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Chronic intranasal administration of antibodies to glutamate to aging C57Bl/6 mice improved passive 

avoidance conditioning, had no effect on horizontal and vertical locomotor activity, but slowed 

locomotion in the open-field test. Administration of antibodies to glutamate increased the content of 

dopamine and its metabolites in mouse hippocampus, but had no effect on the metabolism of 

neurotransmitter amino acids. In the frontal cortex, antibodies to glutamate did not affect 

neurotransmitter metabolism, but increased the level of both excitatory and inhibitory amino acids 

without changing their ratio.  
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In the context of steadily increasing life expectancy, the search for new drugs and approaches 

to prevention and treatment of age-related changes in the elderly and old people becomes one 

of the most important problems of modern medicine. Cognitive disturbances developing with 

age impair quality of life and require timely correction, for example, using 

neuroimmunological methods. Using experimental pathology models, we have previously 

demonstrated antiamnestic properties of polyclonal monospecific antibodies to glutamate 

(ATGlu). Single intranasal administration of AT-Glu in an effective dose of 250 mg/kg 

reduced the severity of memory impairment in mature Wistar rats with experimental 

Alzheimer’s disease modeled by administration of a neurotoxic fragment Аβ25-35 impairing 

passive avoidance learning into the Meinert’s nucleus of the brain [1]. The anti-amnesic 

effect of AT-Glu on cognitive dysfunction was also confirmed in experiments with 

amyloidogenic structures of the proinflammatory protein S100A9 involved in the amyloid 

cascade in Alzheimer’s disease, when they induced impairment of conditioned passive 

avoidance reflex (CPAR) in aging C57Bl/6 mice. It was shown that co-administration of 

fibrillar or oligomeric S100A9 forms with AT-Glu did not impair memory in aging animals 



[2,3,7]. These facts seem to be indicative of anti-anamnestic effects of AT-Glu in cognitive 

deficit. However, the mechanisms of action of AT-Glu remain poorly understudied. The aim 

of this study was to evaluate the effects of AT-Glu on mnestic functions, as well as on 

specific features of neurotransmitter content in the relevant brain structures (hippocampus 

and cortex) of C57Bl/6 mice during aging. 

MATERIALS AND METHODS  

Experiments were performed on 12 month-old male C57Bl/6 mice (n=28) weighing 32.2±1.8 

g. The animals were kept under standard vivarium conditions with free access to water and 

food with 12/12 h light/ dark regimen. The experiments were carried out in compliance with 

requirements of the European Community Council Directive 86/609/EEC. Polyclonal 

monospecific AT-Glu were obtained according to the previously described protocol [6]. Male 

Chinchilla rabbits were immunized with glutamate conjugate with BSA carrier protein using 

a standard scheme. The protocol for Glu-BSA conjugate preparation was described 

previously [11]. Purified polyclonal monospecific AT-Glu were used in experiments in a titer 

of 1:1024±1:16. The animals were divided into two groups. Control mice (n=14) received 

saline in a volume of 4 μl for 14 days via an intranasal route and experimental group (n=14) 

received purified AT-Glu dissolved in saline in a dose of 250 μg/kg in a volume of 4 μl for 14 

days (alternately in each nostril). In 24 h after solution administration, passive avoidance was 

conditioned in a chamber consisting of a light (15.5×15.5×19 cm) and a dark (9×9×17 cm) 

compartments. The floor in each compartment was made of metal rods with a diameter of 0.3 

cm and a distance between them of 0.9 cm. The compartments were connected with a hole in 

the mutual wall with a guillotine door. CPAR was carried out according to a standard 

previously described method [3]. The latency of transition to the dark compartment was 

recorded on experimental day 1 (LP1, sec) and 2 (LP2, sec). The observation period for each 

animal was 300 sec (starting from the moment when the door was opened on training and 

testing days). The strength of animals’ memory for electric shock was determined by the 

difference in the latent periods of animal’s transition to the dark chamber during passive 

avoidance training and 24 h after training on the day of testing (ΔLP, sec). On day 3 after 

CPAR, locomotor activity of mice was assessed in the open field using automated AutoTrack 

test in the Opto-Varimex system (Columbus Instruments) for 6 min; track distance (cm), time 

of movement and rest time (in sec) and the number of rearings were recorded. Upon 

completion of behavioral experiments, all animals were decapitated, the brains were removed 

in cold, and the hippocampus and frontal cortex samples were isolated. Samples of cerebral 

structures were used for estimation of the level of biogenic amines: dopamine (DA), 

serotonin (5-HT), norepinephrine (NE) and metabolites of DA (DOPAC, HVA, and 3-MT) 

and 5-HT (5-HIAA), parameters of their metabolism, as well as the concentration of 

neurotransmitter amino acids: aspartate, glutamate, glycine, taurine, and GABA. The level of 

neurotransmitters was determined by HPLC with electrochemical detection (HPLC/ED) on a 

LC-304T chromatograph (BAS) with a Rheodyne 7125 injector, loop volume for applying 

samples of 20 μl [2.7]. The concentration of monoamines in the samples (nmol/g of tissue) 

was calculated by the method of “internal standard” based on the ratios of peak areas in the 

standard mixture and in the experimental sample. The content of neurotransmitter amino 



acids was determined by HPLC/ED by the standard method [9]. The column was calibrated 

with a mixture of aspartic, glutamic acids, taurine, and GABA in a concentration of 0.1 

µmol/ml in 0.1 N HClO4. Concentration of neurotransmitter amino acids was expressed in 

μmol/g of tissue. The data were statistically processed using Statistica 7.0 software, 

intergroup differences were analyzed using Mann-Whitney U test.  

RESULTS AND DISCUSSION 

 Intranasal administration of AT-Glu for 15 days improved CPAR in aging C57Bl/6 mice, 

which manifested in a more than 2-fold increase in the memorization level: ΔLP value was 

190.9±21.2 sec vs. 90.5±19.9 sec in controls (p<0.05). 

In the hippocampus, DA level decreased by 70.7% against the background of AT-Glu 

administration while the content of its metabolites 3-MT and DOPAC increased by 70 and 

36%, respectively; HVA concentration decreased by more than 50%. Under the influence of 

AT-Glu, the vector of DA metabolism coefficients DOPAC/DA shifted by 40% and HVA/ 

DA remained unchanged (Table 1). AT-Glu administration produced no significant effect on 

5-HT and NE metabolism in the hippocampus (Table 1) and on DA, NE, and 5-HT content in 

the frontal cortex (Table 1). At the same time, the effect of chronic AT-Glu administration on 

the metabolism of neurotransmitter amino acids in the frontal cortex and its absence in the 

hippocampus (Table 2) attract attention. Experimental animals showed a generalized increase 

in the concentration of both excitatory and inhibitory amino acids: asparagine (by 58%), 

glutamate (by 100%), glycine and taurine (by 70%), GABA (by 80%) upon maintenance of 

normal ratio between them (Table 2). Thus, in aging C57Bl/6 mice, an improvement in 

passive avoidance learning was found in case of 2-week intranasal AT-Glu administration in 

a dose of 250 μg/kg. AT-Glu had a protective effect on mnestic functions of animals with 

age-related changes. This effect seems to be associated with the influence of AT-Glu on 

neuronal apoptosis [4,5]. AT-Glu administration did not change horizontal or vertical motor 

activity in the open field, however, in the case of AT-Glu administration, decreased speed of 

movement was observed. Quantitative evaluation of monoamine level in the hippocampus 

and prefrontal cortex revealed the main neurochemical changes under the influence of AT-

Glu, probably associated with memory formation, only in the hippocampus, and they were 

related to the DAergic system. The role of the DAergic system in the mechanisms of learning 

and memory regulation has been thoroughly studied [8,10], the decrease in DA content in the 

hippocampus, the structure directly involved in spatial memory formation, can probably be 

explained by increased DA expenditure for nervous system activation during learning. At the 

same time, AT-Glu had no pronounced effect on amino acid pattern in this structure, in 

contrast to the frontal cortex. The detected stimulatory effect of AT-Glu on all studied 

neurotransmitter amino acids, including glutamate, in this brain structure can be explained by 

the cooperative effect of AT-Glu and CPAR procedure associated with animal fear. Thus, 

AT-Glu administered to aging C57Bl/6 mice had a protective effect and prevented age-

related memory impairment.  
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