
Extensible Metadata Management

Framework for Personal Data Lake

A thesis submitted in partial fulfilment

of the requirement for the degree of Doctor of Philosophy

Hassan H. Alrehamy

June 2018

Cardiff University

School of Computer Science & Informatics

Declaration

This work has not been submitted in substance for any other degree or award at this or any
other university or place of learning, nor is being submitted concurrently in candidature for
any degree or other award.

Signed ………………………………………… (candidate) Date …………………………

STATEMENT 1

This thesis is being submitted in partial fulfillment of the requirements for the degree of

…………………………(insert MCh, MD, MPhil, PhD etc, as appropriate)

Signed ………………………………………… (candidate) Date …………………………

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where otherwise

stated. Other sources are acknowledged by explicit references. The views expressed are my

own.

Signed ………………………………………… (candidate) Date …………………………

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-

library loan, and for the title and summary to be made available to outside organisations.

Signed ………………………………………… (candidate) Date …………………………

STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-

library loans after expiry of a bar on access previously approved by the Academic

Standards & Quality Committee.

Signed ………………………………………… (candidate) Date …………………………

Abstract

Common Internet users today are inundated with a deluge of diverse data being generated and

siloed in a variety of digital services, applications, and a growing body of personal computing

devices as we enter the era of the Internet of Things. Alongside potential privacy compromises,

users are facing increasing difficulties in managing their data and are losing control over it.

There appears to be a de facto agreement in business and scientific fields that there is critical

new value and interesting insight that can be attained by users from analysing their own data,

if only it can be freed from its silos and combined with other data in meaningful ways. This

thesis takes the point of view that users should have an easy-to-use modern personal data

management solution that enables them to centralise and efficiently manage their data by

themselves, under their full control, for their best interests, with minimum time and efforts. In

that direction, we describe the basic architecture of a management solution that is designed

based on solid theoretical foundations and state of the art big data technologies. This solution

(called Personal Data Lake - PDL) collects the data of a user from a plurality of heterogeneous

personal data sources and stores it into a highly-scalable schema-less storage repository. To

simplify the user-experience of PDL, we propose a novel extensible metadata management

framework (MMF) that: (i) annotates heterogeneous data with rich lineage and semantic

metadata, (ii) exploits the garnered metadata for automating data management workflows in

PDL – with extensive focus on data integration, and (iii) facilitates the use and reuse of the

stored data for various purposes by querying it on the metadata level either directly by the user

or through third party personal analytics services.

We first show how the proposed MMF is positioned in PDL architecture, and then describe its

principal components. Specifically, we introduce a simple yet effective lineage manager for

tracking the provenance of personal data in PDL. We then introduce an ontology-based data

integration component called SemLinker which comprises two new algorithms; the first

concerns generating graph-based representations to express the native schemas of (semi)

structured personal data, and the second algorithm metamodels the extracted representations to

a common extensible ontology. SemLinker outputs are utilised by MMF to generate user-

tailored unified views that are optimised for querying heterogeneous personal data through

low-level SPARQL or high-level SQL-like queries. Next, we introduce an unsupervised

automatic keyphrase extraction algorithm called SemCluster that specialises in extracting

thematically important keyphrases from unstructured data, and associating each keyphrase with

ontological information drawn from an extensible WordNet-based ontology. SemCluster

outputs serve as semantic metadata and are utilised by MMF to annotate unstructured contents

in PDL, thus enabling various management functionalities such as relationship discovery and

semantic search. Finally, we describe how MMF can be utilised to perform holistic integration

of personal data and jointly querying it in native representations.

Acknowledgement

First and foremost, I am immeasurably indebted to my supervisor Dr. Coral Walker, for her

fundamental role in my doctoral research. Dr. Walker provided me with every bit of patient

guidance, encouragement, and advice that I needed over the course of my Ph.D. journey. She

gave me the freedom to do whatever I wanted, whilst continued to actively care about my work

and promptly respond to my questions and enquiries. In addition to our scientific collaboration,

I immensely value the personal rapport that Dr. Walker and I have forged over the past four

years. I am quite sure it is impossible to find a better supervisor.

I would like to express my profound sense of reverence and sincere appreciation to many

parties in Iraq and United Kingdom. My true gratitude goes to Babylon University and Iraqi

Cultural Attaché for offering me the opportunity to pursue my Ph.D. with continuous funding,

support, and encouragement. Equal gratitude goes to all the staff members (both teaching and

non-teaching) in the School of Computer Science & Informatics at Cardiff University, for

their constant presence and the positive learning atmosphere without which this thesis would

not exist. I would also like to express my heartfelt thanks to the anonymous reviewers of my

publications for the donation of their expertise and effort in providing valuable comments and

suggestions. My special thanks go to UKCI17’s organising committee for offering me a

wonderful opportunity to communicate an important part of my thesis, and for selecting

SemCluster as a high-quality conference paper.

Ali Ibn Abi Talib once said: "There are two kinds of people; those who seek but cannot find,

and those who found but still want more". While giant service providers continue to develop

cutting-edge technologies to derive more value from our personal data, we – the common

Internet users – are left behind straggling to seek but not always find the right information

among the large volumes of our fragmented personal data. I dedicate this work to us.

Contents

Contents ... viii

List of Publications ... xi

List of Figures .. xii

List of Tables ... xiii

List of Algorithms .. xv

List of Acronyms .. xvi

Chapter 1 Introduction .. 1

1.1 Background ... 1

1.2 Personal data problems.. 3

1.2.1 The 3Vs nature ... 6

1.2.2 Fragmentation .. 10

1.2.3 Isolation.. 12

1.3 A personal data management solution .. 14

1.4 Thesis aims and objectives .. 16

1.5 Research methodology .. 17

1.6 Thesis contributions .. 19

1.7 Thesis outline .. 20

Chapter 2 Literature Review... 24

2.1 Data lake .. 25

2.2 Metadata management... 30

2.3 Data lake metadata management ... 34

2.4 Existing work limitations .. 38

2.5 Summary ... 39

Chapter 3 Personal Data Lake Architecture ... 41

3.1 A Hadoop-independent data lake system .. 41

3.2 Personal data lake architecture overview .. 43

3.3 Ingestion layer ... 45

3.3.1 Data ingestion approach ... 46

3.3.2 Metadata-added data ingestion management ... 49

3.4 Metadata management layer.. 52

3.4.1 Metadata in personal data lake context .. 53

3.4.2 Metamodeling approach... 55

3.4.3 MMF architecture overview and workflow ... 58

3.5 Storage layer .. 61

3.5.1 Database selection .. 62

3.5.2 Metadata and data storage approach .. 65

3.6 Access layer... 69

3.7 Summary ... 73

Chapter 4 (Semi)structured Data Management .. 74

4.1 Research challenges and requirements .. 74

4.2 Related work ... 77

4.3 SemLinker architecture overview ... 83

4.4 Global schema layer .. 85

4.5 Local schemata layer ... 87

4.5.1 Automatic data source addition ... 87

4.5.2 Local schema redefined ... 89

4.5.3 Automatic schema metadata extraction ... 90

4.5.4 Mapping computation and management .. 94

4.5.5 Partial unified views .. 100

4.6 Querying .. 102

4.7 Summary ... 106

Chapter 5 Unstructured Data Management .. 107

5.1 Introduction ... 107

5.2 Automatic keyphrase extraction .. 110

5.3 Related work ... 113

5.4 SemCluster overview .. 116

5.4.1 Candidate terms selection .. 117

5.4.2 Candidate terms disambiguation .. 121

5.4.3 Candidate terms similarity computation .. 122

5.4.4 Candidate terms clustering ... 124

5.4.5 Seeds selection ... 126

5.4.6 Candidate phrases extraction and keyphrases selection................................... 128

5.5 SemCluster component overview.. 129

5.5.1 Semantic representations ... 129

5.5.2 Storage and querying ... 133

5.6 Summary ... 137

Chapter 6 Empirical Evaluation ... 138

6.1 SemLinker evaluation ... 139

6.1.1 Evaluation data... 139

6.1.2 Evaluation setup ... 140

6.1.3 Automatic mapping management evaluation ... 143

6.1.4 Functional efficiency and query complexity evaluation 143

6.2 SemCluster evaluation... 148

6.2.1 Evaluation data and metrics ... 149

6.2.2 Evaluation setup ... 151

6.2.3 Performance comparison and results ... 155

6.3 Holistic data integration .. 158

6.3.1 Experimental data .. 159

6.3.2 Experimental setup... 160

6.3.3 Experiment Scenario .. 161

6.4 Summary ... 167

Chapter 7 Conclusions and Future Work ... 168

7.1 Conclusions ... 169

7.2 Future work directions .. 173

7.2.1 Simplifying query formulation .. 173

7.2.2 Intrinsic tagging and plugging in SemLinker .. 175

7.2.3 Similarity and WSD in SemCluster ... 175

7.2.4 Extending multimedia support ... 175

References .. 178

List of Publications

The work introduced in this thesis has been disseminated in the following publications:

 Alrehamy H, Walker C. SemLinker: automating big data integration for casual users.

Journal of Big Data, Springer. 2018;5(1):14.

 Alrehamy H, Walker C. Exploiting extensible background knowledge for clustering-

based automatic keyphrase extraction. Soft Computing, Springer. 2018;22(21):16.

 Alrehamy H, Walker C. Personal data lake with data gravity pull. In: IEEE Fifth

International Conference on Big Data and Cloud Computing (BDCloud), IEEE;2015.

p.160-167.

 Alrehamy H, Walker C. SemCluster: unsupervised automatic keyphrase extraction

using affinity propagation. In: Advances in Computational Intelligence Systems.

UKCI 2017, Springer;2017. p.222-235.

List of Figures

Figure 1.1– The adopted design science research methodology process model 17

Figure 3.1– Overview of personal data lake architecture .. 44

Figure 3.2– Overview of ingestion layer ... 46

Figure 3.3– PDLSF object propagated by LAS agent to DSAPI ... 50

Figure 3.4– Overview on the three-level metamodel of MMF .. 57

Figure 3.5– Overview of PDL backend and MMF-managed storage approach 66

Figure 4.1– Overview of SemLinker architecture ... 84

Figure 4.2– Raw data from two social media platforms (Facebook and Twitter) 85

Figure 4.3– Example of concept extension in 𝒢 .. 87

Figure 4.4– A source schema extracted using the schema extraction algorithm 93

Figure 4.5– Mappings between the concept Feed and two source schemas 100

Figure 5.1– A text segment from #AP880927-0089 in DUC-2001 dataset 112

Figure 5.2– SemCluster algorithm steps .. 117

Figure 5.3– A fragment of ontological WordNet-DBPedia alignment 120

Figure 5.4– Unstructured data metamodeling in SemCluster .. 132

Figure 5.5– Overview of SemCluster component architecture .. 134

Figure 6.1–The overall mapping precision scores of the adopted matchers 143

Figure 6.2– Real-time query execution performance comparison ... 146

Figure 6.3– Schemas repository size growth correlation with schema evolutions 148

Figure 6.4– 𝜏 impact on SemCluster performance using settings in 0.5 ≤ 𝜏 < 1. 154

Figure 6.5– Influence of background knowledge on the keyphrase extraction result 158

Figure 6.6– The metamodeling of Tate-Art source schema to sc:VisualArtwork 161

Figure 6.7– Visualization of the holistic integration querying results 166

List of Tables

Table 1.1 – Personal data senses .. 6

Table 3.1 – PDLSF metadata settings .. 52

Table 3.2 – Metadata processing applicability based on structure types 61

Table 3.3 – Types of NoSQL databases... 63

Table 4.1 – RDF schema representation vocabulary (𝒮) ... 91

Table 4.2 – Schema metadata results (view) of SQL-like query execution........................... 105

Table 5.1 – POS patterns for 𝑛-gram extraction from 𝑁𝑃𝑠 ... 118

Table 5.2 – SemCluster extraction results from the article depicted in Figure 5.1 130

Table 6.1 – SemLinker evaluation datasets ... 140

Table 6.2 – SemCluster evaluation datasets. ... 150

Table 6.3 – Performance comparison of SemCluster and other algorithms 155

Table 6.4 – Comparison of SemClusterDBP and SemClusterDBP,BN. 157

Table 6.5 – Integration experimental datasets ... 159

Table 6.6 – Meta section settings for Tate data ... 160

Table 6.7 – Documents associated with “Tulane University” in Tate-Text dataset 165

List of Algorithms

Algorithm (1)– Schema extraction algorithm ... 92

Algorithm (2)– Mapping algorithm .. 97

Algorithm (3)– Extensible background knowledge querying ... 119

List of Acronyms

3Vs Volume, Variety, Velocity

ACID Database Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

AKE Automatic Keyphrase Extraction

ASA Automatic Semantic Annotation

BDI Big Data Integration

CRUD Create, Read, Update Delete operations

DCMI Dublin Core Metadata Initiative vocabulary

DSAPI Data Source API

DSRM Design Science Research Methodology

DW Data Warehouse

ELT Extract, Load, Transform Paradigm

ESA Explicit Semantic Analysis

ETL Extract, Transform, Load Paradigm

GUI Graphical User Interface

HAR Human Activity Recognition

HDL Hadoop-based Data Lake

IAC Ingestion Agents Container

IDF Inverse Document Frequency

IE Information Extraction

IR Information Retrieval

LDA Latent Dirichlet Allocation

LSA Latent Semantic Analysis

ML Machine Learning

MMF Metadata Management Framework

NER Named Entity Recognition

NLP Natural Language Processing

OWL Web Ontology Language

PDL Personal Data Lake

PDLSF Personal Data Lake Serialisation Format

PIM Personal Information Management

QoS Quality of Service

RDF Resource Description Framework

RDFS RDF schema vocabulary

REST Representational State Transfer

TF Term Frequency

VTSA Virtual Transformation of Source Attribute

WordNet Lexical Database WordNet

WSD Word Sense Disambiguation

Chapter 1 Introduction

1.1 Background

Before the Internet era, people had their data kept in personal computers, stored on local

hard drives, and in a few network-shared directories. With the Internet boom and the

growing use of early online digital services like emailing and blogging, common Internet

users started to have partial amounts of their data hosted in autonomous machines on the

web (e.g. mail servers, web servers, etc.), and managing this data was relatively an easy

task. In the years that followed, people living and working environments became greatly

enriched with affordable personal computing devices and various kinds of digital services

that are tailored to the user needs and preferences in different contexts; social media, online

banking, personal and collaborative communications, e-commerce, cloud, to name only a

few examples. This technology evolution upsurge in daily life and social organisation has

made it more convenient for common users to transform the traditional way of performing

daily activities into simple interactions with digital services. All of a sudden, significant

amounts of users’ data are distributed everywhere [1], including: the documents they

create (presentations, spreadsheets, publications), the messages they exchange (SMS, IM,

Email), the multimedia they share (social posts, photos, videos, music), the financial

transactions they make (product purchases, billing invoices, ticket bookings), and so forth,

much of this data is usually generated and stored using third party digital services offered

by distinct entities in the digital service sector, which are generally called service

providers. In addition to being distributed, the data that users generate and keep using

multiple personal devices and different digital services became growing rapidly over time

in terms of volume and variety. Such growth is further accelerated by the typical user

behaviour of actively seeking out and consuming new data from private and public

sources, and hoarding the data which the users may consider personal for many purported

reasons [2,3,4]. In fact, a minute’s reflection on modern Information seeking and foraging

2 Introduction

studies will reveal that common users tend to store large amounts of personal data for

future use and reuse [1,5,6]. As a result, those users who choose to manage their data and

take advantages of it, must do so in parallel across different services and applications [52],

and should have sufficient knowledge and management resources to handle large amounts

of diversified personal data.

Recently, it was revealed that managing personal data is becoming an increasingly difficult

task for common users as the economic value of this kind of data in the digital industry is

amplifying [8], and to the extent that it is often branded as “digital oil” [9]. An important

question promptly arises here is that: “how the management challenges of personal data

are related to its value?”. In 2006, an influential study [11] reported that the personal data

collected from users through multiple third-party services was enough to recognise social

patterns, infer relationships, identify important geolocations, and model organisational

rhythms. Soon after, it was clear that third party services, with their capability of gathering

intimate and contextual information from users, entail immense increment in the

production of personal data, and this kind of data is exponentially growing in depth and

breadth forming a new era of empirical analysis with potential opportunities for businesses

in the digital industry. Realizing this trend, dominant service providers began promoting

data-incentive services (e.g. Google Drive, Facebook Creators, Apple iCloud, Amazon

Alexa) that are deeply integrated with users’ personal devices to expand providers’ reach

into the private storage spaces of users [11], and to migrate various data collections that

are individually managed by the user to “central” data-housing repositories called service

platforms [12]. This paradigm of data centralisation, and backed by the economic

convenience of data transmission, storage capacity, and computational power, enables

service providers to amass unprecedented amounts of personal data collected from large

number of users, and analyse them using state of the art data mining and machine learning

tools to glean valuable insights that magnify understanding of users’ social behaviours and

personality patterns, thus deriving revenues through utilising these insights to optimise

business intelligence and consumer analytics models, or by licensing them to other third

parties.

While the ultimate implications of the centralisation paradigm on common users are not

fully examined yet [11], one promptly apparent consequence is that; users are increasingly

1.2 Personal data problems 3

losing control over their data [12] and are unable to take advantages of it. The main reasons

for this limitation are personal data fragmentation and isolation.

1.2 Personal data problems

In a sense, personal data represents a comprehensive “black box” that records its owner's

life in varying degrees of detail across different contexts [13]. By organising this box, the

owner can infer knowledge and obtain valuable insights about her life and daily activities.

As with all other data kinds, personal data may have certain characteristics, which in turn

may impose multiple challenges on access, management, and usage, especially if we

expect personal data to be multi-modelled, error-prone, and with severe fragmentation and

isolation, which must be dealt with before personal data can be ready to be taken advantage

of. If we properly understand the main problems of personal data, then we can devise

appropriate solutions to overcome them and unlock the potential value of data through

personal data management which, in short, concerns data collection, storage, organisation,

maintenance, and usage [1]. Personal data management offers benefits to content-based

search, contextual information retrieval, reporting and summarization. The opportunities

that efficiently managed personal data may offer are based on the observation that a black

box of the user’s life provides a detailed context about the user (e.g., who is the user, where

is her location, where she has been recently, what is she doing now, and with whom, etc.)

which can be readily leveraged to design useful tools for activating value creation. To

illustrate this observation, consider the following example; by processing the user’s

financial data (e.g. purchase transactions history), geospatial data (e.g. GPS data), and by

assuming the user’s current location is near a market which she frequently shops in, then

a sophisticated context-aware application would process such data and automatically infers

that she is at risk of going over credit limit in the next purchase, thus it can intervene either

by warning the user or by suggesting an alternative payment methods to avoid the overdraft

fees imposed by the credit card issuer. Many context-aware applications have been

proposed in the past [14,15,16], but their inability to uniformly access and query user’s

personal data as an organised black box, has impeded the progress of these applications

4 Introduction

[15]. A detailed discussion about contextual applications in the personal domain is covered

in [13].

The first step in studying personal data problems is to understand how a data piece (datum)

can be distinguished as personal, and in which sense. Unfortunately, there exists no

agreed-upon technical definition of personal data, this is because it has evolved so quickly

and disorderly that such a universally accepted statement denoting its exact meaning not

yet exists, instead there are multiple statements in the field of data management that try to

capture its traits in specific and restricted contexts. One practical way to conceive the

abstract nature of personal data is through its legal definition by international data

protection laws, since governmental articulations in general are readily understood and

widely accepted. The EPDP Directive1 defines personal data as follows:

“Personal data shall mean any information relating to an identified or

identifiable natural person (‘data subject’); an identifiable person is one

who can be identified, directly or indirectly, in particular by reference to an

identification number or to one or more factors specific to his physical,

physiological, mental, economic, cultural or social identity.”.

(EPDP, 95/46/EC Art. 2/A)

The definition emphasizes that personal data is any information in the world, whether

physical or digital, that can be linked to a person in some way. There are different ways

through which data are linkable; “full name” is obviously personal data that is directly

linked to a person. Linking might be obvious by combining autonomous identification

elements, such as physical characteristics, pseudonyms, banking details, occupations,

addresses, etc. There also exist many types of data that sound un-linkable to a given person

at the first glance, but a closer look will promptly reveal important linking. Consider the

following dataset examples; Underground service information, postcode dictionary, and

hotel guest reviews in London. These datasets are decisively unrelated to a person living

1 Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection

of individuals with respect to the processing of personal data and its free movement. URL:

http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31995L0046

http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31995L0046

1.2 Personal data problems 5

in Washington. However, once that person decides to visit London, linking to the datasets

becomes obvious and compelling.

The legal definition of personal data is deliberately made broad for legislative purposes.

Consequently, we need to focus on an alternative but relative conception from a technical

point of view. Henceforth, we understand personal data as “the data over which a person

has some interest or control, currently or in the future, in order to negotiate the person’s

environment and organise life activities”. Such conception is much more in tune with an

intuitive understanding of what data means to a person in the course of daily activities, and

as one would expect, it might be in compliance, to a great extent, with the legal definition

of the data from which the person is identifiable, but may also comprise data of which the

person owns, but from which the person cannot be identified at all – as illustrated in the

former example. With this technical but informal abstraction, personal data may span a

vast range of domains, and therefore scoping all its types into a widely agreed upon

convincing definition is on one hand an extremely difficult task, but on the other hand is

an enabler of scientific progression as Ronda et. al. [17] suggest; the level of consensus

shown by a scientific community on a definition of a concept can be used as a measure of

the progress of a discipline.

Researchers in personal data management field have suggested different statements to

discern a rough boundary between what data is personal and what is not [1,11,18]. The

work introduced in [1] is an important progress in this regard as it builds upon an intensive

review of (personal) information literature. Jones [1] defines six senses in which data may

be recognised as personal. Table 1.1 presents each sense, its relatedness (linking) to the

user, the production type of the data falls under that sense, and multiple general examples.

Basically, there are two types of personal data production; active and passive. Active data

production refers to the data that is purposefully self-generated to negotiate one’s

environment and to perform daily activities, whereas passive data production refers to the

data that is generated on the one’s behalf through by-product service interactions. Text

messages, photos, and blogs are examples of actively produced data, whereas IoT sensing

data, search engine logs, and credit history are examples of passively produced data.

6 Introduction

It is noteworthy to mention that personal data senses are inclusive, and by combination

they make up the whole personal data of a user. It should also be borne in mind that the

notion of personal data is the usual term in Europe whereas it is known as “personal

information” or “personally identifiable information” in the United States. Likewise, the

terms “personal data management” and “personal information management” are identical

[18]. Therefore these synonymous terms are interchangeably used throughout this thesis.

Table 1.1 – Personal data senses

Sense Production Description

Owned/Controlled

by user
Active/Passive

Data stored on user’s personal devices, cloud

spaces, online accounts, and any other service

platforms, like documents, files, multimedia.

About user Active/Passive

Data factorizing the user’s identity; such as

official paperwork, medical records, search

engine queries, product orders, and credit

history.

Directed to user Passive

Data communicated to the user; such as phone

calls, emails, instant messages, social and

collaborative invitations, promotion ads, and

vouchers.

Sent by user Active

Data communicated by the user; such as phone

calls, emails, private (instant) messages, blogs,

social media posts, GPS check-ins, and research

publications.

Experienced by user Passive

Data already utilised by the user; such as website

pages, books in the library, on-demand

streaming content like online courses, TV, and

Radio shows.

Relevant to user Passive

Data interesting to the user for future use; such

as the next hotel booking, vacation destination,

job to apply for, and house to buy.

1.2.1 The 3Vs nature

As our understanding now is in tune with the notion of personal data, its possible senses,

and its basic terminology, our next step is to examine the nature of personal data from Big

Data perspective. Such examination can take place by comparing the main characteristics

1.2 Personal data problems 7

of big data with those exhibited by the total data of a common user. The benefit here is: if

personal data conforms to big data characteristics, then there are certain advantages that

big data management technologies could bring to enable both effective personal data

management and analytics on a personal rather than on the enterprise level (i.e. personal

analytics [19] and personal informatics [20]).

Big data is a ubiquitous term to describe any voluminous amount of structured, semi-

structured and unstructured data that is growing and moving so fast that it becomes

extremely difficult to store, manage, or process using conventional data management

technologies. In most enterprise scenarios, big data is believed to have three main

characteristics [21]: Volume, Variety, Velocity, (3Vs). Volume refers to the amount of data,

variety refers to the heterogeneous sources from which the data is produced and gathered,

and velocity refers to the unpredicted shifting patterns and changes in the data over time.

There is a surging interest in big data by many parties in the digital industry and academia,

this is because of the immense value and unlimited opportunities that can be unlocked by

mining and cross-referencing information from diverse data sources. Big data is also

becoming a daunting problem due to management challenges resulting from the

continuous expansion of all its aspects over time [22], rather than just the sheer amount of

data to be managed. The term Big Data Analytics [23] refers to the quintessential

technologies that the user must possess to harness and utilise the data at high 3Vs scale for

creating value. Not only does this make big data management and storage vastly different

from normal or structured data that most people are accustomed to handling, but it also

means the users now require powerful integrated solutions for making big data scenarios

usable and applicable. Currently, there exist many enterprise-level big data management

systems and tools that can be adopted to collect, integrate, manage, fuse, and analyse big

data efficiently and effectively. Before discussing the benefits of the big data ecosystem

to the personal data management, we initially need to run an end-to-end comparison

between big data and personal data in terms of the 3Vs model.

One characteristic which makes personal data a big data application and poses both

challenges and opportunities in its management is the variety of personal data sources,

which may include: social, entertainment, work-related, consumption-related, freely and

by-license accessible, data services, furthermore, they may also include by-product online

8 Introduction

tracing, physiological monitoring, and pervasive monitoring (IoT) services. Personal data

sources are monumentally varied, and the data generated from them is so diverse that we

simply cannot enumerate its types. To take a quick look, consider a typical smartphone

that is often equipped with the following constituents (services):

 GSM, LTE, Wi-Fi, and Bluetooth. The data generated from these constituents

include: cellular network tracking, LTE roaming information, home and work

network-shared directories, printers, and scanners, Wi-Fi location data, nearby

Bluetooth devices, Wi-Fi networks and signal strengths, Internet usage metering,

power consumption information.

 Always-on Radio GPS. The data generated from this constituent include

geographic positioning logging, tracking, and navigation.

 Accelerometer, Gyroscope Barometer, Thermometer, Magnetometer,

Infrared. The data generated from these constituents include real-time

gyroscopic orientation tracking streams, real-time accelerometer movement

tracking streams, basic and advance physiological monitoring data like

temperature and galvanic skin readings, heart rate tracking, and environmental

sensory data.

 Video camera and microphone (or several). The data generated from these

constituents are multimedia files, live streaming, visual and audio

communications.

 Internet-connected services for entertainment, communication, and to help

users manage their daily lives.

Common users carry this bundle of services with them wherever they go, and generate

data almost all day. To derive value from these services, the common user must be able to

merge and combine various data collected from such services to form a holistic

consolidated view through which variety is normalised or eliminated.

The second characteristic we examine is volume. Personal data sources constantly generate

structured, semistructured, and unstructured data on a per-person basis. the fate of these

data may be one of the following: (i) actively stored on local hard drives, (ii) actively/

passively hosted in remote storage locations, i.e. online accounts and third-party service

1.2 Personal data problems 9

platforms, or (iii) disposed due to lack of applicability, i.e. the common user cannot derive

any benefit from the data, neither currently nor in future, because of insufficient

knowledge and resources to manage it. For example, nowadays only small groups of data

enthusiasts in the society (e.g. life-loggers [13], self-quantifiers [19]) are recording their

physiological sensory data and deriving insights out of it, whereas the remaining

population ironically turn off their sensory services to save battery charge. Although a

one’s personal data on average has not yet reached huge volume (i.e. below petabytes), we

believe that such volume is constantly scaling up, and at some point in the foreseen future

will conform to the big data volume aspect. This observation is predicated on multiple

recent Internet usage reports; here are some statistics: a common user, on average, has 3.64

personal devices connected to the Internet [24], interacts with 30 third-party services

monthly using these devices [25], uses with 9 services on daily basis to generate personal

data [26], has 100 online personal accounts in third-party service platforms [26], uses 7 of

them regularly to exchange personal data with others [25], and these statistics are doubling

every 18 months.

The final characteristic of the 3Vs model is velocity. Technically, common users cannot

control the physical details of their personal data being passively generated by (third-party)

services, consequently, they cannot veto any subtle shifting changes in its patterns and

representations (i.e. schema, structure, and semantics), and their only available choice is

adapting to any emerging changes propagated by a service of interest.

 Based on the above comparison, we can reasonably regard the total amount of one’s

personal data as a scaled-down version of big data, that is, the version of a single person

in contrast to the large body of an enterprise organisation. During this comparison, we

observe the characteristics of personal data are problematic. A modern personal data

management solution must account for the 3Vs model, but it should extensively focus on

variety with effective accountability. This emphasis has been delineated since the early

age of big data, for instance, a specialist survey based on interviews conducted with 20

major big data firms in 2012 concluded the following [28]: “The survey indicates

companies are focused on the variety of data, not its volume. The most important goal and

potential reward of Big Data initiatives is the ability to analyse diverse data sources and

new data types, not managing very large datasets”.

10 Introduction

1.2.2 Fragmentation

For a common user, the daily interaction with an arbitrary digital service entails generating

a certain amount of personal data every day which exponentially grows over time, resulting

in a large and complex data collection (or dataset) that is stored and managed by the

provider of that service. For example, consider a third party email service for regular email

messages exchange, Fisher et. al.[5] report that common users, on average, end up having

28000 messages archived within their email accounts and stored on the platform of the

email service provider. There are many reasons that motivate (or even compel) users to

delegate the responsibility of storing and managing their personal data to third party

service providers, mainly including:

 The provided service requires intermediate data exchange medium. For example,

a social media service provider like Twitter retains the user’s data (tweets) into a

central platform in order to share it with the user’s friends and followers.

 The provided service is fundamentally developed to assimilate the personal data of

its users. For example, a cloud-based storage service emphasizes migrating user’s

data (documents and files) to a central service platform in order to provide support

functionalities like backup and recovery, location-independent accessibility, and

data synchronization between multiple personal devices.

 Users do not have the sufficient knowledge or resources to self-host and manage

large amounts of their personal data.

As users expand the set of their favourite services over time, their personal data becomes

no longer co-existing into single storage space but rather increasingly scattered across

various applications running on personal devices, as well as autonomous service platforms

exclusively controlled by the third parties – this phenomenon is called personal data

fragmentation. Fragmentation is very problematic on the long term [52] as it hinders users’

ability to understand what personal data they have, where it is stored, and how it can be

accessed and utilised to meet personal information needs. Due to fragmentation, users may

not be able to list all service platforms hosting their personal data, furthermore, essential

data management functionalities may become increasingly difficult undertakings without

simultaneous accessibility to all fragmented personal data, regardless of its hosting

1.2 Personal data problems 11

platforms, from a single access point. The following questions are simple examples to

illustrate the effect of fragmentation on common users:

 I know I have this message, but was it received via my personal Email, work

Email, Facebook, Telegram, or Viber?

 I know I have this photo, but was it posted on Facebook, Twitter, Instagram, or

saved on my hard drive?

 I know I have this document but was it saved as an email attachment, or in

Dropbox, Google Drive, OneDrive, or on my hard drive?

Unfortunately, many of the services mentioned above may act as data silos since they do

not offer content search functionality [29], instead the user may have to browse the

personal data hosted in the platform of each service using the provided GUIs in order to

find specific data entities (e.g., messages, photos). Nevertheless, without a software agent

that simultaneously accesses these platforms and performs global search over them, then

finding a specific data entity may be as hard as finding a needle in a haystack; the user

should list all the platforms that are likely to store the required data entity and then goes

platform-by-platform trying to find it.

An intuitive solution to the fragmentation problem is to reverse or at least reduce the

paradigm of personal data centralisation by empowering common users with a personal

data management solution that allows to retrospectively harvest (i.e. extract and collect)

fragmented personal data from various service platforms, and any other data sources for

the matter, and accumulating it into a central storage space that is fully controlled by the

user [30,31]. With the rise of the REST architectural style for webservices [32], providers

now have a flexible mechanism to facilitate retrospective sharing of data with its owners;

that is RESTful application programming interfaces (API). The API offered by a service

provider is often a well-documented publicly accessible endpoint in the platform of the

service and it enables flexible data collection by authenticated users over web protocols

like HTTP either manually or through software agents. API-based data collection has been

utilised in many quantitative research projects that involve analysing huge amounts of big

data collected from service platforms to develop predictive models [33,34]. In qualitative

research, APIs can be exploited to harvest unstructured text archives of communication

12 Introduction

patterns on social media for close-up analysis [35]. APIs have been also proposed as

personal data collection trajectories for common users [36]. A user may deploy one or

more agents that connect to the APIs of different service platforms of interest, to retrieve

personal data from each platform and accumulate it into a central storage space that is

controlled by the user. This workflow presents a practical way for user-centric data

centralisation as opposite to the service provider-centric centralisation paradigm described

earlier. However, API-based automated data collection is only part of the solution to the

fragmentation problem. There are many service providers that do not offer API-based data

retrieval, offer only partial retrieval, or act as data silios that permit retrieval strictly

through ad hoc service-specific data collection adapters (agents). The reasons service

providers lock users’ data inside their platforms or complicate its programmatic access and

retrieval may be technical, or even legal, but mostly economic, as they do not want to

relinquish the economic advantage of holding users’ personal data. An effective solution

to the fragmentation problem should involve collecting personal data using traditional and

non-traditional means.

1.2.3 Isolation

Another latent problem arises from users’ reliance on a variety of third-party services is

isolation. Basically, the delegation of personal data storage responsibility to a service

provider necessitates relinquishing control over how the data is represented in the platform

of that provider. Service providers may store and handle incoming and outgoing data using

different models and representations2 that are essential for optimising their internal data

processing and management workflows. If all providers adopted a single unified data

representation for all the data they are dealing with, then mashing up and utilising

fragmented personal data coming from scores of platforms and sources would be achieved

in straightforward manner, nonetheless performing management functionalities like global

search and integrated analysis could be relatively easy, for instance, to answer the question

“how much milk I consume monthly?”, the user may formulate a “simple” query targeting

2 A data entity may have certain underlying physical details including: physical format, native schema (if

any), and structure (i.e., structured, semistructured, or unstructured). Throughout this thesis, we use the

abridged term “representation” to refer to the combination of these details.

1.2 Personal data problems 13

historical purchase data (e.g. receipts) to directly count all the records which contain

purchased milk quantities. It is widely accepted fact that convincing the entire world to

use singular data representation is fruitless effort since the degree of diversity and

continued independent evolution of service platforms and data sources practically

guarantees that data representation singularity will never happen [37], in fact, this is the

main reason behind inventing the Semantic Web [38]. Consequently, accumulating

collections of fragmented personal data with different representations into single storage

location imparts isolation; the stored contents may be regarded as disparate datasets and

information icelands with heterogeneities on the syntactic, semantic, and structural levels,

which prevent their use in any possible scenario.

Isolation impedes users’ ability to uniformly access fragmented personal data, from a

single access point, to perform management functionalities. To tackle this impediment, the

user must perform a kind of integration; a data management task seeks to provide unified

view over the data collected from multiple sources so that they may look as if coming from

a single well-managed source [39]. Providing unified views in practice involves designing

a global (mediated) representation that captures the user’s data requirements, followed by

a manual construction of relationships, which are called mappings [39], between the native

representations of the data under integration and the global representation. This overall

approach can provide high-quality integrations but at a high cost and tends to be unsuitable

in areas where data is coming from a plurality of frequently changing sources, and where

users are willing to tolerate a less than perfect integration.

The notion of integration is often viewed as a spectrum, at one end all fragmented data

conform to a single agreed-upon representation, at the other end all the native presentations

of fragmented data are heterogeneous as they are independently designed and maintained

by autonomous sources, and in between these ends lies various integration solutions and

approaches. Such spectrum may indicate the degree to which management and analysis

functionalities can be performed across fragmented personal data, with higher degrees of

integration providing more sophisticated functionalities. Integration is known to be an

extremely complex task that incurs tedious supervision efforts by skilled users for schema

matching, schema mapping, semantic and structural reconciliation, and data quality [40].

Not all common users are data specialists, this necessitates the need for an adaptive data

14 Introduction

management solution wherein “automatic” integration workflows can be invoked on

isolated personal data collected from autonomous sources and exist with different

representations that the user knows very little about, but at the same time, demands high

degree of data homogeneity in order to mush up, utilise, and take full advantages of it.

1.3 A personal data management solution

In today’s digital age, common Internet users are immersed with an overwhelming number

of third party services and other data sources, tempted by service providers to generate

more and more data and relinquish control over it in exchange of useful and mostly “free”

functionalities. Accordingly, common users are unable to gain control over their personal

data, finding the right information within it, or readily deriving any value out of it

[12,23,36]. Nevertheless, because users cannot determine who is accessing their data,

when, how, and why [11,12], they are incapable of preventing privacy-abandoning third

parties from cross-referencing their fragmented intimate information using malicious

methods [11,41] (e.g. linking attacks3). In this thesis, we take the point of view that the

cycle of organisational activities for personal data management [1] can provide the

necessary means to assume back the control over one’s personal data and to facilitate

taking full advantages of one’s black box [13], not only to empower oneself with valuable

insights for enhancing life and daily activities, but also to elevate, to a certain extent, the

privacy of one’s data. To this end, we describe the design and the core components of a

big personal data management platform called personal data lake (PDL) [44] that supports

common users in managing the sum of their personal data. PDL is based on the data lake

concept [42]; a widely used data management technology in the big data ecosystem [43].

It enables the user to bring together and enrich fragmented personal data in raw forms,

remedying its main inherent problems, and reducing the efforts required to smooth its

recurrent use in various scenarios. PDL has complete access to user's personal data pouring

anywhere in the cyber world, whether hosted by third party service platforms, personal

computing devices, pervasive electronics, or any current or future active/passive data

3 Linking attack may also refer to the interdisciplinary term jigsaw identification.

1.3 A personal data management solution 15

sources that would produce data which can be linked to the user in any of the senses listed

in Table 1.1. PDL fully supports automatic and manual retrospective collection of personal

data from local or remote sources in batched, streaming, or near-streaming modes, as per

the requirements and needs of the user. Such lake permanently stores and archives personal

data into a highly-scalable central repository of unified schema-less data storage, thus

offering a current state of the art solution to the fragmentation problem discussed in section

1.2.2. In the heart of PDL lies the most important architectural part, which is metadata

management framework (MMF). MMF is the de facto management solution that

orchestrates personal data storage, organisation, usage, maintenance, as well as privacy.

MMF annotates personal data with machine-readable metadata to describe its lineage,

important facets, underlying attributes, and relationships with other data within PDL. The

final product of MMF is rich contextual metadata that are utilised for:

 Taming the heterogeneities of fragmented personal data and eliminating any

inherent isolations that stem from its centralisation into PDL. Thus, relieving the

user from the tedious efforts required for data organisation and maintenance.

 Generating comprehensive consolidated views over the centralised data that are

defined by a user-tailored formalism in term of a coherent Metamodel. Thus

enabling simultaneous and uniform access to a wide variety of personal data and

conveniently querying it on the view (metadata) level.

 Enabling the user to experience new functionalities with personal data which once

were prevented by fragmentation and isolation like semantic search, relationships

discovery and data preparation for personal analytics and informatics.

 Allowing the user to control the accessibility of the stored data based on privacy

settings with varying levels of actionable details.

The user has complete control over PDL and its underlying MMF, and retains the ability

to retrieve its metadata, extend it with new (meta)models, modify the views materialized

through it, and share it and/or its views with any third-party data consumer for gaining

benefits as perceived by the user and without relying on external tools.

16 Introduction

1.4 Thesis aims and objectives

Treating personal data as little big data, and dealing with its inherent 3Vs model lies at the

heart of the big data problem. The personal data of an average common user is usually

voluminous and exists in a plurality of autonomous silos with incompatible and rapidly

changing representations, while more new silos and representations are expected to appear

in the future due to the continuous emergence of renovated third-party services and new

personal data sources (e.g. IoT sensors). It is fair to say that the 3Vs of personal data

contribute to the 3Vs of global big data, and solving the problem at the personal scale can

lead to a possible solution on the global scale. The main aim of this thesis is to exploit the

data lake as a flat space for collecting and storing large amounts of diverse personal data

without compromising its native representations. A data lake by definition is a complex

enterprise solution that is intended for use by highly skilled data scientists and not common

users. Therefore, the objective of the work presented in this thesis is to materialize the

necessary set of capabilities for automating the lake’s data management workflow, thus

giving common users the incentive to take the responsibility of collecting, organising, and

analysing their personal data by their own, within a highly supportive environment, under

their full control, with minimum efforts and very limited technical skills. Accordingly, we

focus on proposing methods and algorithms for isolating the user from the complex details

of the downstream management tasks and activities in PDL, particularly:

 Metadata extraction and annotation.

 Schema matching and mapping.

 Semantic and structural heterogeneity reconciliation.

 Schema evolution handling.

 Holistic data integration.

The proposed methods and algorithms heavily rely on the metadata technology, and they

inclusively form an extensible metadata management framework that enables the PDL user

to efficiently integrate, query, and analyse, with minimal time and effort, large amounts of

heterogeneous raw data centralised in PDL whilst preserving their native schemas,

formats, and structures intact.

1.5 Research methodology 17

1.5 Research methodology

Design science is an outcome based research methodology that offers specific guidelines

for designing and evaluating purposeful innovative artefacts to solve a special problem in

a particular domain [45]. An outcome artefact is perceived to be knowledge containing,

this knowledge ranges from novel methods, algorithms, and tools, to assumptions about

the context wherein the artefact is intended to function. To form a novel contribution, the

research outcome must either solve a problem which is not solved yet or provide a better

solution for it. In this thesis, the design science research methodology (DSRM) is regarded

as an optimal methodology to follow for fulfilling the research aims described in section

1.4. Accordingly, we adopt the DSRM introduced by Peffers et. al. [45]. Figure 1.1 depicts

the steps that compose our adopted DSRM, and each step is explained and related to the

thesis chapters as follows:

Figure 1.1– The adopted design science research methodology process model

1. Problem Identification and Motivation: This step involves critical thinking of the

research problem and modelling strategies to justify the value of designing a solution to

solve that problem. In the first phase of this step, our aim is to identify the gaps in the

related literature. In the second phase, the research aims are carefully articulated as

presented in section 1.4. The third phase requires the selection of the data sources and the

tools for developing the solution. The last step involves research planning by dividing the

research problem into two sub-problems, namely:

18 Introduction

 Structured and semistructured personal data management.

 Unstructured personal data management.

In last the phase we also identify the required means to solve each sub-problem.

2. Objectives of the Solution: This step requires knowledge of the state of the problem,

its current solutions, and their efficacy. The problem definition in the previous step is used

to propose the objectives of the solution. Our research problem is general in many fields,

whose objective is the management of raw data scattered across a variety of data sources,

and isolated due to severe heterogeneity in its native representations. However this

problem in the context of our research exhibits a fundamental difference in that its solution

has specific objectives that are necessary for the success of a bigger solution (i.e. PDL).

These objectives are:

 The solution is data lake-oriented; by definition, it must preserve the native

representations of the centralised data to sustain its potential future value, and

should be efficiently tractable to the 3Vs model.

 The solution is user-centric; it must be automated to ease utilisation by unskilled

common users, and, should be flexibly extensible to support customization

according to user’s changing needs and preferences over time.

3. Design and Development: This step aims to design and develop a solution for the

defined problem. The details of this step are covered in chapters 3, 4, and 5. The design of

the proposed framework and its integration in PDL architecture is covered in Chapter 3.

The design of the component responsible for structured and semistructured personal data

management is presented in Chapter 4, and the design of the component responsible for

unstructured data management is presented In Chapter 5.

4. Demonstration: This step involves using the developed framework in suitable contexts.

In this thesis, multiple showcases are discussed in Chapters 6 using a total of 16 real-world

datasets. The chosen data is regarded as personal data of an imaginary person. To

demonstrate the utility and robustness of the proposed framework and its components in

solving real-world problems, five main demonstrations are introduced. The first involves

integrating and querying heterogeneous sensory data collected from multiple sensors

1.6 Thesis contributions 19

embedded in wearable devices. In the second, we simulate a scenario of making data-

driven hotel and restaurant booking decisions in the city of London. In the third and fourth,

we demonstrate how MMF automatically extracts keyphrases from free-text documents,

and annotating them with ontological information. Finally, we present an experimental

scenario to demonstrate the holistic integration capability of MMF over public art data

collected from a museum by the user in efforts to create new useful knowledge through

back-story information cross referencing.

5. Evaluation: This step observes and measures how well the proposed framework

resembles an optimised solution to the defined problem. It involves assessing the

effectiveness/efficiency of the components in the proposed framework compared to their

current state of the art counterparts available in the relevant literature. In DSRM, once

framework components are developed, researchers start a thorough testing process for each

component. In this thesis, we righteously evaluate the main components of the proposed

framework in Chapter 6. The evaluations aim to assess the efficiency of each component,

and its effectiveness compared to the chosen state of the art approaches.

6. Communication: The main thesis contributions have been published as peer-reviewed

scholarly publications. Four papers have been disseminated from the presented work: two

are published in high-quality journals, and the other two are published in conferences

relevant to our research’s core topics. The papers are given in the list of publications

section.

1.6 Thesis contributions

The main contributions of this thesis are as follows:

 We present a novel extensible MMF for handling personal data management and

simplifying, to large extent, PDL user-experience for common individuals with no or

limited data management skills.

 We introduce a basic lineage manager as the first principal component in MMF to track

the provenance of personal data in PDL and maintain its privacy settings.

20 Introduction

 We propose SemLinker, an ontology-based data integration system as the second

principal component of MMF. SemLinker comprises two novel algorithms; the first

constructs graph-based representations to express the native schemas of (semi)

structured data collected from a variety of local and remote data sources. The second

concerns partial metamodeling of such representations to an extensible general-

purpose and widely-used ontology in big data applications.

 We propose a novel approach to handle schema evolutions that stem from data

velocity, more precisely, the rapid and frequent changes that may emerge in the source

schema and format of (semi)structured data collected from a data source.

 We introduce SemCluster, a novel domain-agnostic clustering-based algorithm for the

task of unsupervised automatic keyphrase extraction. The proposed algorithm exploits

extensible background knowledge for extracting thematically important keyphrases

from input unstructured data, and associates each keyphrase with fine-grained

semantics drawn from an extensible common ontology.

 We propose a SemCluster-based approach for automatically annotating unstructured

textual data with rich semantic metadata, then we show the usefulness of this approach

in facilitating functionalities like relationship discovery between, and semantic search

over, heterogeneous unstructured contents.

 We show that by combining SemLinker and SemCluster metadata, MMF can offer

attractive management functionalities over PDL stored data on metadata level without

requiring any physical transformations, thus preserving the native representations of

the data and facilitating its use and reuse in various informatics and analytics

applications while maintaining its potential value longevity.

1.7 Thesis outline

In this thesis, we investigate and evaluate automated solutions to the problem of data

management in data lakes. We present techniques that are related to three main topics:

metadata management, data integration, and unsupervised keyphrase extraction. In

particular, we examine new and exciting methods and algorithms in order to introduce an

1.7 Thesis outline 21

extensible metadata management framework for PDL, which can be generalised in the

future for reusability in other data lake systems. The outline of this thesis is as follows:

Chapter 2 discusses the background and main foundations of the data lake concept. The

chapter starts by illustrating the difference between ETL [46] and ELT [47] paradigms,

then explores the feasibility of ELT in solving the problems of big personal elaborated in

section 1.2. We then review the data lake literature and discuss the importance of metadata

in managing raw data. The chapter explores various metadata management approaches and

frameworks that have been proposed for different data lake systems and architectures.

Finally, the general limitations of existing works as well as their fundamental drawbacks

are discussed from the perspective of our research objectives.

Chapter 3 introduces an overview of the proposed MMF and its architectural integration

in PDL. The chapter begins by discussing the empirical feasibility of Hadoop ecosystem

for developing a big personal data management system. Then an overview of PDL’s ELT

workflow is introduced by means of two processing pipelines; storage and usage. To

illustrate how MMF is managing these pipelines in an automated fashion, we describe each

layer in PDL, including the rationale behind its design, its constituting components, and

their relations with MMF components as pipelining inputs or outputs.

Chapter 4 presents SemLinker; our proposed solution to the problem of (semi)structured

personal data management in PDL. In this chapter, we review a core process in data

management: data integration, and discuss the main challenges and requirements that must

be met to automate this process in data lakes and particularly PDL. The chapter then

introduces SemLinker architecture, its layers, and their underlying components. We first

describe SemLinker’s underlying algorithms and then introduce a new automatic approach

for handling raw data schema evolutions. Next, we discuss how SemLinker annotates

ingested personal data with formal schema metadata, and how the output annotations are

exploited for generating “partial” unified views which can be queried in a uniform way by

common users and their gravity-enabled analytics applications.

Chapter 5 presents SemCluster; our proposed solution to the problem of unstructured

personal data management in PDL. This chapter starts by elaborating a core process in

unstructured data management; semantic annotation. The chapter then discusses keyphrase

22 Introduction

extraction as a potential solution for automating the semantic annotation of unstructured

documents. The existing work in the keyphrase extraction literature is thoroughly reviewed

in order to understand its research gaps and limitations. Next, we present SemCluster, a

new algorithm for unsupervised automatic keyphrase extraction that exploits background

information to identify thematically important phrases in input documents, and to annotate

these phrases with fine-grained ontological information. SemCluster algorithm adopts an

extensible ontology (WordNet [49]) as an internal knowledge source, which can be further

extended by integrating extra knowledge sources (e.g. DBPedia [50], BabelNet [51]) for

incorporating more background information to improve the extraction precision and the

overall annotation performance. In this regard we introduce a new knowledge integration

approach to materialize personalised extensibility based on the needs and preferences of

the PDL user. Finally, we discuss how SemCluster is implemented as MMF component to

manage unstructured textual data through annotation-based semantic representations.

Chapter 6 presents the empirical evaluations of the methods and algorithms proposed in

this thesis. As per the adopted research methodology, we focus on evaluating the

effectiveness and efficiency of MMF core components: SemLinker and SemCluster. We

start by testing the effectiveness of SemLinker using various datasets. To explore the

accuracy of the component’s underlying algorithms, we first conduct an experiment of

integrating 3 heterogeneous datasets and preparing them for utilisation by an analytics

application plugged in PDL. We also run a second experiment for integrating 8 large

heterogeneous datasets collected from different domains, with the aim of integrating them

and generating a unified view that is directly queried to obtain insights for supporting a

decision-making process regarding hotel and restaurant bookings. To evaluate the

efficiency and simplicity of use, we compare the overall performance of SemLinker

against another recent integration approach [52]. Next, we evaluate the effectiveness and

efficiency of SemCluster. We start by validating the algorithm’s effectiveness using two

datasets that are popular in NLP literature. We compare the overall performance of

SemCluster under optimised settings – in terms of Precision, Recall, and F-Measure –

against multiple leading algorithms in the keyphrase extraction literature, namely,

TextRank [53], ExpandRank [54], and KeyCluster [55]. We further evaluate the effect of

background information on SemCluster’s efficiency using different knowledgebase

1.7 Thesis outline 23

integration settings. Finally, we conduct a demonstrative experiment to show utility and

effectiveness of the proposed MMF in bridging data over structural heterogeneity using 3

heterogeneous gallery datasets.

 Chapter 7 presents the conclusions drawn from this research, and discusses the possible

research directions which our future work might take.

24 Literature Review

Chapter 2 Literature Review

As part of the followed DSRM methodology, it is critical to understand the state of the

data management problem in data lake [45]. Chapter 2 introduces a comprehensive review

to establish the depth and breadth of the existing body of work in data lake literature. The

presented discussions not only help in understanding the cost implications of adopting an

existing metadata-based solution for PDL, but also to pave the way for introducing the

proposed MMF and delineating how it advances on the current state of the art research.

Though this chapter mainly focuses on exploring various lake-oriented metadata-based

approaches and frameworks, additional reviews related to downstream management tasks

are covered in Chapters 4 and 5. Sections 4.1 and 4.2 explore the research works related

to (semi)structured data integration. Section 5.1, 5.2, and 5.3 review the literature of

unstructured data management with extensive focus on automatic keyphrase extraction.

To maintain the consistency of our discussions, we compile a short terminology that we

use throughout this thesis chapters, and as follows:

 “data entity” is a piece of raw data that is extracted and ingested from an external data

source. Generally, this term may refer to an object, record, file, text blob, and so forth.

 “usage workload” is the amount of processing required to meet a particular information

need given a collection of raw data in the form of datasets, individual data entities, or

a mixture of both. Data querying, integrated analysis, reporting, and summarization,

are general examples of usage workloads.

 “input source” is a private/public data source that actively or passively generates raw

data entities which can be collected by a third party data collection agent. Input sources

may range from social media, e-commerce applications, email clients, cloud services,

to (ubiquitous) applications that run on personal devices.

 “data consumer” is a third-party agent that can run usage workloads on data entities

stored with a data management system. Data consumers may be human or machine

agents.

2.1 Data lake 25

2.1 Data lake

Historically, data warehouse (DW) has long been considered by the digital industry as a

unique data management solution for centralising raw data, remedying its isolations, and

preparing it for querying and analysis to deliver accurate and timely information that

supports decision making and business intelligence processes [46,56,57]. DW is a

structured management solution that collocates fragmented data and makes it available for

use to end users based on a data processing paradigm called ETL (Extract-Transform-

Load) [46]. The first step in this paradigm (Extract) concerns pulling raw data from a set

of heterogeneous input sources on a regular cadence. An intrinsic part of this step is to

rigorously validate, using a predefined list of validation rules, whether the data extracted

from each input source has the “expected” representation details. If any data fails

validation, it will be either fully or partially rejected. The second step (Transform)

concerns treating the heterogeneities of the collected data by passing them through a series

of transformation rules, called staging functions, in order to structure it based on a

predefined “unified” schema, before ETL can proceed to the next step. Transformation

details may differ from one DW implementation to another but generally involves cleaning

[58], consolidation [59], and modelling [60]. The last step (Load) involves arranging the

transformed data into hierarchical groups, called analysis dimensions, and storing them

into a central database. Beyond this point, the processed data becomes highly structured

with enforced unified schema that can be directly utilised by usage workloads on different

aggregate levels.

With the emergence of big data, ETL paradigm has been shown to pose too many inherent

constraints on data storage and usage in a DW environment. First, ETL can process only

the types of data that are specified in the analysis requirements during DW design time,

whereas any other types are discarded [61,58]. Empirically, it is not always the case that

the all the types of data required for analysis should to be known in advance. For example,

the increasing use of services and applications by everyone produces large volumes of

personal data that, at first level, cannot be linked with any analysis requirements as the

potential wealth of information in the data is not preliminarily known, or not enough

explored. In these cases, such types of data cannot be stored in DW, instead they are held

26 Literature Review

elsewhere, thus, elevating fragmentation. Secondly, the monolithic set of transformations

and their related integration routines applied on data inputs before the loading step may

lead to two types of losses: losing the future value of data due to the physical modifications

applied on its native representations, and losing parts of the actual data contents that do

not meet the specified validation and staging criteria, even though such data might be of

potential value in future analysis workloads. Fundamentally, ETL’s imposed criteria allow

examining only a predefined subset of the data attributes, therefore only pre-determined

analysis questions can be answered in DW [42]. This limitation prevents the end users

from working on datasets in their native representations; users may have their own ideas

about how they want to use the stored data. As result, each user may need to individually

examine a dataset before devising a target data model or engineering data transformation

routines for performing a particular usage workload. In response to this stance, a new

concept has emerged in the data management landscape: data lake (or datahub). DL is

initially coined by James Dixon [42] as a theoretical methodology to address two important

problems; one is old, and one is new. The old problem pertains to data fragmentation;

rather than having dozens of independently managed datasets scattered across a multitude

of platforms, it would be very convenient, and in fact much cheaper, to centralise these

datasets into scalable flat storage space. The new problem pertains to big data initiatives;

a big data scenario usually requires large amounts of varied data, and the data is so varied

that it is not clear what it is, when it arrives, and how frequently it changes over time.

Imposing constraints on the storage of such data entails constraining its future use and

value mining. Although the popularity of DL has substantially grown in business and

scientific fields, yet there is no formal consensus on a technical definition for it. Simply

put: DL is as a data management architecture enabled by massive storage repository

principally based on low-cost infrastructure to facilitate storing huge amounts of raw data,

that for the most part, have a potential value which yet to be explored in the future [43].

ETL’s schema enforcement on input data before its storage in DW is overwhelmingly

characterized as schema-on-write [47]. In stark contrast, the DL concept originates from a

new premise called ELT (Extract-Load-Transform) [47], which emphasizes extracting raw

data from multiplicity of heterogeneous and unknown input sources, directly loading them

into scalable unified repository in “untransformed state”, and deferring all upfront data

2.1 Data lake 27

processing efforts to a later stage in the data’s lifecycle inside DL. ELT reflects significant

shifting from traditional ETL, as it allows preserving the native representations of data

upon storage by postponing the T step until the data is absolutely required for a particular

usage workload, thus, no schema enforcement is required prior to L step, and all incoming

data is accepted, without rejecting any. This idea of “load data now and deal with it later”

is usually characterized as schema-on-read [47], and it enables DL to offer empirical

advantages that cannot be gained using any other management solutions. Among these

advantages, we are mainly interested in the following:

 Loading big data is really fast undertaking and can be readily automated, as users

no longer need to define standard data models, design rules for handling cleaning,

validating, or aggregating data upon its input.

 The no-schema approach relaxes data capturing restrictions and enables complete

storage agility, this becomes very attractive when the user requires centralising a

variety of voluminous big data with unknown schemas and with rapidly evolving

structures. Data of an arbitrary type can be directly “dumped” in the lake.

 DL gives end users more power to explore big data in their own way with extreme

flexibility to impose ad hoc structures and transformations on the data as needed,

consequently, the user can ask questions that the stored data might hold answers

for, not just the type of questions that can be mentally realized during data storage,

but also new questions which were not thought of at that stage.

The above advantages are not without costs. There are doubts and concerns about the

possibility of data becoming incomprehensible due to the absence of unified schema or

similar means of data interpretation, and that the ample accumulation of incomprehensible

raw data could cause DL to drift into a data swamp. The analogy here suggests that a lake

is somehow neater and more orderly than a swamp, but the only reason it appears so is due

to the complexities hidden below the surface. In a swamp, some of the complexities are

clearly visible: the data consists of disparate datasets and isolated information silos. This

intuition is well established in DL literature. Gartner recently published a report to outline

the potential pitfalls in adopting DL as an enterprise-wide big data management solution

[62]. The report portrays DL as a “catch-all” repository where storing raw data is easy but

pulling it out – or even making sense of it – is very difficult undertaking due to DL’s

28 Literature Review

inherent lack of data governance and quality. Governance is defined as the policies and

procedures required to ensure proactive and effective data use [63]. Data quality is defined

as the state of completeness, validity, consistency, timeliness and accuracy that makes data

suitable for a specific use [64]. Dekker [65] states that data is of high quality "if they are

fit for their intended uses in operations, decision making and planning”.

Current state of the art governance and quality techniques rely on the existence of a unified

schema to define how the stored data can be systematically discovered, accessed, and used,

and what quality and integrity constraints are imposed on its usage [66]. By relinquishing

unified schema enforcement on data upon its ingestion, DL becomes a natural architecture

for agilely capturing and storing raw data with a plethora of native schemas – ranging from

relational, self-describing (e.g. CSV, JSON, XML), and schema-less (e.g. free-text and

multimedia). The downside of the offered agility is that: data in its native representations

is rarely immediately available for consumption since the end users cannot run usage

workloads on data with severe discrepancies, instead, they must wait until application-

specific schemas are defined. On one hand, retrieving raw data without known schemas

entails propagating large amounts of heterogeneous, inconsistent, or irrelevant data to the

end user [67]. On the other hand, attempting to govern data upon its retrieval from DL and

before its use is very difficult undertaking [68,69], for instance, only limited number of

quality rules (e.g. denial constraint [70]) can be defined without the need for schema

information. The work in [71] further extends these concerns by arguing that the schema-

on-read does not only enhance data accessibility and agility but also relieves the DL’s

administrators from any upfront processing burdens and squarely placing them on the

shoulders of end users in very problematic way from management perspective. Schema-

on-write approach exists for a strong reason: data with an enforced schema can be readily

understood by end users, such understanding is important for querying and utilising it [71].

To compensate for the lack of schema-on-write enforcement, the DL concept emphasizes

the following simple assumptions [42,62]:

 The user can recognise the contextual bias of how data was pulled from its sources.

 The user can accurately identify the correct data in DL predicated on its structural

characteristics.

2.1 Data lake 29

 The user knows how to reconcile the semantic and structural heterogeneities of DL

data and can readily integrate it during usage workloads.

Recent studies (e.g. [62],[71], and [72]) strongly disagree with the above assumptions on

the basis of their negative impact on DL’s applicability in the real world. For instance,

Gartner analysed DL adoption in the business domain and delineated the following:

“While many assumptions may be true for users working with data, such as

data scientists, the majority of business users lack this level of sophistication

or support from operational information governance routines. Developing

or acquiring these skills or obtaining such support on an individual basis, is

both time-consuming and expensive, or impossible.”.

[62]

Overall, this review provides an accentuated insight into the impracticality of utilising DL

stored data by unskilled end users. In any usage scenario, the user will want to retrieve

particular raw data from the lake (full datasets, or subsets of data entities), and customize

how the usage workload at hand can be executed on the data as efficiently as possible.

Before such an endeavour can take place, the user should first conduct an exploratory

analysis to identify relevant useful data. Once data is spotted, the user will need to

determine its utility and detect any anomalies that would require pre-processing (i.e.

quality) [58,69]. Unless the user already understands the data, they would need to gather

information about important facets of the data by asking questions like:

 Where did the data come from, is the source of origin reliable?

 How old is the data, are its implicit facts outdated?

 What changes occurred in the data, is the degree of its fidelity trustworthy?

 What is the contextual meaning of the data, is it really relevant?

 What is the representation of the data, is it accessible and retrievable?

 How to combine the data with other data that have been found earlier?

Finding answers to this kind of questions requires a priori knowledge regarding the lake’s

data, which is typically provided by means of the metadata technology. In the next sections

30 Literature Review

we review this technology from multiple viewpoints and describe its roles in simplifying

the user-experience for DL systems.

2.2 Metadata management

From a general viewpoint, metadata is popularized as “data about data”, or “information

about data” [73]. This definition is broad; more specific definitions have been provided in

the literature, perhaps the most comprehensive of which is the one from [74]: “Metadata

is structured data about an object that supports functions associated with the designated

object”. This notion implies the systematic organisation of the raw data based on metadata

specifications, or functions. Metadata functions may include discovery, tracking (lineage),

storage and archiving, organisation and management, privacy, query and retrieval of data

throughout its lifecycle [75]. Researchers draw on metadata functions to create typologies

categorizing desiderata metadata [76]. Enterprise DW typologies may include technical

and business, and on finer graining level, process and operational metadata [77,78].

Different typologies might also be adopted in other fields, for example, digital library and

information retrieval fields use descriptive, structural and administrative metadata [79],

database design field may use structural and guidance metadata [77,79]. Beyond labelling

and categorization, the types of metadata are meant to connect to the lifecycle of the data

entity being represented or tracked. Metadata types can collectively be thought of as

“value-added language” [73] that serves as an integrated layer in any data management

system, which if appropriately placed and made accessible, to humans and machines, can

act as eloquent language to enable the interplay between data entities stored in the system,

and a particular activity over them, such as access, linking, analysis, among other similar

directives.

While the metadata application is manifold [73], with various typologies coming from a

wide range of research fields, in the context of this thesis we focus on two frequently

adopted metadata in DL literature: lineage (provenance) and semantic metadata. Buneman

et al. [80] define lineage in the context of databases as essential management information

that specifies the origins of data and the processes by which it arrived at the database

premises. Likewise, Simmhan et al. [81] define lineage as one kind of metadata that tracks

2.2 Metadata management 31

the steps by which the data was extracted from its sources and made available for use a

management system. Semantic metadata serves as management information to describe

the meaning of its associated data, and its physical and operational attributes (i.e. schema

attributes, physical format type, structure information) [82,83]. Both metadata types may

offer sufficient governance information about the DL stored data, which consumers can

exploit to measure the quality of data and determine how it can be (pre)processed,

integrated, and utilised [68,58].

Enterprise Hadoop-based data lakes (HDL), like Hortonworks4 and Cloudera5, are salient

exemplars of a full-fledged DL system that regards lineage metadata as an enabler of data

provenance, governance, and usage [71]. The core architecture of a typical HDL usually

consists of: data acquisition system for collecting raw data from local/remote input

sources; Hadoop File System (HDFS) [84], scalable distributed flat repository for schema-

less data storage; Hadoop MapReduce [85], a software framework for processing huge

amounts of raw data stored in HDFS (or similar repositories such as HBase6); and a basic

metadata repository for managing the chain of custody and tracking the lineage of the

ingested data. Technically, HDL is a flat architecture for storing huge amounts of data in

untransformed state. Each data entity is associated with a unique identifier (key) and

lineage metadata. To prepare the data for a particular usage workload, the consumer should

conduct exploratory analysis on the lineage supplementary information associated with the

data stored in HDL to determine its sources, subsequently, the consumer may have to go

through the tedious task of carefully studying the documentation offered by each source

(e.g. database catalogues, API documentation web pages, software manuals, etc.), and

adapting suitable tools to understand the semantics of the data and its provided schema(s)

[52]. Such task is known by many terms, the most frequent of which is data stewardship,

and it enables the consumer to prepare the data for utilisation through MapReduce jobs.

Essentially, a MapReduce job is a two-step process that involves: map which concerns

retrieving data from the lake as a set of key-value pairs, and reduce which concerns

shuffling, sorting, and listing the retrieved keys into groups, where the data in each group

4 https://hortonworks.com
5 https://www.cloudera.com
6 https://hbase.apache.org

https://hortonworks.com/
https://www.cloudera.com/
https://hbase.apache.org/

32 Literature Review

shares commonalities based on user’s defined criteria. Particular groups may be selected

for further processing, and the contained data may be further pre-processed through

transformation using external ETL-like tools or ad hoc scripts before the actual usage

workload can take place.

It is well-established that metadata can play active roles in reducing manual stewardship

efforts. When metadata is managed efficiently, it can significantly improve multiple

downstream tasks in the data processing pipeline, like schema modelling, data integration,

data retrieval, and querying [77]. However, in contrast to lineage, semantic metadata may

require a dedicated process to govern the necessary activities for ensuring its consistency

and availability, including metadata extraction (or creation), metamodeling, annotation,

retention, retrieval, and maintenance. The process of managing these activities is called

metadata management, and it is problematic in dynamic environments. The work in [87]

discusses some of the main essentials and challenges in this regard. Technically, in order

for a system to exploit the full potential of metadata technology, it must be capable of

creating, and associating data with appropriate lineage and semantic artefacts that are

stored where they can be easily accessed and queried [73], indexed for consistent

availability [82,88], and nonetheless, persistently kept up to date over time [60,71,81,82],

Associations between the data and its relevant metadata artefacts should be accurate and

comprehensive in capturing and reflecting as much information about the data as possible

[82,89,90]. They should also conform to specific metadata standard(s), and made available

in an appropriate machine-readable format [52,74,79] so they can be readily and uniformly

accessed and processed, or even shared with third parties whenever needed [44].

An analogue comparative for metadata management is the management of reference and

bibliographic data (i.e. card catalogue) in brick-and-mortar libraries. Librarians often

manually add high-quality information to describe the library materials, such as their

storage and origin (i.e. lineage), what the information in them is, and how to find them

quickly (i.e. semantics). Catalogues are usually organised using a suitable management

system (e.g. Dewey decimal classification) to simplify the access and use of their contents

by librarians and visitors. Applying a similar procedure in a DL environment would be

sufficient practice to deliver effective metadata management, however, such practice may

also be impaired by obstacles pertaining to the difference between the two comparatives.

2.2 Metadata management 33

It is obvious that manually annotating big data with appropriate metadata artefacts is

laborious and time-consuming, especially if the size of data is huge, which is the most

popular characteristic of big data. In order to exploit metadata for big data management

and usage, DL administrators should create it in an easy-to-understand format and utilise

it to annotate everything in the lake, starting from highly structured data records, down to

rudimentary flat files (e.g. unstructured textual contents), otherwise unannotated data will

be invisible to consumers. The work in [82] portrays metadata (especially semantic type)

as a necessary representation of whatever data it is associated with. Like any other kinds

of representations, its raison detre is to summarize and reduce the actual content of its

associated data to a very condensed easy-to-manipulate form. One important property of

such representation is that: it is a collection of purposive artefacts that have associated

purposes, and criteria of selection and summarization, to reflect those purposes. For

example, the artefacts used to represent a review in product reviews dataset might be very

different from those used to represent an artwork in a gallery dataset, this leads us directly

to the need for various types of semantics which may have to be drawn from multiple

semantics providers (i.e. ontologies [91]). Because there is no single ontology that can

satisfy all purposes, an abundance of ontologies should be adopted to create appropriate

metadata artefacts for representing a variety of types of data stored in the lake [71,92],

while at the same time, providing ways to heuristically connect the adopted ontologies

[93,94]. Without such connections, data consumers cannot utilise disparate metadata for

integrating and utilising disparate data.

Manual metadata creation and annotation express a strategic shift of time and attention

from data consumers to administrators. Such shift involves both advantages and expensive

requirements. On one hand, the metadata artefacts created by humans are usually more

precise than those produced through mechanical processes [82], and precisely crafted

metadata can greatly enhance the quality of data and simplify its usage in various

downstream data management tasks. On the other hand, administrators, as human metadata

managers, must have concrete technical background regarding semantic technologies and

metadata management activities, for instance, a DL administrator should:

34 Literature Review

 Know precisely what artefacts to be chosen for annotating the raw data at hand.

 Recognise the well-established ontologies available in different fields, and the

semantic tractability of each ontology.

 Understand the appropriate techniques (e.g., semantic integration [94]) to establish

connections between the adopted ontologies, which are necessary for inference

over ontology-federated data representations.

 Comprehend the nature of data consumers to produce metadata artefacts that are

compatible with their data needs and requirements.

2.3 Data lake metadata management

There exists a good deal of work in DL literature that focuses on automating the core

activities of metadata management under the user’s supervision. The common goal of

existing approaches and frameworks is to dramatically reduce the costs of metadata

management within DL environments by offering the necessary means to simplify the

activities of metadata creation, extraction, annotation, querying. Data profiling [95] is the

simplest approach for creating metadata by obtaining statistics and descriptive summaries

about the raw data gathered from a given input source. Data profiling was originally

introduced to support DW MMFs in assessing data quality and identifying its anomalies

during ETL extraction and transformation steps [46]. Instance-level data profiling involves

applying statistical operations on the data contents, such as the computations of minimum,

maximum, mean, mode, percentile, standard deviation, frequency, variation, aggregates

like count and sum, as well as applying rules to determine the length, discrete values,

uniqueness, occurrence of null, typical string patterns, and abstract type recognition [58].

Schema-Level (semantic) profiling involves capturing relationships between raw data by

determining its structural and syntactic similarities using advanced techniques such as

clustering and semantic integration. Bohm et al. [96] proposed a tool called ProLOD++7

for diving deep into the all-around semantic profiling efforts ranging from clustering

correlated datasets and inferring schema in each resulting cluster, to instance- level

7 https://hpi.de/naumann/projects/data-profiling-and-analytics/prolod.html

https://hpi.de/naumann/projects/data-profiling-and-analytics/prolod.html

2.3 Data lake metadata management 35

profiling statistics. The focus of this work is limited to Open Linked Data [97] that is

strictly available in Resource Description Format (RDF) [98] format. Alserafi et al. [99]

proposed a framework for profiling similarity, both syntactic and semantic, between

datasets. This framework is based on an ontology alignment approach. Each ingested

dataset – with metadata consisting of different profiled attributes – is converted into an

RDF file. Profiling files are then sent to an RDF-based ontology engine to detect their

similarities and record them as metadata. The framework uses PARIS ontology alignment

[100] due to its robust performance on high scale RDF data. Salem et al.[69] introduce an

algorithm to govern big data and describe the quality of large datasets by detecting the

issues of each dataset and generating semantic metadata for its contents using a semantics-

based profiling algorithm. Ansari et al. [101] extend the former work and introduce a

generic framework for semi-supervised statistic and semantic profiling in any DL. The

framework implements profiling algorithm that accepts external background knowledge

about the dataset under concern, and its aim is to annotate the attributes of the dataset with

these semantics, and the final output is a set of semantic artefacts that is stored into Hive

[102], and can be directly queried by consumers. Revelytix Loom [103] is a similar but

more advanced framework that is designed as an integrated layer in enterprise HDLs for

data profiling and governance, and audit trail. The core of Loom is an extensible metadata

repository for managing business and technical metadata, including lineage, for describing

the data in HDL as well as the surrounding systems. Loom’s active scan process automates

the creation of metadata for HDL stored data. It crawls HDFS to discover and introspect

new files. Loom’s metadata repository is implemented using Hive; administrators can

directly perform CRUD operations on the stored metadata, whereas data consumers can

only read the metadata during usage workloads by executing Hive-compatible queries.

Atlas [104] is a governance and metadata management initiative from Hortonworks8 for

HDLs. This Apache framework automates the creation of metadata and defines the

relationship between the data stored in the lake. It focuses on lineage more than semantic

metadata, however additional components can be added to its architecture in order to

extend the core foundational services – an example of Atlas extensibility is given in section

4.2. Atlas enables the user to import or define ontological business-oriented metadata, and

8 Atlas was initially started by Hortonworks and then taken over by Apache as a top-level project.

36 Literature Review

to export metadata to third-party systems. It also allows the user to create and store security

metadata that specifies how data consumers can interact with the stored data, with column

and row level masking based on cell values, cell attributes, and the preferences of the user.

Regarding usage, Atlas offers (i) text-based search feature to locate relevant data and audit

events across HDL quickly and accurately, (ii) visually browsing the lineage of datasets,

thus allowing users to drill down into basic, security, and provenance-related metadata.

Atlas’s metadata repository is a graph database that is implemented using Titan9, with

multiple options to support a variety of stores for persisting the metadata graph, including:

Berkeley DB10, Apache HBase and Apache Cassandra11. It also contains an additional

repository in the form of index store for indexing data and metadata using Elastic Search

[105]. For adding metadata to Atlas’s repository, libraries that are referred to as “hooks”

can be programmatically called from various external systems such as Hive, Nifi, Falcon12

and Sqoop13. A hook captures metadata about data and events in the respective systems

and propagate them to Atlas, which in turn consumes the forwarded metadata and updates

the metadata repository. Any updates applied on the metadata repository, whether via

hooks or APIs, are propagated from Atlas to downstream systems as events. Systems like

Apache Ranger consume these propagated messages and allow administrators to act upon

them (e.g. configuring governance policies, access control, etc.). Similar full-fledged, but

commercial MMFs are also available as HDL-specific solutions, for example, Cloudera

Navigator14, as part of ClouderaEnterprise, enables the user to add and manage metadata

about the data stored in a target HDL, and offers critical metadata-based data discovery

and continuous optimisation of lineage and governance enforcement services to the HDL

user.

Shifting to current state of the art scientific research; Ground Metadata [106] is an on-

going research project aims to provide vendor-neutral (generic) management approach for

collecting contextual information in big data applications. Information may be collected

9 http://titan.thinkaurelius.com
10 http://www.oracle.com/us/products/database/berkeley-db/index.html
11 https://cassandra.apache.org
12 https://falcon.apache.org
13 https://sqoop.apache.org
14 https://www.cloudera.com/products/product-components/cloudera-navigator.html

http://titan.thinkaurelius.com/
http://www.oracle.com/us/products/database/berkeley-db/index.html
https://cassandra.apache.org/
https://falcon.apache.org/
https://sqoop.apache.org/
https://www.cloudera.com/products/product-components/cloudera-navigator.html

2.3 Data lake metadata management 37

through big data classification it, tracking the data follow with hosting application, and

monitoring who is using the data, when, how, and why. Contextual information is stored

as metadata in a SQL backend and made available for various purposes, such as data

model-specific interpretation, reproducibility, interoperability, and governance. Ground

Metadata implementation is publicly available15 but without any literature to explain its

architecture or empirical performance benchmarking. CLAMS[68] is a system to discover

and enforce expressive integrity constraints (i.e. denial constraints) from large amounts of

lake data using very limited schema information given in the form of as RDF triples. The

system is built for HDL, it executes SPARQL queries over the schema of each dataset

stored in HDFS for detecting its issues and recording them as quality metadata. CLAMS

metadata can be devised by end users as heuristics to determine how queries should be

formulated. The system is optimised to operate on distributed Spark16 for performance

gains and scalability support, therefore, it can handle huge amounts of data compared to

relational denial constraint algorithms. Datamaran [107] is a metadata extraction tool that

scans semi-structured log-like datasets stored within a DL, and extracts their structures as

schema metadata that can be used for data annotation. The extracted schema metadata can

be also enriched by extended semantic artefacts to improve data quality. Datamaran

operates as an unsupervised tool; it does not require prior knowledge for processing the

datasets under concern. It automatically identifies field and record boundaries and

separates the structured parts from the unstructured noise or formatting to tease apart

multiple structures from within a dataset. Datamaran has been shown to be able of

extracting structured relational metadata from semi-structured log datasets at scale and

with high accuracy [107]. GEMMS [90] is another MMF that extracts and manages

metadata about the data stored in a DL system called Constance [108]. This MMF aims to

generate and annotate user’s personal data in life science field by modelling it according

to a common model defined by means of an ontology. Kayak [109] is a generic framework

for managing DL contents through data staging and profiling. An extended discussion

regarding Apache Atlas, GEMMS, and Kayak, among other relevant approaches, is given

in section 4.2.

15 https://github.com/ground-context/ground
16 https://spark.apache.org

https://github.com/ground-context/ground
https://spark.apache.org/

38 Literature Review

2.4 Existing work limitations

Mainstream frameworks and tools in the enterprise are generally more biased towards

lineage than semantic metadata in terms of management, whereas their counterparts in the

scientific field take the opposite trajectory. Existing body of work expects significant

involvement of the DL user in the metadata management process for supervising its

downstream tasks, commonly creation and annotation, in efforts to ensure the consistency

and freshness of the metadata repository [108,110,111]. In Section 2.2, we listed four

requirements that a DL user must meet in order to fulfil metadata management supervisory

roles. These requirements may become costly when the DL user is considered “common

user”, which is the case of PDL. Based on the review presented in this chapter, we draw

the following observations:

 MMFs currently put into practice focus on metadata creation, annotation, and

usage but ignore another vital activity; maintenance. The reliance on metadata,

especially for usage, emphasizes the need for high-quality metadata [65,68]. When

data velocity comes into play, the quality of metadata may be drastically affected

[112], as the representation details of the data can rapidly and/or frequently change

due to schema evolutions and other external dynamics imposed by input sources.

Velocity is not problematic when the end user is skilful and expected to be actively

involved in the management process. However, when the attention is shifting

towards automating the metadata management process, then addressing velocity

through automated maintenance becomes a paramount effort.

 Most current state of the art MMFs are application-specific, designed to meet

particular requirements, and tightly coupled with specific architectures [108]. Even

when an MMF is assumed generic, it still requires a lot of efforts to facilitate its

adaptation, customization, and interoperability in other architectures. To illustrate,

we readily notice that Atlas is built for HDLs, and its adoption in another DL type

necessitates extended adoption of other Hadoop projects, such as Apache Kafka17,

which is used by Atlas as a notification server to exchange metadata over hooks

17 https://kafka.apache.org

https://kafka.apache.org/

2.5 Summary 39

[103]. Adopting CLAMS entails extended adoption of HDFS, Spark, and Hive.

Similarly, GEMMS is proposed as generic MMF, but described as a solution that

can only fit Constance architecture and its object-oriented model [108].

 The metadata management mindset in DL research is largely in accordance with

traditional data cataloguing practices. An ideal metadata management solution

should be data-driven and derive from context, such that, metadata – as purposive

representations of data – should not only be intended for answering common

questions (who, what, when, where and why) and performing integrations for data

with basic heterogeneities, but rather supporting advanced inter-play functions

over data to facilitate deep analytics over data with severe heterogeneities which

require holistic integration to squeeze more value [110]. Providing unified views

over integrated structured, semistructured, and unstructured data altogether is an

extremely complex requirement. Such complexity is further elevated by the

absence of schemas due to replacing ETL with ELT in DL architectures, as well as

the fact that unstructured data does not naturally sustain any schemas that can be

extracted and represented through metadata artefacts. That said, a sophisticated

process is required for discovering the schemas of unknown (semi) structured data

as well as building some sort of schemas for unstructured data before other

metadata management activities can take place. Such process should also take into

account sustaining the native state of data towards preserving its future value in

DL – compared to other management approaches that emphasize transforming the

structures of the (semi) structured data (e.g. DW) or even converting unstructured

data into structural entities (e.g. personal knowledge bases [36,113]). These

complexities plausibly justify why all the discussed tools tend to specialise in

handling either (semi) structured or unstructured data.

2.5 Summary

Although DW is an important data management solution for addressing the fragmentation

and isolation problems, the technical specification of its underlying processing workflow

is problematic. ETL tends to exhibit brittle performance in the presence of the 3Vs model.

40 Literature Review

Enforcing predefined unified schema upon data storage (on-write) entails a partial loss in

its value and restrictions on its future analysis. DL is a more recent data management

solution that is specifically designed to address the 3Vs model complexities. The DL

underlying workflow (ELT) entails inexplicable data storage due to the lack of an inherent

mechanism for organising the stored data and orchestrating its usage. Lack of governance

(and quality) promotes data isolations and threatens to shift DL into data swamp if not

effectively addressed. Therefore, different approaches have been proposed in the

enterprise and scientific fields to bring order to DL through heavy reliance on metadata.

The lingua franca of these approaches is to materialize data governance and quality largely

through lineage and semantic metadata. Lineage artefacts are used to track the stored data.

Semantic artefacts are used to facilitate data metamodeling with respect to predefined

ontologies, towards reconciling the semantic and structural heterogeneities of the stored

data and enhancing its discovery, accessibility, retrieval, and usage. Although metadata is

regarded in the DL literature as quintessential technology, the current state of the art

approaches suffer several management limitations which are discussed in Section 2.4, and

further elaborated in sections 4.2 and 5.1.

3.1 A Hadoop-independent data lake system 41

Chapter 3 Personal Data Lake Architecture

As presented in section 1.6, the main deliverable of this thesis is a framework (MMF) for

automating data management tasks in PDL through metadata fabrics. The focal aim of this

chapter is to describe the architecture of MMF and its position as a central layer in PDL.

In order to explain the constituting components of MMF and their roles in PDL processing

workflow, it is important to explore PDL architecture as a hosting platform. This is because

reviewing each architectural layer, the rationale behind its design, and its constituting

components, can greatly help in understanding how does MMF obtain personal data inputs,

how are they processed in ways that satisfy the requirements of an automated management

solution, and how a hosting platform can be optimised to exploit the full potential of MMF

– this is particularly important in the cases of reusability in other relevant systems.

3.1 A Hadoop-independent data lake system

At present, the DL concept is tightly linked to Hadoop’s ecosystem of Apache projects

[43]. Any organisation that seeks to develop a DL based enterprise-wide data management

solution normally adopts Apache Hadoop technologies for two reasons: cost-effectiveness,

and technological feasibility. Basically, Hadoop is a collection of open source software

utilities that have been invented to offer new ways of storing and processing big data at

limitless scale; in fact, no data is too big to be handled by an HDL. Hadoop does not require

expensive hardware, instead, it leverages on benefits from distributed parallel processing

for handling huge amounts of data. It can run on any number of cheap commodity servers

to store and process data with low-cost and high scalability according to changing needs.

Such infrastructure can easily address the 3Vs model of big data, and this is the main

reason for its wide adoption by the major enterprise organisations and service providers18.

18 List of100 major organizations using Hadoop: https://wiki.apache.org/hadoop/PoweredBy

https://wiki.apache.org/hadoop/PoweredBy

42 Personal Data Lake Architecture

 There is no formal specification (e.g. reference architecture) to describe a standard process

for building an HDL, instead, Apache ecosystem offers a vast range of utilities, each with

distinct characteristics to meet certain design requirements. Generally, the architecture of

a mainstream HDL consists of four layers: ingestion, storage, management, and access.

Each layer can be developed by drawing and mixing multiple specialised Apache

technologies. It is important to note that the HDL architectures currently put in practice

consist of too many Apache technologies19. A recent report estimates that, on average, 20

different technologies20 are needed to implement full-fledged HDL, with each technology

uses different language, manages different data types, supports particular design purposes,

etc.

Following the thesis aims set out in section 1.4, PDL is developed independently from

Hadoop ecosystem. Basically, if we utilise the technologies adopted in current state of art

HDLs as fundamental building blocks in PDL architecture, then our final solution is

certainly not usable by common users due to escalating complexities relating to user-

experience. It is impossible to have a common user with broad and deep expertise across

multiple Apache technologies, nonetheless, even if the user has such brilliance, she still

needs to fulfil management roles that are normally played by a team of experts in an

enterprise organisation. This observation emphasizes that any Hadoop-based PDL solution

would be regarded as modern PIM solution that could efficiently account for the problems

of personal data, but at an expensive cost: difficulty of use. A centralistic viewpoint here

is the ideological difference between DL and PIM: while the former is specifically

designed for skilful objective-in-nature users (e.g., data scientists, analysts, wranglers,

etc.) who look for advanced technologies to derive more value from internal and external

data in the business domain, the latter is designed for the personal domain, wherein

unskilled subjective-in-nature users look for easy ways to conveniently store, manage, and

retrieve their own data [1], and are unwilling to invest time and effort in learning how to

use complex tools to do so. To situate our viewpoint on scientific ground, we reviewed

several previous PIM studies, and found that common users may encounter difficulties

even in using PIM systems with basic functionalities (e.g., organising files [114], emails

19 List of all Hadoop projects: https://hadoopecosystemtable.github.io
20 https://hortonworks.com/ecosystems/

https://hadoopecosystemtable.github.io/
https://hortonworks.com/ecosystems/

3.2 Personal data lake architecture overview 43

[115], bookmarks [1], etc.). Common users also tend to avoid investing effort or time in

learning more about their systems, as the derived value is marginal, and eventually the

persisting difficulties affect their satisfaction with the offered user-experience in a negative

way. Boardman et al. [7] among the early researchers in PIM field to highlight this finding;

in their words:

“Since PIM is an ongoing and often repetitive everyday activity, we found

that even relatively minor bugbears can build up and have a negative impact

on productivity and/or user experience.”.

([7], p.3)

The adoption of DL concept in the personal domain necessitates taking careful design and

development considerations for a DL-based PIM solution like PDL, perhaps the most

important among which is the extensive focus on simplifying the user-experience which

such solution should be obligated to deliver whilst maintaining the robustness of the

offered functionalities. In the context of our thesis, such viewpoint has greatly influenced

our research work as will be demonstrated in subsequent chapters. Many studies in the DL

literature seem to be in agreement with our viewpoint, for instance, the work in [108]

proposes Hadoop-independent DL architecture for managing the personal data of common

users in life science field. Similarly, the work in [116] introduces ad hoc architecture for

their proposed DL without reliance on Hadoop.

3.2 Personal data lake architecture overview

PDL architecture follows a design pattern called layered pattern [117], which emphasizes

separating the components of a large architecture into similar-functionality groups called

layers. Such separation of concerns allows to flexibly encapsulate the complexity of the

workflow of a given system architecture, and facilitates higher degrees of reusability,

maintenance, and scalability [118]. For example, it is possible to deploy a new, update an

existing, or maintain a malfunctioning component in one layer without affecting other

layers within the same architecture. It is also possible to configure the security levels of

various deployed components, such as isolating sensitive components in the architecture

44 Personal Data Lake Architecture

core from the outside world whereas allowing other components to be accessible under

appropriate access permissions.

Figure 3.1– Overview of personal data lake architecture

Figure 3.1. depicts overview of PDL architecture; it consists of four layers that correspond

to the main activities of PIM organisational cycle defined by Jones [1], namely: ingestion

layer for personal data acquisition (and creation), metadata management layer for personal

data organisation and maintenance, storage layer for personal data archiving and storage;

and access layer for personal data use and sharing. Each layer in PDL interacts with its

peers through processing pipelines. A pipeline is a predefined sequence of processing

components where the output of one component (e.g. raw data, metadata, business logic)

is moved as input to the next inter- or intra- layer component until reaching the last

component in the sequence. The underlying ELT of any DL is rigorously reviewed in

section 2.1. In following, we define two pipelines that constitute PDL’s ELT.

Storage pipeline: Extract-Manage-Load activities sequence for processing input

raw data. The first activity concerns ingesting personal raw data from input sources

through the ingestion layer. Ingested data is dispatched to the management layer in

the second activity for metadata processing (creation, annotation, maintenance,

3.3 Ingestion layer 45

storage). The final activity involves dispatching the raw data and information about

its associated metadata to the storage layer for permanent archiving.

Usage pipeline: Load-Transform-Use processing activities for utilising the stored

data. The first activity concerns receiving an input query formulated either directly

by the user or more commonly through a third-party service plugged in the access

layer. The input query is dispatched to MMF for compilation and execution. MMF

is responsible for loading all the raw data stored in the storage layer which is

relevant to the query’s requirements. In the second activity, the loaded data is

organised based on its associated metadata (views), with possible transformations

that are called virtual transformations, and returned to the access layer as query

results. The final activity involves the direct use of the results, or processing it

before it can be used to serve the query issuer’s requirements.

In the remainder of this chapter, we construe each layer in PDL architecture and its

relations with the proposed MMF to illustrate how the latter is handling the ELT specified

above.

3.3 Ingestion layer

Data ingestion is an input process that concerns controlling the flow of personal raw data

from its original sources to the lake. Technically, there are two issues to consider in

personal data ingestion: PDL must support the end user in ingesting raw data from a range

of target input sources regardless of their “offered” data collection mechanisms. Though

service providers commonly serve data collection via RESTful APIs [119], not all personal

data sources offer the same means, instead they may offer collection through application-

specific protocols (e.g. SOAP, SPARQL, SMTP, etc.), or not exposing any explicit means

at all (e.g. PC software applications, smartphone built-in services) [36]. Secondly, PDL

should relax ingestion constraints to offer unlimited data capturing potential, which entails

that the ingestion process should be comprehensive in collecting data from input sources

regardless of their data generation modes (active/passive), the native representations of

their offered data (schema, format, structure type), and its velocity over time.

46 Personal Data Lake Architecture

Figure 3.2– Overview of ingestion layer

PDL contains a layer called ingestion layer that serves as the entry point of the architecture

as depicted in Figure 3.1. This layer is designed with extensive focus on addressing the

aforementioned ingestion issues. The main functionality of ingestion layer is to automate

the process of personal data ingestion and to help the PDL user in keeping the stored data

up to date by synchronizing PDL with all the data sources which are of interest to the user.

As depicted in Figure 3.2, ingestion layer consists of three components: public RESTful

web API called Data Source API (DSAPI) which accepts data from the outside world as

new inputs, Ingestion Agents Container (IAC), a plugging-enabled platform for running

third-party software agents that specialise in collecting data from target input sources, and

Messaging Queue, a data persistence component to temporarily hold newly ingested data

before the storage pipeline becomes ready for processing it.

3.3.1 Data ingestion approach

The underlying workflow of ingestion layer is conceptually based on data synchronization,

a general management process concerns establishing and maintaining the consistency of

data between two or more parties [120]. Synchronization is a fundamental process in many

research areas, such as personal and enterprise data collection [36], mobile data backup

3.3 Ingestion layer 47

[120], and sensory data management [121]. Generally, there are two kinds of data

synchronization: directional and bi-directional. In directional synchronization, a party 𝐴

monitors data changes in a target party 𝐵 over time so that any data not existing in 𝐴 is

propagated from 𝐴 to 𝐵. In bi-directional synchronization two parties are monitoring the

data changes in each other, so that any data not existing in one party is propagated to the

other. The workflow of ingestion layer follows directional synchronization, such that, the

ingestion layer exploits software agents to monitor target data sources, when an agent

detects new personal data on a target source under monitoring, it issues a data collection

request to that source, and upon the request’s approval, the agent connects to the endpoint

of the target and transfers any new data updates to the PDL premises in the form of

payloads that are posted to DSAPI and eventually deposited in the messaging queue. There

are two methods for implementing directional synchronization between PDL and a target

input source which are local agent-based synchronization (LAS) and remote agent-based

synchronization (RAS). In following we describe the details of each method.

Local agent-based synchronization

The LAS method solves the problem of personal data extraction from input sources with

different kinds of endpoints through plugging, a feature that enables the user to plug one

or more software agents (called LAS Agents) in the IAC component to automate data

ingestion from particular input source(s). A LAS agent is technically an open source

executable code (e.g. class, library, package, etc) that is independently developed and

distributed by a third-party developer. LAS agent operates inside IAC as a one-way adapter

between DSAPI and the endpoint of a target data source, its role is to establish an end-to-

end communication channel over which PDL initializes and respectively maintains data

synchronization with the target source. The workflow of LAS agents is as follows:

 Upon deployment in IAC, the LAS agent loads a set of user-managed configuration

settings that describe the agent’s ingestion behaviour, including: what target sources

the agent is allowed to connect to, how to connect to each target source, and what

personal data it should be extracted and propagated to PDL.

48 Personal Data Lake Architecture

 The LAS agent establishes a connection with the remote endpoint offered by the target

source at hand, and satisfies all the networking and security requirements imposed by

it (e.g. authentication and authorization, permissible end point requests etc.).

 Upon successful connection with the target’s endpoint, the LAS agent accesses user’s

space hosted in that target source (e.g. social media account, cloud storage folder, etc.),

and extracts any personal data that has been actively/passively generated by the user

on the platform of that source.

 The LAS agent propagates all the extracted personal data over the established

communication channel to PDL. Data propagation is performed as authorized API post

calls to DSAPI over HTTP. Once newly extracted payloads are posted by the LAS

agent to DSAPI, the latter ingests and respectively stores it in the messaging queue

component for later processing by the metadata management layer.

 Beyond this point, PDL is said to be synchronized with a target data source, and

thereafter it is the agent’s responsibility to maintain this synchronization over time by

triggering periodic synchronization cycles. Each cycle involves repeating the above

steps in order to propagate any new data generated by the target input source, and

which have not been extracted in the previous cycle.

Remote agent-based synchronization (RAS)

LAS agents automate data ingestion from input sources with dedicated endpoints, however

not all input sources offer such lavishness, and this is where RAS method comes into play.

RAS relies on executable code units called RAS agents to ingest data using source-specific

(ad hoc) personal data collection means. In contrast to LAS, a RAS agent is not locally

plugged in IAC platform, but rather is designed as an installable software program that

runs as a background process in the platform that runs a target input source of interest to

the user. A RAS agent acts as: (i) virtual endpoint for input sources operating on personal

devices which commonly do not expose explicit endpoints, such as ubiquitous sensors and

applications locked by their vendors (e.g. Skype21), and (ii) one-way synchronization

21 Skype is a third-party service that acts as data silo by locking in user data with no programmatic access

point, however, its backend is SQLite database that is persisted locally on the device hosting it, hence,

synchronizing it with PDL is possible using purpose-built RAS agent that can directly access the database

and scan newly added data.

3.3 Ingestion layer 49

adapter between the operating system of a personal device and DSAPI. RAS workflow is

similar to the LAS counterpart that is explained earlier but with a single difference, the

execution environment of the agent.

Figure 3.2 depicts an example of directional synchronization between PDL and six target

sources denoted as {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6}. The sources 𝑆1, 𝑆2, 𝑆3 are third-party services

independently run on remote platforms managed by different providers. These services are

monitored by two LAS agents that run inside IAC with request/response communication

channels to collect personal data through the public API offered by each service platform,

for example 𝑆1 offers API that allows the agent LAS2 to collect data in the form of GZIP

payload, similarly 𝑆2 offers API that allows the agent LAS1 to collect data in the form of

XML payload. Figure 3.2 also depicts another three target sources, namely 𝑆4, 𝑆5, 𝑆6,

which are applications running on different personal devices (e.g. PC, smart phone, smart

tablet, etc.), each contains an internal RAS agent that pushes new personal contents

directly to DSAPI in the form of payloads serialised in a format called PDLSF (see section

3.3.2 for more details). It is not necessary to have a LAS/RAS agent that corresponds to a

single input source in one-to-one fashion, instead the same agent may be used to

synchronize PDL with multiple target sources (i.e. one-to-many). For example, Figure 3.2

depicts two LAS agents that are plugged in IAC; namely LAS1 and LAS2. The former

synchronizes PDL with two social media services (𝑆1,𝑆2) whereas the latter synchronizes

PDL with a cloud-based storage service (𝑆3). Analogously, the agent RAS1 is used to

synchronize PDL with 𝑆4, 𝑆5, 𝑆6.

3.3.2 Metadata-added data ingestion management

Filling DL with raw data from a variety of input sources is not an easy task, this may

explain why Hadoop ecosystem offers several ingestion-specific Apache projects for

fitting different data collection requirements. LAS/RAS methods greatly simplify the

filling process in PDL by relying on specialised agents to isolate the common user from

the technical details of the data ingestion. In order to add22 new input source to PDL, the

22 Throughout this thesis, we refer to the procedure of synchronizing PDL with a new input data source of

interest to the user as source addition.

50 Personal Data Lake Architecture

user must select an ingestion agent that is compatible with that source, configure it with

appropriate settings, and finally deploy it, whether in the IAC (LAS) or on a personal

device (RAS).

a. Ingestion settings sample

b. Ingested data in PDLSF format

Figure 3.3– PDLSF object propagated by LAS agent to DSAPI

There are two kinds of settings associated with each ingestion agent in PDL environment:

technical and PDLSF settings. Technical settings are similar to the technical metadata

heavily used in DWs, but with less verbose structuration, and their main utility is to govern

how the ingestion agent connects to the endpoint of a target data source, and how the

synchronization cycling should be established and maintained. From finer grained

perspective, technical settings are divided into: security, and synchronization. It is well-

known fact that most service providers offer endpoints that are wall-gardened with a

lightweight security mechanism called OAuth [122] to protect their platforms from

malicious access attempts by unauthorized third parties. DSAPI implements OAuth for the

same purpose (see Figure 3.2). When a data source 𝑆𝑖 offers an explicit OAuth-enabled

endpoint, then a compatible ingestion agent would certainly be LAS, thereby as an adapter

between a pair of endpoints it requires two separate sets of security settings: one for

delegated access to 𝑆𝑖 endpoint, and another for authorized access to PDL’s DSAPI. In

contrary, if the data source is a service running on personal devices then the agent is likely

3.3 Ingestion layer 51

to be RAS, therefore only one set of security settings is required for connecting with PDL’s

DSAPI. A set of Security settings includes: endpoint address (URI), secret key, and access

token [122]. A set of Synchronization settings include: cycle interval (sync cycle) which

is an integer number specifying the time period between two synchronization cycles, and

connection timeout which is an integer number specifying the time that the agent should

take for the endpoint to send a response payload. Figure 3.3.a shows an example of security

and synchronization and settings for a LAS agent that is configured to synchronize a PDL

instance with a Facebook account over Facebook Graph API [256].

Common users usually have very abstract idea about the “types” of their personal data

residing in a source of their interest. For example, it is a common sense for the user to

assume that social media services deal with posts, mailing services mostly deal with email

messages, and so on. If such abstractions are interpreted by means of semantic information

(or concepts) that can be drawn from a formal ontology, denoted as 𝑂, then they can be

easily shared with PDL. For instance, given the concepts feed and email from 𝑂, the

former is an obvious choice to convoy the type of the data ingested from a social media

service, and latter for data ingested from a mailing service. To support type conception

sharing, we define our own serialisation format, called personal data lake serialisation

format (PDLSF), that every ingestion agent must follow for submitting personal raw data

with basic type concept to DSAPI. The description of PDLSF format settings, their

permissible values, and the responsibility of value assignments for any LAS/RAS agent

are listed in Table 3.2. In a synchronization cycle, the agent renders the raw data extracted

from an input source as PDLSF object before submitting it to DSAPI. A PDLSF object is

technically an HTTP raw message that follows a formal specification called HTTP

Multipart Messaging [123]. A PDLSF object consists of two consequent sections: meta

and raw. The meta section holds a JSON object that consists of the four attributes as listed

in Table 3.1. The corresponding values of source and type are manually specified by the

user upon the deployment of the agent in IAC (i.e. source addition). The remaining

attributes are set by the developer of the agent, and can be overridden by the user as

desirable. The raw section holds the data payload extracted by the agent from that target

data source with native representation that is preserved intact. Figure 3.3.b illustrates an

example for serialising personal raw data collected from Facebook API and serialised in

52 Personal Data Lake Architecture

PDLSF format based on the PDLSF settings defined in Figure 3.3.a. The depicted PDLSF

object here can be directly pushed to PDL’s DSAPI over the established communication

channel between PDL and Facebook. During our experiments with PDL, we observed that

the conception of various types of structured and semistructured raw data can be readily

abstracted using ontological concepts. Conversely, such undertaking for unstructured data

is relatively difficult, therefore we relax the DSAPI constraints by permitting LAS/RAS

agents to submit PDLSF objects that contain unstructured raw data in the raw section (by

means of assert), and which contain type attribute in the meta section with missing value

(null), to DSAPI. Consequently, the responsibility of abstracting the type of unstructured

data is placed elsewhere in the storage pipeline (see Chapter 5).

Table 3.1 – PDLSF metadata settings

Setting Type Tracking User-defined Functionality

Source URI Semantic Yes
To distinguish a target source from

other sources in PDL.

Type URI Lineage Yes
To express type of data in the form

of concept drawn from 𝑂.

Context Hash Lineage No
To represent the unique identifier

of the ingestion agent.

Assert Numeric Semantic No
To specify the structure type of

input source data.

3.4 Metadata management layer

As ingested raw data accumulates in PDL over time, usage interposition tasks like data

discovery, identification, tracing, and querying, increasingly become difficult to perform

without an automated user-assistance management approach. This problem is not specific

to PDL; we explored several studies that share the same concerns in section 2.2, that is:

DL’s natural lack of data governance and quality risks turning it into useless data swamp.

As depicted in Figure 3.1, at the heart of PDL architecture lies the metadata management

layer that is responsible for data management through formal metadata fabrics. This layer

3.4 Metadata management layer 53

is resembled by our proposed MMF and in the following subsections we explore its main

foundations, architecture, and workflow.

3.4.1 Metadata in personal data lake context

MMF adopts two types of metadata for managing the personal data stored within PDL:

lineage (or provenance [81]), and semantic metadata. The term “lineage” can be viewed

as a concatenation of two parts [80]: line and age. The first part involves maintaining

information to describe the input source of the raw data at hand, how the data is collected

from that source, and when [124,125]. The second part involves maintaining information

to specify who accessed the data, what changes have been applied to it during its lifecycle,

who made such changes, and using what tools [125]. In PDL environment, lineage

metadata is largely useful for exploratory analysis during usage workloads such as

identifying all the data extracted from certain input source(s); ingested through specific

ingestion agents; collected on specific dates and times, and so on (see section 2.2). In this

work, we further extend the functionality of lineage metadata to provide basic but effective

privacy measure for controlling data accessibility and protecting user privacy.

Semantic metadata on the other hand is a significant source of prior knowledge for

supporting data usage workloads. The common user, as well as authorized data consumers,

may consult MMF to retrieve the necessary semantic metadata artefacts to understand PDL

data and to determine how it can be efficiently exploited for creating new knowledge and

deriving value [58,68]. Another approach is to directly operate on the metadata level

through query formulation and delegate MMF to automatically process input queries, then

retrieve and combine the results of each query to present them to the end user (human or

machine agent) in an easy-to-understand form. The first step for materializing such

approaches is to maintain machine-readable metadata artefacts that serve the following

purposes:

 Formally describing raw data from conceptual point of view.

 Formally describing the physical and operational attributes of the raw data.

Regarding the first purpose, semantic metadata aims to add contextual meaning to raw

data [82], independently of its native representations [71]. The contextual meanings

54 Personal Data Lake Architecture

expressed by formal artefacts provide a characterization of the conceptual elements by

which the data consumer can understand what the data under concern is about, and how it

is relevant to a particular information need [83]. Semantic metadata can be expressed in a

wide range of languages; from natural to formal directive/descriptive languages, and with

a vast range of vocabularies; from primitive – based on a set of agreed upon terms – to

complex ones – with agreed upon taxonomies and thesauri. The simplest form of attaching

semantic metadata to raw data is via tagging. Adding a concept to the PDLSF setting

“type” in ingestion agents is an empirical example of metadata tagging. Regarding the

second purpose, semantic metadata can collectively describe the physical representations

of personal data including:

Data Schema: semantic artefacts can adequately express the contextual meaning

of the elements (attributes) constituting the physical (or logical) schema of the raw

data from conceptual point of view, for instance, specifying the semantic meaning

of a column name in relational data, key in JSON object, tag identifier in XML

fragment, keyphrase in a document, and so on. Schema-oriented metadata may also

describe the datatype of a schema element (e.g. string, integer, float, Boolean, etc.).

Data Structure & Format: semantic artefacts can also express how the raw data

is structured and formatted, for instance, specifying whether the data is relational,

CSV, JSON, XML, free text, binary, photo, video etc. they may also describe the

structural organisation of raw data, for instance, whether a given key-value pair in

a JSON object is an attribute, object, array, nested object, etc., whether the naming

type of a tag in an XML fragment is item, list, array, and so forth.

In the context of this thesis, we refer to representation-oriented semantic artefacts as

schema metadata. An important perspective of metadata management is precision.

Precisely produced metadata artefacts enable data consumers to efficiently determine what

data should be excluded or included during usage workloads, whether for reasons of

irrelevance, inappropriateness, or even redundancy. That said, the less precise semantic

metadata, the vaguer it becomes, and intuitively, the more precise semantic metadata, the

more “value-added” it offers. The degree of precision may drastically affect MMF utility;

when semantic metadata is too general, the common user may find it difficult to determine

3.4 Metadata management layer 55

the relevance of particular data in PDL, on the other extreme, too specific semantic

metadata may degrade the overall performance of data access and retrieval. Ontologies are

one of the most common means to specify the structure and modelling of raw data. The

concept of ontology is “formal, explicit specifications of shared conceptualizations” [91].

Conceptualization refers to the conceptual modelling of some phenomenon in the world

(personal data in this case) and involves identifying the relevant concepts of that

phenomenon, the types of these concepts, the constraints on their use, and the relationships

between them. Shared refers to consensual knowledge expressed by the ontology, i.e., it

should not be understood by the common user only, but rather, accepted by a large group

of other consumers. Formal refers to the fact that the ontology should be machine-

readable. Not all ontologies have the same degree of formality, neither do they include all

the components that could be expressed with formal languages, such as concept

hierarchies, formal axioms, disjoint and exhaustive decompositions of concepts, etc. Due

to formalism variance, ontologies may be broadly classified as [126]: lightweight or

heavyweight. MMF adopts both kinds of ontologies for managing different types of data

(see sections 4.5 and 5.4). MMF generates metadata artefacts that are always drawn from

an ontology, and utilises them to annotate any raw data ingested by PDL.

3.4.2 Metamodeling approach

A metadata management solution that operates within PDL environment should be capable

of handling metadata in a generic way for two reasons: (i) input raw data is likely coming

a variety of data sources and with severe representation heterogeneities, and (ii) the

maintained metadata may be utilised by multiple parties, with each party (i.e. the PDL

user, third-party consumers) interacting with the metadata has its own characteristics and

operates on the managed data for specific purposes. Accordingly, our proposed MMF has

to apprehend a generic metamodel for metamodeling a constantly expanding variety of

raw data accumulating in PDL over time, and it needs to be extensible for accommodating

various information needs imposed by all the parties interacting with PDL. Nevertheless,

such metamodel should offer formal and unified access to the data on the metadata level.

In order to meet such requirements, one can follow a metamodel design standard. There

are many standards proposed in the data management literature. Common Warehouse

56 Personal Data Lake Architecture

Metamodel (CWM) [127] is a well-established specification for metadata modelling in

DWs, it defines a standard for data exchange between DW and other systems in distributed

heterogeneous environments. CWM extensively focuses on the metadata relating to DW.

Since our focus is on DL-oriented metamodeling, we observed that there are some more

metadata that need to be modelled in order to support user-assistance data management,

which CWM does not cover. For example, CWM does not support annotating the native

schemas of raw data with semantic (or schema) metadata due to the effect of schema-on-

write approach followed by the ETL paradigm. CWM also cannot be easily extended

through adding new external elements, which contradicts the requirements discussed

earlier. Another approach is to follow SM4AM [128], which proposes a generic and

extensible method to define and model metadata artefacts for user-assistance data

management with extensive support for analysis workloads. SM4AM offers semantic

awareness by leveraging RDF formalisation to express the metamodel. Therefore, the

derived metadata artefacts are formal, machine-readable, and interoperable by third

parties. In SM4AM, the metamodel level is used as the unified formalism of the metadata

that is generated for data coming from heterogeneous systems. For each system (personal

data source in the context of this work), the metamodel facilitates instantiating specific

model to reflect the physical representation of the source’s offered data. The initiated

model may vary depending on the representation of the data and the details of its source.

However, the metamodel is common over all the initiated models. It is noteworthy to

mentation that SM4AM uses the concepts of dictionary and type. To offer additional

explicit details for the user regarding specific data model, SM4AM captures finer-grained

information about type conceptinions and maintains it in type – similar to PDLSF type

setting. Different sources may have different specifications and purposes. A dictionary

defines the set of potential methods, algorithms, or metadata types that are applicable to

the source’s data depending on various physical details (i.e. type, structure, schema

complexity, etc.). We believe that SM4AM is an excellent specification to follow and the

only drawback here is that: it is specifically designed for business domain, therefore we

are bound to adopt its specification only as a guideline for the design of MMF’s metamodel

rather than reusing it.

3.4 Metadata management layer 57

Figure 3.4– Overview on the three-level metamodel of MMF

MMF defines an abstraction of three modelling levels: metamodel level, model level, and

instance level, as depicted in Figure 3.4. By ignoring the implementation details for now,

the metamodel level consists of two generic extensible ontologies, each offers flexible

interoperability across wide range of data sources and types, and is maintained by a

specific MMF component (see sections 4.4 and 5.4.1). The metamodel level is designed

to capture all the metadata types discussed in section 3.4.1. It is extensible, and allows the

user to add particular elements that conform to the conceptualization of a given ontology

as per evolving needs and requirements over time. The metamodel level is also designed

to support personal data querying on the metadata level, though it can be easily extended

to support other tasks afterwards. The next level is the model level which consists of a set

of models corresponding to the representations of different personal data stored in PDL.

A model in MMF is constituted by a set of formal mapping artefacts that aim to map

various aspects of the data under concern to their appropriate counterparts in metamodel

(ontological concepts and properties), each artefact can be either a direct mapping, or an

operator-based mapping assertion (e.g. virtual transformation – see sections 4.5.4).

58 Personal Data Lake Architecture

Mappings are formal because they are expressed using RDF to support semantic inference

among other operations. Two components of MMF, called SemLinker and SemCluster, are

responsible for creating and maintaining models for any ingested raw data in fully

automatic fashion. Instance level is the lowest level and it is resembled by the native

representations of the personal data stored within PDL in their raw forms. A model at the

instance-level consists of physical schema elements, where each element is mapped to its

reflection counterpart (typically ontological property) in metamodel level. Not all the

elements in an instance level model must be mapped. This aspect offers more flexibility

in modelling raw data even if its native schemas are not full-fledged or known in advance,

we refer to incomplete modelling as partial unified viewing. Chapters 4 and 5 cover the

implementation details of MMF’s metamodel and the overall metamodeling approach,

furthermore, Chapter 6 presents several scenarios to delineate the utility of this metamodel

in real world.

3.4.3 MMF architecture overview and workflow

The MMF architecture consists of three components: Lineage Manager, SemLinker, and

SemCluster. In following we give an overview of each component and its roles in MMF.

Lineage manager

The lineage manager is the MMF component that is responsible for lineage metadata

management in PDL. From operational viewpoint, this component is a simple data flow

system that controls PDL’s data storage and usage pipelines, and records various lineage

information regarding the flowing of personal data in each pipeline. Lineage manager

consists of three components; PDLSF parser, lineage database, and query engine. PDLSF

parser consists of a collection of internal parsers that specialise in deserialising data that

exists in various physical data formats, ranging from standard to semi-standard ones.

Among these parsers, PDLSF deserialiser which converts input PDLSF objects into their

original HTTP Multipart form (i.e. meta and raw sections), and Apache Tika [129]; a

toolkit that detects and extracts metadata and unstructured raw contents embedded in

3.4 Metadata management layer 59

hundreds of formats23 (e.g., PPT, XLS, PDF, etc.). The predecessor of PDLSF parser in

the storage pipeline is the messaging queue component (see Figure 3.1). PDLSF parser

pulls PDLSF objects from the messaging queue in FIFO fashion. Each pulled object is

deserialised by invoking PDLSF deserialiser, then parsed by Tika to collect the metadata

artefacts composed by the ingestion agent in its meta section, and to extract the raw data

held in its raw section. During parsing, the PDLSF parser assigns an immutable hash key

to the data entity at hand, which represents its global unique identifier during its life cycle

inside PDL. Various lineage information about the data entity may be collected during

parsing, including: its input source, its ingestion agent, processing timestamp, and any

standard meta information associated with it (e.g., title, size, copyrights, etc.). Extracted

lineage information is stored in the lineage database. Finally, the data entity is pushed to

the next components in MMF for metadata processing.

Lineage manager offers three default personal data access control settings: public, private,

and custom. public indicates that the data and its associated metadata are freely accessible

by any third-party consumer via access layer. private setting indicates that data and

metadata are solely accessible by the PDL owner. custom setting enables the owner to

grant/revoke access of third-party consumers on an individual basis. Configuring access

control settings may be applied on the data source level or entity level. This enables the

owner to grant appropriate access to all the data ingested from a single input source, and

blocking access to specific entities among them, or vice versa. By default, ingested data

without user-defined access control is treated as private data. Security settings are stored

in the lineage databases. The query engine offers the PDL owner, and other data

consumers, SQL querying service to consult the lineage metadata during exploratory

analysis. The query engine permits read-only (Select) queries on the lineage database, and

all security settings are only accessible by the owner. Any data entity, that is loaded from

the storage layer and returned to the access layer as a result of query execution over the

metamodel of MMF, is reviewed by the lineage manager to determine whether the query

issuer has the right permission to access and process it.

23 https://tika.apache.org

https://tika.apache.org/

60 Personal Data Lake Architecture

SemLinker and SemCluster

In distributed computing environments, designing a comprehensive solution for managing

heterogeneous big data using a single underlying management strategy is an impractical

undertaking [111] due to the severe heterogeneity arises from big data structural

representation types (structured, semistructured, and unstructured) [130]. Each structure

type may impose specific requirements that the management solution must meet using a

compatible management strategy, for instance, a data integration approach, that operates

on the schema level of (semi)structured data, may be capable of remedying isolation issues

pertaining to the structural heterogeneities, however such approach may rapidly become

useless when operating on unstructured data due to the lack of explicit schemas. In order

to address the structural heterogeneity of big personal data, we utilise two strategies that

are resembled in MMF as two components; SemLinker and SemCluster. Each component

can be viewed as a complete metadata-based data management system that operates on

specific structuration; the former specialises in managing structured and semistructured

data, whereas the latter specialises in managing unstructured data. As depicted in Figure

3.1, the lineage manager is the predecessor of SemLinker and SemCluster in both

processing pipelines, and represents the entry point to each component in terms of

data/query inputs. When the lineage manager finishes processing a newly ingested PDLSF

object, the contained data entity and its associated metadata are dispatched to the

specialised MMF component for semantic metadata processing (i.e. creation, annotation,

and maintenance). Lineage manager selects the right component depending on the value

specified in the assert attribute inside the meta section of the PDLSF object at hand (see

Table 3.1). As listed in Table 3.2, the data entity is structured when assert=1,

semistructured when assert=2, and for both cases, SemLinker is selected as the right

component to process the data entity. When assert=3 the entity is unstructured text (e.g.

PDF, word processing, etc.) and in this case the entity is dispatched to SemCluster. Finally,

when assert=4 the entity is of another unstructured type (e.g. multimedia, binary file), and

in this case the entity is directly dispatched to the storage layer without further metadata

processing (see MMF limitations in section 7.2). A data entity dispatched to SemLinker or

SemCluster passes through exhaustive metadata management workflows which are

3.5 Storage layer 61

construed in Chapters 4 and 5. Both components are predecessors to the storage layer

components.

Table 3.2 – Metadata processing applicability based on structure types

Structure Type assert Lineage M. SemLinker SemCluster

Structured 1 √ √ X

Semistructured 2 √ √ X

Unstructured (text) 3 √ X √

Unstructured (generic) 4 √ X X

3.5 Storage layer

Storage layer represents the “backend” of PDL architecture and its main functionality is

to store personal raw data and information about its associated metadata. To deliver

attractive user-experience, PDL needs to make sure that its user can access personal data

quickly and conveniently, a paramount effort emphasized by Memex seven decades ago

[131]. Essentially, accessibility can be greatly enhanced in a data management solution

when the adopted storage approach is optimisation-oriented; this concerns not only where

to store the data, but also how it should be stored to facilitate later efficient retrieval.

Optimising data storage contributes, to a large extent, in improving the performance of

MMF and enabling it to cope with surges in data demand imposed by different use

scenarios within PDL. The first step towards delivering such optimisation objective is to

carefully consider how the backend is designed and implemented. An intuitive option is to

build from scratch a database system that is specifically designed to meet PDL empirical

requirements, however, the trade-off of such option is forfeiting several advantages that

could be gained from reusing an existing databases system, the most obvious of which is

the fact that a mature software with proven efficacy is probably more reliable and requires

less development and maintenance efforts. With this purely practical consideration, there

are several criteria questions a one should regard for undoubtedly choosing the right

database for PDL, and as follows:

62 Personal Data Lake Architecture

 What kind of data model should the database support?

 What kind of query language does the database offer?

 How flexible the database scales up in future?

 How reliable the database for housing the entire black box of the user?

Multiple other criteria that relate to distributed computing are often considered in the

development of enterprise DL systems, mainly including: maintainability, availability, and

cluster-based shredding. In this work, any criteria beyond the listed question are discarded,

since unlike enterprise DLs, PDL is certainly designed for individual users and is expected

to run on single machines not distributed clusters.

3.5.1 Database selection

Until recently, relational databases have been always considered as the perfect backend

for almost all data management systems, mainly due to the effectiveness of their ACID

properties [132]. However, the emergence of big data movement has rendered this kind of

databases as obsolete in modern data management systems [133,134]. First, the data size

has increased tremendously, relational databases find it very challenging to handle huge

data volumes, and addressing this issue is only feasible through vertical scalability which

entails incurring more computational hardware power. Secondly, the majority of big data

comes in semistructured and unstructured formats, whereas relational databases are

designed to accommodate structured data (e.g. transactional, sensory, and financial). The

necessity for finding effective alternatives has led to the emergence of NoSQL databases.

The term NoSQL24 was first introduced in 2009 to describe non-relational databases like

Google BigTable25 and since then it is widely adopted in enterprise and academia. The

notion “NoSQL” is not really accurate because NoSQL databases rarely fully drop the

relational model [135].

In spite of being a recurrent theme in big data research, NoSQL covers a vastly broad

spectrum of very distinct database systems [133], their common characteristic is trading

ACID in exchange of relaxed storage constraints, optimised data read and write, flexible

24 This term was originally suggested in 1988 to describe databases that did not use SQL interfaces [136].
25 https://cloud.google.com/bigtable

https://cloud.google.com/bigtable

3.5 Storage layer 63

horizontal scalability, beside other performance gains [136] that are not related to our work

(e.g. availability, distribution). Researchers in the database literature tried to categorize

NoSQL databases and identify their kinds based on the design architectures and goals they

support. As a result, they suggested grouping the databases of different vendors into four

broad categories [133,136]: Document based, Column based, Graph based, and Key-value

(KV) based. Table 3.3 lists a general comparison between the general properties of each

category. Currently, there are scores of NoSQL databases, and each may exhibit optimised

performance in particular big data scenario [133,135,136]. To find the “right” database for

PDL, we need to base our selection on solid performance benchmarking that is verified by

multiple studies which exhibit interests similar to ours. The studies in [137-142] introduce

empirical performance evaluations for a multitudes of NoSQL databases that belong to

different categories, using YCSB [143], a benchmark platform offered by Yahoo! for

evaluating databases performance, particularly NoSQL.

Table 3.3 – Types of NoSQL databases

Category Model Description Model Aspects

 Pros Cons

 Document

Every item is stored as a pair of

key, and a complex data structure

called document.

Unknown data

storage; Data nesting.

Slow CRUD and I/O;

Lack of join queries

 Column
Items are stored in columns

instead of rows.

Huge storage;

Flexible scalability;

Undefined data usage

pattern.

 Graph

Items are stored as nodes in

network and edges between them

to represent their relationships.

Flexible typed

relationships;

Advance querying

capabilities.

Limited scalability;

Limited applicability.

 KV

Every item is stored as an attribute

name (key) together with its

corresponding value.

Unknown data

storage; extremely

fast CRUD;

Basic querying

capabilities; Lack of

rich indexing

These studies share the same conclusion: Redis [144] is significantly superior in terms of

data read/write performances and generic applicability, compared to almost all current

state of the art NoSQL databases. The covered experiments indicate that Redis is so fast

that it requires overall 1.52 seconds to read, write, and update 600K data items in three

64 Personal Data Lake Architecture

subsequent workloads [140,141]. The reason of performance superiority is mainly

attributed to the underlying design of Redis as an optimised in-memory KV database, such

design is typically regarded by the database community as a trade-off, because it entails

volatile storage mechanism; any memory interruption will lead to losing the stored data.

However, Redis is equipped with built-in snapshotting and journaling approaches to

conveniently persist the stored data on the disk, thus overcoming the volatility issue. Redis

is pure KV database; it fully drops the relational model and embraces representation-

agnostic model, thus, any possible data item can be associated with a unique key and stored

as key-value pair without further assumptions. This schema-less storage style is the main

reason for its applicability in any possible big data scenario. Beyond experimental

evaluations, Redis is highly reliable and scalable open source software that is currently

adopted by scores of dominant service providers26 in the digital industry for different uses,

including: full-fledged database, cache server, or messaging queue. For instance, Twitter

uses Redis as its main cache server and has scaled its storage capacity up to 105 terabytes.

Based on these characteristics, we believe Redis is well suited to meet our criteria

specifications better than any other current state of the art NoSQL database.

Existing HDLs favour document and column database types (e.g. Cassandra27, HBase28,

MongoDB [146]) over other types. Document and column based databases offer schema-

less storage and encompass sophisticated querying engines that allow the user to formulate

queries ranging from low-level MapReduce based scripts, and database-specific (e.g.

MongoDB document querying [146]), high-level SQL-like (e.g. Hive [102]) and Flow-

based (e.g. Pig [145]). Graph databases are known to scale poorly, unless running on

distributed infrastructure. KV based databases typically offer limited querying capabilities,

for example, Redis can only be queried through low-level get and set -like commands29,

whereas more sophisticated querying can be implemented through application-specific

wrappers that would translate high-level query formulations to low-level Redis commands.

26 List of prominent service providers using Redis. https://redis.io/topics/whos-using-redis
27 https://cassandra.apache.org
28 https://hbase.apache.org
29 List of Redis commands. https://redis.io/commands

https://redis.io/topics/whos-using-redis
https://cassandra.apache.org/
https://hbase.apache.org/
https://redis.io/commands

3.5 Storage layer 65

It is obvious that the efforts of developing and maintaining a system can be largely reduced

if its chosen database offers sophisticated querying capabilities, however, this also means

the system’s potential may become greatly pinned by these capabilities, and future

replacement of the database may be relentlessly tedious undertaking from redesign and

data migration viewpoints. Currently, there is a growing argument for designing systems

as database-agnostic, a term describes the capacity of a system to function normally with

any given database rather than being customized for a particular vendor’s database

[11,148]. We believe that such agnosticism, combined with a strong emphasis on schema-

less storage model, may become a design reference in data lake research. An unavoidable

fact is that hardware and software are dramatically changing over time, as with the

databases built on top of them, this section already introduced an empirical example of the

rapid shifting from relational to non-relational storage model in the booming era of big

data. Analogously, database agnosticism is important for PDL, since there may be future

need to accommodate variety of different data requirements for uses constantly increasing

as data streams become more numerous, personal data becomes larger and more varying

over time, and data querying and sharing functionalities become tasked with increasingly

demanding usage workloads. By taking these considerations into account, the “right”

database (e.g. Redis) which might make sense to run as the main backend of PDL today,

may become unsuitable to accommodate user’s increased storage capacity and querying

requirements in future. Henceforth, we implement PDL’s backend as database-agnostic so

that PDL can accept any possible KV database. In doing so, MMF, as the only layer in

PDL architecture that directly accesses the backend (see Figure 3.1) needs only low-level

interactions to read/write data whilst abandoning any other high-level capabilities offered

by the chosen database, including sophisticated querying. In Chapters 4 and 5 we explain

how MMF compensates the loss of capabilities due to agnosticism with native, robust, and

effective alternatives.

3.5.2 Metadata and data storage approach

In PDL, metadata storage is federated and raw data storage is centralistic, such that, the

metadata manged by a particular MMF component (the lineage manager, SemLinker, or

SemCluster) is stored in an internal metadata repository maintained by that component,

66 Personal Data Lake Architecture

whereas ingested raw data is stored in the central backend. PDL’s backend consists of two

components; unified repository for data storage and linkage table for metadata information

storage. Regardless of the adopted database system, the underlying structure of each

backend component is a hash table that consists of a scalable set of entries. Like any other

hash table, a hash entry here consists of two fields: key and value. The key field stores a

unique identifier, and the value field stores a content associated with that identifier. Figure

3.5 depicts an overview of the PDL backend.

Figure 3.5– Overview of PDL backend and MMF-managed storage approach

As indicated in section 3.4.3, the lineage manager generates a unique identifier, denoted

as 𝑘𝑒𝑦𝐹 for the data entity, denoted as 𝐹, that is extracted from a newly ingested PDLSF

object. Regardless of the processing component, when the metadata processing of 𝐹 is

finalized inside MMF, it becomes associated with at least one metadata record which also

has a unique identifier, denoted as 𝐼𝑑𝑖, that is issued by the respective MMF component.

Therefore, the pair 〈𝐼𝑑𝑖, 𝑘𝑒𝑦𝐹〉 indicates that there is an association between the entity 𝐹

whose identifier is 𝑘𝑒𝑦𝐹 and the metadata record 𝐼𝑑𝑖, such pair is called metadata

information. Metadata information is similar to primary-foreign key relationships in

traditional RDBMS, but instead of linking between data entities in separate data tables,

metadata information explicitly emphasize the associations between the raw data stored in

the unified repository and its corresponding metadata records that are stored in different

metadata repositories. MMF controls how each data entity 𝐹 and its metadata information

are stored in PDL’s backend through a two step-process, and as follows:

3.5 Storage layer 67

Step-1 (Data storage): MMF creates the pair 〈𝑘𝑒𝑦𝐹 , 𝐹〉 that corresponds to the

unique identifier of 𝐹 and its raw content. This pair is passed to the storage layer

for permanent storage. Given Redis as the physical implementation of the storage

layer, the pair 〈𝑘𝑒𝑦𝐹 , 𝐹〉 is added as a new entry in the unified repository by

executing the following command:[HSET keyF F]. HSET is a Redis-specific

command that adds the entity 𝐹 in the entry whose key is 𝑘𝑒𝑦𝐹. If such entry does

not exist in the unified repository– which is the usual case – a new entry with the

key 𝑘𝑒𝑦𝐹 is first created before 𝐹 can be added as its field value. If 𝑘𝑒𝑦𝐹 already

exists then its corresponding field value is overwritten.

Step-2 (Metadata storage): In this step, MMF creates the necessary metadata

information for the raw data entities at hand and stores them in the linkage table.

Given a data entity 𝐹 and the set of metadata records 𝔪 ≠ ∅ that is generated for

𝐹 during its metadata processing, MMF creates the pair 〈𝐼𝑑𝑖, 𝑘𝑒𝑦𝐹〉 for each 𝐼𝑑𝑖 ∈

𝔪 and passes it to the storage layer. Given Redis as the physical implementation

of the storage layer, a pair 〈𝐼𝑑𝑖, 𝑘𝑒𝑦𝐹〉 is added in linkage table by executing the

command[SADD Idi keyF]. SADD is a Redis-specific command that “appends”

𝑘𝑒𝑦𝐹 in the entry whose key is 𝐼𝑑𝑖. If such an entry does not exist in the linkage

table then a new entry with the latter as its key is created before the former is added

as field value.

As listed in Table 3.2, an ingested data entity may be processed by more than one MMF

component, and the last processing component becomes the sole authority responsible for

storing the set of its associated metadata information (𝔪). When 𝐹 is structured or

semistructured then SemLinker annotates it with a set of schema metadata artefacts that

inherently share a single unique identifier, that is, the 𝑈𝑅𝐼 of the current source schema

version – see section 4.5.2. Accordingly, the set 𝔪 associated with 𝐹 consists of a single

pair 〈𝐼𝑑𝑖 , 𝑘𝑒𝑦𝐹〉 where 𝐼𝑑𝑖 = 𝑈𝑅𝐼 and 𝑘𝑒𝑦𝐹 is the unique identifier of 𝐹 (i.e. |𝔪| = 1). In

contrast, when 𝐹 is unstructured then SemCluster annotates it with a set of metadata

artefacts, where each artefact is the seed of a keyphrase extracted from the raw content of

𝐹 during metadata processing – see section 5.4 for more details, and Table 5.2 for an

empirical example. This means, if 𝑘 keyphrases are extracted from 𝐹 then |𝔪| = 𝑘 and

68 Personal Data Lake Architecture

Step-2 is executed 𝑘 times; for each execution step a pair 〈𝐼𝑑𝑖, 𝑘𝑒𝑦𝐹〉, 𝐼𝑑𝑖 = 𝑠𝑒𝑒𝑑, 𝐼𝑑𝑖 ∈

𝔪 is passed as new input to the storage layer.

Unlike the unified repository, each entry in the linkage table may consist of a pair of single

key 𝐼𝑑𝑖 and a non-empty set {𝑘𝑒𝑦𝑗, 𝑘𝑒𝑦𝑗+1, … , 𝑘𝑒𝑦𝑛} stored in its value field, where each

key represents the unique identifier of a data entity 𝐹 that is already stored in the unified

repository. Having keys of various data entities grouped by a single metadata key is an

obvious indication of inherent relationship. For example, an entry 𝐼𝑑𝑖 in the linkage, 𝐼𝑑𝑖 =

{𝑘𝑒𝑦𝑗, 𝑘𝑒𝑦𝑗+1, … , 𝑘𝑒𝑦𝑛}, that is managed by SemCluster, indicates that the unstructured

documents ∏ 𝐷𝑖
𝑛
𝑖=𝑗 share the same seed. When the PDL user searches for unstructured

documents that contain the seed 𝐼𝑑𝑖, then MMF directly retrieves the documents ∏ 𝐷𝑖
𝑛
𝑖=𝑗

from the unified repository and returns them to the user as correct search results. It is

noteworthy to mention that the time complexity of the retrieval operation for ∏ 𝐷𝑖
𝑛
𝑖=𝑗 is

O(1) given that the underlying implementation of the unified repository and linkage table

is a giant in-memory hash table (i.e. Redis). Analogously, it is intuitive to assume that all

the (semi)structured data entities ingested from the same input data source share the same

schema metadata’s unique identifier, thereby, the same storage and retrieval optimisation

thus described is applicable. To illustrate, let the set {𝑘𝑒𝑦1, 𝑘𝑒𝑦2, … , 𝑘𝑒𝑦𝑛} be the unique

identifiers of all the entities ingested from an input source 𝑆, whose schema metadata’s

unique identifier is 𝐼𝑑𝑆, then an input query to SemLinker concerning the retrieval of all

these entities is directly executed on a single entry in the linkage table, that is 𝐼𝑑𝑆, and the

result is retrieving ∏ 𝐹𝑖
𝑛
𝑖=1 entities from the unified repository in O(1) complexity similar

to the previous case.

 Figure 3.5 depicts an overview of the storage approach. Here, multiple heterogeneous data

entities are stored with their associated unique identifiers as key/value pairs in the unified

repository. Additionally, the metadata information of these entities is stored as key/value

pairs in linkage table with links to external metadata repositories maintained by SemLinker

and SemCluster. The figure also illustrates how the MMF interprets the stored data in both

components as pairs of key/values pairs. For example, the data entities 𝐹1 and 𝐹2 can be

retrieved as the following subset:

3.6 Access layer 69

{ 〈〈𝐼𝑑1, 𝑘𝑒𝑦1〉, 〈𝑘𝑒𝑦1, 𝐹1〉〉, 〈〈𝐼𝑑1, 𝑘𝑒𝑦2〉, 〈𝑘𝑒𝑦2, 𝐹2〉〉 }

Such subset indicates that 𝐹1 and 𝐹2 share an inherent relationship that is defined by the

metadata information 𝐼𝑑1; this relationship can be interpretable by the MMF component

which managed these entities during their metadata processing. It important to emphasize

that 𝐹1 and 𝐹2 are stored in untransformed state, and are intended to remain so during their

lifecycle inside PDL since MMF allows their processing only on the metadata level, (i.e.

𝐼𝑑1).

The simplicity of the storage layer architecture, backed by the flexibility of schema-on-

read approach, and the MMF-managed data storage, are major enablers of database

agnosticism; the backend development requirements are reduced to three main criteria:

scalability, schema-less KV storage, and disk persistence to avoid any volatility trade-off.

The decision of selecting Redis as physical implementation of PDL’s backend is largely

influenced by its empirical capacity in boosting MMF’s performance during data storage

and retrieval. By leveraging Redis, MMF obtains the following features: the maximum

number of key/value pairs that can be stored in PDL is 264-1 on 64x machine [144], this

means PDL storage limitation is 18.446 Exabyte. The maximum size allowed for storing

a data entity within a single entry in the unified repository is 512 MB [144]. A single

metadata schema’ unique identifier can group up to 232-1 data entity keys which is far

more than a common may possibly need. As illustrated above, MMF requires O(1) time

complexity to retrieve metadata information from the linkage table; it requires O(1) time

complexity to find any raw data in the unified repository; it requires 0.59 seconds to load

600K entities of small size [140,141], and relatively longer time if the target entities of

considerably large size.

3.6 Access layer

The access layer has the responsibility of providing convenient access to the underlying

layers of PDL on the access patterns expected. Generally, we can broadly categorize the

access layer to be performing either a pull or a push of certain artefacts with respect to the

serving layer. At a high level, the push access refers to the outflow of settings, queries, or

70 Personal Data Lake Architecture

source code from the access layer wherein these artefacts are pushed out to other layers in

PDL architecture. The pull access refers to the outflow of artefacts from the serving layer

wherein the access layer pulls settings, metadata, or modelled data. The access layer

consists of four components which collectively represent the “frontend” of PDL as

depicted in Figure 3.1. These components are: Dashboard, Gravity, Query Interface, and

a RESTful API for data consumption. In following we give a brief overview of each

component.

Dashboard

The dashboard is a configuration-focused component that provides important services for

the PDL user to control the settings of various architectural components through user-

friendly GUIs. In following, we list three kinds of GUIs that are relevant to the discussions

in this thesis:

 IAC GUI: This GUI is connected with IAC component in the ingestion layer and

it enables the PDL user to install, upgrade, or uninstall ingestion agents in IAC,

and to configure the security, synchronization and PDLSF settings associated with

each deployed LAS agent.

 Privacy GUI: This GUI is connected with the lineage database in MMF to help

the user in configuring the access control settings of the stored personal data as

specified in section 3.4.3.

 Extensibility GUI: This GUI is connected with SemLinker and SemCluster in

MMF to help the user in adding, upgrading, or removing third-party plugins related

to the underlying workflows of these components. For example, this GUI can be

used to add new knowledge source for extending the semantic coverage of Sem-

Cluster’s ontology (see section 5.4.1), or adding new schema matcher to the set of

plugins in SemLinker (see section 4.5.3).

 Gravity GUI: This GUI is the fronted of the gravity concept implementation in

PDL, and it aims to enable the user in installing, upgrading, or uninstalling third-

party gravity-enabled services.

Gravity

3.6 Access layer 71

In 2011, a blog published by McCrory [148] introduced a discussion about a qualitative

characteristic of data that was referred to as Data Gravity. In the years that followed, this

characteristic has resonated in the digital industry. Data gravity is a metaphor describing

the economics of data; it is better to keep the data where it is and not to be exchanged

between the systems in distributed computing environments, no matter how big or small

the amount of data may be. McCrory compared the cost of moving data, and found that

gravity is cost-efficient approach among other rising advantages. Consequently, it was

stated that data must have something comparable to a gravitational pull which pulls

services and applications to it instead of the other way around. The work in [149] reports

three approaches to bring computation to data and mitigate data gravity: agent platforms,

code mobility, and Fog Computing. In this thesis, we leverage on code mobility to embrace

data gravity in PDL architecture for gaining two important advantages:

 Simplifying personal data utilisation by relieving the PDL user from formulating

complex queries during usage workloads; gravity-enabled services can be pulled

from third parties and plugged in PDL’s access layer to write and execute queries

on the behalf of the user.

 Enabling the PDL user to share personal data with third-party consumers without

privacy compromises. By authorizing gravity-enabled services to operate in the

access layer, a personal data consumer would be able to collect interesting

information without having the data to leave the PDL premises.

To materialize these advantages, we design a code execution platform in the access layer

called Gravity. This component enables the user to plug in “trusted” business logic in the

form of compiled source code (e.g. dynamic libraries, packages) that can formulate queries

and submit them to MMF for execution on PDL metadata and data repositories. The query

results are either directly presented to the user, or further processed for mining patterns,

insights, or creating new knowledge. Another approach is to allow remote data consumers

connecting to PDL, submitting gravity-enabled services, which the user can review, and

upon granting permission for each service, it can execute as usage workload which enables

the consumer to process PDL data and collect the processing results back to its platform.

In gravity-powered scenarios, MMF operates as a central point of information exchange

that offers the necessary capabilities to gravity-enabled services for querying highly

72 Personal Data Lake Architecture

managed personal data on the metadata level in terms of a well-organised metamodel and

formal querying means. To illustrate how this works, consider a user having central

heating system that operates on oil, and which is equipped in the user’s house or office.

The user may put oil consumption data in PDL and mark it as publicly available. An energy

company would request to connect to the user’s PDL and submit a gravity-enabled

analytics service. Upon user’s approval, this service could submit queries targeting heating

data, which are executed by MMF and the results are returned to the energy company to

to analyse them and generate personalised oil delivery offers to the user. In this example,

it can be readily observed that the heating data does not have to leave PDL, instead, the

data demand of the energy company is satisfied as a workload operating locally PDL.

Similar ideas have existed in the personal data management literature for some time (e.g.

[150,151,152]), however they are typically discussed from theoretical perspective due to

the lack of the necessary technologies for constructing efficiently-managed black boxes.

Query interface

Query interface component represents the frontend of the query engines implemented in

the MMF component. It is a simple command line for submitting queries to a particular

query engine, and for displaying the query results. In sections 4.6, 5.5.2, 6.1, and 6.3, we

discuss how the queries submitted via the query interface can be systematically executed

on the metadata repositories to load the required data from the storage layer.

RESTful API

Besides gravity, PDL also implements a RESTful API endpoint for data consumption as

an additional support for the user to share personal data with consumers who do not support

gravity. Similar to DSAPI, the access layer’s API is secured with OAuth and accepts only

data requests that are signed with access tokens issues by PDL.

3.7 Summary 73

3.7 Summary

In this chapter, we presented an overview of PDL architecture and discussed each of its

layers with extensive focus on the metadata management layer. The introduction of the

chapter examined the possibility of implementing PDL using building blocks from Hadoop

ecosystem. Our examination revealed that a Hadoop based PDL implementation is feasible

but impracticable in the context of the personal domain due to the expensive technical

complexities imposed on the usability of the system by common users. Then, we described

how personal data can be pulled from input data sources and ingested inside the system.

Multiple opinions indicate that annotating raw data with metadata upon its arrival, lineage

particularly, is a very important undertaking for maintaining effective data provenance. A

useful discussion on this matter is given in [178]. Realizing this, we introduced an agent-

based ingestion approach that automates the extraction step in PDL’s ELT and annotates

ingested personal data with basic but useful metadata information. Next, we discussed our

proposed MMF; the metadata types it operates on (lineage, and semantic), the design of

its SM4AM-based metamodel, the components constituting its architecture (the lineage

manager, SemLinker, and SemCluster), and the role of each component in controlling the

storage and usage pipelines underlying the loading step in ELT. Next, we described the

storage approach of raw data and its associated metadata information in the storage layer.

Although many interesting database options are available, we explored the usefulness of

database agnosticism as part of our effort to deliver agnostic solution for managing big

personal data. Our discussions also covered how MMF controls the data and metadata

storage independently from the adopted database details. Finally, we elaborated on PDL’s

access layer and how the data gravity concept is situated in this layer to simplify the lake’s

usability.

74 (Semi)structured Data Management

Chapter 4 (Semi)structured Data Management

The lineage manager in MMF maintains the necessary means to enable plain technical

access to structured, semistructured, and unstructured raw data residing in untransformed

state within PDL’s unified repository. However, such accessibility can be only the first

step in creating our envisioned analytics-enabled personal black box. To make finding and

querying personal data in PDL both possible and practical, common users and third-party

data consumers must not be confronted with the semantic and structural heterogeneities of

raw data, instead they should be provided integrated homogeneous views that abstract from

these heterogeneities. In this chapter, we explore SemLinker as a data integration system

for automating structured and semistructured data management in PDL. To begin with, we

first describe the driving challenges and requirements behind SemLinker proposal, next,

we give a brief review of relevant studies and approaches. Then we introduce an overview

of the theoretical foundations upon which SemLinker was designed and construe its

architecture and participation in MMF workflow.

4.1 Research challenges and requirements

The main goal of data integration is to synthesize heterogeneous raw data collected from

autonomous input sources into unified views that can be exploited by end users to utilise

the data as if it is coming from a single well-managed input source, without requiring

knowledge about where the data is stored and how it is natively modelled and structured

[39,153]. The common assumption in DL research regarding data integration is that once

the raw data is annotated with appropriate semantic metadata, it can be readily integrated

using an integration system [71][43][52][110][111]. Though this assumption is plausible,

yet it is impractical from the perspective of big data dynamics. Existing data integration

systems are inherently complex and they require tedious manual interactions [110][183],

for instance, an enterprise HDL system would rely on professionals and experts (e.g. data

4.1 Research challenges and requirements 75

scientist [43], steward [52], or wrangler [71]) to play active roles in the data integration

workflow, mainly to supervise the following tasks:

Schema Matching: a task concerns identifying the similarity between the schema

elements of two or more heterogeneous data entities coming from different input

sources [154]. This task can be automated when the data is annotated with precise

schema metadata artefacts. As indicated by Jarke et al. [40], the input sources of

any DL system often do not expose full-fledged schemas. When the native schema

is not completely known in advance, precisely annotating its elements with

appropriate metadata to reflect their underlying semantics can become problematic

in a way that prevents automating schema matching.

Schema Mapping: while schema matching produces correspondences that state

only the similarities between schema elements, schema mapping is a task concerns

specifying these correspondences in a formal expression that can be interpreted as

constraints over the data or as rules to guide the transformation of data during its

utilisation [39][92].

The literature of other DL systems imposes requirements similar to those of HDL albeit

details of such requirement are not explicitly specified – we expand on this in the next

section. Essentially, PDL is designed for ordinary people and has no highly trained and

skilled IT personnel to physically handle the above tasks. Equipping PDL with an efficient

and easy-to-use data integration solution is therefore crucial for isolating common users

from the technical integration details. Any data integration solution for PDL faces the

following challenges:

The first challenge is extreme heterogeneity; it arises as an implication of dealing with

various types of raw data collected from a large number of unrelated input sources [110].

The data sources of a DL system, even in the same domain (e.g. enterprise), can be very

heterogeneous regarding how their data is structured, labelled and described (e.g., naming

conventions for JSON keys, XML tags, or CSV headers), exhibiting considerable variety

even for data with substantially similar attributes [112]. The reconciliation of semantic and

structural heterogeneities in raw data is a critical preparatory step for storing and retrieving

the data quickly and cost-efficiently, and for aligning the data from different sources so

76 (Semi)structured Data Management

that all types relevant to a single analysis requirement can be combined and analysed

together. Manually handling heterogeneity reconciliations would pose a huge burden on

PDL users. Despite efforts in the fields of semantic web and data integration for

automating the reconciliation process [93,160,161], existing approaches, most of which

require optimised parameter tuning and expertise-based configurations to cope with the

heterogeneities of data [112], cannot be “directly” adopted in PDL.

The second challenge is schema evolution [17,48], which refers to the problem of handling

unexpected changes in the schema and structure of the data ingested. Big data is often

subject to frequent schema evolutions, which would cause query executions over the

unified views to crash if not dealt with [162]. Handling schema evolutions is a non-trivial

task, and the common practice normally involves employing skilled manpower. Schema

evolution has been a known problem in the database community for the last three decades

[163] and has become frequent and extensive in the era of big data, yet it has not been

addressed effectively [52,93,110].

Besides the above challenges, we believe that the simplicity offered by the data ingestion

approach described in Chapter 3 can incentivize common users to synchronize PDL with

a large number of input sources as a natural consequence of the personal data conception

discussed in section 1.2. This belief is largely predicated on the observation that the

information needs and requirements of users may change to cope with data discovery [I37],

foraging [2], orienteering [156], searching [157], among other related behaviours in which

common users purposefully seek new information or serendipitously encounter it in the

course of their daily activities, therefore they are highly likely to continue adding new

input sources to PDL over time to meet these requirements. Classical integration solutions

are designed to handle few input sources and are generally intolerant to the continuous

addition of sources [158,159]. In most cases, adding new input sources to the system

implies a manual revision of the integration pipeline to ensure the integration validity [92].

To address these issues we propose SemLinker, an ontology-based data integration system

as principal component of MMF. SemLinker adopts an automatic approach that only

operates on the schema metadata level without involving physical transformation on the

data during integration, therefore it preserves PDL stored data in its native schemas,

4.2 Related work 77

formats, and structures, while, at the same time, allowing the data to be integrated and

utilised. A critical factor in the design of SemLinker is the “ease” in which data can be

queried and analysed by PDL users to incentivize them deriving value from their own data

with minimum time and efforts. Therefore, the research requirements that are met in

SemLinker are as follows:

 Addition and removal of input data sources with no impact on existing integrations.

 Flexibility of incorporating integrated (semi)structured data with unstructured data

(e.g. free-text documents, images, and other complex data).

 Adaptability to the changing information needs and requirements of users, that is,

allowing the common user to flexibly personalise unified views over PDL stored

data, whilst persisting seamless integration of data upon any view changes.

 Handling schema evolutions in input data sources, that is, keeping all past data

automatically integrated with newly ingested data that exist with evolving changes

on the schema, format, or structure level. Additionally, providing detailed timeline

describing the schema evolutions of any input source for data provenance purposes.

 Formal accessibility and rapid query executions over large volumes of diverse raw

data ingested from heterogeneous input data sources and stored in untransformed

state.

4.2 Related work

The classical approach to data integration can be viewed as a staging architecture that

consists of two parts [164]: wrappers and mediators. A wrapper wraps the data of an input

source and speaks the dialect of its physical (or local) schema [92]. A mediator maintains

a mediated schema and understands how mappings between the mediated and local

schemas are corresponding. The mediator may follow a virtual or materialized approach.

In the former, data is physically residing in its original sources [165], whereas in the latter,

data is pulled from its sources and centralised into a central storage space [166] – which is

the case of PDL. The mediator facilitates formulating queries in terms of the mediated

schema [39]. An input query submitted to the mediator is processed through reformulation

procedure before it can be executed on the integrated data. Query reformulation involves

78 (Semi)structured Data Management

translating the input query into sub-queries in terms of the local schemas of the integrated

sources and passing them to wrappers, which accept the sub-queries, execute them on the

sources, extract the answers, and finally send them as query results back to the mediator.

Wrappers may also apply transformations on the retrieved data in order to return the query

results into a unified representation [40]. Mappings are important in any data integration

approach; they express the correspondence between the mediated schema and the local

schemas of the integrated sources [154], this enables the mediator to accurately translate

an input query into downstream sub-queries. Early research efforts attempted to explicitly

formalise mappings, the work in [167] gives an overview of these efforts. When mappings

are formally crafted and described by specifications, they can serve as a basis for modelling

(or metamodeling) based data integration, where the wrapper and mediator code could be

automatically generated from a given specification. Collet et al. [168], and Singh et al.

[169] were the first to use description logics [170] for expressing relationships between

sources on the model level. Following these studies, a large body of research has been

undertaken, the work in [92] surveys many notable contributions in this regard.

Lenzerini introduces in [39] a theoretical framework for integrating a set of heterogeneous

data sources based on the schema metadata associated with their local schemas. The

framework’s integration workflow follows the mediation architecture and thus maintains

mediated schema, and formal mappings between the mediated and the local schemas. The

concept of ontology was proposed as an efficient description tool for expressing the

mediated schema and is called global schema (or global ontology). The global schema

materializes integrated unified views over the data collected from the integrated sources

by means of mappings. On a formal side, the framework defines two semantic perspectives

for mapping formalisation: Global-As-View (GAV) and Local-As-View (LAV). In a GAV

integration scenario, any single element 𝑔 of the global schema is defined as a view on the

local schemas of the integrated sources, i.e., 𝑞𝑠 ~ 𝑔. This reflects the classical integration

of the mediation architecture. In a LAV integration scenario, an element 𝑠 of the local

schema is defined as a view on the global schema, i.e., 𝑠 ~ 𝑞𝑔. This reflects the integrated

data as a partial description of the real world uniform which the sources capture. Such

reflection may be incomplete, erroneous, or even inconsistent, which gives LAV greater

flexibility than GAV in integrating real world data. From unified view perspective, the

4.2 Related work 79

symbol 𝑞 represents an input query either over the global ontology and down to the local

schemas (GAV), or vice versa (i.e. LAV). In description logic terms, the mapping ~ is a

relationship that may resemble = , ⊆, and so forth. For example, the query 𝐺: 𝑞𝑠~ 𝑞𝑔 means

that the result set of the query 𝑞𝑠 is equivalent to (or a subset of) the result set of the query

𝑞𝑔 for all the valid input sources participating in the integration at hand. It is well-known

that query rewriting in GAV approach is easy and fast in most scenarios [92,155,171,172];

any input query over the global schema needs just to be unfolded in such a way that the

elements of the global schema in the query formulation are substituted with the

corresponding query 𝑞𝑠 over the local schemas of the integrated data. The downside here

is that: GAV is very sensitive to schema evolutions, changes in the local schema of a

particular data under integration entails immediate reactions to revise the global schema

as well as its mappings, otherwise unfolded queries on a modified local schema may crash

due to schema mismatching issues. In contrast, query rewriting in LAV is more expressive

and allows to perform vital operations during reformulation (e.g. grouping, constraint

enforcements, etc.). The down side of LAV approach is that query rewriting is moderately

slow and requires reasoning [171]. Several algorithms have been proposed to overcome

these issues [90]. There are also suggestions to combine both GAV and LAV into unified

architecture to benefit from the merits of each approach. An example of such proposals is

the Global-Local-As-View (GLAV) approach described in [172].

Many current state of the art ontology-based data integration systems follow Lenzerini

framework [39] to integrate (semi)structured data that are collected from heterogeneous

data sources [52, 173,174,175]. Although these systems may deliver effective and efficient

data integration performance in many use cases, they typically require continuous human

intervention to supervise the task of discovering mappings between the global ontology

and the local schemas [110, 161, 176], which is a laborious and time-consuming itself as

it requires expertise in schema matching techniques. Furthermore, these systems favour

static integration workflows, where any changes in the global ontology or the metadata of

the integrated local schemas imply a high degree of manual efforts to (re)configure the

mappings [52, 161,183].

80 (Semi)structured Data Management

With the increasing popularity of DL in the big data landscape, metadata is becoming of

immense importance for BDI research [177], and embedding model-based integration into

MMFs is currently an active research topic. In Chapter 2 we described GEMMS [90] as

MMF for a DL system called Constance. GEMMS implements a model-based incremental

approach for interactive personal data integration in life science fields. The first step in

this approach is extracting schema metadata from the ingested data. Metadata extraction

here is manual task that requires user’s attention. The authors propose a semiautomatic

tool to help the user in that regard. Once data is associated with appropriate metadata, it is

modelled to a common metamodel that is a simple variant of the Entity-Relationship (ER)

model, where data entities are resembled as objects and their attributes as object properties.

Although the approach is theoretically capable of reconciling semantic heterogeneities

between the stored data, and tolerating the volume and variety aspects of the 3Vs model,

its architecture suffers multiple drawbacks: first, it reconciles structural heterogeneities

through physical data transformations to fit ER modelling, which implies altering the

native schemas and structures of the data and posing constraints on the ingestion process;

secondly, it is very sensitive to emerging changes in the raw data schemas, therefore the

velocity aspect can quickly crash the modelling process; thirdly, the GEMMS literature

does not describe how the integrated data can be systematically accessed and queried.

Kayak [109], a generic framework for managing data lake content through metadata-based

data preparation and wrangling, is a case similar to GEMMS. Although it promises

integration and querying capabilities, the underlying integration process and modelling are

not clearly described. The work in [282] introduces a generic approach that allows the user

to extract the local schema of the data ingested from any input source connected with DL.

This approach utilises a schema management tool called Darwin [179] for scanning the

data stored in DL, and in cases where the data exists with multiple local schema versions

due to historical evolutions, each schema version is extracted, and eventually, all the

versions are displayed to the user. The approach enables the user to define a global

ontology and draw ontological information (concepts and properties) to annotate the

schema elements in each version, thus offering an easy solution to reconcile the

heterogeneities originate from the changes between any given schema and its previous

version. Although this approach focuses on the problem of schema evolution, it is not

equipped with data integration capability, but rather integrations can be performed

4.2 Related work 81

manually by investigating similarities between various schema elements annotated with

the same ontological information and record them as mappings for later use. Furthermore,

schema detection and handling is not performed in real-time (i.e. upon ingestion) instead

the data must first be stored in DL backend in good amount in order to begin schema

analysis procedures, this means, the data consumers operating on the schema level will

face query crashes and schema mismatching issues until the new schema changes are

propagated in the system. Apache Atlas [104] allows the user to provide global schemas

in the form business-oriented ontologies which then can be utilised to annotate the HDL

stored data with semantic metadata drawn from these ontologies to describe their physical

schemas. Such annotations are stored in the MMF’s repository. For integrating data, the

user must hire a suitable integration system, and consult the metadata repository for

guiding the integration system and specifying how data should be integrated. Atlas

provides basic support for the schema evolution problem. The user can integrate Apache

Avro [180] in Atlas in order to detect schema evolutions and react to them based on sets

of rules provided by the user in the form of avro files30 and through a process called schema

resolution.

In [52], Nadal et al. propose a metadata-driven system for integrating heterogeneous JSON

and XML data in DL systems and governing local schema evolutions. This system follows

Lenzerini’s framework and is based on a BDI-oriented Metamodel (ontology) that consists

of two levels: top level abstract abstraction that is expressed by Web Ontology Language

(OWL) [184], and low level collection of RDF triples describing the local schemas of the

data sources under integration. The top level of the BDI ontology offers unified views over

the local schemas in the low level. The system offers an automatic algorithm that extracts

an RDF representation of the physical (local) schema of a newly added data source after

examining a few samples of its offered (JSON/XML) data. An extracted representation is

expressed as a set of RDF triples and stored in the low level. A data specialist, called

steward, is responsible of providing mappings between the RDF representations in the low

level and their corresponding counterparts in the high level. If the physical schema of a

particular data source evolves, the steward is notified, and a manual remapping then takes

30 http://avro.apache.org/docs/current/spec.html#Schema+Resolution

http://avro.apache.org/docs/current/spec.html#Schema+Resolution

82 (Semi)structured Data Management

place to ensure the consistency of the correspondences between the top and low levels.

The system allows the user to formulate SQL-like queries over the top level of the

integration ontology. Each input query is unfolded by rewriting it into internal queries that

are executed on the system’s backend(s). The integration ontology also allows the user to

flexibly handle evolutions in the local schema of a given data source by maintaining

multiple schemas that correspond to different versions of the local schema extracted from

that source.

The shortcoming of existing BDI solutions for DL is that they inherently exhibit the same

drawbacks found in traditional data integration, such that, raw data (meta) modeling

remains an expensive task that requires expert user supervision [110, 181], furthermore,

the schema evolution problem and its impact on data access, processing, integration, and

analysis in a DL system is often overlooked and its suggested solutions largely remain

manual [52, 182,183]. Rahm states in [110] that most BDI proposals are limited to a few

data sources, and analytics over a large volume of heterogeneous data ingested from

various autonomous data sources is only possible with the availability of a holistic data

integration solution that: (i) should be fully automatic or require only minimal manual

interaction, and (ii) should make it easy to add and use additional data sources and

automatically deal with frequent changes in these sources (i.e. velocity). SemLinker, as a

data integration system, shares many features and functionalities with other solutions.

However, as a solution for PDL whose users are typically casual and unskilled, it needs to

be in agreement with Rahm’s automation proposal and isolates its users from the technical

details imposed by the integration process, thus meeting all the requirements listed in

section 4.1. Our proposed automations are implemented in the following operations:

 Management of semantic and schematic metadata; extraction, annotation, storage,

and maintenance.

 Management of mappings between the system’s global ontology and the metadata

denoting the local schemas of the data sources added to PDL. In other words,

automating schema matching, schema mapping, and metamodeling tasks.

 Management of schema evolutions on the local schema level, and automatic

responding to views adjustments on the global ontology level.

4.3 SemLinker architecture overview 83

SemLinker supports personal data analytics in PDL by accepting direct queries over its

metadata repository. Thus, management functionalities over personal data such as

summarization, analysis, and insight discovery (informatics) can be readily performed.

4.3 SemLinker architecture overview

The architecture of SemLinker consists of Global Schema Layer (corresponding to the

metamodel level), Local Schemata Layer (corresponding to the model level), and the

relationships between these layers (corresponding to formal mappings over instance level).

The global schema layer consists of the global schema (𝒢), and the query engine for

formulating queries over 𝒢. The local schemata layer consists of the schemas repository

(𝑆), and schema metadata extraction, and mapping and management components. As an

ontology-based integration system, SemLinker is conceptually based on the theoretical

framework proposed by Lenzerini [39]; we formally define the system as follows:

Definition 4.1: SemLinker is a triple 〈𝒢, 𝑆,ℳ〉, where 𝒢 is the global schema, 𝑆 is a set

of local schemas corresponding to 𝑛 data sources, 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑛}, and ℳ is a set of

mapping assertions, such that, for each 𝑆𝑖 there is a set of mappings between 𝑔 and 𝑆𝑖,

𝑔 ∈ 𝒢, 1 ≤ 𝑖 ≤ 𝑛, in the form: 𝑝 → 𝑎, where attribute 𝑎 ∈ 𝑆𝑖 and property 𝑝 ∈ 𝑔.

The system’s global schema 𝒢 is modeled as a global ontology and is described using

OWL. It extracts and maintains machine-readable metadata that describes the physical

schema details of each data source connected with the PDL, and specific semantics about

its available data, we refer to such metadata as local schema. Any local schema in PDL is

described using RDF and is stored in the schemas repository 𝑆. SemLinker is responsible

for automatically mapping the local schema 𝑆𝑖 of the data ingested from the data source 𝑖

to a semantically corresponding concept in the global ontology 𝒢 in the GAV formulation

approach. Accordingly, mappings provide a metadata model that enables SemLinker to

systematically annotate the ingested data, and allows the user to pose queries over 𝒢 which

serves as a GAV abstraction layer over 𝑆 and its associated raw data. With this

metamodeling in place, the stored data are integrated on the metadata level; no manual

84 (Semi)structured Data Management

effort is required to reconcile the heterogeneities in the physical schemas and structures of

the raw data.

Figure 4.1 depicts a high-level overview of SemLinker architecture. The figure illustrates

the flow of ingested (semi)structured raw data from the ingestion layer, to the lineage

manager, then to SemLinker, and finally to the storage layer. When SemLinker finishes

meta-processing the input raw data entity at hand, the metadata outputs (if any) are stored

in the local schemata layer, whereas the data entity in its raw form as well as its associated

“metadata information” are dispatched to the storage layer to be stored in the “unified

repository” and the “linkage table” respectively (see section 3.5.3 for full details). The data

consumers can interact with SemLinker metadata through PDL’s access layer. The details

of meta- processing and metadata usage workflows concerning SemLinker to be construed

in the following sections.

Figure 4.1– Overview of SemLinker architecture

Here we introduce a personal data example comparable to a real-life scenario to give a

realistic view of the challenges that a BDI system like SemLinker must meet. Figure 4.2

lists four personal data entities representing social media feeds posted by the PDL user on

Facebook and Twitter and ingested by the PDL through the available API of each source

4.4 Global schema layer 85

(Facebook Graph API [265], and Twitter Streaming API [266]) with evolved schemas.

Although these entities exist in self-describing formats and contain abstract schema

metadata implicitly encoded in JSON keys and XML tags, they suffer semantic and

structural heterogeneities, even for the instances ingested from the same data source. For

example, the JSON keys in Facebook data entities (Figure 4.2a and Figure 4.2b) are

expressed with different strings and exist in different structures (see “location” and “geo”

keys). Similarly, Twitter data (Figure 4.2c and Figure 4.2d) also exist in different data

formats. The example serves as a reference point for later sections on SemLinker

discussions.

(a) Facebook data in schema v.2.9

(b) Facebook data in schema v.3.0

 (c) Twitter data in schema v.1.1

(c) Twitter data in schema v.1.2

Figure 4.2– Raw data from two social media platforms (Facebook and Twitter)

4.4 Global schema layer

The global ontology 𝒢 serves two purposes: tagging input sources upon their addition

(synchronization) in PDL to reflect the type semantic information of their personal

generated data, and to form an indispensable basis in the form of query-able format-

agnostic unified views that allows executing uniform queries over the raw data ingested

86 (Semi)structured Data Management

from each synchronized input source. An ideal global ontology is a comprehensive and

standardized ontology that provides semantic coverage and interoperability across a vast

range of domains [177]. For this reason, we initiate 𝒢 as an OWL implementation31 of

SCHEMA [48]. SCHEMA is a lightweight and well-curated vocabulary that consists of

abstract concepts common across many domains and is used as a backbone schema for

annotation in many large-scale knowledgebase projects, such as Wikipedia32, DBPedia33,

and Google Knowledge Graph34. Such initiation is beneficial in supporting the semantic

interoperability between a multitude of data sources that possibly exist in different

domains. The disadvantage however is that SCHEMA abstract concepts can be too generic

and require more specificity to support concise metamodeling and integration.

To balance between the conceptual abstraction and the semantic specificity, we enable 𝒢

extensibility. The elements of 𝒢 may be extended by adding new properties to the current

set of properties of a concept 𝑔 ∈ 𝒢, to increase its coverage over elements in local

schemas at the local schemata layer. 𝑔 may also be extended by adding a new subordinate

concept to it. rdf:type and rdfs:subClassOf are used for importing new and more

specific concepts. To comply with 𝒢′𝑠 structure, the newly added concept must be

associated with a set of properties (declared using 𝒢:hasProperty) and each property is of

a certain primitive data type that is strictly reused from the XSD vocabulary [185]

(declared using 𝒢:hasDatatype). Figure 4.3 depicts an example of extending

SocialMediaPosting, a concept in 𝒢, with Feed, a more specific concept imported from

the SIOC vocabulary [186]. The extension taking place is to support a unified view over

data ingested from social media data sources. The extended concept Feed is linked to

SocialMediaPosting using rdfs:subClassOf, and is described by a set of

properties imported from the DCMI [187] and WGS84 [188] vocabularies. The required

RDF data to implement such an extension are automatically generated by SemLinker and

are added to the 𝒢 ontology.

31 https://github.com/schemaorg/schemaorg
32 https://meta.wikimedia.org/wiki/Wikidata/Notes/Schema.org_and_Wikidata
33 https://wiki.dbpedia.org
34 https://developers.google.com/knowledge-graph/

4.5 Local schemata layer 87

Figure 4.3– Example of concept extension in 𝒢

4.5 Local schemata layer

The schemas repository 𝑆 is a principal component in the local schemata layer that stores

the set of local schemas corresponding to different input sources added to SemLinker over

time. Each local schema is stored in 𝑆 as a data graph that contains machine-readable

metadata in the form of RDF triples which describe the physical schema details of the data

ingested from each input source synchronized with PDL, and how various elements in

each schema are corresponding to 𝒢, i.e. the schema mappings. In this section we explore

how local schemas in SemLinker are automatically, extracted, mapped to 𝒢, stored in 𝑆,

maintained over time, and used for generating unified views.

4.5.1 Automatic data source addition

SemLinker, as an MMF component, is physically isolated from the ingestion layer, and its

single point of input is the lineage manager (see Figure 4.1). Such separation of concern

88 (Semi)structured Data Management

enables the latter to forward raw data with associated lineage metadata that are necessary

for optimising the metadata management and storage processes.

Every ingested (semi)structured data entity is dispatched to SemLinker with the following

artefacts: key, source, type, and mime. As indicated earlier, source specifies the unique

identifier of the input source 𝑖 (in the form of URI) from which the data entity at hand is

ingested. type specifies the global concept 𝑔,𝑔 ∈ 𝒢 representing the type abstraction of 𝑖’s

data. Both artefacts are originally obtained from the user during the deployment of the

ingestion agent concerning 𝑖 (see section 3.3.4). key represents the unique identifier that is

automatically generated by the lineage manager and permanently associated with the entity

during its lifecycle inside PDL. mime specifies the physical format of the entity (e.g. JSON,

XML, CSV, etc.) that is discovered by the lineage manager during PDLSF parsing. For

each received raw data entity, SemLinker checks whether the associated source already

exists in the schemas repository, if not, then this is an indication that the data source 𝑖, is

newly added input source to PDL. In this case, SemLinker initializes a new empty RDF

graph that represents 𝑖’s local schema metadata, denoted as 𝑆𝑖. Subsequently, it tags 𝑆𝑖

with the concept 𝑔 in type, so that it reflects the underlying type semantics of the data

typically ingested from 𝑖. Local schema tagging is normally modeled as an RDF triple, and

follows the pattern:

〈𝑆𝑖 𝑀: 𝑖𝑠𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑂𝑓 𝑔〉

For example, if 𝑖 is Facebook, and 𝑔 is Feed then the RDF interpretation of the local

schema tagging is asserted as

〈𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘 𝑀: 𝑖𝑠𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑂𝑓 𝒢: 𝐹𝑒𝑒𝑑〉

To this end, 𝑖 is automatically added to SemLinker, and its local schema 𝑆𝑖 is to be further

processed by downstream algorithms in the system’s workflow to maintain appropriate

semantic and schema metadata that will always be utilised to automatically annotate any

data entities ingested from 𝑖 in the future. Metadata management post-processing in

SemLinker involves dispatching the processed data entity to the storage layer with two

identifiers: key, and an internal identifier specifies the current source schema of 𝑖 (see next

4.5 Local schemata layer 89

section). The storage of the entity and identifiers in the storage layer is construed in section

3.5.3.

The lineage metadata added to SemLinker inputs offers the following advantages:

 Enabling the user to add new input sources and plug new ingestion agents in the

ingestion layer without the need to notify SemLinker.

 Allowing the system to ignore the technical details of the ingestion agents plugged

in the ingestion layer by treating input sources as Linked Data [97] resources with

fixed URIs. This is useful in cases where the user replaces the ingestion agent

concerning certain input source with another agent and without the need to notify

SemLinker about such change due to its autonomy from the ingestion environment.

 Providing all the necessary input information to the downstream algorithms in

SemLinker’s workflow in a disciplined way, rather than relying on manual inputs,

which may be erroneous or time-consuming for the PDL user.

4.5.2 Local schema redefined

The physical schema of any input source is subject to changes and updates [162,190,282].

In the example depicted in Figure 4.2, schema evolution is observed at both the semantic

level (data attribute renaming, e.g. “message”⟼”story”, and “text”⟼ ”message”), and

the structural level (data format changes, e.g. JSON⟼XML, and attribute changes, e.g.

casting the JSON object “location” in Figure 4.2a into the simple attribute “geo” in Figure

4.2b). SemLinker takes a novel, automatic approach to handle the schema evolution

problem. In this approach, the RDF representation of the local schema of an input source

is regarded as dynamic. It contains a changeable set of subgraphs, each of which represents

an evolving version of the schema and is called a source schema. A Schema Extraction

Algorithm is used to extract source schemas automatically, and a Mapping Computation

Algorithm is responsible for mapping them to the global ontology. A formal definition of

the local schema of a dynamic feature is given below.

Definition 4.2 (Local Schema): The Local schema 𝑆𝑖 ∈ 𝑆 is a dynamic set of source

schemas corresponding to 𝑚 physical schema evolutions in the data ingested from the

90 (Semi)structured Data Management

data source 𝑖, 𝑆𝑖 = {𝑆𝑖1, 𝑆𝑖2, … , 𝑆𝑖𝑚}. For each 𝑆𝑖𝑗 ∈ 𝑆𝑖, 1 ≤ 𝑗 ≤ 𝑚, there is a set of

mapping assertions ℳ between 𝑆𝑖𝑗 and 𝑔 ∈ 𝒢 of the form: 𝑝 → 𝑎, where attribute 𝑎 ∈

𝑆𝑖𝑗 and property 𝑝 ∈ 𝑔.

The system accepts a data entity that is ingested from its source’s through an endpoint

which is typically associated with a release version. Analysis of the data entity’s physical

schema is needed to obtain its source schema 𝑆𝑖𝑗, where 𝑖 is the input source’s URI, and 𝑗

is 𝑖’s endpoint release version. SemLinker (fully/partially) then maps 𝑆𝑖𝑗 to the tagging

concept 𝑔 in the global ontology, stores it in the underlying graph of 𝑆𝑖, and uses it to

integrate 𝑖’s data with other raw data stored in PDL. Furthermore, 𝑆𝑖𝑗 is regarded as a

benchmark and is used to run schema checks on any new data entities ingested from 𝑖. A

schema check may fail, and when the number of failures reaches a predefined threshold,

the system infers that data source 𝑖 has released its endpoint with a newer version.

Consequently, a new evolution has occurred in the physical schema of 𝑖’s data, and the

system must augment the local schema 𝑆𝑖 by constructing a new source schema, say 𝑆𝑖𝑘,

that is also mapped to 𝑔 and added to 𝑆𝑖, so that 𝑆𝑖𝑘 is utilised to integrate any new data

entities ingested from 𝑖 with the release version 𝑘, meanwhile utilising 𝑆𝑖𝑗 to maintain

backward integration support (compatibility) for the data entities that have already been

ingested from 𝑖 with the release version 𝑗. The procedure for augmenting the local schemas

upon schema evolutions in the endpoints of their data sources is automatically repeated to

keep up-to-date metadata about the physical schema of the data entities ingested from each

data source.

4.5.3 Automatic schema metadata extraction

The Schema Extraction algorithm automatically extracts source schemas from data entities

(see Algorithm 1). It takes as input a data entity 𝐹 ingested from a data source 𝑖, with

release version j, and a mime string specifying the format type of 𝐹. 𝐹 is assumed to

conform to a known format specification [189], and its structure consists of a mix of flat

and complex attributes, each of which has a label and a value.

4.5 Local schemata layer 91

Table 4.1 – RDF schema representation vocabulary (𝒮)

Element Type Details

 Element Semantics

𝒮:Attribute Class Type

Describes flat attribute, e.g.,

JSON key-value pair, single

tabular column, XML tag.

𝒮:hasAttribute Property Relation
Links flat attribute with its

semantic type class.

𝒮:Object Class Type

Describes complex, e.g., JSON

object, primary or CSV header

column, etc.

𝒮:hasObject Property Relation
Links complex attribute with its

semantic type class.

𝒮:Collection Class Type

Describes enumerator ranging

from list, ordered list, array,

collection, etc.

𝒮:hasCollection Property Relation
Links enumerator attribute with

its semantic type class

𝒮:hasFormat Property Functional

Internally assigned attribute

reflects data format, e.g. JSON,

XML, CSV, etc.

𝒮:isComposedBy Property Functional
Internally assigned attribute to

control virtual transformation.

𝒮:isDecomposedFrom Property Functional
Internally assigned attribute to

control virtual transformation.

The algorithm operates on the structure level of 𝐹 and extracts its RDF representation 𝑆𝑖𝑗

that consists of nodes and relationships between them. Each node in 𝑆𝑖𝑗 describes a specific

element (attribute) in the physical schema of 𝐹 and is associated with three constructs:

Identifier, Semantic Type, and Relation. The algorithm assigns a value to each node and

constructs Identifier using the URI of the input source and the release version j as base

values. Semantic Type specifies the semantic class of the node, and its value can be any of

the concepts listed in Table 4.1. Relation refers to a relation between a pair of nodes, and

it can be any of the properties listed in Table 4.1.

92 (Semi)structured Data Management

1 function InitializeGraph(F, i , j , mime)

2 root ← i + ’/’ + j

3 format ← root + ‘/’ + mime

4 𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(format, rdf:type , 𝒮:Attribute)

5 𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(root, 𝒮:hasFormat, format)

6 GenerateGraph(F , Root)

7 end

8 function GenerateGraph(F, ParentId)

9 foreach (label,value) ∈ 𝐹 do

10 NodeId ← ParentId + ’/’ + label

11 NodeType ← Type(value)

12 𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(NodeId , rdf:type , NodeType)

13 if NodeType = 𝒮:Attribute then

14 𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(ParentId , 𝒮:hasAttribute , NodeId)

15 else

16 if NodeType = 𝒮:Object then

17 𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(ParentId, 𝒮:hasObject , NodeId)

18 GenerateGraph(value,NodeId)

19 else

20 if NodeType = 𝒮:Collection then

21 𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(ParentId, 𝒮:hasCollection , NodeId)

22 GenerateGraph(value,NodeId)

23 end if

24 end foreach

25 end

Algorithm (1)– Schema extraction algorithm

The algorithm has two procedures: InitializeGraph() and GenerateGraph(). The first starts

with specifying the given URI and the release version j as the root of 𝑆𝑖𝑗 (line 2); the

auxiliary function ToRDF() adds format attribute (the input mime corresponds to format)

to 𝑆𝑖𝑗 as one of its nodes (lines 3 and 4); ToRDF() then specifies the relationship

(:hasFormat) between the format node and its parent node (line 5). At this point, the source

4.5 Local schemata layer 93

schema 𝑆𝑖𝑗 is initiated. The procedure then invokes GenerateGraph() and passes F and the

root of 𝑆𝑖𝑗 to it. GenerateGraph() constructs 𝑆𝑖𝑗 through a series of iterations and recursive

calls over the physical schema of F. In each call, the procedure takes a label-value pair

from F and parentId (the URI) as new input, creates a node in 𝑆𝑖𝑗 corresponding to the

passed label, and links the node to its parent node (parentId). The initialization and linking

of any node is modeled as the RDF triples (NodeId rdf:type S:Type) and (ParentNodeId

S:relation NodeId), respectively (line 12). Next ToRDF(), based on the type of the node,

appends these triples to 𝑆𝑖𝑗 (lines 6-15).

Figure 4.4– A source schema extracted using the schema extraction algorithm

Depending on the complexity of 𝐹’s structure, a label-value pair may represent a flat

attribute in 𝐹 (e.g. “id” key in Figure 4.2a), in which case, the node type obtained from the

auxiliary function Type() is 𝒮:Attribute, and the corresponding node is linked to its parent

node using 𝒮:hasAttribute relation, and the algorithm moves to the next label-value pair.

Conversely, the current label-value pair may correspond to a complex attribute (e.g.

“location” embedded object in Figure 4.2a). In this case, the type obtained from Type() is

either 𝒮:Collection or 𝒮:Object, and the node is linked to its parent node using

94 (Semi)structured Data Management

one of the relations 𝒮:hasCollection or 𝒮:hasObject, and subsequently the node’s identifier

and value are passed to the recursive procedure GenerateGraph().

Figure 4.4, as an example, depicts the graph-based representation of the source schema

extracted from the data sample given in Figure 4.2a. The first node in the graph is created

as a leaf node because the first label-value (JSON key “id”) is a simple attribute in 𝐹. Its

identifier is Facebook relative URI35. A node maybe embedded in another node, such is

the case with the node labelled ‘latitude’, which serves as one of the flat attributes of the

object ‘location’.

4.5.4 Mapping computation and management

Once a source schema is constructed, it needs to be mapped to the global ontology. A

mapping is a relationship specifying how an element structured under one schema (i.e., the

source schema) corresponds to an equivalent element structured under the global ontology

(i.e., 𝒢) [39]. Mappings may be discovered either implicitly or explicitly. In SemLinker,

because the global concepts of 𝒢 are predefined independently from the input sources, it

is likely that a source schema is semantically incompatible with the concepts of 𝒢, and

therefore no implicit mappings can be directly discovered between a source schema 𝑆𝑖𝑗

and a tagging concept 𝑔. Typically, computing mappings between a source schema and a

tagging concept involves specifying the semantic types of the source schema elements,

i.e., labelling each schema element with a semantically equivalent property in the tagging

concept [93]. However, semantic labelling alone is not sufficient [83], and a precise

mapping computation process requires an extra step that specifies how the elements of a

source schema should be organised in accordance with the structure of its tagging concept

so that the two constructs become semantically compatible and ready for mapping. This

‘extra step’ is often missed in systems that automate mappings discovery [161,176,181,

191,192] and is commonly expected to be dealt with manually [83]. SemLinker uses a

two-step mapping approach that not only does the explicit mappings, but also performs the

35 https://graph.facebook.com/me/feed/2.9/id

https://graph.facebook.com/me/feed/2.9/id

4.5 Local schemata layer 95

‘extra step’ automatically. The two steps are Schema Matching (SM) and Virtual

Transformation of Source Attribute (VTSA).

Mapping Algorithm

The mapping algorithm (see List 2) takes as inputs a tagging concept 𝑔, a source schema

𝑆𝑖𝑗, and a threshold 𝑡. It takes two steps, SM and VTSA, to compute mappings between

properties and source attributes. Mappings are established as RDF triples, where each

mapping triple has the pattern (p M:mapsTo a), 𝑝 ∈ 𝑔, 𝑎 ∈ 𝑆𝑖𝑗. Such modeling offers the

flexibility of allowing multiple source attributes of multiple source schemas to be mapped

to a single property. The source attributes mapped to the same property are considered

semantically equivalent between themselves, so a unified view over them can be

automatically represented by the property.

Revisiting the example in Figure 4.2, we see that the Twitter data source is tagged with

the concept Feed. With the mappings specified below, “text” in 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.1 (Figure 4.2c)

is regarded as semantically equivalent to “message” in 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.2 (Figure 4.2d).

〈𝐹𝑒𝑒𝑑: 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 𝑀:𝑚𝑎𝑝𝑠𝑇𝑜 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.1: 𝑡𝑒𝑥𝑡 〉

〈𝐹𝑒𝑒𝑑: 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 𝑀:𝑚𝑎𝑝𝑠𝑇𝑜 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.2:𝑚𝑒𝑠𝑠𝑎𝑔𝑒〉

Such mappings allow SemLinker to automatically reconcile heterogeneous attributes from

different source schemas of the same data source, and the reconciliation can be further

obtained by a SPARQL query with the pattern 〈𝐹𝑒𝑒𝑑: 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 𝑀:𝑚𝑎𝑝𝑠𝑇𝑜 ? 𝑎〉. In

our running example, the result ? 𝑎 = {𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.1: 𝑡𝑒𝑥𝑡, 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.2:𝑚𝑒𝑠𝑠𝑎𝑔𝑒} allows

an analysis process to access the values of both data attributes from both versions,

𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.1 and 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.2. This can also be applied to unify semantically equivalent

attributes in the source schemas of different data sources as long as they are tagged with

the same concept. In our example, if we have both Facebook and Twitter data sources

tagged with the same concept Feed, then “message” in 𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘,𝑣2.9, “story” in

𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘,𝑣3.0, “text” in 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣.1.1, and “message” in 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.2 are all regarded as

equivalent.

96 (Semi)structured Data Management

Schema Matching

For each property p (line 2), the mapping algorithm invokes function Matcher() to find the

attribute in 𝑆𝑖𝑗 that is semantically equivalent with 𝑝 (line 3). Matcher() is an interface

function that passes the matching task to an external schema matcher that is plugged in the

system. Any appropriate schema matching approach may be plugged in SemLinker to

implement the computation logic underlying the interface Matcher(). In section 6.1.2, we

discuss multiple relevant approaches to serve that purpose, and evaluate their performance

as an integral part of Algorithm (2). Generally, for an attribute a, the matcher computes a

score that quantifies the semantic correspondence between a and p. If the score is larger

than the threshold t, a and p are regarded as semantically equivalent. When there is more

than one property equivalent to the same source attribute, or more than one source attribute

equivalent with the same property, the algorithm, before a mapping is established, adjusts

the structure of 𝑆𝑖𝑗 using VTSA. Matcher() returns a data structure containing two

collection constructs, A and P; while A holds zero or more source attributes, P holds one

or more properties. The algorithm decides its next step according to what is returned in the

A and P constructs.

 If 𝐴 = ∅ (line 4), no match is found and the algorithm proceeds to the next 𝑝.

 If |𝐴| = 1 and |𝑃| = 1 (line 5), one matching attribute a of the source schema is

found, so the algorithm establishes a mapping between 𝑝 and a (line 6).

 If |𝐴| > 1 and |𝑃| = 1 (line 8), an operation called Composition is performed on the

attributes of A before establishing mappings (lines 9-17).

 If |𝐴| = 1 and |𝑃| > 1 (line 18), an operation called Decomposition is performed on

the attribute 𝑎 stored in A before establishing mappings (lines 19-28). After the

operation, P is skipped from 𝑔 using the auxiliary function Skip() for optimisation

purposes (line 29).

While typically information regarding the concept 𝑔 is abundant, information regarding a

specific input 𝑆𝑖𝑗 is often inadequate [193], especially given that PDL input source often

4.5 Local schemata layer 97

do not expose full-fledged schemas (see section 4.2). When a situation like this arises,

SemLinker uses matchers from third parties to handle schema matching tasks. Matchers

are classified into three groups, schema-level, instance-level, and hybrid matchers [194].

Schema-level matchers utilise the information available in input schemas to find matches

between schema elements. Instance-level matchers use statistics, metadata, or trained

classifiers to decide if the values of two schema elements match. Hybrid matchers combine

both mechanisms to determine match candidates. Schema matching approaches are

constantly evolving, and often they apply other techniques such as dictionaries, thesauri,

and user-provided match or mismatch information [193]. After every single property is

examined, and mappings between 𝑔 and 𝑆𝑖𝑗 are established, the underlying RDF data of

the newly constructed 𝑆𝑖𝑗 are added into the local schema 𝑆𝑖 (line 33).

1 function ComputeMap(𝑔 , 𝑆𝑖𝑗 , 𝑡)

2 foreach 𝑝 ∈ 𝑔 do

3 result ← Matcher(𝑝, 𝑔, 𝑆𝑖𝑗 , 𝑡)

4 if result(𝐴) ≠ ∅ then

5 if result(|𝐴|) = 1 and result(|𝑃|) = 1 then

6 𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(𝑝, 𝑀:𝑀𝑎𝑝𝑠𝑇𝑜,result(𝐴[0]))

7 else

8 if result(|𝐴|) > 1 and result(|𝑃|) = 1 then

9 parent ← Parent(result(𝐴[0]))

10 newNode ← parent + ’/’ + Label(𝑝)

11 𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(newNode, 𝑟𝑑𝑓: 𝑇𝑦𝑝𝑒, 𝒮: 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)

12 𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(parent, 𝒮: ℎ𝑎𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒,newNode)

13 𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(𝑝, 𝑀:𝑀𝑎𝑝𝑠𝑇𝑜,newNode)

14 for ℎ = 0 upto result(|𝐴|) – 1 do

15 DeleteRelation(parent, 𝑆𝑖𝑗 , result(𝐴[ℎ]))

16 𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(result(𝐴[ℎ]),𝒮: 𝑖𝑠𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝐵𝑦,newNode)

17 end for

98 (Semi)structured Data Management

18 else

19 if Type(result(𝐴[0])) ≠ 𝒮: 𝑂𝑏𝑗𝑒𝑐𝑡 then

20 UpdateType(𝑆𝑖𝑗, result(𝐴[0]), 𝒮: 𝑂𝑏𝑗𝑒𝑐𝑡)

21 end if

22 for ℎ = 0 upto result(|𝑃|) – 1 do

23 newNode ← result(𝐴[0]) + ‘/’ + Label(result(𝑃[ℎ]))

24 𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(newNode,𝑟𝑑𝑓: 𝑡𝑦𝑝𝑒, 𝒮: 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)

25 𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(result(𝐴[0]), 𝒮: ℎ𝑎𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒,newNode)

26 𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(newNode, 𝒮: 𝑖𝑠𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝐹𝑜𝑟𝑚,result(𝐴[0]))

27 𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(result(𝑃[ℎ]), 𝒮:𝑀:𝑚𝑎𝑝𝑠𝑇𝑜,newNode)

28 end for

29 Skip(result(𝑃))

30 end if

31 end if

32 end for

33 𝑆𝑖 ← 𝑆𝑖 ∪ 𝑆𝑖𝑗

34 End

Algorithm (2)– Mapping algorithm

Virtual Transformation of Source Attribute

In Figure 4.3, latitude and longitude, the two properties in the concept Feed,

correspond directly to the flat attributes of the embedded object labelled “location” in

Figure 4.2a, but correspond indirectly to the flat attribute labelled “geo” in Figure 4.2b.

The relationships between latitude and longitude and their indirect corresponding

source attribute “𝑔𝑒𝑜”, though apparent, can semantically hold only if “geo” is transformed

into two new source attributes, i.e., “𝑔𝑒𝑜” ⟶ 〈"𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒", "𝑙𝑜𝑛𝑑𝑖𝑡𝑢𝑑𝑒"〉, or vice versa. To

preserve the structure of the raw data stored in the lake, we adopt two virtual

transformation operations, Composition 𝜇 and Decomposition 𝛾, to work on the schema of

the raw data rather than on the data themselves. The virtual transformation operations are

4.5 Local schemata layer 99

based on [172, 195], and they allow SemLinker to virtually map an attribute in a source

schema to a property in the global ontology.

Definition 4.3 (Composition 𝝁): Given a set of source attributes A, 𝐴 =

{𝑎1, 𝑎2, , … , 𝑎𝑘}, 𝐴 ⊆ 𝑆𝑖𝑗, 𝑆𝑖𝑗 ∈ 𝑆𝑖,1 < 𝑘 ≤ 𝑛, 𝑛 = |𝑆𝑖𝑗|, the composition operator 𝜇𝐴,𝑎𝜇

composes 𝐴 into a single virtual attribute 𝑎𝜇.

The mapping algorithm uses the condition (|𝐴| > 1, and |𝑃| = 1) as the heuristic rule to

compose a subset of source attributes 𝐴, 𝐴 == {𝑎1, 𝑎2, , … , 𝑎𝑘} as a single new attribute

𝑎𝜇 and adds it to the 𝑆𝑖𝑗. Since 𝑎𝜇 is a new source attribute, it must be initialized in the

same manner as other source attributes. Two types of mappings are established to activate

the composition transformation. Mapping 𝑝𝑥 → 𝑎𝜇 is performed by adding the RDF triple

〈𝑝𝑥 𝑀:𝑚𝑎𝑝𝑠𝑇𝑜 𝑎𝜇〉 to 𝑆𝑖𝑗 (line 13); mapping 𝐴 → 𝑎𝜇 is performed by adding a set of RDF

triples, each following the pattern 〈𝑎𝑦 𝒮: 𝑖𝑠𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝐵𝑦 𝑎𝜇〉 (lines 14-17, see Table 4.1).

Since 𝑎𝜇 is a virtual attribute that has no physical implementation, its data values are

dynamically constructed when queried.

Definition 4.4 (Decomposition 𝜸): Given an attribute 𝑎𝑦 ∈ 𝑆𝑖𝑗, 𝑆𝑖𝑗 ∈ 𝑆𝑖, the

decomposition operator 𝛾𝑎𝑦,𝐴𝛾 decomposes the attribute 𝑎𝑦 into a set of virtual attributes

𝐴𝛾, 𝑤ℎ𝑒𝑟𝑒 𝐴𝛾 = {𝑎𝛾1𝑎𝛾2, , … , 𝑎𝛾𝑘}, 𝑘 > 1.

When |𝐴| = 1, and |𝑃| > 1 (line 18) a decomposition operation takes place to decompose

a source attribute 𝑎𝑦 into a set of new virtual attributes 𝐴𝛾, and adds the set to 𝑆𝑖𝑗. In the

operation, 𝑎𝑦 is modeled as the parent node of the new virtual attributes (lines 23-25).

Similar to composition, the algorithm establishes two types of mappings to activate the

decomposition transformation. Mapping 𝑝𝑥 → 𝑎𝛾𝑖 is materialized through the RDF triple

〈𝑝𝑥 𝑀:𝑚𝑎𝑝𝑠𝑇𝑜 𝑎𝛾𝑖〉, and mapping 𝑎𝛾𝑖 → 𝑎𝑦 is materialized through the RDF triple

〈𝑎𝛾𝑖 𝒮: 𝑖𝑠𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝐹𝑟𝑜𝑚 𝑎𝑦〉 (see Table 4.1). Since 𝐴𝛾 is a set of virtual attributes that

have no actual implementation, the value of each attribute 𝑎𝛾𝑖 in 𝐴𝛾 must be dynamically

constructed whenever needed.

100 (Semi)structured Data Management

Figure 4.5– Mappings between the concept Feed and two source schemas

4.5.5 Partial unified views

A mediation-based integration approach typically emphasizes rigorous mapping between

the global schema and the local schemas of the data sources under integration. While the

assumptions behind such strict emphasis are construed in [183], the expected outcome is

a set of one or more comprehensive unified views that effectively cover all the physical

representation details of the integrated data. An implicit requirement in such approach is

the prior knowledge about the local schemas of the data sources participating in the

integration workflow. In contrast, as indicated in section 4.1, the input sources of a DL

system rarely expose full-fledged schemas. This may justify why mediation-based

integration approaches frequently break down inside a DL system [183], and similar

dynamic data management environments for that matter. The dataspace research [196] has

4.5 Local schemata layer 101

managed to overcome the strict modelling and rigorous mapping requirements by adopting

an incremental integration approach in pay-as-you-go fashion [197]. For a given dataset

in a dataspace system, the user may manually map only subset of its local schema elements,

towards generating partial unified view that can be further enhanced when the user

discovers more mappings over time, thus covering more physical details of the dataset’s

schema. In SemLinker, we adopt a similar but automated approach to generate unified

views that are “partial”. Technically, SemLinker harvests as much schema information as

possible from a given input source through the schema extraction algorithm. It then

attempts to correctly map as many elements in the schema of that source as possible to the

tagging concept, through the mapping computation algorithm and by exploiting the data

profiling capabilities offered by the matcher plugin, based on the information obtained

from the former algorithm. The final product is a set of mappings represent partial

modelling that can be directly utilised to rewrite user queries targeting the data of that

source, among other data in PDL.

A partial unified view over the local schema of a given input source is fundamentally

defined by the global concept – and its constituting global properties – tagging that

source’s data. Since the common user has full control on the global ontology 𝒢, then the

details of any concept 𝑔 ∈ 𝒢 can be readily modified in order to adjust the scope of the

corresponding view over all the data tagged with this particular concept. Adjustments may

involve replacing 𝑔 with more specific/general concept of 𝑔′, adding to or removing from

its set of properties, and so forth. When any updates occur in 𝒢, SemLinker automatically

repeats its integration workflow (i.e. algorithms invocation) to reconstruct the mappings

of the local schemas corresponding to 𝑔 according to the newly applied modifications.

Partial unified views can be regarded as user-tailored that may be personalised according

to the emerging needs and requirements of the user regarding specific data in PDL. The

underlying mappings of a partial unified view are static GAV mappings. Overcoming the

sensitivity problem of GAV modelling, which we covered in section 4.2, is inherently

achieved through local schema versioning, such that, since any changes in the local

schemas are interpreted as new schema versions (i.e. definition 4.2), this enables the query

engine component to rapidly and adequately rewrite and unfold input queries without

encountering any schema mismatching problems; an input query over data ingested from

102 (Semi)structured Data Management

particular evolving source is perfectly unfolded over the old source schema, and separately

unfolded on another source schema that corresponds to the evolution of that source.

Furthermore, as s shielding measure to protect the query execution process, SemLinker’s

query engine permits query-based accessibility to mapped schema elements only whereas

unmapped elements are labelled as inaccessible elements and are hidden from the query

issuer.

Figure 4.5 depicts a sample of two local schema versions and their mappings to properties

of a tagging concept in the global ontology. The source schemas are extracted from

Facebook data samples given in Figure 4.2a and Figure 4.2b using the schema extraction

algorithm, and the mappings are computed using the mapping algorithm. In the figure, red

circles indicate normal source attributes mapped to the equivalent properties in

straightforward schema matching operations. The source attribute ‘geo’ in the source

schema https://graph.facebook.com/me/feed/3.0 is marked by a white circle to indicate that

decomposition has taken place, and ‘geo’ is decomposed into virtual source attributes,

namely, “latitude” and “longitude”. The virtual source attributes (yellow circles) are also

mapped to their corresponding global properties “geo:latitude” and “geo:longitude”. Here,

not all source attributes are mapped to properties of the tagging concept. Some source

attributes (grey circles) are inaccessible, such as “attachments” of the second local schema.

An inaccessible attribute, without an equivalent property in the global ontology, cannot be

accessed through queries.

4.6 Querying

The Query engine in the global schema layer (see Figure 4.1) provides querying services

over SemLinker’s metadata. The engine serves two purposes inside MMF: (i) to provide

an SQL abstraction for formulating SQL-like queries targeting the unified views over

structured and semistructured personal raw data stored in PDL, and (ii) to compile,

translate, and execute SQL-like queries that are input by the user or third-party services to

SemLinker via PDL’s access layer. The query engine accepts a successfully compiled

input SQL-like query, converts it into a relevance query and an unfolding query, both of

4.6 Querying 103

which are internal SPARQL queries that are automatically formulated by the engine based

on analysing the input query statement(s), and as follows:

 A relevance query is a SPARQL SELECT query derived from the input query

based on the concepts embedded in its clause formulation, and its execution over

𝒢 returns all conceptually relevant local schemas.

 An unfolding query is a SPARQL SELECT query that is derived from the input

query based on the ontological elements (global concepts and properties)

embedded in the latter. Any unfolding query is iteratively executed on the

underlying RDF graphs of the relevant local schemas that result from the relevance

query execution. The result of the iterative execution is a list of source attributes

that correspond to properties of the concepts specified in the query.

Once all the unfolded queries are executed, all the source attributes can be identified, and

at this point, we have all the relevant metadata information regarding the query. The last

phase of the query execution is to load data values that correspond to each identified source

attribute PDL’s unified repository. The loaded data values are assembled into a list of

results and returned back to the SQL-like query issuer (the user or third-party service).

Here is a simple query scenario. Suppose the PDL user (the same user of the example in

Figure 4.2) is interested in retrieving all social feeds, and their associated geolocation

information (if any) that are stored in the unified repository, after a specified date (e.g.,

1/7/2018), and so she writes the following query in the access layer’s query interface and

submits it to SemLinker.

SELECT

Feed.description,Feed.latitude,Feed.longitude

FROM sioc:Feed Feed WHERE

ParseTime(Feed.date,”dd/mm/yyyy”)> “1/7/2018”

Upon submission, the access layer dispatches the query to SemLinker’s query engine. The

engine compiles it, and based on the concept (sioc:Feed) specified in the FROM clause

of the query, it forms the following relevance query:

104 (Semi)structured Data Management

SELECT ?s WHERE { ?s M:isInstanceOf Feed .}

This relevance query is executed on the global ontology. A successful execution returns a

view that is constituted by all local schemas in the local schemas repository that are tagged

with the concept Feed. In our case (assuming Facebook and Twitter are the only local

schemas tagged with this concept), 𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘 , 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟 are returned. Next, the query engine

unfolds the input query and generates the following unfolded query, executing it iteratively

on the RDF graphs of each local schema it has found, i.e., 𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘 , 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟.

SELECT ?a1 ?a2 ?a3 WHERE

{ Feed:description M:mapsTo ?a1 .

 Feed:latitude M:mapsTo ?a2 .

 Feed:longitude M:mapsTo ?a3 . }

Table 4.2 lists the view returned from executing the above unfolded SPARQL query. From

the table, we see two matching local schemas, each with two source schemas, and their

attributes corresponding to the properties specified in the original input query. Two virtual

source attributes from decomposition, “latitude” and “longitude”, are among the source

attributes returned. Once the necessary metadata information for meeting the input query’s

data requirements is obtained, the query engine retrieves and parses the corresponding data

entities and loads all data values matching the specific source attributes after performing

the conditional filtering. The technical details of data retrieval from the storage layer

(linkage table and unified repository) are covered earlier in section 3.4.

Since PDL stores raw data in its native representations, SemLinker’s query engine may

require invoking multiple parsers during raw data retrieval workloads. In our running

example, the source schemas 𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘,𝑣2.9, 𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘,𝑣3.0, 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.1 use JSON format,

whereas the source schema 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.2 uses XML format. The query engine automatically

infers the appropriate parser for parsing the data entities annotated with each among these

schemas. Inference is performed by querying the underlying RDF graph of each schema,

more precisely, the format metadata artefact added to the source schema graph by the

schema extraction algorithm.

0 105

SELECT ?x WHERE { 𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘,𝑣2.9 S:hasFormat ?x .}

SELECT ?x WHERE { 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.2 S:hasFormat ?x .}

For instance, by executing the above internal SPARQL queries, the engine can infer that

the data entities annotated with 𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘,𝑣2.9 exist with “application/json” format, whereas

their counterparts annotated with 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.2 exist in “application/xml”. The query engine

may call JsonCPP and PugiXML (see section 3.2) for rapid raw data parsing to access the

values correspond to the attributes which reflect the global properties specified in the input

SQL-like query.

Table 4.2 – Schema metadata results (view) of SQL-like query execution

Local S. Source S. Query Properties Result Attributes

𝑺𝑭𝒂𝒄𝒆𝒃𝒐𝒐𝒌 𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘,𝑣2.9 description,

latitude, longitude

message,

latitude, longitude

𝑺𝑭𝒂𝒄𝒆𝒃𝒐𝒐𝒌 𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘,𝑣3.0 description,

latitude, longitude

story,

geo(latitude,longitude)

𝑺𝑻𝒘𝒊𝒕𝒕𝒆𝒓 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.1 description,

latitude, longitude

text,

coordinates(latitude,longitude)

𝑺𝑻𝒘𝒊𝒕𝒕𝒆𝒓 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.2 description,

latitude, longitude

message,

coordinates(latitude,longitude)

106 (Semi)structured Data Management

4.7 Summary

In this chapter, we presented SemLinker as an ontology-based data integration system that

automates multiple tedious and time-consuming tasks in the data management workflow

of PDL. SemLinker is the central component of MMF for managing (semi)structured

personal data. It enables PDL users to accelerate time-to-value analytics on heterogeneous

personal data by offering capabilities of data integration, processing, and querying through

conceptual representation of physical schemas regarding a widely used global ontology.

The system is based on two algorithms that automate the overall management process of

personal data in PDL through metadata fabrics. The first algorithm constructs formal RDF

representations that reflect the physical schemas of input raw data. The second algorithm

metamodels these representations to the global ontology by discovering formal GAV

mappings that are computed using pluggable profiling-based schema matcher that is

designed by reusing two important current state of the art schema matching approaches.

SemLinker uses the algorithms’ outputs as metadata artefacts to annotate data inputs and

to generate queryable unified views over them.

SemLinker was introduced to the academic community in a research paper [86]. To the

best of our knowledge, it is the first domain-agnostic data integration system that offers

self-adapting capabilities to integrate a variety big personal data with frequently evolving

schemas based on solid theoretical foundations, without modifying the integrated data

through physical transformations or similar intermediate modelling techniques. However,

the system is not without limitations. It focuses on managing structured and semistructured

personal data only, hence it is by no means a holistic data integration solution when

unstructured data comes in the picture. In the next chapter, we introduce a principled

solution to overcome this limitation.

5.1 Introduction 107

Chapter 5 Unstructured Data Management

It is clear that there are large bodies of personal data in unstructured form, and managing

them is unavoidable if we are pursuing a complete metadata management solution for

PDL. In Chapter 4, we introduced an effective MMF component for managing personal

data with explicitly-defined or self-describing structures, however, such component may

quickly become futile when operating on data with no structure at all. In this chapter, we

address the problem of unstructured data management by first proposing an unsupervised

keyphrase extraction algorithm and then adopting it as a principal MMF component to

automatically annotate unstructured personal data with formal metadata drawn from an

extensible ontology, towards creating semantic representations that are utilised to organise

the storage and usage of this kind of data and to facilitate its seamless integration with data

of other structure kinds within PDL.

5.1 Introduction

Currently, structured and semistructured data sources can be viewed as islands in a sea of

unstructured data [130]. Several studies estimate that 80-90% of the world’s data is in

unstructured from [198,199,200], and a significant portion of which is created and shared

by common users as freeform text [201]. A comprehensive data management solution

should be capable of creating bridges between structured, semistructured, and unstructured

data, for seamless integration and smooth querying [201,202]. One important application

of such bridging is to exploit unstructured contents as sources of strategic information for

obtaining insights about the “backstory” of certain (semi)structured raw data pieces during

analysis workloads or vice versa – see section 6.3 as an empirical example. However, data

bridging over structure heterogeneity is by no means an easy task. The main challenge of

unstructured data lies in its freeform nature. It – unlike structured and semistructured kinds

– cannot be fitted into neat and explicitly defined representations [203], and with the

absence of such representations, core management activities like access and retrieval

108 Unstructured Data Management

become problematic [130,204]. The early research efforts for bridging the gap between

unstructured text36 and information retrieval (IR) [205] extensively focused on the bag-of-

words paradigm. In recent years, a good deal of work attempted to go beyond this paradigm

with the goal of constructing representations for unstructured text through semantic

annotations. Basically, semantic annotation refers to the process of attaching metadata

artefacts (e.g. keywords, ontology classes, etc.) to text segments as an enabler of

information access and retrieval [206]. Various methods have been proposed in the

literature for annotating textual documents, most of which employ Information Extraction

(IE) techniques to automatically recognise instances of concepts (e.g. lexical chaining

[207] and wikification [208]), topics (e.g. LSA [209], LDA [210], ESA [211]), events (e.g.

event detection [212]), entities (e.g. named entity recognition [213,214]), relations (e.g.

relation mining [214,215]), or combination of these (e.g. keyphrase extraction [53,55]),

inside a given document. From operational perspective, existing methods are deployed

either as automatic or semi-automatic applications where the user can inspect, and if

necessary corrects the generated annotations. Automatic methods are preferred when the

volume of data is too large to make human post-annotation practicable – which is the case

of PDL. From general perspective, current state of the art methods are not flexible enough

to support adaptability, domain tractability, and maintainability for being used in cost-

saving and domain-agnostic scenarios [202][204][206]. To support managing unstructured

text and bridging it with other raw data within a dynamic environment, an optimised

semantic annotation method is needed, which should effectively address the following

requirements:

 Precision: in section 3.4.1, we explored the importance of precise metadata creation

and annotation. The heavy reliance on semantic annotations as means to enable

unstructured data management entails strong correlation between the efficiency of the

offered management functionalities and the precision of the adopted annotation

method.

36 In this work, we view unstructured data as any data entity comprises primarily textual content without

predefined structure or metadata describing that content. Such understanding may be plausible but certainly

incomprehensive as there are too many other forms of unstructured data (e.g. multimedia). In chapter 7, we

discuss an extended approach for supporting other unstructured data forms as future work direction.

5.1 Introduction 109

 Domain-agnosticism: a wide variety of unstructured documents may be ingested by

PDL, hence the adopted method should exhibit effective robustness across various

domains rather than targeting specific ones.

 Supervision: one of the main goals of MMF is the reduction of manual management

efforts for users. A supervised or semi-supervised method typically requires expensive

training corpora of ground truth data [216]. Such requirement inherently challenges

our research goal from operational perspective: common users do not have the

knowledge or the sufficient resources to deliver high-quality training corpora, and

going domain agnostic entails the need for multiple training datasets to train different

ML models that correspond to each domain of interest to the user. Thus it is critical to

adopt an unsupervised method where no training of whatsoever is required.

 Personalisation: while existing methods typically annotate the text constituents of an

input document with general semantic classes, the adopted method should offer finer

annotation granularity for faster and convenient information access and retrieval

whenever applicable. For instance, annotating a mention of the user’s sibling inside a

personal email message with the class Brother (or Sister) can contribute in

boosting the efficiency of retrieving that message from a large text base than if it would

otherwise be annotated with the generic class Person37.

To this end, we introduce an automatic semantic annotation (ASA) method for addressing

the above requirements. The method is fundamentally based on a new automatic keyphrase

extraction (AKE) algorithm, and it aims to model any unstructured document in PDL into

semantic representation that is defined by a set of thematically important disambiguated

text constituents (e.g. concepts, instances, named entities) and their associated conceptual

meanings defined by a non-empty set of classes drawn from an extensible ontology. The

proposed method is implemented as an MMF component, and it can be directly queried

for retrieving the information which the PDL user is looking for, and present it at the right

level of detail.

37 For example, most current state of the art NER taggers annotate name mentions with Person. See the

following cases: http://nlp.stanford.edu:8080/ner/ and http://text-processing.com/demo/tag/

http://nlp.stanford.edu:8080/ner/
http://text-processing.com/demo/tag/

110 Unstructured Data Management

In the remainder of this chapter, we briefly review AKE literature, present SemCluster

algorithm, and describe its implementation as MMF component.

5.2 Automatic keyphrase extraction

Keyphrases are single or multi-word expressions that describe the essential content of a

free-text document. AKE [218] is an NLP task that concerns analysing the content of an

input document and automatically identifying and extracting keyphrases that correspond

to the document’s theme. Existing AKE work can be broadly divided into two lines of

research [221,222,223]: supervised and unsupervised. A supervised AKE approach

typically treats the extraction task as a classification problem, in which, a classifier is

trained on a large corpus of documents that are annotated with “correct” keyphrases by

human experts, and the result is a machine learning model which then can be used for

discriminating keyphrases from non-keyphrases in unseen documents. Various text

features and classification algorithms have been applied in supervised AKE, (e.g.

[218,219,220,224,225]. Supervised approaches perform AKE with promising results

[221,226], however they contradict the requirements listed in section 5.1, such that, a

supervised AKE approach requires substantial amount of manually annotated training data

which is very expensive requirement for common users and may lead to inconsistencies in

heterogeneous processing environments that demand cross-domain tractability [44]. For

instance, a classifier trained on features of labelled keyphrases that belong to a particular

domain (e.g. scientific papers) may exhibit poor performance when applied on documents

from another domain (e.g. news articles).

Unsupervised AKE overcomes the critical challenges of training data and domain bias by

casting the extraction task as a ranking problem. The typical workflow here is to select a

particular set of terms from the input document, then by applying some ranking strategy,

top ranked terms are taken as keyphrases. Generally, an unsupervised AKE approach can

either be graph-based or statistics-based [222]. In the former, the input document is

modelled as a graph where each node represents a term in the document, and the edge

between a pair of nodes resembles a relevance relation (e.g. co-occurrence). Subsequently,

a centrality measure (e.g. PageRank [227]) is applied on the graph to rank each node based

5.2 Automatic keyphrase extraction 111

on its incoming and outgoing edges. Finally, the top-𝑘 ranked nodes are selected as

keyphrases. In the latter, the terms are ranked based on their associated statistical

information, such as 𝑇𝐹, 𝐼𝐷𝐹, or statistical distances, and then the top-𝑘 ranked terms are

either selected as keyphrases, or utilised as heuristics that can be further exploited to search

for better candidates.

Compared with other NLP tasks, unsupervised AKE approaches struggle to achieve better

results [221]. AKE requires not only local statistical information about the terms contained

in the document but also extensive background knowledge to capture the relations between

them [221]. Many recent approaches suggest utilising external knowledge sources (e.g.,

WordNet [49]) to obtain rich relation information about terms during AKE [228,229].

Although these approaches demonstrate improved extraction performance in some cases,

their utilised knowledge sources are not consistent enough to supply background

information in arbitrary domains, therefore a term representative of the document’s theme

may be disregarded simply because the knowledge source does not maintain information

about it –we refer to this issue as coverage limitation. For example, Figure 5.1 depicts a

text segment drawn from DUC-2001 news dataset [54]; the term “Ben Johnson” is

important because it refers to the name of the athlete who this news article is about, hence

the term is selected as a valid keyphrase by human curators. A typical WordNet-based

unsupervised AKE approach, such as SemGraph [229], would disregard this term because

WordNet has no entry matching “Ben Johnson”.

Another issue in existing unsupervised approaches is their heavy reliance on statistical

information to capture the statistical relations between terms, thereby failing to account

for latent semantic relations. In a graph-based approach, if two representative terms are

not co-occurring within a predefined window, then no occurrence edge will be established

between their donating nodes, and their ranks in the graph decrease. Similarly, statistics-

based approaches treat terms solely as statistical elements, therefore a term of high

frequency is typically ranked higher than an infrequent but semantically important term.

Due to this semantics loss, a term representative of the document theme is not guaranteed

to be among its top-ranked candidates if it occurs infrequently [222], which also means a

top-ranked candidate of statistical importance may not be suitable to be a representative of

the document [55]. In our running example, most state of the art AKE approaches fail to

112 Unstructured Data Management

identify “dash” as a representative term because of its distance from other co-occurring

terms such as “Olympics” and its infrequent occurrence in the text, thereby the phrase

“100-meter dash” is not regarded as a valid keyphrase. On the other hand, the term

“Olympics” appears frequently, so it is not surprising that most AKE approaches select

“Olympics", “Olympic Games”, and “Olympic movement” as valid keyphrases, without

considering that “Olympic movement” is not identified by the human curators as a valid

keyphrase, because it has no immediate semantic relevance to the document theme, for

instance, many knowledge bases38,39,40 map this term to “Organisation” and not “Sport”

domain.

Canadian Ben Johnson left the Olympics today “in a complete state of shock,”

accused of cheating with drugs in the world’s fastest 100-meter dash and stripped

of his gold medal. The prize went to American Carl Lewis. Many athletes

accepted the accusation that Johnson used a muscle-building but dangerous and

illegal anabolic steroid called Stanozolol as confirmation of what they said they

know has been going on in track and field. Two tests of Johnson’s urine sample

proved positive and his denials of drug use were rejected today. “This is a blow

for the Olympic Games and the Olympic movement,” said International Olympic

Committee President Juan Antonio Samaranch.

Figure 5.1– A text segment from #AP880927-0089 in DUC-2001 dataset41

Building an AKE-based ASA method to support unstructured data management in PDL

intuitively necessitates the need for an efficient underlying AKE algorithm that can

overcome the aforementioned challenges. Accordingly, we propose SemCluster, an

unsupervised clustering-based algorithm that extracts high-quality keyphrases from free-

text documents in any domain. SemCluster first extracts a particular set of terms from an

input unstructured document and then performs clustering on them so that similar terms

are grouped within the same cluster based on their latent lexical and semantic relations.

Each resulting cluster may implicitly correspond to a topic in the document. Terms that

are close to the centroids of specific clusters are selected as seeds and used to search for

38 http://www.babelnet.org
39 http://www.conceptnet.io
40 http://lookup.dbpedia.org/api

41 Phrases in bold are gold standard keyphrases that are assigned by expert curators as given in [54].

http://www.babelnet.org/
http://www.conceptnet.io/
http://lookup.dbpedia.org/api

5.3 Related work 113

candidate phrases that are representative of the main theme of a document. Finally,

candidate phrases are refined and the resulting candidates are chosen as appropriate

keyphrases.

SemCluster makes use of knowledge extensibility in order to address the aforementioned

unsupervised AKE challenges. SemCluster adopts WordNet as a default knowledge source

to obtain background semantic information about the terms within the document. The

semantic coverage of WordNet can be flexibly extended by integrating any number of

additional generic, specialised, or personalised knowledge sources, so that when the

semantic information of an arbitrary term is not present in WordNet, it may be available

in the integrated source(s). For example, by integrating WordNet with DBPedia [50],

SemCluster can obtain rich semantics about “Ben Johnson” from DBPedia, even though

this term has no matching entry in WordNet. With the availability of rich semantics,

SemCluster can readily capture the latent semantic relations between terms, and

adequately rank each term based on its semantic importance in the context of the document

and its relevance to the underlying theme. In the example presented in Figure 5.1, despite

the infrequent occurrence of the term “dash” and its distance from statistically relevant

terms, SemCluster assigns it a high rank due to its semantic closeness to “Olympics”, “Ben

Johnson”, and “Carl Lewis”.

5.3 Related work

Most early studies on unsupervised42 methods for keyphrase extraction focus on using the

local information within input documents. The simplest approach uses the 𝑇𝐹 criterion

[235] for choosing frequently occurring phrases as keyphrases. More sophisticated

methods incorporate additional statistical and linguistic information. Barker et al. [238]

suggests extracting noun phrases from the document and ranks them based on the length,

frequency, and the head-noun frequency of each phrase. Munoz [239] proposes an

unsupervised algorithm that is based on adaptive resonance theory to identify 𝑏𝑖-gram

42 In this thesis, we do not consider any AKE approaches that demand ML training to improve terms

ranking, such as word embedding based approaches.

114 Unstructured Data Management

keyphrases, though keyphrases intuitively vary in length. El-Beltagy et al. [236] propose

KP-Miner, a state of the art 𝑇𝐹. 𝐼𝐷𝐹 based approach that operates on 𝑛-gram phrases, and

only phrases that do not contain a stop word or punctuation mark, occur for the first time

within the first 𝑚 words of the document, and have a frequency greater than a threshold

determined by the document length, are selected as candidate phrases. Subsequently,

candidates are ranked using a modified 𝑇𝐹. 𝐼𝐷𝐹 model that incorporates a boosting factor

aimed at reducing the bias towards single-word candidates. KP-Miner suffers two main

drawbacks: it treats phrases as solely statistical elements in the document, and it ignores

the fact that based on recent studies [248] 15% of keyphrases contain stop words.

Graph-based AKE is another major stream of AKE research [210]. Mihalcea et al. [53]

propose TextRank, the first approach to rank candidate keyphrases based on the co-

occurrence links between words. TextRank uses a sliding window technique to construct

the word graph of an input document. The sliding window moves from the first word to

the last word in the document, and words that co-occur within a window 𝑚 ≥ 2 are

connected by an edge in the graph. The approach then applies PageRank on the graph to

rank nodes through voting [227], such that a node with more in- and out- edges has more

probability of being top-ranked. However, because important words with low frequency

are often ranked low (i.e. semantic loss), TextRank performs AKE with poor accuracy.

Numerous methods have been proposed in the literature to compensate the semantic loss

of TextRank. Among these, Danesh et al. [232] present a hybrid (statistics- and graph-

based) approach that computes an initial weight for each phrase based on its 𝑇𝐹. 𝐼𝐷𝐹 score

and the position of its first occurrence in the document. Then the phrases, together with

their weights, are modeled as a graph and their weights are recomputed using a centrality

measure to produce the final ranking of phrases. Wan et al. [54] introduce an extension of

TextRank that incorporates the co-occurrence information from a set of neighbour

documents to weight the edges between words in the graph-based representation of the

input document. The algorithm uses the Cosine Similarity measure to retrieve documents

from a large document corpus that are topically related to the input document. The

retrieved documents contribute in identifying and ranking the phrases that correspond to

the topics in the document. However, the retrieval of topic-related documents from large

corpora is very expensive. Wang et. al. [228] extends TextRank by incorporating

5.3 Related work 115

background semantic information form WordNet for weighting the nodes in the graph.

Then PageRank is used to compute the top-k ranked nodes. Similarly, Martinez-Romo et

al. [229] use information from WordNet to enrich the semantic relationships between

words in the word graph. Though the performance of the methods using Wordnet has

improved greatly, as indicated in the introduction section, WordNet is limited in terms of

its semantic coverage and is not a panacea.

Clustering-based studies are another family of unsupervised AKE [222]. Bracewell et al.

[237] present a method for extracting noun phrases from a document and grouping them

into clusters based on their shared noun terms. The resulting clusters are ranked based on

noun term frequencies, and the top-𝑘 ranked clusters are selected as keyphrases. Liu et

al.[55] introduce a similar clustering-based algorithm, called KeyCluster, that extracts

noun terms from an input document, groups them into clusters based on their semantic

relatedness, then selects the phrases from the document body which contain one or more

cluster centroids and which follow a certain linguistic pattern. Finally, the selected phrases

are regarded as output keyphrases. KeyCluster adopts Wikipedia as an external knowledge

source to capture the relatedness between noun terms. The basic idea here is to consider

each Wikipedia article as a concept, then the semantic meaning of a term is represented as

a weighted vector of Wikipedia concepts, of which the values are the term’s TFIDF within

corresponding Wikipedia articles. Accordingly, a similarity metric can be used to capture

the relatedness between two terms based on their conceptual vectors. The work in [55]

gives three options to implement the similarity measure, which are Cosine similarity,

Euclidean distance, Point-wise Mutual Information and Normalised Google Similarity

Distance [230]. The output of pair-wise similarity computations is a similarity matrix that

is clustered to obtain the clusters’ centroids that are necessary for selecting candidate

phrases. The authors of KeyCluster choose three clustering algorithms for the clustering

task, which are: Hierarchal Clustering, Spectral Clustering, and Affinity Propagation.

KeyCluster has been shown to outperform many prominent AKE methods, however early

clustering-based methods in general cannot guarantee that all generated clusters are

sufficient to cover the document theme, and selecting the centroid of a topically

unimportant cluster as a heuristic to identify and extract keyphrases yields erroneous

outputs. More recent studies propose to incorporate topic analysis in the AKE task to

116 Unstructured Data Management

ensure that output keyphrases have strong association with the document’s main theme

from a topical viewpoint. In the topical clustering-based method [231,233,234], terms are

grouped into clusters using an appropriate clustering algorithm, and the method proceeds

to conduct topic analysis using a probabilistic topical model, such as Latent Dirichlet

Allocation [210], in order to extract all latent topics 𝑇 in the document. The importance of

each term is computed as the sum of its scores in each topic 𝑇𝑖 ∈ 𝑇, weighted by the

probability of 𝑇𝑖. Hence a term that belongs to an important topic 𝑇𝑖 is weighted more

heavily than a term that belongs to a less important topic 𝑇𝑗. Although topical clustering-

based methods improve significantly their AKE performance, they essentially suffer

empirical challenges related to the topic analysis process. For instance, when applied to

new domains, LDA and similar models induce high computational complexity and require

hyperparameter (re)tuning, which is a non-trivial task in domain-agnostic text processing

applications, given that the user is “common”.

SemCluster is based on an extensive literature review and through learning the advantages

and disadvantages of other approaches. It adopts an approach that extracts 𝑛-gram terms

and named entities instead of single words (similar to KP-Miner) and relies greatly on

background knowledge sources (similar to SGRank, SemGraph, ExpandRank, and

KeyCluster). However, because of the coverage limitation problem that would arise if it

was based on a sole knowledge source, SemCluster is designed to allow extensibility of

its knowledge base by integrating with other knowledge sources.

5.4 SemCluster overview

Given an extensible background knowledge source that is modelled as the ontology 𝑂, for

an input unstructured document 𝐷, SemCluster performs the algorithmic steps depicted in

Figure 5.2 to extract a set of keyphrases that are most representative of the document’s

them. The following subsections cover the full details of each step.

5.4 SemCluster overview 117

Figure 5.2– SemCluster algorithm steps

5.4.1 Candidate terms selection

The first step in SemCluster is the selection of candidate terms, it is aimed at extracting

from the content of 𝐷 a general set of terms, where each term is associated with

background semantic information. The step begins with pre-processing 𝐷 by applying the

following NLP tasks: tokenization, sentence boundary detection, part-of-speech (POS)

tagging, and shallow parsing (chunking). Penn Treebank notion [240] is adopted for POS

tagging and chunking. The aim of chunking is to group words into chunks based on their

discrete grammatical meanings. Many NLP studies have shown that almost all keyphrases

assigned by expert curators are typically embedded in noun phrases (i.e. NP chunks)

[55,220,237,238]. SemCluster considers only NP chunks to find keyphrases, and detects

and extracts terms in each NP chunk based on their POS annotations. We allow the

selection of 𝑛-gram terms (where 0 < 𝑛 ≤ 5) using the POS patterns listed in Table 5.1.

𝒩 denotes Noun, a word tagged as a singular noun (𝑁𝑁) or plural noun (𝑁𝑁𝑆). 𝒞 denotes

Compound Noun, a sequence of words starting either with an adjective (𝐽𝐽) or noun (both

𝑁𝑁 and 𝑁𝑁𝑆). 𝛦 denotes an Entity, a sequence of words of singular proper nouns (𝑁𝑁𝑃)

or plural proper nouns (𝑁𝑁𝑃𝑆) with at most one stop-word (𝒮): the at the beginning, or of

118 Unstructured Data Management

in the middle. Each term extracted using these patterns is mapped into SemCluster’s

ontology 𝑂, and depending on the mapping result, a term is regarded either as a candidate

term or miscellaneous. When a term does not map to any entries in the ontology, it is

decomposed into smaller constituents to be mapped again. The terms that fail to find

matches even after being reduced to smaller constituents are discarded.

SemCluster uses WordNet as its ontology 𝑂. WordNet is a widely used lexical database.

It comprises four lexical networks [49]: Nouns, Verbs, Adjectives, and Adverbs. In

SemCluster we use only the Nouns network. WordNet groups nouns of equivalent

meanings into synsets43. A synset consists of a list of synonyms and a short definition

called a gloss. Synsets are connected to other semantically relevant synsets by means of

semantic relations. Noun synsets are organised using hyponym/hypernym (Is-A), and

meronym/holonym (Part-Of) relationships, providing a hierarchical tree-like structure that

can be directly modeled as an ontology.

Table 5.1 – POS patterns for 𝑛-gram extraction from 𝑁𝑃𝑠

Extraction pattern Extraction examples

𝒩 = (NN|NNS) dash/NN, prize/NN, drugs/NNS

𝒞 = (JJ) ∗ (NN|NNS) +
anabolic/JJ steroid/NN, gold/NN

medal/NN, urine/JJ sample/NN

Ε = (NNP|NNPS) ∗ (𝒮) ∗ (NNP|NNPS) +
Stanozolol/ NNP, Ben/NNP

Johnson/NNP, Olympics/NNPS

Background knowledge extensibility

In practice, no knowledge base is comprehensive, and neither is WordNet. The Nouns

network contains a large but limited number of English nouns collected nearly two decades

ago, and therefore, WordNet does not support newly emerging nouns, or new meanings of

already existing nouns. Relying solely on WordNet as the only background knowledge

43 The semantics terminology in NLP field is slightly different from data management (e.g. chapter 4). To

maintain the consistency of this thesis discussions, it should be borne in mind that the following terms are

identical: synset, external synset, (ontological) concept, class, and type class.

5.4 SemCluster overview 119

source leads to the background knowledge coverage limitation as discussed earlier. To

overcome this we design a procedure for extending WordNet coverage by integrating

external knowledge bases that utilise ontology-based schemas for structuring their internal

information, such as DBPedia, BabelNet [51], Yago [241], or any ad hoc (specialised or

personalised) knowledge bases.

Input:

 𝑡𝑖 ∈ 𝐷, 𝐾𝐵𝑥 ∈ {𝐾𝐵}

Output:

 𝐻 = {(𝑒, 𝑠)1, (𝑒, 𝑠)2, … , (𝑒, 𝑠)𝑛} : The set of entries matching 𝑡𝑖 and their

 corresponding WordNet synsets.

Procedure:

 If 𝑡𝑖 found in 𝐾𝐵𝑥 then

 Retrieve all entries 𝐸 matching 𝑡𝑖, 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛}, 𝐸 ⊂ 𝐾𝐵𝑥

 For each entry 𝑒𝑗 in 𝐸:

 Retrieve all type classes 𝐶 of 𝑒𝑗, 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑚}

 For each 𝑐ℎ in 𝐶:

 If 𝑐ℎ is the deepest type class in 𝐾𝐵𝑥 schema ontology then

 Select 𝑐ℎ as hypernym of 𝑒𝑗

 Find the equivalent synset 𝑠𝑖 of 𝑐ℎ

 Assign 𝑠𝑖 as hypernym of 𝑒𝑗

 Add the pair (𝑒𝑖, 𝑠𝑗) to 𝐻

 Return 𝐻

 Else

 Return ∅

Algorithm (3)– Extensible background knowledge querying

The workflow of our proposed procedure is as follows: given an external knowledge base,

denoted as 𝐾𝐵𝑥, its schema is modeled as an ontology, and each entry in 𝐾𝐵𝑥 is assigned

one or more ontological concepts called a type class. To perform a meaningful integration,

the schema ontology of 𝐾𝐵𝑥 is horizontally aligned with 𝑂 by mapping each type class to

its semantically equivalent synset. To prevent conceptual ambiguity, ontological

alignments are performed as one-to-one mappings, such that, each type class in the 𝐾𝐵𝑥

schema ontology is mapped to exactly one synset in 𝑂. During the selection of candidate

terms, an 𝑛-gram that is extracted from the pre-processed content of 𝐷 and that cannot be

120 Unstructured Data Management

mapped to WordNet, is queried against the integrated knowledge base(s), denoted as {𝐾𝐵},

using the procedure depicted in Algorithm (3). Given the knowledge base 𝐾𝐵𝑥 ∈ {𝐾𝐵},

whose schema ontology is properly aligned with 𝑂, SemCluster queries 𝐾𝐵𝑥 with the 𝑛-

gram 𝑡𝑖. If there are entries in 𝐾𝐵𝑥 matching 𝑡𝑖, then each matched entry is retrieved from

𝐾𝐵𝑥 and is considered as an external contextual meaning (or sense) of 𝑡𝑖. All the type

classes associated with external senses of 𝑡𝑖 in 𝐾𝐵𝑥 are mapped into their corresponding

synsets in 𝑂 and are considered as hypernyms of 𝑡𝑖. The synset that corresponds to the

deepest type class in the schema ontology of 𝐾𝐵𝑥 is considered the correct hypernym of

the external sense. With this construct, we allow SemCluster to dynamically generate

appropriate senses for the terms that are absent in WordNet, or even expand the set of

synsets for an existing term.

Figure 5.3– A fragment of ontological WordNet-DBPedia alignment

To illustrate with a real-world example, we consider extending 𝑂 with DBPedia (i.e.

𝐾𝐵𝐷𝐵𝑃𝑒𝑑𝑖𝑎) and aligning the type classes in its schema ontology44 with their equivalent

WordNet synsets. For example, the type class dbo:Athlete in 𝐾𝐵𝐷𝐵𝑃𝑒𝑑𝑖𝑎 is directly

mapped to wn:Athlete#n1 in WordNet, dbo:MusicFestival is mapped to its

equivalent synset wn:Fete#n2. Revisiting the news article example depicted in Figure

5.1, we see that the term “Ben Johnson” has no entries in WordNet but five entries in

𝐾𝐵𝐷𝐵𝑃𝑒𝑑𝑖𝑎. SemCluster generates five new external senses for “Ben Johnson”, each

reflecting one entry in 𝐾𝐵𝐷𝐵𝑃𝑒𝑑𝑖𝑎. The third sense in particular, “Ben Johnson

44 DBPedia schema ontology is available at http://mappings.dbpedia.org/server/ontology/classes/

http://mappings.dbpedia.org/server/ontology/classes/

5.4 SemCluster overview 121

(Sprinter)”45, is associated with four classes as depicted in Figure 5.3: owl:Thing,

dbo:Agent, sc:Person, dbo:Athlete. According to the querying algorithm, the

deepest among the four classes, dbo:Athlete, becomes the hypernym of the third sense

and is referred to as wn:Athlete#n1. After mapping each extracted term against the

extended ontology 𝑂†, only a subset of the terms are selected as candidate terms. We

denote the set of the candidate terms as 𝑇𝐷. Due to the pattern-based method of term

extraction, especially when 𝐷 contains informal text, 𝑇𝐷 may contain noisy terms that can

adversely affect similarity computation and clustering performance. Noisy terms are nouns

with no semantic value (e.g. “one”,”someone”, etc.). To identify and remove noisy terms,

SemCluster maps each term in 𝑇𝐷 to an internal list that contains the most frequent noisy

terms in the English language, and any term found in the list is removed from 𝑇𝐷.

5.4.2 Candidate terms disambiguation

A consequence of obtaining semantic background information about candidate terms is

that each term in 𝑇𝐷 may be associated with one or more contextual meanings (or senses),

whether local or external. Prior to semantic similarity computation, SemCluster must

identify the correct sense of each term in 𝑇𝐷. Word Sense Disambiguation (WSD) is an

NLP task that gives machines the ability to computationally determine which sense of a

term is activated by its use in a particular context. WSD approaches are generally divided

into three categories [242]: supervised, unsupervised, and knowledge-based. SemCluster

employs the SenseRelate-TargetWord method [243] for term sense disambiguation. The

algorithm is WordNet-based and is implemented in WordNet::Similarity46, a popular

package in computational linguistics. The SenseRelate-TargetWord method takes one

target candidate term as input and outputs a WordNet synset as the disambiguated sense

of the target candidate term, based on information about the target as well as a few other

candidate terms surrounding the target. The surrounding candidate terms are called the

context window. Let 𝑡𝑖 be a target candidate term, 𝑡𝑖 ∈ 𝑇𝐷, and the context window size be

𝑁, and the set of surrounding candidate terms in the context window be 𝑊, 𝑊 =

45 http://dbpedia.org/page/Ben_Johnson_(sprinter)
46 http://wn-similarity.sourceforge.net

http://dbpedia.org/page/Ben_Johnson_(sprinter)
http://wn-similarity.sourceforge.net/

122 Unstructured Data Management

{𝑤1, 𝑤2, … , 𝑤𝑁}, where, if |𝑊| < 𝑁, then 𝑁 = |𝑊|. Since 𝑡𝑖 is deemed to be associated

with a set of one or more senses, we denote this set by 𝑆𝑒𝑛𝑠𝑒(𝑡𝑖) = {𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑚}. For

each sense 𝑠𝑖𝑗, we obtain not only its synonyms list and gloss from WordNet, but also the

synonym lists and glosses of other synsets that are related to 𝑠𝑖𝑗 via the following set of

semantic relations:

{𝐻𝑦𝑝𝑒𝑟𝑛𝑦𝑚,𝐻𝑦𝑝𝑜𝑛𝑦𝑚,𝑀𝑒𝑟𝑜𝑛𝑦𝑚,𝐻𝑜𝑙𝑜𝑛𝑦𝑚}

The goal of the SenseRelate-TargetWord algorithm is to find the synset responsible for 𝑠𝑖𝑗

whose synonyms and gloss content maximizes the string-based overlap score with each

𝑤𝑘 in the context window.

5.4.3 Candidate terms similarity computation

After disambiguating all the candidate terms in 𝑇𝐷, each 𝑡𝑖 ∈ 𝑇𝐷 becomes associated with

the following information: POS tag, position in the document, and a pointer linking 𝑡𝑖 with

its correctly disambiguated WordNet synset 𝑠𝑖. In this step, SemCluster computes the

pairwise semantic similarity between each pair of terms in 𝑇𝐷 based on their synset

pointers. There exist many measures to quantify the similarity between two synsets, and

these measures are broadly divided into three main categories [244]: path-length based,

information content based, and feature based. Unlike the other two, path-length measures

offer greater flexibility in computing the similarity between synsets based on SemCluster’s

extensible ontology. The WuPalmer measure [245] is a prominent path-length measure to

compute semantic similarity between two synsets 𝑠𝑖, 𝑠𝑗 by finding the shortest path

between them relative to the deepest common parent synset, i.e. the Least Common

Subsumer (LCS). The similarity 𝑆(𝑠𝑖, 𝑠𝑗) is quantified by counting the nodes in the shortest

path between each synset and the LCS in 𝑂. The measure is defined as follows:

 S(𝑠𝑖, 𝑠𝑗) =
2𝑑

𝐿𝑠𝑖 + 𝐿𝑠𝑗 + 2𝑑
 (5.1)

where 𝑑 is the depth of LCS from the root node, 𝐿𝑠𝑖 is the path length from 𝑠𝑖 to LCS, and

𝐿𝑠𝑗 is the path length from 𝑠𝑗 to LCS. In this work, we modify the WuPalmer metric to

capture extra semantic similarity between 𝑠𝑖 and 𝑠𝑗. Path length measures in general, and

5.4 SemCluster overview 123

WuPalmer in particular, focus on measuring the semantic similarity between a pair of

synsets 𝑠𝑖 and 𝑠𝑗 by exploiting the explicit semantic relations existing between them.

However, WordNet does not cover all possible relations that may exist between synsets.

For example, there is no direct link between “wn:Bush#n4” and wn:President#n2,

although they are clearly related if they co-occur in a document. To capture explicit, as

well as implicit, semantic similarities using WuPalmer, we extend its mathematical notion

as follows:

 S(𝑠𝑖, 𝑠𝑗) =
2𝑑 + 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐶(𝑠𝑖), 𝐶(𝑠𝑗))

𝐿𝑠𝑖 + 𝐿𝑠𝑗 + 2𝑑 + 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐶(𝑠𝑖), 𝐶(𝑠𝑗))
 (5.2)

where 𝐶(𝑠𝑖), 𝐶(𝑠𝑗) are functions that retrieve 𝑠𝑖 and 𝑠𝑗 information from WordNet in string

format, and 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐶(𝑠𝑖), 𝐶(𝑠𝑗)) is a function that measures the string-based overlap

between 𝐶(𝑠𝑖) and 𝐶(𝑠𝑗). Let 𝑆𝑦𝑛𝑜𝑛𝑦𝑚𝑠(𝑠𝑖) be a function that retrieves all the words in

the synonyms list of the synset 𝑠𝑖, 𝐺𝑙𝑜𝑠𝑠(𝑠𝑖) be a function that retrieves the definition of

𝑠𝑖, 𝑅𝑒𝑙𝑎𝑡𝑒𝑑(𝑠𝑖) be a function that retrieves the synonyms and glosses of all synsets

connected directly to 𝑠𝑖 via the relation set:

{𝐻𝑦𝑝𝑒𝑟𝑛𝑦𝑚,𝐻𝑦𝑝𝑜𝑛𝑦𝑚,𝑀𝑒𝑟𝑜𝑛𝑦𝑚,𝐻𝑜𝑙𝑜𝑛𝑦𝑚}

Then 𝐶(𝑠𝑖) is defined as follows:

 𝐶(𝑠𝑖) = 𝑆𝑦𝑛𝑜𝑛𝑦𝑚𝑠(𝑠𝑖) ∪ 𝐺𝑙𝑜𝑠𝑠(𝑠𝑖) ∪ 𝑅𝑒𝑙𝑎𝑡𝑒𝑑(𝑠𝑖) (5.3)

where ∪ is the string concatenation function. 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐶(𝑠𝑖), 𝐶(𝑠𝑗)) finds the maximum

number of words shared in the output of 𝐶(𝑠𝑖) and 𝐶(𝑠𝑗) normalised by the natural

logarithm to prevent too much effect of implicit semantic similarity on the WuPalmer

explicit semantic similarity measurement. Thus, we define overlap as follows:

 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐶(𝑠𝑖), 𝐶(𝑠𝑗)) = log (𝐶(𝑠𝑖) ∩ 𝐶(𝑠𝑗) + 1) (5.4)

The extended WuPalmer measure is used to compute the pairwise similarities between

each pair of terms in 𝑇𝐷, and the result is a complete adjacency similarity matrix of size

124 Unstructured Data Management

|𝑇𝐷|
2 denoted as 𝒜. Once we have produced 𝒜, we move on to the next step – clustering

𝑇𝐷 based on 𝒜.

5.4.4 Candidate terms clustering

There are many state of the art clustering algorithms to efficiently cluster the adjacency

matrix 𝒜 resulting from the previous step. Affinity Propagation (AP) [247] has been

proposed as a powerful technique for exemplar learning by passing messages between

nodes. It is reported to find clusters with much lower error compared with other algorithms

[246]. In addition, AP does not require specifying the number of desirable clusters in

advance as clustering is fully data-driven. Both advantages are extremely important for

SemCluster to support fully AKE, and hence, AP is adopted as SemCluster’s underlying

clustering algorithm. The input to AP is the matrix 𝒜. The set 𝑇𝐷 is modeled as a graph.

An edge exists between two candidate terms 𝑡𝑖 and 𝑡𝑗, 𝑡𝑖 , 𝑡𝑗 ∈ 𝑇𝐷, if S(𝑡𝑖, 𝑡𝑗) > 0, and the

weight of the edge is given by the cell 𝒜[i][j]. Initially, all the nodes are viewed as

exemplars, and after a large number of real-valued information messages have been

transmitted along the edges of the graph, a relevant set of exemplars and corresponding

clusters are identified.

In AP terms, the similarity metric S(𝑡𝑖, 𝑡𝑗) indicates how much 𝑡𝑗 is suitable as an exemplar

of 𝑡𝑖. In SemCluster, S(𝑡𝑖, 𝑡𝑗) = 𝒜[𝑖][𝑗], 𝑖 ≠ 𝑗. If there is no heuristic knowledge, self-

similarities are called preferences, and are taken as constant values. The preference

𝑃(𝑡𝑖) = S(𝑡𝑖, 𝑡𝑖) represents the a priori suitability of the term 𝑡𝑖 to serve as an exemplar.

In SemCluster, preferences are computed using the median. AP computes two kinds of

messages exchanged between nodes: responsibility and availability. A responsibility

message, denoted by r(𝑡𝑖, 𝑡𝑗), is sent from node 𝑡𝑖 to node 𝑡𝑗, and reflects the accumulated

evidence for how well-suited 𝑡𝑗 is to serve as the exemplar of 𝑡𝑖. An availability message,

denoted as a(𝑡𝑖, 𝑡𝑗), is sent from 𝑡𝑗 to 𝑡𝑖, and reflects the accumulated evidence for how

well-suited it would be for 𝑡𝑖 to choose 𝑡𝑗 as its exemplar. At the beginning, all

availabilities are initialized to zero, i.e., for each a(𝑡𝑖, 𝑡𝑗) = 0; then responsibility and

availability messages are updated using equations (5,6) [247].

5.4 SemCluster overview 125

 r(𝑡𝑖 , 𝑡𝑗) = 𝑠(𝑡𝑖, 𝑡𝑗) − 𝑚𝑎𝑥𝑗′≠𝑗{ 𝑎(𝑡𝑖, 𝑡𝑗′) + 𝑠(𝑡𝑖, 𝑡𝑗′)} (5.5)

 a(𝑡𝑖, 𝑡𝑗) =

{

min{ 0 , 𝑟(𝑡𝑗 , 𝑡𝑗) + ∑ max{0, 𝑟(𝑡𝑖′ , 𝑡𝑗)}

𝑖′≠𝑖,𝑗

} , 𝑖 ≠ 𝑗

∑max{0, 𝑟(𝑡𝑖′ , 𝑡𝑗)}

𝑖′≠𝑖

 , 𝑖 = 𝑗

 (5.6)

The responsibility and availability messages are updated iteratively for 𝑚 iterations, and a

dumping factor, denoted by 𝜆, 𝜆 ∈ [0,1], is added to both types of messages in order to

avoid numerical oscillations [247], as depicted in equations 5.7 and 5.8.

 𝑅𝑚+1 = (1 − 𝜆)𝑅𝑚 + 𝜆𝑅𝑚−1 (5.7)

 𝐴𝑚+1 = (1 − 𝜆)𝑌𝑚 + 𝜆𝐴𝑚−1 (5.8)

where 𝑅 is the responsibility matrix, 𝑅 = [𝑟(𝑡𝑖, 𝑡𝑗)], and 𝐴 is the availability matrix, 𝐴 =

[𝑎(𝑡𝑖, 𝑡𝑗)]. AP continues updating r(𝑡𝑖 , 𝑡𝑗) and a(𝑡𝑖 , 𝑡𝑗) until they remain constant for a

specified number of iterations, and then both types of messages are combined to discover

the exemplar candidate terms in 𝑇𝐷, specified as follows:

 𝜀𝑗 ← 𝑎𝑟𝑔1≤𝑗≤𝑁max[𝑟(𝑡𝑖 , 𝑡𝑗) + 𝑎(𝑡𝑖, 𝑡𝑗)] , 𝑤ℎ𝑒𝑟𝑒 𝑁 = |𝑇𝐷| (5.9)

where 𝜀𝑗 is a term in 𝑇𝐷 and is regarded as an exemplar of term 𝑡𝑖. Eventually, every term

in 𝑇𝐷 is annotated with its exemplar. The number of clusters, and other clustering

information, are directly obtained by grouping terms based on their shared exemplars. At

start-up, we allow the set 𝑇𝐷 to be redundant in order to incorporate not only the semantic

and lexical information of each term 𝑇𝐷 but also the influence of its frequency information

on the clustering results, such that, if the term 𝑡𝑖 is highly frequent in the document, its

frequency can be a reason to qualify as an exemplar on the condition that 𝑡𝑖 is always

allocated the same WordNet synset 𝑠𝑖𝑗 in all its occurrences in 𝐷.

126 Unstructured Data Management

5.4.5 Seeds selection

Typically, clustering-based AKE approaches use the centroids of clusters as seeds

[55,238,222], and any phrase in 𝐷 containing one or more centroids is chosen as a

keyphrase. From our empirical observation, we suggest that direct selection of centroids

resulting from the adopted clustering algorithm may lead to poor keyphrase extraction

recall and/or precision, due to the following reasons:

Theme-independent seed selection

Clustering-based methods assign equal importance to all cluster centroids [222,234]. Thus,

a phrase containing a centroid of an unimportant cluster is ranked exactly equivalent to a

phrase containing a centroid of an extremely important cluster relative to the document

theme [234]. Consequently, there is no guarantee that the extracted keyphrases are the best

representative phrases. Our solution to this is to discard irrelevant or marginally related

clusters and keep the most relevant ones. The solution is largely based on the observation

that clusters that sufficiently cover the document theme tend to be semantically more

related to each other than irrelevant or marginally related clusters. Regarding AP, the

exemplar is the best representative of its cluster’s semantics. Therefore, we assess the

average of semantic relatedness strength of each exemplar against all other exemplars, and

any cluster whose exemplar exhibits weak semantic relatedness is removed. Let 𝐶𝐷 be the

set of clusters resulting from clustering 𝑇𝐷, 𝐶𝐷 = {𝐶1, 𝐶2, … , 𝐶𝑁},where 𝑁 = |𝐶𝐷|. For

each cluster 𝐶𝑖, we compute its exemplar’s average semantic relatedness, 𝐴𝑣𝑒(𝜀𝑖), as

follows:

 𝐴𝑣𝑒(𝜀𝑖) =
∑ 𝑆𝑅(𝜀𝑖, 𝜀𝑗)𝑖≠𝑗

𝑁 − 1
 , 𝑁 > 1 (5.10)

Here 𝑆𝑅(𝜀𝑖, 𝜀𝑗) is a metric to quantify the semantic relatedness between the exemplars of

two clusters 𝐶𝑖 , 𝐶𝑗. Each cluster 𝐶𝑖 is ranked based on its exemplar average score and is

removed from 𝐶𝐷 if its average score, 𝐴𝑣𝑒(𝜀𝑖), is below the average of all clusters.

𝑆𝑅(𝜀𝑖, 𝜀𝑗) is concerned with measuring the relatedness between 𝜀𝑖 and 𝜀𝑗 rather than their

5.4 SemCluster overview 127

latent semantic similarity. For instance, the terms “drug” and “Olympics” are not similar,

but, because of their tendency to co-occur together (“drug use” appears frequently in

“Olympics” themes), they are judged semantically related. To quantify such relatedness in

an unsupervised cross-domain environment, we expand SemCluster to take advantage of

Wikipedia, the largest and fastest growing knowledge base. There are a number of

approaches that measure semantic relatedness by exploiting Wikipedia. Explicit Semantic

Analysis [211] is one of the most accurate Wikipedia-based measures that, to an extent,

comes close to the accuracy of a human [249], and, hence, is employed by SemCluster to

compute the relatedness of exemplars.

Search space restriction

Relying solely on the centroids of clusters may lead to restricting the search space for

finding the best representative phrases in a given document and, consequently, may result

in degrading keyphrase extraction recall and/or precision. Suppose we have a valid

keyphrase containing a term 𝑡𝑗 that is semantically close to a centroid term 𝜀𝑖. The phrase

will not be selected as a candidate keyphrase simply because 𝑡𝑗 is not a centroid. This may

explain why the Spectral Clustering algorithm outperforms AP in KeyCluster experiments

– the former allows multiple terms close to a cluster centroid to be chosen as seeds and

accordingly, extends the keyphrase search space. Taking advantage of this observation,

SemCluster expands the selection of seeds from AP clustering in a fashion similar to that

of spectral clustering. Let 𝐶𝐷
′ be the final set of clusters resulting from clustering 𝑇𝐷 using

AP after centroid relatedness average ranking, where 𝐶𝐷
′ ⊆ 𝐶𝐷 , 𝐶𝐷

′ = {𝐶1, 𝐶2, … , 𝐶𝑘}.

For each cluster 𝐶𝑖, 𝑖 ≤ 𝑘, we select its exemplar 𝜀𝑖 as a seed. We regard each member

𝑡𝑗 in 𝐶𝑖 (𝑡𝑗 ≠ 𝜀𝑖) as an additional seed if 𝑆(𝜀𝑖, 𝑡𝑗) ≥ 𝜏, where 𝑆(𝜀𝑖, 𝑡𝑗) is the computed

score stored in 𝒜 from the previous step (see section 5.4.3), and 𝜏 is a predefined distance

threshold specifying how semantically close 𝑡𝑗 should be to the centroid 𝜀𝑖 in order to

qualify as a seed. We repeat this procedure for all the clusters in 𝐶𝐷
′ to obtain a set of

appropriate seeds from the extended search space.

128 Unstructured Data Management

5.4.6 Candidate phrases extraction and keyphrases selection

After the selection of the seeds, each chunk 𝑁𝑃𝑖 in D is scanned by SemCluster. Any

sequence of words in 𝑁𝑃𝑖 is regarded as a candidate phrase if it satisfies the following

conditions: (i) it contains a seed, and (ii) it matches any of the following POS-based

extraction rules:

 𝑁𝑃𝑖 contains a seed extracted using an E-pattern

 If 𝑁𝑃𝑖 contains a seed extracted using a 𝒞-pattern, then two cases are considered:

if the seed starts with (JJ), then the sequence matching the pattern (𝒞) ∗

(NN|NNS) + is extracted from 𝑁𝑃𝑖; if the seed starts with (NN), then the sequence

matching pattern (JJ) ∗ (𝒞) + is extracted from 𝑁𝑃𝑖)

 If 𝑁𝑃𝑖 contains a seed extracted using a 𝒩-pattern, then the sequence matches

pattern (JJ) ∗ (𝒩) + is extracted from 𝑁𝑃𝑖

Once all NP chunks have been scanned and processed, the step proceeds to the next phase

– refining the set of extracted candidate phrases. The refining phase starts by pruning

redundant candidate phrases. Two or more candidate phrases may be semantically

equivalent but exist in different forms. They may be synonymous phrases, for example, in

Figure 5.1, both “Olympics” and “Olympic Games” belong to the synonyms list of the

same WordNet synset, or adjective-synonymous phrases. For example, in the Wikipedia

article about “Bernard Madoff”47, there are many candidate phrases which share the same

representative seed “fraud”, such as “financial fraud”, “gigantic fraud”, “massive fraud”,

and in this case, we keep the first occurring candidate phrase and remove the others. There

is also the case of subphrases, as in the example of “Johnson” and “Ben Johnson”. Both

phrases contain “Johnson”, so we keep the longer phrase, which is more specific, and

discard the shorter one.

By default, refined candidate phrases are selected as appropriate keyphrases for the input

document 𝐷. However, for documents with moderate content size, the set of output

keyphrases may be relatively large, which would affect the algorithm’s performance. To

47 https://en.wikipedia.org/wiki/Bernard_Madoff

https://en.wikipedia.org/wiki/Bernard_Madoff

5.5 SemCluster component overview 129

overcome this drawback, we adopt an empirically effective heuristic from [236], where

the position that a given candidate term first occurs in a lengthy document in significant

in two ways: (i) it is likely that the keyphrase of more importance appears sooner in the

document than others, and (ii) after a certain location in the document, candidate phrases

that appear for the first time, are highly unlikely to be keyphrases. Based on such an

empirical heuristic, for a lengthy input document, we predefine a window of size 𝑘, and

any candidate phrase that occurs beyond a window starting from the first word up to the

𝑘𝑡ℎ word is disregarded.

5.5 SemCluster component overview

5.5.1 Semantic representations

While the mean of AKE is to extract important keyphrases from an input document, the

justified end is to annotate the document with the extracted keyphrases towards modelling

its content into a condensed representation that is easier to handle and process. ASA

follows a similar approach, but it derives semantic metadata from an input document to

model its content into machine-readable semantic representation. Both approaches play

vital roles in many management tasks such as document summarization [54], relationships

discovery (e.g. classification [250], clustering [251]), and retrieval [252]. SemCluster

combines AKE and ASE approaches to offer dual interconnected representations for

modelling and metamodeling the contents of input documents on two levels of detail:

literal and conceptual.

Keyphrase appropriateness

Tomokiyo et al. [253] suggest that an appropriate keyphrase is a semantically and

syntactically correct phrase without any unnecessary words, and propose a measure called

phraseness for quantifying the appropriateness of keyphrases. Similarly, Liu et al. [55]

suggest that keyphrases should be understandable to humans to qualify as appropriate

keyphrases. The authors give an example that the phrase “machine learning” is appropriate

whereas the phrase “machine learned” is not. Existing approaches in NLP literature

130 Unstructured Data Management

typically reduce the inflectional forms – and sometimes derivationally related forms – of

keyphrases to their common bases (stems) using a text stemming algorithm [217]. An

example of stemming is reducing the phrase “international libraries” to “intern librari”.

Stemming can dramatically improve string matching based operations [262], however, it

drastically degrades the appropriateness of phrases for humans. For example, it is difficult

for a user to understand that “intern librari” refers to international libraries. Based on our

experiments with SemCluster, we observe that any output keyphrase is appropriate and

fully understandable to humans. This is because candidate phrases are initially extracted

from an input document using a set of NLP patterns that encode generally accepted

linguistic knowledge/feature assumptions [220] (see section 5.4.1). Nevertheless, instead

of stemming, SemCluster reduces the constituents of a given keyphrases to its

syntactically-correct linguistic base (lemmas) using an internal WordNet-based lemmatiz-

ation approach.

Table 5.2 – SemCluster extraction results from the article depicted in Figure 5.1

Candidate Phrase Centroid Seed Valid

NNP/Ben NNP/Johnson wn:athlete#1 wn:#9820263 Yes

NNPS/Olympics wn:olympics#1 wn:#7457126 Yes

JJ/100-meter NN/dash wn:prize#1 wn:#7469043 Yes

NN/gold NN/medal wn:prize#1 wn:#3444942 Yes

NNP/Carl NNP/Lewis wn:athlete#1 wn:#11131135 Yes

NNP/Johnson wn:athlete#1 wn:#9820263 No

JJ/anabolic NN/steroid wn:drug#1 wn:#15111116 Yes

JJ/urine NN/sample wn:olympics#1 wn:#6026635 Yes

NNP/Stanozolol wn:drug#1 wn:#3247620 Yes

NN/drug NN/use wn:drug#1 wn:#3247620 Yes

JJ/Olympic NNPS/Games wn:olympics#1 wn:#7457126 No

5.5 SemCluster component overview 131

To illustrate this, consider applying SemCluster on the news article depicted in Figure 5.1.

The results are listed Table 5.2. It can be readily observed that all the keyphrases are

human-readable and without any unnecessary words. Generally, keyphrase appropriate-

ness is not important when AKE is an intermediate task in the workflow of an NLP process

(e.g. plagiarism detection). However, such importance surges in information retrieval

scenarios that involve direct human interaction (e.g. visualization). For example, consider

a third-party service plugged in PDL’s access layer and it aims to offer a GUI for

navigating through the keyphrases maintained by SemCluster. The user could click on a

keyphrase to display all its associated documents, or even expanding the results by loading

similar keyphrases and choosing the most suitable ones to refine/expand the results. The

common user here should be able to read each keyphrase in its correct linguistic form.

Semantic metadata

Unlike existing AKE approaches, SemCluster outputs keyphrases that are automatically

associated with two types of machine-readable metadata as presented in Table 5.2, which

are: (i) the WordNet synset of the seed embedded in the keyphrase, and (ii) the WordNet

synset of the cluster’s centroid to which the seed belongs. This kind of semantic metadata

offers a natural way to unambiguously link keyphrases within the same document, or even

across independent documents, Furthermore it offers benefits to multiple tasks such as

content aggregation and recommendation [255,256], and automatic content relationship

identification [254]. In fact the semantic metadata artefacts generated using SemCluster

are equivalent to those generated using a traditional ASA tool [257,258] but with higher

accuracy, granularity, and richer modelling potential. We can revisit Table 5.2 to illustrate

an empirical application of the semantics-based linking: the candidate keyphrases

“anabolic steroid”, “Stanozolol”, and “drug use” are grouped together as they share the

common annotation concept wn:drug#1 from WordNet. Similarly, the keyphrases “Ben

Johnson” and “Carl Lewis” are grouped based on the common concept wn:athlete#1.

Figure 5.4. depicts the semantics-based linking of the keyphrases listed in Table 5.2. The

middle layer of the artefacts in the figure (pink circles) reflects the literal representation

over the document, whilst the highest layer in the figure (blue circles) reflects the semantic

representation over the keyphrases as well as the textual content of the input document.

From MMF metamodeling perspective, both layers represent the model, and metamodel

132 Unstructured Data Management

levels over the document. The model layer offers common management functionalities

(e.g., keyword-based search, browsing, and so forth), whereas the metamodel layer offers

far richer functionalities, one among which is semantic-aware content retrieval (i.e. cross-

document semantic linking). Consider a semantic search query for retrieving SemCluster-

processed documents that contain the search term “Ethylestrenol”, (or similar sport-doping

drugs48). SemCluster recognises this term as a text entity during the processing of

documents as discussed in section 5.4.1. Although the term is not available in WordNet, it

is maintained as an entry with the labelled type class Drug in DBPedia49.

Figure 5.4– Unstructured data metamodeling in SemCluster

During retrieval, all the documents associated with this search term are returned as

matched query results. These results could be further enriched by adding the news article

in Figure 5.1. Though the article does not contain the input search term, it is annotated

with the concept wn:Drug#1 which is the WordNet hypernym for the keyphrases

“Ethylestrenol” and “Stanozolol”, nevertheless, the gloss definitions of these keyphrases

indicate them as anabolic steroid substances, and such indication may serve as a strong

contextual clue to justify adding the article to the search results.

48 https://en.wikipedia.org/wiki/List_of_drugs_banned_by_WADA
49 http://lookup.dbpedia.org/api/search.asmx/KeywordSearch?QueryString=Ethylestrenol

https://en.wikipedia.org/wiki/List_of_drugs_banned_by_WADA
http://lookup.dbpedia.org/api/search.asmx/KeywordSearch?QueryString=Ethylestrenol

5.5 SemCluster component overview 133

5.5.2 Storage and querying

SemCluster is implemented as an MMF component with a dedicated architecture that

offers management functionalities to the common user over the unstructured personal data

stored in PDL. Figure 5.5 depicts an overview of this architecture, it consists of three

components: SemCluster algorithm, WordNet-based query engine, and the annotations

repository. Section 6.2.2 describes the building blocks for a full implementation of

SemCluster algorithm. The query engine is a simple semantic search engine that accepts

keyphrases and/or WordNet-defined concepts as input search terms, and it retrieves all the

documents that are associated with an input search term, with optional query expansion

based on the WuPalmer measure given in equation 5.1. The measure expands an input

concept based on a specified criteria, which can be either WordNet relation, or semantic

similarity score. Annotations repository represents the backend of SemCluster, and it uses

a compound index approach where different types of metadata artefacts are stored in

separate direct or inverted indexes similar to Mimir tool in the GATE project [259]. A

direct index is key-value table that stores the unique identifier of an input unstructured

document in the key field and the sequence of keyphrases/concepts assigned to the

document by SemCluster algorithm in value field. In contrast, an inverted table stores a

keyphrase in the key field and the identifiers of all the documents wherein the keyphrase

occurs in the value field. Note that the metadata information stored in the linkage table is

conceptually an inverted index.

Similar to SemLinker, SemCluster, as an MMF component, is physically isolated from the

ingestion layer and its single point of input is the lineage manager (see Figure 5.5). Such

separation of concern enables the lineage manager to forward raw data to SemCluster with

associated lineage information that is necessary to optimise the metadata management and

storage tasks. Ingested unstructured data is dispatched to SemCluster with only key

information, since materializing the by-concept type abstraction for an entity is empirically

difficult for common users – compared to structured and semistructured data (section

3.3.2). Because SemCluster does not maintain an internal data parser, input raw data is

expected to be in bare textual form, therefore the lineage manager tackles this issue during

PDLSF deserialisation stage. Upon receiving the content of an ingested unstructured data

134 Unstructured Data Management

entity, SemCluster component invokes its underlying algorithm and the output is a set of

keyphrases and their associated metadata artefacts that are stored in the direct and inverted

indexes underlying the annotations repository. When metadata processing finishes, the

processed data entity and its associated metadata information are dispatched to storage

layer and stored using the approach specified in section 3.5.2.

Figure 5.5– Overview of SemCluster component architecture

SemCluster can be queried to retrieve any unstructured personal data stored in PDL based

on its associated representations. A SemCluster-specific input query is entered in the query

interface within the access layer by the user, a third party service, or SemLinker, and then

it is passed to SemCluster for execution over the annotations repository. In following, we

describe three kinds of SemCluster-specific query formulations:

1. Keyphrase-based Selection

A keyphrase-based selection query follows the below syntax:

SELECT key FROM SemCluster WHERE <keyphrase> IN

{(𝑝ℎ𝑟𝑎𝑠𝑒0,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛0),(𝑝ℎ𝑟𝑎𝑠𝑒1,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1),…,(𝑝ℎ𝑟𝑎𝑠𝑒𝑛,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑛)}

5.5 SemCluster component overview 135

The query modifier key specifies retrieving the unique identifier of each document that

matches the selection criteria in the IN clause. The internal keyword <keyphrase>

instructs the query engine to target keyphrase-related indexes only. A selection criteria is

a non-empty set of ordered pairs in the form (𝑝ℎ𝑟𝑎𝑠𝑒,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)where 𝑝ℎ𝑟𝑎𝑠𝑒 is an

input search term, and 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 is a predefined inline function, or null. The following

query is an example of a keyphrase-based selection formulation:

SELECT key FROM SemCluster WHERE

<keyphrase> IN {(“Ben Johnson”, NULL)}

This query aims to retrieve any textual documents stored in PDL that contain the keyphrase

“Ben Johnson”. The 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 part here omitted using the null value.

2. Concept-based Selection

A concept-based query follows the below syntax:

SELECT key FROM SemCluster WHERE <concept> IN

{(𝑐𝑜𝑛𝑐𝑒𝑝𝑡0,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛0),(𝑐𝑜𝑛𝑐𝑒𝑝𝑡1,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1),…,(𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑛,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑛)}

Similar to the former kind, key specifies retrieving the unique identifier of each document

that is annotated with a concept which matches the selection criteria in the IN clause. The

internal keyword <concept> instructs the query engine to target the concept-related

indexes only. A selection criteria is a non-empty set of ordered pairs in the form

(𝑐𝑜𝑛𝑐𝑒𝑝𝑡,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)where 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 is an input concept drawn from SemCluster’s

ontology, and 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 is a predefined inline function, or null. The following query is an

example of a concept-based selection formulation:

SELECT key FROM SemCluster WHERE

<concept> IN {(“wn:Athlete#1”, NULL)}

This query aims to retrieve any textual documents stored in PDL that are annotated with

the first sense of the WordNet concept athlete. The 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 part here omitted using

the null value.

136 Unstructured Data Management

3. Combined Selection

The third kind of SemCluster query formulations is called the combined selection and it

refers to composing queries by mixing keyphrase-based and concept-based formulations.

Composition can be achieved by using the logical operators AND and OR. The following

query is an example of such composition:

SELECT key FROM SemCluster WHERE

<keyphrase> IN {(“drug use”, NULL)}

OR <concept> IN {(“wn:Drug#1”, WuP(0.9))}

This query aims to retrieve any documents that contain the keyphrase “drug use” or are

annotated with WordNet concept wn:Drug#1. The query involves passing the selection

criteria with an internal function that instructs SemCluster to load all the documents that

are annotated with a concept whose semantic similarity with wn:Drug#1 is 0.9 or higher

based on the similarity computation of the WuPalmer measure. Another combined

selection query example is depicted below and it has a similar requirement to the former

query, but it instructs SemCluster to load any documents that are annotated with a concept

related to the input concept through the semantic relationship hyponym and with a

semantic radius of one edge inside WordNet ontology.

SELECT key FROM SemCluster WHERE

<keyphrase> IN {(“drug use”, NULL)}

AND <concept> IN {(“wn:Drug#1”, Hyponym(1))}

5.6 Summary 137

5.6 Summary

In this chapter, we presented SemCluster, the third MMF component that is responsible

for unstructured data management in PDL. The main purpose of this component is to

overcome the fundamental limitation of SemLinker by adopting an automatic annotation

method for enriching unstructured documents with data-driven metadata and materializing

explicitly defined representations over them. This component is based on a generic

unsupervised clustering-based AKE algorithm that is designed to address the requirements

stated in section 5.1. It incorporates extensible background knowledge to identify and

extract semantically important terms from an input document, clusters them, and identifies

thematically important seeds that are then used to search for representative phrases, and

from which appropriate keyphrases are selected. Unlike other unsupervised AKE

algorithms, SemCluster outputs are appropriate (understandable) keyphrases that are

automatically annotated with formal ontological classes. SemCluster was reported in the

computational intelligence literature by two research papers [260,261]. To the best of our

knowledge, it is the first approach that dynamically incorporates extensible background

knowledge in the extraction task from a collection of integrated knowledge bases. This

feature may have multiple applications, one important among which is incorporating

personal knowledge sources that are audited by the common user for personalising the

AKE task over intimate textual contents for faster retrieval and more convenient

integration with data of other structure types.

The presented component models the semantic annotations of unstructured documents into

machine-readable semantic representations that can be further utilised for offering various

functionalities over the documents. In the context of this research, we are mainly interested

in semantic search and bridging-based holistic integration with (semi)structured data for

meeting the requirements of various usage workloads that demand data integration across

structural heterogeneities.

138 Empirical Evaluation

Chapter 6 Empirical Evaluation

In previous chapters, we explored the proposed MMF, its integration in PDL (Chapter 3),

and its principal components: the lineage manager (Chapter 3), SemLinker (Chapter 4),

and SemCluster (Chapter 5). While the first component is a traditional data tracking

system, the latter two are advanced metadata management systems that are based on

several new algorithms and techniques developed during our doctoral research. The aim

of this chapter is to evaluate and subsequently validate the performances of SemLinker

and SemCluster as part of our adopted DSRM methodology. In this regard, we conduct an

interesting set of experiments to rigorously assess the efficiency and effectiveness of

SemLinker and SemCluster using disciplined assessment measures. Then, we carry out an

experiment to illustrate the utility of MMF in PDL and its relative ease of use for the PDL

user. This experiment demonstrates an empirical example for holistic data integration by

first combining structured and semistructured raw data and then utilising independent

unstructured textual data as backstory information to uncover interesting relationships in

the integrated data, thus addressing the recommendations discussed in [1] and [183] which

are reviewed in sections 4.1 and 5.1.

Although the experiments presented in this chapter may largely fall in the personal domain,

we are not using any personal data that is linkable to a real person, but rather general

purpose and publicly available data. Besides the copyright and privacy issues that may

stem from the former case, we prefer the latter kind of data to: (i) demonstrate how MMF

components can generalise over different data types while taking into account that even

general purpose data may be regarded as personal when it can be linked to a data subject

under any of Jones’ defined senses [1] (see Table 1.1), and (ii) to ensure the accuracy of

the evaluation results, particularly for performance benchmarking with the comparative

approaches that have been previously evaluated using the same data.

6.1 SemLinker evaluation 139

6.1 SemLinker evaluation

The purpose of this section is centered upon the following question: can SemLinker serve

as a standard solution for effectively integrating frequently-changing large-scale

heterogeneous datasets and facilitating query-based value creation, while ensuring

performance robustness?”. Although this question addresses the essence of the research

efforts presented in Chapter 4, we are also interested in comparing the user-experience of

SemLinker against a recent approach [52] that is closely related to our work. To answer

this question and to validate the methods covered in Chapter 4, a prototype of SemLinker

was developed as a full proof of concept in order to be evaluated in two use cases with

real-world data drawn from multiple domains; in the first, we examine the accuracy of

SemLinker’s mapping computations on data with substantial heterogeneities, and in the

second, we investigate the system’s integration effectiveness and runtime functional

complexity on heterogeneous data with frequent and rapid schema evolutions.

6.1.1 Evaluation data

We chose 11 publicly available datasets as the evaluation data in SemLinker experiments

(see Table 6.1). These datasets exhibit a high degree of heterogeneity. Each dataset

consists of a moderately large number of data entities, and each entity may be of a schema

with a different release version. The first 3 datasets – HAR-1, HAR-2, and HAR-3 –

contain sensor streams (accelerometer and gyroscope) that are generated by personal

devices (smartphones and smartwatches) worn by human subjects, and were collected

during the human activity recognition experiments described in [48, 49]. The evaluation

data also includes six social media datasets independently collected from several service

platforms as shown in Table 6.1. Each among these datasets exists with more than one

evolved schema and it may either contain social media posts or a combination of user

opinions, reviews, and ratings of popular business establishments (e.g. hotels, restaurants,

pubs) in the city of London. The last two datasets are public data published by multiple

UK government agencies; the first lists geospatial as well as other details about business

establishments in UK, and the second lists the geospatial information associated with every

postcode in UK.

140 Empirical Evaluation

Table 6.1 – SemLinker evaluation datasets

Source Domain Format #Attributes #Items #Evolutions

HAR-1 [263] Scientific CSV 10 3540962 0

HAR-2 [263] Scientific CSV 10 3205431 0

HAR-3 [264] Scientific CSV 4 200471 0

Facebook [265] Social JSON 17 19770 4

Twitter [266] Social JSON 19 169000 2

Foursquare [267] Social JSON 17 15712 2

Flickr [268] Social XML 10 20000 3

TripAdvisor [269] Social Spread S. 13 19998 4

Tourpedia [270] Social JSON 7 115732 3

EnglandPubs [271] Public CSV 9 51566 4

OpenPostCode [272] Public CSV 7 2525575 1

6.1.2 Evaluation setup

For simulating personal data ingestion, the actual content of each dataset is split into raw

data entities that are serialised into PDLSF objects and temporarily stored in the messaging

queue component of PDL’s ingestion layer. RabbitMQ [273], an open source50 message

queue software, was used to implement the messaging queue component. We implemented

a lineage manager prototype and configured it to automatically pull PDLSF objects from

the queue whenever it is idle. The meta section of a pulled object holds the appropriate

source URI which reflects the unique identifier of its dataset (see section 4.5.1). Our

chosen type concepts are as follows: we used sc:Review to tag “TripAdvisor” and

“Tourpedia” datasets, sc:LocalBusiness for “EnglandPubs” dataset, and finally

50 https://www.rabbitmq.com/

https://www.rabbitmq.com/

6.1 SemLinker evaluation 141

sc:PostalAddress to tag “OpenPostCode” dataset. Furthermore, 𝒢 was extended to

include more specific concepts. The concept sc:SensorReading is an extension of

sc:Dataset and was used to tag “HAR-1”, “HAR-2”, and “HAR-3” datasets. The

concept sioc:Feed is extenstion of sc:SocialMediaPosting and was used to tag

“Facebook”, “Twitter”, “Flickr”, and “Foursquare” datasets. We also performed other

extensions on the property level of the used concepts, mainly to add the global properties

geo:latitude and geo:longitude whenever they are missing in the above tagging

concept, as these properties are heavily utilised in the second experiment. Full information

about 𝒢 and the extensions used in our evaluations are made publically available in the

GitHub repository of SemLinker [274].

One of our main evaluation goals is to investigate the accuracy of SemLinker’s mapping

computations between the schema of each dataset and its tagging concept. Three schema

matcher plugins are used to implement the function Matcher() in the mapping algorithm

(see Algorithm 2, line 3). The first two, SemanticTyper [93] and AgreementMaker [192],

are open source schema matching approaches51,52. SemanticTyper is an instance-level

schema matcher that collects statistical information about data based on their types and

decides if two schema elements match. AgreementMaker comprises multiple internal

automatic matchers that are grouped into three layers. Each layer uses a different

representation and similarity comparison measure, with the third layer being a combination

of the other two. For AgreementMaker, because PDL lacks a priori knowledge regarding

the native schemas of the ingested data, we use only the first layer which represents

features of schema elements (labels, comments, instances, etc) in TF.IDF vectors and

computes their similarities using the Cosine Metric or a similar string-based similarty

measures (e.g., Edit Distance). The third plugin, SemMatcher, is the system’s default

matcher, and it is currently implemented as a combination of AgreementMaker, the

schema-level matcher, and SemanticTyper, the instance-level matcher, therefore it can be

regarded as a linguistics-based approach that measures the similarity between two input

schema elements based on their syntactic similarities and the overlapping between their

51 https://github.com/agreementmaker/agreementmaker
52 https://github.com/tknandu/SemanticLabelingRepo

https://github.com/agreementmaker/agreementmaker
https://github.com/tknandu/SemanticLabelingRepo

142 Empirical Evaluation

textual descriptions that are retrieved from an external schema dictionary [193]. In Chapter

7, we discuss our intended future work to search for a more sophisticated approach (e.g.

ML-based) to implement this plugin.

The accuracy of SemLinker output mapping computation is measured by comparing the

system’s output mappings against gold standard mappings using the following equation:

𝐴𝑐𝑐(𝑆𝑖𝑗, 𝑔) =
𝑀𝑆𝑒𝑚𝐿𝑖𝑛𝑘𝑒𝑟(𝑆𝑖𝑗, 𝑔)

𝑀𝐺𝑜𝑙𝑑(𝑆𝑖𝑗, 𝑔)

(6.1)

Where 𝑀𝑆𝑒𝑚𝐿𝑖𝑛𝑘𝑒𝑟(𝑆𝑖𝑗, 𝑔) is the number of correct mappings – between the source schema

version 𝑗 of the dataset 𝑖 and the global tagging concept 𝑔 – that are automatically

computed by SemLinker, and the total number of gold standard mappings 𝑀𝐺𝑜𝑙𝑑(𝑆𝑖𝑗, 𝑔)

between the same constructs. Unfortunately, the evaluation data are utilised beyond their

intended application, thereby, we could not find publicly available mappings for the

provided schemas. To overcome this technical limitation, we use a specialised schema

management tool called Karma53. This tool is an open source research project with full

details that are covered in the specified reference. To obtain gold standard mappings, we

input 100 samples that are taken from each dataset with their default as well as evolved

schemas as depicted in Table 6.1. Karma is semiautomatic, thus it requires manual

guidance during computations. The final mapping results are manually supervised and

therefore we regard them as our gold standard. Besides obtaining SemLinker’s mapping

accuracy on individual schemas of each dataset using equation 6.1, we are also interested

in obtaining the overall accuracy score of the mapping computations for the default schema

as well as its subsequent evolved versions for each dataset. To obtain this, we formulate

the following equation:

𝐴𝑣𝑒(𝑆𝑖, 𝑔) =
∑ 𝐴𝑐𝑐(𝑆𝑖𝑗, 𝑔)
𝑁
𝑗=1

𝑁

(6.2)

Where N is the total number of evolutions (release versions) of the physical schema of 𝑖.

53 https://github.com/usc-isi-i2/Web-Karma

https://github.com/usc-isi-i2/Web-Karma

6.1 SemLinker evaluation 143

6.1.3 Automatic mapping management evaluation

The evaluation was run three times, each using a different schema matcher. Figure 6.1

displays the comparison results of the overall precision score when using different schema

matchers. The results clearly indicate that the accuracy of a computed mapping is very

much determined by the adopted schema matcher plugin. The system’s own matcher,

SemMatcher, outperforms the other two matchers on most of the datasets. SemanticTyper

successfully captures correct matches wherever AgreementMaker fails, and this, to an

extent, explains why SemMatcher, which combines the best features of the matchers, gets

almost full scores on 6 of the datasets. The fact that SemMatcher is also linguistics-based

suggests that, for social and public datasets, by providing proper schema-level linguistic

information (e.g., meaningful labels), schema matching can achieve a better precision.

Figure 6.1–The overall mapping precision scores of the adopted matchers

6.1.4 Functional efficiency and query complexity evaluation

To evaluate the functional efficiency of SemLinker in integrating big data with frequently

changing schemas and the time complexity of executing queries, we compare SemLinker

with a similar integration-oriented and ontology-based prototype system that is used in the

SUPERSEDE project and is discussed in [52] (we refer to this as the BDI Ontology

system). The BDI Ontology system prototype is implemented using a MongoDB [146]

database backend to store JSON data, and SQL to store CSV and XML data. The downside

of using the BDI Ontology system is immediately apparent as substantial effort (including

manual interactions) is required to maintain its global ontology and to manage the source

144 Empirical Evaluation

attributes found in the data collected from data sources. Each schema evolution also

requires manual (re)mappings. Two scenarios are used in the evaluation:

Scenario 1 (involving datasets HAR-1, HAR-2, and HAR-3)

It is assumed that user wants to retrieve the gyroscope readings ingested from gyroscope

sensors and passes them to a specialised HAR application plugged in the access layer for

running HAR analysis workload. To meet this requirement, the following SQL-like query

is formulated and executed by SemLinker’s query engine:

SELECT Sensor.reading

FROM sc:SensorReading Sensor

WHERE Sensor.sensor-type = “gyroscope”

A gyroscope reading, such as [0.0041656494, -0.0132751465, 0.006164551], consists of

values corresponding to the x, y and z axes. The global concept SensorReading, which

has one property, reading, has been used to tag all three HAR datasets. This apparently

simple gyroscope data has some complexity: the readings in HAR-2 are expressed by three

separate attributes, X, Y, and Z, whereas the readings in HAR-3 are expressed by only one

attribute. However, before the query execution takes place, such heterogeneity problem is

already solved when HAR-2 reading were ingested and the schema mappings computed.

During mapping, the source schema, 𝑆𝐻𝐴𝑅−2,𝑉1.0, was virtually transformed into the virtual

source attribute “reading”. Consequently, the above input query is sufficient to retrieve

the required data without any extra pre- or post-processing steps. Regarding the

comparative BDI Ontology system, since there is no automatic solution for structural

heterogeneities in the source schemas, it is impossible to directly execute the above query.

We should either transform the data so that HAR-2 and HAR-3 share the same physical

structure, or tag them with different concepts and query them separately.

Scenario 2 (involving social and public datasets):

It is assumed we are interested in local businesses in London such as hotels, restaurants,

and pubs, and would like to know their full address (including postcode), and reviews and

6.1 SemLinker evaluation 145

ratings about them. We may also apply sentiment analysis to gauge the polarity in the

comments that are retrieved.

SELECT

sc:LocalBusiness.name, Review.reviewRating,

Sentiment(Review.reviewBody),sc:PostalAddress.postcode

FROM sc:Review Review

JOIN sc:LocalBusiness ON

sc:LocalBusiness.name = Normalise(Review.name)

JOIN sc:PostalAddress ON

sc:PostalAddress.latitude =

Radius(sc:LocalBusiness.latitude,5)

AND sc:PostalAddress.longitude =

Radius(sc:LocalBusiness.longitude,7)

WHERE Review.about IN

(WordNet(“hotel”,1),WordNet(“restaurant”,1))

AND Review.location = “london”

The above query may seem to be complicated. The raw data relevant to the query exists in

different formats (structural heterogeneities), with multiple semantic contexts (semantic

heterogeneities), and contains instance-level discrepancies (syntactic heterogeneities).

While SemLinker handles the first and second kinds of heterogeneities by metamodeling

the data after its ingestion by PDL, its query engine enables plugging predefined inline

functions that can fulfill certain relevant tasks to resolve any syntactic heterogeneities. To

illustrate, there are defects in the actual contents of the relevant datasets, such as a postcode

missing from the reviewed business, or some geolocation is inaccurate, or the name of a

business may have different spelling (e.g, using “&” for “and” or “65” for “sixty-five”,

and so on). If such problems are though of in advance, as in our case, customized inline

functions may be designed and imported prior to the query formulation to deal with these

situations at time of query execution. Here we use Sentiment(string) to produce a polarity

representing the user opinion (i.e., positive, negative, or neutral), Normalise(string) to

146 Empirical Evaluation

normalise the business names, Radius(float, integer) to generate x values around an input

spatial coordinate, and WordNet(string,int) (a WordNet-based function) to retrieve all the

possible synonyms and hyponyms of an input string. In addition, there is also the

complication regarding schema evolution that has already been dealt with by SemLinker.

Once all elements are in place, the user can retrieve the desired information using the query

formulation depicted above.

Figure 6.2– Real-time query execution performance comparison

For both scenarios, we ran 20 queries targeting raw data in the range 0-800K data instances

on both SemLinker and the BDI Ontology prototype system, and we measure and compare

their query execution times. The recorded time for each query includes input query

translation, query unfolding, and data retrieval from the backend. Figure 6.2 presents the

runtime benchmark data recorded for the query executions of each system. We observe

that when the number of datasets is small, the difference in the execution times for the two

systems is insignificant, but when the retrieved data are moderately large, SemLinker

significantly outperforms the BDI Ontology system. For example, SemLinker requires 8

seconds on average to retrieve and integrate 40K review results, whereas the BDI ontology

system requires 96 seconds on average to perform the same task. SemLinker’s significant

improvements are mainly due to the following reasons:

1. Since SemLinker fully supports the storage, integration, and querying of raw data

regardless of its formats and structures, any high-performance key-value store can

6.1 SemLinker evaluation 147

be adopted as backend in our experiments. Based on our discussions in section 3.5,

we adopt in-memory RDF triple store for housing metadata (i.e. the schemas

repository), and Redis server to store raw data (unified repository) and its

associated metadata information (linkage table). Compared to the data access and

query execution overheads imposed on the BDI Ontology system due to reliance

on advanced database systems (i.e. MongoDB and SQL – see [52]), SemLinker’s

storage technologies are conceptually RAM-based big hash tables with extremely

fast data access and retrieval complexities – O(1).

2. In SemLinker, the source schemas of each dataset are modelled as subgraphs

grouped into one RDF graph (i.e., the local schema) whose graph context is defined

by a single URI reflecting the input source’s identifier (see section 4.5.1). In

contrast, each source schema in the BDI Ontology system is treated as a separate

RDF graph. As expected, SemLinker, which executes its internal SPARQL queries

on a single graph for each dataset, is much faster than the BDI Ontology system,

which executes its queries on several graphs for each data set. SemLinker’s

metadata storage-optimised approach, and supported by O(1) retrieval complexity,

significantly contributes in boosting the query rewriting and unfolding. In fact, the

intermediate SPARQL query processor (see Figure 4.5) adds negligible overheads

on the overall SQL-like query execution process.

Housing the schemas repository 𝑆 in the physical memory may arise performance concern

in terms of resource consumption, given the size growth of 𝑆 overtime is affected by: (i)

the continuous addition of new RDF triples reflecting the local schemas of newly added

input sources to PDL, along with their associated mappings to the global ontology, and (ii)

the continuous addition of new RDF triples reflecting new source schemas generated by

SemLinker as result of automatic reactions to schema evolutions (velocity). To investigate

this concern, we downloaded 245 datasets from UCI Machine Learning Repository54 and

190 datasets from Kaggle55. The datasets belong to various domains with varying sizes

and physical schemas. Subsequently, we applied SemLinker on the data collection to

generate schema metadata and store it in our volatile triple store underlying 𝑆. A Windows

54 https://archive.ics.uci.edu/ml/index.php
55 https://www.kaggle.com/datasets

https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/datasets

148 Empirical Evaluation

server with 128GB- RAM and E3-1230-V2-3.30GHz-CPU was used in this investigation.

We dumped the store’s content on the hard disk and found that the total size of 𝑆 was

~4MB. It is important to note that the size of 𝑆, denoted as |𝑆|, is solely dependent on

SemLinker’s RDF data outputs due to the two reasons given above. Let the growth of |𝑆|

be denoted as △, then |𝑆| after any invocation of Algorithm (1) and Algorithm (2) becomes

|𝑆| ×△. For example, if we simulate 5 evolutions in the physical schemas of all the

evaluation datasets, then then |𝑆| is expected to be ~19MB. Figure 6.3 depicts the overall

growth in |𝑆| after applying schematic changes in the physical schemas of the datasets.

We have also measured the size shrinkage resulted from the deletion of the source schemas

v.5.0 and v.4.0 from each dataset and found that |𝑆| roughly shrunk back to its original

size. This empirical finding indicates that it is practically safe to adopt an in-memory RDF

triple store as a metadata repository for SemLinker without any technical issues on the

long term.

Figure 6.3– Schemas repository size growth correlation with schema evolutions

6.2 SemCluster evaluation

To evaluate SemCluster, two experiments are conducted using two evaluation datasets,

and the results are reported in this section. In the first experiment, we examine the impact

of SemCluster parameter settings on the keyphrase extraction performance, and provide

guidelines for optimal parameter setting in two popular domains. In the second experiment,

SemCluster is compared with multiple AKE methods in terms of precision, recall, and F-

measure of the reported keyphrases.

6.2 SemCluster evaluation 149

6.2.1 Evaluation data and metrics

Two frequently used datasets in AKE literature are chosen as the evaluation datasets:

Inspec56 [220], and DUC-200157. Both datasets consist of free-text documents with

manually assigned keyphrases and differ in length and domain (see Table.6.2), and

therefore are appropriate to test the robustness of SemCluster AKE performance over

documents that belong to different domains.

The Inspec dataset is a collection of abstracts of scientific papers from the Inspec database,

consisting of 2000 abstracts. Each abstract is represented by three files: .abstr, .contr and

.uncontr. The file .abstr contains the abstract content; .contr contains keyphrases restricted

to a specific dictionary; and .uncontr contains keyphrases freely assigned according to the

personal judgements of human curators. In Hulth’s work [220], the evaluated AKE method

was supervised, and the dataset was split into three partitions: 1000 abstracts for training,

500 for validation, and 500 for testing. TextRank, and KeyCluster are unsupervised

methods, and thus only the test partition was used in their evaluations. Since SemCluster

is also unsupervised, we adopt a similar approach and use only the test partition to provide

a precise comparison with the other AKE methods mentioned. As listed in Table 6.2, the

average length of each abstract (𝑾/𝑫) is 121.824, and the average number of keyphrases

assigned to each abstract (𝑲𝑷/𝑫) is 9.826. However, since the manual assignment of

keyphrases is uncontrolled, not all the keyphrases in a particular .uncontr file necessarily

occur in the corresponding .abstr file. Instead, any phrases regarded by the human curators

as suitable are stored in .uncontr as valid keyphrases. For the purpose of this evaluation,

we programmatically58 scan each .uncontr file and filter out any keyphrases that do not

occur in the corresponding .abstr file. A similar preprocessing practice has been applied to

the dataset during the experimental evaluations of TextRank, ExpandRank [54], and

KeyCluster as well as many others. After processing the dataset, the average number of

assigned keyphrases (𝒆𝑲𝑷/𝑫) drops to 7.726.

56 https://github.com/alrehamy/SemCluster/data/inspec
57 http://www-nlpir.nist.gov/projects/duc/guidelines/2001.html
58 Datasets statistics are calculated using the code at: https://github.com/alrehamy/SemCluster/data/stats

https://github.com/alrehamy/SemCluster/data/inspec
http://www-nlpir.nist.gov/projects/duc/guidelines/2001.html
https://github.com/alrehamy/SemCluster/data/stats

150 Empirical Evaluation

The DUC-2001 dataset is a collection of news articles retrieved from TREC-9, originally

consisting of 309 articles with one duplicate (d05a\FBIS-41815 with d05a\FBIS-41815~).

The dataset was originally published as a benchmark for document summarization tasks,

and [54] have used human curators to manually annotate each article with 10 keyphrases

in order to evaluate the ExpandRank algorithm. The Kappa statistic of inter-agreement

between the curators regarding manual keyphrase assignments was 0.7, and assignment

conflicts were resolved by discussions, and therefore, the 𝑲𝑷/𝑫 dropped to 8.08. Each

article is represented as a .txt file and consists of multiple HTML tags. In our evaluation,

we only consider the textual content in text tags (i.e. <text> … </text>).

Table 6.2 – SemCluster evaluation datasets.

Name Domain #𝐷 𝑊/𝐷 𝐾𝑃/𝐷 𝑒𝐾𝑃/𝐷

Inspec Scientific 500 121.824 9.826 7.726

DUC News 308 740 8.080 -

𝐷: document, 𝑊: word, 𝐾𝑃: manually assigned keyphrase, 𝑒𝐾𝑃: 𝐾𝑃 exists in the text.

As mentioned earlier, the metrics used for all SemCluster evaluations are Precision (P),

Recall (R), and F-measure (F), which are defined as follows:

𝑃 =
𝐾𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝐾𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑

 , 𝑅 =
𝐾𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝐾𝑃𝑔𝑜𝑙𝑑

, 𝐹 = 2 ×
𝑃 × 𝑅

𝑃 + 𝑅
 (6. 3)

where 𝐾𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the number of correct keyphrases extracted by SemCluster, 𝐾𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡 is

the total number of keyphrases extracted, and 𝐾𝑃𝑔𝑜𝑙𝑑 is the total number of keyphrases

manually assigned by human curators, which in our case, are considered the gold standard.

An output phrase extracted from a given input document is regarded as a valid keyphrase

if it is identical to, semantically equivalent to, or is a sub-phrase of, a gold standard

keyphrase manually assigned to the document in any given dataset.

6.2 SemCluster evaluation 151

6.2.2 Evaluation setup

SemCluster prerequisites

In the first step of SemCluster, we adopt OpenNLP59, an opensource and publicly available

NLP library, for text pre-processing. The content of an input document is tokenized using

a rule-based tokenizer, whereas sentence boundary detection, POS tagging, and chunking

are performed using a Maximum Entropy sequence labelling algorithm that utilises large

machine learning models trained on corpora in multiple domains. The default background

knowledge source of SemCluster is WordNet60 v.3.1. We perform slight modifications on

the data.noun and index.noun files to accommodate our needs, including re-indexing the

original byte-based synsets’ indices for faster access, POS-tagging the tokens in each

synset’s gloss, filtering out any token that is not tagged as a noun or adjective, and

lemmatizing the result gloss to improve string-based operations during disambiguation and

similarity computations of terms (see sections 5.4.2 and 5.4.3).

To support SemCluster with rich and tractable background information, we adopt two

external knowledge bases to reinforce the semantic coverage of WordNet: DBPedia, and

BabelNet. For DBPedia integration, its schema ontology is aligned with the WordNet

ontology using the alignment algorithm described in section 5.4.1, and the alignment

results are made publicly available61. For computational efficiency, we adopt a lookup-

server62 that allows DBPedia to be run in a local mode. BabelNet is a lexicalized semantic

network that combines and interlinks knowledge facts extracted from many online

resources [51], providing unified access to them63. Similar to the structure of WordNet, a

noun phrase in BabelNet may have one or more synsets, with each synset consisting of a

short definition that is often extracted from Wikipedia, and a list of one or more type

classes that are expressed as concepts and linked with the noun phrase using an Is-A

relationship. Unlike DBPedia, BabelNet utilises WordNet directly as its schema ontology,

which makes its integration in SemCluster a straightforward undertaking. Finally, we use

59 http://opennlp.apache.org
60 WordNet v.3.1 is available at https://wordnet.princeton.edu/wordnet/download
61 https://github.com/alrehamy/SemCluster/extensions/dbpedia/alignment
62 https://github.com/dbpedia/lookup
63 http://babelnet.org/download

https://wordnet.princeton.edu/wordnet/download
https://github.com/alrehamy/SemCluster/extensions/dbpedia/alignment
https://github.com/dbpedia/lookup
http://babelnet.org/download

152 Empirical Evaluation

EasyESA64 as a local server for measuring the relatedness between cluster centroids using

the Wikipedia-based ESA metric (see equation 5.10).

Architectural Integration

Similar to SemLinker (section 6.1.2), we implemented SemCluster as full concept of proof

system and integrated it as MMF component in PDL. The lineage manager dispatches the

actual content 𝐷 (e.g., pdf file, word document, text file, etc.) of any unstructured PDLSF

object pulled from RabbitMQ, and without associated lineage metadata (see section 3.3.4)

except its unique identifier. The lineage manager handles the extraction of the object’s raw

content by utilising Apache Tike or other internal parsers for non-traditional file formats

that are not natively supported by Tika.

Comparative methods and parameter setting

Three unsupervised AKE methods relevant to the SemCluster workflow are selected for

comparative evaluation: TextRank, ExpandRank, and KeyCluster. TextRank is a graph-

based method that computes the importance scores of candidate words using only local

structure information embedded in the word graph of the document; ExpandRank is also

a graph-based method that exploits an external textual neighbourhood in addition to the

local structure information of the document’s word graph to enhance co-occurrence

relations between graph nodes; KeyCluster is a cluster-based method that exploits

Wikipedia as an external background knowledge source to capture the semantic relations

between candidate terms and compute their pairwise similarities. As discussed in section

5.3, the underlying clustering algorithm of KeyCluster can implemented using any of the

following algorithms: Hierarchal Clustering (HC), Spectral Clustering (SC), and Affinity

Propagation (AP). Due to the poor performance of HC reported in [55], we evaluate

KeyCluster based on only SC and AP implementations.

During the test, only the best results under the best possible parameter settings, if any, for

a given method are considered. As shown in Table 6.2, the 𝒆𝑲𝑷/𝑫 of each dataset is less

than 10, therefore we set the co-occurrence window in ExpandRank to 10, whereas for

64 http://treo.deri.ie/easyesa

http://treo.deri.ie/easyesa

6.2 SemCluster evaluation 153

TextRank, the co-occurrence window size is set to 2 for Inspec, and 5 for DUC-2001. The

PageRank dumping factor is a constant value that is used to balance the probability of a

random walk from a given node to a random node in the graph. Setting this factor to 0.85

has been shown to be the best empirical setting not only in web surfing [227], but also in

keyphrase extraction [53]. For ExpandRank, we set the number of neighbor documents to

5, because for this setting ExpandRank obtains the highest F score. The setting for

KeyCluster-SC is that, m, the predefined number of clusters, is 𝑚 =
2

3
𝑛, where 𝑛 = |𝑫|.

For KeyCluster-AP, the maximum number of iterations is set to 1000, the propagation

damping factor is set to 0.9, and the clustering preference is computed using 𝑚𝑒𝑎𝑛, which

has been shown to outperform other preference functions in KeyCluster experiments.

Although SemCluster performs AKE in fully automatic mode, it requires general tuning

for a set of parameters, which are: (i) WSD context windows size 𝑁 (section 5.4.2), (ii)

AP algorithm parameters (section 5.4.4), (iii) distance threshold 𝜏 (section 5.4.5), and (iv)

window size 𝑘 (section 5.4.6). From empirical observation, SemCluster performs the best

possible WSD when 𝑁=10. However, when 𝑁<10, WSD performance degrades, whereas

𝑁>10 has no discernable influence on the task. The default tuning of AP parameters is as

follows: 𝑚 is set to 500, and 𝜆 is set to 0.9 similar to that of KeyCluster.

As indicated earlier, AP iteratively computes responsibilities and availabilities, and the

execution terminates only if decisions for the exemplars and the cluster boundaries are

unchanged for convit iterations. For computational efficiency, we set convit to 50. The

custom tuning of AP parameters has no influence on the clustering results regardless of

the dataset used during evaluation or its domain, because the input similarities are always

positive and in the range [0,1]. Unlike KeyCluster, we choose the 𝑚𝑒𝑑𝑖𝑎𝑛 function as

SemCluster’s clustering preference, to ensure that SemCluster performs clustering with

higher granularity (i.e. a larger number of clusters) so that unimportant terms with weak

inter-cluster relations can be automatically allocated in unimportant clusters, and hence

easily identified and pruned from the clustering results using Equation (10). As shown in

Table 2, the 𝑾/𝑫 of Inspec abstracts is very low, and therefore we set 𝑘 = |𝑫|.

Conversely, the 𝑾/𝑫 of DUC-2001 articles is relatively high, and therefore we set 𝑘 =

400 [236], and, if 𝑘 > |𝑫| then 𝑘 = |𝑫|.

154 Empirical Evaluation

 (a) P/R of runs on Inspec dataset. (b) P/R of runs on DUC-2001 dataset.

Figure 6.4– 𝜏 impact on SemCluster performance using settings in 0.5 ≤ 𝜏 < 1.

The distance threshold 𝜏 has a direct influence on SemCluster’s performance, such that,

when 𝜏=1, only centroids of clusters are chosen as seeds to identify and extract candidate

keyphrases; when 𝜏 = 0, all the terms in 𝑇𝐷 (except those belonging to the pruned clusters)

are selected as seeds, and hence most NP chunks in D are chosen as keyphrases. Given

that the pairwise semantic similarity score 0.5 is the least extent to which two terms can

be judged similar on scale from 0 (dissimilarity) to 1 (identicality) [275], then 𝜏 can be

assigned any value in the range 0.5 ≤ 𝜏 < 1. Estimating the optimal value of 𝜏 is a

hyperparameter optimisation problem that can be readily solved either by multiple trials

or by employing a dedicated optimisation search algorithm such as Random Search [276].

In this work, we design a sampling-based procedure to infer the best 𝜏 setting: from each

evaluation dataset we select 100 random documents as inputs to SemCluster, select

different 𝜏 settings starting from 𝜏 = 0.99 and gradually decrease it in the series 𝜏𝑖+1 =

𝜏𝑖 − 0.01, testing the precision and recall of SemCluster’s output from each run using the

value 𝜏𝑖+1.

The results of our sampling-based trials are plotted in Figure 6.4 for both datasets. As

depicted in Figure 6.4a, the precision and recall scores are very low when 𝜏 > 0.8, and

this is because a relatively large number of important candidate terms are not close enough

to their cluster centroids in order to qualify as seeds, and consequently, many valid

keyphrases are not identified by SemCluster as construed in section 5.4.5. However, when

𝜏 < 0.8, the performance gradually improves as semantically important terms start being

qualified as seeds, which contributes towards improving the total number and the quality

6.2 SemCluster evaluation 155

of extracted keyphrases. SemCluster’s best performance (P=0.401, R=0.742) is achieved

when 𝜏 = 0.665. Similarly, Figure 6.4b depicts SemCluster’s performance for the DUC-

2001 dataset using different 𝜏 settings. A prominent performance improvement is achieved

when 𝜏 < 0.8, and continues to gradually improve until 𝜏 = 0.59, where the best

performance (P=0.364, R=0.692) is realized.

Table 6.3 – Performance comparison of SemCluster and other algorithms

Methods Inspec DUC-2001

P R F P R F

TextRank 0.312 0.431 0.362 0.189 0.391 0.127

ExpandRank 0.344 0.471 0.398 0.288 0.354 0.317

KeyClsuterSC 0.350 0.660 0.457 0.256 0.529 0.345

KeyClusterAP 0.330 0.697 0.448 0.239 0.538 0.331

SemCluster 0.401 0.742 0.520 0.364 0.692 0.477

Bold values indicate the best result for each dataset

6.2.3 Performance comparison and results

Using Inspec and DUC-2001, we compare SemCluster’s performance with the methods

described in the previous section. Table 6.3 presents the evaluation results of each

evaluation dataset in terms of the precision, recall, and F-measure of the extracted

keyphrases.

The results show that, for both datasets, SemCluster outperforms the compared methods

on the recall of correct keyphrases and the precision of the extracted keyphrases.

Comparing with KeyCluster-SC, which has the second-best performance, SemCluster

achieves F-measure improvements of ~14% and ~38%, respectively. Although both

SemCluster and KeyCluster-AP utilise the same clustering algorithm, the former

outperforms the latter with F-measure improvements of ~16% and ~44%, respectively. To

156 Empirical Evaluation

the best of our knowledge, SemCluster’s F-measure scores of 0.520 and 0.477 are the

highest among current state-of-the-art unsupervised cluster-based methods.

The main contributors to the significant improvements in the F measure in SemCluster can

be summarized as follows:

1. Given sufficient background knowledge, we extract n-grams from the input

document’s content as potential candidates, including successfully mapped noun

phrases and proper named entities (see Table 5.1), while other state of the art

approaches typically extract single words only, causing many potentially important

candidates to be either eliminated early or to become semantically inadequate

during the selection of terms. For example, instead of selecting “third world” as a

candidate term (which is a compound noun manually assigned as a keyphrase for

the article AP880926-0203/ DUC-2001), all comparative methods extract the

words “third” and “world” separately. The drawback of n-gram terms selection,

however, is that it may lead to keyphrase overgeneration [222]. SemCluster

overcomes this issue by eliminating semantically irrelevant candidates during

cluster pruning, as discussed in section 5.4.5, thus boosting SemCluster’s recall.

2. Although the background knowledge obtained from relevant documents used in

ExpandRank, and the vector representation of terms based on Wikipedia articles

used in KeyCluster, contribute to enhancing their F scores compared with

TextRank, SemCluster’s extensible background knowledge is more effective. This

is because SemCluster clusters candidate terms based on their latent semantic

relations rather than frequency and co-occurrence statistics, and also obtains

thematically representative seeds even if they occur infrequently in the input

document to improve the keyphrase extraction precision.

3. We observe that expanding seeds with 𝜏 equal to 0.665 and 0.59 for Inspec and

DUC-2001, respectively, allows SemCluster to extract keyphrases that match the

gold standard keyphrases, while KeyCluster fails to identify them because their

corresponding seeds often do not qualify as cluster centroids and are thus

eliminated from the clustering results. This accounts for the significant

improvements in the recall and precision of SemCluster, compared with both

implementations of KeyCluster.

6.2 SemCluster evaluation 157

It is also noteworthy that SemCluster is more computationally efficient than the other

methods, especially KeyCluster. Due to its reliance on WordNet, SemCluster loads the

WordNet ontology and any related ontology alignments into its physical memory

(WordNet noun files and external ontology mapping files require ~22MB) so that

accessing the semantics of a term in 𝑫 requires O(1) time. Because of this, our method

performs AKE with significant improvements in computational complexity compared with

other methods. For example, KeyCluster requires ~5M Wikipedia articles to be crawled in

order to construct the Wikipedia-based conceptual vector for each term in 𝑫 during the

pairwise similarity computation of terms. Furthermore, Wikipedia crawling is correlated

with the length of the input document, whereas SemCluster accesses Wikipedia only for

computing the relatedness averaging for cluster centroids, which we have observed often

requires less than 15 centroids in the evaluation.

Table 6.4 – Comparison of SemClusterDBP and SemClusterDBP,BN.

Versions Inspec DUC-2001

P R F P R F

SemClusterDBP 0.392 0.721 0.507 0.371 0.639 0.475

SemClusterDBP,BN 0.401 0.742 0.520 0.364 0.692 0.477

* Bold values indicate the best result for each dataset

One of the main contributions of SemCluster is the way that background knowledge

extensibility is leveraged to overcome knowledge and semantic losses. To evaluate the

impact of knowledge extensibility on SemCluster performance, we produced two

implementations of SemCluster. In the first implementation, denoted as SemClusterDBP,

we extend WordNet using DBPedia only, and in the second version, denoted as

SemClusterDBP,BN, WordNet is extended with DBPedia as well as BabelNet. Table 6.4

presents a performance comparison between these implementations using the same

evaluation datasets and settings described above. These empirical results indicate that

SemClusterDBP,BN outperforms SemClusterDBP in all the metrics except for the precision

metric on DUC-2001. Although the improvements in SemClusterDBP,BN performance are

158 Empirical Evaluation

not significant, they provide empirical evidence that background knowledge extensibility

can enhance the AKE performance of the unsupervised clustering-based method.

Figure 6.5– Influence of background knowledge on the keyphrase extraction result

As depicted in Figure 6.5, it can be readily seen that both SemCluster implementations

perform AKE more efficiently on Inspec than DUC-2001. This performance aspect is also

shared by all the comparator methods as presented in Table 6.3. In SemCluster, this may

be explained as follows: (i) as presented in Table 6.2, Inspec documents are shorter than

their DUC-2001 counterparts, such that, for any given document 𝑫, 𝑘 = |𝑫|, whereas for

DUC-2001 documents, 𝑘 = 400, and accordingly, valid keyphrases that occur outside the

window 𝑘 are eliminated in the early steps of the SemCluster workflow, leading to

degraded recall; (ii) Inspec documents contain more scientific and technical noun phrases

than DUC-2001, many of which have matching entries in BabelNet, and therefore are

picked by SemCluster as valid keyphrases, thus boosting both implementation’s F scores.

In contrast, a news article in DUC-2001 often contains more named entities that tend to

have high semantic similarities due to infrequent topic shifting or changing [277],

consequently leading to the over generation of keyphrases and degraded recall.

6.3 Holistic data integration

In this section, we demonstrate the utility of the proposed MMF in supporting holistic-

integration over heterogeneous personal data within PDL environment. The demonstration

6.3 Holistic data integration 159

is conducted as a multi-step analysis workload over a collection of datasets with severe

structural heterogeneities in the art domain.

Table 6.5 – Integration experimental datasets

Name Format #Attributes #Size Structure

Tate-Art [278] CSV 20 69203 Structured

Tate-Artist [279] JSON 4 3533 Semistructured

Tate-Text [280] Text 0 850 Unstructured

6.3.1 Experimental data

The data used in this experiment consists of the datasets listed in Table 6.5, the first and

second are publicly available data offered by Tate65, a UK institution that houses British

and international modern and contemporary artefacts. The dataset Tate-Art is a CSV file

that consists of a collection of records, each record stores a set of attributes describing an

artwork that is displayed on Tate website. Although we designate this dataset as structured

in Table 6.5, it is not neatly authored since many CSV records contain missing or erroneous

field values, and in an empirical sense the dataset may be regarded as semistructured. The

Tate-Artist dataset consists of JSON documents, each document describes the personal

details of the artists who crafted the artworks listed in Tate-Art. The Tate-Text dataset is a

collection of unstructured documents, each document contains a textual content that briefly

describes an artwork in Tate-Art. This dataset contains 850 documents collected from Tate

website via web crawling. The website offers descriptions for almost all the artworks,

however we crawled only those with free license to ensure using the crawled data under

appropriate copyrights. It is important to note that the filename of a document is identical

to the title of its corresponding artwork in Tate-Artwork.

65 http://www.tate.org.uk

http://www.tate.org.uk/

160 Empirical Evaluation

6.3.2 Experimental setup

The experimental setup involves using the implementations discussed in sections 6.1.2 and

6.2.2 for ingesting raw data in PDLSF format, storing it in RabbitMQ, parsing it by the

lineage manager, dispatching it to the appropriate metadata-processing component in

MMF, and finally storing it in Redis server. The same parameter settings used earlier for

SemLinker and SemCluster are adopted in this experiment. Regarding data ingestion in

PDL, each dataset is split into raw data entities that are serialised in PDLSF format and

stored in the messaging queue component. The settings for the attributes in the meta

section of a PDLSF object are listed in Table 6.6. To illustrate, a PDLSF object that belong

to Tate-Art holds the URI http://www.tate.org.uk/art in the source attribute of its meta

section, and is tagged with the concept sc:VisualArtwork to reflect the type

abstraction of its raw content relative to Schema.org. As listed in Table 6.5, Tate-Art is

structured, therefore all its PDLSF objects hold the value 1 in their assert meta attribute.

In a real-world scenario, the attributes listed in Table 6.6 are expected to be provided by

the ingestion agent, and are automatically obtained by the lineage manager during PDLSF

parsing as indicated in section 3.4.3. Given a PDLSF object that belongs to Tate-Art (or

Tate-Artist), it is normally processed by SemLinker, which initiates the workflow covered

in Chapter 4 to generate a source schema that reflects the physical schema of the dataset

which the input PDLSF object belongs to. For example, applying Algorithms (1) and (2)

on Tate-Art entails one-to-one mappings between the physical schema of this dataset and

its tagging concept sc:VisualArtwork. A fragment of the mapping results is depicted

in Figure 6.6.

Table 6.6 – Meta section settings for Tate data

Dataset source type context assert

Tate-Art www.tate.org.uk/art sc:VisualArtwork -- 1

Tate-Artist www.tate.org.uk /artist sc:Artist -- 2

Tate-Text www.tate.org.uk /art-text Null -- 3

6.3 Holistic data integration 161

Likewise, a PDLSF object that belongs to Tate-Text holds URI http://www.tate.org.uk/art-

text in the source attribute of its meta section. The type attribute is set to null since the

dataset is unstructured (see section 3.3.2). Essentially, the value 3 in the assert attribute

for any object belongs to Tate-Text implies that the lineage manager should dispatch the

object to SemCluster as bare. After processing and storing Tate datasets in PDL, the query

interface is used to submit input queries with three requirements: (i) structured and

semistructured data retrieval, (ii) unstructured data retrieval, and (iii) cross-referencing

based insight mining.

Figure 6.6– The metamodeling of Tate-Art source schema to sc:VisualArtwork

6.3.3 Experiment Scenario

Initially, it is assumed that we are interested in associating each artwork in Tate-Art with

the personal details of its creator(s) from Tate-Artist. To familiarize ourselves with the

elements of the unified view that is produced by SemLinker for each among these datasets,

we need to submit the following exploratory queries to SemLinker’s query engine through

the query interface in PDL’s access layer:

162 Empirical Evaluation

SELECT * FROM sc:VisualArtwork WHERE

sc:VisualArtwork.root =

“http://www.tate.org.uk/art”

And subsequently

SELECT * FROM sc:Artist WHERE

sc:Artist.root =

“http://www.tate.org.uk/artist”

The first query aims to retrieve the unified view over Tate-Art which represents the

metamodeling of its local schema to the concept sc:VisualArtwork. Likewise, the

second query retrieves the unified view reflecting the metamodeling of the local schema

of Tate-Artist to its tagging concept sc:Artist. For example, executing the first query

yields loading all the records of Tate-Art that are stored in PDL with their native schema

– which is depicted in the high level of Figure 6.6 (pink circles) – however, the records are

returned as query results in a source schema that is organized according to the ontological

structure of the tagging concept – which is depicted in the low level of Figure 6.6 (blue

circles). By playing the role of a PDL user, or even a third party data consumer, we assume

no prior knowledge regarding the access, storage, or retrieval details of Tate data, therefore

executing these queries enables us to learn the necessary information for posing more

complex queries. With such information at hand, one can readily formulate the following

query to automatically integrate the datasets by joining their unified views.

SELECT

sc:VisualArtwork.identifier, sc:VisualArtwork.about,

sc:VisualArtwork.dateCreated,

sc:VisualArtwork.image, sc:Artist.id,

sc:Artist.name, sc:Artist.gender, sc:Artist.url

FROM sc:VisualArtwork

6.3 Holistic data integration 163

JOIN sc:Artist

ON sc:Artist.id = sc:VisualArtwork.id

AND sc:Artist.root= ”http://www.tate.org.uk/artist”

WHERE sc:VisualArtwork.root =

“http://www.tate.org.uk/art”

Here the attention is tuned to specific attributes of the data, namely:

 The identifier of the artwork: identifier⟶ 𝑖𝑑.

 The name of the artwork: about⟶ 𝑡𝑖𝑡𝑙𝑒.

 The creation date of the artwork: dateCreated⟶ 𝑑𝑎𝑡𝑒𝑇𝑒𝑥𝑡.

 The thumbnail image of the artwork: image⟶ 𝑡ℎ𝑢𝑚𝑏𝑛𝑎𝑖𝑙𝑈𝑟𝑙.

 The identifier of the artist(s) who created the artwork: id⟶ 𝑖𝑑.

 The name of the artist: name⟶ 𝑛𝑎𝑚𝑒

 The gender of the artist: geneder⟶ 𝑔𝑒𝑛𝑒𝑑𝑒𝑟.

 The photo of the artist: url⟶ 𝑢𝑟𝑙.

A pair property⟶ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 is an interpretation of a formal GAV mapping from a

property in the tagging concept (view) to its semantically corresponding attribute in the

physical schema of the meta-modelled data. Such pair is equivalent to the RDP mapping

triple 〈𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑀:𝑚𝑎𝑝𝑠𝑇𝑜 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒〉. One important advantage of the above query is

that the retuned results may uncover obvious relationships between the data of Tate-Art

and Tate-Artist, for instance, what artworks are created by a given artist (i.e. grouping).

Therefore, we are able to jointly query heterogeneous raw data that exists in different

schemas and formats (CSV and JSON), and process them on the metadata level without

the need to change their representations on the physical level. However, such querying is

incapable of revealing any hidden relationships that might exist between the integrated

datasets. By exploiting the holistic integration feature offered by the proposed MMF, the

next requirement is to mine hidden relationships through cross-referencing. To meet this

requirement, one would plug the Tate-Text dataset as backstory information in the current

usage workload. An interesting observation in SemCluster’s processed data is that: the

phrase Tulane University is extracted as keyphrase from multiple unstructured documents.

164 Empirical Evaluation

To test the applicability of this keyphrase as backstory information, one can formulate the

following query:

SELECT

sc:VisualArtwork.identifier, sc:VisualArtwork.about,

sc:VisualArtwork.dateCreated, sc:VisualArtwork.image,

sc:Artist.id, sc:Artist.name, sc:Artist.gender,

sc:Artist.url

FROM sc:VisualArtwork

JOIN sc:Artist

ON sc:Artist.id = sc:VisualArtwork.id

AND sc:Artist.root= ”http://www.tate.org.uk/artist”

WHERE sc:VisualArtwork.root =

“http://www.tate.org.uk/art”

AND sc:VisualArtwork.about IN

 #SemCluster:(

 SELECT Lineage.filename(key) FROM SemCluster

 WHERE <keyphrase> IN {(“Tulane University”, NULL)}

)

From a technical viewpoint, this query is identical to its former counterpart but with one

difference: there is a new SQL-like filtering statement added in the Where clause. When

SemLinker detects the syntax #SemCluster:(…) during the compilation of this query,

it understands that the query formulation inside the brackets is meant to be executed by

SemCluster, accordingly, its execution is postponed by SemLinker’s query engine until

the rest of the input query is executed and the query results are loaded from the metadata

repository, the linkage table, and the unified repository. Once the results are ready, the

query formulation inside #SemCluster:(…)is sent from SemLinker to SemCluster for

execution, and its results are sent back to SemLinker , which are then used to filtering the

loaded data.

6.3 Holistic data integration 165

Table 6.7 – Documents associated with “Tulane University” in Tate-Text dataset

Key (Lineage) Filename Contains

6B86B273FF From the Freud Museum Tulane University

D4735E3A26 Trestle Trains Tulane University

4E07408562 Elevated Smoke Tulane University

4B227777D4 Burial at Sea Tulane University

EF2D127DE3 Diamond Express Tulane University

E7F6C01176 Cubie Smoke Tulane University

To illustrate this workflow, SemLinker executes the entire formulation of the above query

(except for part #SemCluster:(…))to integrate the data of Tate-Art and Tate-Artist.

Subsequently, the SemCluster-specific formulation is submitted to SemCluster in order to

find all the documents that are annotated with the keyphrase Tulane University. The

underlying information need here is to load the value associated with the filename attribute

(lineage metadata) of each matched document. As indicated in section 6.3.2, the filename

of each document in the Tate-Text dataset is identical to the title attribute in the Tate-Art

dataset. These values can be exploited to filter the Tate-Art/Tate-Artist integrated data.

Table 6.7 lists the results of executing the SemCluster-specific query on Tate-Text data.

The first column (key) represents the unique identifiers assigned to a document by the

lineage manager during its ingestion, the second column (Filename) lists the original

filename of the document, and the third column (contains) indicates that the document

contains the keyphrase specified in the input query. SemLinker utilises these results to

refine the data loaded from executing the original input query. The refined results are

depicted in Figure 6.7. In this visualization figure66, we found that 6 artworks in Tate-Art

are associated with the keyphrase Tulane University, 5 among which were crafted by

William Crutshfield, and the last was crafted by Susan Hiller. This finding indicates that

66 We designed a program to draw a visualization of the query results to simplify their understanding.

166 Empirical Evaluation

there is a hidden relationship between these artists. By examining the documents listed in

Table 6.7, we learned that both artists studied at Tulane University and this is why their

artworks seem to be related. Based on this experiment, it is empirically evident that

querying over well-managed and holistically integrated raw data is effective and can lead

to reveal hidden patterns in the queried data towards generating new knowledge and

deriving value.

Figure 6.7– Visualization of the holistic integration querying results

6.4 Summary 167

6.4 Summary

The main methods and algorithms introduced in this thesis are empirically validated and

evaluated, using proof of concept implementations and a multitude of real-world datasets.

We conducted two experiments using 11 datasets to evaluate SemLinker. The first tested

the robustness of automatic schema mapping computation on 3 semantically similar but

schematically heterogeneous datasets, and using one tagging concept that is drawn from

Schema.org. The second experiment tested the integration and querying performance of

SemLinker against a current state of the art method and using 8 heterogeneous datasets.

During this experiment, we simulated evolutions in the physical schemas of the integrated

data to examine the tractability of the proposed system in handling data velocity. The

results obtained from both experiments not only validate the integration effectiveness and

functional efficiency of the system, but also indicate that the performance is robust and

promising. SemLinker stores output metadata in an “in-memory” triple store, this aspect

requires empirical feasibility test. We applied SemLinker on a collection of 435 datasets

and recorded the initial memory consumption rate and the consumption increment after

each simulated evolution wave in the physical schemas of the datasets. The results indicate

that the memory consumption is insignificant and it is practical to implement SemLinker’s

metadata repository using any in-memory store.

Next, we conducted one main experiment to validate SemCluster and evaluate multiple

aspects of its performance, namely: keyphrase extraction recall, precision, F1-measure,

tractability across domains, and the effect of background knowledge on the keyphrase

extraction task. Popular datasets in NLP literature were used in the experiment. The

performance of SemCluster was compared against 3 AKE methods under the best possible

parameter settings. The results indicate that SemCluster outperforms the comparative

methods with significant performance improvements. Finally, we conduct a casual

experiment to demonstrate the utility of MMF in performing holistic integration over

semantically similar but structurally heterogeneous datasets. We showed the usefulness of

the proposed MMF as a foundation for querying heterogeneous personal raw data and

discovering new interesting insights from it through cross-referencing.

168 Conclusions and Future Work

Chapter 7 Conclusions and Future Work

There is an evident need for common users to have their own self-controlled personal

spaces in a response to the pressing problems of digital autonomy and the asymmetry of

power between the user and the large-scale service providers (and any other third-party

personal data consumers for that matter). In [11], the authors discuss the trending paradigm

of provider-centric data centralisation and its implications on those users who want to

manage their own data and derive value from it. In [281], the authors argue that the missing

governance of personal data markets threatens to undermine the common user’s trust in

data sharing practice, given that data sharing underlies not only a series of valuable public

services, but also the whole digital industry. Motivated by these as well as similar ideas,

we designed PDL as a highly suggestive mean for putting the common user at the centre

of personal data management, and market. PDL enables its user to accumulate large

amounts of a potentially useful personal data in a central space, which the user has full

control on, and which serves as a platform for value creation and fair information exchange

with third-party data consumers, to serve various gainful purposes as conceived by the

user. The PDL solution naturally solves the known fragmentation problem of personal

data, albeit the centralised data within it may quickly exhibit qualitative characteristics that

are identical to the 3Vs model of big data, but on a smaller scale; the scale of an individual.

Common users obviously do not have sufficient knowledge to deal with the 3Vs

characteristics or the inherent isolations stem from the heterogeneity of personal data, and

even if they do, it is still a tedious and time consuming manual undertaking. In this thesis,

we argue that equipping PDL with an automated solution for meta data management can

address all the problems of personal data. To verify this argument, we propose a novel

extensible MMF that operates on the metadata level of the personal data to orchestrate its

storage and usage within PDL environment, thus enabling the PDL user to integrate, query,

and analyse personal data in its native representations and with minimum time and efforts.

7.1 Conclusions 169

7.1 Conclusions

This thesis introduces an extensible MMF to annotate (semi)structured and unstructured

personal raw data, that are collected from a plurality of heterogeneous data sources, with

lineage and semantic metadata artefacts, which can then be exploited to model the data

based on a formal metamodel. Throughout this research we designed, implemented, and

evaluated multiple algorithms and techniques for automating many downstream tasks in

the metadata and data management workflows with a focal aim of isolating the PDL user

from the complex technical details typically imposed by these tasks. We showed that such

automation enables the user to focus on knowledge discovery and value creation through

formulating and executing formal queries over MMF’s metamodel.

The proposed MMF consists of three solutions for data provenance; (semi)structured data

management, and unstructured data management. The first solution, lineage manager, is a

data tracking system that focuses on recording information about the line, age, and privacy

of the data in PDL environment. This system controls who can access the stored data, and

on what levels of accessibility, thus it provides agile but effective mechanism to protect

the user privacy and prevent unauthorized access to the stored data. The second solution,

called SemLinker, is an ontology-based data integration system that follows Lenzerini

theoretical integration framework [39]. It consists of (i) an extensible OWL ontology that

serves as a global schema, (ii) an RDF-based metadata repository to store local schemas

that correspond to the physical schemas of the (semi)structured personal data in PDL, and

(iii) formal mapping specifications that define the correspondences between the global and

the local schemas. SemLinker focuses on automating data integration and offering partial

unified views over PDL data on the metadata level. Such views can be readily qureied by

analysis workloads. During our initial experiments with SemLinker, we observed that the

velocity of personal data is faster, in terms of schema evolution, than what we anticipated

at an early stage of our research. For example, the schema of Facebook Graph API has

evolved three times over the last year (v.2.8, v.2.9, v.3.0). This provides the following

insight: an efficient integration system that operates in a DL system needs to effectively

address many challenges, one compelling among which is schema evolution. Tackling this

challenge requires self-adaptability to external dynamics imposed by the integrated data

170 Conclusions and Future Work

sources, and with lack of such feature then automating the data integration workflow may

become a near-impossible undertaking. Accordingly, we redefine the “local schema” as a

collection of source schemas, each among which corresponds to the physical schema of

the given source at a certain point in its schema evolution timeline. This definition enables

SemLinker to readily automate the integration process, but it introduces a new challenge;

there are always structural and/or semantic differences between the current schema version

and its previous counterpart, otherwise evolution would not take place. It is critical for an

automated integration system to identify and reconcile such heterogeneities to prevent the

tasks operating on the schema from crashing. The fact that raw data must be stored by a

DL system in untransformed state complicates this challenge as we are forced to come up

with a solution to the heterogeneity reconciliation without applying physical transform-

ations on the data. To address such a solution, we introduce the idea of virtual transform-

ations on the metadata level of the data. In Chapter 6, we evaluated all the proposed

techniques in SemLinker to validate them and to examine the overall system performance.

Two experiments are conducted to serve these requirements. The evaluation results not

only validate the automated integration effectiveness and efficiency but also indicate that

the performance is robust and promising. Query execution is really fast, in fact, SemLinker

is ~10 times faster than a comparative recently introduced method. The metamodeling

approach of SemLinker and its flexibility in supporting schema-less storage are major

contributors to the performance improvements.

The third solution, called SemCluster, is an ontology-based AKE-based ASA system for

automatically annotating unstructured textual data with semantic data-driven metadata.

The system consists of: (i) an extensible global WordNet-based ontology that serves as a

formal metamodel, (ii) a repository of keyphrases and their associated metadata artefacts,

which serves as a collection of semantic representations over the textual data, and (iii)

formal mappings between the semantic representations and the global ontology, which are

WordNet-defined relationships. The underlying algorithm of the system is an AKE six-

step algorithm that automatically extracts thematically important keyphrases from the

body of an input document, and associates each extracted keyphrase with fine-grained

ontological information drawn from the global ontology. The presented algorithm is the

first of its kind, it dynamically incorporates external background information in the AKE

7.1 Conclusions 171

task, which is obtained from generic, specialised, or personalised knowledge sources that

are integrated with WordNet through agile alignment on the schema level, and which can

be systematically queried using an internal knowledge querying algorithm. The ASA

performance of the system is solely dependent on its underlying AKE algorithm, therefore,

we evaluated SemCluster using datasets of different size and domain, against three

comparative methods. The evaluation results indicate that SemCluster outperforms the

compared methods across all the evaluation metrics. This empirical finding verifies the

findings of Liu et. al. [55] that unsupervised clustering-based AKE methods can be

effective and robust, even across multiple domains. Background knowledge plays vital

role in improving the AKE, however, we needed to empirically verify this observation.

Accordingly, we conducted an experiment to compare between the performances of two

implementations of SemCluster, in the first we plugged only one external knowledge

source (DBPedia), and the second we added another source (BabelNet). The F1-measure

scores indicate that there is performance improvement in the second implementation, but

it is not significant due to technical issues related to the domains of the experimental data.

To demonstrate the usefulness of MMF and its roles in simplifying the usability of PDL,

we conducted an experiment where the metadata of all MMF components are combined

and jointly queried to perform a personal analytics workload over holistically integrated

heterogeneous personal data. The goal of this experiment was to reveal hidden insights in

3 datasets that suffer severe structural heterogeneity. The scenario of the experiment

involved extracting lineage information from the datasets by the lineage manager, then

applying SemLinker on 2 (semi)structured datasets to generate partial unified views over

their native representations, and applying SemCluster on a collection of unstructured text

documents to construct keyphrase-metadata representation for each document, and finally

querying MMF with a combined SQL-like query that utilises the keyphrases of the

unstructured documents as backstory information about particular entities in the integrated

data. Using relatively simple query formulations, it was applicable to discover obvious and

hidden relationships between the structured and semistructured datasets. Overall, the

evaluations presented in Chapter 6 demonstrate remarkable potential for the PDL user to

understand, manage, and utilise personal raw data through MMF-based queries.

172 Conclusions and Future Work

Although most of our discussions tie MMF with PDL, the framework is in fact loosely

coupled with PDL architecture in two ways: first, MMF is not concerned with the

workflow details of the ingestion layer since it only requires pulling raw data entities from

a queue (e.g. the messaging queue component). Secondly, MMF is not concerned with the

implementation details of the storage layer, it expects the PDL backend to be a giant hash

table that could be modelled into two logical components: the unified repository and the

linkage table. MMF handles data storage by passing the metadata-processed data entities

to the backend in the form of key-value pairs of raw data and their associated metadata

information. Furthermore, MMF introduces querying capability by means of an ontology-

based metamodel for query formulation, and internal engines to execute input queries on

the metadata level of the stored data regardless of its native schemas, structures, or formats.

By eliminating the need for external support to data storage and querying, MMF offers a

natural support to database agnosticism in DLs. Based on these architectural independence

characteristics, and motivated by the experimental results elaborated above, we plan to

examine the applicability of MMF in different DL architectures. Our initial aim is to

integrate the framework as a management solution for a full-fledged Hadoop DL system

and study its empirical effectiveness and efficiency.

The results of this work support the claim that the use of lineage and semantic metadata

for the purpose of data management can compensate the inherent lack of data governance

and quality in the data lake concept. However, these kinds of metadata are not sufficient

enough as an effective mechanism against potential security risks. PDL preserves all the

personal data of the user in a central space that is controlled by the user, not a third party.

Currently, MMF enables the PDL user to specify basic metadata-based access control for

various kinds of personal data as described in section 3.4.3. A data consumer who

approaches PDL for mining useful information must request access to the stored data from

the user. If the request sounds invasive, the user can simply reject it. However, the potential

risks arise upon requests approval. A nefarious third party with permissible access to a

particular kind of personal data could formulate MMF-based queries that elicit more data

pieces than the PDL user intends to disclose, for instance, by allowing a third party

geolocation service to access GPS history data, it may conduct pattern mining to infer the

user’s current location without the consent of that user. Accordingly, equipping PDL with

7.2 Future work directions 173

safeguards against information breaches through using and mining personal data is critical

and has to evolve in parallel with considerations about the requirements of each third party

data consumer and the user’s awareness of those requirements, for example, an effective

safeguard should allow the service in the former example to retrieve GPS data up to a

certain point in time, thus preventing it from predicting the current location of the user.

Another security risk in the user-centric data centralisation paradigm lies in the safety of

the personal data in the long term. PDL collects a variety of raw data from different data

sources, many among which are not necessarily guaranteed to provide risk-free data, for

instance, a RAS agent running on a device infected with a malicious software (e.g. Trojan,

Ransomware, etc.) may propagate infected files to the PDL, which once are situated within

the PDL premises, they can contaminate other preserved files, leading to irrevocable

corruption of particular personal data that may be regarded of high importance to the user.

Therefore, PDL should also be equipped with a mechanism that scans any ingested raw

data entities and filters out those with potential security bugs.

7.2 Future work directions

Future work could take many directions. In the following subsections, we summarize the

pressing ones.

7.2.1 Simplifying query formulation

Gartner [283] outlined personal analytics in its hype cycle of emerging technologies. The

firm believes this technology is promising and may attract competitive advantages in the

foreseen future. We share the same expectation and further argue that as the size and

convergence of personal data increasingly become a norm, the common users’ need to

derive personal insights and patterns from their data on their own will keep augmenting.

PDL can serve as single point of centralisation for all the personal data of the common

user, whilst MMF is the PDL-compatible framework that can be exploited to discern

insights in personal habits, patterns, and motives in the course of the user’s daily activities

and across various contexts including: work, health, finance, leisure, emotions, and so

174 Conclusions and Future Work

forth. The main enabler for such services is “querying”. The presented MMF components

require constructing SQL-like queries, mostly based on a priori knowledge of the concepts

and properties associated with the metamodel which is used to manage the personal data

and over which such queries are executed. Although from a technical perspective MMF

components have been shown to hide considerable data management complexities, they

still require a higher level of query formulation abstraction for allowing the common user

to run personal analytics workloads in PDL without the need to write verbose queries,

which the user may not understand or does not have the experience to expand in order to

conduct advanced workloads. We set two future directions to overcome this limitation:

first, we plan to build an interactive graphical query designer tool as the frontend of the

query interface currently available in the access layer. Such tool provides both a graphical

query design GUI and a text-based query design GUI for creating queries to retrieve meta-

modelled personal data from PDL. The first GUI would be used to interactively build an

SQL-like query and view the results for different source types like PDL backend, the

lineage database, SemLinker metadata repository, and SemCluster annotations repository.

The second GUI would be used to specify multiple statements, complex query or command

syntax, and expression-based queries similar to those shown in Chapter 6. The second

direction is to exploit the gravity feature of PDL. Our aim here is to develop a multitude

of general-purpose gravity-enabled services to cover analytics which any PDL user might

need, and distribute them as compiled code which would be easily downloaded by the user

and plugged in the access layer. In this context, a service would either tune itself with the

MMF’s metamodel in an adaptive way to formulate queries on the behalf of the user and

based on their information needs, or it contains predefined query formulation patterns

which the user would directly trigger without the need to be concerned with their technical

details. By reviewing the digital society (i.e., blogs, forums, news), we prioritise building

gravity-enabled services for manipulating integrated social media data coming from

multiple social services, such as graphical search and analysis (sentiment analysis,

infographs), services for analysing integrated health data coming from smartphones and

watches, services for mining relationships between unstructured textual documents, and

services for geolocation informatics.

7.2 Future work directions 175

7.2.2 Intrinsic tagging and plugging in SemLinker

To the best of our knowledge, SemLinker is the first domain-agnostic integration system

that offers self-adapting capabilities to automatically integrate raw data with frequently

evolving schemas based on solid theoretical foundations as explained in Chapter 4.

However, though in many aspects SemLinker can be regarded as an automatic system, it

still has two vital tasks that need to be dealt with manually: data source tagging and

selecting a schema matcher plugin. Using machine learning based approaches to label data

sources with ontological concepts automatically, and thus relieving users of the burden of

manual data source tagging during the installation of ingestion agents, is one of our future

research goals. As for schema matcher selection, though the performance of SemMatcher

in the evaluation is promising, we intend to extend it by combining a number of other

matching approaches, so that it offers good matching solution for schemas of various

characteristics, reducing the need for users to resort to other schema matchers.

7.2.3 Similarity and WSD in SemCluster

Although SemCluster exhibits better performance than other approaches, there is still room

for improvement. In an experiment on a collection of mixed documents from Inspec and

DUC-2001, we replaced the WuPalmer measure with the Jiang-Conrath metric [284] and

used Babelfy [285] for the WSD task. An improvement in F1-measure compared with that

of SemClusterDBP,BN was observed, however, its computational efficiency significantly

decreased because Babelfy is available only as an online service. This suggests a potential

enhancement to SemCluster, particularly by improving its semantic similarity metric and

WSD algorithm. We are also interested in extending WordNet with more personalised

knowledge sources and study their impact on performance using personal documents with

greater length and domain variance (e.g. emails, health records, microblogs, etc.) than the

currently used datasets.

7.2.4 Extending multimedia support

At the end of this doctoral research, a pressing idea in MMF development was extending

its metadata management capabilities to support unstructured multimedia data. At present,

176 Conclusions and Future Work

MMF provides limited support for these kinds of data in the form of lineage recording.

However, we plan to develop a fourth integral component in MMF, called SemMedia, to

handle the metadata processing of different image and video files. With lineage manager,

SemLinker, SemCluster, and SemMedia in place, MMF would be able to handle a wide

spectrum of personal data, hence greatly benefiting the PDL user by extending the support

of storing and managing new personal data types, and offering multiple choices for

backstory information support during personal informatics and analytics, compared to the

current text-based support only.

References

[1] Jones W. Keeping found things found: The study and practice of personal information

management. Morgan Kaufmann. 2010.

[2] Pirolli P. Information foraging theory: Adaptive interaction with information. Oxford

University Press. 2007.

[3] Mai J. Looking for information: A survey of research on information seeking, needs, and

behavior. Emerald Group Publishing. 2016.

[4] Whittaker S. Personal information management: from information consumption to curation.

Annual review of information science and technology. 2011;45(1):1-62.

[5] Fisher D, Brush A, Gleave E, Smith M. Revisiting Whittaker & Sidner’s “Email Overload”:

Ten years later. In: Proceedings of the 20th Anniversary ACM Conference on Computer

Supported Cooperative Work; 2006. p.309–312.

[6] Aula A, Natalie J, Mika K. Information search and re-access strategies of experienced web

users. In: Proceedings of the 14th international conference on World Wide Web. ACM;2005.

p.583-592.

[7] Boardman R, Spence R, Sasse M. Too many hierarchies? The daily struggle for control of the

workspace. In: Proceedings of HCI international, vol. 1; 2003. p.616-620.

[8] Klaus S, Marcus A, Oyola J, Hoffman W, Luzi M. Personal data: The emergence of a new

asset class. In: An Initiative of the World Economic Forum; 2011.

[9] Lazer D, Pentland A, Adamic L, Aral S, Barabasi A, Brewer D, Christakis N. Life in the

network: the coming age of computational social science. New York:Science;

2009:323(5915):721-723.

[10] Eagle N, Pentland A. Reality mining: sensing complex social systems. Personal and

ubiquitous computing 10. 2006;4:255-268.

[11] Van Kleek M, OHara K. The future of social is personal: The potential of the personal data

store. In: Social Collective Intelligence. Cham:Springer;2014. p.125-158.

[12] Narayanan A, Toubiana V, Barocas S, Nissenbaum H, Boneh D. A critical look at

decentralized personal data architectures. arXiv preprint;2012. arXiv:1202.4503.

[13] Gurrin C, Smeaton A, Doherty A. Lifelogging: Personal big data. Foundations and Trends in

Information Retrieval. 2014;8(1):1-125.

[14] Kaasinen E. User needs for location-aware mobile services. Personal and ubiquitous

computing. 2003;7(1):70-79.

[15] Dey K. Understanding and using context. Personal and ubiquitous computing. 2001;5(1):4-

7.

[16] Bettini C, Brdiczka O, Henricksen K, Indulska J, Nicklas D, Ranganathan A, Riboni D. A

survey of context modelling and reasoning techniques. Pervasive and Mobile Computing.

2010;6(2):161-180.

[17] Ronda G, Guerras L. Dynamics of the evolution of the strategy concept 1962–2008: a co-

word analysis. Strategic Management Journal. 2012;33(3):162-188.

[18] Schwartz P, Solove D. Reconciling Personal Information in the United States and European

Union. California Law Review. 2014;102(1):877.

[19] Choe K, Lee N, Lee B, Pratt W, Kientz J. Understanding quantified-selfers' practices in

collecting and exploring personal data. In: Proceedings of the 32nd annual ACM conference on

Human factors in computing systems. New York:ACM;2014. p.1143-1152.

[20] Li I, Dey A, Forlizzi J. A stage-based model of personal informatics systems. In:

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New

York:ACM;2010. p.557-566.

[21] De Mauro A, Greco M, Grimaldi M. "What is big data? A consensual definition and a

review of key research topics. In: AIP conference proceedings. AIP 1644(1);2015. pp.97-104.

[22] Siddiqa A, Hashem I, Yaqoob I, Marjani M, Shamshirband S, Gani A, Fariza N. A survey of

big data management: Taxonomy and state-of-the-art. Journal of Network and Computer

Applications. 2016;71(C):151-166.

[23] Russom P. Big data analytics. TDWI best practices report, fourth quarter. 2011;19(4):1-34.

[24] Buckle C. Digital consumers own 3.64 connected devices, Global Web

Index.https://blog.globalwebindex.net/chart-of-the-day/digital-consumers-own-3-64-connected-

devices/. Accessed 4 Feb 2018.

[25] Thompson E. Spotlight on Consumer App Usage, Annie App.

http://files.appannie.com.s3.amazonaws.com/reports/1705_Report_Consumer_App_Usage_EN.p

df. Accessed 4 Feb 2018.

[26] Bras L. Online Overload - It’s Worse Than You Thought, Dashlane.

https://blog.dashlane.com/infographic-online-overload-its-worse-than-you-thought/. Accessed 4

Feb 2018.

[27] Jason Mander, The social media trends shaping 2018, Global Web Index.

https://www.globalwebindex.net/reports/social. Accessed 4 Feb 2018.

[28] NewVantage Partners. Big Data Executive Survey: Themes and Trends.

http://newvantage.com/wp-content/uploads/2012/12/NVP-Big-Data-Survey-Themes-Trends.pdf.

Accessed 4 Feb 2018.

[29] Chaudhry A, Crowcroft J, Howard H, Madhavapeddy A, Mortier R, Haddadi H, McAuley

D. Personal data: thinking inside the box. In: Proceedings of The Fifth Decennial Aarhus

Conference on Critical Alternatives. Aarhus University Press;2015. p.29-32.

[30] Heath T, Bizer C. Linked data: Evolving the web into a global data space. Synthesis lectures

on the semantic web: theory and technology. 2011;1(1):1–136.

[31] Karger D, Jones W. Data unification in personal information management. Communications

of the ACM. 2006;49(1):77–82.

[32] Pautasso C, Zimmermann O, Leymann F. Restful Web Services vs. "Big" Web Services:

Making The Right Architectural Decision. In: WWW;2008. p.805–814.

[33] Boyd D, Crawford K. Critical questions for big data: Provocations for a cultural,

technological, and scholarly phenomenon. Information, communication & society.

2012;15(5):662-679.

[34] Rogers R. Digital methods. MIT press. 2013.

[35] Vicente C, Assent I, Jensen C. Effective privacy-preserving online route planning. In:

Mobile Data Management (MDM), 2011 12th IEEE International Conference on, IEEE;2011.

p.119-128.

[36] Montoya D, Tanon T, Abiteboul S, Senellart P, Suchanek F. Thymeflow, An Open-Source

Personal Knowledge Base System. Doctoral dissertation. 2016.

[37] Bannon L, Bodker S. Constructing common information spaces. In: Proceedings of the Fifth

European Conference on Computer Supported Cooperative Work. Berlin:Springer;1997. p.81–

96.

[38] Berners-Lee T, Hendler J, Lassila O. The semantic web. Scientific american.

2001:284(5):34-43.

[39] Lenzerini M. Data integration: A theoretical perspective. In: Proceedings of the twenty-first

ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems.New York:

ACM;2002. p.233-246.

[40] Jarke M, Quix C. On Warehouses, Lakes, and Spaces: The Changing Role of Conceptual

Modeling for Data Integration. In: Conceptual Modeling Perspectives. Cham:Springer;2017.

pp.231-245.

[41] Sowmya Y, Nagaratna M. Parallelizing K-Anonymity Algorithm for Privacy Preserving

Knowledge Discovery from Big Data. International Journal of Applied Engineering Research.

2016;11(2):1314-1321.

[42] Dixon J. Pentaho, hadoop, and data lakes, James Dixon Blog.

https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/. Accessed 25 Feb

2018.

[43] Huang F. Managing data lakes in big data era: What's a data lake and why has it became

popular in data management ecosystem. In: Cyber Technology in Automation, Control, and

Intelligent Systems (CYBER), 2015 IEEE International Conference on, IEEE;2015 p.820-824.

[44] Walker C, Alrehamy H. Personal data lake with data gravity pull. In: 2015 IEEE fifth

international conference on Big data and cloud computing (BDCloud);2015. p.160-167.

[45] Peffers K, Tuunanen T, Rothenberger M, Chatterjee S. A design science research

methodology for information systems research. Journal of management information systems.

2007;24(3):45-77.

[46] Kimball R, Ross M. The data warehouse toolkit: the complete guide to dimensional

modeling. Net York:Wiley. 2011.

[47] Hurwitz J, Nugent A, Halper F, Kaufman M. Big data for dummies. New York:Wiley. 2013.

[48] Ramanathan V, Brickley D, Macbeth S. Schema.org: evolution of structured data on the

web. Commun ACM. 2016;59(16):44–51.

[49] Miller G. WordNet: a lexical database for English. Communications of the ACM.

1995:38(11):39-41.

[50] Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D, Mendes P, Hellmann S.

DBpedia–a large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web.

2015;6(2):167-195.

[51] Navigli R, Ponzetto S. BabelNet: The automatic construction, evaluation and application of

a wide-coverage multilingual semantic network. Artificial Intelligence. 2012;193:217-250.

[52] Nadal S, Romero O, Abelló A, Vassiliadis P, Vansummeren S. An integration-oriented

ontology to govern evolution in big data ecosystems. EDBT/ICDT workshops; 2017.

[53] Mihalcea R, Tarau P. Textrank: Bringing order into text. In: Proceedings of the 2004

conference on empirical methods in natural language processing;2004.

[54] Wan X, Xiao J. Single Document Keyphrase Extraction Using Neighborhood Knowledge.

In: AAAI, volume 8;2008. pp. 855-860.

[55] Liu Z, Li P, Zheng Y, Sun M. Clustering to find exemplar terms for keyphrase extraction.

In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing:

Volume 1, Association for Computational Linguistics;2009. P. 257-266.

[56] Turban E, Sharda R, Aronson J, King D. Business intelligence: A managerial approach.

Upper Saddle River, NJ:Pearson Prentice Hall. 2008.

[57] Abai Z, Yahaya J, Deraman A. User requirement analysis in data warehouse design: a

review. Procedia Technology. 2013;11:801-806.

[58] Rahm E, Do H. Data cleaning: Problems and current approaches. IEEE Data Engineering

Bulletin. 2000;23(4):3-13.

[59] Calvanese D, De Giacomo, G, Lenzerini M, Nardi D., Rosati R. Data integration in data

warehousing. International Journal of Cooperative Information Systems. 2001;10(3):237-271.

[60] Inmon W, O'Neil B, Fryman L. Business metadata: Capturing enterprise knowledge.

Morgan Kaufmann. 2010.

[61] Vassiliadis P. A survey of Extract–transform–Load technology. International Journal of

Data Warehousing and Mining (IJDWM). 2009;5(3):1-27.

[62] Rivera J, Meulen R. Gartner says beware of the data lake fallacy. Gartner Inc.

http://www.gartner.com/newsroom/id/2809117. Accessed 4 Feb 2018.

[63] Gwen T. Alpha males and data disasters: The case for data governance. Brass Cannon Press.

2006.

[64] Keith G. Principles of Data Management: Facilitating Information Sharing Second Edition.

BCS. 2013.

[65] Dekkers M, Loutas N, De Keyzer M, Goedertier S. Open data and metadata quality. 2013.

[66] Ilyas I, Chu X. Trends in cleaning relational data: Consistency and deduplication.

Foundations and Trends in Databases. 2015;5(4):281-393.

[67] Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. ACM

Sigmod record. 1997;26(1):65-74.

[68] Mina F, Roatis A, Ilyas I, Hoffmann H, Chu X. CLAMS: bringing quality to Data Lakes. In:

Proceedings of the 2016 International Conference on Management of Data, New

York:ACM;2016 p.2089-2092.

[69] Salem AB, Boufares F, Correia S. Semantic Recognition of a Data Structure in Big Data.

Journal of Computer and Communications. 2014;2(09):93.

[70] Chu X, Ilyas I, Papotti P. Discovering denial constraints. Proceedings of the VLDB

Endowment. 2013;6(13):1498-509.

[71] Terrizzano I, Schwarz P, Roth M, Colino J. Data Wrangling: The Challenging Journey from

the Wild to the Lake. In: CIDR;2015.

[72] Khine P, Wang Z. Data lake: a new ideology in big data era. In: ITM Web of Conferences

2018 (Vol. 17), EDP Sciences;2018.

[73] Greenberg J. Big Metadata, Smart Metadata, and Metadata Capital: Toward Greater

Synergy Between Data Science and Metadata. Journal of Data and Information Science.

2017;2(3):19-36.

[74] Greenberg J. Metadata and the world wide web. Encyclopedia of library and information

science. 2003;3:1876-1888.

[75] UK Data Archive. Research data lifecycle. http://www.data-archive.ac.uk/create-

manage/life-cycle. Accessed 4 Feb 2018.

[76] Méndez E, Hooland SV. Metadata typology and metadata uses. In: Handbook of Metadata,

Semantics and Ontologies;2014. pp.9-39.

[77] Dong R, Su F, Yang S, Xu L, Cheng X, Chen W. Design and application on metadata

management for information supply chain. In: the 16th International Symposium on

Communications and Information Technologies (ISCIT), Washington, DC: IEEE Computer

Society Press;2016. p.393–396.

[78] Shankaranarayanan G, & Even A. The metadata enigma. Communications of the ACM.

2006;49(2):88–94.

[79] Zeng M, Qin J. Metadata. New York: Neal-Schuman Publishers. 2016.

[80] Buneman S, Tan W. Why and Where: A Characterization of Data Provenance. In:

ICDT;2001. p.316-330.

[81] Simmhan L, Plale B, Gannon D. A survey of data provenance in e-science. ACM Sigmod

Record. 2005;34(3):31-36.

[82] Haase K. Context for semantic metadata. In: Proceedings of the 12th annual ACM

international conference on Multimedia. New York:ACM;2004. p.204-211.

[83] Taheriyan M, Knoblock C, Szekely P, Ambite J. A scalable approach to learn semantic

models of structured sources. In: semantic computing (ICSC), IEEE international conference on.

IEEE;2014. p. 183-190.

[84] Shvachko K, Kuang H, Radia S, Chansler R. The hadoop distributed file system. In: Mass

storage systems and technologies (MSST), 2010 IEEE 26th symposium;2010. p.1-10.

[85] Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters.

Communications of the ACM. 2008;51(1):107-13.

[86] Alrehamy H, Walker C. SemLinker: automating big data integration for casual users.

Journal of Big Data, Springer. 2018;5(1):14.

[87] Zhu WD, Alon T, Arkus G, Duran R, Haber M, Liebke R, Morreale Jr F, Roth I, Sumano A.

Metadata Management with IBM InfoSphere Information Server. IBM Redbooks. 2011.

[88] Lanter P. Design Of A Lineage-Based MetaData Base For GIS. In: Cartography and

Geographic Information Systems;1991. pp.255-261.

[89] Stöhr T, Müller R, Rahm E. An integrative and uniform model for metadata management in

data warehousing environments. In: Proceedings of the International Workshop on Design and

Management of Data Warehouses. Heidelberg:Germany;1999.

[90] Quix C, Hai R, Vatov I. Metadata extraction and management in data lakes With GEMMS.

Complex Systems Informatics and Modeling Quarterly. 2016;9(16):67–83.

[91] Gruber T. A translation approach to portable ontology specifications. Knowledge

acquisition. 1993;5(2):199-220.

[92] Jarke M, Jeusfeld M, Quix C. Data-centric intelligent information integration—from

concepts to automation. Journal of Intelligent Information Systems. 2014;43(3):437-462.

[93] Ramnandan S, Mittal A, Knoblock C, Szekely P. Assigning semantic labels to data sources.

In: European semantic web conference. Cham:Springer;2015.

[94] Noy N. Semantic integration: a survey of ontology-based approaches. ACM Sigmod

Record. 2004;33(4):65-70.

[95] Naumann F. Data profiling revisited. ACM SIGMOD Record. 2014;42(4):40-9.

[96] Böhm C, Naumann F, Abedjan Z, Fenz D, Grütze T, Hefenbrock D, Pohl M, Sonnabend D.

Profiling linked open data with ProLOD. In: Data Engineering Workshops (ICDEW), 2010 IEEE

26th International Conference, IEEE;2010. p.175-178.

[97] Bizer C, Heath T, Berners-Lee T. Linked data: the story so far. In: Semantic services,

interoperability and web applications: Emerging concepts, IGI Global;2011. p.205-227.

[98] Klyne G, Carroll JJ. Resource description framework (RDF): Concepts and abstract syntax.

2006.

[99] Alserafi A, Abelló A, Romero O, Calders T. Towards information profiling: data lake

content metadata management. In: Data Mining Workshops (ICDMW), 2016 IEEE 16th

International Conference on, IEEE;2016. p.178-185.

[100] Suchanek FM, Abiteboul S, Senellart P. Paris: Probabilistic alignment of relations,

instances, and schema. Proceedings of the VLDB Endowment. 2011;5(3):157-68.

[101] Ansari JW, Karim N, Decker S, Cochez M, Beyan O. Extending Data Lake Metadata

Management by Semantic Profiling. 2018.

[102] Huai Y, Chauhan A, Gates A, Hagleitner G, Hanson EN, O'Malley O, Pandey J, Yuan Y,

Lee R, Zhang X. Major technical advancements in apache hive. In: Proceedings of the 2014

ACM SIGMOD international conference on Management of data. New York:ACM;2014. pp.

1235-1246).

[103] Revelytix. Revelytix Loom and Hortonworks Data Platform. Revelytix Loom whitepapr.

https://hortonworks.com/wp-content/uploads/2013/01/Revelytix-

Hortonworks_Reference_Architecture-080820131.pdf. Accessed 4 Feb 2018.

[104] Apache. Atlas Technical User Guide. Apache Atlas white paper.

https://atlas.apache.org/0.7.1-incubating/AtlasTechnicalUserGuide.pdf. Accessed 4 Feb 2018.

[105] Gormley C, Tong Z. Elasticsearch: The Definitive Guide: A Distributed Real-Time Search

and Analytics Engine. O'Reilly. 2015.

[106] Hellerstein J, Sreekanti V, Gonzalez J, Dalton J, Dey A, Nag S, Ramachandran K. Ground:

A Data Context Service. In: CIDR;2017.

[107] Gao Y, Huang S, Parameswaran A. Navigating the Data Lake with Datamaran:

Automatically Extracting Structure from Log Datasets. In: Proceedings of the 2018 International

Conference on Management of Data. New York:ACM;2018. p. 943-958.

[108] Hai R, Geisler S, Quix C. Constance: An intelligent data lake system. In: Proceedings of

the 2016 International Conference on Management of Data. New York:ACM;2016. p.2097-2100.

[109] Maccioni A, Torlone R. Crossing the finish line faster when paddling the data lake with

kayak. Proc VLDB Endowment. 2017;10(12):1853.

[110] Rahm E. The case for holistic data integration. In: East European conference on advances

in databases and information systems. Berlin:Springer;2016.

[111] Jagadish HV, Gehrke J, Labrinidis A, Papakonstantinou Y, Patel J, Ramakrishnan R,

Shahabi C. Big data and its technical challenges. Commun ACM. 2014;57(14):86–94.

[112] Abelló A. Big data design. In: Proceedings of the ACM eighteenth international workshop

on data warehousing and OLAP. New York:ACM;2015.

[113] Cai Y, Dong X, Halevy A, Liu J, Madhavan J. Personal information management with

SEMEX. In: Proceedings of the 2005 ACM SIGMOD international conference on Management

of data. New York:ACM;2005 p.921-923.

[114] Barreau D, Nardi BA. Finding and reminding: file organization from the desktop. ACM

SigChi Bulletin. 1995;27(3):39-43.

[115] Whittaker S, Sidner C. Email overload: exploring personal information management of

email. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems:

Common Ground. Vancouver:ACM Press;1996. p.276–283.

[116] Sankaranarayanan H, Lalchandani J. Passenger reviews reference architecture using big

data lakes. In: Cloud Computing, Data Science & Engineering-Confluence. IEEE;2017. p.204-

209.

[117] Martin F. Patterns of enterprise application architecture. Addison-Wesley Longman

Publishing. 2002.

[118] Richards M. Software architecture patterns. O'Reilly Media. 2015.

[119] Lomborg S, Bechmann A. Using APIs for data collection on social media. The Information

Society. 2014;30(4):256-265.

[120] Choi M, Cho E, Park D, Moon C, Baik D. A database synchronization algorithm for

mobile devices. IEEE Transactions on Consumer Electronics. 2010;56(2).

[121] Cui Y, Lai Z, Wang X, Dai N. QuickSync: Improving synchronization efficiency for

mobile cloud storage services. IEEE Transactions on Mobile Computing 2017;16(2):3513-3526.

[122] Jones, M, Hardt D. The oauth 2.0 authorization framework: Bearer token usage. No. RFC

6750. 2012.

[123] Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, Leach P, Berners-Lee T. Hypertext

transfer protocol HTTP/1.1. No. RFC 2616. 1999.

[124] Ikeda R, Widom J. Data lineage: A survey. Stanford InfoLab. 2009.

[125] Cui Y, Widom J, Wiener J. Tracing the lineage of view data in a warehousing

environment. ACM Transactions on Database Systems. 2000;25(2):179-227.

[126] Gómez AP, Corcho O. Ontology languages for the semantic web. IEEE Intelligent

systems. 2002;17(1): 54-60.

[127] Object Management Group: Common warehouse metamodel specification 1.1.

http://www.omg.org/spec/CWM/1.1/PDF/. Accessed 24 Feb 2018.

[128] Varga J, Romero O, Pedersen T, Thomsen C. SM4AM: A semantic metamodel for

analytical metadata. In: Proceedings of the 17th International Workshop on Data Warehousing

and OLAP, DOLAP;2014. p.57-66.

[129] Mattmann C, Zitting J. Tika in action. Manning Publications. 2011.

[130] Mansuri I, Sarawagi S. Integrating unstructured data into relational databases. In: Data

Engineering, 2006. ICDE'06. Proceedings of the 22nd International Conference on, IEEE;2006.

p.29-29.

[131] Bush V. As we may think. The atlantic monthly. 1945;176(1):101-108.

[132] Gray J, Reuter A. Transaction processing: concepts and techniques. Elsevier. 1992.

[133] Floratou A, Teletia N, DeWitt DJ, Patel JM, Zhang D. Can the elephants handle the nosql

onslaught? Proc VLDB Endowment. 2012;5(12):1712–1723.

[134] Leavitt N. Will nosql databases live up to their promise?. Computer 2010;43(2):12–14.

[135] Schram A, Anderson KM. MySQL to NoSQL: data modeling challenges in supporting

scalability. In: Proceedings of the 3rd annual conference on Systems, programming, and

applications: software for humanity. New York:ACM;2012 p.191-202.

[136] Hecht R, Jablonski S. Nosql evaluation. In: International Conference on Cloud and Service

Computing. IEEE;2011 pp336–41.

[137] Kashyap S, Zamwar S, Bhavsar T, Singh S. Benchmarking and analysis of nosql

technologies. Int J Emerg Technol Adv Eng. (2013);3:422–426

[138] Nelubin D, Engber B. Ultra-High Performance NoSQL Benchmarking: Analyzing

Durability and Performance Tradeoffs. Thumbtack Technology. White Paper. 2013.

[139] Abramova V, Bernardino J Nosql databases: Mongodb vs cassandra. In: Proceedings of the

International Conference on Computer Science and Software Engineering. New

York:ACM:2013. pp.14–22.

[140] Abramova V, Bernardino J, Furtado P. Which nosql database? a performance overview.

Open Journal of Databases (OJDB). 2014;1(2):17-24.

[141] Abramova V, Bernardino J, Furtado P. Experimental evaluation of NoSQL databases.

International Journal of Database Management Systems. 2014;6(3):1.

[142] Abubakar Y, Adeyi TS, Auta IG. Performance evaluation of NoSQL systems using YCSB

in a resource austere environment. Performance Evaluation. 2014;7(8):23-27.

[143] Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R. Benchmarking cloud serving

systems with YCSB. In: Proceedings of the 1st ACM symposium on Cloud computing. New

York:ACM;2010 p.143-154.

[144] Carlson L. Redis in action. Manning Publications. 2013.

[145] Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig latin: a not-so-foreign language

for data processing. In: Proceedings of the 2008 ACM SIGMOD international conference on

Management of data. New York:ACM;2008. pp.1099-1110.

[146] Banker K. MongoDB in action. Manning Publications. 2011.

[147] N. Chohan, C. Bunch, C. Krintz, and Y. Nomura. Database-agnostic transaction support

for

cloud infrastructures. In Cloud Computing (CLOUD), 2011 IEEE International Conference on,

IEEE;2011. p.692–699.

[148] McCory D. Data Gravity – in the Clouds. https://blog.mccrory.me/2010/12/07/data-

gravity-in-the-clouds/. Accessed 24 Feb 2018.

[149] Fritsch J. Functional Programming Languages in Computing Clouds. Doctoral dissertation,

Cardiff University. 2016.

[150] Montjoye Y, Shmueli E, Wang S, Pentland A. openpds: Protecting the privacy of metadata

through safeanswers. PloS one. 2014;9(7).

[151] Ng I. Engineering a Market for Personal Data: The Hub-of-all-Things (HAT), A Briefing

Paper. WMG Service Systems Research Group Working Paper Series. 2014.

[152] Mortier R, Zhao J, Crowcroft J, Wang L, Li Q, Haddadi H, Amar Y, Crabtree A, Colley J,

Lodge T, Brown T. Personal Data Management with the Databox: What's Inside the Box?. In:

Proceedings of the 2016 ACM Workshop on Cloud-Assisted Networking. New

York:ACM;2016. p.49-54.

[153] Halevy A, Rajaraman A, Ordille J. Data integration: the teenage years. In: Proceedings of

the 32nd international conference on Very large data bases, VLDB Endowment;2006. p.9-16.

[154] Rahm E, Bernstein PA. A survey of approaches to automatic schema matching. the VLDB

Journal. 2001;10(4):334-50.

[155] Dong XL, Srivastava D. Big data integration. In: 2013 IEEE 29th international conference

on data engineering (ICDE); 2013.

[156] Teevan J, Alvarado C, Ackerman M, Karger D. The perfect search engine is not enough: a

study of orienteering behavior in directed search. In: Proceedings of the SIGCHI conference on

Human factors in computing systems. New York:ACM;2004. p.415–422.

[157] Vakkari P. Task-based information searching. Annual review of information science and

technology, 2003;37(1):413–464.

[158] Brodie M. Data integration at scale: From relational data integration to information

ecosystems. In: Proc. 24th IEEE Intl. Conf. on Advanced Information Networking and

Applications (AINA), IEEE;2010 pp.2–3.

[159] Haas L. Beauty and the beast: The theory and practice of information integration. In: T.

Schwentick & D. Suciu (Eds.), ICDT, lecture notes in computer science.

Barcelona:Springer;2007. pp.28–43.

[160] Shvaiko P, Euzenat J. Ontology matching: state of the art and future challenges. IEEE

Trans Knowl Data Eng. 2013;25(1):158.

[161] Peukert E, Eberius J, Rahm E. A self-configuring schema matching system. In: 2012 IEEE

28th international conference on data engineering (ICDE); 2012.

[162] Curino C, Moon H, Deutsch A, Zaniolo C. Automating the database schema evolution

process. VLDB J. 2013;22(13):73–98.

[163] Andany J, Léonard M, Palisser C. Management of schema evolution in databases. In:

VLDB;1991. p.161–70.

[164] Ullman J. Information integration using logical views. In: F.N. Afrati and P. Kolaitis,

editors, Proceedings of the 6th International Conference on Database Theory (ICDT’97), volume

1186 of Lecture Notes in Computer Science;1997. p.19–40.

[165] Ceri S, Pelagatti G. Distributed databases: principles and systems. McGraw-Hill.1984.

[166] Zhou G, Hull R, King R. Generating data integration mediators that use materialization.

Journal of Intelligent Information Systems. 1996;6(2-3):199-221.

[167] Wiederhold G Intelligent integration of information. InIntelligent Integration of

Information. Boston:Springer;1996. p.193-203

[168] Collet C, Huhns MN, Shen WM. Resource integration using a large knowledge base in

Carnot. Computer. 1991;24(12):55-62.

[169] Singh MP, Cannata PE, Huhns MN, Jacobs N, Ksiezyk T, Ong K, Sheth AP, Tomlinson C,

Woelk D. The Carnot heterogeneous database project: Implemented applications. Distributed and

Parallel Databases. 1997;5(2):207-25.

[170] Nardi D, Brachman RJ. An introduction to description logics. Description logic handbook.

2003;1:40.

[171] Halevy AY, Ives ZG, Madhavan J, Mork P, Suciu D, Tatarinov I. The piazza peer data

management system. IEEE Transactions on Knowledge and Data Engineering. 2004

Jul;16(7):787-98.

[172] Xu L, Embley D. Combining the best of global-as-view and local-as-view for data

integration. ISTA. 2004;48:123–36.

[173] Giese M, Soylu A, Vega-Gorgojo G, Waaler A, Haase P, Jiménez-Ruiz E, Lanti D.

Optique: zooming in on big data. Computer. 2015;48(15):60–7.

[174] Calvanese D, Cogrel B, Komla-Ebri B, Kontchakov R, Lanti D, Rezk M, Rodriguez-Muro

M, Xiao G. Ontop: answering SPARQL queries over relational databases. Semantic Web.

2017;8(17):471–87.

[175] Marcos M, Maldonado J, Martínez-Salvador B, Boscá D, Robles M. Interoperability of

clinical decision-support systems and electronic health records using archetypes: a case study in

clinical trial eligibility. J Biomed Inform. 2013;46(4):676–89.

[176] Cate B, Dalmau V, Kolaitis P. Learning schema mappings. ACM Trans Database Syst

(TODS). 2013;38(13):28.

[177] Varga J, Romero O, Pedersen T, Thomsen C. Towards next generation BI systems: the

analytical metadata challenge. In: International conference on data warehousing and knowledge

discovery, vol. 8646. Cham: Springer; 2014. p.89–101.

[178] Chilvers A. Managing long-term access to digital data objects: a metadata approach.

Doctoral Thesis, Loughborough University. 2000.

[179] Störl U, Müller D, Klettke M, Scherzinger S. Enabling Efficient Agile Software

Development of NoSQL-backed Applications. Datenbanksysteme für Business, Technologie und

Web;2017.

[180] Apache Avro. https://avro.apache.org/. Accessed 25 Dec 2017.

[181] Reis D, Cesar J, Pruski C, Reynaud-Delaître C. State-of-the-art on mapping maintenance

and challenges towards a fully automatic approach. Expert Syst Appl. 2015;42(15):1465–78.

[182] Scherzinger S, Cerqueus T, Cunha de Almeida E. Controvol: a framework for controlled

schema evolution in nosql application development. In: 2015 IEEE 31st international conference

on data engineering (ICDE);2015. p.1464–7.

[183] Golshan B, Halevy A, Mihaila G, Tan WC. Data integration: After the teenage years.

InProceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of

Database Systems, ACM;2017 p.101-106.

[184] McGuinness D, Van Harmelen F. OWL web ontology language overview. W3C

Recommen. 2004;1010(4).

[185] XSD Vocabulary. https://www.w3.org/TR/xmlschema11-1/. Accessed 25 Dec 2017.

[186] SIOC Vocabulary. http://rdfs.org/sioc/spec/. Accessed 25 Dec 2017.

[187] DCMI Vocabulary. http://dublincore.org. Accessed 25 Dec 2017.

[188] WGS84 Vocabulary. https://www.w3.org/2003/01/geo/. Accessed 25 Dec 2017.

[189] Media types listing by the internet assigned numbers authority.

https://www.iana.org/assignments/media-types/media-types.xhtml. Accessed 25 De 2017.

[190] Wang S, Keivanloo I, Zou Y. How do developers react to restful API evolution? In:

International conference on service-oriented computing. Berlin: Springer; 2014. p. 245–59.

[191] Shen W, Wang J, Han J. Entity linking with a knowledge base: Issues, techniques, and

solutions. IEEE Trans Knowl Data Eng. 2015;27(15):443–60.

[192] Cruz I, Antonelli F, Stroe C. AgreementMaker: efficient matching for large real-world

schemas and ontologies. Proc VLDB Endowment. 2009;2(9):1586–9.

[193] Madhavan J, Bernstein P, Doan A, Halevy A. Corpus-based schema matching. In:

Proceedings 21st international conference on ICDE 2005 data engineering; 2005. p. 57–68.

[194] Bernstein A, Madhavan J, Rahm E. Generic schema matching, ten years later. Proc VLDB

Endowment. 2011;4(11):695–701.

[195] Fagin R, Kolaitis P, Popa L, Tan W. Schema mapping evolution through composition and

inversion. In: Schema matching and mapping. Berlin: Springer; 2011. p. 191–222.

[196] Belhajjame K, Paton NW, Embury SM, Fernandes AA, Hedeler C. Incrementally

improving dataspaces based on user feedback. Information Systems. 2013;38(5):656-87.

[197] Das Sarma A, Dong X, Halevy A. Bootstrapping pay-as-you-go data integration systems.

InProceedings of the 2008 ACM SIGMOD international conference on Management of data,

ACM:2008. p.861-874.

[198] Gandomi A, Haider M. Beyond the hype: Big data concepts, methods, and analytics.

International Journal of Information Management. 2015;35(2):137-144.

[199] Gantz J, Reinsel D. Extracting value from chaos. IDC iview. 2011;1142(2011):1-2.

[200] Dobre C, Xhafa F. Intelligent services for big data science. Future Generation Computer

Systems. 2014;37:267-81.

[201] Chen H, Chiang RH, Storey VC. Business intelligence and analytics: from big data to big

impact. MIS quarterly. 2012:1165-88.

[202] Kulkarni S, Singh A, Ramakrishnan G, Chakrabarti S. Collective annotation of Wikipedia

entities in web text. In: Proceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining;2009 p.457-466.

[203] Buneman P, Davidson SB, Suciu D. Programming constructs for unstructured data. IRCS

Technical Reports Series.1995;1:121.

[204] Adrian B, Hees J, Elst L, Dengel A. iDocument: using ontologies for extracting and

annotating information from unstructured text. In: Annual Conference on Artificial Intelligence,

Heidelberg:Springer;2009. p.249-256.

[205] Cunningham H, Tablan V, Roberts I, Greenwood M, Aswani N. Information extraction and

semantic annotation for multi-paradigm information management. In: Current Challenges in

Patent Information Retrieval, Heidelberg:Springer;2011. p.307-327

[206] Cunningham H, Maynard D, Bontcheva K, Tablan V. A framework and graphical

development environment for robust NLP tools and applications. In: ACL;2002 p. 168-175.

[207] Silber H, McCoy K. Efficiently computed lexical chains as an intermediate representation

for automatic text summarization. Computational Linguistics. 2002;28(4):487-496.

[208] Mihalcea R, Csomai A. Wikify!: linking documents to encyclopedic knowledge. In:

Proceedings of the sixteenth ACM conference on Conference on information and knowledge

management, New York:ACM;2007 p. 233-242.

[209] Sahlgren M. The distributional hypothesis, Ital. J. Linguist. 2008;20(1):33–54.

[210] Blei D, Ng A, Jordan M. Latent Dirichlet allocation, J. Mach. Learn. Res. 2003;(3):993–

1022.

[211] Gabrilovich E, Markovitch S. Computing semantic relatedness using Wikipedia-based

explicit semantic analysis. In: IJCAI;2007. p.1606–1611.

[212] Ritter A, Clark S, Etzioni O. Named entity recognition in tweets: an experimental study.

In: Proceedings of the conference on empirical methods in natural language processing,

Association for Computational Linguistics;2011. p.1524-1534.

[213] Leaman R, Lu Z. TaggerOne: joint named entity recognition and normalization with semi-

Markov Models. Bioinformatics. 2016;32(8):2839-2846.

[214] Ren X, El-Kishky A, Wang C, Tao F, Voss C, Han J. Clustype: Effective entity recognition

and typing by relation phrase-based clustering. In: Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, New York;2015. p.995-

1004.

[215] Shi C, Li Y, Zhang J, Sun Y, Philip S. A survey of heterogeneous information network

analysis. IEEE Transactions on Knowledge and Data Engineering. 2017;29(1):17-37.

[216] Meng F, Morioka c. Automating the generation of lexical patterns for processing free text

in clinical documents. Journal of the American Medical Informatics Association.2015;22(5):980-

986.

[217] Jivani AG. A comparative study of stemming algorithms. Int. J. Comp. Tech. Appl.

2011;2(6):1930-8.

[218] Turney P. Learning algorithms for keyphrase extraction. Information Retrieval.

2000;2(4):303-336

[219] Witten I, Paynter G, Frank E, Gutwin C, Nevill-Manning C. KEA: Practical automatic

keyphrase extraction." In: Proceedings of the fourth ACM conference on Digital libraries,

ACM;1999. p.254-255.

[220] Hulth A. Improved automatic keyword extraction given more linguistic knowledge. In:

Proceedings of the 2003 conference on Empirical methods in natural language processing,

ACL;2003. p.216-223.

[221] Hasan K, Ng V. Conundrums in unsupervised keyphrase extraction: making sense of the

state-of-the-art. In: Proceedings of the 23rd International Conference on Computational

Linguistics: Posters, ACL;2010. p.365-373.

[222] Hasan K, Ng N. Automatic Keyphrase Extraction: A Survey of the State of the Art. In:

ACL (1);2014. p.1262-1273.

[223] Siddiqi S, Sharan A. Keyword and keyphrase extraction techniques: a literature review.

International Journal of Computer Applications. 2015;109(2).

[224] Sterckx L, Demeester T, Develder C, Caragea C. Supervised keyphrase extraction as

positive unlabeled learning. In: EMNLP2016, the Conference on Empirical Methods in Natural

Language Processing;2016. p.1-6.

[225] Zhang Q, Wang Y, Gong Y, Huang X. Keyphrase Extraction Using Deep Recurrent Neural

Networks on Twitter. In: EMNLP;2016. p.836-845.

[226] Kim S, Medelyan O, Kan M, Baldwin T. Automatic keyphrase extraction from scientific

articles. Language Resources and Evaluation, Springer. 2013:47(3):723–742.

[227] Page, L, Brin S, Motwani R, Winograd T. The PageRank citation ranking: Bringing order

to the web. Stanford InfoLab. 1999.

[228] Wang J, Liu J, Wang C. Keyword extraction based on pagerank. In: Advances in

Knowledge Discovery and Data Mining, Springer;2007. p.857-864.

[229] Martinez-Romo J, Araujo L, Fernandez A. SemGraph: Extracting keyphrases following a

novel semantic graph-based approach. Journal of the Association for Information Science and

Technology. 2016:67(1):71-82.

[230] Cilibrasi R, Vitanyi P. The google similarity distance. IEEE Transactions on knowledge

and data engineering. 2007:19(3):370–383.

[231] Pasquier C. Task 5: Single document keyphrase extraction using sentence clustering and

Latent Dirichlet Allocation. In: Proceedings of the 5th international workshop on semantic

evaluation, ACL;2010. p.154-157.

[232] Danesh S, Sumner T, Martin J. SGRank: Combining Statistical and Graphical Methods to

Improve the State of the Art in Unsupervised Keyphrase Extraction." In: Proceedings of the

Fourth Joint Conference on Lexical and Computational Semantics;2015. p.117-126

[233] Danilevsky M, Wang C, Desai N, Ren X, Guo J, Han J. Automatic construction and

ranking of topical keyphrases on collections of short documents. In: Proceedings of the 2014

SIAM International Conference on Data Mining, SIAM;2014. p.398–406.

[234] Liu Z, Huang W, Zheng Y, and Sun M. Automatic keyphrase extraction via topic

decomposition. In: Proceedings of the 2010 conference on empirical methods in natural language

processing, ACL;2010 p.366-376.

[235] Sparck K. A statistical interpretation of term specificity and its application in retrieval.

Journal of documentation. 1972:28(1):11-21.

[236] El-Beltagy S, Rafea A. KP-Miner: A keyphrase extraction system for English and Arabic

documents. Information Systems. 2009;34(1):132-144.

[237] Bracewell D, Ren F, Kuroiwa S. Multilingual single document keyword extraction for

information retrieval. In: Proceedings of the 2005 IEEE International Conference on Natural

Language Processing and Knowledge Engineering, Wuhan;2005. p.517-522.

[238] Barker K, Cornacchia N. Using noun phrase heads to extract document keyphrases.

InConference of the Canadian Society for Computational Studies of Intelligence.

Heidelberg:Springer;2000. p.40-52.

[239] Munoz A. Compound key word generation from document databases using a hierarchical

clustering ART model. Intelligent Data Analysis. 1997;1(4):25-48

[240] Clark A, Fox C, Lappin S. The handbook of computational linguistics and natural language

processing. John Wiley & Sons Inc. 2013.

[241] Hoffart J, Suchanek F, Berberich K, Weikum G. YAGO2: a spatially and temporally

enhanced knowledge base from Wikipedia. Artificial Intelligence. 2013;194:28–61.

[242] Navigli R. Word Sense Disambiguation: A Survey. ACM Computing Surveys.

2009;41(2):1-69.

[243] Patwardhan S, Banerjee S, Pedersen T. SenseRelate::TargetWord: a generalized

framework for word sense disambiguation. In: Proceedings of the ACL 2005 on Interactive

Poster and Demonstration Sessions;2005. p.73-76.

[244] Meng L, Huang R, Gu J. A review of semantic similarity measures in WordNet.

International Journal of Hybrid Information Technology. 2013;6(1):1-12.

[245] Wu Z, Palmer M. Verbs semantics and lexical selection. In: Proceedings of the 32nd

Annual Meeting on Association for Computational Linguistics, ACL;1994. pp 133-138.

[246] Guan R, Shi X, Marchese M, Yang C, Liang Y. Text clustering with seeds affinity

propagation. IEEE Transactions on Knowledge and Data Engineering. 2011;23(4):627-637.

[247] Frey B, Dueck D. Clustering by passing messages between data points. Science.

2007;315(5814):972-976.

[248] Le T, Le N, Shimazu A. Unsupervised Keyphrase Extraction: Introducing New Kinds of

Words to Keyphrases. In: Australasian Joint Conference on Artificial Intelligence, Springer

International Publishing;2016. p.665-671.

[249] Witten I, Milne D. An effective, low-cost measure of semantic relatedness obtained from

Wikipedia links. In: Proceeding of AAAI Workshop on Wikipedia and Artificial Intelligence: an

Evolving Synergy, AAAI press;2008. p.25-30.

[250] Androutsopoulos I, Koutsias J, Chandrinos K, Spyropoulos C. An experimental

comparison of naive Bayesian and keyword-based anti-spam filtering with personal e-mail

messages. In: Proceedings of the 23rd annual international ACM SIGIR conference on Research

and development in information retrieval;2000. p.160-167.

[251] Hammouda K, Matute D, and Kamel M. Corephrase: Keyphrase extraction for document

clustering. In: MLDM;2005. p.265–274.

[252] Qiu M, Li, Y, Jiang J. Query-oriented keyphrase extraction. In: Information Retrieval

Technology;2012. p.64-75.

[253] Tomokiyo T, Hurst, M. A language model approach to keyphrase extraction. In:

Proceedings of the ACL 2003 workshop on Multiword expressions: analysis, acquisition and

treatment, Volume 18, ACL;2003. p.33-40.

[254] Xu Z, Wei X, Luo X, Liu Y, Mei L, Hu C, Chen L. Knowle: a semantic link network based

system for organizing large scale online news events. Future Generation Computer Systems.

2015;43:40-50.

[255] Yang S, Lu W, Yang D, Li X, Wu C, Wei B. KeyphraseDS: Automatic generation of

survey by exploiting keyphrase information. Neurocomputing. 2017;224(2017):58-70

[256] Nguyen Q, Nguyen T, Cao T. Semantic-based recommendation method for sport news

aggregation system. In: International Conference on Research and Practical Issues of Enterprise

Information Systems, Springer;2016. p.32-47.

[257] Erdmann M, Maedche A, Schnurr H, Staab S. From manual to semi-automatic semantic

annotation: About ontology-based text annotation tools. In: Proceedings of the COLING-2000

Workshop on Semantic Annotation and Intelligent Content, ACL;2000. p.79-85.

[258] Giannopoulos G, Bikakis N, Dalamagas T, Sellis T. GoNTogle: a tool for semantic

annotation and search. In: Extended Semantic Web Conference, Springer;2010. p.376-380.

[259] Tablan V, Bontcheva K, Roberts I, Cunningham H. Mímir: An open-source semantic

search framework for interactive information seeking and discovery. Web Semantics: Science,

Services and Agents on the World Wide Web. 2015;30:52-68.

[260] Alrehamy H, Walker C. Exploiting extensible background knowledge for clustering-based

automatic keyphrase extraction. Soft Computing, Springer. 2018; (accepted).

[261] Alrehamy H, Walker C. SemCluster: Unsupervised Automatic Keyphrase Extraction Using

Affinity Propagation. In: Advances in Computational Intelligence Systems. UKCI 2017,

Springer;2017. p.222-235.

[262] Jivani AG. A comparative study of stemming algorithms. Int. J. Comp. Tech. Appl.

2011;2(6):1930-8.

[263] Human Activity Recognition Dataset (HAR 1,2).

https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition. Accessed 25 Dec

2017.

[264] Human Activity Recognition Dataset (HAR 3). https://hal.archives-ouvertes.fr/hal-

01586802. Accessed 25 Dec 2017.

[265] Facebook Open Graph API. https://graph.facebook.com. Accessed 25 Dec 2017.

[266] Twitter Data Streaming API. https://api.twitter.com. Accessed 25 Dec 2017.

[267] Foursquare API. https://api.foursquare.com/v2/. Accessed 25 Dec 2017.

[268] Flickr API. https://api.flickr.com/services/rest/. Accessed 25 Dec 2017.

[269] London Restaurants Reviews Dataset.

https://www.kaggle.com/PromptCloudHQ/londonbased-restaurants-reviews-on-tripadvisor.

Accessed 25 Dec 2017.

[270] Tourpedia API. http://tour-pedia.org/api/. Accessed 25 Dec 2017.

[271] United Kingdom Government open datasets, the food standards agency, food safety and

food hygiene ratings dataset. http://ratings.food.gov.uk/open-data/. Accessed 25 Dec 2017.

[272] United Kingdom Postal Codes Dataset. https://www.getthedata.com/open-postcode-geo.

Accessed 25 Dec 2017.

[273] Videla A, Williams J. RabbitMQ in action: distributed messaging for everyone. Manning

Publications. 2012.

[274] SemLinker Experimental Evaluation Setup.

https://github.com/alrehamy/SemLinker_Evaluation. Accessed 25 Dec 2017.

[275] Tversky A. Features of similarity. Psychological review. 1977;84(4):327-352.

[276] Bergstra J, Bengio, Y. Random search for hyper-parameter optimization. Journal of

Machine Learning Research. 2012;13(2):281-305.

[277] Allan J. Topic detection and tracking: event-based information organization. Vol. 12.

Springer Science & Business Media. 2012.

[278] Tate Gallery Artists Public Dataset. https://www.kaggle.com/rtatman/the-tate-

collection/data. Accessed 25 Dec 2017.

[279] Tate Gallery Artworks Public Dataset. https://github.com/tategallery/collection. Accessed

25 Dec 2017.

[280] Tate Artwork description dataset. https://github.com/alrehamy/tate-experiment. Accessed

25 Dec 2017.

[281] A. Novotny and S. Spiekermann. Personal information markets and privacy: a new model

to solve the controversy, pages 102–120. IOS Press, 2013.

[282] Klettke M, Awolin H, Störl U, Müller D, Scherzinger S. Uncovering the evolution history

of data lakes. In: Big Data (Big Data), 2017 IEEE International Conference on, IEEE;2017.

p.2462-2471.

[283] Gartner’s 2016 Hype Cycle for Emerging Technologies Identifies Three Key Trends That

Organizations Must Track to Gain Competitive Advantage.

http://www.gartner.com/newsroom/id/3412017. 4 Feb 2018.

[284] Jiang J, Conrath D. Semantic similarity based on corpus statistics and lexical taxonomy.

arXiv: preprint cmp-lg/9709008. 1997.

[285] Moro, A, Cecconi F, Navigli R. Multilingual word sense disambiguation and entity linking

for everybody. In: Proceedings of the 2014 International Conference on Posters &

Demonstrations Track-Volume 1272;2014. p 25-28.

