spin splitting with carrier density is the reverse of
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Figure 5.10: The measured Shubnikov-de Haas oscillations for ungated sample
SF0968. Though no beating effects are obvious from the raw data, inspection of the
second differential shows a clear beat node. The Fourier transform of the second dif-
ferential is shown and the spin split nodes are highlighted.

that observed here [104, 124]. The error bars shown in figure 5.11 were determined by

the variation in Fourier transform peak position when performed over different magnetic

field ranges.

Using values for the carrier density and spin splitting extracted from the Fourier trans-

form of the data, a more direct comparison between the oscillations observed in the

density of states at the Fermi energy and the Shubnikov-de Haas oscillations may be

made. The second differential of the resistivity is compared to the predicted density

of states oscillations from parabolic and non-parabolic simulations in figure 5.12, the

second differential is used for comparison due to the enhanced oscillations at low field.

Remarkable agreement between the peak positions of the data and those predicted using

the non-parabolic energy spectrum are achieved using the predicted parameters. The

number of oscillations between beat nodes and the node locations are also in good

agreement at low field. Perhaps unsurprisingly the parabolic simulation fails to give any

kind of agreement between beating effects and node locations, for the same spin splitting
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Figure 5.11: The extracted spin splitting from Fourier transform data for samples
SF0963, SF0968, SF1056 and SF1055. The samples SF0963, SF0968, SF1056 inten-
tionally have significantly lower doping than sample SF1055. The dashed line shows
the expected strength of spin splitting predicted by equation 5.10 using the parame-
ter for α0 quoted in [93]. The strength of the electric field in the heterostructure was
determined by Schrödinger-Poisson modelling.

twice the number of oscillations are observed between nodes when compared to the data.

The non-parabolic oscillation predicts another node position above 0.5 T, this node does

not materialise in the data and may be evidence for field dependent broadening of the

Landau levels [57], where the broadening is dependent upon the length scale of each

Landau level given by [58]

`N =

√
~(2N + 1)

eB
. (5.19)

Evidence for this phenomenon being present in these structures is presented in chapter

6.
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Figure 5.12: A comparison between the second differential of the resistivity data
for SF0968 (black) and the predicted oscillation in the density of states using both
the parabolic (blue) and non-parabolic (red) simulations. The value for α used in the
simulation was 0.124 eVÅ with a carrier density of 2.39 × 1015 m−2. The density of
states oscillations have been offset to improve the clarity of the comparison.

5.5 Summary

Numerical simulations of the variation in the density of states at the Fermi energy have

been performed to demonstrate the effects that different parameters have on observed

oscillations. A comparison between Gaussian and Lorentzian broadening models have

been made. For a given level broadening, a Gaussian broadening profile was shown

to obscure oscillations due to spin splitting when compared with Lorentzian profiles

with an equivalent broadening. The carrier density of a system was found to determine

the frequency of oscillation and in the absence of spin splitting the amplitude of these

oscillations were shown to be purely dependent on the degeneracy of states at each

field. The inclusion of an energy dependent spin splitting to the Landau level energy

spectrum was shown to introduce a periodic beating into the simulated density of states,

which are created by oscillations of similar frequency interfering. A description of how

the magnitude of the spin splitting could be discerned through the use of a Fourier

transform was given.



Ch 5: Density of states modelling 92

The strength of the spin splitting parameter was deduced using magnetotransport mea-

surements on a range of InSb quantum well samples with different carrier densities. The

data shows the strength of the spin splitting monotonically increases with carrier den-

sity. Estimates of the spin splitting were found to be in the range 0.12 − 0.16 eVÅ for

samples with carrier densities between 2.4−3.4×1015 m−2. Using values extracted from

the raw data a comparison between the density of states oscillation using a parabolic

and non-parabolic Landau level dispersion relationship was made. Good agreement

was found between the observed oscillations in the data and those predicted using the

non-parabolic energy spectrum.

The good agreement between the observed oscillation in ρxx and those predicted using

the non-parabolic approximation suggests the approximation that Shubnikov-de Haas

oscillations may be modelled by purely considering the variation in the density of states

at the Fermi energy is a valid one. When the effects of quantum Hall discretisation

become observable, the classical Hall model for the transverse conductivity breaks down

and modelling the high field magnetoresistance becomes more complex. Valid parame-

ters can still be extracted in the high field region, purely when considering the oscillation

in the density of states.



Chapter 6

Three terminal differential

conductance measurements

6.1 Introduction

The work presented in this chapter describes the measurement of the two-dimensional

density of states extracted from the I-V characteristics of a device measured using a

three-terminal setup. Performing this measurement over multiple magnetic fields allows

the field and energy evolution of the average density of states to be probed without the

need for external tools typically used for density of states measurements such a scanning

tunnelling microscope (STM). The measurement of the density of states allows for device

properties such as the Fermi energy, Landau level broadening, electron g-factor, and

effective mass to be directly inferred.

The ability to make an ohmic contact to a device is important for efficient device design

and operation. Non-linearities in the current-voltage (I-V) characteristic caused by the

formation of a Schottky contact at the interface between a metal and semiconductor are

used to investigate the potential profile of the band structure at an interface.

93



Ch 6: Three terminal differential conductance measurements 94

6.2 A metal-semiconductor interface on AlInSb

6.2.1 Schottky Barriers

The formation of Schottky barriers at a metal-semiconductor interface is a very well

established phenomenon in all semiconductor materials [123, 125]. Much research has

gone into understanding the processes and properties which govern the formation of

such barriers. Schottky contacts behave as an electrical rectifier, allowing large amounts

of current to pass when forward biased and only allowing a small current to flow when

reverse biased, similar to the reverse bias characteristics of a p-n junction.

The formation of Schottky contacts on InSb heterostructures has been studied exten-

sively [126–128] with Schottky behaviour having been observed at room temperature.

Experience has shown that at low temperatures the formation of Schottky barriers in

shallow contacted InSb heterostructures is quite common even when using techniques

intended to create ohmic contacts. These small barrier heights are only significant at low

temperature when the thermal distribution of carriers is small. Studies of the formation

of small barrier Schottky contacts on InSb at low temperatures have not been widely

reported, hence the low temperature properties of such barriers in this material are not

greatly understood. This is a significant drawback when attempting to create devices

with repeatable bias characteristics, such as split-gate structures intended to observe

quantised conductance.

At low temperature, transport across a Schottky barrier is understood to occur by three

main mechanisms, shown in figure 6.1. Carriers which have been thermally excited above

the barrier can freely contribute to conduction, a process known as thermionic emission

(TE). In structures studied here, the relatively narrow band gap of the surface AlInSb

alloy results in a small Schottky barrier which only requires a small amount of energy for

carriers to overcome. However, the low temperatures where devices were investigated in

this thesis provide a negligible amount of thermal energy compared to a typical mid-gap

pinned Schottky barrier, and as such thermionic emission will not be discussed in any

more detail.
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A particle wavefunction has a finite probability of penetration through a potential barrier

(tunnelling) [129]; therefore, electrons at the Fermi energy have a finite probability of

tunnelling through the Schottky barrier. At low temperatures, the quantum mechanical

tunnelling of electrons close to the Fermi energy is the dominant source of leakage current

in a Schottky device. This is because the thermal distribution of carriers around the

Fermi energy is small and and an insignificant number of electrons have sufficient thermal

energy to overcome the barrier. Thus, the majority of carriers which contribute to low

temperature conduction through a Schottky barrier must tunnel through the barrier at

the Fermi energy.

Schottky barriers can be approximated to a triangular potential being narrower at higher

energies. Thermally excited carriers impinge on a narrower barrier and hence undergo an

increased rate of tunnelling; therefore, thermally excited carriers with an energy less than

the barrier height have a greater tunnelling probability due to their higher energy, and

the narrower barrier at that energy. The probability of carriers tunnelling through the

barrier is described by the transmission coefficient T (E), an energy dependent quantity

between 0 and 1.

In principle, ideal Schottky barriers have a potential height, ΦB, that is proportional

to the difference in the electron affinity of the two materials at the interface. This

dictates the amount of charge transfer and band bending for the Fermi energies in the

two materials to approach a state of equilibrium. This concept relies strongly upon the

band structure of the materials being brought into contact being flat band, the same

as that of material deep in the bulk. At the surface of a material, the symmetry of

the crystal is interrupted and the periodicity of the Bloch function no longer holds. As

such the idea that the band structure at the surface is similar to that in the bulk is not

necessarily valid, and surface states can dominate the physics of surface interfaces.

6.2.2 Surface Pinning

The presence of defects, dangling bonds and native oxides at the surface of a semicon-

ductor is known to create a distribution of available states which are not conformal with

the band structure of the bulk material described by the solution to the Schrödinger
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Figure 6.1: A schematic of the band structure of a heavily doped semiconductor with
a Schottky barrier at the surface. The different transport mechanisms, (a) Thermionic
emission of carriers over the top of the barrier, (b) Thermionic field emission of carriers
above the Fermi energy tunnelling through the barrier, and (c) Field emission, carriers
at the Fermi energy tunnelling through the barrier.

equation [125]. A finite number of states exist at energies within the band gap energy of

the bulk material, creating a finite density of states between the conduction and valence

band edges. These states are highly confined to the surface since the wave function of

these states essentially decays exponentially into the band gap.

Available states which exist in the band gap require a sufficient transfer of charge from

the conduction band to maintain charge neutrality. This transfer of charge raises the

energy of the surface states until the Fermi energy at the surface is coincident with the

Fermi energy of the bulk material. The resulting band profile has a barrier at the surface

which is pinned to the surface states within the band gap and is established without

the presence of a surface metal. The actual distribution of states in the band gap being

purely at the mid-gap is unlikely; indeed, investigations have reported surface barriers

which are pinned at the mid-gap, 1/3 - gap and at values in between [130].

Importantly for these material systems, this means that the height of the surface barrier

is minimally affected by the work function of the metal deposited on the surface and is

dominated by the distribution of surface states. Figure 6.2 shows a schematic example

of the formation of a surface barrier due to nominally mid-gap pinning of the Fermi

energy at the surface.
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Figure 6.2: A schematic showing the density of states at the surface of a heavily
doped semiconductor and the associated band structure created due to the pinning of
the Fermi energy to the mid-gap states at the surface.

6.2.3 Tunnelling current through a surface barrier

The tunnelling current density from a metal to a semiconductor through a Schottky

barrier at low temperatures at a metal-semiconductor interface can be described by the

equation,

Jms = e

∫ φB

0
N(E)ν(E)T (E)Fm(E)(1− Fsc(E))dE (6.1)

where N(E) is the 3D density of states in the metal, T (E) the transmission coefficient,

Fm(E) and Fsc(E) are the Fermi-Dirac distribution of carriers in the metal and semicon-

ductor respectively and ν(E) is the velocity of carriers toward the interface. For a single

barrier, the transmission coefficient increases for carriers with increasing energy. The

current through a barrier is therefore dependent upon the number of available states in

the semiconductor and the number of carriers available at that energy in the metal, of

which half should have a velocity component directed toward the interface. At higher

temperatures, the average kinetic energy of carriers increases, this increased average

carrier velocity increasing the likelihood of a carrier tunnelling through the barrier.

The quantisation of energy introduced by reduced dimensionality in heterostructures

has a significant impact on the tunnelling coefficient since fewer states exist in the low-

dimensional system than in the 3D system. When considering tunnelling from a 3D to
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a 2D system the constraints of conservation of energy and momentum requires a carrier

which tunnels from one system to the other to conserve momentum between states. This

can be envisaged as the coincidence between the Fermi sphere of the three-dimensional

system and the Fermi circle of the 2D system, shown in figure 6.3. The greatest number

of carriers which satisfy tunnelling conditions exist close to the zone center, thus the

largest tunnelling rate is expected when the quantised state is coincident with the band

edge of the 3D material.

In a metallic 3D system, the overlap of the conduction and valence band provides a

uninterrupted density of states, unlike the 3D to 2D scenario where only a finite slice of

the 3D electrons satisfy conditions to tunnel into the 2D system. In the reverse scenario

there are sufficient states in the metal that satisfy the conservation conditions for all

carriers to tunnel from the 2D system into the 3D system. At very low temperature, to

a good approximation, all states below the Fermi energy are filled and the only states

available for the transfer of carriers exist above the Fermi energy. Thus, for an electron to

tunnel from the semiconductor into the metal carriers must have an energy greater than

the Fermi energy. The application of an electric field alters the potential energy profile

of the junction. The energy of carriers in the quantised states in the heterostructure can

be increased by the application of an external voltage. A small bias will provide carriers

with sufficient potential energy to tunnel into available states above the Fermi energy

in the metal. If sufficient bias is applied to make the subband energy incident with

the Fermi energy of the metal, all electrons in that subband have adequate potential

energy to tunnel into the metal. The tunnel current of such a junction would therefore

increase approximately linearly with bias until the potential energy of all carriers in the

quantised states of the heterostructure is greater than the Fermi energy of the metal.

At this voltage, all carriers are contributing to conduction and further increases in bias

will not yield a significant increase in current, causing the I(V) characteristic to plateau

once all states in the conduction band of the heterostructure are above the Fermi energy

of the metal.
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Figure 6.3: A schematic of the intersection between the 2D Fermi circle and 3D
Fermi sphere. A carrier can only tunnel from a 3D to a 2D system by satisfying the
conservation of momentum represented by the ring at the edge of intersection between
the Fermi surfaces between the two systems.

In the presence of a magnetic field, the individual subbands of the heterostructure are ad-

ditionally quantised into Landau levels and the distribution of states in the heterostruc-

ture is no longer linear as they are when B = 0 T. Therefore, under the presence of a

quantising perpendicular magnetic field the I(V) characteristic of the junction should

develop discrete steps until the energy of the fundamental Landau level is greater than

the Fermi energy of the metal.

At low temperatures the I-V characteristics of a metal semiconductor interface can pro-

vide valuable information about the energetic distribution of carriers in the heterostruc-

ture. The small thermal distribution means carriers are well confined and the dominant

transport mechanism is via tunnelling, the main contribution to changes in the current

being through the number of carriers tunnelling through the barrier at the Fermi energy.

6.3 Differential Conductance Measurements

The non-linearity of the I(V) characteristics of a structure result in the break down of

Ohm’s law, the resistance of the material is no longer characterised by a constant gra-

dient in the I(V) characteristic. More precise local information is required to define the

resistance of a material as a function of the bias. The local gradient of the I(V) char-

acteristic is known as the differential conductance, (G = dI/dV ). Such measurements
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Figure 6.4: The excitation voltage applied to the device to measure the differential
conductance as a function of DC bias. The differential conductance is extracted by
software lock-in techniques of the AC signal.

are used extensively throughout the literature to map the energy spectrum of electrons

in nano-devices [23, 131], in the study of material surfaces with a scanning tunnelling

microscope [132–139], or to study the density of states of a heterostructure [140]. A

differential conductance spectrum is a useful tool as it gives a maximal response where

a small change in voltage yields a large change in current, highlighting energetically

significant regions in the structure’s density of states.

Though it is possible to extract the differential conductance by analysis of the gradient

of the DC I(V) curve, this is highly susceptible to noise in the DC data. Application of a

small AC excitation bias superposed on a DC offset (as shown in figure 6.4) allows both

the I(V) characteristic and the differential conductance to be measured simultaneously.

The time averaged current through the device at a certain bias provides the DC current

of the I(V) characteristic. The current variation created by the AC excitation can be

measured by lock-in techniques and does not rely on the difference between discrete

points in the I(V) curve, allowing for improved signal to noise ratio from a single DC

sweep. Observation of features using differential conductance is highly dependent on the

size of the DC bias steps and the amplitude of the AC excitation, too large an excitation

can smear out evidence of features in the differential conductance.
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Various methods of using differential conductance measurements in two-dimensional het-

erostructures under the influence of magnetic fields have been investigated throughout

the literature [140–147]. Main et al. [140] showed that the ground state of a quantum

dot implanted into the barrier of an InAs quantum well can be used to probe the den-

sity of states as a function of field, and used the differential conductance to directly

study the effective g-factor under the effects of exchange enhancement. A quantum dot

is an ideal probe for this form of electron spectroscopy due to the precise energy of

the confined state, allowing for a small energy range (and few carriers) to be probed.

However, this has the downside that very small tunnel currents are measured since few

electrons are energetically coincident with the confined state and techniques for mea-

suring low currents must be employed. Differential conductance measurements are also

used in Couloumb blockade thermometers (CBTs) to directly infer the temperature of

the electron population [148].

The large spin-orbit interaction and large effective g-factor of narrow gap materials such

as InSb or InAs make them attractive candidates for the study Landau level evolu-

tion from STM spectroscopy [132–134, 136, 139] and in the investigation of Majorana

fermions (particularly in nanowires [131, 149–153]). For example, a distinct signature of

the formation of the Majorana zero mode is the presence of a finite density of states in

the superconducting gap [131].

6.3.1 Three terminal measurement

As described in chapter 3, the process for creating Ohmic contacts to the InSb/AlInSb

heterostructures studied in this thesis was to thermally evaporate a Zn keying layer of

∼ 10 nm followed by a 300 nm thick Au layer while the sample is heated to 100 ◦C.

During the measurement of two terminal devices intended for quantised conductance

measurements it was found that the contact resistance of contacts deposited using this

process was inconsistent, and in general significantly higher than the material resistance.

This made observation of quantised states impracticable due to the large series resistance

of both contacts. Shubnikov-de Haas measurements using devices processed into Hall

bar geometries were made using 4-terminal measurement techniques where the contact
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Figure 6.5: (a) A schematic of a typical three terminal I(V) measurement and (b)
the three terminal circuit used during these measurements. Typical measurements
exclude measuring the voltage drop across the 2DEG such that the only contribution
to the voltage drop is from the contact resistance. The circuit configuration in these
experiments necessarily measures the voltage drop across the 2DEG and the contact.
As such the common contact for the voltage measurement and the current drain was
chosen to be the most resistive contact on the device to maximise the voltage drop
across the contact.

resistance is not an issue. The zero-field resistivity of a typical sample (SF1055) between

Hall bar voltage probes was ∼ 100 Ω/�. In contrast, the contact resistance for devices

made using this material ranged between 1.4 kΩ to > 1 MΩ.

Unlike a four contact measurement configuration, where the lead resistance of voltage

probes may be neglected since they are assumed to carry minimal current, in a three

terminal measurement configuration the contact resistance of the contact common to

both the current and voltage probes is measured. In typical three terminal geometries

the remote voltage probe does not measure any potential drop due to material series

resistance, however, if the remote probe is located along the current path it will measure

a series resistance contribution from the material. Hall bar geometries are typically

unsuited for three terminal measurements as a series resistance contribution is always

included in the measurement. If the common probe is selected such that the resistance

of the common contact is significantly greater than the material resistance in these

heterostructures, we can assume that the potential difference measured between the

voltage probes is almost wholly dropped across the contact and not within the material

of the 2DEG. Under this assumption the voltage measured can be used as an estimate

of the potential difference between the Fermi energy of the metal and the quasi Fermi

Energy of the 2DEG. A three terminal measurement across a very high resistance contact
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in series with a low resistance 2DEG thus allows an almost 1:1 equivalence between the

measured potential and the potential difference between the quasi-Fermi energy of the

metal and the quasi-Fermi energy of the 2DEG underneath the contact.

A self consistent Schrödinger-Poisson calculation for a typical InSb heterostructure stud-

ied in this thesis is shown in figure 6.6. Located between the quantum well and the

surface is a δ-dopant plane. The role the δ-dopant plane plays in the transfer of charge

from the 2DEG to the contact is uncertain. At sufficient dopant densities in the δ-doping

plane the conduction band energy of the dopant plane can be lowered such that a pre-

dicted quantised state in the dopant layer exists below the Fermi energy. As there are

available states at the Fermi energy in the dopant plane, electrons from the 2DEG may

tunnel into the dopant plane before subsequently tunnelling into the contact, contribut-

ing to conduction in a two stage sequential tunnelling process. Alternatively, carriers

might coherently tunnel directly from the 2DEG into the available states in the contact

once sufficient bias has been applied without interacting with states in the dopant plane.

Figure 6.7 shows a 3D schematic of this second process, the conduction band diagram

indicates how the bias allows a proportion of carriers to tunnel from the 2DEG into the

metal contact.

In these InSb Hall bar devices, the large variation in contact quality for multiple devices

on a single chip indicates that the location of the contact has significant effect on the

resistance. It is speculated that the better Ohmic contacts to this material are gener-

ated by contacting surface defects which continue through to the 2DEG. These defects

interrupt the surface barrier and provide a conductive path for carriers to enter into

the 2DEG. The consistency of material resistivity between devices on the same chip

characterised using data from Hall effect measurements outlined in chapter 4 indicates

that the variation in contact resistance is not likely to be due to material inhomogeneity.

Therefore, somewhat counter intuitively, the lower the material quality the more likely it

is to create higher quality Ohmic contacts to the 2DEG due to a greater defect density.

A schematic representation of the band alignment at finite magnetic field where the

potential is dropped solely across the contact layer above the 2DEG is shown in figure

6.8. A peak in the differential conductance occurs when the applied potential difference



Ch 6: Three terminal differential conductance measurements 104

Figure 6.6: The Schrödinger-Poisson solution for the heterostructures studied in this
thesis. Considering the δ-dopant as a 2 nm thick plane located 25 nm from the edge
of the quantum well, a dopant density of 1.98× 1024m−3 is required for a state in the
dopant plane to exist below the Fermi energy. Corresponding to a quantum well carrier
density of n2D ' 4.2 × 1015m−2. A low density n-type background of 4.0 × 1020m−3

was used in the calculation.

Figure 6.7: A 3D schematic of a likely transport mechanism. (Left) The equilibrium
condition under zero bias. (Right) When bias is applied to the structure the quasi-
Fermi energy of the 2DEG increases, the number of electrons in the quantum well with
an energy greater than the Fermi energy of the metal is proportional to the applied
bias.
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Figure 6.8: A 2D schematic of the band structure of the system at a finite magnetic
field and the corresponding differential conductance. Left to right images show the
effects of increasing the linear bias across the device. When the Fermi energy of the
metal is coincident with a Landau level in the quantum well a peak in the differential
conductance is observed due to the large variation in current over a small bias region.

causes a Landau level to become coincident with the Fermi energy of the metal. The

large number of electrons which occupy the Landau level will then have sufficient energy

to tunnel from the 2DEG into the contact increasing the current through the device.

6.4 Measurements on a high mobility InSb 2DEG

Differential conductance measurements were performed for two samples (SF0963 and

SF1055) at cryogenic temperatures below 4 K. The low temperature I(V) characteristic

and corresponding differential conductance trace measured across a single contact at

multiple magnetic fields is shown in figure 6.9. The I(V) characteristic at all fields

displays a distinct plateau at high reverse bias corresponding to the subband edge being

raised above the Fermi energy of the metal and all electrons occupying the subband

becoming available for conduction. The differential conductance trace exhibits distinct

peaks. The separation of peaks observed within the bias range is found to be inversely

proportional to the magnitude of the applied field consistent with the formation of

Landau levels. The amplitude of each peak is evidently proportional to the magnetic field

strength. This is commensurate with the increasing degeneracy of states in each Landau

level at higher fields. At high field the fundamental Landau level clearly consists of two

peaks suggesting the emergence of spin resolvable Landau levels. The lack of complete
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separation between these peaks is due to the extent of the finite level broadening for

each Landau level.

There is an obvious suppression in the differential conductance peak amplitude when

the reverse bias is smaller than ∼ −40 mV, this is believed to occur due to the contact

resistance being non-dominating in this bias region. Hall bar geometries are ill-suited

for three terminal measurements as the remote voltage probe will always measure the

voltage drop across the contact in conjunction with a small amount of material which

carries current to the contact. The small amount of material which is measured be-

tween the remote voltage probe and the contact contributes as a series resistance which

“smears” features out in voltage, when the contact resistance dominates this smearing

is insignificant. The oscillation of the resistance of the 2DEG under the influence of a

perpendicular magnetic field results in the ratio between the resistance of the 2DEG

and the contact changing dependent upon the magnitude of the applied field. Under

these circumstances measurements are performed on contacts with the largest possible

contact resistance to minimise the effects of the oscillating 2DEG resistance.

The current plateau in the I-V characteristic at large negative bias reduces approximately

linearly with magnetic field, from −1.8µA at 0 T to −1.3µA at 8 T. The linearity sug-

gests the current limiting is not due to the variation in the resistance of the 2DEG with

increasing field which would cause it to oscillate with a 1/B periodicity, instead this is

likely attributed to a reduction in the carrier density under the effects of a large bias.

Observation of the amplitude of differential conductance for the N = 0 peak versus

field is shown by the upper panel of figure 6.10, the amplitude shows clear oscillation

with increasing field. Assuming the contact resistance remains largely unaffected by the

application of a magnetic field, these oscillations can be explained due to the varying

ratio of resistances in the potential divider model between the contact and the 2DEG

due to the oscillating material resistivity. This shows the extent to which the variation

in 2DEG resistance affects the amplitude of the differential conductance measured at

a single field. Assuming the magnitude of the differential conductance is proportional

to the number of electron states which exist at that energy, and the total number of
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Figure 6.9: The 4 K I-V characteristic and differential conductance data for sample
SF1055 at multiple fields. Under reverse bias the low field I-V shows an almost constant
gradient before a plateau at high bias. The data at higher fields shows more compli-
cated structure. Turning points in the I-V curve manifest as peaks in the differential
conductance.

occupied states remains the same, normalisation to the area underneath the differen-

tial conductance curve provides a relative estimation of how the degeneracy of states

increases with magnetic field. Though this assumption does not take into account the

oscillation in the Fermi energy of the 2DEG, it provides a decent first order estimation

of the degeneracy of the density of states within the fundamental Landau level.

The effects of this normalisation are shown in the lower panel of figure 6.10, yielding two

distinct linear regimes overlapping at B ≈ 2 T. Below 2 T the observation of individual

Landau levels is not possible against the background density of states. This background

density of states may, for example, be due to the presence of states in the dopant plane

of the top barrier of the quantum well [139]. The quantised states in the δ-dopant

plane would also discretise under the application of a magnetic field; however, due to

the larger effective mass of electrons in the AlInSb barrier these barrier Landau levels

would separate in energy much less rapidly. The presence of the δ-dopant would also

result in extremely broad Landau levels due to the large scattering potential encountered

by carriers from the ionised impurities; thus, if any carriers did occupy a state in the
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Figure 6.10: (Top) The amplitude of the differential conductance peak from the n = 0
Landau level as a function of magnetic field. (Bottom) Normalisation of the differential
conductance data to the area underneath the curve yields two distinct linear regions.

dopant plane the quasi-Fermi energy may be considered as approximately constant due

to the large level broadening. In the high field region, the straight line fit to the data

projects backward to a zero field intercept of almost 0 as would be expected if the peak

magnitude was proportional to the degeneracy of states, which is zero at B = 0 T.

Investigating the differential conductance over the same bias range but at finer field steps

is shown in figure 6.11(a). The magnetic field evolution of the differential conductance

yields an experimentally determined Landau fan. A Landau fan for the first four Lan-

dau levels is overlaid to show the close agreement between the data and the predicted

evolution with field. The high bias data in region 2 is found to be approximated well by

a Landau fan calculated using the band edge effective mass for InSb of m∗ = 0.014m0

The effects of the “smearing” at low bias becomes extremely obvious when compared to

the prediction, the peaks in region 1 of figure 6.11(a) show significant deviation from the

predicted magnetic field evolution. The absence of peaks below 2 T also becomes more

apparent, interestingly surface STM analysis of induced surface accumulation layers on

bulk n-InSb also fail to resolve peaks in this region [139]. The minimum field at which
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observation of Landau levels is possible using this technique is therefore not limited by

the energy resolution, and the minimum field is governed by the background density of

states of the dopant plane.

A linear scaling of the low bias data in region 1 can compensate for the effects of this

bias smearing. Multiplication of the low bias region by a single scaling factor of ≈ 1.5

is sufficient to make the peak energies coincident with the energies predicted by the

Landau fan as shown in figure 6.11(b). This can be understood by considering the ma-

terial as a potential divider, a series resistance contribution in addition to the contact

resistance such that the measured potential difference is not wholly dropped across the

contact. The single scaling factor indicates that the series resistance contribution is not

dependent on the magnitude of the bias, instead it changes abruptly beyond a critical

bias. The precise cause of the change can not be directly inferred from these measure-

ments and may only be speculated as being from the exclusion of an energy dependent

scattering mechanism. A possible candidate for such a mechanism is the presence of a

second subband in the quantum well. The occupation of the second subband increases

the scattering probability due to both intra and inter-subband scattering mechanisms

being present [39]. If sufficient bias is applied to deplete carriers from the quantum

well, such that the second subband becomes depopulated, the scattering probability will

decrease since inter-subband scattering becomes less probable resulting in a decrease

in the resistance of the quantum well. A greater proportion of the potential difference

measured would then be dropped across the contact and a nearer to 1:1 equivalence

between the measured voltage and the potential difference between the Fermi energies

of the metal and semiconductor would be observed.

The low temperature carrier density extracted for this heterostructure from low field Hall

analysis gives n2D = 3.3±0.2×1015 m−2. Self consistent Schrödinger-Poisson calculations

for a bare structure with a similar carrier density predicts the lowest subband of the

quantum well to be approximately 50 meV below the Fermi energy and a separation

between confined states of 48 meV. The Landau fan in figure 6.11(b) has a zero field

intercept of −98 meV suggesting that the quantised state in the well exists 98 meV below

the Fermi energy, almost twice the predicted value for the bare structure. Since this
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Figure 6.11: (a) A 2D plot of the differential conductance measured across a high
resistance contact as a function of bias measured across the contact and magnetic field.
In region 2 high intensity regions evolve in very good agreement with the predicted
evolution of a Landau fan calculated using the band edge effective mass of InSb, while
in region 1 the high intensity peaks show significant deviation from the prediction. (b)
Scaling the data in region 1 by a constant value of 0.7VDC brings the high intensity
regions back into good agreement with the energies predicted by the Landau fan. This
data predicts the Fermi energy of the quantum well underneath the contact to be
∼ 100 meV above the subband energy at zero field.
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measurement only probes the density of states below the contact this suggests that the

presence of the metal creates a significant distortion to the bandstructure, considerably

decreasing the subband energy below the Fermi energy.

If the bias smearing in region 1 of figure 6.11(a) is caused by the occupation of the second

subband the boundary between regions 1 and 2 should be approximately equal to the

subband separation above the bottom of the lowest subband. The boundary between

the two regions is found to be approximately 58 mV above the zero field intercept of

the Landau fan. This is not an unreasonable value for the subband separation as any

enhancement of the asymmetry in the quantum well will lead to an increase in their

energy separation. It is worth noting however that the differential conductance data

shows no evidence for a second Landau fan with a zero field intercept at the boundary

between regions 1 and 2, which suggests that no second subband exists in the quantum

well beneath the contact.

6.5 Magnetic field evolution of peak width and line shape

Scrutiny of the N = 0 peak at high field reveals it to have an asymmetric, double peaked

structure thought to be from individual density of state contributions from spin split

Landau levels. As discussed in the previous chapter there is debate in the literature

as to the form of the distribution of carriers within Landau levels, different authors

describe their data as having either a Gaussian or Lorentzian distribution. The shape

of the differential conductance curve can yield information about the distribution of

states within that Landau level. Through use of a residual minimisation algorithm it is

possible to fit a multiple peak lineshape to the differential conductance data in an effort

to determine the shape of the distribution of the density of states.

The results of such a minimisation when using Lorentzian broadened Landau levels is

shown in figure 6.12. The expression which describes the density of states of a 2D

material under the application of a magnetic field is given in chapter 5 but it shall be

reiterated here for discussion. The equation for the density of states for two Landau
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Figure 6.12: An example of the quality of fit achieved by fitting a two Lorentzian
model to the 4 K differential conductance data on sample SF1055 at 5 T. Good
agreement between the fit and the data is achieved here with Lorentzian widths
Γ+ = 4± 1 meV and Γ− = 10± 1 meV.

levels with different broadening parameters is
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where Γ± are the broadening parameters of the two spin states. The data is very well

approximated by a model consisting of two Lorentzian broadened peaks on top of a

constant background (necessary for non-zero amplitude of the differential conductance)

similar to models used by Gornik et. al., Smith et. al., Ashoori et. al. and Templeton

[73, 75, 77, 82]. As the area underneath each probability distribution must equal unity,

any increase in the width of the lineshape must be compensated by a decrease in the

peak amplitude. The amplitude of the Lorentzian curve describing each spin state scales

with a common degeneracy, as such the only free fitting parameters in the model are the

peak centres, peak width as well as the gradient and intercept of the linear background.

The results of estimating the broadening of the spin split Landau levels from fitting

of the differential conductance data are shown in figure 6.14. The model consistently

extracts two distinct broadening values for the two spin states. The high energy spin
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Figure 6.13: A comparison between the quality of fit extracted using Gaussian or
Lorentzian broadening profiles for data at 7.23 T. Though both profiles reasonably
approximate the trend of the differential conductance peak, the off-peak fit of the
Lorentzian broadening is clearly superior to that of the Gaussian profile.

state Γ+ exhibits a characteristic broadening of ∼ 4 meV in very good agreement with

the values estimated from the low field Shubnikov-de Haas data in chapter 2 for the

same material and displays no strong field dependence between 5 and 8 T. The low

energy state Γ− exhibits significantly larger broadening ∼ 10 meV at 5 T and increases

by almost 50% over the same field region. The high and low energy state broadening

parameters are compared to a fit of η
√
B, where η is just a scaling coefficient. These were

found to be η+ = 1.2 ± 0.2 meVT−
1
2 and η− = 4.5 ± 0.1 meVT−

1
2 , the state exhibiting

large broadening being described well by the fitted curve. These values are significantly

larger than those extracted by magnetocapacitance and magnetisation measurements

for 2D GaAs/AlGaAs systems with nominally similar carrier densities [81, 154, 155],

reflective of the considerable single particle broadening in these InSb heterostructures.

Error bars for each data point were calculated by running the fitting routine on each data

set multiple times with a random number of points removed from the set, the maximum

and minimum values for the extracted parameters at each field were then taken as the

limits of the error bars∗.

As discussed briefly in the previous chapter, predictions for the behaviour of Lan-

dau level broadening with respect to magnetic field show no consensus throughout the

∗This technique is similar to the standard Jackknife variance estimation procedure used extensively
throughout the astronomical community for the estimation of model confidence [156, 157]
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Figure 6.14: The broadening parameters for the high and low energy spin states Γ+

and Γ− extracted from a double Lorentzian fitting to 4 K data for sample SF1055. Two
distinct broadening parameters are extracted from the data. The black dashed lines
are η

√
B fits to the data. The broadening of the low energy spin state shows strong

agreement with the fit.

literature[158, 159]. Some authors present data which is best modelled using a Gaussian

broadened lineshape [72–74, 76, 77, 160], while a small number of authors report data

better modelled using a Lorentzian distribution [82, 158]. The magnetic field dependence

of the broadening has been reported to be either ∝
√
B [79, 81, 155, 160] or to be field

independent [73, 75, 77, 82]. The differential conductance peaks shown here show signif-

icant tails consistent with a Lorentzian broadened distribution. Successful fitting to the

peaks using a Gaussian profile fails to account for these, as shown in figure 6.13. The

large difference in the broadening of the two spins states indicates that carriers in each

state have significantly different quantum lifetimes and the presence of a considerable

spin dependent scattering mechanism within the heterostructure.

6.6 Evidence for g-factor enhancement

Using the separation between the centres of the fitted Lorentzian peaks, it is possible

to infer a magnitude for the effective g-factor of the material and the evolution of the
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state separation with magnetic field. Assuming the most significant contribution to the

spin splitting at high field comes from the Zeeman contribution, the energy separation

between the spin split levels should be well approximated by ∆E = g∗µBB. The extent

of the spin splitting extracted from the model is shown in figure 6.15. The magnitude

of the effective g-factor is similar to values extracted by comparing the field onset of

combined and spin split resistance oscillations from Shubnikov-de Haas measurements.

The extent of the separation between spin split levels is found to vary with the strength

of the applied field, exhibiting an initial decrease at fields beyond 5 T before showing a

consistent increase, corresponding to a variation in the effective g-factor of 23 < |g∗| <

36. When compared to values of g∗ extracted from tilted field measurements of similar

30 nm InSb quantum well heterostructures [87], good agreement is found with the values

reported here. The error estimates for these values were made using the same technique

for estimating the error in the peak broadening.

The phenomenon of g-factor enhancement is thought to be due to e−e interactions when

there is a spin polarised electron population, the larger the spin polarisation the greater

the enhancement in the g-factor. An important point to note is that at the minimum

field where data has been successfully extracted, structures with a carrier density of

n2D = 3.3 × 1015 m−2 are close to having the second Landau level completely depop-

ulated and consequently a minimal net spin population. The subsequent depopulation

of the electrons from the higher energy spin state then starts to occur with increasing

field, leading to an increase in the net spin population of the occupied Landau level,

this coincides with the increasing value for the effective g-factor extracted here. Conse-

quently the increase in the value for g∗ extracted here provides strong evidence for the

enhancement being due to the onset of net spin population.

6.7 Summary

The low temperature current-voltage characteristics of a high resistance contact on a

high quality InSb quantum well heterostructure processed into a Hall bar geometry

have been presented. These characteristics have been shown to be sensitive to the
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Figure 6.15: Values for the magnitude of the effective g-factor estimated from the
separation between two Lorentzian peaks fit to the 4 K differential conductance data
for sample SF1055. At high field a distinct increase in the separation is observed,
suggesting an increase in |g∗|.

application of a perpendicular magnetic field, changing distinctly at high magnetic field.

The differential conductance of these characteristics was presented and shows the onset

of a distinct number of peaks at moderate field, likely due to the formation of Landau

levels in the quantum well. The magnetic field evolution of these peaks confirms they

are caused by Landau level formation by comparison with the magnetic field evolution

of calculated Landau level energies and good agreement is achieved with a parabolic

model with a band edge effective mass of m∗ = 0.014m0.

Examining the magnetic field evolution of the N = 0 Landau level at fields above 5 T

has allowed an estimation of the broadening of the Landau levels and extraction of the

material effective g-factor. A model consisting of two Lorentzian distributions on a linear

background was fit to the data and estimations of the broadening was made using the

width of the two Lorentzian peaks. Two distinct broadening parameters were extracted

suggesting the presence of significant spin dependent broadening in these structures.

The value of these broadening parameters was found to be well described by a
√
B

dependence, with coefficients η+ = 1.2 ± 0.2 meVT−
1
2 and η− = 4.5 ± 0.1 meVT−

1
2 for

the high and low energy peaks respectively.
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Use of the same model allowed an estimation for the spin splitting of the lowest Landau

level as a function of magnetic field to be performed. The magnitude of the spin splitting

was shown to be dependent upon the strength of the magnetic field, having a minimum

value of g∗ = 24±2 at B = 5.6 T and rising steadily to a value of g∗ = 35±3 at B = 7.5 T.

These are in good agreement with values extracted using tilted field techniques in similar

InSb quantum well systems [87].





Chapter 7

Conclusions and further work

In this thesis a number of electronic transport phenomena have been studied at low

temperatures using high quality 30 nm InSb quantum well heterostructures, with the

aim of extracting material parameters pertinent to electron transport and studying spin

effects under magnetic field in this high g-factor material. The main areas of investigation

discussed in the previous chapters are:

i) The resistive behaviour of both gated and ungated Hall bars under the application of

moderate magnetic fields. These were investigated at temperatures ranging between

3 and 20 K. Using gated structures this behaviour was studied over a range of carrier

densities between 1.5− 3.5× 1015 m−2.

ii) Using a Landau fan model to investigate the effects of different material and struc-

tural parameters on the observed oscillations in the density of states at the Fermi

energy. This model was then used to extract material parameters from measured

Shubnikov-de Haas oscillations.

iii) The low temperature measurement of I-V characteristics for an InSb Hall bar in

a three terminal configuration across a highly resistive contact were analysed to

extract information about the energetic distribution of states beneath the contact.

The main works described in (i), (ii) and (iii) have been thoroughly described in chapters

4 to 6. This chapter aims to summarise the pertinent findings of the work assembled
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in this thesis, drawing attention to their potential implications and applications. A

brief proposal for future works is then described, with the aim of achieving a better

understanding of the underlying physical principles or exploiting the findings described

here.

7.1 Conclusions

The single particle quantum lifetime and the classical transport lifetime are well studied

phenomena. Comparison between the two is a useful tool used in order to determine the

scattering mechanisms present in a heterostructure at low temperatures where quantum

phenomena are observable. Chapter 4 presents both the low and high field magneto-

transport data for high quality InSb quantum wells processed into 6-contact Hall bars.

The transport properties of both gated and ungated Hall bars were investigated to study

the role of carrier density and temperature on the classical and quantum lifetimes, ex-

tending the work of Hayes et al. [34].

When comparisons between the transport properties of gated and ungated samples cre-

ated from the same material were made, it was found that the presence of a dielectric

layer and gate electrode had a significant impact on both lifetimes. The deposition of

a surface gate was found to reduce the classical lifetime of carriers in the quantum well

by approximately 50 % compared to lifetimes of structures with only the bare material,

signifying the introduction of a significant scattering mechanism. The classical lifetime

of carriers was found to be linearly proportional to the carrier density, consistent with

increasing Thomas-Fermi screening at higher carrier densities. The gradient of the lin-

ear proportionality was observed to be different with the application of different gate

dielectrics, suggesting the classical lifetime is highly dependent upon the properties of

the dielectric deposited on the sample surface.

In comparison the quantum lifetime was found to only be slightly perturbed by the pres-

ence of the gate electrode and dielectric, showing a reduction from the ungated values

by around 10 %. Similar to the classical lifetime the quantum lifetime was observed to

be proportional to the carrier density in the quantum well, though the properties of the
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dielectric layer were found not to have a significant effect on the quantum lifetime with

lifetimes for both materials being well described by the same linear fit. This similar-

ity suggests that the scattering mechanism limiting the quantum lifetime is structural,

potentially due to ionised impurities within the 2DEG, independent of the remote scat-

tering potential from the dopant plane. Consequently, the ratio between the classical

and quantum lifetimes shows a considerable reduction due to the lower classical lifetime,

this reduction can be accounted for by the inclusion of a second scattering potential

located at the sample surface. This suggests that the additional scattering mechanism is

due to immobile ionised impurities at the dielectric surface interface. In order to model

the reduction in transport ratio the surface defect density needed to be of the order

1017 m−2, similar to dielectric defect densities reported in the literature for dielectrics

on similar ternary alloys [69].

Investigations over a range of temperatures up to 20 K showed that the quantum lifetime

has no strong temperature dependence, demonstrating that the quantum lifetime is not

limited by thermally dependent scattering mechanisms such as e − e interaction, or

limited due to phonon scattering. The quantum lifetime was used to determine the single

particle broadening parameter Γ for these structures, varying between 2 and 4 meV and

was shown to be inversely proportional to the carrier density. Examination of the decay

in oscillation amplitude as a function of temperature was used to determine a value for

the effective mass of carriers in the structure and was found to be m∗ = 0.018±0.003m0,

consistent with predictions from a 4-band k.p model.

Using these parameters, numerical simulations of the density of states as a function

of magnetic field were performed and compared to Shubnikov-de Haas measurements

performed on ungated Hall bar structures. Understanding the role different material

parameters play on the oscillations observed in Shubnikov-de Haas oscillations is vital

when attempting to extract information from analysis of the form of those oscillations.

Small variations in particle broadening, carrier density, spin splitting or the incorporation

of inhomogeneous broadening can have notable effects on the observed oscillation and

the Fourier transform of such oscillations. The form of the Fourier transform holds

considerable information about the measured oscillations.
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The relatively large single particle broadening determined for these structures showed

considerable differences between the oscillations modelled using Gaussian or Lorentzian

distributions. Spin split oscillations due to Landau levels modelled by Lorentzian dis-

tributions were discernible at much lower fields than oscillations predicted by Gaussian

Landau levels. Shubnikov-de Haas data for these structures reveal spin split oscillations

at fields below 1 T. Gaussian broadened Landau levels required a significantly smaller

broadening parameter than those extracted here to describe the data. Lorentzian broad-

ened Landau levels with broadening parameters consistent with those extracted from

quantum lifetime measurements show spin-split oscillations to much lower fields due the

narrower peak width, suggesting that in these structures the Landau levels are best

described by Lorentzian broadening. Scrutiny of the field positions for peaks in resis-

tivity were found to be consistent with the modelled peak locations of a model with an

effective g-factor of 30. This value is consistent with those extracted by other authors

investigating similar structures.

A comparison has been made between the oscillations predicted by the Landau level

distribution from a parabolic density of states to those of a non-parabolic model. The

distribution of Landau levels predicted by the inclusion of a non-parabolic density of

states was shown to introduce an apparent phase shift in the oscillations at low fields

when compared to the Landau level distribution predicted by the parabolic approxi-

mation. The predicted oscillations using a non-parabolic distribution of Landau levels

showed best agreement with the measured data, with peak locations corresponding well

at low field. InSb is known to have a significant spin orbit interaction compared with

other III-V materials. When a field independent spin splitting due to a Rashba inter-

action was included in the model the Landau levels were shown to cross at low fields

introducing a beating pattern into the density of states oscillations. Similarities between

data and the beat frequency extracted from the model yielded a Rashba parameter of

0.12− 0.16 eVÅ for samples with carrier densities between 2.4− 3.4× 1015 m−2. These

values are in very good agreement with values reported by different authors [36].
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On gated samples the estimation of the strength of the Rashba interaction was not pos-

sible due to the absence of a beating pattern in the second differential of the Shubnikov-

de Haas oscillations. It was shown that the suppression of beating oscillations can be

attributed to large inhomogeneous broadening between the two spin states, which man-

ifests as an asymmetric peak in the Fourier transform of the oscillations. The Fourier

transform of resistivity data with obvious beating patterns yielded asymmetric peaks

suggesting the presence of spin dependent broadening in these heterostructures.

The ability to create low resistance Ohmic contacts to a material is required for efficient

injection of carriers into the active region of a structure and considerably minimises

the effects of series resistance contributions to two or three terminal measurements. In

this material system the processes used in order to make Ohmic contacts yield highly

variable results with contacts of wildly different resistances being produced on the same

device. Good Ohmic contact in these systems is thought to occur by contacting defects

on the surface which pass current to the 2DEG, thus large area contacts contacting

multiple defects are predicted to have the smallest contact resistances. In these high

quality InSb quantum wells even large area contacts can make very poor contact to the

2DEG and are non-ideal as current injectors due to the greater amount of Joule-heating

that occurs. However in a three-terminal measurement configuration this large contact

resistance can be exploited to extract information about the energetic distribution of

carriers underneath the contact.

Investigations of the low temperature I-V characteristics of a high resistance contact

have been used as a form of electron spectroscopy. The magnetic field evolution of

the energetic distribution of carriers was explored with a view to extracting material

parameters such as the single-particle broadening and effective g-factor of structures.

Scrutiny of the differential conductance data above 2 T revealed distinct peaks equally

separated in energy. This energy separation was found to be proportional to the magnetic

field strength consistent with the formation of Landau levels in a 2D system. The

magnetic field evolution of peaks beyond a bias of ∼ −60 mV was shown to be well

approximated by a Landau fan model using a band edge effective mass of m∗ = 0.014±

0.001m0. At smaller bias values the peaks no longer show agreement with an appropriate
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value for the effective mass and are smeared out in bias. It was suggested that this

smearing was due to the presence of a series resistance contribution to the measured

voltage drop. Beyond a critical bias this scattering mechanism is removed and the

measured voltage drop occurs solely across the contact. A suggested mechanism is from

inter-subband scattering of electrons in the 2DEG. At sufficient bias the second subband

becomes depopulated and the inter-subband scattering mechanism no longer occurs.

Through fitting of two Lorentzian peaks on a linear background to the differential con-

ductance peak associated with the fundamental Landau level it was possible to extract

values for the state broadening and effective g-factor of the material for that state. Mod-

elling reveals two distinct broadening parameters for the high and low energy spin states

consistent with the observation that there is spin dependent broadening present in these

heterostructures. The difference in the broadening of the two states is considerable and

is well described by a
√
B dependence, in contrast to the constant broadening assumed

in the density of states model in chapter 5. Estimates of the spin splitting from the

separation between the centres of the two fitted peaks reveals an effective g-factor which

varies from g∗ = 24 ± 2 at B = 5.6 T, to g∗ = 35 ± 3 at B = 7.5 T. This increase in

the effective g-factor is likely due to the depopulation of the high energy spin states and

the formation of a net spin population in the quantum well. The values extracted are

consistent with studies of g-factor enhancement under the application of tilted magnetic

fields [87].

7.2 Further work

The results obtained throughout the work described in this thesis would benefit from

further investigation in certain areas to qualify and confirm many of the hypothesised

causes behind these interesting observations.

i) The considerable degradation in the classical transport lifetime of these heterostruc-

tures once a gate dielectric has been deposited on the surface provides a profound

drawback for further material development, where investigations into the effects of
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electrostatically gating high quality material should to be studied. The minimi-

sation of surface traps, lowering the defect density at the dielectric-semiconductor

interface while maintaining a low leakage dielectric is the topic of a further PhD

thesis in itself, though improvements may be achieved by the growth of a thicker

capping barrier to the quantum well (albeit with a corresponding reduction in gate

modulation). If the mechanism limiting the classical lifetime is due to the remote

scattering potential of the defect states in the dielectric a deeper quantum well may

yield improved transport properties.

ii) All data presented in this thesis were for quantum well samples with a δ-dopant

plane 25 nm above the quantum well. Increasing the size of the spacer layer between

the dopant plane and the quantum well has already shown to improve the classical

transport properties of these InSb heterostructures [24], though no data is presented

for the effects on the quantum lifetime. Further studies could investigate the effects

of spacer thickness on the quantum lifetime.

iii) The data presented in chapter 6 reveals inhomogeneous state broadening parameters

which are magnetic field dependent, the modelling presented in chapter 5 only

considers the effects of a constant broadening. Further modelling investigating the

effects of enhanced field dependent broadening on the density of states oscillations

would be interesting.

iv) As remarked in chapter 6, Hall bar geometries are not ideal for 3-terminal measure-

ments due to the unavoidable series resistance contribution from the 2DEG to the

contact. These measurements should be repeated on devices designed specifically

for 3-terminal measurements with a remote voltage probe which lies over material

that carries no current. A linear TLM pattern for example would be suited to such

a measurement. The absence of the series resistance contribution will remove the

bias smearing effects observed in the measurements presented in this thesis and

allow for a further estimate of the effective mass of carriers in the quantum well.





Appendix A

The 2D density of states

The Schrödinger equation solutions to particle motion in an infinite 2D plane are take

the form of the Bloch function

ψ(r,k) = uk(r) exp(ik.r) (A.1)

where r =

x
y

, k =

kx
ky

, uk(r) is the crystal periodic component of the Bloch

function and exp(ik.r describes a plane wave. Imposing periodic boundary conditions

such that the wave function has the same value at the boundary between two unit cells,

discretises the components of k into

kx =
2πnx
L

, ky =
2πny
L

(A.2)

where nx and ny are integers and L is the lattice constant of the unit cell. The resultant

k-vectors thus form a 2D grid of allowed states in k-space. Thus, each state in k-space

is described by a square with sides 2π/L with a 2D “volume” given by

V =
4π2

L2
(A.3)

An infinitesimal increment in k will thus enclose a number of states in a ring with an

area dA = 2πkdk. The number of states in this ring, is simply the area of the ring
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Figure A.1: A schematic representation of the array of allowed states in k-space. A
given k-vector describes a circle enclosing a particular number of states.

divided by the area of each individual state, resulting with the k dependent expression

for the density of states

g(k) dk = 2
dA

V
=
L2 k

π
dk (A.4)

where a factor of two is included to account for the spin of particles.

The relationship between a particles energy and k-vector, in the parabolic approxima-

tion, is given by

k =

√
2m∗E

~2
(A.5)

differentiation with respect to energy gives an expression describing the change in k

resulting from a small change in energy.

k dk =
m∗

~2
dE (A.6)
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Thus it is possible to express the density of states in a unit volume per unit energy

g(E) dE =
m∗

π~2
dE (A.7)

The same sequence of operation may be performed using the non-parabolic energy dis-

persion relation 2.12

E(1 + λE) =
~2k2

2m∗
(A.8)

where λ is the non-parabolicity factor. Differentiation of this yields

(1 + 2λE) dE =
~2k
m∗

dk (A.9)

resulting in the modified non-parabolic density of states

g(E) dE =
m∗

π~2
(1 + 2λE) dE (A.10)
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W. Wegscheider. Limiting scattering processes in high-mobility InSb quantum

wells grown on GaSb buffer systems. Phys. Rev. Mater., 2(5):054601, may 2018.

[46] Kunio Tukioka. The Determination of the Deformation Potential Constant of the

Conduction Band in InSb by the Electron Mobility in the Intrinsic Range. Jpn.

J. Appl. Phys., 30(Part 1, No. 2):212–217, feb 1991.



Bibliography 136

[47] O J Pooley, A M Gilbertson, P D Buckle, R S Hall, M T Emeny, M Fearn, M P

Halsall, L F Cohen, and T Ashley. Quantum well mobility and the effect of gate

dielectrics in remote doped InSb/Al x In 1 x Sb heterostructures. Semicond. Sci.

Technol., 25(12):125005, dec 2010.

[48] C J McIndo, D G Hayes, A Papageorgiou, L A Hanks, G V Smith, C P Allford,

S Zhang, E M Clarke, and P D Buckle. Optical Microscopy as a probe of the rate

limiting transport lifetime in InSb/Al 1-x In x Sb quantum wells. J. Phys. Conf.

Ser., 964:012005, feb 2018.

[49] D Yoshioka. The quantum Hall effect. Springer New York,, 2013.

[50] Th. Englert, D.C. Tsui, A.C. Gossard, and Ch. Uihlein. g-Factor enhancement in

the 2D electron gas in GaAs/AlGaAs heterojunctions. Surf. Sci., 113(1-3):295–

300, jan 1982.

[51] J. J. Harris, J. M. Roberts, S. N. Holmes, and K. Woodbridge. Observation of

oscillatory linewidth behavior in the magnetoluminescence of a modulation-doped

InxGa1xAs quantum well. Phys. Rev. B, 53(8):4886–4890, feb 1996.

[52] Richard E Prange and Steven M Girvin. The Quantum Hall effect, Graduate texts

in contemporary physics. Springer New York,, 2 edition, 1987.

[53] H. van Houten, J. G. Williamson, M. E. I. Broekaart, C. T. Foxon, and J. J.

Harris. Magnetoresistance in a GaAs-AlxGa1xAs heterostructure with double

subband occupancy. Phys. Rev. B, 37(5):2756–2758, feb 1988.

[54] A. M. Gilbertson, M Fearn, J. H. Jefferson, B. N. Murdin, P. D. Buckle, and L. F.

Cohen. Zero-field spin splitting and spin lifetime in nInSb/In1xAlxSb asymmetric

quantum well heterostructures. Phys. Rev. B, 77(16):165335, apr 2008.

[55] G. A. Khodaparast, R. E. Doezema, S. J. Chung, K. J. Goldammer, and M. B.

Santos. Spectroscopy of Rashba spin splitting in InSb quantum wells. Phys. Rev.

B, 70(15):155322, oct 2004.



Bibliography 137

[56] K. v. Klitzing, G. Dorda, and M. Pepper. New Method for High-Accuracy De-

termination of the Fine-Structure Constant Based on Quantized Hall Resistance.

Phys. Rev. Lett., 45(6):494–497, aug 1980.

[57] Tsuneya Ando and Yasutada Uemura. Theory of Oscillatory g Factor in an MOS

Inversion Layer under Strong Magnetic Fields. J. Phys. Soc. Japan, 37(4):1044–

1052, oct 1974.

[58] R. E. Prange. Quantized Hall resistance and the measurement of the fine-structure

constant. Phys. Rev. B, 23(9):4802–4805, may 1981.

[59] R. B. Laughlin. Quantized Hall conductivity in two dimensions. Phys. Rev. B,

23(10):5632–5633, may 1981.

[60] M. J. Manfra, S. H. Simon, K. W. Baldwin, A. M. Sergent, K. W. West, R. J.

Molnar, and J. Caissie. Quantum and transport lifetimes in a tunable low-density

AlGaNGaN two-dimensional electron gas. Appl. Phys. Lett., 85(22):5278–5280,

nov 2004.

[61] PT T. Coleridge, R. Stoner, and R. Fletcher. Low-field transport coefficients in

GaAs/Ga 1 x Al x As heterostructures. Phys. Rev. B, 39(2):1120–1124, jan 1989.

[62] P. T. Coleridge, P Zawadzki, and A. S. Sachrajda. Peak values of resistivity in

high-mobility quantum-Hall-effect samples. Phys. Rev. B, 49(15):10798–10801, apr

1994.

[63] S. Q. Murphy, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West. Lifetime of

two-dimensional electrons measured by tunneling spectroscopy. Phys. Rev. B,

52(20):14825–14828, nov 1995.

[64] P. T. Coleridge. Small-angle scattering in two-dimensional electron gases. Phys.

Rev. B, 44(8):3793–3801, aug 1991.

[65] Gabriele F. Giuliani and John J. Quinn. Lifetime of a quasiparticle in a two-

dimensional electron gas. Phys. Rev. B, 26(8):4421–4428, oct 1982.



Bibliography 138

[66] J. Nuebler, V. Umansky, R. Morf, M. Heiblum, K. von Klitzing, and J. Smet.

Density dependence of the ν=5/2 energy gap: Experiment and theory. Phys. Rev.

B, 81(3):035316, jan 2010.

[67] Q. Qian, J. Nakamura, S. Fallahi, G. C. Gardner, J. D. Watson, S. Lüscher, J. A.

Folk, G. A. Csáthy, and M. J. Manfra. Quantum lifetime in ultrahigh quality

GaAs quantum wells: Relationship to ∆5/2 and impact of density fluctuations.

Phys. Rev. B, 96(3):035309, jul 2017.

[68] N. Goel, P. Majhi, C. O. Chui, W. Tsai, D. Choi, and J. S. Harris. InGaAs metal-

oxide-semiconductor capacitors with HfO2 gate dielectric grown by atomic-layer

deposition. Appl. Phys. Lett., 89(16):163517, oct 2006.

[69] R. Suzuki, N. Taoka, M. Yokoyama, S. Lee, S. H. Kim, T. Hoshii, T. Yasuda,

W. Jevasuwan, T. Maeda, O. Ichikawa, N. Fukuhara, M. Hata, M. Takenaka, and

S. Takagi. 1-nm-capacitance-equivalent-thickness HfO 2 /Al 2 O 3 /InGaAs metal-

oxide-semiconductor structure with low interface trap density and low gate leakage

current density. Appl. Phys. Lett., 100(13):132906, mar 2012.

[70] Tsuneya Ando, Alan B. Fowler, and Frank Stern. Electronic properties of two-

dimensional systems. Rev. Mod. Phys., 54(2):437–672, apr 1982.

[71] R.P. Gammag and C. Villagonzalo. The interplay of Landau level broadening and

temperature on two-dimensional electron systems. Solid State Commun., 146(11-

12):487–490, jun 2008.

[72] V. Mosser, D. Weiss, K.v. Klitzing, K. Ploog, and G. Weimann. Density of states

of GaAs-AlGaAs-heterostructures deduced from temperature dependent magne-

tocapacitance measurements. Solid State Commun., 58(1):5–7, apr 1986.

[73] E. Gornik, R. Lassnig, G. Strasser, H. L. Störmer, A. C. Gossard, and W. Wieg-

mann. Specific Heat of Two-Dimensional Electrons in GaAs-GaAlAs Multilayers.

Phys. Rev. Lett., 54(16):1820–1823, apr 1985.

[74] J. K. Wang, J. H. Campbell, D. C. Tsui, and A. Y. Cho. Heat capacity of the two-

dimensional electron gas in GaAs/AlxGa1xAs multiple-quantum-well structures.

Phys. Rev. B, 38(9):6174–6184, sep 1988.



Bibliography 139

[75] I. M. Templeton. A highsensitivity torsional magnetometer for twodimensional

electron systems. J. Appl. Phys., 64(7):3570–3573, oct 1988.

[76] T.T.J.M. Berendschot, H.A.J.M. Reinen, and H.J.A. Bluyssen. Density of states

of a two dimensional electron gas in a high magnetic field studied with photolu-

minescence. Solid State Commun., 63(10):873–876, sep 1987.

[77] T. P. Smith, B. B. Goldberg, P. J. Stiles, and M. Heiblum. Direct measurement of

the density of states of a two-dimensional electron gas. Phys. Rev. B, 32(4):2696–

2699, aug 1985.

[78] S. Takaoka, K. Oto, H. Kurimoto, K. Murase, K. Gamo, and S. Nishi. Magnetoca-

pacitance and the edge state of a two-dimensional electron system in the quantum

Hall regime. Phys. Rev. Lett., 72(19):3080–3083, may 1994.

[79] J. P. Eisenstein, H. L. Stormer, V. Narayanamurti, A. Y. Cho, A. C. Gossard, and

C. W. Tu. Density of States and de Haasvan Alphen Effect in Two-Dimensional

Electron Systems. Phys. Rev. Lett., 55(8):875–878, aug 1985.

[80] M.S. Skolnick, K.J. Nash, S.J. Bass, P.E. Simmonds, and M.J. Kane. Photolumi-

nescence study of the density-of-states between Landau levels in the quantum hall

effect system. Solid State Commun., 67(6):637–641, aug 1988.

[81] Hou-zhi Zheng, Aimin Song, Fu-hua Yang, and Yue-xia Li. Density of states of

the two-dimensional electron gas studied by magnetocapacitances of biased double-

barrier structures. Phys. Rev. B, 49(3):1802–1808, jan 1994.

[82] R.C. Ashoori and R.H. Silsbee. The Landau level density of states as a func-

tion of Fermi energy in the two dimensional electron gas. Solid State Commun.,

81(10):821–825, mar 1992.

[83] S. Askenazy, P.R. Wallace, R.A. Stradling, J. Galibert, and P. Perrier. Simple

calculation of the Landau levels of narrow-gap semiconductors in the Kane model.

Phys. Lett. A, 106(4):184–186, dec 1984.

[84] L. Onsager. Interpretation of the de Haas-van Alphen effect. London, Edinburgh,

Dublin Philos. Mag. J. Sci., 43(344):1006–1008, sep 1952.



Bibliography 140

[85] Loren Pfeiffer, K. W. West, H. L. Stormer, and K. W. Baldwin. Electron mo-

bilities exceeding 10 7 cm 2 /V s in modulationdoped GaAs. Appl. Phys. Lett.,

55(18):1888–1890, oct 1989.

[86] J. Luo, H. Munekata, F. F. Fang, and P. J. Stiles. Effects of inversion asymmetry

on electron energy band structures in GaSb/InAs/GaSb quantum wells. Phys.

Rev. B, 41(11):7685–7693, apr 1990.

[87] B. Nedniyom, R. J. Nicholas, M. T. Emeny, L. Buckle, A. M. Gilbertson, P. D.

Buckle, and T. Ashley. Giant enhanced g-factors in an InSb two-dimensional gas.

Phys. Rev. B, 80(12):125328, sep 2009.

[88] T. P. Smith and F. F. Fang. G factor of electrons in an InAs quantum well. Phys.

Rev. B, 35(14):7729–7731, 1987.

[89] M. J. Yang, R. J. Wagner, B. V. Shanabrook, J. R. Waterman, and W. J. Moore.

Spin-resolved cyclotron resonance in InAs quantum wells: A study of the energy-

dependent g factor. Phys. Rev. B, 47(11):6807–6810, mar 1993.

[90] V. Sa-yakanit, N. Choosiri, and Henry R. Glyde. Density of states between Landau

levels in a two-dimensional electron gas. Phys. Rev. B, 38(2):1340–1343, jul 1988.

[91] M. E. Raikh and T. V. Shahbazyan. High Landau levels in a smooth random

potential for two-dimensional electrons. Phys. Rev. B, 47(3):1522–1531, jan 1993.

[92] G Dresselhaus. Spin-orbit coupling effects in zinc blende structures. Phys. Rev.,

1955.

[93] Roland Winkler. Spin–Orbit Coupling Effects in Two-Dimensional Electron and

Hole Systems, volume 191 of Springer Tracts in Modern Physics. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2003.

[94] G. Lommer, F. Malcher, and U. Rossler. Spin splitting in semiconductor het-

erostructures for B0. Phys. Rev. Lett., 60(8):728–731, feb 1988.

[95] Martin Gmitra and Jaroslav Fabian. First-principles studies of orbital and spin-

orbit properties of GaAs, GaSb, InAs, and InSb zinc-blende and wurtzite semi-

conductors. Phys. Rev. B, 94(16):165202, oct 2016.



Bibliography 141

[96] Tiago Campos, Paulo E. Faria Junior, Martin Gmitra, Guilherme M. Sipahi, and

Jaroslav Fabian. Spin-orbit coupling effects in zinc-blende InSb and wurtzite InAs

nanowires: Realistic calculations with multiband k · p method. Phys. Rev. B,

97(24):245402, jun 2018.

[97] M. Cardona, N. E. Christensen, and G. Fasol. Relativistic band structure and spin-

orbit splitting of zinc-blende-type semiconductors. Phys. Rev. B, 38(3):1806–1827,

jul 1988.

[98] R. Eppenga and M. F. H. Schuurmans. Effect of bulk inversion asymmetry on

[001], [110], and [111] GaAs/AlAs quantum wells. Phys. Rev. B, 37(18):10923–

10926, jun 1988.

[99] P. Pfeffer and W. Zawadzki. Spin splitting of conduction subbands in III-V het-

erostructures due to inversion asymmetry. Phys. Rev. B, 59(8):R5312–R5315, feb

1999.

[100] P. Pfeffer and W. Zawadzki. Bychkov-Rashba spin splitting and its dependence

on magnetic field in InSb/In0.91Al0.09Sb asymmetric quantum wells. Phys. Rev.

B, 68(3):1–7, 2003.

[101] Wei Yi, Andrey a. Kiselev, Jacob Thorp, Ramsey Noah, Binh-Minh Nguyen,

Steven Bui, Rajesh D. Rajavel, Tahir Hussain, Mark F. Gyure, Philip Kratz,

Qi Qian, Michael J. Manfra, Vlad S. Pribiag, Leo P. Kouwenhoven, Charles M.

Marcus, and Marko Sokolich. Gate-tunable high mobility remote-doped InSb/In

1x Al x Sb quantum well heterostructures. Appl. Phys. Lett., 106(14):142103, apr

2015.

[102] T. Masuda, K. Sekine, K. Nagase, K. S. Wickramasinghe, T. D. Mishima, M. B.

Santos, and Y. Hirayama. Transport characteristics of InSb trench-type in-plane

gate quantum point contact. Appl. Phys. Lett., 112(19):192103, may 2018.

[103] VI Dyakonov, MI and Perel. Spin relaxation of conduction electrons in noncen-

trosymmetric semiconductors. Sov. Phys. Solid State, Ussr, 13(12):3023–3026,

1972.



Bibliography 142
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