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Abstract  

Common Internet users today are inundated with a deluge of diverse data being generated and 

siloed in a variety of digital services, applications, and a growing body of personal computing 

devices as we enter the era of the Internet of Things. Alongside potential privacy compromises, 

users are facing increasing difficulties in managing their data and are losing control over it. 

There appears to be a de facto agreement in business and scientific fields that there is critical 

new value and interesting insight that can be attained by users from analysing their own data, 

if only it can be freed from its silos and combined with other data in meaningful ways. This 

thesis takes the point of view that users should have an easy-to-use modern personal data 

management solution that enables them to centralise and efficiently manage their data by 

themselves, under their full control, for their best interests, with minimum time and efforts. In 

that direction, we describe the basic architecture of a management solution that is designed 

based on solid theoretical foundations and state of the art big data technologies. This solution 

(called Personal Data Lake - PDL) collects the data of a user from a plurality of heterogeneous 

personal data sources and stores it into a highly-scalable schema-less storage repository. To 

simplify the user-experience of PDL, we propose a novel extensible metadata management 

framework (MMF) that: (i) annotates heterogeneous data with rich lineage and semantic 

metadata, (ii) exploits the garnered metadata for automating data management workflows in 

PDL – with extensive focus on data integration, and (iii) facilitates the use and reuse of the 

stored data for various purposes by querying it on the metadata level either directly by the user 

or through third party personal analytics services.  

We first show how the proposed MMF is positioned in PDL architecture, and then describe its 

principal components. Specifically, we introduce a simple yet effective lineage manager for 

tracking the provenance of personal data in PDL. We then introduce an ontology-based data 

integration component called SemLinker which comprises two new algorithms; the first 

concerns generating graph-based representations to express the native schemas of (semi) 

structured personal data, and the second algorithm metamodels the extracted representations to 

a common extensible ontology. SemLinker outputs are utilised by MMF to generate user-

tailored unified views that are optimised for querying heterogeneous personal data through 

low-level SPARQL or high-level SQL-like queries. Next, we introduce an unsupervised 

automatic keyphrase extraction algorithm called SemCluster that specialises in extracting 

thematically important keyphrases from unstructured data, and associating each keyphrase with 

ontological information drawn from an extensible WordNet-based ontology. SemCluster 

outputs serve as semantic metadata and are utilised by MMF to annotate unstructured contents 

in PDL, thus enabling various management functionalities such as relationship discovery and 

semantic search. Finally, we describe how MMF can be utilised to perform holistic integration 

of personal data and jointly querying it in native representations. 
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Chapter 1 Introduction 

1.1 Background 

Before the Internet era, people had their data kept in personal computers, stored on local 

hard drives, and in a few network-shared directories. With the Internet boom and the 

growing use of early online digital services like emailing and blogging, common Internet 

users started to have partial amounts of their data hosted in autonomous machines on the 

web (e.g. mail servers, web servers, etc.), and managing this data was relatively an easy 

task. In the years that followed, people living and working environments became greatly 

enriched with affordable personal computing devices and various kinds of digital services 

that are tailored to the user needs and preferences in different contexts; social media, online 

banking, personal and collaborative communications, e-commerce, cloud, to name only a 

few examples. This technology evolution upsurge in daily life and social organisation has 

made it more convenient for common users to transform the traditional way of performing 

daily activities into simple interactions with digital services. All of a sudden, significant 

amounts of users’ data are distributed everywhere [1], including: the documents they 

create (presentations, spreadsheets, publications), the messages they exchange (SMS, IM, 

Email), the multimedia they share (social posts, photos, videos, music), the financial 

transactions they make (product purchases, billing invoices, ticket bookings), and so forth, 

much of this data is usually generated and stored using third party digital services offered 

by distinct entities in the digital service sector, which are generally called service 

providers. In addition to being distributed, the data that users generate and keep using 

multiple personal devices and different digital services became growing rapidly over time 

in terms of volume and variety. Such growth is further accelerated by the typical user 

behaviour of actively seeking out and consuming new data from private and public 

sources, and hoarding the data which the users may consider personal for many purported 

reasons [2,3,4]. In fact, a minute’s reflection on modern Information seeking and foraging 
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studies will reveal that common users tend to store large amounts of personal data for 

future use and reuse [1,5,6]. As a result, those users who choose to manage their data and 

take advantages of it, must do so in parallel across different services and applications [52], 

and should have sufficient knowledge and management resources to handle large amounts 

of diversified personal data.  

Recently, it was revealed that managing personal data is becoming an increasingly difficult 

task for common users as the economic value of this kind of data in the digital industry is 

amplifying [8], and to the extent that it is often branded as “digital oil” [9]. An important 

question promptly arises here is that: “how the management challenges of personal data 

are related to its value?”. In 2006, an influential study [11] reported that the personal data 

collected from users through multiple third-party services was enough to recognise social 

patterns, infer relationships, identify important geolocations, and model organisational 

rhythms. Soon after, it was clear that third party services, with their capability of gathering 

intimate and contextual information from users, entail immense increment in the 

production of personal data, and this kind of data is exponentially growing in depth and 

breadth forming a new era of empirical analysis with potential opportunities for businesses 

in the digital industry. Realizing this trend, dominant service providers began promoting 

data-incentive services (e.g. Google Drive, Facebook Creators, Apple iCloud, Amazon 

Alexa) that are deeply integrated with users’ personal devices to expand providers’ reach 

into the private storage spaces of users [11], and to migrate various data collections that 

are individually managed by the user to “central” data-housing repositories called service 

platforms [12]. This paradigm of data centralisation, and backed by the economic 

convenience of data transmission, storage capacity, and computational power, enables 

service providers to amass unprecedented amounts of personal data collected from large 

number of users, and analyse them using state of the art data mining and machine learning 

tools to glean valuable insights that magnify understanding of users’ social behaviours and 

personality patterns, thus deriving revenues through utilising these insights to optimise 

business intelligence and consumer analytics models, or by licensing them to other third 

parties.  

While the ultimate implications of the centralisation paradigm on common users are not 

fully examined yet [11], one promptly apparent consequence is that; users are increasingly 
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losing control over their data [12] and are unable to take advantages of it. The main reasons 

for this limitation are personal data fragmentation and isolation. 

1.2 Personal data problems 

In a sense, personal data represents a comprehensive “black box” that records its owner's 

life in varying degrees of detail across different contexts [13]. By organising this box, the 

owner can infer knowledge and obtain valuable insights about her life and daily activities. 

As with all other data kinds, personal data may have certain characteristics, which in turn 

may impose multiple challenges on access, management, and usage, especially if we 

expect personal data to be multi-modelled, error-prone, and with severe fragmentation and 

isolation, which must be dealt with before personal data can be ready to be taken advantage 

of. If we properly understand the main problems of personal data, then we can devise 

appropriate solutions to overcome them and unlock the potential value of data through 

personal data management which, in short, concerns data collection, storage, organisation, 

maintenance, and usage [1]. Personal data management offers benefits to content-based 

search, contextual information retrieval, reporting and summarization. The opportunities 

that efficiently managed personal data may offer are based on the observation that a black 

box of the user’s life provides a detailed context about the user (e.g., who is the user, where 

is her location, where she has been recently, what is she doing now, and with whom, etc.) 

which can be readily leveraged to design useful tools for activating value creation. To 

illustrate this observation, consider the following example; by processing the user’s 

financial data (e.g. purchase transactions history), geospatial data (e.g. GPS data), and by 

assuming the user’s current location is near a market which she frequently shops in, then 

a sophisticated context-aware application would process such data and automatically infers 

that she is at risk of going over credit limit in the next purchase, thus it can intervene either 

by warning the user or by suggesting an alternative payment methods to avoid the overdraft 

fees imposed by the credit card issuer. Many context-aware applications have been 

proposed in the past [14,15,16], but their inability to uniformly access and query user’s 

personal data as an organised black box, has impeded the progress of these applications 
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[15]. A detailed discussion about contextual applications in the personal domain is covered 

in [13].  

The first step in studying personal data problems is to understand how a data piece (datum) 

can be distinguished as personal, and in which sense. Unfortunately, there exists no 

agreed-upon technical definition of personal data, this is because it has evolved so quickly 

and disorderly that such a universally accepted statement denoting its exact meaning not 

yet exists, instead there are multiple statements in the field of data management that try to 

capture its traits in specific and restricted contexts. One practical way to conceive the 

abstract nature of personal data is through its legal definition by international data 

protection laws, since governmental articulations in general are readily understood and 

widely accepted. The EPDP Directive1 defines personal data as follows: 

“Personal data shall mean any information relating to an identified or 

identifiable natural person (‘data subject’); an identifiable person is one 

who can be identified, directly or indirectly, in particular by reference to an 

identification number or to one or more factors specific to his physical, 

physiological, mental, economic, cultural or social identity.”.  

(EPDP, 95/46/EC Art. 2/A) 

The definition emphasizes that personal data is any information in the world, whether 

physical or digital, that can be linked to a person in some way. There are different ways 

through which data are linkable; “full name” is obviously personal data that is directly 

linked to a person. Linking might be obvious by combining autonomous identification 

elements, such as physical characteristics, pseudonyms, banking details, occupations, 

addresses, etc. There also exist many types of data that sound un-linkable to a given person 

at the first glance, but a closer look will promptly reveal important linking. Consider the 

following dataset examples; Underground service information, postcode dictionary, and 

hotel guest reviews in London. These datasets are decisively unrelated to a person living 

                                                 

1 Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection 

of individuals with respect to the processing of personal data and its free movement. URL:  

http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31995L0046  

http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31995L0046
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in Washington. However, once that person decides to visit London, linking to the datasets 

becomes obvious and compelling.  

The legal definition of personal data is deliberately made broad for legislative purposes. 

Consequently, we need to focus on an alternative but relative conception from a technical 

point of view. Henceforth, we understand personal data as “the data over which a person 

has some interest or control, currently or in the future, in order to negotiate the person’s 

environment and organise life activities”. Such conception is much more in tune with an 

intuitive understanding of what data means to a person in the course of daily activities, and 

as one would expect, it might be in compliance, to a great extent, with the legal definition 

of the data from which the person is identifiable, but may also comprise data of which the 

person owns, but from which the person cannot be identified at all – as illustrated in the 

former example. With this technical but informal abstraction, personal data may span a 

vast range of domains, and therefore scoping all its types into a widely agreed upon 

convincing definition is on one hand an extremely difficult task, but on the other hand is 

an enabler of scientific progression as Ronda et. al. [17] suggest; the level of consensus 

shown by a scientific community on a definition of a concept can be used as a measure of 

the progress of a discipline.  

Researchers in personal data management field have suggested different statements to 

discern a rough boundary between what data is personal and what is not [1,11,18]. The 

work introduced in [1] is an important progress in this regard as it builds upon an intensive 

review of (personal) information literature. Jones [1] defines six senses in which data may 

be recognised as personal. Table 1.1 presents each sense, its relatedness (linking) to the 

user, the production type of the data falls under that sense, and multiple general examples. 

Basically, there are two types of personal data production; active and passive. Active data 

production refers to the data that is purposefully self-generated to negotiate one’s 

environment and to perform daily activities, whereas passive data production refers to the 

data that is generated on the one’s behalf through by-product service interactions. Text 

messages, photos, and blogs are examples of actively produced data, whereas IoT sensing 

data, search engine logs, and credit history are examples of passively produced data. 
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It is noteworthy to mention that personal data senses are inclusive, and by combination 

they make up the whole personal data of a user. It should also be borne in mind that the 

notion of personal data is the usual term in Europe whereas it is known as “personal 

information” or “personally identifiable information” in the United States. Likewise, the 

terms “personal data management” and “personal information management” are identical 

[18]. Therefore these synonymous terms are interchangeably used throughout this thesis.  

Table 1.1 – Personal data senses 

Sense Production Description 

Owned/Controlled 

by user 
Active/Passive 

Data stored on user’s personal devices, cloud 

spaces, online accounts, and any other service 

platforms, like documents, files, multimedia. 

About user Active/Passive 

Data factorizing the user’s identity; such as 

official paperwork, medical records, search 

engine queries, product orders, and credit 

history. 

Directed to user Passive 

Data communicated to the user; such as phone 

calls, emails, instant messages, social and 

collaborative invitations, promotion ads, and 

vouchers. 

Sent by user Active 

Data communicated by the user; such as phone 

calls, emails, private (instant) messages, blogs, 

social media posts, GPS check-ins, and research 

publications. 

Experienced by user Passive 

Data already utilised by the user; such as website 

pages, books in the library, on-demand 

streaming content like online courses, TV, and 

Radio shows. 

Relevant to user Passive 

Data interesting to the user for future use; such 

as the next hotel booking, vacation destination, 

job to apply for, and house to buy.  
 

1.2.1 The 3Vs nature 

As our understanding now is in tune with the notion of personal data, its possible senses, 

and its basic terminology, our next step is to examine the nature of personal data from Big 

Data perspective. Such examination can take place by comparing the main characteristics 
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of big data with those exhibited by the total data of a common user. The benefit here is: if 

personal data conforms to big data characteristics, then there are certain advantages that 

big data management technologies could bring to enable both effective personal data 

management and analytics on a personal rather than on the enterprise level (i.e. personal 

analytics [19] and personal informatics [20]). 

Big data is a ubiquitous term to describe any voluminous amount of structured, semi-

structured and unstructured data that is growing and moving so fast that it becomes 

extremely difficult to store, manage, or process using conventional data management 

technologies. In most enterprise scenarios, big data is believed to have three main 

characteristics [21]: Volume, Variety, Velocity, (3Vs). Volume refers to the amount of data, 

variety refers to the heterogeneous sources from which the data is produced and gathered, 

and velocity refers to the unpredicted shifting patterns and changes in the data over time. 

There is a surging interest in big data by many parties in the digital industry and academia, 

this is because of the immense value and unlimited opportunities that can be unlocked by 

mining and cross-referencing information from diverse data sources. Big data is also 

becoming a daunting problem due to management challenges resulting from the 

continuous expansion of all its aspects over time [22], rather than just the sheer amount of 

data to be managed. The term Big Data Analytics [23] refers to the quintessential 

technologies that the user must possess to harness and utilise the data at high 3Vs scale for 

creating value. Not only does this make big data management and storage vastly different 

from normal or structured data that most people are accustomed to handling, but it also 

means the users now require powerful integrated solutions for making big data scenarios 

usable and applicable. Currently, there exist many enterprise-level big data management 

systems and tools that can be adopted to collect, integrate, manage, fuse, and analyse big 

data efficiently and effectively. Before discussing the benefits of the big data ecosystem 

to the personal data management, we initially need to run an end-to-end comparison 

between big data and personal data in terms of the 3Vs model. 

One characteristic which makes personal data a big data application and poses both 

challenges and opportunities in its management is the variety of personal data sources, 

which may include: social, entertainment, work-related, consumption-related, freely and 

by-license accessible, data services, furthermore, they may also include by-product online 
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tracing, physiological monitoring, and pervasive monitoring (IoT) services. Personal data 

sources are monumentally varied, and the data generated from them is so diverse that we 

simply cannot enumerate its types. To take a quick look, consider a typical smartphone 

that is often equipped with the following constituents (services): 

 GSM, LTE, Wi-Fi, and Bluetooth. The data generated from these constituents 

include: cellular network tracking, LTE roaming information, home and work 

network-shared directories, printers, and scanners, Wi-Fi location data, nearby 

Bluetooth devices, Wi-Fi networks and signal strengths, Internet usage metering, 

power consumption information.  

 Always-on Radio GPS. The data generated from this constituent include 

geographic positioning logging, tracking, and navigation. 

 Accelerometer, Gyroscope Barometer, Thermometer, Magnetometer, 

Infrared. The data generated from these constituents include real-time 

gyroscopic orientation tracking streams, real-time accelerometer movement 

tracking streams, basic and advance physiological monitoring data like 

temperature and galvanic skin readings, heart rate tracking, and environmental 

sensory data. 

 Video camera and microphone (or several). The data generated from these 

constituents are multimedia files, live streaming, visual and audio 

communications.  

 Internet-connected services for entertainment, communication, and to help 

users manage their daily lives. 

Common users carry this bundle of services with them wherever they go, and generate 

data almost all day. To derive value from these services, the common user must be able to 

merge and combine various data collected from such services to form a holistic 

consolidated view through which variety is normalised or eliminated.  

The second characteristic we examine is volume. Personal data sources constantly generate 

structured, semistructured, and unstructured data on a per-person basis. the fate of these 

data may be one of the following: (i) actively stored on local hard drives, (ii) actively/ 

passively hosted in remote storage locations, i.e. online accounts and third-party service 
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platforms, or (iii) disposed due to lack of applicability, i.e. the common user cannot derive 

any benefit from the data, neither currently nor in future, because of insufficient 

knowledge and resources to manage it. For example, nowadays only small groups of data 

enthusiasts in the society (e.g. life-loggers [13], self-quantifiers [19]) are recording their 

physiological sensory data and deriving insights out of it, whereas the remaining 

population ironically turn off their sensory services to save battery charge. Although a 

one’s personal data on average has not yet reached huge volume (i.e. below petabytes), we 

believe that such volume is constantly scaling up, and at some point in the foreseen future 

will conform to the big data volume aspect. This observation is predicated on multiple 

recent Internet usage reports; here are some statistics: a common user, on average, has 3.64 

personal devices connected to the Internet [24], interacts with 30 third-party services 

monthly using these devices [25], uses with 9 services on daily basis to generate personal 

data [26], has 100 online personal accounts in third-party service platforms [26], uses 7 of 

them regularly to exchange personal data with others [25], and these statistics are doubling 

every 18 months.  

The final characteristic of the 3Vs model is velocity. Technically, common users cannot 

control the physical details of their personal data being passively generated by (third-party) 

services, consequently, they cannot veto any subtle shifting changes in its patterns and 

representations (i.e. schema, structure, and semantics), and their only available choice is 

adapting to any emerging changes propagated by a service of interest.  

 Based on the above comparison, we can reasonably regard the total amount of one’s 

personal data as a scaled-down version of big data, that is, the version of a single person 

in contrast to the large body of an enterprise organisation. During this comparison, we 

observe the characteristics of personal data are problematic. A modern personal data 

management solution must account for the 3Vs model, but it should extensively focus on 

variety with effective accountability. This emphasis has been delineated since the early 

age of big data, for instance, a specialist survey based on interviews conducted with 20 

major big data firms in 2012 concluded the following [28]: “The survey indicates 

companies are focused on the variety of data, not its volume. The most important goal and 

potential reward of Big Data initiatives is the ability to analyse diverse data sources and 

new data types, not managing very large datasets”. 
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1.2.2 Fragmentation 

For a common user, the daily interaction with an arbitrary digital service entails generating 

a certain amount of personal data every day which exponentially grows over time, resulting 

in a large and complex data collection (or dataset) that is stored and managed by the 

provider of that service. For example, consider a third party email service for regular email 

messages exchange, Fisher et. al.[5] report that common users, on average, end up having 

28000 messages archived within their email accounts and stored on the platform of the 

email service provider. There are many reasons that motivate (or even compel) users to 

delegate the responsibility of storing and managing their personal data to third party 

service providers, mainly including: 

 The provided service requires intermediate data exchange medium. For example, 

a social media service provider like Twitter retains the user’s data (tweets) into a 

central platform in order to share it with the user’s friends and followers. 

 The provided service is fundamentally developed to assimilate the personal data of 

its users. For example, a cloud-based storage service emphasizes migrating user’s 

data (documents and files) to a central service platform in order to provide support 

functionalities like backup and recovery, location-independent accessibility, and 

data synchronization between multiple personal devices. 

 Users do not have the sufficient knowledge or resources to self-host and manage 

large amounts of their personal data. 

As users expand the set of their favourite services over time, their personal data becomes 

no longer co-existing into single storage space but rather increasingly scattered across 

various applications running on personal devices, as well as autonomous service platforms 

exclusively controlled by the third parties – this phenomenon is called personal data 

fragmentation. Fragmentation is very problematic on the long term [52] as it hinders users’ 

ability to understand what personal data they have, where it is stored, and how it can be 

accessed and utilised to meet personal information needs. Due to fragmentation, users may 

not be able to list all service platforms hosting their personal data, furthermore, essential 

data management functionalities may become increasingly difficult undertakings without 

simultaneous accessibility to all fragmented personal data, regardless of its hosting 
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platforms, from a single access point. The following questions are simple examples to 

illustrate the effect of fragmentation on common users: 

 I know I have this message, but was it received via my personal Email, work 

Email, Facebook, Telegram, or Viber? 

 I know I have this photo, but was it posted on Facebook, Twitter, Instagram, or 

saved on my hard drive? 

 I know I have this document but was it saved as an email attachment, or in 

Dropbox, Google Drive, OneDrive, or on my hard drive? 

Unfortunately, many of the services mentioned above may act as data silos since they do 

not offer content search functionality [29], instead the user may have to browse the 

personal data hosted in the platform of each service using the provided GUIs in order to 

find specific data entities (e.g., messages, photos). Nevertheless, without a software agent 

that simultaneously accesses these platforms and performs global search over them, then 

finding a specific data entity may be as hard as finding a needle in a haystack; the user 

should list all the platforms that are likely to store the required data entity and then goes 

platform-by-platform trying to find it.  

An intuitive solution to the fragmentation problem is to reverse or at least reduce the 

paradigm of personal data centralisation by empowering common users with a personal 

data management solution that allows to retrospectively harvest (i.e. extract and collect) 

fragmented personal data from various service platforms, and any other data sources for 

the matter, and accumulating it into a central storage space that is fully controlled by the 

user [30,31]. With the rise of the REST architectural style for webservices [32], providers 

now have a flexible mechanism to facilitate retrospective sharing of data with its owners; 

that is RESTful application programming interfaces (API). The API offered by a service 

provider is often a well-documented publicly accessible endpoint in the platform of the 

service and it enables flexible data collection by authenticated users over web protocols 

like HTTP either manually or through software agents. API-based data collection has been 

utilised in many quantitative research projects that involve analysing huge amounts of big 

data collected from service platforms to develop predictive models [33,34]. In qualitative 

research, APIs can be exploited to harvest unstructured text archives of communication 
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patterns on social media for close-up analysis [35]. APIs have been also proposed as 

personal data collection trajectories for common users [36]. A user may deploy one or 

more agents that connect to the APIs of different service platforms of interest, to retrieve 

personal data from each platform and accumulate it into a central storage space that is 

controlled by the user. This workflow presents a practical way for user-centric data 

centralisation as opposite to the service provider-centric centralisation paradigm described 

earlier. However, API-based automated data collection is only part of the solution to the 

fragmentation problem. There are many service providers that do not offer API-based data 

retrieval, offer only partial retrieval, or act as data silios that permit retrieval strictly 

through ad hoc service-specific data collection adapters (agents). The reasons service 

providers lock users’ data inside their platforms or complicate its programmatic access and 

retrieval may be technical, or even legal, but mostly economic, as they do not want to 

relinquish the economic advantage of holding users’ personal data. An effective solution 

to the fragmentation problem should involve collecting personal data using traditional and 

non-traditional means.  

1.2.3 Isolation 

Another latent problem arises from users’ reliance on a variety of third-party services is 

isolation. Basically, the delegation of personal data storage responsibility to a service 

provider necessitates relinquishing control over how the data is represented in the platform 

of that provider. Service providers may store and handle incoming and outgoing data using 

different models and representations2 that are essential for optimising their internal data 

processing and management workflows. If all providers adopted a single unified data 

representation for all the data they are dealing with, then mashing up and utilising 

fragmented personal data coming from scores of platforms and sources would be achieved 

in straightforward manner, nonetheless performing management functionalities like global 

search and integrated analysis could be relatively easy, for instance, to answer the question 

“how much milk I consume monthly?”, the user may formulate a “simple” query targeting 

                                                 

2 A data entity may have certain underlying physical details including: physical format, native schema (if 

any), and structure (i.e., structured, semistructured, or unstructured). Throughout this thesis, we use the 

abridged term “representation” to refer to the combination of these details.  
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historical purchase data (e.g. receipts) to directly count all the records which contain 

purchased milk quantities. It is widely accepted fact that convincing the entire world to 

use singular data representation is fruitless effort since the degree of diversity and 

continued independent evolution of service platforms and data sources practically 

guarantees that data representation singularity will never happen [37], in fact, this is the 

main reason behind inventing the Semantic Web [38]. Consequently, accumulating 

collections of fragmented personal data with different representations into single storage 

location imparts isolation; the stored contents may be regarded as disparate datasets and 

information icelands with heterogeneities on the syntactic, semantic, and structural levels, 

which prevent their use in any possible scenario.  

Isolation impedes users’ ability to uniformly access fragmented personal data, from a 

single access point, to perform management functionalities. To tackle this impediment, the 

user must perform a kind of integration; a data management task seeks to provide unified 

view over the data collected from multiple sources so that they may look as if coming from 

a single well-managed source [39]. Providing unified views in practice involves designing 

a global (mediated) representation that captures the user’s data requirements, followed by 

a manual construction of relationships, which are called mappings [39], between the native 

representations of the data under integration and the global representation. This overall 

approach can provide high-quality integrations but at a high cost and tends to be unsuitable 

in areas where data is coming from a plurality of frequently changing sources, and where 

users are willing to tolerate a less than perfect integration.  

The notion of integration is often viewed as a spectrum, at one end all fragmented data 

conform to a single agreed-upon representation, at the other end all the native presentations 

of fragmented data are heterogeneous as they are independently designed and maintained 

by autonomous sources, and in between these ends lies various integration solutions and 

approaches. Such spectrum may indicate the degree to which management and analysis 

functionalities can be performed across fragmented personal data, with higher degrees of 

integration providing more sophisticated functionalities. Integration is known to be an 

extremely complex task that incurs tedious supervision efforts by skilled users for schema 

matching, schema mapping, semantic and structural reconciliation, and data quality [40]. 

Not all common users are data specialists, this necessitates the need for an adaptive data 
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management solution wherein “automatic” integration workflows can be invoked on 

isolated personal data collected from autonomous sources and exist with different 

representations that the user knows very little about, but at the same time, demands high 

degree of data homogeneity in order to mush up, utilise, and take full advantages of it. 

1.3 A personal data management solution 

In today’s digital age, common Internet users are immersed with an overwhelming number 

of third party services and other data sources, tempted by service providers to generate 

more and more data and relinquish control over it in exchange of useful and mostly “free” 

functionalities. Accordingly, common users are unable to gain control over their personal 

data, finding the right information within it, or readily deriving any value out of it 

[12,23,36]. Nevertheless, because users cannot determine who is accessing their data, 

when, how, and why [11,12], they are incapable of preventing privacy-abandoning third 

parties from cross-referencing their fragmented intimate information using malicious 

methods [11,41] (e.g. linking attacks3). In this thesis, we take the point of view that the 

cycle of organisational activities for personal data management [1] can provide the 

necessary means to assume back the control over one’s personal data and to facilitate 

taking full advantages of one’s black box [13], not only to empower oneself with valuable 

insights for enhancing life and daily activities, but also to elevate, to a certain extent, the 

privacy of one’s data. To this end, we describe the design and the core components of a 

big personal data management platform called personal data lake (PDL) [44] that supports 

common users in managing the sum of their personal data. PDL is based on the data lake 

concept [42]; a widely used data management technology in the big data ecosystem [43]. 

It enables the user to bring together and enrich fragmented personal data in raw forms, 

remedying its main inherent problems, and reducing the efforts required to smooth its 

recurrent use in various scenarios. PDL has complete access to user's personal data pouring 

anywhere in the cyber world, whether hosted by third party service platforms, personal 

computing devices, pervasive electronics, or any current or future active/passive data 

                                                 

3 Linking attack may also refer to the interdisciplinary term jigsaw identification. 
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sources that would produce data which can be linked to the user in any of the senses listed 

in Table 1.1. PDL fully supports automatic and manual retrospective collection of personal 

data from local or remote sources in batched, streaming, or near-streaming modes, as per 

the requirements and needs of the user. Such lake permanently stores and archives personal 

data into a highly-scalable central repository of unified schema-less data storage, thus 

offering a current state of the art solution to the fragmentation problem discussed in section 

1.2.2. In the heart of PDL lies the most important architectural part, which is metadata 

management framework (MMF). MMF is the de facto management solution that 

orchestrates personal data storage, organisation, usage, maintenance, as well as privacy. 

MMF annotates personal data with machine-readable metadata to describe its lineage, 

important facets, underlying attributes, and relationships with other data within PDL. The 

final product of MMF is rich contextual metadata that are utilised for: 

 Taming the heterogeneities of fragmented personal data and eliminating any 

inherent isolations that stem from its centralisation into PDL. Thus, relieving the 

user from the tedious efforts required for data organisation and maintenance.  

 Generating comprehensive consolidated views over the centralised data that are 

defined by a user-tailored formalism in term of a coherent Metamodel. Thus 

enabling simultaneous and uniform access to a wide variety of personal data and 

conveniently querying it on the view (metadata) level. 

 Enabling the user to experience new functionalities with personal data which once 

were prevented by fragmentation and isolation like semantic search, relationships 

discovery and data preparation for personal analytics and informatics. 

 Allowing the user to control the accessibility of the stored data based on privacy 

settings with varying levels of actionable details.  

The user has complete control over PDL and its underlying MMF, and retains the ability 

to retrieve its metadata, extend it with new (meta)models, modify the views materialized 

through it, and share it and/or its views with any third-party data consumer for gaining 

benefits as perceived by the user and without relying on external tools.  
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1.4 Thesis aims and objectives 

Treating personal data as little big data, and dealing with its inherent 3Vs model lies at the 

heart of the big data problem. The personal data of an average common user is usually 

voluminous and exists in a plurality of autonomous silos with incompatible and rapidly 

changing representations, while more new silos and representations are expected to appear 

in the future due to the continuous emergence of renovated third-party services and new 

personal data sources (e.g. IoT sensors). It is fair to say that the 3Vs of personal data 

contribute to the 3Vs of global big data, and solving the problem at the personal scale can 

lead to a possible solution on the global scale. The main aim of this thesis is to exploit the 

data lake as a flat space for collecting and storing large amounts of diverse personal data 

without compromising its native representations. A data lake by definition is a complex 

enterprise solution that is intended for use by highly skilled data scientists and not common 

users. Therefore, the objective of the work presented in this thesis is to materialize the 

necessary set of capabilities for automating the lake’s data management workflow, thus 

giving common users the incentive to take the responsibility of collecting, organising, and 

analysing their personal data by their own, within a highly supportive environment, under 

their full control, with minimum efforts and very limited technical skills. Accordingly, we 

focus on proposing methods and algorithms for isolating the user from the complex details 

of the downstream management tasks and activities in PDL, particularly:  

 Metadata extraction and annotation. 

 Schema matching and mapping. 

 Semantic and structural heterogeneity reconciliation.  

 Schema evolution handling. 

 Holistic data integration. 

The proposed methods and algorithms heavily rely on the metadata technology, and they 

inclusively form an extensible metadata management framework that enables the PDL user 

to efficiently integrate, query, and analyse, with minimal time and effort, large amounts of 

heterogeneous raw data centralised in PDL whilst preserving their native schemas, 

formats, and structures intact.  
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1.5 Research methodology 

Design science is an outcome based research methodology that offers specific guidelines 

for designing and evaluating purposeful innovative artefacts to solve a special problem in 

a particular domain [45]. An outcome artefact is perceived to be knowledge containing, 

this knowledge ranges from novel methods, algorithms, and tools, to assumptions about 

the context wherein the artefact is intended to function. To form a novel contribution, the 

research outcome must either solve a problem which is not solved yet or provide a better 

solution for it. In this thesis, the design science research methodology (DSRM) is regarded 

as an optimal methodology to follow for fulfilling the research aims described in section 

1.4. Accordingly, we adopt the DSRM introduced by Peffers et. al. [45].  Figure 1.1 depicts 

the steps that compose our adopted DSRM, and each step is explained and related to the 

thesis chapters as follows: 

 

Figure 1.1– The adopted design science research methodology process model 

1. Problem Identification and Motivation: This step involves critical thinking of the 

research problem and modelling strategies to justify the value of designing a solution to 

solve that problem. In the first phase of this step, our aim is to identify the gaps in the 

related literature. In the second phase, the research aims are carefully articulated as 

presented in section 1.4. The third phase requires the selection of the data sources and the 

tools for developing the solution. The last step involves research planning by dividing the 

research problem into two sub-problems, namely: 
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 Structured and semistructured personal data management. 

 Unstructured personal data management. 

In last the phase we also identify the required means to solve each sub-problem. 

2. Objectives of the Solution: This step requires knowledge of the state of the problem, 

its current solutions, and their efficacy. The problem definition in the previous step is used 

to propose the objectives of the solution. Our research problem is general in many fields, 

whose objective is the management of raw data scattered across a variety of data sources, 

and isolated due to severe heterogeneity in its native representations. However this 

problem in the context of our research exhibits a fundamental difference in that its solution 

has specific objectives that are necessary for the success of a bigger solution (i.e. PDL). 

These objectives are: 

 The solution is data lake-oriented; by definition, it must preserve the native 

representations of the centralised data to sustain its potential future value, and 

should be efficiently tractable to the 3Vs model. 

 The solution is user-centric; it must be automated to ease utilisation by unskilled 

common users, and, should be flexibly extensible to support customization 

according to user’s changing needs and preferences over time. 

3. Design and Development: This step aims to design and develop a solution for the 

defined problem. The details of this step are covered in chapters 3, 4, and 5. The design of 

the proposed framework and its integration in PDL architecture is covered in Chapter 3. 

The design of the component responsible for structured and semistructured personal data 

management is presented in Chapter 4, and the design of the component responsible for 

unstructured data management is presented In Chapter 5.  

4. Demonstration: This step involves using the developed framework in suitable contexts. 

In this thesis, multiple showcases are discussed in Chapters 6 using a total of 16 real-world 

datasets. The chosen data is regarded as personal data of an imaginary person. To 

demonstrate the utility and robustness of the proposed framework and its components in 

solving real-world problems, five main demonstrations are introduced. The first involves 

integrating and querying heterogeneous sensory data collected from multiple sensors 



1.6 Thesis contributions 19 

 

embedded in wearable devices. In the second, we simulate a scenario of making data-

driven hotel and restaurant booking decisions in the city of London. In the third and fourth, 

we demonstrate how MMF automatically extracts keyphrases from free-text documents, 

and annotating them with ontological information. Finally, we present an experimental 

scenario to demonstrate the holistic integration capability of MMF over public art data 

collected from a museum by the user in efforts to create new useful knowledge through 

back-story information cross referencing. 

5. Evaluation: This step observes and measures how well the proposed framework 

resembles an optimised solution to the defined problem. It involves assessing the 

effectiveness/efficiency of the components in the proposed framework compared to their 

current state of the art counterparts available in the relevant literature. In DSRM, once 

framework components are developed, researchers start a thorough testing process for each 

component. In this thesis, we righteously evaluate the main components of the proposed 

framework in Chapter 6. The evaluations aim to assess the efficiency of each component, 

and its effectiveness compared to the chosen state of the art approaches.  

6. Communication: The main thesis contributions have been published as peer-reviewed 

scholarly publications. Four papers have been disseminated from the presented work: two 

are published in high-quality journals, and the other two are published in conferences 

relevant to our research’s core topics. The papers are given in the list of publications 

section. 

1.6 Thesis contributions 

The main contributions of this thesis are as follows: 

 We present a novel extensible MMF for handling personal data management and 

simplifying, to large extent, PDL user-experience for common individuals with no or 

limited data management skills. 

 We introduce a basic lineage manager as the first principal component in MMF to track 

the provenance of personal data in PDL and maintain its privacy settings.   
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  We propose SemLinker, an ontology-based data integration system as the second 

principal component of MMF. SemLinker comprises two novel algorithms; the first 

constructs graph-based representations to express the native schemas of (semi) 

structured data collected from a variety of local and remote data sources. The second 

concerns partial metamodeling of such representations to an extensible general-

purpose and widely-used ontology in big data applications. 

 We propose a novel approach to handle schema evolutions that stem from data 

velocity, more precisely, the rapid and frequent changes that may emerge in the source 

schema and format of (semi)structured data collected from a data source. 

 We introduce SemCluster, a novel domain-agnostic clustering-based algorithm for the 

task of unsupervised automatic keyphrase extraction. The proposed algorithm exploits 

extensible background knowledge for extracting thematically important keyphrases 

from input unstructured data, and associates each keyphrase with fine-grained 

semantics drawn from an extensible common ontology.  

 We propose a SemCluster-based approach for automatically annotating unstructured 

textual data with rich semantic metadata, then we show the usefulness of this approach 

in facilitating functionalities like relationship discovery between, and semantic search 

over, heterogeneous unstructured contents. 

 We show that by combining SemLinker and SemCluster metadata, MMF can offer 

attractive management functionalities over PDL stored data on metadata level without 

requiring any physical transformations, thus preserving the native representations of 

the data and facilitating its use and reuse in various informatics and analytics 

applications while maintaining its potential value longevity. 

1.7 Thesis outline   

In this thesis, we investigate and evaluate automated solutions to the problem of data 

management in data lakes. We present techniques that are related to three main topics: 

metadata management, data integration, and unsupervised keyphrase extraction. In 

particular, we examine new and exciting methods and algorithms in order to introduce an 
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extensible metadata management framework for PDL, which can be generalised in the 

future for reusability in other data lake systems. The outline of this thesis is as follows:    

Chapter 2 discusses the background and main foundations of the data lake concept. The 

chapter starts by illustrating the difference between ETL [46] and ELT [47] paradigms, 

then explores the feasibility of ELT in solving the problems of big personal elaborated in 

section 1.2. We then review the data lake literature and discuss the importance of metadata 

in managing raw data. The chapter explores various metadata management approaches and 

frameworks that have been proposed for different data lake systems and architectures. 

Finally, the general limitations of existing works as well as their fundamental drawbacks 

are discussed from the perspective of our research objectives. 

Chapter 3 introduces an overview of the proposed MMF and its architectural integration 

in PDL. The chapter begins by discussing the empirical feasibility of Hadoop ecosystem 

for developing a big personal data management system. Then an overview of PDL’s ELT 

workflow is introduced by means of two processing pipelines; storage and usage. To 

illustrate how MMF is managing these pipelines in an automated fashion, we describe each 

layer in PDL, including the rationale behind its design, its constituting components, and 

their relations with MMF components as pipelining inputs or outputs.  

Chapter 4 presents SemLinker; our proposed solution to the problem of (semi)structured 

personal data management in PDL. In this chapter, we review a core process in data 

management: data integration, and discuss the main challenges and requirements that must 

be met to automate this process in data lakes and particularly PDL. The chapter then 

introduces SemLinker architecture, its layers, and their underlying components. We first 

describe SemLinker’s underlying algorithms and then introduce a new automatic approach 

for handling raw data schema evolutions. Next, we discuss how SemLinker annotates 

ingested personal data with formal schema metadata, and how the output annotations are 

exploited for generating “partial” unified views which can be queried in a uniform way by 

common users and their gravity-enabled analytics applications.  

Chapter 5 presents SemCluster; our proposed solution to the problem of unstructured 

personal data management in PDL. This chapter starts by elaborating a core process in 

unstructured data management; semantic annotation. The chapter then discusses keyphrase 
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extraction as a potential solution for automating the semantic annotation of unstructured 

documents. The existing work in the keyphrase extraction literature is thoroughly reviewed 

in order to understand its research gaps and limitations. Next, we present SemCluster, a 

new algorithm for unsupervised automatic keyphrase extraction that exploits background 

information to identify thematically important phrases in input documents, and to annotate 

these phrases with fine-grained ontological information. SemCluster algorithm adopts an 

extensible ontology (WordNet [49]) as an internal knowledge source, which can be further 

extended by integrating extra knowledge sources (e.g. DBPedia [50], BabelNet [51]) for 

incorporating more background information to improve the extraction precision and the 

overall annotation performance. In this regard we introduce a new knowledge integration 

approach to materialize personalised extensibility based on the needs and preferences of 

the PDL user. Finally, we discuss how SemCluster is implemented as MMF component to 

manage unstructured textual data through annotation-based semantic representations.  

Chapter 6 presents the empirical evaluations of the methods and algorithms proposed in 

this thesis. As per the adopted research methodology, we focus on evaluating the 

effectiveness and efficiency of MMF core components: SemLinker and SemCluster. We 

start by testing the effectiveness of SemLinker using various datasets. To explore the 

accuracy of the component’s underlying algorithms, we first conduct an experiment of 

integrating 3 heterogeneous datasets and preparing them for utilisation by an analytics 

application plugged in PDL. We also run a second experiment for integrating 8 large 

heterogeneous datasets collected from different domains, with the aim of integrating them 

and generating a unified view that is directly queried to obtain insights for supporting a 

decision-making process regarding hotel and restaurant bookings. To evaluate the 

efficiency and simplicity of use, we compare the overall performance of SemLinker 

against another recent integration approach [52]. Next, we evaluate the effectiveness and 

efficiency of SemCluster. We start by validating the algorithm’s effectiveness using two 

datasets that are popular in NLP literature. We compare the overall performance of 

SemCluster under optimised settings – in terms of Precision, Recall, and F-Measure – 

against multiple leading algorithms in the keyphrase extraction literature, namely, 

TextRank [53], ExpandRank [54], and KeyCluster [55]. We further evaluate the effect of 

background information on SemCluster’s efficiency using different knowledgebase 
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integration settings. Finally, we conduct a demonstrative experiment to show utility and 

effectiveness of the proposed MMF in bridging data over structural heterogeneity using 3 

heterogeneous gallery datasets.   

 Chapter 7 presents the conclusions drawn from this research, and discusses the possible 

research directions which our future work might take. 

 



24 Literature Review 

 

Chapter 2 Literature Review 

As part of the followed DSRM methodology, it is critical to understand the state of the 

data management problem in data lake [45]. Chapter 2 introduces a comprehensive review 

to establish the depth and breadth of the existing body of work in data lake literature. The 

presented discussions not only help in understanding the cost implications of adopting an 

existing metadata-based solution for PDL, but also to pave the way for introducing the 

proposed MMF and delineating how it advances on the current state of the art research. 

Though this chapter mainly focuses on exploring various lake-oriented metadata-based 

approaches and frameworks, additional reviews related to downstream management tasks 

are covered in Chapters 4 and 5. Sections 4.1 and 4.2 explore the research works related 

to (semi)structured data integration. Section 5.1, 5.2, and 5.3 review the literature of 

unstructured data management with extensive focus on automatic keyphrase extraction.  

To maintain the consistency of our discussions, we compile a short terminology that we 

use throughout this thesis chapters, and as follows:  

 “data entity” is a piece of raw data that is extracted and ingested from an external data 

source. Generally, this term may refer to an object, record, file, text blob, and so forth. 

 “usage workload” is the amount of processing required to meet a particular information 

need given a collection of raw data in the form of datasets, individual data entities, or 

a mixture of both. Data querying, integrated analysis, reporting, and summarization, 

are general examples of usage workloads. 

 “input source” is a private/public data source that actively or passively generates raw 

data entities which can be collected by a third party data collection agent. Input sources 

may range from social media, e-commerce applications, email clients, cloud services, 

to (ubiquitous) applications that run on personal devices.  

 “data consumer” is a third-party agent that can run usage workloads on data entities 

stored with a data management system. Data consumers may be human or machine 

agents. 
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2.1 Data lake 

Historically, data warehouse (DW) has long been considered by the digital industry as a 

unique data management solution for centralising raw data, remedying its isolations, and 

preparing it for querying and analysis to deliver accurate and timely information that 

supports decision making and business intelligence processes [46,56,57]. DW is a 

structured management solution that collocates fragmented data and makes it available for 

use to end users based on a data processing paradigm called ETL (Extract-Transform-

Load) [46]. The first step in this paradigm (Extract) concerns pulling raw data from a set 

of heterogeneous input sources on a regular cadence. An intrinsic part of this step is to 

rigorously validate, using a predefined list of validation rules, whether the data extracted 

from each input source has the “expected” representation details. If any data fails 

validation, it will be either fully or partially rejected. The second step (Transform) 

concerns treating the heterogeneities of the collected data by passing them through a series 

of transformation rules, called staging functions, in order to structure it based on a 

predefined “unified” schema, before ETL can proceed to the next step. Transformation 

details may differ from one DW implementation to another but generally involves cleaning 

[58], consolidation [59], and modelling [60]. The last step (Load) involves arranging the 

transformed data into hierarchical groups, called analysis dimensions, and storing them 

into a central database. Beyond this point, the processed data becomes highly structured 

with enforced unified schema that can be directly utilised by usage workloads on different 

aggregate levels.  

With the emergence of big data, ETL paradigm has been shown to pose too many inherent 

constraints on data storage and usage in a DW environment. First, ETL can process only 

the types of data that are specified in the analysis requirements during DW design time, 

whereas any other types are discarded [61,58]. Empirically, it is not always the case that 

the all the types of data required for analysis should to be known in advance. For example, 

the increasing use of services and applications by everyone produces large volumes of 

personal data that, at first level, cannot be linked with any analysis requirements as the 

potential wealth of information in the data is not preliminarily known, or not enough 

explored. In these cases, such types of data cannot be stored in DW, instead they are held 
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elsewhere, thus, elevating fragmentation. Secondly, the monolithic set of transformations 

and their related integration routines applied on data inputs before the loading step may 

lead to two types of losses: losing the future value of data due to the physical modifications 

applied on its native representations, and losing parts of the actual data contents that do 

not meet the specified validation and staging criteria, even though such data might be of 

potential value in future analysis workloads. Fundamentally, ETL’s imposed criteria allow 

examining only a predefined subset of the data attributes, therefore only pre-determined 

analysis questions can be answered in DW [42]. This limitation prevents the end users 

from working on datasets in their native representations; users may have their own ideas 

about how they want to use the stored data. As result, each user may need to individually 

examine a dataset before devising a target data model or engineering data transformation 

routines for performing a particular usage workload. In response to this stance, a new 

concept has emerged in the data management landscape: data lake (or datahub). DL is 

initially coined by James Dixon [42] as a theoretical methodology to address two important 

problems; one is old, and one is new. The old problem pertains to data fragmentation; 

rather than having dozens of independently managed datasets scattered across a multitude 

of platforms, it would be very convenient, and in fact much cheaper, to centralise these 

datasets into scalable flat storage space. The new problem pertains to big data initiatives; 

a big data scenario usually requires large amounts of varied data, and the data is so varied 

that it is not clear what it is, when it arrives, and how frequently it changes over time. 

Imposing constraints on the storage of such data entails constraining its future use and 

value mining. Although the popularity of DL has substantially grown in business and 

scientific fields, yet there is no formal consensus on a technical definition for it. Simply 

put: DL is as a data management architecture enabled by massive storage repository 

principally based on low-cost infrastructure to facilitate storing huge amounts of raw data, 

that for the most part, have a potential value which yet to be explored in the future [43].  

ETL’s schema enforcement on input data before its storage in DW is overwhelmingly 

characterized as schema-on-write [47]. In stark contrast, the DL concept originates from a 

new premise called ELT (Extract-Load-Transform) [47], which emphasizes extracting raw 

data from multiplicity of heterogeneous and unknown input sources, directly loading them 

into scalable unified repository in “untransformed state”, and deferring all upfront data 
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processing efforts to a later stage in the data’s lifecycle inside DL. ELT reflects significant 

shifting from traditional ETL, as it allows preserving the native representations of data 

upon storage by postponing the T step until the data is absolutely required for a particular 

usage workload, thus, no schema enforcement is required prior to L step, and all incoming 

data is accepted, without rejecting any. This idea of “load data now and deal with it later” 

is usually characterized as schema-on-read [47], and it enables DL to offer empirical 

advantages that cannot be gained using any other management solutions. Among these 

advantages, we are mainly interested in the following:  

 Loading big data is really fast undertaking and can be readily automated, as users 

no longer need to define standard data models, design rules for handling cleaning, 

validating, or aggregating data upon its input.  

 The no-schema approach relaxes data capturing restrictions and enables complete 

storage agility, this becomes very attractive when the user requires centralising a 

variety of voluminous big data with unknown schemas and with rapidly evolving 

structures. Data of an arbitrary type can be directly “dumped” in the lake.  

 DL gives end users more power to explore big data in their own way with extreme 

flexibility to impose ad hoc structures and transformations on the data as needed, 

consequently, the user can ask questions that the stored data might hold answers 

for, not just the type of questions that can be mentally realized during data storage, 

but also new questions which were not thought of at that stage.  

The above advantages are not without costs. There are doubts and concerns about the 

possibility of data becoming incomprehensible due to the absence of unified schema or 

similar means of data interpretation, and that the ample accumulation of incomprehensible 

raw data could cause DL to drift into a data swamp. The analogy here suggests that a lake 

is somehow neater and more orderly than a swamp, but the only reason it appears so is due 

to the complexities hidden below the surface. In a swamp, some of the complexities are 

clearly visible: the data consists of disparate datasets and isolated information silos. This 

intuition is well established in DL literature. Gartner recently published a report to outline 

the potential pitfalls in adopting DL as an enterprise-wide big data management solution 

[62]. The report portrays DL as a “catch-all” repository where storing raw data is easy but 

pulling it out – or even making sense of it – is very difficult undertaking due to DL’s 
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inherent lack of data governance and quality. Governance is defined as the policies and 

procedures required to ensure proactive and effective data use [63]. Data quality is defined 

as the state of completeness, validity, consistency, timeliness and accuracy that makes data 

suitable for a specific use [64]. Dekker [65] states that data is of high quality "if they are 

fit for their intended uses in operations, decision making and planning”.  

Current state of the art governance and quality techniques rely on the existence of a unified 

schema to define how the stored data can be systematically discovered, accessed, and used, 

and what quality and integrity constraints are imposed on its usage [66]. By relinquishing 

unified schema enforcement on data upon its ingestion, DL becomes a natural architecture 

for agilely capturing and storing raw data with a plethora of native schemas – ranging from 

relational, self-describing (e.g. CSV, JSON, XML), and schema-less (e.g. free-text and 

multimedia). The downside of the offered agility is that: data in its native representations 

is rarely immediately available for consumption since the end users cannot run usage 

workloads on data with severe discrepancies, instead, they must wait until application-

specific schemas are defined. On one hand, retrieving raw data without known schemas 

entails propagating large amounts of heterogeneous, inconsistent, or irrelevant data to the 

end user [67]. On the other hand, attempting to govern data upon its retrieval from DL and 

before its use is very difficult undertaking [68,69], for instance, only limited number of 

quality rules (e.g. denial constraint [70]) can be defined without the need for schema 

information. The work in [71] further extends these concerns by arguing that the schema-

on-read does not only enhance data accessibility and agility but also relieves the DL’s 

administrators from any upfront processing burdens and squarely placing them on the 

shoulders of end users in very problematic way from management perspective. Schema-

on-write approach exists for a strong reason: data with an enforced schema can be readily 

understood by end users, such understanding is important for querying and utilising it [71].  

To compensate for the lack of schema-on-write enforcement, the DL concept emphasizes 

the following simple assumptions [42,62]:  

 The user can recognise the contextual bias of how data was pulled from its sources. 

 The user can accurately identify the correct data in DL predicated on its structural 

characteristics. 
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 The user knows how to reconcile the semantic and structural heterogeneities of DL 

data and can readily integrate it during usage workloads. 

Recent studies (e.g. [62],[71], and [72]) strongly disagree with the above assumptions on 

the basis of their negative impact on DL’s applicability in the real world. For instance, 

Gartner analysed DL adoption in the business domain and delineated the following: 

“While many assumptions may be true for users working with data, such as 

data scientists, the majority of business users lack this level of sophistication 

or support from operational information governance routines. Developing 

or acquiring these skills or obtaining such support on an individual basis, is 

both time-consuming and expensive, or impossible.”.  

[62] 

Overall, this review provides an accentuated insight into the impracticality of utilising DL 

stored data by unskilled end users. In any usage scenario, the user will want to retrieve 

particular raw data from the lake (full datasets, or subsets of data entities), and customize 

how the usage workload at hand can be executed on the data as efficiently as possible. 

Before such an endeavour can take place, the user should first conduct an exploratory 

analysis to identify relevant useful data. Once data is spotted, the user will need to 

determine its utility and detect any anomalies that would require pre-processing (i.e. 

quality) [58,69]. Unless the user already understands the data, they would need to gather 

information about important facets of the data by asking questions like:  

 Where did the data come from, is the source of origin reliable? 

 How old is the data, are its implicit facts outdated? 

 What changes occurred in the data, is the degree of its fidelity trustworthy? 

 What is the contextual meaning of the data, is it really relevant? 

 What is the representation of the data, is it accessible and retrievable? 

 How to combine the data with other data that have been found earlier? 

 

Finding answers to this kind of questions requires a priori knowledge regarding the lake’s 

data, which is typically provided by means of the metadata technology. In the next sections 
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we review this technology from multiple viewpoints and describe its roles in simplifying 

the user-experience for DL systems. 

2.2 Metadata management 

From a general viewpoint, metadata is popularized as “data about data”, or “information 

about data” [73]. This definition is broad; more specific definitions have been provided in 

the literature, perhaps the most comprehensive of which is the one from [74]: “Metadata 

is structured data about an object that supports functions associated with the designated 

object”. This notion implies the systematic organisation of the raw data based on metadata 

specifications, or functions. Metadata functions may include discovery, tracking (lineage), 

storage and archiving, organisation and management, privacy, query and retrieval of data 

throughout its lifecycle [75]. Researchers draw on metadata functions to create typologies 

categorizing desiderata metadata [76]. Enterprise DW typologies may include technical 

and business, and on finer graining level, process and operational metadata [77,78]. 

Different typologies might also be adopted in other fields, for example, digital library and 

information retrieval fields use descriptive, structural and administrative metadata [79], 

database design field may use structural and guidance metadata [77,79]. Beyond labelling 

and categorization, the types of metadata are meant to connect to the lifecycle of the data 

entity being represented or tracked. Metadata types can collectively be thought of as 

“value-added language” [73] that serves as an integrated layer in any data management 

system, which if appropriately placed and made accessible, to humans and machines, can 

act as eloquent language to enable the interplay between data entities stored in the system, 

and a particular activity over them, such as access, linking, analysis, among other similar 

directives.  

While the metadata application is manifold [73], with various typologies coming from a 

wide range of research fields, in the context of this thesis we focus on two frequently 

adopted metadata in DL literature: lineage (provenance) and semantic metadata. Buneman 

et al. [80] define lineage in the context of databases as essential management information 

that specifies the origins of data and the processes by which it arrived at the database 

premises. Likewise, Simmhan et al. [81] define lineage as one kind of metadata that tracks 
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the steps by which the data was extracted from its sources and made available for use a 

management system. Semantic metadata serves as management information to describe 

the meaning of its associated data, and its physical and operational attributes (i.e. schema 

attributes, physical format type, structure information) [82,83]. Both metadata types may 

offer sufficient governance information about the DL stored data, which consumers can 

exploit to measure the quality of data and determine how it can be (pre)processed, 

integrated, and utilised [68,58].  

Enterprise Hadoop-based data lakes (HDL), like Hortonworks4 and Cloudera5, are salient 

exemplars of a full-fledged DL system that regards lineage metadata as an enabler of data 

provenance, governance, and usage [71]. The core architecture of a typical HDL usually 

consists of: data acquisition system for collecting raw data from local/remote input 

sources; Hadoop File System (HDFS) [84], scalable distributed flat repository for schema-

less data storage; Hadoop MapReduce [85], a software framework for processing huge 

amounts of raw data stored in HDFS (or similar repositories such as HBase6); and a basic 

metadata repository for managing the chain of custody and tracking the lineage of the 

ingested data. Technically, HDL is a flat architecture for storing huge amounts of data in 

untransformed state. Each data entity is associated with a unique identifier (key) and 

lineage metadata. To prepare the data for a particular usage workload, the consumer should 

conduct exploratory analysis on the lineage supplementary information associated with the 

data stored in HDL to determine its sources, subsequently, the consumer may have to go 

through the tedious task of carefully studying the documentation offered by each source 

(e.g. database catalogues, API documentation web pages, software manuals, etc.), and 

adapting suitable tools to understand the semantics of the data and its provided schema(s) 

[52]. Such task is known by many terms, the most frequent of which is data stewardship, 

and it enables the consumer to prepare the data for utilisation through MapReduce jobs. 

Essentially, a MapReduce job is a two-step process that involves: map which concerns 

retrieving data from the lake as a set of key-value pairs, and reduce which concerns 

shuffling, sorting, and listing the retrieved keys into groups, where the data in each group 

                                                 

4 https://hortonworks.com  
5 https://www.cloudera.com  
6 https://hbase.apache.org  

https://hortonworks.com/
https://www.cloudera.com/
https://hbase.apache.org/
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shares commonalities based on user’s defined criteria. Particular groups may be selected 

for further processing, and the contained data may be further pre-processed through 

transformation using external ETL-like tools or ad hoc scripts before the actual usage 

workload can take place.  

It is well-established that metadata can play active roles in reducing manual stewardship 

efforts. When metadata is managed efficiently, it can significantly improve multiple 

downstream tasks in the data processing pipeline, like schema modelling, data integration, 

data retrieval, and querying [77]. However, in contrast to lineage, semantic metadata may 

require a dedicated process to govern the necessary activities for ensuring its consistency 

and availability, including metadata extraction (or creation), metamodeling, annotation, 

retention, retrieval, and maintenance. The process of managing these activities is called 

metadata management, and it is problematic in dynamic environments. The work in [87] 

discusses some of the main essentials and challenges in this regard. Technically, in order 

for a system to exploit the full potential of metadata technology, it must be capable of 

creating, and associating data with appropriate lineage and semantic artefacts that are 

stored where they can be easily accessed and queried [73], indexed for consistent 

availability [82,88], and nonetheless, persistently kept up to date over time [60,71,81,82],  

Associations between the data and its relevant metadata artefacts should be accurate and 

comprehensive in capturing and reflecting as much information about the data as possible 

[82,89,90]. They should also conform to specific metadata standard(s), and made available 

in an appropriate machine-readable format [52,74,79] so they can be readily and uniformly 

accessed and processed, or even shared with third parties whenever needed [44].  

An analogue comparative for metadata management is the management of reference and 

bibliographic data (i.e. card catalogue) in brick-and-mortar libraries. Librarians often 

manually add high-quality information to describe the library materials, such as their 

storage and origin (i.e. lineage), what the information in them is, and how to find them 

quickly (i.e. semantics). Catalogues are usually organised using a suitable management 

system (e.g. Dewey decimal classification) to simplify the access and use of their contents 

by librarians and visitors. Applying a similar procedure in a DL environment would be 

sufficient practice to deliver effective metadata management, however, such practice may 

also be impaired by obstacles pertaining to the difference between the two comparatives.  
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It is obvious that manually annotating big data with appropriate metadata artefacts is 

laborious and time-consuming, especially if the size of data is huge, which is the most 

popular characteristic of big data. In order to exploit metadata for big data management 

and usage, DL administrators should create it in an easy-to-understand format and utilise 

it to annotate everything in the lake, starting from highly structured data records, down to 

rudimentary flat files (e.g. unstructured textual contents), otherwise unannotated data will 

be invisible to consumers. The work in [82] portrays metadata (especially semantic type) 

as a necessary representation of whatever data it is associated with. Like any other kinds 

of representations, its raison detre is to summarize and reduce the actual content of its 

associated data to a very condensed easy-to-manipulate form. One important property of 

such representation is that: it is a collection of purposive artefacts that have associated 

purposes, and criteria of selection and summarization, to reflect those purposes. For 

example, the artefacts used to represent a review in product reviews dataset might be very 

different from those used to represent an artwork in a gallery dataset, this leads us directly 

to the need for various types of semantics which may have to be drawn from multiple 

semantics providers (i.e. ontologies [91]). Because there is no single ontology that can 

satisfy all purposes, an abundance of ontologies should be adopted to create appropriate 

metadata artefacts for representing a variety of types of data stored in the lake [71,92], 

while at the same time, providing ways to heuristically connect the adopted ontologies 

[93,94]. Without such connections, data consumers cannot utilise disparate metadata for 

integrating and utilising disparate data.  

Manual metadata creation and annotation express a strategic shift of time and attention 

from data consumers to administrators. Such shift involves both advantages and expensive 

requirements. On one hand, the metadata artefacts created by humans are usually more 

precise than those produced through mechanical processes [82], and precisely crafted 

metadata can greatly enhance the quality of data and simplify its usage in various 

downstream data management tasks. On the other hand, administrators, as human metadata 

managers, must have concrete technical background regarding semantic technologies and 

metadata management activities, for instance, a DL administrator should: 
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 Know precisely what artefacts to be chosen for annotating the raw data at hand. 

 Recognise the well-established ontologies available in different fields, and the 

semantic tractability of each ontology.  

 Understand the appropriate techniques (e.g., semantic integration [94]) to establish 

connections between the adopted ontologies, which are necessary for inference 

over ontology-federated data representations.  

 Comprehend the nature of data consumers to produce metadata artefacts that are 

compatible with their data needs and requirements.  

2.3 Data lake metadata management 

There exists a good deal of work in DL literature that focuses on automating the core 

activities of metadata management under the user’s supervision. The common goal of 

existing approaches and frameworks is to dramatically reduce the costs of metadata 

management within DL environments by offering the necessary means to simplify the 

activities of metadata creation, extraction, annotation, querying. Data profiling [95] is the 

simplest approach for creating metadata by obtaining statistics and descriptive summaries 

about the raw data gathered from a given input source. Data profiling was originally 

introduced to support DW MMFs in assessing data quality and identifying its anomalies 

during ETL extraction and transformation steps [46]. Instance-level data profiling involves 

applying statistical operations on the data contents, such as the computations of minimum, 

maximum, mean, mode, percentile, standard deviation, frequency, variation, aggregates 

like count and sum, as well as applying rules to determine the length, discrete values, 

uniqueness, occurrence of null, typical string patterns, and abstract type recognition [58]. 

Schema-Level (semantic) profiling involves capturing relationships between raw data by 

determining its structural and syntactic similarities using advanced techniques such as 

clustering and semantic integration. Bohm et al. [96] proposed a tool called ProLOD++7 

for diving deep into the all-around semantic profiling efforts ranging from clustering 

correlated datasets and inferring schema in each resulting cluster, to instance- level 

                                                 

7 https://hpi.de/naumann/projects/data-profiling-and-analytics/prolod.html  

https://hpi.de/naumann/projects/data-profiling-and-analytics/prolod.html
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profiling statistics. The focus of this work is limited to Open Linked Data [97] that is 

strictly available in Resource Description Format (RDF) [98] format. Alserafi et al. [99] 

proposed a framework for profiling similarity, both syntactic and semantic, between 

datasets. This framework is based on an ontology alignment approach. Each ingested 

dataset – with metadata consisting of different profiled attributes – is converted into an 

RDF file. Profiling files are then sent to an RDF-based ontology engine to detect their 

similarities and record them as metadata. The framework uses PARIS ontology alignment 

[100] due to its robust performance on high scale RDF data. Salem et al.[69] introduce an 

algorithm to govern big data and describe the quality of large datasets by detecting the 

issues of each dataset and generating semantic metadata for its contents using a semantics-

based profiling algorithm. Ansari et al. [101] extend the former work and introduce a 

generic framework for semi-supervised statistic and semantic profiling in any DL. The 

framework implements profiling algorithm that accepts external background knowledge 

about the dataset under concern, and its aim is to annotate the attributes of the dataset with 

these semantics, and the final output is a set of semantic artefacts that is stored into Hive 

[102], and can be directly queried by consumers. Revelytix Loom [103] is a similar but 

more advanced framework that is designed as an integrated layer in enterprise HDLs for 

data profiling and governance, and audit trail. The core of Loom is an extensible metadata 

repository for managing business and technical metadata, including lineage, for describing 

the data in HDL as well as the surrounding systems. Loom’s active scan process automates 

the creation of metadata for HDL stored data. It crawls HDFS to discover and introspect 

new files. Loom’s metadata repository is implemented using Hive; administrators can 

directly perform CRUD operations on the stored metadata, whereas data consumers can 

only read the metadata during usage workloads by executing Hive-compatible queries. 

Atlas [104] is a governance and metadata management initiative from Hortonworks8 for 

HDLs. This Apache framework automates the creation of metadata and defines the 

relationship between the data stored in the lake. It focuses on lineage more than semantic 

metadata, however additional components can be added to its architecture in order to 

extend the core foundational services – an example of Atlas extensibility is given in section 

4.2. Atlas enables the user to import or define ontological business-oriented metadata, and 

                                                 

8 Atlas was initially started by Hortonworks and then taken over by Apache as a top-level project. 
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to export metadata to third-party systems. It also allows the user to create and store security 

metadata that specifies how data consumers can interact with the stored data, with column 

and row level masking based on cell values, cell attributes, and the preferences of the user. 

Regarding usage, Atlas offers (i) text-based search feature to locate relevant data and audit 

events across HDL quickly and accurately, (ii) visually browsing the lineage of datasets, 

thus allowing users to drill down into basic, security, and provenance-related metadata. 

Atlas’s metadata repository is a graph database that is implemented using Titan9, with 

multiple options to support a variety of stores for persisting the metadata graph, including: 

Berkeley DB10, Apache HBase and Apache Cassandra11. It also contains an additional 

repository in the form of index store for indexing data and metadata using Elastic Search 

[105]. For adding metadata to Atlas’s repository, libraries that are referred to as “hooks” 

can be programmatically called from various external systems such as Hive, Nifi, Falcon12 

and Sqoop13. A hook captures metadata about data and events in the respective systems 

and propagate them to Atlas, which in turn consumes the forwarded metadata and updates 

the metadata repository. Any updates applied on the metadata repository, whether via 

hooks or APIs, are propagated from Atlas to downstream systems as events. Systems like 

Apache Ranger consume these propagated messages and allow administrators to act upon 

them (e.g. configuring governance policies, access control, etc.). Similar full-fledged, but 

commercial MMFs are also available as HDL-specific solutions, for example, Cloudera 

Navigator14, as part of ClouderaEnterprise, enables the user to add and manage metadata 

about the data stored in a target HDL, and offers critical metadata-based data discovery 

and continuous optimisation of lineage and governance enforcement services to the HDL 

user.  

Shifting to current state of the art scientific research; Ground Metadata [106] is an on-

going research project aims to provide vendor-neutral (generic) management approach for 

collecting contextual information in big data applications. Information may be collected 

                                                 

9 http://titan.thinkaurelius.com  
10 http://www.oracle.com/us/products/database/berkeley-db/index.html  
11 https://cassandra.apache.org    
12 https://falcon.apache.org  
13 https://sqoop.apache.org  
14 https://www.cloudera.com/products/product-components/cloudera-navigator.html  

http://titan.thinkaurelius.com/
http://www.oracle.com/us/products/database/berkeley-db/index.html
https://cassandra.apache.org/
https://falcon.apache.org/
https://sqoop.apache.org/
https://www.cloudera.com/products/product-components/cloudera-navigator.html
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through big data classification it, tracking the data follow with hosting application, and 

monitoring who is using the data, when, how, and why. Contextual information is stored 

as metadata in a SQL backend and made available for various purposes, such as data 

model-specific interpretation, reproducibility, interoperability, and governance. Ground 

Metadata implementation is publicly available15 but without any literature to explain its 

architecture or empirical performance benchmarking. CLAMS[68] is a system to discover 

and enforce expressive integrity constraints (i.e. denial constraints) from large amounts of 

lake data using very limited schema information given in the form of as RDF triples. The 

system is built for HDL, it executes SPARQL queries over the schema of each dataset 

stored in HDFS for detecting its issues and recording them as quality metadata. CLAMS 

metadata can be devised by end users as heuristics to determine how queries should be 

formulated. The system is optimised to operate on distributed Spark16 for performance 

gains and scalability support, therefore, it can handle huge amounts of data compared to 

relational denial constraint algorithms. Datamaran [107] is a metadata extraction tool that 

scans semi-structured log-like datasets stored within a DL, and extracts their structures as 

schema metadata that can be used for data annotation. The extracted schema metadata can 

be also enriched by extended semantic artefacts to improve data quality. Datamaran 

operates as an unsupervised tool; it does not require prior knowledge for processing the 

datasets under concern. It automatically identifies field and record boundaries and 

separates the structured parts from the unstructured noise or formatting to tease apart 

multiple structures from within a dataset. Datamaran has been shown to be able of 

extracting structured relational metadata from semi-structured log datasets at scale and 

with high accuracy [107]. GEMMS [90] is another MMF that extracts and manages 

metadata about the data stored in a DL system called Constance [108]. This MMF aims to 

generate and annotate user’s personal data in life science field by modelling it according 

to a common model defined by means of an ontology. Kayak [109] is a generic framework 

for managing DL contents through data staging and profiling. An extended discussion 

regarding Apache Atlas, GEMMS, and Kayak, among other relevant approaches, is given 

in section 4.2. 

                                                 

15 https://github.com/ground-context/ground  
16 https://spark.apache.org  

https://github.com/ground-context/ground
https://spark.apache.org/
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2.4 Existing work limitations  

Mainstream frameworks and tools in the enterprise are generally more biased towards 

lineage than semantic metadata in terms of management, whereas their counterparts in the 

scientific field take the opposite trajectory. Existing body of work expects significant 

involvement of the DL user in the metadata management process for supervising its 

downstream tasks, commonly creation and annotation, in efforts to ensure the consistency 

and freshness of the metadata repository [108,110,111]. In Section 2.2, we listed four 

requirements that a DL user must meet in order to fulfil metadata management supervisory 

roles. These requirements may become costly when the DL user is considered “common 

user”, which is the case of PDL. Based on the review presented in this chapter, we draw 

the following observations: 

 MMFs currently put into practice focus on metadata creation, annotation, and 

usage but ignore another vital activity; maintenance. The reliance on metadata, 

especially for usage, emphasizes the need for high-quality metadata [65,68]. When 

data velocity comes into play, the quality of metadata may be drastically affected 

[112], as the representation details of the data can rapidly and/or frequently change 

due to schema evolutions and other external dynamics imposed by input sources. 

Velocity is not problematic when the end user is skilful and expected to be actively 

involved in the management process. However, when the attention is shifting 

towards automating the metadata management process, then addressing velocity 

through automated maintenance becomes a paramount effort. 

 Most current state of the art MMFs are application-specific, designed to meet 

particular requirements, and tightly coupled with specific architectures [108]. Even 

when an MMF is assumed generic, it still requires a lot of efforts to facilitate its 

adaptation, customization, and interoperability in other architectures. To illustrate, 

we readily notice that Atlas is built for HDLs, and its adoption in another DL type 

necessitates extended adoption of other Hadoop projects, such as Apache Kafka17, 

which is used by Atlas as a notification server to exchange metadata over hooks 

                                                 

17 https://kafka.apache.org  

https://kafka.apache.org/


2.5 Summary 39 

 

[103]. Adopting CLAMS entails extended adoption of HDFS, Spark, and Hive. 

Similarly, GEMMS is proposed as generic MMF, but described as a solution that 

can only fit Constance architecture and its object-oriented model [108]. 

 The metadata management mindset in DL research is largely in accordance with 

traditional data cataloguing practices. An ideal metadata management solution 

should be data-driven and derive from context, such that, metadata – as purposive 

representations of data – should not only be intended for answering common 

questions (who, what, when, where and why) and performing integrations for data 

with basic heterogeneities, but rather supporting advanced inter-play functions 

over data to facilitate deep analytics over data with severe heterogeneities which 

require holistic integration to squeeze more value [110]. Providing unified views 

over integrated structured, semistructured, and unstructured data altogether is an 

extremely complex requirement. Such complexity is further elevated by the 

absence of schemas due to replacing ETL with ELT in DL architectures, as well as 

the fact that unstructured data does not naturally sustain any schemas that can be 

extracted and represented through metadata artefacts. That said, a sophisticated 

process is required for discovering the schemas of unknown (semi) structured data 

as well as building some sort of schemas for unstructured data before other 

metadata management activities can take place. Such process should also take into 

account sustaining the native state of data towards preserving its future value in 

DL – compared to other management approaches that emphasize transforming the 

structures of the (semi) structured data (e.g. DW) or even converting unstructured 

data into structural entities (e.g. personal knowledge bases [36,113]). These 

complexities plausibly justify why all the discussed tools tend to specialise in 

handling either (semi) structured or unstructured data. 

2.5 Summary 

Although DW is an important data management solution for addressing the fragmentation 

and isolation problems, the technical specification of its underlying processing workflow 

is problematic. ETL tends to exhibit brittle performance in the presence of the 3Vs model. 
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Enforcing predefined unified schema upon data storage (on-write) entails a partial loss in 

its value and restrictions on its future analysis. DL is a more recent data management 

solution that is specifically designed to address the 3Vs model complexities. The DL 

underlying workflow (ELT) entails inexplicable data storage due to the lack of an inherent 

mechanism for organising the stored data and orchestrating its usage. Lack of governance 

(and quality) promotes data isolations and threatens to shift DL into data swamp if not 

effectively addressed. Therefore, different approaches have been proposed in the 

enterprise and scientific fields to bring order to DL through heavy reliance on metadata. 

The lingua franca of these approaches is to materialize data governance and quality largely 

through lineage and semantic metadata. Lineage artefacts are used to track the stored data. 

Semantic artefacts are used to facilitate data metamodeling with respect to predefined 

ontologies, towards reconciling the semantic and structural heterogeneities of the stored 

data and enhancing its discovery, accessibility, retrieval, and usage. Although metadata is 

regarded in the DL literature as quintessential technology, the current state of the art 

approaches suffer several management limitations which are discussed in Section 2.4, and 

further elaborated in sections 4.2 and 5.1. 
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Chapter 3 Personal Data Lake Architecture 

As presented in section 1.6, the main deliverable of this thesis is a framework (MMF) for 

automating data management tasks in PDL through metadata fabrics. The focal aim of this 

chapter is to describe the architecture of MMF and its position as a central layer in PDL. 

In order to explain the constituting components of MMF and their roles in PDL processing 

workflow, it is important to explore PDL architecture as a hosting platform. This is because 

reviewing each architectural layer, the rationale behind its design, and its constituting 

components, can greatly help in understanding how does MMF obtain personal data inputs, 

how are they processed in ways that satisfy the requirements of an automated management 

solution, and how a hosting platform can be optimised to exploit the full potential of MMF 

– this is particularly important in the cases of reusability in other relevant systems.  

3.1 A Hadoop-independent data lake system 

At present, the DL concept is tightly linked to Hadoop’s ecosystem of Apache projects 

[43]. Any organisation that seeks to develop a DL based enterprise-wide data management 

solution normally adopts Apache Hadoop technologies for two reasons: cost-effectiveness, 

and technological feasibility. Basically, Hadoop is a collection of open source software 

utilities that have been invented to offer new ways of storing and processing big data at 

limitless scale; in fact, no data is too big to be handled by an HDL. Hadoop does not require 

expensive hardware, instead, it leverages on benefits from distributed parallel processing 

for handling huge amounts of data. It can run on any number of cheap commodity servers 

to store and process data with low-cost and high scalability according to changing needs. 

Such infrastructure can easily address the 3Vs model of big data, and this is the main 

reason for its wide adoption by the major enterprise organisations and service providers18. 

                                                 

18 List of100 major organizations using Hadoop: https://wiki.apache.org/hadoop/PoweredBy  

https://wiki.apache.org/hadoop/PoweredBy
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 There is no formal specification (e.g. reference architecture) to describe a standard process 

for building an HDL, instead, Apache ecosystem offers a vast range of utilities, each with 

distinct characteristics to meet certain design requirements. Generally, the architecture of 

a mainstream HDL consists of four layers: ingestion, storage, management, and access. 

Each layer can be developed by drawing and mixing multiple specialised Apache 

technologies. It is important to note that the HDL architectures currently put in practice 

consist of too many Apache technologies19. A recent report estimates that, on average, 20 

different technologies20 are needed to implement full-fledged HDL, with each technology 

uses different language, manages different data types, supports particular design purposes, 

etc.  

Following the thesis aims set out in section 1.4, PDL is developed independently from 

Hadoop ecosystem. Basically, if we utilise the technologies adopted in current state of art 

HDLs as fundamental building blocks in PDL architecture, then our final solution is 

certainly not usable by common users due to escalating complexities relating to user-

experience. It is impossible to have a common user with broad and deep expertise across 

multiple Apache technologies, nonetheless, even if the user has such brilliance, she still 

needs to fulfil management roles that are normally played by a team of experts in an 

enterprise organisation. This observation emphasizes that any Hadoop-based PDL solution 

would be regarded as modern PIM solution that could efficiently account for the problems 

of personal data, but at an expensive cost: difficulty of use. A centralistic viewpoint here 

is the ideological difference between DL and PIM: while the former is specifically 

designed for skilful objective-in-nature users (e.g., data scientists, analysts, wranglers, 

etc.) who look for advanced technologies to derive more value from internal and external 

data in the business domain, the latter is designed for the personal domain, wherein 

unskilled subjective-in-nature users look for easy ways to conveniently store, manage, and 

retrieve their own data [1], and are unwilling to invest time and effort in learning how to 

use complex tools to do so. To situate our viewpoint on scientific ground, we reviewed 

several previous PIM studies, and found that common users may encounter difficulties 

even in using PIM systems with basic functionalities (e.g., organising files [114], emails 

                                                 

19 List of all Hadoop projects: https://hadoopecosystemtable.github.io  
20 https://hortonworks.com/ecosystems/  

https://hadoopecosystemtable.github.io/
https://hortonworks.com/ecosystems/
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[115], bookmarks [1], etc.). Common users also tend to avoid investing effort or time in 

learning more about their systems, as the derived value is marginal, and eventually the 

persisting difficulties affect their satisfaction with the offered user-experience in a negative 

way. Boardman et al. [7] among the early researchers in PIM field to highlight this finding; 

in their words: 

“Since PIM is an ongoing and often repetitive everyday activity, we found 

that even relatively minor bugbears can build up and have a negative impact 

on productivity and/or user experience.”. 

([7], p.3) 

The adoption of DL concept in the personal domain necessitates taking careful design and 

development considerations for a DL-based PIM solution like PDL, perhaps the most 

important among which is the extensive focus on simplifying the user-experience which 

such solution should be obligated to deliver whilst maintaining the robustness of the 

offered functionalities. In the context of our thesis, such viewpoint has greatly influenced 

our research work as will be demonstrated in subsequent chapters. Many studies in the DL 

literature seem to be in agreement with our viewpoint, for instance, the work in [108] 

proposes Hadoop-independent DL architecture for managing the personal data of common 

users in life science field. Similarly, the work in [116] introduces ad hoc architecture for 

their proposed DL without reliance on Hadoop.  

3.2 Personal data lake architecture overview 

PDL architecture follows a design pattern called layered pattern [117], which emphasizes 

separating the components of a large architecture into similar-functionality groups called 

layers. Such separation of concerns allows to flexibly encapsulate the complexity of the 

workflow of a given system architecture, and facilitates higher degrees of reusability, 

maintenance, and scalability [118]. For example, it is possible to deploy a new, update an 

existing, or maintain a malfunctioning component in one layer without affecting other 

layers within the same architecture. It is also possible to configure the security levels of 

various deployed components, such as isolating sensitive components in the architecture 
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core from the outside world whereas allowing other components to be accessible under 

appropriate access permissions.  

 

Figure 3.1– Overview of personal data lake architecture 

Figure 3.1. depicts overview of PDL architecture; it consists of four layers that correspond 

to the main activities of PIM organisational cycle defined by Jones [1], namely: ingestion 

layer for personal data acquisition (and creation), metadata management layer for personal 

data organisation and maintenance, storage layer for personal data archiving and storage; 

and access layer for personal data use and sharing. Each layer in PDL interacts with its 

peers through processing pipelines. A pipeline is a predefined sequence of processing 

components where the output of one component (e.g. raw data, metadata, business logic) 

is moved as input to the next inter- or intra- layer component until reaching the last 

component in the sequence. The underlying ELT of any DL is rigorously reviewed in 

section 2.1. In following, we define two pipelines that constitute PDL’s ELT. 

Storage pipeline: Extract-Manage-Load activities sequence for processing input 

raw data. The first activity concerns ingesting personal raw data from input sources 

through the ingestion layer. Ingested data is dispatched to the management layer in 

the second activity for metadata processing (creation, annotation, maintenance, 
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storage). The final activity involves dispatching the raw data and information about 

its associated metadata to the storage layer for permanent archiving. 

Usage pipeline: Load-Transform-Use processing activities for utilising the stored 

data. The first activity concerns receiving an input query formulated either directly 

by the user or more commonly through a third-party service plugged in the access 

layer. The input query is dispatched to MMF for compilation and execution. MMF 

is responsible for loading all the raw data stored in the storage layer which is 

relevant to the query’s requirements. In the second activity, the loaded data is 

organised based on its associated metadata (views), with possible transformations 

that are called virtual transformations, and returned to the access layer as query 

results. The final activity involves the direct use of the results, or processing it 

before it can be used to serve the query issuer’s requirements. 

In the remainder of this chapter, we construe each layer in PDL architecture and its 

relations with the proposed MMF to illustrate how the latter is handling the ELT specified 

above.  

3.3 Ingestion layer 

Data ingestion is an input process that concerns controlling the flow of personal raw data 

from its original sources to the lake. Technically, there are two issues to consider in 

personal data ingestion: PDL must support the end user in ingesting raw data from a range 

of target input sources regardless of their “offered” data collection mechanisms. Though 

service providers commonly serve data collection via RESTful APIs [119], not all personal 

data sources offer the same means, instead they may offer collection through application-

specific protocols (e.g. SOAP, SPARQL, SMTP, etc.), or not exposing any explicit means 

at all (e.g. PC software applications, smartphone built-in services) [36]. Secondly, PDL 

should relax ingestion constraints to offer unlimited data capturing potential, which entails 

that the ingestion process should be comprehensive in collecting data from input sources 

regardless of their data generation modes (active/passive), the native representations of 

their offered data (schema, format, structure type), and its velocity over time.  
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Figure 3.2– Overview of ingestion layer 

PDL contains a layer called ingestion layer that serves as the entry point of the architecture 

as depicted in Figure 3.1. This layer is designed with extensive focus on addressing the 

aforementioned ingestion issues. The main functionality of ingestion layer is to automate 

the process of personal data ingestion and to help the PDL user in keeping the stored data 

up to date by synchronizing PDL with all the data sources which are of interest to the user. 

As depicted in Figure 3.2, ingestion layer consists of three components: public RESTful 

web API called Data Source API (DSAPI) which accepts data from the outside world as 

new inputs, Ingestion Agents Container (IAC), a plugging-enabled platform for running 

third-party software agents that specialise in collecting data from target input sources, and 

Messaging Queue, a data persistence component to temporarily hold newly ingested data 

before the storage pipeline becomes ready for processing it. 

3.3.1 Data ingestion approach 

The underlying workflow of ingestion layer is conceptually based on data synchronization, 

a general management process concerns establishing and maintaining the consistency of 

data between two or more parties [120]. Synchronization is a fundamental process in many 

research areas, such as personal and enterprise data collection [36], mobile data backup 
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[120], and sensory data management [121]. Generally, there are two kinds of data 

synchronization: directional and bi-directional. In directional synchronization, a party 𝐴 

monitors data changes in a target party 𝐵 over time so that any data not existing in 𝐴 is 

propagated from 𝐴 to 𝐵. In bi-directional synchronization two parties are monitoring the 

data changes in each other, so that any data not existing in one party is propagated to the 

other. The workflow of ingestion layer follows directional synchronization, such that, the 

ingestion layer exploits software agents to monitor target data sources, when an agent 

detects new personal data on a target source under monitoring, it issues a data collection 

request to that source, and upon the request’s approval, the agent connects to the endpoint 

of the target and transfers any new data updates to the PDL premises in the form of 

payloads that are posted to DSAPI and eventually deposited in the messaging queue. There 

are two methods for implementing directional synchronization between PDL and a target 

input source which are local agent-based synchronization (LAS) and remote agent-based 

synchronization (RAS). In following we describe the details of each method. 

Local agent-based synchronization 

The LAS method solves the problem of personal data extraction from input sources with 

different kinds of endpoints through plugging, a feature that enables the user to plug one 

or more software agents (called LAS Agents) in the IAC component to automate data 

ingestion from particular input source(s). A LAS agent is technically an open source 

executable code (e.g. class, library, package, etc) that is independently developed and 

distributed by a third-party developer. LAS agent operates inside IAC as a one-way adapter 

between DSAPI and the endpoint of a target data source, its role is to establish an end-to-

end communication channel over which PDL initializes and respectively maintains data 

synchronization with the target source. The workflow of LAS agents is as follows:  

 Upon deployment in IAC, the LAS agent loads a set of user-managed configuration 

settings that describe the agent’s ingestion behaviour, including: what target sources 

the agent is allowed to connect to, how to connect to each target source, and what 

personal data it should be extracted and propagated to PDL. 
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 The LAS agent establishes a connection with the remote endpoint offered by the target 

source at hand, and satisfies all the networking and security requirements imposed by 

it (e.g. authentication and authorization, permissible end point requests etc.).  

 Upon successful connection with the target’s endpoint, the LAS agent accesses user’s 

space hosted in that target source (e.g. social media account, cloud storage folder, etc.), 

and extracts any personal data that has been actively/passively generated by the user 

on the platform of that source. 

 The LAS agent propagates all the extracted personal data over the established 

communication channel to PDL. Data propagation is performed as authorized API post 

calls to DSAPI over HTTP. Once newly extracted payloads are posted by the LAS 

agent to DSAPI, the latter ingests and respectively stores it in the messaging queue 

component for later processing by the metadata management layer. 

 Beyond this point, PDL is said to be synchronized with a target data source, and 

thereafter it is the agent’s responsibility to maintain this synchronization over time by 

triggering periodic synchronization cycles. Each cycle involves repeating the above 

steps in order to propagate any new data generated by the target input source, and 

which have not been extracted in the previous cycle. 

Remote agent-based synchronization (RAS)  

LAS agents automate data ingestion from input sources with dedicated endpoints, however 

not all input sources offer such lavishness, and this is where RAS method comes into play. 

RAS relies on executable code units called RAS agents to ingest data using source-specific 

(ad hoc) personal data collection means. In contrast to LAS, a RAS agent is not locally 

plugged in IAC platform, but rather is designed as an installable software program that 

runs as a background process in the platform that runs a target input source of interest to 

the user. A RAS agent acts as: (i) virtual endpoint for input sources operating on personal 

devices which commonly do not expose explicit endpoints, such as ubiquitous sensors and 

applications locked by their vendors (e.g. Skype21), and (ii) one-way synchronization 

                                                 

21 Skype is a third-party service that acts as data silo by locking in user data with no programmatic access 

point, however, its backend is SQLite database that is persisted locally on the device hosting it, hence, 

synchronizing it with PDL is possible using purpose-built RAS agent that can directly access the database 

and scan newly added data.  
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adapter between the operating system of a personal device and DSAPI. RAS workflow is 

similar to the LAS counterpart that is explained earlier but with a single difference, the 

execution environment of the agent.  

Figure 3.2 depicts an example of directional synchronization between PDL and six target 

sources denoted as {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6}. The sources 𝑆1, 𝑆2, 𝑆3 are third-party services 

independently run on remote platforms managed by different providers. These services are 

monitored by two LAS agents that run inside IAC with request/response communication 

channels to collect personal data through the public API offered by each service platform, 

for example 𝑆1 offers API that allows the agent LAS2 to collect data in the form of GZIP 

payload, similarly 𝑆2 offers API that allows the agent LAS1 to collect data in the form of 

XML payload. Figure 3.2 also depicts another three target sources, namely 𝑆4, 𝑆5, 𝑆6, 

which are applications running on different personal devices (e.g. PC, smart phone, smart 

tablet, etc.), each contains an internal RAS agent that pushes new personal contents 

directly to DSAPI in the form of payloads serialised in a format called PDLSF (see section 

3.3.2 for more details). It is not necessary to have a LAS/RAS agent that corresponds to a 

single input source in one-to-one fashion, instead the same agent may be used to 

synchronize PDL with multiple target sources (i.e. one-to-many). For example, Figure 3.2 

depicts two LAS agents that are plugged in IAC; namely LAS1 and LAS2. The former 

synchronizes PDL with two social media services (𝑆1,𝑆2) whereas the latter synchronizes 

PDL with a cloud-based storage service (𝑆3). Analogously, the agent RAS1 is used to 

synchronize PDL with 𝑆4, 𝑆5, 𝑆6. 

3.3.2 Metadata-added data ingestion management 

Filling DL with raw data from a variety of input sources is not an easy task, this may 

explain why Hadoop ecosystem offers several ingestion-specific Apache projects for 

fitting different data collection requirements. LAS/RAS methods greatly simplify the 

filling process in PDL by relying on specialised agents to isolate the common user from 

the technical details of the data ingestion. In order to add22 new input source to PDL, the 

                                                 

22 Throughout this thesis, we refer to the procedure of synchronizing PDL with a new input data source of 

interest to the user as source addition.   
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user must select an ingestion agent that is compatible with that source, configure it with 

appropriate settings, and finally deploy it, whether in the IAC (LAS) or on a personal 

device (RAS).  

 

a. Ingestion settings sample 

 

b. Ingested data in PDLSF format 

Figure 3.3– PDLSF object propagated by LAS agent to DSAPI 

There are two kinds of settings associated with each ingestion agent in PDL environment: 

technical and PDLSF settings. Technical settings are similar to the technical metadata 

heavily used in DWs, but with less verbose structuration, and their main utility is to govern 

how the ingestion agent connects to the endpoint of a target data source, and how the 

synchronization cycling should be established and maintained. From finer grained 

perspective, technical settings are divided into: security, and synchronization. It is well-

known fact that most service providers offer endpoints that are wall-gardened with a 

lightweight security mechanism called OAuth [122] to protect their platforms from 

malicious access attempts by unauthorized third parties. DSAPI implements OAuth for the 

same purpose (see Figure 3.2). When a data source 𝑆𝑖 offers an explicit OAuth-enabled 

endpoint, then a compatible ingestion agent would certainly be LAS, thereby as an adapter 

between a pair of endpoints it requires two separate sets of security settings: one for 

delegated access to 𝑆𝑖 endpoint, and another for authorized access to PDL’s DSAPI. In 

contrary, if the data source is a service running on personal devices then the agent is likely 
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to be RAS, therefore only one set of security settings is required for connecting with PDL’s 

DSAPI. A set of Security settings includes: endpoint address (URI), secret key, and access 

token [122]. A set of Synchronization settings include: cycle interval (sync cycle) which 

is an integer number specifying the time period between two synchronization cycles, and  

connection timeout which is an integer number specifying the time that the agent should 

take for the endpoint to send a response payload. Figure 3.3.a shows an example of security 

and synchronization and settings for a LAS agent that is configured to synchronize a PDL 

instance with a Facebook account over Facebook Graph API [256]. 

Common users usually have very abstract idea about the “types” of their personal data 

residing in a source of their interest. For example, it is a common sense for the user to 

assume that social media services deal with posts, mailing services mostly deal with email 

messages, and so on. If such abstractions are interpreted by means of semantic information 

(or concepts) that can be drawn from a formal ontology, denoted as 𝑂, then they can be 

easily shared with PDL. For instance, given the concepts feed and email from 𝑂, the 

former is an obvious choice to convoy the type of the data ingested from a social media 

service, and latter for data ingested from a mailing service. To support type conception 

sharing, we define our own serialisation format, called personal data lake serialisation 

format (PDLSF), that every ingestion agent must follow for submitting personal raw data 

with basic type concept to DSAPI. The description of PDLSF format settings, their 

permissible values, and the responsibility of value assignments for any LAS/RAS agent 

are listed in Table 3.2.  In a synchronization cycle, the agent renders the raw data extracted 

from an input source as PDLSF object before submitting it to DSAPI. A PDLSF object is 

technically an HTTP raw message that follows a formal specification called HTTP 

Multipart Messaging [123]. A PDLSF object consists of two consequent sections: meta 

and raw. The meta section holds a JSON object that consists of the four attributes as listed 

in Table 3.1. The corresponding values of source and type are manually specified by the 

user upon the deployment of the agent in IAC (i.e. source addition). The remaining 

attributes are set by the developer of the agent, and can be overridden by the user as 

desirable. The raw section holds the data payload extracted by the agent from that target 

data source with native representation that is preserved intact. Figure 3.3.b illustrates an 

example for serialising personal raw data collected from Facebook API and serialised in 
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PDLSF format based on the PDLSF settings defined in Figure 3.3.a. The depicted PDLSF 

object here can be directly pushed to PDL’s DSAPI over the established communication 

channel between PDL and Facebook. During our experiments with PDL, we observed that 

the conception of various types of structured and semistructured raw data can be readily 

abstracted using ontological concepts. Conversely, such undertaking for unstructured data 

is relatively difficult, therefore we relax the DSAPI constraints by permitting LAS/RAS 

agents to submit PDLSF objects that contain unstructured raw data in the raw section (by 

means of assert), and which contain type attribute in the meta section with missing value 

(null), to DSAPI. Consequently, the responsibility of abstracting the type of unstructured 

data is placed elsewhere in the storage pipeline (see Chapter 5). 

Table 3.1 – PDLSF metadata settings 

Setting Type Tracking User-defined Functionality 

Source URI Semantic Yes 
To distinguish a target source from 

other sources in PDL. 

Type URI Lineage Yes 
To express type of data in the form 

of concept drawn from 𝑂. 

Context Hash Lineage No 
To represent the unique identifier 

of the ingestion agent. 

Assert Numeric Semantic No 
To specify the structure type of 

input source data. 
 

3.4 Metadata management layer 

As ingested raw data accumulates in PDL over time, usage interposition tasks like data 

discovery, identification, tracing, and querying, increasingly become difficult to perform 

without an automated user-assistance management approach. This problem is not specific 

to PDL; we explored several studies that share the same concerns in section 2.2, that is: 

DL’s natural lack of data governance and quality risks turning it into useless data swamp. 

As depicted in Figure 3.1, at the heart of PDL architecture lies the metadata management 

layer that is responsible for data management through formal metadata fabrics. This layer 
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is resembled by our proposed MMF and in the following subsections we explore its main 

foundations, architecture, and workflow.   

3.4.1 Metadata in personal data lake context 

MMF adopts two types of metadata for managing the personal data stored within PDL: 

lineage (or provenance [81]), and semantic metadata. The term “lineage” can be viewed 

as a concatenation of two parts [80]: line and age. The first part involves maintaining 

information to describe the input source of the raw data at hand, how the data is collected 

from that source, and when [124,125]. The second part involves maintaining information 

to specify who accessed the data, what changes have been applied to it during its lifecycle, 

who made such changes, and using what tools [125]. In PDL environment, lineage 

metadata is largely useful for exploratory analysis during usage workloads such as 

identifying all the data extracted from certain input source(s); ingested through specific 

ingestion agents; collected on specific dates and times, and so on (see section 2.2). In this 

work, we further extend the functionality of lineage metadata to provide basic but effective 

privacy measure for controlling data accessibility and protecting user privacy.  

Semantic metadata on the other hand is a significant source of prior knowledge for 

supporting data usage workloads. The common user, as well as authorized data consumers, 

may consult MMF to retrieve the necessary semantic metadata artefacts to understand PDL 

data and to determine how it can be efficiently exploited for creating new knowledge and 

deriving value [58,68]. Another approach is to directly operate on the metadata level 

through query formulation and delegate MMF to automatically process input queries, then 

retrieve and combine the results of each query to present them to the end user (human or 

machine agent) in an easy-to-understand form. The first step for materializing such 

approaches is to maintain machine-readable metadata artefacts that serve the following 

purposes: 

 Formally describing raw data from conceptual point of view. 

 Formally describing the physical and operational attributes of the raw data. 

Regarding the first purpose, semantic metadata aims to add contextual meaning to raw 

data [82], independently of its native representations [71]. The contextual meanings 
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expressed by formal artefacts provide a characterization of the conceptual elements by 

which the data consumer can understand what the data under concern is about, and how it 

is relevant to a particular information need [83]. Semantic metadata can be expressed in a 

wide range of languages; from natural to formal directive/descriptive languages, and with 

a vast range of vocabularies; from primitive – based on a set of agreed upon terms – to 

complex ones – with agreed upon taxonomies and thesauri. The simplest form of attaching 

semantic metadata to raw data is via tagging. Adding a concept to the PDLSF setting 

“type” in ingestion agents is an empirical example of metadata tagging. Regarding the 

second purpose, semantic metadata can collectively describe the physical representations 

of personal data including: 

Data Schema: semantic artefacts can adequately express the contextual meaning 

of the elements (attributes) constituting the physical (or logical) schema of the raw 

data from conceptual point of view, for instance, specifying the semantic meaning 

of a column name in relational data, key in JSON object, tag identifier in XML 

fragment, keyphrase in a document, and so on. Schema-oriented metadata may also 

describe the datatype of a schema element (e.g. string, integer, float, Boolean, etc.).  

Data Structure & Format: semantic artefacts can also express how the raw data 

is structured and formatted, for instance, specifying whether the data is relational, 

CSV, JSON, XML, free text, binary, photo, video etc. they may also describe the 

structural organisation of raw data, for instance, whether a given key-value pair in 

a JSON object is an attribute, object, array, nested object, etc., whether the naming 

type of a tag in an XML fragment is item, list, array, and so forth. 

In the context of this thesis, we refer to representation-oriented semantic artefacts as 

schema metadata. An important perspective of metadata management is precision. 

Precisely produced metadata artefacts enable data consumers to efficiently determine what 

data should be excluded or included during usage workloads, whether for reasons of 

irrelevance, inappropriateness, or even redundancy. That said, the less precise semantic 

metadata, the vaguer it becomes, and intuitively, the more precise semantic metadata, the 

more “value-added” it offers. The degree of precision may drastically affect MMF utility; 

when semantic metadata is too general, the common user may find it difficult to determine 
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the relevance of particular data in PDL, on the other extreme, too specific semantic 

metadata may degrade the overall performance of data access and retrieval. Ontologies are 

one of the most common means to specify the structure and modelling of raw data. The 

concept of ontology is “formal, explicit specifications of shared conceptualizations” [91]. 

Conceptualization refers to the conceptual modelling of some phenomenon in the world 

(personal data in this case) and involves identifying the relevant concepts of that 

phenomenon, the types of these concepts, the constraints on their use, and the relationships 

between them. Shared refers to consensual knowledge expressed by the ontology, i.e., it 

should not be understood by the common user only, but rather, accepted by a large group 

of other consumers. Formal refers to the fact that the ontology should be machine-

readable. Not all ontologies have the same degree of formality, neither do they include all 

the components that could be expressed with formal languages, such as concept 

hierarchies, formal axioms, disjoint and exhaustive decompositions of concepts, etc. Due 

to formalism variance, ontologies may be broadly classified as [126]: lightweight or 

heavyweight. MMF adopts both kinds of ontologies for managing different types of data 

(see sections 4.5 and 5.4). MMF generates metadata artefacts that are always drawn from 

an ontology, and utilises them to annotate any raw data ingested by PDL. 

3.4.2 Metamodeling approach 

A metadata management solution that operates within PDL environment should be capable 

of handling metadata in a generic way for two reasons: (i) input raw data is likely coming 

a variety of data sources and with severe representation heterogeneities, and (ii) the 

maintained metadata may be utilised by multiple parties, with each party (i.e. the PDL 

user, third-party consumers) interacting with the metadata has its own characteristics and 

operates on the managed data for specific purposes. Accordingly, our proposed MMF has 

to apprehend a generic metamodel for metamodeling a constantly expanding variety of 

raw data accumulating in PDL over time, and it needs to be extensible for accommodating 

various information needs imposed by all the parties interacting with PDL. Nevertheless, 

such metamodel should offer formal and unified access to the data on the metadata level. 

In order to meet such requirements, one can follow a metamodel design standard. There 

are many standards proposed in the data management literature. Common Warehouse 
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Metamodel (CWM) [127] is a well-established specification for metadata modelling in 

DWs, it defines a standard for data exchange between DW and other systems in distributed 

heterogeneous environments. CWM extensively focuses on the metadata relating to DW. 

Since our focus is on DL-oriented metamodeling, we observed that there are some more 

metadata that need to be modelled in order to support user-assistance data management, 

which CWM does not cover. For example, CWM does not support annotating the native 

schemas of raw data with semantic (or schema) metadata due to the effect of schema-on-

write approach followed by the ETL paradigm. CWM also cannot be easily extended 

through adding new external elements, which contradicts the requirements discussed 

earlier. Another approach is to follow SM4AM [128], which proposes a generic and 

extensible method to define and model metadata artefacts for user-assistance data 

management with extensive support for analysis workloads. SM4AM offers semantic 

awareness by leveraging RDF formalisation to express the metamodel. Therefore, the 

derived metadata artefacts are formal, machine-readable, and interoperable by third 

parties. In SM4AM, the metamodel level is used as the unified formalism of the metadata 

that is generated for data coming from heterogeneous systems. For each system (personal 

data source in the context of this work), the metamodel facilitates instantiating specific 

model to reflect the physical representation of the source’s offered data. The initiated 

model may vary depending on the representation of the data and the details of its source. 

However, the metamodel is common over all the initiated models. It is noteworthy to 

mentation that SM4AM uses the concepts of dictionary and type. To offer additional 

explicit details for the user regarding specific data model, SM4AM captures finer-grained 

information about type conceptinions and maintains it in type – similar to PDLSF type 

setting. Different sources may have different specifications and purposes. A dictionary 

defines the set of potential methods, algorithms, or metadata types that are applicable to 

the source’s data depending on various physical details (i.e. type, structure, schema 

complexity, etc.). We believe that SM4AM is an excellent specification to follow and the 

only drawback here is that: it is specifically designed for business domain, therefore we 

are bound to adopt its specification only as a guideline for the design of MMF’s metamodel 

rather than reusing it. 
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Figure 3.4– Overview on the three-level metamodel of MMF 

MMF defines an abstraction of three modelling levels: metamodel level, model level, and 

instance level, as depicted in Figure 3.4. By ignoring the implementation details for now, 

the metamodel level consists of two generic extensible ontologies, each offers flexible 

interoperability across wide range of data sources and types, and is maintained by a 

specific MMF component (see sections 4.4 and 5.4.1). The metamodel level is designed 

to capture all the metadata types discussed in section 3.4.1. It is extensible, and allows the 

user to add particular elements that conform to the conceptualization of a given ontology 

as per evolving needs and requirements over time. The metamodel level is also designed 

to support personal data querying on the metadata level, though it can be easily extended 

to support other tasks afterwards. The next level is the model level which consists of a set 

of models corresponding to the representations of different personal data stored in PDL. 

A model in MMF is constituted by a set of formal mapping artefacts that aim to map 

various aspects of the data under concern to their appropriate counterparts in metamodel 

(ontological concepts and properties), each artefact can be either a direct mapping, or an 

operator-based mapping assertion (e.g. virtual transformation – see sections 4.5.4). 
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Mappings are formal because they are expressed using RDF to support semantic inference 

among other operations. Two components of MMF, called SemLinker and SemCluster, are 

responsible for creating and maintaining models for any ingested raw data in fully 

automatic fashion. Instance level is the lowest level and it is resembled by the native 

representations of the personal data stored within PDL in their raw forms. A model at the 

instance-level consists of physical schema elements, where each element is mapped to its 

reflection counterpart (typically ontological property) in metamodel level. Not all the 

elements in an instance level model must be mapped. This aspect offers more flexibility 

in modelling raw data even if its native schemas are not full-fledged or known in advance, 

we refer to incomplete modelling as partial unified viewing. Chapters 4 and 5 cover the 

implementation details of MMF’s metamodel and the overall metamodeling approach, 

furthermore, Chapter 6 presents several scenarios to delineate the utility of this metamodel 

in real world. 

3.4.3 MMF architecture overview and workflow 

The MMF architecture consists of three components: Lineage Manager, SemLinker, and 

SemCluster. In following we give an overview of each component and its roles in MMF. 

Lineage manager 

The lineage manager is the MMF component that is responsible for lineage metadata 

management in PDL. From operational viewpoint, this component is a simple data flow 

system that controls PDL’s data storage and usage pipelines, and records various lineage 

information regarding the flowing of personal data in each pipeline. Lineage manager 

consists of three components; PDLSF parser, lineage database, and query engine. PDLSF 

parser consists of a collection of internal parsers that specialise in deserialising data that 

exists in various physical data formats, ranging from standard to semi-standard ones. 

Among these parsers, PDLSF deserialiser which converts input PDLSF objects into their 

original HTTP Multipart form (i.e. meta and raw sections), and Apache Tika [129]; a 

toolkit that detects and extracts metadata and unstructured raw contents embedded in 
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hundreds of formats23 (e.g., PPT, XLS, PDF, etc.). The predecessor of PDLSF parser in 

the storage pipeline is the messaging queue component (see Figure 3.1). PDLSF parser 

pulls PDLSF objects from the messaging queue in FIFO fashion. Each pulled object is 

deserialised by invoking PDLSF deserialiser, then parsed by Tika to collect the metadata 

artefacts composed by the ingestion agent in its meta section, and to extract the raw data 

held in its raw section. During parsing, the PDLSF parser assigns an immutable hash key 

to the data entity at hand, which represents its global unique identifier during its life cycle 

inside PDL. Various lineage information about the data entity may be collected during 

parsing, including: its input source, its ingestion agent, processing timestamp, and any 

standard meta information associated with it (e.g., title, size, copyrights, etc.). Extracted 

lineage information is stored in the lineage database. Finally, the data entity is pushed to 

the next components in MMF for metadata processing. 

Lineage manager offers three default personal data access control settings: public, private, 

and custom. public indicates that the data and its associated metadata are freely accessible 

by any third-party consumer via access layer. private setting indicates that data and 

metadata are solely accessible by the PDL owner. custom setting enables the owner to 

grant/revoke access of third-party consumers on an individual basis. Configuring access 

control settings may be applied on the data source level or entity level. This enables the 

owner to grant appropriate access to all the data ingested from a single input source, and 

blocking access to specific entities among them, or vice versa. By default, ingested data 

without user-defined access control is treated as private data. Security settings are stored 

in the lineage databases. The query engine offers the PDL owner, and other data 

consumers, SQL querying service to consult the lineage metadata during exploratory 

analysis. The query engine permits read-only (Select) queries on the lineage database, and 

all security settings are only accessible by the owner. Any data entity, that is loaded from 

the storage layer and returned to the access layer as a result of query execution over the 

metamodel of MMF, is reviewed by the lineage manager to determine whether the query 

issuer has the right permission to access and process it. 

                                                 

23 https://tika.apache.org  

https://tika.apache.org/
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SemLinker and SemCluster 

In distributed computing environments, designing a comprehensive solution for managing 

heterogeneous big data using a single underlying management strategy is an impractical 

undertaking [111] due to the severe heterogeneity arises from big data structural 

representation types ( structured, semistructured, and unstructured) [130]. Each structure 

type may impose specific requirements that the management solution must meet using a 

compatible management strategy, for instance, a data integration approach, that operates 

on the schema level of (semi)structured data, may be capable of remedying isolation issues 

pertaining to the structural heterogeneities, however such approach may rapidly become 

useless when operating on unstructured data due to the lack of explicit schemas. In order 

to address the structural heterogeneity of big personal data, we utilise two strategies that 

are resembled in MMF as two components; SemLinker and SemCluster. Each component 

can be viewed as a complete metadata-based data management system that operates on 

specific structuration; the former specialises in managing structured and semistructured 

data, whereas the latter specialises in managing unstructured data. As depicted in Figure 

3.1, the lineage manager is the predecessor of SemLinker and SemCluster in both 

processing pipelines, and represents the entry point to each component in terms of 

data/query inputs. When the lineage manager finishes processing a newly ingested PDLSF 

object, the contained data entity and its associated metadata are dispatched to the 

specialised MMF component for semantic metadata processing (i.e. creation, annotation, 

and maintenance). Lineage manager selects the right component depending on the value 

specified in the assert attribute inside the meta section of the PDLSF object at hand (see 

Table 3.1). As listed in Table 3.2, the data entity is structured when assert=1, 

semistructured when assert=2, and for both cases, SemLinker is selected as the right 

component to process the data entity. When assert=3 the entity is unstructured text (e.g. 

PDF, word processing, etc.) and in this case the entity is dispatched to SemCluster. Finally, 

when assert=4 the entity is of another unstructured type (e.g. multimedia, binary file), and 

in this case the entity is directly dispatched to the storage layer without further metadata 

processing (see MMF limitations in section 7.2). A data entity dispatched to SemLinker or 

SemCluster passes through exhaustive metadata management workflows which are 
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construed in Chapters 4 and 5. Both components are predecessors to the storage layer 

components. 

Table 3.2 – Metadata processing applicability based on structure types 

Structure Type assert Lineage M. SemLinker SemCluster 

Structured 1 √ √ X 

Semistructured 2 √ √ X 

Unstructured (text) 3 √ X √ 

Unstructured (generic) 4 √ X X 
 

3.5 Storage layer 

Storage layer represents the “backend” of PDL architecture and its main functionality is 

to store personal raw data and information about its associated metadata. To deliver 

attractive user-experience, PDL needs to make sure that its user can access personal data 

quickly and conveniently, a paramount effort emphasized by Memex seven decades ago 

[131]. Essentially, accessibility can be greatly enhanced in a data management solution 

when the adopted storage approach is optimisation-oriented; this concerns not only where 

to store the data, but also how it should be stored to facilitate later efficient retrieval. 

Optimising data storage contributes, to a large extent, in improving the performance of 

MMF and enabling it to cope with surges in data demand imposed by different use 

scenarios within PDL. The first step towards delivering such optimisation objective is to 

carefully consider how the backend is designed and implemented. An intuitive option is to 

build from scratch a database system that is specifically designed to meet PDL empirical 

requirements, however, the trade-off of such option is forfeiting several advantages that 

could be gained from reusing an existing databases system, the most obvious of which is 

the fact that a mature software with proven efficacy is probably more reliable and requires 

less development and maintenance efforts. With this purely practical consideration, there 

are several criteria questions a one should regard for undoubtedly choosing the right 

database for PDL, and as follows: 
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 What kind of data model should the database support? 

 What kind of query language does the database offer? 

 How flexible the database scales up in future? 

 How reliable the database for housing the entire black box of the user? 

Multiple other criteria that relate to distributed computing are often considered in the 

development of enterprise DL systems, mainly including: maintainability, availability, and 

cluster-based shredding. In this work, any criteria beyond the listed question are discarded, 

since unlike enterprise DLs, PDL is certainly designed for individual users and is expected 

to run on single machines not distributed clusters. 

3.5.1 Database selection 

Until recently, relational databases have been always considered as the perfect backend 

for almost all data management systems, mainly due to the effectiveness of their ACID 

properties [132]. However, the emergence of big data movement has rendered this kind of 

databases as obsolete in modern data management systems [133,134]. First, the data size 

has increased tremendously, relational databases find it very challenging to handle huge 

data volumes, and addressing this issue is only feasible through vertical scalability which 

entails incurring more computational hardware power. Secondly, the majority of big data 

comes in semistructured and unstructured formats, whereas relational databases are 

designed to accommodate structured data (e.g. transactional, sensory, and financial). The 

necessity for finding effective alternatives has led to the emergence of NoSQL databases. 

The term NoSQL24 was first introduced in 2009 to describe non-relational databases like 

Google BigTable25 and since then it is widely adopted in enterprise and academia. The 

notion “NoSQL” is not really accurate because NoSQL databases rarely fully drop the 

relational model [135].  

In spite of being a recurrent theme in big data research, NoSQL covers a vastly broad 

spectrum of very distinct database systems [133], their common characteristic is trading 

ACID in exchange of relaxed storage constraints, optimised data read and write, flexible 

                                                 

24 This term was originally suggested in 1988 to describe databases that did not use SQL interfaces [136].  
25 https://cloud.google.com/bigtable  

https://cloud.google.com/bigtable
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horizontal scalability, beside other performance gains [136] that are not related to our work 

(e.g. availability, distribution). Researchers in the database literature tried to categorize 

NoSQL databases and identify their kinds based on the design architectures and goals they 

support. As a result, they suggested grouping the databases of different vendors into four 

broad categories [133,136]: Document based, Column based, Graph based, and Key-value 

(KV) based. Table 3.3 lists a general comparison between the general properties of each 

category. Currently, there are scores of NoSQL databases, and each may exhibit optimised 

performance in particular big data scenario [133,135,136]. To find the “right” database for 

PDL, we need to base our selection on solid performance benchmarking that is verified by 

multiple studies which exhibit interests similar to ours. The studies in [137-142] introduce 

empirical performance evaluations for a multitudes of NoSQL databases that belong to 

different categories, using YCSB [143], a benchmark platform offered by Yahoo! for 

evaluating databases performance, particularly NoSQL.  

Table 3.3 – Types of NoSQL databases 

Category Model Description Model Aspects 

  Pros Cons 

  Document 

Every item is stored as a pair of 

key, and a complex data structure 

called document.  

Unknown data 

storage; Data nesting. 

Slow CRUD and I/O; 

Lack of join queries 

  Column 
Items are stored in columns 

instead of rows. 

Huge storage; 

Flexible scalability;  

Undefined data usage 

pattern. 

  Graph 

Items are stored as nodes in 

network and edges between them 

to represent their relationships. 

Flexible typed 

relationships; 

Advance querying 

capabilities. 

Limited scalability; 

Limited applicability. 

  KV 

Every item is stored as an attribute 

name (key) together with its 

corresponding value. 

Unknown data 

storage; extremely 

fast CRUD; 

Basic querying 

capabilities; Lack of 

rich indexing 

 
 

These studies share the same conclusion: Redis [144] is significantly superior in terms of 

data read/write performances and generic applicability, compared to almost all current 

state of the art NoSQL databases. The covered experiments indicate that Redis is so fast 

that it requires overall 1.52 seconds to read, write, and update 600K data items in three 
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subsequent workloads [140,141]. The reason of performance superiority is mainly 

attributed to the underlying design of Redis as an optimised in-memory KV database, such 

design is typically regarded by the database community as a trade-off, because it entails 

volatile storage mechanism; any memory interruption will lead to losing the stored data. 

However, Redis is equipped with built-in snapshotting and journaling approaches to 

conveniently persist the stored data on the disk, thus overcoming the volatility issue. Redis 

is pure KV database; it fully drops the relational model and embraces representation-

agnostic model, thus, any possible data item can be associated with a unique key and stored 

as key-value pair without further assumptions. This schema-less storage style is the main 

reason for its applicability in any possible big data scenario. Beyond experimental 

evaluations, Redis is highly reliable and scalable open source software that is currently 

adopted by scores of dominant service providers26 in the digital industry for different uses, 

including: full-fledged database, cache server, or messaging queue. For instance, Twitter 

uses Redis as its main cache server and has scaled its storage capacity up to 105 terabytes. 

Based on these characteristics, we believe Redis is well suited to meet our criteria 

specifications better than any other current state of the art NoSQL database. 

Existing HDLs favour document and column database types (e.g. Cassandra27, HBase28, 

MongoDB [146]) over other types. Document and column based databases offer schema-

less storage and encompass sophisticated querying engines that allow the user to formulate 

queries ranging from low-level MapReduce based scripts, and database-specific (e.g. 

MongoDB document querying [146]), high-level SQL-like (e.g. Hive [102]) and Flow-

based (e.g. Pig [145]). Graph databases are known to scale poorly, unless running on 

distributed infrastructure. KV based databases typically offer limited querying capabilities, 

for example, Redis can only be queried through low-level get and set -like commands29, 

whereas more sophisticated querying can be implemented through application-specific 

wrappers that would translate high-level query formulations to low-level Redis commands. 

                                                 

26 List of prominent service providers using Redis. https://redis.io/topics/whos-using-redis  
27 https://cassandra.apache.org  
28 https://hbase.apache.org  
29 List of Redis commands. https://redis.io/commands  

https://redis.io/topics/whos-using-redis
https://cassandra.apache.org/
https://hbase.apache.org/
https://redis.io/commands
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It is obvious that the efforts of developing and maintaining a system can be largely reduced 

if its chosen database offers sophisticated querying capabilities, however, this also means 

the system’s potential may become greatly pinned by these capabilities, and future 

replacement of the database may be relentlessly tedious undertaking from redesign and 

data migration viewpoints. Currently, there is a growing argument for designing systems 

as database-agnostic, a term describes the capacity of a system to function normally with 

any given database rather than being customized for a particular vendor’s database 

[11,148]. We believe that such agnosticism, combined with a strong emphasis on schema-

less storage model, may become a design reference in data lake research. An unavoidable 

fact is that hardware and software are dramatically changing over time, as with the 

databases built on top of them, this section already introduced an empirical example of the 

rapid shifting from relational to non-relational storage model in the booming era of big 

data. Analogously, database agnosticism is important for PDL, since there may be future 

need to accommodate variety of different data requirements for uses constantly increasing 

as data streams become more numerous, personal data becomes larger and more varying 

over time, and data querying and sharing functionalities become tasked with increasingly 

demanding usage workloads. By taking these considerations into account, the “right” 

database (e.g. Redis) which might make sense to run as the main backend of PDL today, 

may become unsuitable to accommodate user’s increased storage capacity and querying 

requirements in future. Henceforth, we implement PDL’s backend as database-agnostic so 

that PDL can accept any possible KV database. In doing so, MMF, as the only layer in 

PDL architecture that directly accesses the backend (see Figure 3.1) needs only low-level 

interactions to read/write data whilst abandoning any other high-level capabilities offered 

by the chosen database, including sophisticated querying. In Chapters 4 and 5 we explain 

how MMF compensates the loss of capabilities due to agnosticism with native, robust, and 

effective alternatives.  

3.5.2 Metadata and data storage approach 

In PDL, metadata storage is federated and raw data storage is centralistic, such that, the 

metadata manged by a particular MMF component (the lineage manager, SemLinker, or 

SemCluster) is stored in an internal metadata repository maintained by that component, 
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whereas ingested raw data is stored in the central backend. PDL’s backend consists of two 

components; unified repository for data storage and linkage table for metadata information 

storage. Regardless of the adopted database system, the underlying structure of each 

backend component is a hash table that consists of a scalable set of entries. Like any other 

hash table, a hash entry here consists of two fields: key and value. The key field stores a 

unique identifier, and the value field stores a content associated with that identifier. Figure 

3.5 depicts an overview of the PDL backend. 

 

Figure 3.5– Overview of PDL backend and MMF-managed storage approach 

As indicated in section 3.4.3, the lineage manager generates a unique identifier, denoted 

as 𝑘𝑒𝑦𝐹 for the data entity, denoted as 𝐹, that is extracted from a newly ingested PDLSF 

object. Regardless of the processing component, when the metadata processing of 𝐹 is 

finalized inside MMF, it becomes associated with at least one metadata record which also 

has a unique identifier, denoted as 𝐼𝑑𝑖, that is issued by the respective MMF component. 

Therefore, the pair 〈𝐼𝑑𝑖, 𝑘𝑒𝑦𝐹〉 indicates that there is an association between the entity 𝐹 

whose identifier is 𝑘𝑒𝑦𝐹 and the metadata record 𝐼𝑑𝑖, such pair is called metadata 

information. Metadata information is similar to primary-foreign key relationships in 

traditional RDBMS, but instead of linking between data entities in separate data tables, 

metadata information explicitly emphasize the associations between the raw data stored in 

the unified repository and its corresponding metadata records that are stored in different 

metadata repositories. MMF controls how each data entity 𝐹 and its metadata information 

are stored in PDL’s backend through a two step-process, and as follows: 
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Step-1 (Data storage): MMF creates the pair 〈𝑘𝑒𝑦𝐹 , 𝐹〉 that corresponds to the 

unique identifier of 𝐹 and its raw content. This pair is passed to the storage layer 

for permanent storage. Given Redis as the physical implementation of the storage 

layer, the pair 〈𝑘𝑒𝑦𝐹 , 𝐹〉 is added as a new entry in the unified repository by 

executing the following command:[HSET keyF F]. HSET is a Redis-specific 

command that adds the entity 𝐹 in the entry whose key is 𝑘𝑒𝑦𝐹. If such entry does 

not exist in the unified repository– which is the usual case – a new entry with the 

key 𝑘𝑒𝑦𝐹 is first created before 𝐹 can be added as its field value. If 𝑘𝑒𝑦𝐹 already 

exists then its corresponding field value is overwritten. 

Step-2 (Metadata storage): In this step, MMF creates the necessary metadata 

information for the raw data entities at hand and stores them in the linkage table. 

Given a data entity 𝐹 and the set of metadata records 𝔪 ≠ ∅  that is generated for 

𝐹 during its metadata processing, MMF creates the pair 〈𝐼𝑑𝑖, 𝑘𝑒𝑦𝐹〉 for each 𝐼𝑑𝑖 ∈

𝔪 and passes it to the storage layer. Given Redis as the physical implementation 

of the storage layer, a pair 〈𝐼𝑑𝑖, 𝑘𝑒𝑦𝐹〉 is added in linkage table by executing the 

command[SADD Idi keyF]. SADD is a Redis-specific command that “appends” 

𝑘𝑒𝑦𝐹 in the entry whose key is 𝐼𝑑𝑖. If such an entry does not exist in the linkage 

table then a new entry with the latter as its key is created before the former is added 

as field value.  

As listed in Table 3.2, an ingested data entity may be processed by more than one MMF 

component, and the last processing component becomes the sole authority responsible for 

storing the set of its associated metadata information (𝔪). When 𝐹 is structured or 

semistructured then SemLinker annotates it with a set of schema metadata artefacts that 

inherently share a single unique identifier, that is, the 𝑈𝑅𝐼 of the current source schema 

version – see section 4.5.2. Accordingly, the set 𝔪 associated with 𝐹 consists of a single 

pair 〈𝐼𝑑𝑖 , 𝑘𝑒𝑦𝐹〉 where 𝐼𝑑𝑖 = 𝑈𝑅𝐼 and 𝑘𝑒𝑦𝐹 is the unique identifier of 𝐹 (i.e. |𝔪| = 1). In 

contrast, when 𝐹 is unstructured then SemCluster annotates it with a set of metadata 

artefacts, where each artefact is the seed of a keyphrase extracted from the raw content of 

𝐹 during metadata processing – see section 5.4 for more details, and Table 5.2 for an 

empirical example. This means, if 𝑘 keyphrases are extracted from 𝐹 then |𝔪| = 𝑘 and 
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Step-2 is executed 𝑘 times; for each execution step a pair 〈𝐼𝑑𝑖, 𝑘𝑒𝑦𝐹〉, 𝐼𝑑𝑖 = 𝑠𝑒𝑒𝑑, 𝐼𝑑𝑖 ∈

𝔪 is passed as new input to the storage layer.  

Unlike the unified repository, each entry in the linkage table may consist of a pair of single 

key 𝐼𝑑𝑖 and a non-empty set {𝑘𝑒𝑦𝑗, 𝑘𝑒𝑦𝑗+1, … , 𝑘𝑒𝑦𝑛} stored in its value field, where each 

key represents the unique identifier of a data entity 𝐹 that is already stored in the unified 

repository. Having keys of various data entities grouped by a single metadata key is an 

obvious indication of inherent relationship. For example, an entry 𝐼𝑑𝑖 in the linkage, 𝐼𝑑𝑖 =

{𝑘𝑒𝑦𝑗, 𝑘𝑒𝑦𝑗+1, … , 𝑘𝑒𝑦𝑛}, that is managed by SemCluster, indicates that the unstructured 

documents ∏ 𝐷𝑖
𝑛
𝑖=𝑗  share the same seed. When the PDL user searches for unstructured 

documents that contain the seed 𝐼𝑑𝑖, then MMF directly retrieves the documents ∏ 𝐷𝑖
𝑛
𝑖=𝑗  

from the unified repository and returns them to the user as correct search results. It is 

noteworthy to mention that the time complexity of the retrieval operation for  ∏ 𝐷𝑖
𝑛
𝑖=𝑗  is 

O(1) given that the underlying implementation of the unified repository and linkage table 

is a giant in-memory hash table (i.e. Redis). Analogously, it is intuitive to assume that all 

the (semi)structured data entities ingested from the same input data source share the same 

schema metadata’s unique identifier, thereby, the same storage and retrieval optimisation 

thus described is applicable. To illustrate, let the set {𝑘𝑒𝑦1, 𝑘𝑒𝑦2, … , 𝑘𝑒𝑦𝑛} be the unique 

identifiers of all the entities ingested from an input source 𝑆, whose schema metadata’s 

unique identifier is 𝐼𝑑𝑆, then an input query to SemLinker concerning the retrieval of all 

these entities is directly executed on a single entry in the linkage table, that is 𝐼𝑑𝑆, and the 

result is retrieving ∏ 𝐹𝑖
𝑛
𝑖=1  entities from the unified repository in O(1) complexity similar 

to the previous case. 

 Figure 3.5 depicts an overview of the storage approach. Here, multiple heterogeneous data 

entities are stored with their associated unique identifiers as key/value pairs in the unified 

repository. Additionally, the metadata information of these entities is stored as key/value 

pairs in linkage table with links to external metadata repositories maintained by SemLinker 

and SemCluster. The figure also illustrates how the MMF interprets the stored data in both 

components as pairs of key/values pairs. For example, the data entities 𝐹1 and 𝐹2 can be 

retrieved as the following subset: 
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{ 〈〈𝐼𝑑1, 𝑘𝑒𝑦1〉, 〈𝑘𝑒𝑦1, 𝐹1〉〉, 〈〈𝐼𝑑1, 𝑘𝑒𝑦2〉, 〈𝑘𝑒𝑦2, 𝐹2〉〉 } 

Such subset indicates that 𝐹1 and 𝐹2 share an inherent relationship that is defined by the 

metadata information 𝐼𝑑1; this relationship can be interpretable by the MMF component 

which managed these entities during their metadata processing. It important to emphasize 

that  𝐹1 and 𝐹2 are stored in untransformed state, and are intended to remain so during their 

lifecycle inside PDL since MMF allows their processing only on the metadata level, (i.e. 

𝐼𝑑1).  

The simplicity of the storage layer architecture, backed by the flexibility of schema-on-

read approach, and the MMF-managed data storage, are major enablers of database 

agnosticism; the backend development requirements are reduced to three main criteria: 

scalability, schema-less KV storage, and disk persistence to avoid any volatility trade-off. 

The decision of selecting Redis as physical implementation of PDL’s backend is largely 

influenced by its empirical capacity in boosting MMF’s performance during data storage 

and retrieval. By leveraging Redis, MMF obtains the following features: the maximum 

number of key/value pairs that can be stored in PDL is 264-1 on 64x machine [144], this 

means PDL storage limitation is 18.446 Exabyte. The maximum size allowed for storing 

a data entity within a single entry in the unified repository is 512 MB [144]. A single 

metadata schema’ unique identifier can group up to 232-1 data entity keys which is far 

more than a common may possibly need. As illustrated above, MMF requires O(1) time 

complexity to retrieve metadata information from the linkage table; it requires O(1) time 

complexity to find any raw data in the unified repository; it requires 0.59 seconds to load 

600K entities of small size [140,141], and relatively longer time if the target entities of 

considerably large size. 

3.6 Access layer 

The access layer has the responsibility of providing convenient access to the underlying 

layers of PDL on the access patterns expected. Generally, we can broadly categorize the 

access layer to be performing either a pull or a push of certain artefacts with respect to the 

serving layer. At a high level, the push access refers to the outflow of settings, queries, or 
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source code from the access layer wherein these artefacts are pushed out to other layers in 

PDL architecture. The pull access refers to the outflow of artefacts from the serving layer 

wherein the access layer pulls settings, metadata, or modelled data. The access layer 

consists of four components which collectively represent the “frontend” of PDL as 

depicted in Figure 3.1. These components are: Dashboard, Gravity, Query Interface, and 

a RESTful API for data consumption. In following we give a brief overview of each 

component. 

Dashboard  

The dashboard is a configuration-focused component that provides important services for 

the PDL user to control the settings of various architectural components through user-

friendly GUIs. In following, we list three kinds of GUIs that are relevant to the discussions 

in this thesis: 

 IAC GUI: This GUI is connected with IAC component in the ingestion layer and 

it enables the PDL user to install, upgrade, or uninstall ingestion agents in IAC, 

and to configure the security, synchronization and PDLSF settings associated with 

each deployed LAS agent. 

 Privacy GUI: This GUI is connected with the lineage database in MMF to help 

the user in configuring the access control settings of the stored personal data as 

specified in section 3.4.3. 

 Extensibility GUI: This GUI is connected with SemLinker and SemCluster in 

MMF to help the user in adding, upgrading, or removing third-party plugins related 

to the underlying workflows of these components. For example, this GUI can be 

used to add new knowledge source for extending the semantic coverage of Sem-

Cluster’s ontology (see section 5.4.1), or adding new schema matcher to the set of 

plugins in SemLinker (see section 4.5.3). 

 Gravity GUI: This GUI is the fronted of the gravity concept implementation in 

PDL, and it aims to enable the user in installing, upgrading, or uninstalling third-

party gravity-enabled services.  

Gravity 
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In 2011, a blog published by McCrory [148] introduced a discussion about a qualitative 

characteristic of data that was referred to as Data Gravity. In the years that followed, this 

characteristic has resonated in the digital industry. Data gravity is a metaphor describing 

the economics of data; it is better to keep the data where it is and not to be exchanged 

between the systems in distributed computing environments, no matter how big or small 

the amount of data may be. McCrory compared the cost of moving data, and found that 

gravity is cost-efficient approach among other rising advantages. Consequently, it was 

stated that data must have something comparable to a gravitational pull which pulls 

services and applications to it instead of the other way around. The work in [149] reports 

three approaches to bring computation to data and mitigate data gravity: agent platforms, 

code mobility, and Fog Computing. In this thesis, we leverage on code mobility to embrace 

data gravity in PDL architecture for gaining two important advantages:  

 Simplifying personal data utilisation by relieving the PDL user from formulating 

complex queries during usage workloads; gravity-enabled services can be pulled 

from third parties and plugged in PDL’s access layer to write and execute queries 

on the behalf of the user. 

 Enabling the PDL user to share personal data with third-party consumers without 

privacy compromises. By authorizing gravity-enabled services to operate in the 

access layer, a personal data consumer would be able to collect interesting 

information without having the data to leave the PDL premises.  

To materialize these advantages, we design a code execution platform in the access layer 

called Gravity. This component enables the user to plug in “trusted” business logic in the 

form of compiled source code (e.g. dynamic libraries, packages) that can formulate queries 

and submit them to MMF for execution on PDL metadata and data repositories. The query 

results are either directly presented to the user, or further processed for mining patterns, 

insights, or creating new knowledge. Another approach is to allow remote data consumers 

connecting to PDL, submitting gravity-enabled services, which the user can review, and 

upon granting permission for each service, it can execute as usage workload which enables 

the consumer to process PDL data and collect the processing results back to its platform. 

In gravity-powered scenarios, MMF operates as a central point of information exchange 

that offers the necessary capabilities to gravity-enabled services for querying highly 
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managed personal data on the metadata level in terms of a well-organised metamodel and 

formal querying means. To illustrate how this works, consider a user having central 

heating system that operates on oil, and which is equipped in the user’s house or office. 

The user may put oil consumption data in PDL and mark it as publicly available. An energy 

company would request to connect to the user’s PDL and submit a gravity-enabled 

analytics service. Upon user’s approval, this service could submit queries targeting heating 

data, which are executed by MMF and the results are returned to the energy company to 

to analyse them and generate personalised oil delivery offers to the user. In this example, 

it can be readily observed that the heating data does not have to leave PDL, instead, the 

data demand of the energy company is satisfied as a workload operating locally PDL.  

Similar ideas have existed in the personal data management literature for some time (e.g. 

[150,151,152]), however they are typically discussed from theoretical perspective due to 

the lack of the necessary technologies for constructing efficiently-managed black boxes. 

Query interface 

Query interface component represents the frontend of the query engines implemented in 

the MMF component. It is a simple command line for submitting queries to a particular 

query engine, and for displaying the query results. In sections 4.6, 5.5.2, 6.1, and 6.3, we 

discuss how the queries submitted via the query interface can be systematically executed 

on the metadata repositories to load the required data from the storage layer. 

RESTful API 

Besides gravity, PDL also implements a RESTful API endpoint for data consumption as 

an additional support for the user to share personal data with consumers who do not support 

gravity. Similar to DSAPI, the access layer’s API is secured with OAuth and accepts only 

data requests that are signed with access tokens issues by PDL.  
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3.7 Summary 

In this chapter, we presented an overview of PDL architecture and discussed each of its 

layers with extensive focus on the metadata management layer. The introduction of the 

chapter examined the possibility of implementing PDL using building blocks from Hadoop 

ecosystem. Our examination revealed that a Hadoop based PDL implementation is feasible 

but impracticable in the context of the personal domain due to the expensive technical 

complexities imposed on the usability of the system by common users. Then, we described 

how personal data can be pulled from input data sources and ingested inside the system. 

Multiple opinions indicate that annotating raw data with metadata upon its arrival, lineage 

particularly, is a very important undertaking for maintaining effective data provenance. A 

useful discussion on this matter is given in [178]. Realizing this, we introduced an agent-

based ingestion approach that automates the extraction step in PDL’s ELT and annotates 

ingested personal data with basic but useful metadata information. Next, we discussed our 

proposed MMF; the metadata types it operates on (lineage, and semantic), the design of 

its SM4AM-based metamodel, the components constituting its architecture (the lineage 

manager, SemLinker, and SemCluster), and the role of each component in controlling the 

storage and usage pipelines underlying the loading step in ELT. Next, we described the 

storage approach of raw data and its associated metadata information in the storage layer. 

Although many interesting database options are available, we explored the usefulness of 

database agnosticism as part of our effort to deliver agnostic solution for managing big 

personal data. Our discussions also covered how MMF controls the data and metadata 

storage independently from the adopted database details. Finally, we elaborated on PDL’s 

access layer and how the data gravity concept is situated in this layer to simplify the lake’s 

usability. 
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Chapter 4 (Semi)structured Data Management 

The lineage manager in MMF maintains the necessary means to enable plain technical 

access to structured, semistructured, and unstructured raw data residing in untransformed 

state within PDL’s unified repository. However, such accessibility can be only the first 

step in creating our envisioned analytics-enabled personal black box. To make finding and 

querying personal data in PDL both possible and practical, common users and third-party 

data consumers must not be confronted with the semantic and structural heterogeneities of 

raw data, instead they should be provided integrated homogeneous views that abstract from 

these heterogeneities. In this chapter, we explore SemLinker as a data integration system 

for automating structured and semistructured data management in PDL. To begin with, we 

first describe the driving challenges and requirements behind SemLinker proposal, next, 

we give a brief review of relevant studies and approaches. Then we introduce an overview 

of the theoretical foundations upon which SemLinker was designed and construe its 

architecture and participation in MMF workflow. 

4.1 Research challenges and requirements 

The main goal of data integration is to synthesize heterogeneous raw data collected from 

autonomous input sources into unified views that can be exploited by end users to utilise 

the data as if it is coming from a single well-managed input source, without requiring 

knowledge about where the data is stored and how it is natively modelled and structured 

[39,153]. The common assumption in DL research regarding data integration is that once 

the raw data is annotated with appropriate semantic metadata, it can be readily integrated 

using an integration system [71][43][52][110][111]. Though this assumption is plausible, 

yet it is impractical from the perspective of big data dynamics. Existing data integration 

systems are inherently complex and they require tedious manual interactions [110][183], 

for instance, an enterprise HDL system would rely on professionals and experts (e.g. data 
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scientist [43], steward [52], or wrangler [71]) to play active roles in the data integration 

workflow, mainly to supervise the following tasks: 

Schema Matching: a task concerns identifying the similarity between the schema 

elements of two or more heterogeneous data entities coming from different input 

sources [154]. This task can be automated when the data is annotated with precise 

schema metadata artefacts. As indicated by Jarke et al. [40], the input sources of 

any DL system often do not expose full-fledged schemas. When the native schema 

is not completely known in advance, precisely annotating its elements with 

appropriate metadata to reflect their underlying semantics can become problematic 

in a way that prevents automating schema matching. 

Schema Mapping: while schema matching produces correspondences that state 

only the similarities between schema elements, schema mapping is a task concerns 

specifying these correspondences in a formal expression that can be interpreted as 

constraints over the data or as rules to guide the transformation of data during its 

utilisation [39][92]. 

The literature of other DL systems imposes requirements similar to those of HDL albeit 

details of such requirement are not explicitly specified – we expand on this in the next 

section. Essentially, PDL is designed for ordinary people and has no highly trained and 

skilled IT personnel to physically handle the above tasks. Equipping PDL with an efficient 

and easy-to-use data integration solution is therefore crucial for isolating common users 

from the technical integration details. Any data integration solution for PDL faces the 

following challenges: 

The first challenge is extreme heterogeneity; it arises as an implication of dealing with 

various types of raw data collected from a large number of unrelated input sources [110]. 

The data sources of a DL system, even in the same domain (e.g. enterprise), can be very 

heterogeneous regarding how their data is structured, labelled and described (e.g., naming 

conventions for JSON keys, XML tags, or CSV headers), exhibiting considerable variety 

even for data with substantially similar attributes [112]. The reconciliation of semantic and 

structural heterogeneities in raw data is a critical preparatory step for storing and retrieving 

the data quickly and cost-efficiently, and for aligning the data from different sources so 
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that all types relevant to a single analysis requirement can be combined and analysed 

together. Manually handling heterogeneity reconciliations would pose a huge burden on 

PDL users. Despite efforts in the fields of semantic web and data integration for 

automating the reconciliation process [93,160,161], existing approaches, most of which 

require optimised parameter tuning and expertise-based configurations to cope with the 

heterogeneities of data [112], cannot be “directly” adopted in PDL. 

The second challenge is schema evolution [17,48], which refers to the problem of handling 

unexpected changes in the schema and structure of the data ingested. Big data is often 

subject to frequent schema evolutions, which would cause query executions over the 

unified views to crash if not dealt with [162]. Handling schema evolutions is a non-trivial 

task, and the common practice normally involves employing skilled manpower. Schema 

evolution has been a known problem in the database community for the last three decades 

[163] and has become frequent and extensive in the era of big data, yet it has not been 

addressed effectively [52,93,110]. 

Besides the above challenges, we believe that the simplicity offered by the data ingestion 

approach described in Chapter 3 can incentivize common users to synchronize PDL with 

a large number of input sources as a natural consequence of the personal data conception 

discussed in section 1.2. This belief is largely predicated on the observation that the 

information needs and requirements of users may change to cope with data discovery [I37], 

foraging [2], orienteering [156], searching [157], among other related behaviours in which 

common users purposefully seek new information or serendipitously encounter it in the 

course of their daily activities, therefore they are highly likely to continue adding new 

input sources to PDL over time to meet these requirements. Classical integration solutions 

are designed to handle few input sources and are generally intolerant to the continuous 

addition of sources [158,159]. In most cases, adding new input sources to the system 

implies a manual revision of the integration pipeline to ensure the integration validity [92].  

To address these issues we propose SemLinker, an ontology-based data integration system 

as principal component of MMF. SemLinker adopts an automatic approach that only 

operates on the schema metadata level without involving physical transformation on the 

data during integration, therefore it preserves PDL stored data in its native schemas, 
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formats, and structures, while, at the same time, allowing the data to be integrated and 

utilised. A critical factor in the design of SemLinker is the “ease” in which data can be 

queried and analysed by PDL users to incentivize them deriving value from their own data 

with minimum time and efforts. Therefore, the research requirements that are met in 

SemLinker are as follows: 

 Addition and removal of input data sources with no impact on existing integrations. 

 Flexibility of incorporating integrated (semi)structured data with unstructured data 

(e.g. free-text documents, images, and other complex data). 

 Adaptability to the changing information needs and requirements of users, that is, 

allowing the common user to flexibly personalise unified views over PDL stored 

data, whilst persisting seamless integration of data upon any view changes. 

 Handling schema evolutions in input data sources, that is, keeping all past data 

automatically integrated with newly ingested data that exist with evolving changes 

on the schema, format, or structure level. Additionally, providing detailed timeline 

describing the schema evolutions of any input source for data provenance purposes. 

 Formal accessibility and rapid query executions over large volumes of diverse raw 

data ingested from heterogeneous input data sources and stored in untransformed 

state. 

4.2 Related work 

The classical approach to data integration can be viewed as a staging architecture that 

consists of two parts [164]: wrappers and mediators. A wrapper wraps the data of an input 

source and speaks the dialect of its physical (or local) schema [92]. A mediator maintains 

a mediated schema and understands how mappings between the mediated and local 

schemas are corresponding. The mediator may follow a virtual or materialized approach. 

In the former, data is physically residing in its original sources [165], whereas in the latter, 

data is pulled from its sources and centralised into a central storage space [166] – which is 

the case of PDL. The mediator facilitates formulating queries in terms of the mediated 

schema [39]. An input query submitted to the mediator is processed through reformulation 

procedure before it can be executed on the integrated data. Query reformulation involves 
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translating the input query into sub-queries in terms of the local schemas of the integrated 

sources and passing them to wrappers, which accept the sub-queries, execute them on the 

sources, extract the answers, and finally send them as query results back to the mediator. 

Wrappers may also apply transformations on the retrieved data in order to return the query 

results into a unified representation [40]. Mappings are important in any data integration 

approach; they express the correspondence between the mediated schema and the local 

schemas of the integrated sources [154], this enables the mediator to accurately translate 

an input query into downstream sub-queries. Early research efforts attempted to explicitly 

formalise mappings, the work in [167] gives an overview of these efforts. When mappings 

are formally crafted and described by specifications, they can serve as a basis for modelling 

(or metamodeling) based data integration, where the wrapper and mediator code could be 

automatically generated from a given specification. Collet et al. [168], and Singh et al. 

[169] were the first to use description logics [170] for expressing relationships between 

sources on the model level. Following these studies, a large body of research has been 

undertaken, the work in [92] surveys many notable contributions in this regard.  

Lenzerini introduces in [39] a theoretical framework for integrating a set of heterogeneous 

data sources based on the schema metadata associated with their local schemas. The 

framework’s integration workflow follows the mediation architecture and thus maintains 

mediated schema, and formal mappings between the mediated and the local schemas. The 

concept of ontology was proposed as an efficient description tool for expressing the 

mediated schema and is called global schema (or global ontology). The global schema 

materializes integrated unified views over the data collected from the integrated sources 

by means of mappings. On a formal side, the framework defines two semantic perspectives 

for mapping formalisation: Global-As-View (GAV) and Local-As-View (LAV). In a GAV 

integration scenario, any single element 𝑔 of the global schema is defined as a view on the 

local schemas of the integrated sources, i.e., 𝑞𝑠 ~ 𝑔. This reflects the classical integration 

of the mediation architecture. In a LAV integration scenario, an element 𝑠 of the local 

schema is defined as a view on the global schema, i.e., 𝑠 ~ 𝑞𝑔. This reflects the integrated 

data as a partial description of the real world uniform which the sources capture. Such 

reflection may be incomplete, erroneous, or even inconsistent, which gives LAV greater 

flexibility than GAV in integrating real world data. From unified view perspective, the 
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symbol 𝑞 represents an input query either over the global ontology and down to the local 

schemas (GAV), or vice versa (i.e. LAV). In description logic terms, the mapping ~ is a 

relationship that may resemble = , ⊆, and so forth. For example, the query 𝐺: 𝑞𝑠~ 𝑞𝑔 means 

that the result set of the query 𝑞𝑠 is equivalent to (or a subset of) the result set of the query 

𝑞𝑔 for all the valid input sources participating in the integration at hand. It is well-known 

that query rewriting in GAV approach is easy and fast in most scenarios [92,155,171,172]; 

any input query over the global schema needs just to be unfolded in such a way that the 

elements of the global schema in the query formulation are substituted with the 

corresponding query 𝑞𝑠 over the local schemas of the integrated data. The downside here 

is that: GAV is very sensitive to schema evolutions, changes in the local schema of a 

particular data under integration entails immediate reactions to revise the global schema 

as well as its mappings, otherwise unfolded queries on a modified local schema may crash 

due to schema mismatching issues. In contrast, query rewriting in LAV is more expressive 

and allows to perform vital operations during reformulation (e.g. grouping, constraint 

enforcements, etc.). The down side of LAV approach is that query rewriting is moderately 

slow and requires reasoning [171]. Several algorithms have been proposed to overcome 

these issues [90]. There are also suggestions to combine both GAV and LAV into unified 

architecture to benefit from the merits of each approach. An example of such proposals is 

the Global-Local-As-View (GLAV) approach described in [172].  

Many current state of the art ontology-based data integration systems follow Lenzerini 

framework [39] to integrate (semi)structured data that are collected from heterogeneous 

data sources [52, 173,174,175]. Although these systems may deliver effective and efficient 

data integration performance in many use cases, they typically require continuous human 

intervention to supervise the task of discovering mappings between the global ontology 

and the local schemas [110, 161, 176], which is a laborious and time-consuming itself as 

it requires expertise in schema matching techniques. Furthermore, these systems favour 

static integration workflows, where any changes in the global ontology or the metadata of 

the integrated local schemas imply a high degree of manual efforts to (re)configure the 

mappings [52, 161,183]. 
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With the increasing popularity of DL in the big data landscape, metadata is becoming of 

immense importance for BDI research [177], and embedding model-based integration into 

MMFs is currently an active research topic. In Chapter 2 we described GEMMS [90] as 

MMF for a DL system called Constance. GEMMS implements a model-based incremental 

approach for interactive personal data integration in life science fields. The first step in 

this approach is extracting schema metadata from the ingested data. Metadata extraction 

here is manual task that requires user’s attention. The authors propose a semiautomatic 

tool to help the user in that regard. Once data is associated with appropriate metadata, it is 

modelled to a common metamodel that is a simple variant of the Entity-Relationship (ER) 

model, where data entities are resembled as objects and their attributes as object properties. 

Although the approach is theoretically capable of reconciling semantic heterogeneities 

between the stored data, and tolerating the volume and variety aspects of the 3Vs model, 

its architecture suffers multiple drawbacks: first, it reconciles structural heterogeneities 

through physical data transformations to fit ER modelling, which implies altering the 

native schemas and structures of the data and posing constraints on the ingestion process; 

secondly, it is very sensitive to emerging changes in the raw data schemas, therefore the 

velocity aspect can quickly crash the modelling process; thirdly, the GEMMS literature 

does not describe how the integrated data can be systematically accessed and queried. 

Kayak [109], a generic framework for managing data lake content through metadata-based 

data preparation and wrangling, is a case similar to GEMMS. Although it promises 

integration and querying capabilities, the underlying integration process and modelling are 

not clearly described. The work in [282] introduces a generic approach that allows the user 

to extract the local schema of the data ingested from any input source connected with DL. 

This approach utilises a schema management tool called Darwin [179] for scanning the 

data stored in DL, and in cases where the data exists with multiple local schema versions 

due to historical evolutions, each schema version is extracted, and eventually, all the 

versions are displayed to the user. The approach enables the user to define a global 

ontology and draw ontological information (concepts and properties) to annotate the 

schema elements in each version, thus offering an easy solution to reconcile the 

heterogeneities originate from the changes between any given schema and its previous 

version. Although this approach focuses on the problem of schema evolution, it is not 

equipped with data integration capability, but rather integrations can be performed 
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manually by investigating similarities between various schema elements annotated with 

the same ontological information and record them as mappings for later use. Furthermore, 

schema detection and handling is not performed in real-time (i.e. upon ingestion) instead 

the data must first be stored in DL backend in good amount in order to begin schema 

analysis procedures, this means, the data consumers operating on the schema level will 

face query crashes and schema mismatching issues until the new schema changes are 

propagated in the system. Apache Atlas [104] allows the user to provide global schemas 

in the form business-oriented ontologies which then can be utilised to annotate the HDL 

stored data with semantic metadata drawn from these ontologies to describe their physical 

schemas. Such annotations are stored in the MMF’s repository. For integrating data, the 

user must hire a suitable integration system, and consult the metadata repository for 

guiding the integration system and specifying how data should be integrated. Atlas 

provides basic support for the schema evolution problem. The user can integrate Apache 

Avro [180] in Atlas in order to detect schema evolutions and react to them based on sets 

of rules provided by the user in the form of avro files30 and through a process called schema 

resolution.  

In [52], Nadal et al. propose a metadata-driven system for integrating heterogeneous JSON 

and XML data in DL systems and governing local schema evolutions. This system follows 

Lenzerini’s framework and is based on a BDI-oriented Metamodel (ontology) that consists 

of two levels: top level abstract abstraction that is expressed by Web Ontology Language 

(OWL) [184], and low level collection of RDF triples describing the local schemas of the 

data sources under integration. The top level of the BDI ontology offers unified views over 

the local schemas in the low level. The system offers an automatic algorithm that extracts 

an RDF representation of the physical (local) schema of a newly added data source after 

examining a few samples of its offered (JSON/XML) data. An extracted representation is 

expressed as a set of RDF triples and stored in the low level. A data specialist, called 

steward, is responsible of providing mappings between the RDF representations in the low 

level and their corresponding counterparts in the high level. If the physical schema of a 

particular data source evolves, the steward is notified, and a manual remapping then takes 

                                                 

30 http://avro.apache.org/docs/current/spec.html#Schema+Resolution  

http://avro.apache.org/docs/current/spec.html#Schema+Resolution
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place to ensure the consistency of the correspondences between the top and low levels. 

The system allows the user to formulate SQL-like queries over the top level of the 

integration ontology. Each input query is unfolded by rewriting it into internal queries that 

are executed on the system’s backend(s). The integration ontology also allows the user to 

flexibly handle evolutions in the local schema of a given data source by maintaining 

multiple schemas that correspond to different versions of the local schema extracted from 

that source. 

The shortcoming of existing BDI solutions for DL is that they inherently exhibit the same 

drawbacks found in traditional data integration, such that, raw data (meta) modeling 

remains an expensive task that requires expert user supervision [110, 181], furthermore, 

the schema evolution problem and its impact on data access, processing, integration, and 

analysis in a DL system is often overlooked and its suggested solutions largely remain 

manual [52, 182,183]. Rahm states in [110] that most BDI proposals are limited to a few 

data sources, and analytics over a large volume of heterogeneous data ingested from 

various autonomous data sources is only possible with the availability of a holistic data 

integration solution that: (i) should be fully automatic or require only minimal manual 

interaction, and (ii) should make it easy to add and use additional data sources and 

automatically deal with frequent changes in these sources (i.e. velocity). SemLinker, as a 

data integration system, shares many features and functionalities with other solutions. 

However, as a solution for PDL whose users are typically casual and unskilled, it needs to 

be in agreement with Rahm’s automation proposal and isolates its users from the technical 

details imposed by the integration process, thus meeting all the requirements listed in 

section 4.1. Our proposed automations are implemented in the following operations: 

 Management of semantic and schematic metadata; extraction, annotation, storage, 

and maintenance. 

 Management of mappings between the system’s global ontology and the metadata 

denoting the local schemas of the data sources added to PDL. In other words, 

automating schema matching, schema mapping, and metamodeling tasks. 

 Management of schema evolutions on the local schema level, and automatic 

responding to views adjustments on the global ontology level.  
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SemLinker supports personal data analytics in PDL by accepting direct queries over its 

metadata repository. Thus, management functionalities over personal data such as 

summarization, analysis, and insight discovery (informatics) can be readily performed. 

4.3 SemLinker architecture overview 

The architecture of SemLinker consists of Global Schema Layer (corresponding to the 

metamodel level), Local Schemata Layer (corresponding to the model level), and the 

relationships between these layers (corresponding to formal mappings over instance level). 

The global schema layer consists of the global schema (𝒢), and the query engine for 

formulating queries over 𝒢. The local schemata layer consists of the schemas repository 

(𝑆), and schema metadata extraction, and mapping and management components. As an 

ontology-based integration system, SemLinker is conceptually based on the theoretical 

framework proposed by Lenzerini [39]; we formally define the system as follows: 

Definition 4.1:  SemLinker is a triple 〈𝒢, 𝑆,ℳ〉, where 𝒢 is the global schema, 𝑆 is a set 

of local schemas corresponding to 𝑛 data sources, 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑛}, and ℳ is a set of 

mapping assertions, such that, for each 𝑆𝑖 there is a set of mappings between 𝑔 and 𝑆𝑖, 

𝑔 ∈ 𝒢, 1 ≤ 𝑖 ≤ 𝑛, in the form:  𝑝 → 𝑎, where attribute 𝑎 ∈ 𝑆𝑖 and property 𝑝 ∈ 𝑔. 

The system’s global schema 𝒢 is modeled as a global ontology and is described using 

OWL. It extracts and maintains machine-readable metadata that describes the physical 

schema details of each data source connected with the PDL, and specific semantics about 

its available data, we refer to such metadata as local schema. Any local schema in PDL is 

described using RDF and is stored in the schemas repository 𝑆. SemLinker is responsible 

for automatically mapping the local schema 𝑆𝑖 of the data ingested from the data source 𝑖 

to a semantically corresponding concept in the global ontology 𝒢 in the GAV formulation 

approach. Accordingly, mappings provide a metadata model that enables SemLinker to 

systematically annotate the ingested data, and allows the user to pose queries over 𝒢 which 

serves as a GAV abstraction layer over 𝑆 and its associated raw data. With this 

metamodeling in place, the stored data are integrated on the metadata level; no manual 
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effort is required to reconcile the heterogeneities in the physical schemas and structures of 

the raw data. 

Figure 4.1 depicts a high-level overview of SemLinker architecture. The figure illustrates 

the flow of ingested (semi)structured raw data from the ingestion layer, to the lineage 

manager, then to SemLinker, and finally to the storage layer. When SemLinker finishes 

meta-processing the input raw data entity at hand, the metadata outputs (if any) are stored 

in the local schemata layer, whereas the data entity in its raw form as well as its associated 

“metadata information” are dispatched to the storage layer to be stored in the “unified 

repository” and the “linkage table” respectively (see section 3.5.3 for full details). The data 

consumers can interact with SemLinker metadata through PDL’s access layer. The details 

of meta- processing and metadata usage workflows concerning SemLinker to be construed 

in the following sections.  

 

Figure 4.1– Overview of SemLinker architecture 

Here we introduce a personal data example comparable to a real-life scenario to give a 

realistic view of the challenges that a BDI system like SemLinker must meet. Figure 4.2 

lists four personal data entities representing social media feeds posted by the PDL user on 

Facebook and Twitter and ingested by the PDL through the available API of each source 
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(Facebook Graph API [265], and Twitter Streaming API [266]) with evolved schemas. 

Although these entities exist in self-describing formats and contain abstract schema 

metadata implicitly encoded in JSON keys and XML tags, they suffer semantic and 

structural heterogeneities, even for the instances ingested from the same data source. For 

example, the JSON keys in Facebook data entities (Figure 4.2a and Figure 4.2b) are 

expressed with different strings and exist in different structures (see “location” and “geo” 

keys). Similarly, Twitter data (Figure 4.2c and Figure 4.2d) also exist in different data 

formats. The example serves as a reference point for later sections on SemLinker 

discussions. 

 

(a) Facebook data in schema v.2.9 

 

 

(b) Facebook data in schema v.3.0 

 
 (c) Twitter data in schema v.1.1  

(c) Twitter data in schema v.1.2 

Figure 4.2– Raw data from two social media platforms (Facebook and Twitter) 

4.4 Global schema layer 

The global ontology 𝒢 serves two purposes: tagging input sources upon their addition 

(synchronization) in PDL to reflect the type semantic information of their personal 

generated data, and to form an indispensable basis in the form of query-able format-

agnostic unified views that allows executing uniform queries over the raw data ingested 
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from each synchronized input source. An ideal global ontology is a comprehensive and 

standardized ontology that provides semantic coverage and interoperability across a vast 

range of domains [177]. For this reason, we initiate 𝒢 as an OWL implementation31 of 

SCHEMA [48]. SCHEMA is a lightweight and well-curated vocabulary that consists of 

abstract concepts common across many domains and is used as a backbone schema for 

annotation in many large-scale knowledgebase projects, such as Wikipedia32, DBPedia33, 

and Google Knowledge Graph34. Such initiation is beneficial in supporting the semantic 

interoperability between a multitude of data sources that possibly exist in different 

domains. The disadvantage however is that SCHEMA abstract concepts can be too generic 

and require more specificity to support concise metamodeling and integration.  

To balance between the conceptual abstraction and the semantic specificity, we enable 𝒢 

extensibility. The elements of 𝒢 may be extended by adding new properties to the current 

set of properties of a concept 𝑔 ∈ 𝒢, to increase its coverage over elements in local 

schemas at the local schemata layer. 𝑔 may also be extended by adding a new subordinate 

concept to it. rdf:type and rdfs:subClassOf  are used for importing new and more 

specific concepts. To comply with 𝒢′𝑠 structure, the newly added concept must be 

associated with a set of properties (declared using 𝒢:hasProperty) and each property is of 

a certain primitive data type that is strictly reused from the XSD vocabulary [185] 

(declared using 𝒢:hasDatatype). Figure 4.3 depicts an example of extending 

SocialMediaPosting, a concept in 𝒢, with Feed, a more specific concept imported from 

the SIOC vocabulary [186]. The extension taking place is to support a unified view over 

data ingested from social media data sources. The extended concept Feed is linked to 

SocialMediaPosting using rdfs:subClassOf, and is described by a set of 

properties imported from the DCMI [187] and WGS84 [188] vocabularies. The required 

RDF data to implement such an extension are automatically generated by SemLinker and 

are added to the 𝒢 ontology. 

                                                 

31 https://github.com/schemaorg/schemaorg 
32 https://meta.wikimedia.org/wiki/Wikidata/Notes/Schema.org_and_Wikidata 
33 https://wiki.dbpedia.org 
34 https://developers.google.com/knowledge-graph/ 
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Figure 4.3– Example of concept extension in 𝒢  

4.5 Local schemata layer 

The schemas repository 𝑆 is a principal component in the local schemata layer that stores 

the set of local schemas corresponding to different input sources added to SemLinker over 

time. Each local schema is stored in 𝑆 as a data graph that contains machine-readable 

metadata in the form of RDF triples which describe the physical schema details of the data 

ingested from each input source synchronized with PDL, and how various elements in 

each schema are corresponding to 𝒢, i.e. the schema mappings. In this section we explore 

how local schemas in SemLinker are automatically, extracted, mapped to 𝒢, stored in 𝑆, 

maintained over time, and used for generating unified views. 

4.5.1 Automatic data source addition 

SemLinker, as an MMF component, is physically isolated from the ingestion layer, and its 

single point of input is the lineage manager (see Figure 4.1). Such separation of concern 
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enables the latter to forward raw data with associated lineage metadata that are necessary 

for optimising the metadata management and storage processes. 

Every ingested (semi)structured data entity is dispatched to SemLinker with the following 

artefacts: key, source, type, and mime. As indicated earlier, source specifies the unique 

identifier of the input source 𝑖 (in the form of URI) from which the data entity at hand is 

ingested. type specifies the global concept 𝑔,𝑔 ∈ 𝒢 representing the type abstraction of 𝑖’s 

data. Both artefacts are originally obtained from the user during the deployment of the 

ingestion agent concerning 𝑖 (see section 3.3.4). key represents the unique identifier that is 

automatically generated by the lineage manager and permanently associated with the entity 

during its lifecycle inside PDL. mime specifies the physical format of the entity (e.g. JSON, 

XML, CSV, etc.) that is discovered by the lineage manager during PDLSF parsing. For 

each received raw data entity, SemLinker checks whether the associated source already 

exists in the schemas repository, if not, then this is an indication that the data source 𝑖, is 

newly added input source to PDL. In this case, SemLinker initializes a new empty RDF 

graph that represents 𝑖’s local schema metadata, denoted as 𝑆𝑖.  Subsequently, it tags 𝑆𝑖 

with the concept 𝑔 in type, so that it reflects the underlying type semantics of the data 

typically ingested from 𝑖. Local schema tagging is normally modeled as an RDF triple, and 

follows the pattern: 

〈𝑆𝑖 𝑀: 𝑖𝑠𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑂𝑓 𝑔〉 

For example, if 𝑖 is Facebook, and 𝑔  is Feed then the RDF interpretation of the local 

schema tagging is asserted as 

〈𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘 𝑀: 𝑖𝑠𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑂𝑓 𝒢: 𝐹𝑒𝑒𝑑〉 

To this end, 𝑖 is automatically added to SemLinker, and its local schema 𝑆𝑖 is to be further 

processed by downstream algorithms in the system’s workflow to maintain appropriate 

semantic and schema metadata that will always be utilised to automatically annotate any 

data entities ingested from 𝑖 in the future. Metadata management post-processing in 

SemLinker involves dispatching the processed data entity to the storage layer with two 

identifiers: key, and an internal identifier specifies the current source schema of 𝑖 (see next 
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section). The storage of the entity and identifiers in the storage layer is construed in section 

3.5.3.  

The lineage metadata added to SemLinker inputs offers the following advantages: 

 Enabling the user to add new input sources and plug new ingestion agents in the 

ingestion layer without the need to notify SemLinker. 

 Allowing the system to ignore the technical details of the ingestion agents plugged 

in the ingestion layer by treating input sources as Linked Data [97] resources with 

fixed URIs. This is useful in cases where the user replaces the ingestion agent 

concerning certain input source with another agent and without the need to notify 

SemLinker about such change due to its autonomy from the ingestion environment.  

 Providing all the necessary input information to the downstream algorithms in 

SemLinker’s workflow in a disciplined way, rather than relying on manual inputs, 

which may be erroneous or time-consuming for the PDL user. 

4.5.2 Local schema redefined 

The physical schema of any input source is subject to changes and updates [162,190,282]. 

In the example depicted in Figure 4.2, schema evolution is observed at both the semantic 

level (data attribute renaming, e.g. “message”⟼”story”, and “text”⟼ ”message”), and 

the structural level (data format changes, e.g.  JSON⟼XML, and attribute changes, e.g. 

casting the JSON object “location” in Figure 4.2a into the simple attribute “geo” in Figure 

4.2b). SemLinker takes a novel, automatic approach to handle the schema evolution 

problem. In this approach, the RDF representation of the local schema of an input source 

is regarded as dynamic. It contains a changeable set of subgraphs, each of which represents 

an evolving version of the schema and is called a source schema.  A Schema Extraction 

Algorithm is used to extract source schemas automatically, and a Mapping Computation 

Algorithm is responsible for mapping them to the global ontology. A formal definition of 

the local schema of a dynamic feature is given below. 

Definition 4.2 (Local Schema): The Local schema 𝑆𝑖 ∈ 𝑆 is a dynamic set of source 

schemas corresponding to 𝑚 physical schema evolutions in the data ingested from the 
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data source 𝑖, 𝑆𝑖 = {𝑆𝑖1, 𝑆𝑖2, … , 𝑆𝑖𝑚}. For each 𝑆𝑖𝑗 ∈ 𝑆𝑖, 1 ≤ 𝑗 ≤ 𝑚, there is a set of 

mapping assertions ℳ between 𝑆𝑖𝑗 and  𝑔 ∈ 𝒢 of the form:  𝑝 → 𝑎, where attribute 𝑎 ∈

𝑆𝑖𝑗 and property 𝑝 ∈ 𝑔. 

The system accepts a data entity that is ingested from its source’s through an endpoint 

which is typically associated with a release version. Analysis of the data entity’s physical 

schema is needed to obtain its source schema 𝑆𝑖𝑗, where 𝑖 is the input source’s URI, and 𝑗 

is 𝑖’s endpoint release version. SemLinker (fully/partially) then maps 𝑆𝑖𝑗 to the tagging 

concept 𝑔 in the global ontology, stores it in the underlying graph of 𝑆𝑖, and uses it to 

integrate 𝑖’s data with other raw data stored in PDL. Furthermore, 𝑆𝑖𝑗 is regarded as a 

benchmark and is used to run schema checks on any new data entities ingested from 𝑖. A 

schema check may fail, and when the number of failures reaches a predefined threshold, 

the system infers that data source 𝑖 has released its endpoint with a newer version. 

Consequently, a new evolution has occurred in the physical schema of 𝑖’s data, and the 

system must augment the local schema 𝑆𝑖 by constructing a new source schema, say 𝑆𝑖𝑘, 

that is also mapped to 𝑔 and added to 𝑆𝑖, so that 𝑆𝑖𝑘 is utilised to integrate any new data 

entities ingested from 𝑖 with the release version 𝑘, meanwhile utilising 𝑆𝑖𝑗 to maintain 

backward integration support (compatibility) for the data entities that have already been 

ingested from 𝑖 with the release version 𝑗. The procedure for augmenting the local schemas 

upon schema evolutions in the endpoints of their data sources is automatically repeated to 

keep up-to-date metadata about the physical schema of the data entities ingested from each 

data source. 

4.5.3 Automatic schema metadata extraction 

The Schema Extraction algorithm automatically extracts source schemas from data entities 

(see Algorithm 1). It takes as input a data entity 𝐹 ingested from a data source 𝑖, with 

release version j, and a mime string specifying the format type of 𝐹. 𝐹 is assumed to 

conform to a known format specification [189], and its structure consists of a mix of flat 

and complex attributes, each of which has a label and a value.  
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Table 4.1 – RDF schema representation vocabulary (𝒮) 

Element Type Details 

 Element  Semantics  

𝒮:Attribute Class Type 

Describes flat attribute, e.g., 

JSON key-value pair, single 

tabular column, XML tag. 

𝒮:hasAttribute Property Relation 
Links flat attribute with its 

semantic type class. 

𝒮:Object Class Type 

Describes complex, e.g., JSON 

object, primary or CSV header 

column, etc. 

𝒮:hasObject Property Relation 
Links complex attribute with its 

semantic type class. 

𝒮:Collection Class Type 

Describes enumerator ranging 

from list, ordered list, array, 

collection, etc. 

𝒮:hasCollection Property Relation 
Links enumerator attribute with 

its semantic type class 

𝒮:hasFormat Property Functional 

Internally assigned attribute 

reflects data format, e.g. JSON, 

XML, CSV, etc. 

𝒮:isComposedBy Property Functional 
Internally assigned attribute to 

control virtual transformation. 

𝒮:isDecomposedFrom Property Functional 
Internally assigned attribute to 

control virtual transformation. 
 

The algorithm operates on the structure level of 𝐹 and extracts its RDF representation 𝑆𝑖𝑗 

that consists of nodes and relationships between them. Each node in 𝑆𝑖𝑗 describes a specific 

element (attribute) in the physical schema of 𝐹 and is associated with three constructs: 

Identifier, Semantic Type, and Relation. The algorithm assigns a value to each node and 

constructs Identifier using the URI of the input source and the release version j as base 

values. Semantic Type specifies the semantic class of the node, and its value can be any of 

the concepts listed in Table 4.1. Relation refers to a relation between a pair of nodes, and 

it can be any of the properties listed in Table 4.1. 
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1          function InitializeGraph(F, i , j , mime) 

2              root ← i + ’/’ + j 

3              format ← root + ‘/’ + mime 

4              𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(format, rdf:type , 𝒮:Attribute ) 

5              𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(root, 𝒮:hasFormat,  format) 

6              GenerateGraph(F , Root) 

7          end 

8          function GenerateGraph(F, ParentId) 

9              foreach (label,value) ∈ 𝐹 do 

10               NodeId ← ParentId + ’/’ + label 

11               NodeType ← Type(value) 

12               𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(NodeId , rdf:type , NodeType) 

13               if NodeType = 𝒮:Attribute  then 

14                   𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(ParentId , 𝒮:hasAttribute , NodeId) 

15               else  

16                  if NodeType = 𝒮:Object  then 

17                     𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(ParentId, 𝒮:hasObject , NodeId) 

18                     GenerateGraph(value,NodeId) 

19                   else 

20                      if NodeType = 𝒮:Collection  then 

21                         𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(ParentId, 𝒮:hasCollection , NodeId) 

22                         GenerateGraph(value,NodeId) 

23               end if 

24          end foreach 

25       end 

Algorithm (1)– Schema extraction algorithm 

The algorithm has two procedures: InitializeGraph() and GenerateGraph(). The first starts 

with specifying the given URI and the release version j as the root of 𝑆𝑖𝑗 (line 2); the 

auxiliary function ToRDF() adds format attribute (the input mime corresponds to format) 

to 𝑆𝑖𝑗 as one of its nodes (lines 3 and 4); ToRDF() then specifies the relationship 

(:hasFormat) between the format node and its parent node (line 5). At this point, the source 
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schema 𝑆𝑖𝑗 is initiated. The procedure then invokes GenerateGraph() and passes F and the 

root of 𝑆𝑖𝑗 to it. GenerateGraph() constructs 𝑆𝑖𝑗 through a series of iterations and recursive 

calls over the physical schema of F. In each call, the procedure takes a label-value pair 

from F and parentId (the URI) as new input, creates a node in 𝑆𝑖𝑗 corresponding to the 

passed label, and links the node to its parent node (parentId). The initialization and linking 

of any node is modeled as the RDF triples (NodeId rdf:type S:Type) and (ParentNodeId 

S:relation NodeId), respectively (line 12). Next ToRDF(), based on the type of the node, 

appends these triples to 𝑆𝑖𝑗 (lines 6-15).  

 

Figure 4.4– A source schema extracted using the schema extraction algorithm 

Depending on the complexity of 𝐹’s structure, a label-value pair may represent a flat 

attribute in 𝐹 (e.g. “id” key in Figure 4.2a), in which case, the node type obtained from the 

auxiliary function Type() is 𝒮:Attribute, and the corresponding node is linked to its parent 

node using 𝒮:hasAttribute relation, and the algorithm moves to the next label-value pair. 

Conversely, the current label-value pair may correspond to a complex attribute (e.g. 

“location” embedded object in Figure 4.2a). In this case, the type obtained from Type() is 

either 𝒮:Collection or 𝒮:Object, and the node is linked to its parent node using 
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one of the relations 𝒮:hasCollection or 𝒮:hasObject, and subsequently the node’s identifier 

and value are passed to the recursive procedure GenerateGraph(). 

Figure 4.4, as an example, depicts the graph-based representation of the source schema 

extracted from the data sample given in Figure 4.2a. The first node in the graph is created 

as a leaf node because the first label-value (JSON key “id”) is a simple attribute in 𝐹. Its 

identifier is Facebook relative URI35. A node maybe embedded in another node, such is 

the case with the node labelled ‘latitude’, which serves as one of the flat attributes of the 

object ‘location’. 

4.5.4 Mapping computation and management 

Once a source schema is constructed, it needs to be mapped to the global ontology. A 

mapping is a relationship specifying how an element structured under one schema (i.e., the 

source schema) corresponds to an equivalent element structured under the global ontology 

(i.e., 𝒢) [39]. Mappings may be discovered either implicitly or explicitly. In SemLinker, 

because the global concepts of 𝒢 are predefined independently from the input sources, it 

is likely that a source schema is semantically incompatible with the concepts of 𝒢, and 

therefore no implicit mappings can be directly discovered between a source schema 𝑆𝑖𝑗 

and a tagging concept 𝑔. Typically, computing mappings between a source schema and a 

tagging concept involves specifying the semantic types of the source schema elements, 

i.e., labelling each schema element with a semantically equivalent property in the tagging 

concept [93]. However, semantic labelling alone is not sufficient [83], and a precise 

mapping computation process requires an extra step that specifies how the elements of a 

source schema should be organised in accordance with the structure of its tagging concept 

so that the two constructs become semantically compatible and ready for mapping. This 

‘extra step’ is often missed in systems that automate mappings discovery [161,176,181, 

191,192] and is commonly expected to be dealt with manually [83]. SemLinker uses a 

two-step mapping approach that not only does the explicit mappings, but also performs the 

                                                 

35 https://graph.facebook.com/me/feed/2.9/id 

https://graph.facebook.com/me/feed/2.9/id
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‘extra step’ automatically. The two steps are Schema Matching (SM) and Virtual 

Transformation of Source Attribute (VTSA).  

Mapping Algorithm 

The mapping algorithm (see List 2) takes as inputs a tagging concept 𝑔, a source schema 

𝑆𝑖𝑗, and a threshold 𝑡. It takes two steps, SM and VTSA, to compute mappings between 

properties and source attributes. Mappings are established as RDF triples, where each 

mapping triple has the pattern (p M:mapsTo a), 𝑝 ∈ 𝑔, 𝑎 ∈ 𝑆𝑖𝑗. Such modeling offers the 

flexibility of allowing multiple source attributes of multiple source schemas to be mapped 

to a single property. The source attributes mapped to the same property are considered 

semantically equivalent between themselves, so a unified view over them can be 

automatically represented by the property.  

Revisiting the example in Figure 4.2, we see that the Twitter data source is tagged with 

the concept Feed. With the mappings specified below, “text” in 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.1 (Figure 4.2c) 

is regarded as semantically equivalent to “message” in 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.2 (Figure 4.2d). 

〈𝐹𝑒𝑒𝑑: 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 𝑀:𝑚𝑎𝑝𝑠𝑇𝑜 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.1: 𝑡𝑒𝑥𝑡 〉  

〈𝐹𝑒𝑒𝑑: 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 𝑀:𝑚𝑎𝑝𝑠𝑇𝑜 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.2:𝑚𝑒𝑠𝑠𝑎𝑔𝑒〉 

Such mappings allow SemLinker to automatically reconcile heterogeneous attributes from 

different source schemas of the same data source, and the reconciliation can be further 

obtained by a SPARQL query with the pattern 〈𝐹𝑒𝑒𝑑: 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 𝑀:𝑚𝑎𝑝𝑠𝑇𝑜 ? 𝑎〉. In 

our running example, the result ? 𝑎 = {𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.1: 𝑡𝑒𝑥𝑡, 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.2:𝑚𝑒𝑠𝑠𝑎𝑔𝑒} allows 

an analysis process to access the values of both data attributes from both versions, 

𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.1 and 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.2. This can also be applied to unify semantically equivalent 

attributes in the source schemas of different data sources as long as they are tagged with 

the same concept. In our example, if we have both Facebook and Twitter data sources 

tagged with the same concept Feed, then “message” in 𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘,𝑣2.9, “story” in 

𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘,𝑣3.0, “text” in 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣.1.1, and “message” in 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.2 are all regarded as 

equivalent. 
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Schema Matching 

For each property p (line 2), the mapping algorithm invokes function Matcher() to find the 

attribute in 𝑆𝑖𝑗 that is semantically equivalent with 𝑝 (line 3). Matcher() is an interface 

function that passes the matching task to an external schema matcher that is plugged in the 

system. Any appropriate schema matching approach may be plugged in SemLinker to 

implement the computation logic underlying the interface Matcher(). In section 6.1.2, we 

discuss multiple relevant approaches to serve that purpose, and evaluate their performance 

as an integral part of Algorithm (2). Generally, for an attribute a, the matcher computes a 

score that quantifies the semantic correspondence between a and p. If the score is larger 

than the threshold t, a and p are regarded as semantically equivalent. When there is more 

than one property equivalent to the same source attribute, or more than one source attribute 

equivalent with the same property, the algorithm, before a mapping is established, adjusts 

the structure of 𝑆𝑖𝑗 using VTSA. Matcher() returns a data structure containing two 

collection constructs, A and P; while A holds zero or more source attributes, P holds one 

or more properties. The algorithm decides its next step according to what is returned in the 

A and P constructs.  

 If 𝐴 = ∅ (line 4), no match is found and the algorithm proceeds to the next 𝑝. 

 

 If |𝐴| = 1 and  |𝑃| = 1 (line 5), one matching attribute a of the source schema is 

found, so the algorithm establishes a mapping between 𝑝 and a (line 6). 

 

 If |𝐴| > 1  and  |𝑃| = 1 (line 8), an operation called Composition is performed on the 

attributes of A before establishing mappings (lines 9-17). 

 

 If |𝐴| = 1 and  |𝑃| > 1 (line 18), an operation called Decomposition is performed on 

the attribute 𝑎 stored in A before establishing mappings (lines 19-28). After the 

operation, P is skipped from 𝑔 using the auxiliary function Skip() for optimisation 

purposes (line 29). 

While typically information regarding the concept 𝑔 is abundant, information regarding a 

specific input 𝑆𝑖𝑗 is often inadequate [193], especially given that PDL input source often 
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do not expose full-fledged schemas (see section 4.2). When a situation like this arises, 

SemLinker uses matchers from third parties to handle schema matching tasks. Matchers 

are classified into three groups, schema-level, instance-level, and hybrid matchers [194]. 

Schema-level matchers utilise the information available in input schemas to find matches 

between schema elements. Instance-level matchers use statistics, metadata, or trained 

classifiers to decide if the values of two schema elements match. Hybrid matchers combine 

both mechanisms to determine match candidates. Schema matching approaches are 

constantly evolving, and often they apply other techniques such as dictionaries, thesauri, 

and user-provided match or mismatch information [193]. After every single property is 

examined, and mappings between 𝑔 and 𝑆𝑖𝑗 are established, the underlying RDF data of 

the newly constructed 𝑆𝑖𝑗 are added into the local schema 𝑆𝑖 (line 33). 

1   function ComputeMap(𝑔 , 𝑆𝑖𝑗 , 𝑡) 

2      foreach 𝑝 ∈ 𝑔 do 

3         result ← Matcher(𝑝, 𝑔, 𝑆𝑖𝑗 , 𝑡) 

4         if result(𝐴) ≠ ∅ then 

5            if result(|𝐴|) = 1 and result(|𝑃|) = 1 then 

6               𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(𝑝, 𝑀:𝑀𝑎𝑝𝑠𝑇𝑜,result(𝐴[0])) 

7            else 

8               if result(|𝐴|) > 1 and result(|𝑃|) = 1 then 

9                  parent ← Parent(result(𝐴[0])) 

10                newNode ← parent + ’/’ + Label(𝑝) 

11               𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(newNode, 𝑟𝑑𝑓: 𝑇𝑦𝑝𝑒, 𝒮: 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) 

12                𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(parent, 𝒮: ℎ𝑎𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒,newNode) 

13                𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(𝑝, 𝑀:𝑀𝑎𝑝𝑠𝑇𝑜,newNode) 

14                for ℎ = 0 upto result(|𝐴|) – 1 do 

15                   DeleteRelation(parent, 𝑆𝑖𝑗 , result(𝐴[ℎ])) 

16                   𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(result(𝐴[ℎ]),𝒮: 𝑖𝑠𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝐵𝑦,newNode) 

17                end for 
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18             else 

19               if Type(result(𝐴[0])) ≠ 𝒮: 𝑂𝑏𝑗𝑒𝑐𝑡 then 

20                   UpdateType(𝑆𝑖𝑗, result(𝐴[0]), 𝒮: 𝑂𝑏𝑗𝑒𝑐𝑡) 

21                end if 

22                for ℎ = 0 upto result(|𝑃|) – 1 do 

23                    newNode ← result(𝐴[0]) + ‘/’ + Label(result(𝑃[ℎ])) 

24                    𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(newNode,𝑟𝑑𝑓: 𝑡𝑦𝑝𝑒, 𝒮: 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) 

25                    𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(result(𝐴[0]), 𝒮: ℎ𝑎𝑠𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒,newNode) 

26                    𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(newNode, 𝒮: 𝑖𝑠𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝐹𝑜𝑟𝑚,result(𝐴[0])) 

27                    𝑆𝑖𝑗 ← 𝑆𝑖𝑗 ∪ ToRDF(result(𝑃[ℎ]), 𝒮:𝑀:𝑚𝑎𝑝𝑠𝑇𝑜,newNode) 

28                end for 

29                Skip(result(𝑃)) 

30            end if 

31         end if 

32      end for 

33      𝑆𝑖 ← 𝑆𝑖 ∪ 𝑆𝑖𝑗  

34   End 

Algorithm (2)– Mapping algorithm 

Virtual Transformation of Source Attribute 

In Figure 4.3, latitude and longitude, the two properties in the concept Feed, 

correspond directly to the flat attributes of the embedded object labelled “location” in 

Figure 4.2a, but correspond indirectly to the flat attribute labelled “geo” in Figure 4.2b. 

The relationships between latitude and longitude and their indirect corresponding 

source attribute “𝑔𝑒𝑜”, though apparent, can semantically hold only if “geo” is transformed 

into two new source attributes, i.e., “𝑔𝑒𝑜” ⟶ 〈"𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒", "𝑙𝑜𝑛𝑑𝑖𝑡𝑢𝑑𝑒"〉, or vice versa. To 

preserve the structure of the raw data stored in the lake, we adopt two virtual 

transformation operations, Composition 𝜇 and Decomposition 𝛾, to work on the schema of 

the raw data rather than on the data themselves. The virtual transformation operations are 
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based on [172, 195], and they allow SemLinker to virtually map an attribute in a source 

schema to a property in the global ontology. 

Definition 4.3 (Composition 𝝁):  Given a set of source attributes A, 𝐴 =

{𝑎1, 𝑎2, , … , 𝑎𝑘}, 𝐴 ⊆ 𝑆𝑖𝑗, 𝑆𝑖𝑗 ∈ 𝑆𝑖,1 < 𝑘 ≤ 𝑛, 𝑛 = |𝑆𝑖𝑗|, the composition operator 𝜇𝐴,𝑎𝜇 

composes 𝐴 into a single virtual attribute 𝑎𝜇. 

The mapping algorithm uses the condition (|𝐴| > 1, and  |𝑃| = 1) as the heuristic rule to 

compose a subset of source attributes 𝐴, 𝐴 == {𝑎1, 𝑎2, , … , 𝑎𝑘} as a single new attribute 

𝑎𝜇 and adds it to the 𝑆𝑖𝑗. Since 𝑎𝜇 is a new source attribute, it must be initialized in the 

same manner as other source attributes.  Two types of mappings are established to activate 

the composition transformation. Mapping 𝑝𝑥 → 𝑎𝜇 is performed by adding the RDF triple 

〈𝑝𝑥 𝑀:𝑚𝑎𝑝𝑠𝑇𝑜 𝑎𝜇〉 to 𝑆𝑖𝑗 (line 13); mapping 𝐴 → 𝑎𝜇 is performed by adding a set of RDF 

triples, each following the pattern 〈𝑎𝑦 𝒮: 𝑖𝑠𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝐵𝑦 𝑎𝜇〉 (lines 14-17, see Table 4.1). 

Since 𝑎𝜇 is a virtual attribute that has no physical implementation, its data values are 

dynamically constructed when queried.  

Definition 4.4 (Decomposition 𝜸): Given an attribute 𝑎𝑦 ∈ 𝑆𝑖𝑗, 𝑆𝑖𝑗 ∈ 𝑆𝑖, the 

decomposition operator 𝛾𝑎𝑦,𝐴𝛾 decomposes the attribute 𝑎𝑦 into a set of virtual attributes 

𝐴𝛾, 𝑤ℎ𝑒𝑟𝑒  𝐴𝛾 = {𝑎𝛾1𝑎𝛾2, , … , 𝑎𝛾𝑘}, 𝑘 > 1. 

When |𝐴| = 1, and  |𝑃| > 1 (line 18) a decomposition operation takes place to decompose 

a source attribute 𝑎𝑦 into a set of new virtual attributes 𝐴𝛾, and adds the set to 𝑆𝑖𝑗. In the 

operation, 𝑎𝑦 is modeled as the parent node of the new virtual attributes (lines 23-25). 

Similar to composition, the algorithm establishes two types of mappings to activate the 

decomposition transformation. Mapping  𝑝𝑥 → 𝑎𝛾𝑖 is materialized through the RDF triple 

〈𝑝𝑥 𝑀:𝑚𝑎𝑝𝑠𝑇𝑜 𝑎𝛾𝑖〉, and mapping 𝑎𝛾𝑖 → 𝑎𝑦 is materialized through the RDF triple 

〈𝑎𝛾𝑖 𝒮: 𝑖𝑠𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑𝐹𝑟𝑜𝑚 𝑎𝑦〉 (see Table 4.1). Since 𝐴𝛾 is a set of virtual attributes that 

have no actual implementation, the value of each attribute 𝑎𝛾𝑖 in 𝐴𝛾 must be dynamically 

constructed whenever needed. 
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Figure 4.5– Mappings between the concept Feed and two source schemas 

4.5.5 Partial unified views 

A mediation-based integration approach typically emphasizes rigorous mapping between 

the global schema and the local schemas of the data sources under integration. While the 

assumptions behind such strict emphasis are construed in [183], the expected outcome is 

a set of one or more comprehensive unified views that effectively cover all the physical 

representation details of the integrated data. An implicit requirement in such approach is 

the prior knowledge about the local schemas of the data sources participating in the 

integration workflow. In contrast, as indicated in section 4.1, the input sources of a DL 

system rarely expose full-fledged schemas. This may justify why mediation-based 

integration approaches frequently break down inside a DL system [183], and similar 

dynamic data management environments for that matter. The dataspace research [196] has 
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managed to overcome the strict modelling and rigorous mapping requirements by adopting 

an incremental integration approach in pay-as-you-go fashion [197]. For a given dataset 

in a dataspace system, the user may manually map only subset of its local schema elements, 

towards generating partial unified view that can be further enhanced when the user 

discovers more mappings over time, thus covering more physical details of the dataset’s 

schema. In SemLinker, we adopt a similar but automated approach to generate unified 

views that are “partial”. Technically, SemLinker harvests as much schema information as 

possible from a given input source through the schema extraction algorithm. It then 

attempts to correctly map as many elements in the schema of that source as possible to the 

tagging concept, through the mapping computation algorithm and by exploiting the data 

profiling capabilities offered by the matcher plugin, based on the information obtained 

from the former algorithm. The final product is a set of mappings represent partial 

modelling that can be directly utilised to rewrite user queries targeting the data of that 

source, among other data in PDL.  

A partial unified view over the local schema of a given input source is fundamentally 

defined by the global concept – and its constituting global properties – tagging that 

source’s data. Since the common user has full control on the global ontology 𝒢, then the 

details of any concept 𝑔 ∈ 𝒢 can be readily modified in order to adjust the scope of the 

corresponding view over all the data tagged with this particular concept. Adjustments may 

involve replacing 𝑔 with more specific/general concept of 𝑔′, adding to or removing from 

its set of properties, and so forth. When any updates occur in 𝒢, SemLinker automatically 

repeats its integration workflow (i.e. algorithms invocation) to reconstruct the mappings 

of the local schemas corresponding to 𝑔 according to the newly applied modifications. 

Partial unified views can be regarded as user-tailored that may be personalised according 

to the emerging needs and requirements of the user regarding specific data in PDL. The 

underlying mappings of a partial unified view are static GAV mappings. Overcoming the 

sensitivity problem of GAV modelling, which we covered in section 4.2, is inherently 

achieved through local schema versioning, such that, since any changes in the local 

schemas are interpreted as new schema versions (i.e. definition 4.2), this enables the query 

engine component to rapidly and adequately rewrite and unfold input queries without 

encountering any schema mismatching problems; an input query over data ingested from 



102 (Semi)structured Data Management 

 

particular evolving source is perfectly unfolded over the old source schema, and separately 

unfolded on another source schema that corresponds to the evolution of that source. 

Furthermore, as s shielding measure to protect the query execution process, SemLinker’s 

query engine permits query-based accessibility to mapped schema elements only whereas 

unmapped elements are labelled as inaccessible elements and are hidden from the query 

issuer. 

Figure 4.5 depicts a sample of two local schema versions and their mappings to properties 

of a tagging concept in the global ontology. The source schemas are extracted from 

Facebook data samples given in Figure 4.2a and Figure 4.2b using the schema extraction 

algorithm, and the mappings are computed using the mapping algorithm. In the figure, red 

circles indicate normal source attributes mapped to the equivalent properties in 

straightforward schema matching operations. The source attribute ‘geo’ in the source 

schema https://graph.facebook.com/me/feed/3.0 is marked by a white circle to indicate that 

decomposition has taken place, and ‘geo’ is decomposed into virtual source attributes, 

namely, “latitude” and “longitude”. The virtual source attributes (yellow circles) are also 

mapped to their corresponding global properties “geo:latitude” and “geo:longitude”. Here, 

not all source attributes are mapped to properties of the tagging concept. Some source 

attributes (grey circles) are inaccessible, such as “attachments” of the second local schema. 

An inaccessible attribute, without an equivalent property in the global ontology, cannot be 

accessed through queries. 

4.6 Querying 

The Query engine in the global schema layer (see Figure 4.1) provides querying services 

over SemLinker’s metadata. The engine serves two purposes inside MMF: (i) to provide 

an SQL abstraction for formulating SQL-like queries targeting the unified views over 

structured and semistructured personal raw data stored in PDL, and (ii) to compile, 

translate, and execute SQL-like queries that are input by the user or third-party services to 

SemLinker via PDL’s access layer. The query engine accepts a successfully compiled 

input SQL-like query, converts it into a relevance query and an unfolding query, both of 
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which are internal SPARQL queries that are automatically formulated by the engine based 

on analysing the input query statement(s), and as follows:  

 A relevance query is a SPARQL SELECT query derived from the input query 

based on the concepts embedded in its clause formulation, and its execution over 

𝒢 returns all conceptually relevant local schemas.  

 An unfolding query is a SPARQL SELECT query that is derived from the input 

query based on the ontological elements (global concepts and properties) 

embedded in the latter. Any unfolding query is iteratively executed on the 

underlying RDF graphs of the relevant local schemas that result from the relevance 

query execution. The result of the iterative execution is a list of source attributes 

that correspond to properties of the concepts specified in the query.  

Once all the unfolded queries are executed, all the source attributes can be identified, and 

at this point, we have all the relevant metadata information regarding the query. The last 

phase of the query execution is to load data values that correspond to each identified source 

attribute PDL’s unified repository. The loaded data values are assembled into a list of 

results and returned back to the SQL-like query issuer (the user or third-party service).  

Here is a simple query scenario. Suppose the PDL user (the same user of the example in 

Figure 4.2) is interested in retrieving all social feeds, and their associated geolocation 

information (if any) that are stored in the unified repository, after a specified date (e.g., 

1/7/2018), and so she writes the following query in the access layer’s query interface and 

submits it to SemLinker.  

SELECT 

Feed.description,Feed.latitude,Feed.longitude 

FROM sioc:Feed Feed WHERE 

ParseTime(Feed.date,”dd/mm/yyyy”)> “1/7/2018” 

Upon submission, the access layer dispatches the query to SemLinker’s query engine. The 

engine compiles it, and based on the concept (sioc:Feed) specified in the FROM clause 

of the query, it forms the following relevance query: 
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SELECT ?s WHERE { ?s M:isInstanceOf Feed .} 

This relevance query is executed on the global ontology. A successful execution returns a 

view that is constituted by all local schemas in the local schemas repository that are tagged 

with the concept Feed. In our case (assuming Facebook and Twitter are the only local 

schemas tagged with this concept), 𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘 , 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟 are returned. Next, the query engine 

unfolds the input query and generates the following unfolded query, executing it iteratively 

on the RDF graphs of each local schema it has found, i.e., 𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘 , 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟. 

SELECT ?a1 ?a2 ?a3 WHERE 

{  Feed:description M:mapsTo ?a1 . 

   Feed:latitude M:mapsTo ?a2 . 

   Feed:longitude M:mapsTo ?a3 . } 

Table 4.2 lists the view returned from executing the above unfolded SPARQL query. From 

the table, we see two matching local schemas, each with two source schemas, and their 

attributes corresponding to the properties specified in the original input query. Two virtual 

source attributes from decomposition, “latitude” and “longitude”, are among the source 

attributes returned. Once the necessary metadata information for meeting the input query’s 

data requirements is obtained, the query engine retrieves and parses the corresponding data 

entities and loads all data values matching the specific source attributes after performing 

the conditional filtering. The technical details of data retrieval from the storage layer 

(linkage table and unified repository) are covered earlier in section 3.4. 

Since PDL stores raw data in its native representations, SemLinker’s query engine may 

require invoking multiple parsers during raw data retrieval workloads. In our running 

example, the source schemas 𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘,𝑣2.9, 𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘,𝑣3.0, 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.1 use JSON format, 

whereas the source schema 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.2 uses XML format. The query engine automatically 

infers the appropriate parser for parsing the data entities annotated with each among these 

schemas. Inference is performed by querying the underlying RDF graph of each schema, 

more precisely, the format metadata artefact added to the source schema graph by the 

schema extraction algorithm.  
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SELECT ?x WHERE {  𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘,𝑣2.9 S:hasFormat ?x .} 

SELECT ?x WHERE {  𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.2 S:hasFormat ?x .} 

For instance, by executing the above internal SPARQL queries, the engine can infer that 

the data entities annotated with 𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘,𝑣2.9 exist with “application/json” format, whereas 

their counterparts annotated with 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.2 exist in “application/xml”. The query engine 

may call JsonCPP and PugiXML (see section 3.2) for rapid raw data parsing to access the 

values correspond to the attributes which reflect the global properties specified in the input 

SQL-like query.  

Table 4.2 – Schema metadata results (view) of SQL-like query execution  

Local S. Source S. Query Properties Result Attributes 

𝑺𝑭𝒂𝒄𝒆𝒃𝒐𝒐𝒌 𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘,𝑣2.9 description, 

latitude, longitude 

message, 

latitude, longitude 

𝑺𝑭𝒂𝒄𝒆𝒃𝒐𝒐𝒌 𝑆𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘,𝑣3.0 description, 

latitude, longitude 

story, 

geo(latitude,longitude) 

𝑺𝑻𝒘𝒊𝒕𝒕𝒆𝒓 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.1 description, 

latitude, longitude 

text, 

coordinates(latitude,longitude) 

𝑺𝑻𝒘𝒊𝒕𝒕𝒆𝒓 𝑆𝑇𝑤𝑖𝑡𝑡𝑒𝑟,𝑣1.2 description, 

latitude, longitude 

message, 

coordinates(latitude,longitude) 
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4.7 Summary 

In this chapter, we presented SemLinker as an ontology-based data integration system that 

automates multiple tedious and time-consuming tasks in the data management workflow 

of PDL. SemLinker is the central component of MMF for managing (semi)structured 

personal data. It enables PDL users to accelerate time-to-value analytics on heterogeneous 

personal data by offering capabilities of data integration, processing, and querying through 

conceptual representation of physical schemas regarding a widely used global ontology. 

The system is based on two algorithms that automate the overall management process of 

personal data in PDL through metadata fabrics. The first algorithm constructs formal RDF 

representations that reflect the physical schemas of input raw data. The second algorithm 

metamodels these representations to the global ontology by discovering formal GAV 

mappings that are computed using pluggable profiling-based schema matcher that is 

designed by reusing two important current state of the art schema matching approaches. 

SemLinker uses the algorithms’ outputs as metadata artefacts to annotate data inputs and 

to generate queryable unified views over them. 

SemLinker was introduced to the academic community in a research paper [86]. To the 

best of our knowledge, it is the first domain-agnostic data integration system that offers 

self-adapting capabilities to integrate a variety big personal data with frequently evolving 

schemas based on solid theoretical foundations, without modifying the integrated data 

through physical transformations or similar intermediate modelling techniques. However, 

the system is not without limitations. It focuses on managing structured and semistructured 

personal data only, hence it is by no means a holistic data integration solution when 

unstructured data comes in the picture. In the next chapter, we introduce a principled 

solution to overcome this limitation.  
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Chapter 5 Unstructured Data Management 

It is clear that there are large bodies of personal data in unstructured form, and managing 

them is unavoidable if we are pursuing a complete metadata management solution for 

PDL. In Chapter 4, we introduced an effective MMF component for managing personal 

data with explicitly-defined or self-describing structures, however, such component may 

quickly become futile when operating on data with no structure at all. In this chapter, we 

address the problem of unstructured data management by first proposing an unsupervised 

keyphrase extraction algorithm and then adopting it as a principal MMF component to 

automatically annotate unstructured personal data with formal metadata drawn from an 

extensible ontology, towards creating semantic representations that are utilised to organise 

the storage and usage of this kind of data and to facilitate its seamless integration with data 

of other structure kinds within PDL. 

5.1 Introduction 

Currently, structured and semistructured data sources can be viewed as islands in a sea of 

unstructured data [130]. Several studies estimate that 80-90% of the world’s data is in 

unstructured from [198,199,200], and a significant portion of which is created and shared 

by common users as freeform text [201]. A comprehensive data management solution 

should be capable of creating bridges between structured, semistructured, and unstructured 

data, for seamless integration and smooth querying [201,202]. One important application 

of such bridging is to exploit unstructured contents as sources of strategic information for 

obtaining insights about the “backstory” of certain (semi)structured raw data pieces during 

analysis workloads or vice versa – see section 6.3 as an empirical example. However, data 

bridging over structure heterogeneity is by no means an easy task. The main challenge of 

unstructured data lies in its freeform nature. It – unlike structured and semistructured kinds 

– cannot be fitted into neat and explicitly defined representations [203], and with the 

absence of such representations, core management activities like access and retrieval 
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become problematic [130,204]. The early research efforts for bridging the gap between 

unstructured text36 and information retrieval (IR) [205] extensively focused on the bag-of-

words paradigm. In recent years, a good deal of work attempted to go beyond this paradigm 

with the goal of constructing representations for unstructured text through semantic 

annotations. Basically, semantic annotation refers to the process of attaching metadata 

artefacts (e.g. keywords, ontology classes, etc.) to text segments as an enabler of 

information access and retrieval [206]. Various methods have been proposed in the 

literature for annotating textual documents, most of which employ Information Extraction 

(IE) techniques to automatically recognise instances of concepts (e.g. lexical chaining 

[207] and wikification [208]), topics (e.g. LSA [209], LDA [210], ESA [211]), events (e.g. 

event detection [212]), entities (e.g. named entity recognition [213,214]), relations (e.g. 

relation mining [214,215]), or combination of these (e.g. keyphrase extraction [53,55]), 

inside a given document. From operational perspective, existing methods are deployed 

either as automatic or semi-automatic applications where the user can inspect, and if 

necessary corrects the generated annotations. Automatic methods are preferred when the 

volume of data is too large to make human post-annotation practicable – which is the case 

of PDL. From general perspective, current state of the art methods are not flexible enough 

to support adaptability, domain tractability, and maintainability for being used in cost-

saving and domain-agnostic scenarios [202][204][206]. To support managing unstructured 

text and bridging it with other raw data within a dynamic environment, an optimised 

semantic annotation method is needed, which should effectively address the following 

requirements: 

 Precision: in section 3.4.1, we explored the importance of precise metadata creation 

and annotation. The heavy reliance on semantic annotations as means to enable 

unstructured data management entails strong correlation between the efficiency of the 

offered management functionalities and the precision of the adopted annotation 

method. 

                                                 

36 In this work, we view unstructured data as any data entity comprises primarily textual content without 

predefined structure or metadata describing that content. Such understanding may be plausible but certainly 

incomprehensive as there are too many other forms of unstructured data (e.g. multimedia). In chapter 7, we 

discuss an extended approach for supporting other unstructured data forms as future work direction. 
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 Domain-agnosticism: a wide variety of unstructured documents may be ingested by 

PDL, hence the adopted method should exhibit effective robustness across various 

domains rather than targeting specific ones.  

 Supervision: one of the main goals of MMF is the reduction of manual management 

efforts for users. A supervised or semi-supervised method typically requires expensive 

training corpora of ground truth data [216]. Such requirement inherently challenges 

our research goal from operational perspective: common users do not have the 

knowledge or the sufficient resources to deliver high-quality training corpora, and 

going domain agnostic entails the need for multiple training datasets to train different 

ML models that correspond to each domain of interest to the user. Thus it is critical to 

adopt an unsupervised method where no training of whatsoever is required. 

 Personalisation: while existing methods typically annotate the text constituents of an 

input document with general semantic classes, the adopted method should offer finer 

annotation granularity for faster and convenient information access and retrieval 

whenever applicable. For instance, annotating a mention of the user’s sibling inside a 

personal email message with the class Brother (or Sister) can contribute in 

boosting the efficiency of retrieving that message from a large text base than if it would 

otherwise be annotated with the generic class Person37. 

To this end, we introduce an automatic semantic annotation (ASA) method for addressing 

the above requirements. The method is fundamentally based on a new automatic keyphrase 

extraction (AKE) algorithm, and it aims to model any unstructured document in PDL into 

semantic representation that is defined by a set of thematically important disambiguated 

text constituents (e.g. concepts, instances, named entities) and their associated conceptual 

meanings defined by a non-empty set of classes drawn from an extensible ontology. The 

proposed method is implemented as an MMF component, and it can be directly queried 

for retrieving the information which the PDL user is looking for, and present it at the right 

level of detail.  

                                                 

37 For example, most current state of the art NER taggers annotate name mentions with Person. See the 

following cases: http://nlp.stanford.edu:8080/ner/ and http://text-processing.com/demo/tag/  

http://nlp.stanford.edu:8080/ner/
http://text-processing.com/demo/tag/
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In the remainder of this chapter, we briefly review AKE literature, present SemCluster 

algorithm, and describe its implementation as MMF component.  

5.2 Automatic keyphrase extraction 

Keyphrases are single or multi-word expressions that describe the essential content of a 

free-text document. AKE [218] is an NLP task that concerns analysing the content of an 

input document and automatically identifying and extracting keyphrases that correspond 

to the document’s theme. Existing AKE work can be broadly divided into two lines of 

research [221,222,223]: supervised and unsupervised. A supervised AKE approach 

typically treats the extraction task as a classification problem, in which, a classifier is 

trained on a large corpus of documents that are annotated with “correct” keyphrases by 

human experts, and the result is a machine learning model which then can be used for 

discriminating keyphrases from non-keyphrases in unseen documents. Various text 

features and classification algorithms have been applied in supervised AKE, (e.g. 

[218,219,220,224,225]. Supervised approaches perform AKE with promising results 

[221,226], however they contradict the requirements listed in section 5.1, such that, a 

supervised AKE approach requires substantial amount of manually annotated training data 

which is very expensive requirement for common users and may lead to inconsistencies in 

heterogeneous processing environments that demand cross-domain tractability [44]. For 

instance, a classifier trained on features of labelled keyphrases that belong to a particular 

domain (e.g. scientific papers) may exhibit poor performance when applied on documents 

from another domain (e.g. news articles).  

Unsupervised AKE overcomes the critical challenges of training data and domain bias by 

casting the extraction task as a ranking problem. The typical workflow here is to select a 

particular set of terms from the input document, then by applying some ranking strategy, 

top ranked terms are taken as keyphrases. Generally, an unsupervised AKE approach can 

either be graph-based or statistics-based [222]. In the former, the input document is 

modelled as a graph where each node represents a term in the document, and the edge 

between a pair of nodes resembles a relevance relation (e.g. co-occurrence). Subsequently, 

a centrality measure (e.g. PageRank [227]) is applied on the graph to rank each node based 
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on its incoming and outgoing edges. Finally, the top-𝑘 ranked nodes are selected as 

keyphrases. In the latter, the terms are ranked based on their associated statistical 

information, such as 𝑇𝐹, 𝐼𝐷𝐹, or statistical distances, and then the top-𝑘 ranked terms are 

either selected as keyphrases, or utilised as heuristics that can be further exploited to search 

for better candidates.  

Compared with other NLP tasks, unsupervised AKE approaches struggle to achieve better 

results [221]. AKE requires not only local statistical information about the terms contained 

in the document but also extensive background knowledge to capture the relations between 

them [221]. Many recent approaches suggest utilising external knowledge sources (e.g., 

WordNet [49]) to obtain rich relation information about terms during AKE [228,229]. 

Although these approaches demonstrate improved extraction performance in some cases, 

their utilised knowledge sources are not consistent enough to supply background 

information in arbitrary domains, therefore a term representative of the document’s theme 

may be disregarded simply because the knowledge source does not maintain information 

about it –we refer to this issue as coverage limitation. For example, Figure 5.1 depicts a 

text segment drawn from DUC-2001 news dataset [54]; the term “Ben Johnson” is 

important because it refers to the name of the athlete who this news article is about, hence 

the term is selected as a valid keyphrase by human curators. A typical WordNet-based 

unsupervised AKE approach, such as SemGraph [229], would disregard this term because 

WordNet has no entry matching “Ben Johnson”.  

Another issue in existing unsupervised approaches is their heavy reliance on statistical 

information to capture the statistical relations between terms, thereby failing to account 

for latent semantic relations. In a graph-based approach, if two representative terms are 

not co-occurring within a predefined window, then no occurrence edge will be established 

between their donating nodes, and their ranks in the graph decrease. Similarly, statistics-

based approaches treat terms solely as statistical elements, therefore a term of high 

frequency is typically ranked higher than an infrequent but semantically important term. 

Due to this semantics loss, a term representative of the document theme is not guaranteed 

to be among its top-ranked candidates if it occurs infrequently [222], which also means a 

top-ranked candidate of statistical importance may not be suitable to be a representative of 

the document [55]. In our running example, most state of the art AKE approaches fail to 
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identify “dash” as a representative term because of its distance from other co-occurring 

terms such as “Olympics” and its infrequent occurrence in the text, thereby the phrase 

“100-meter dash” is not regarded as a valid keyphrase. On the other hand, the term 

“Olympics” appears frequently, so it is not surprising that most AKE approaches select 

“Olympics", “Olympic Games”, and “Olympic movement” as valid keyphrases, without 

considering that “Olympic movement” is not identified by the human curators as a valid 

keyphrase, because it has no immediate semantic relevance to the document theme, for 

instance, many knowledge bases38,39,40 map this term to “Organisation” and not “Sport” 

domain. 

Canadian Ben Johnson left the Olympics today “in a complete state of shock,” 

accused of cheating with drugs in the world’s fastest 100-meter dash and stripped 

of his gold medal. The prize went to American Carl Lewis. Many athletes 

accepted the accusation that Johnson used a muscle-building but dangerous and 

illegal anabolic steroid called Stanozolol as confirmation of what they said they 

know has been going on in track and field. Two tests of Johnson’s urine sample 

proved positive and his denials of drug use were rejected today. “This is a blow 

for the Olympic Games and the Olympic movement,” said International Olympic 

Committee President Juan Antonio Samaranch. 

Figure 5.1– A text segment from #AP880927-0089 in DUC-2001 dataset41 

Building an AKE-based ASA method to support unstructured data management in PDL 

intuitively necessitates the need for an efficient underlying AKE algorithm that can 

overcome the aforementioned challenges. Accordingly, we propose SemCluster, an 

unsupervised clustering-based algorithm that extracts high-quality keyphrases from free-

text documents in any domain. SemCluster first extracts a particular set of terms from an 

input unstructured document and then performs clustering on them so that similar terms 

are grouped within the same cluster based on their latent lexical and semantic relations. 

Each resulting cluster may implicitly correspond to a topic in the document. Terms that 

are close to the centroids of specific clusters are selected as seeds and used to search for 

                                                 

38 http://www.babelnet.org  
39 http://www.conceptnet.io  
40 http://lookup.dbpedia.org/api  

41 Phrases in bold are gold standard keyphrases that are assigned by expert curators as given in [54]. 

http://www.babelnet.org/
http://www.conceptnet.io/
http://lookup.dbpedia.org/api


5.3 Related work 113 

 

candidate phrases that are representative of the main theme of a document. Finally, 

candidate phrases are refined and the resulting candidates are chosen as appropriate 

keyphrases.  

SemCluster makes use of knowledge extensibility in order to address the aforementioned 

unsupervised AKE challenges. SemCluster adopts WordNet as a default knowledge source 

to obtain background semantic information about the terms within the document. The 

semantic coverage of WordNet can be flexibly extended by integrating any number of 

additional generic, specialised, or personalised knowledge sources, so that when the 

semantic information of an arbitrary term is not present in WordNet, it may be available 

in the integrated source(s). For example, by integrating WordNet with DBPedia [50], 

SemCluster can obtain rich semantics about “Ben Johnson” from DBPedia, even though 

this term has no matching entry in WordNet. With the availability of rich semantics, 

SemCluster can readily capture the latent semantic relations between terms, and 

adequately rank each term based on its semantic importance in the context of the document 

and its relevance to the underlying theme. In the example presented in Figure 5.1, despite 

the infrequent occurrence of the term “dash” and its distance from statistically relevant 

terms, SemCluster assigns it a high rank due to its semantic closeness to “Olympics”, “Ben 

Johnson”, and “Carl Lewis”. 

5.3 Related work 

Most early studies on unsupervised42 methods for keyphrase extraction focus on using the 

local information within input documents. The simplest approach uses the 𝑇𝐹 criterion 

[235] for choosing frequently occurring phrases as keyphrases. More sophisticated 

methods incorporate additional statistical and linguistic information. Barker et al. [238] 

suggests extracting noun phrases from the document and ranks them based on the length, 

frequency, and the head-noun frequency of each phrase. Munoz [239] proposes an 

unsupervised algorithm that is based on adaptive resonance theory to identify 𝑏𝑖-gram 

                                                 

42 In this thesis, we do not consider any AKE approaches that demand ML training to improve terms 

ranking, such as word embedding based approaches.  
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keyphrases, though keyphrases intuitively vary in length. El-Beltagy et al. [236] propose 

KP-Miner, a state of the art 𝑇𝐹. 𝐼𝐷𝐹 based approach that operates on 𝑛-gram phrases, and 

only phrases that do not contain a stop word or punctuation mark, occur for the first time 

within the first 𝑚 words of the document, and have a frequency greater than a threshold 

determined by the document length, are selected as candidate phrases. Subsequently, 

candidates are ranked using a modified 𝑇𝐹. 𝐼𝐷𝐹 model that incorporates a boosting factor 

aimed at reducing the bias towards single-word candidates. KP-Miner suffers two main 

drawbacks: it treats phrases as solely statistical elements in the document, and it ignores 

the fact that based on recent studies [248] 15% of keyphrases contain stop words.  

Graph-based AKE is another major stream of AKE research [210]. Mihalcea et al. [53] 

propose TextRank, the first approach to rank candidate keyphrases based on the co-

occurrence links between words. TextRank uses a sliding window technique to construct 

the word graph of an input document. The sliding window moves from the first word to 

the last word in the document, and words that co-occur within a window 𝑚 ≥ 2 are 

connected by an edge in the graph. The approach then applies PageRank on the graph to 

rank nodes through voting [227], such that a node with more in- and out- edges has more 

probability of being top-ranked. However, because important words with low frequency 

are often ranked low (i.e. semantic loss), TextRank performs AKE with poor accuracy. 

Numerous methods have been proposed in the literature to compensate the semantic loss 

of TextRank. Among these, Danesh et al. [232] present a hybrid (statistics- and graph- 

based) approach that computes an initial weight for each phrase based on its 𝑇𝐹. 𝐼𝐷𝐹 score 

and the position of its first occurrence in the document. Then the phrases, together with 

their weights, are modeled as a graph and their weights are recomputed using a centrality 

measure to produce the final ranking of phrases. Wan et al. [54] introduce an extension of 

TextRank that incorporates the co-occurrence information from a set of neighbour 

documents to weight the edges between words in the graph-based representation of the 

input document. The algorithm uses the Cosine Similarity measure to retrieve documents 

from a large document corpus that are topically related to the input document. The 

retrieved documents contribute in identifying and ranking the phrases that correspond to 

the topics in the document. However, the retrieval of topic-related documents from large 

corpora is very expensive. Wang et. al. [228] extends TextRank by incorporating 
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background semantic information form WordNet for weighting the nodes in the graph. 

Then PageRank is used to compute the top-k ranked nodes. Similarly, Martinez-Romo et 

al. [229] use information from WordNet to enrich the semantic relationships between 

words in the word graph. Though the performance of the methods using Wordnet has 

improved greatly, as indicated in the introduction section, WordNet is limited in terms of 

its semantic coverage and is not a panacea.  

Clustering-based studies are another family of unsupervised AKE [222]. Bracewell et al. 

[237] present a method for extracting noun phrases from a document and grouping them 

into clusters based on their shared noun terms. The resulting clusters are ranked based on 

noun term frequencies, and the top-𝑘 ranked clusters are selected as keyphrases. Liu et 

al.[55] introduce a similar clustering-based algorithm, called KeyCluster, that extracts 

noun terms from an input document, groups them into clusters based on their semantic 

relatedness, then selects the phrases from the document body which contain one or more 

cluster centroids and which follow a certain linguistic pattern. Finally, the selected phrases 

are regarded as output keyphrases. KeyCluster adopts Wikipedia as an external knowledge 

source to capture the relatedness between noun terms. The basic idea here is to consider 

each Wikipedia article as a concept, then the semantic meaning of a term is represented as 

a weighted vector of Wikipedia concepts, of which the values are the term’s TFIDF within 

corresponding Wikipedia articles. Accordingly, a similarity metric can be used to capture 

the relatedness between two terms based on their conceptual vectors. The work in [55] 

gives three options to implement the similarity measure, which are Cosine similarity, 

Euclidean distance, Point-wise Mutual Information and Normalised Google Similarity 

Distance [230]. The output of pair-wise similarity computations is a similarity matrix that 

is clustered to obtain the clusters’ centroids that are necessary for selecting candidate 

phrases. The authors of KeyCluster choose three clustering algorithms for the clustering 

task, which are: Hierarchal Clustering, Spectral Clustering, and Affinity Propagation. 

KeyCluster has been shown to outperform many prominent AKE methods, however early 

clustering-based methods in general cannot guarantee that all generated clusters are 

sufficient to cover the document theme, and selecting the centroid of a topically 

unimportant cluster as a heuristic to identify and extract keyphrases yields erroneous 

outputs. More recent studies propose to incorporate topic analysis in the AKE task to 
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ensure that output keyphrases have strong association with the document’s main theme 

from a topical viewpoint. In the topical clustering-based method [231,233,234], terms are 

grouped into clusters using an appropriate clustering algorithm, and the method proceeds 

to conduct topic analysis using a probabilistic topical model, such as Latent Dirichlet 

Allocation [210], in order to extract all latent topics 𝑇 in the document. The importance of 

each term is computed as the sum of its scores in each topic 𝑇𝑖 ∈ 𝑇, weighted by the 

probability of 𝑇𝑖. Hence a term that belongs to an important topic 𝑇𝑖 is weighted more 

heavily than a term that belongs to a less important topic 𝑇𝑗. Although topical clustering-

based methods improve significantly their AKE performance, they essentially suffer 

empirical challenges related to the topic analysis process. For instance, when applied to 

new domains, LDA and similar models induce high computational complexity and require 

hyperparameter (re)tuning, which is a non-trivial task in domain-agnostic text processing 

applications, given that the user is “common”. 

SemCluster is based on an extensive literature review and through learning the advantages 

and disadvantages of other approaches. It adopts an approach that extracts 𝑛-gram terms 

and named entities instead of single words (similar to KP-Miner) and relies greatly on 

background knowledge sources (similar to SGRank, SemGraph, ExpandRank, and 

KeyCluster). However, because of the coverage limitation problem that would arise if it 

was based on a sole knowledge source, SemCluster is designed to allow extensibility of 

its knowledge base by integrating with other knowledge sources. 

5.4 SemCluster overview 

Given an extensible background knowledge source that is modelled as the ontology 𝑂, for 

an input unstructured document 𝐷, SemCluster performs the algorithmic steps depicted in 

Figure 5.2 to extract a set of keyphrases that are most representative of the document’s 

them. The following subsections cover the full details of each step. 
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Figure 5.2– SemCluster algorithm steps 

5.4.1 Candidate terms selection 

The first step in SemCluster is the selection of candidate terms, it is aimed at extracting 

from the content of 𝐷 a general set of terms, where each term is associated with 

background semantic information. The step begins with pre-processing 𝐷 by applying the 

following NLP tasks: tokenization, sentence boundary detection, part-of-speech (POS) 

tagging, and shallow parsing (chunking). Penn Treebank notion [240] is adopted for POS 

tagging and chunking. The aim of chunking is to group words into chunks based on their 

discrete grammatical meanings. Many NLP studies have shown that almost all keyphrases 

assigned by expert curators are typically embedded in noun phrases (i.e. NP chunks) 

[55,220,237,238]. SemCluster considers only NP chunks to find keyphrases, and detects 

and extracts terms in each NP chunk based on their POS annotations. We allow the 

selection of 𝑛-gram terms (where 0 < 𝑛 ≤ 5) using the POS patterns listed in Table 5.1. 

𝒩 denotes Noun, a word tagged as a singular noun (𝑁𝑁) or plural noun (𝑁𝑁𝑆). 𝒞 denotes 

Compound Noun, a sequence of words starting either with an adjective (𝐽𝐽) or noun (both 

𝑁𝑁 and 𝑁𝑁𝑆). 𝛦 denotes an Entity, a sequence of words of singular proper nouns (𝑁𝑁𝑃) 

or plural proper nouns (𝑁𝑁𝑃𝑆) with at most one stop-word (𝒮): the at the beginning, or of 
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in the middle. Each term extracted using these patterns is mapped into SemCluster’s 

ontology 𝑂, and depending on the mapping result, a term is regarded either as a candidate 

term or miscellaneous. When a term does not map to any entries in the ontology, it is 

decomposed into smaller constituents to be mapped again. The terms that fail to find 

matches even after being reduced to smaller constituents are discarded.  

SemCluster uses WordNet as its ontology 𝑂. WordNet is a widely used lexical database. 

It comprises four lexical networks [49]: Nouns, Verbs, Adjectives, and Adverbs. In 

SemCluster we use only the Nouns network. WordNet groups nouns of equivalent 

meanings into synsets43. A synset consists of a list of synonyms and a short definition 

called a gloss. Synsets are connected to other semantically relevant synsets by means of 

semantic relations. Noun synsets are organised using hyponym/hypernym (Is-A), and 

meronym/holonym (Part-Of) relationships, providing a hierarchical tree-like structure that 

can be directly modeled as an ontology.  

Table 5.1 – POS patterns for 𝑛-gram extraction from 𝑁𝑃𝑠 

Extraction pattern Extraction examples  

𝒩 = (NN|NNS) dash/NN, prize/NN, drugs/NNS 

𝒞 = (JJ) ∗ (NN|NNS) + 
anabolic/JJ steroid/NN, gold/NN 

medal/NN, urine/JJ sample/NN 

Ε = (NNP|NNPS) ∗ (𝒮) ∗ (NNP|NNPS) + 
Stanozolol/ NNP, Ben/NNP 

Johnson/NNP, Olympics/NNPS 

 

Background knowledge extensibility  

In practice, no knowledge base is comprehensive, and neither is WordNet. The Nouns 

network contains a large but limited number of English nouns collected nearly two decades 

ago, and therefore, WordNet does not support newly emerging nouns, or new meanings of 

already existing nouns. Relying solely on WordNet as the only background knowledge 

                                                 

43 The semantics terminology in NLP field is slightly different from data management (e.g. chapter 4). To 

maintain the consistency of this thesis discussions, it should be borne in mind that the following terms are 

identical: synset, external synset, (ontological) concept, class, and type class.  
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source leads to the background knowledge coverage limitation as discussed earlier. To 

overcome this we design a procedure for extending WordNet coverage by integrating 

external knowledge bases that utilise ontology-based schemas for structuring their internal 

information, such as DBPedia, BabelNet [51], Yago [241], or any ad hoc (specialised or 

personalised) knowledge bases. 

Input:   

        𝑡𝑖 ∈ 𝐷, 𝐾𝐵𝑥 ∈ {𝐾𝐵} 

Output:  

       𝐻 = {(𝑒, 𝑠)1, (𝑒, 𝑠)2, … , (𝑒, 𝑠)𝑛} : The set of entries matching 𝑡𝑖 and their  

       corresponding WordNet synsets.    

Procedure: 

      If 𝑡𝑖 found in 𝐾𝐵𝑥 then 

         Retrieve all entries 𝐸 matching 𝑡𝑖, 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛}, 𝐸 ⊂ 𝐾𝐵𝑥 

         For each entry 𝑒𝑗 in 𝐸: 

             Retrieve all type classes 𝐶 of 𝑒𝑗, 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑚} 

             For each 𝑐ℎ in 𝐶: 

                 If 𝑐ℎ is the deepest type class in 𝐾𝐵𝑥 schema ontology then 

                    Select 𝑐ℎ as hypernym of 𝑒𝑗 

                    Find the equivalent synset 𝑠𝑖 of 𝑐ℎ 

                    Assign 𝑠𝑖 as hypernym of 𝑒𝑗 

                    Add the pair (𝑒𝑖, 𝑠𝑗) to 𝐻 

         Return 𝐻 

      Else 

         Return ∅     

Algorithm (3)– Extensible background knowledge querying 

The workflow of our proposed procedure is as follows: given an external knowledge base, 

denoted as 𝐾𝐵𝑥, its schema is modeled as an ontology, and each entry in 𝐾𝐵𝑥 is assigned 

one or more ontological concepts called a type class. To perform a meaningful integration, 

the schema ontology of 𝐾𝐵𝑥 is horizontally aligned with 𝑂 by mapping each type class to 

its semantically equivalent synset. To prevent conceptual ambiguity, ontological 

alignments are performed as one-to-one mappings, such that, each type class in the 𝐾𝐵𝑥 

schema ontology is mapped to exactly one synset in 𝑂. During the selection of candidate 

terms, an 𝑛-gram that is extracted from the pre-processed content of 𝐷 and that cannot be 
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mapped to WordNet, is queried against the integrated knowledge base(s), denoted as {𝐾𝐵}, 

using the procedure depicted in Algorithm (3). Given the knowledge base 𝐾𝐵𝑥 ∈ {𝐾𝐵}, 

whose schema ontology is properly aligned with 𝑂, SemCluster queries 𝐾𝐵𝑥 with the 𝑛-

gram 𝑡𝑖. If there are entries in 𝐾𝐵𝑥 matching 𝑡𝑖, then each matched entry is retrieved from 

𝐾𝐵𝑥 and is considered as an external contextual meaning (or sense) of 𝑡𝑖. All the type 

classes associated with external senses of 𝑡𝑖 in 𝐾𝐵𝑥 are mapped into their corresponding 

synsets in 𝑂 and are considered as hypernyms of 𝑡𝑖. The synset that corresponds to the 

deepest type class in the schema ontology of 𝐾𝐵𝑥 is considered the correct hypernym of 

the external sense. With this construct, we allow SemCluster to dynamically generate 

appropriate senses for the terms that are absent in WordNet, or even expand the set of 

synsets for an existing term.  

 

Figure 5.3– A fragment of ontological WordNet-DBPedia alignment 

To illustrate with a real-world example, we consider extending 𝑂 with DBPedia (i.e. 

𝐾𝐵𝐷𝐵𝑃𝑒𝑑𝑖𝑎) and aligning the type classes in its schema ontology44 with their equivalent 

WordNet synsets. For example, the type class dbo:Athlete in 𝐾𝐵𝐷𝐵𝑃𝑒𝑑𝑖𝑎 is directly 

mapped to wn:Athlete#n1 in WordNet, dbo:MusicFestival is mapped to its 

equivalent synset wn:Fete#n2. Revisiting the news article example depicted in Figure 

5.1, we see that the term “Ben Johnson” has no entries in WordNet but five entries in 

𝐾𝐵𝐷𝐵𝑃𝑒𝑑𝑖𝑎. SemCluster generates five new external senses for “Ben Johnson”, each 

reflecting one entry in 𝐾𝐵𝐷𝐵𝑃𝑒𝑑𝑖𝑎. The third sense in particular, “Ben Johnson 

                                                 

44 DBPedia schema ontology is available at http://mappings.dbpedia.org/server/ontology/classes/  

http://mappings.dbpedia.org/server/ontology/classes/
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(Sprinter)”45, is associated with four classes as depicted in Figure 5.3: owl:Thing, 

dbo:Agent, sc:Person, dbo:Athlete. According to the querying algorithm, the 

deepest among the four classes, dbo:Athlete, becomes the hypernym of the third sense 

and is referred to as wn:Athlete#n1. After mapping each extracted term against the 

extended ontology 𝑂†, only a subset of the terms are selected as candidate terms. We 

denote the set of the candidate terms as 𝑇𝐷. Due to the pattern-based method of term 

extraction, especially when 𝐷 contains informal text, 𝑇𝐷 may contain noisy terms that can 

adversely affect similarity computation and clustering performance. Noisy terms are nouns 

with no semantic value (e.g. “one”,”someone”, etc.). To identify and remove noisy terms, 

SemCluster maps each term in 𝑇𝐷 to an internal list that contains the most frequent noisy 

terms in the English language, and any term found in the list is removed from 𝑇𝐷. 

5.4.2 Candidate terms disambiguation 

A consequence of obtaining semantic background information about candidate terms is 

that each term in 𝑇𝐷 may be associated with one or more contextual meanings (or senses), 

whether local or external. Prior to semantic similarity computation, SemCluster must 

identify the correct sense of each term in 𝑇𝐷. Word Sense Disambiguation (WSD) is an 

NLP task that gives machines the ability to computationally determine which sense of a 

term is activated by its use in a particular context. WSD approaches are generally divided 

into three categories [242]: supervised, unsupervised, and knowledge-based. SemCluster 

employs the SenseRelate-TargetWord method [243] for term sense disambiguation. The 

algorithm is WordNet-based and is implemented in WordNet::Similarity46, a popular 

package in computational linguistics. The SenseRelate-TargetWord method takes one 

target candidate term as input and outputs a WordNet synset as the disambiguated sense 

of the target candidate term, based on information about the target as well as a few other 

candidate terms surrounding the target. The surrounding candidate terms are called the 

context window. Let 𝑡𝑖 be a target candidate term, 𝑡𝑖 ∈ 𝑇𝐷, and the context window size be 

𝑁, and the set of surrounding candidate terms in the context window be 𝑊, 𝑊 =

                                                 

45 http://dbpedia.org/page/Ben_Johnson_(sprinter)  
46 http://wn-similarity.sourceforge.net  

http://dbpedia.org/page/Ben_Johnson_(sprinter)
http://wn-similarity.sourceforge.net/
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{𝑤1, 𝑤2, … , 𝑤𝑁}, where, if |𝑊| < 𝑁, then 𝑁 = |𝑊|. Since 𝑡𝑖 is deemed to be associated 

with a set of one or more senses, we denote this set by 𝑆𝑒𝑛𝑠𝑒(𝑡𝑖) = {𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑚}. For 

each sense 𝑠𝑖𝑗, we obtain not only its synonyms list and gloss from WordNet, but also the 

synonym lists and glosses of other synsets that are related to 𝑠𝑖𝑗 via the following set of 

semantic relations: 

{𝐻𝑦𝑝𝑒𝑟𝑛𝑦𝑚,𝐻𝑦𝑝𝑜𝑛𝑦𝑚,𝑀𝑒𝑟𝑜𝑛𝑦𝑚,𝐻𝑜𝑙𝑜𝑛𝑦𝑚} 

The goal of the SenseRelate-TargetWord algorithm is to find the synset responsible for 𝑠𝑖𝑗 

whose synonyms and gloss content maximizes the string-based overlap score with each 

𝑤𝑘 in the context window.  

5.4.3 Candidate terms similarity computation 

After disambiguating all the candidate terms in 𝑇𝐷, each 𝑡𝑖 ∈ 𝑇𝐷 becomes associated with 

the following information: POS tag, position in the document, and a pointer linking 𝑡𝑖 with 

its correctly disambiguated WordNet synset 𝑠𝑖. In this step, SemCluster computes the 

pairwise semantic similarity between each pair of terms in 𝑇𝐷 based on their synset 

pointers. There exist many measures to quantify the similarity between two synsets, and 

these measures are broadly divided into three main categories [244]: path-length based, 

information content based, and feature based. Unlike the other two, path-length measures 

offer greater flexibility in computing the similarity between synsets based on SemCluster’s 

extensible ontology. The WuPalmer measure [245] is a prominent path-length measure to 

compute semantic similarity between two synsets 𝑠𝑖, 𝑠𝑗 by finding the shortest path 

between them relative to the deepest common parent synset, i.e. the Least Common 

Subsumer (LCS). The similarity 𝑆(𝑠𝑖, 𝑠𝑗) is quantified by counting the nodes in the shortest 

path between each synset and the LCS in 𝑂. The measure is defined as follows:  

 S(𝑠𝑖, 𝑠𝑗) =  
2𝑑

𝐿𝑠𝑖 + 𝐿𝑠𝑗 + 2𝑑
 (5.1) 

where 𝑑 is the depth of LCS from the root node, 𝐿𝑠𝑖 is the path length from 𝑠𝑖 to LCS, and 

𝐿𝑠𝑗 is the path length from 𝑠𝑗 to LCS. In this work, we modify the WuPalmer metric to 

capture extra semantic similarity between 𝑠𝑖 and 𝑠𝑗. Path length measures in general, and 
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WuPalmer in particular, focus on measuring the semantic similarity between a pair of 

synsets 𝑠𝑖 and 𝑠𝑗  by exploiting the explicit semantic relations existing between them. 

However, WordNet does not cover all possible relations that may exist between synsets. 

For example, there is no direct link between “wn:Bush#n4” and wn:President#n2, 

although they are clearly related if they co-occur in a document. To capture explicit, as 

well as implicit, semantic similarities using WuPalmer, we extend its mathematical notion 

as follows: 

 S(𝑠𝑖, 𝑠𝑗) =  
2𝑑 + 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐶(𝑠𝑖), 𝐶(𝑠𝑗))

𝐿𝑠𝑖 + 𝐿𝑠𝑗 + 2𝑑 + 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐶(𝑠𝑖), 𝐶(𝑠𝑗))
 (5.2) 

where 𝐶(𝑠𝑖), 𝐶(𝑠𝑗) are functions that retrieve 𝑠𝑖 and 𝑠𝑗 information from WordNet in string 

format, and 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐶(𝑠𝑖), 𝐶(𝑠𝑗)) is a function that measures the string-based overlap 

between 𝐶(𝑠𝑖) and 𝐶(𝑠𝑗). Let 𝑆𝑦𝑛𝑜𝑛𝑦𝑚𝑠(𝑠𝑖) be a function that retrieves all the words in 

the synonyms list of the synset 𝑠𝑖, 𝐺𝑙𝑜𝑠𝑠(𝑠𝑖) be a function that retrieves the definition of 

𝑠𝑖, 𝑅𝑒𝑙𝑎𝑡𝑒𝑑(𝑠𝑖) be a function that retrieves the synonyms and glosses of all synsets 

connected directly to 𝑠𝑖 via the relation set:  

{𝐻𝑦𝑝𝑒𝑟𝑛𝑦𝑚,𝐻𝑦𝑝𝑜𝑛𝑦𝑚,𝑀𝑒𝑟𝑜𝑛𝑦𝑚,𝐻𝑜𝑙𝑜𝑛𝑦𝑚} 

Then 𝐶(𝑠𝑖) is defined as follows: 

 𝐶(𝑠𝑖) =  𝑆𝑦𝑛𝑜𝑛𝑦𝑚𝑠(𝑠𝑖) ∪  𝐺𝑙𝑜𝑠𝑠(𝑠𝑖) ∪  𝑅𝑒𝑙𝑎𝑡𝑒𝑑(𝑠𝑖) (5.3) 

where ∪ is the string concatenation function. 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐶(𝑠𝑖), 𝐶(𝑠𝑗)) finds the maximum 

number of words shared in the output of 𝐶(𝑠𝑖) and 𝐶(𝑠𝑗) normalised by the natural 

logarithm to prevent too much effect of implicit semantic similarity on the WuPalmer 

explicit semantic similarity measurement. Thus, we define overlap as follows: 

 𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐶(𝑠𝑖), 𝐶(𝑠𝑗)) =  log  (𝐶(𝑠𝑖)  ∩  𝐶(𝑠𝑗) + 1 ) (5.4) 

The extended WuPalmer measure is used to compute the pairwise similarities between 

each pair of terms in 𝑇𝐷, and the result is a complete adjacency similarity matrix of size 
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|𝑇𝐷|
2 denoted as 𝒜. Once we have produced 𝒜, we move on to the next step – clustering 

𝑇𝐷 based on 𝒜. 

5.4.4 Candidate terms clustering 

There are many state of the art clustering algorithms to efficiently cluster the adjacency 

matrix 𝒜 resulting from the previous step. Affinity Propagation (AP) [247] has been 

proposed as a powerful technique for exemplar learning by passing messages between 

nodes. It is reported to find clusters with much lower error compared with other algorithms 

[246]. In addition, AP does not require specifying the number of desirable clusters in 

advance as clustering is fully data-driven. Both advantages are extremely important for 

SemCluster to support fully AKE, and hence, AP is adopted as SemCluster’s underlying 

clustering algorithm. The input to AP is the matrix 𝒜. The set 𝑇𝐷 is modeled as a graph. 

An edge exists between two candidate terms 𝑡𝑖 and 𝑡𝑗, 𝑡𝑖 , 𝑡𝑗 ∈ 𝑇𝐷, if S(𝑡𝑖, 𝑡𝑗) > 0,  and the 

weight of the edge is given by the cell 𝒜[i][j]. Initially, all the nodes are viewed as 

exemplars, and after a large number of real-valued information messages have been 

transmitted along the edges of the graph, a relevant set of exemplars and corresponding 

clusters are identified.  

In AP terms, the similarity metric S(𝑡𝑖, 𝑡𝑗) indicates how much 𝑡𝑗 is suitable as an exemplar 

of 𝑡𝑖. In SemCluster, S(𝑡𝑖, 𝑡𝑗) = 𝒜[𝑖][𝑗], 𝑖 ≠ 𝑗. If there is no heuristic knowledge, self-

similarities are called preferences, and are taken as constant values. The preference 

𝑃(𝑡𝑖) = S(𝑡𝑖, 𝑡𝑖) represents the a priori suitability of the term 𝑡𝑖 to serve as an exemplar. 

In SemCluster, preferences are computed using the median. AP computes two kinds of 

messages exchanged between nodes: responsibility and availability. A responsibility 

message, denoted by r(𝑡𝑖, 𝑡𝑗), is sent from node 𝑡𝑖 to node 𝑡𝑗, and reflects the accumulated 

evidence for how well-suited 𝑡𝑗 is to serve as the exemplar of 𝑡𝑖. An availability message, 

denoted as a(𝑡𝑖, 𝑡𝑗), is sent from  𝑡𝑗 to 𝑡𝑖, and reflects the accumulated evidence for how 

well-suited it would be for 𝑡𝑖 to choose 𝑡𝑗 as its exemplar. At the beginning, all 

availabilities are initialized to zero, i.e., for each a(𝑡𝑖, 𝑡𝑗) = 0; then responsibility and 

availability messages are updated using equations (5,6) [247]. 
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 r(𝑡𝑖 , 𝑡𝑗) = 𝑠(𝑡𝑖, 𝑡𝑗) − 𝑚𝑎𝑥𝑗′≠𝑗{ 𝑎(𝑡𝑖, 𝑡𝑗′) + 𝑠(𝑡𝑖, 𝑡𝑗′)} (5.5) 

 a(𝑡𝑖, 𝑡𝑗) =  

{
 
 

 
 
min{ 0 , 𝑟(𝑡𝑗 , 𝑡𝑗) + ∑ max{0, 𝑟(𝑡𝑖′ , 𝑡𝑗)}

𝑖′≠𝑖,𝑗

} , 𝑖 ≠ 𝑗

∑max{0, 𝑟(𝑡𝑖′ , 𝑡𝑗)}

𝑖′≠𝑖

                                           , 𝑖 =  𝑗

 (5.6) 

The responsibility and availability messages are updated iteratively for 𝑚 iterations, and a 

dumping factor, denoted by 𝜆, 𝜆 ∈ [0,1],  is added to both types of messages in order to 

avoid numerical oscillations [247], as depicted in equations 5.7 and 5.8. 

 𝑅𝑚+1 = (1 − 𝜆)𝑅𝑚 + 𝜆𝑅𝑚−1 (5.7) 

 𝐴𝑚+1 = (1 − 𝜆)𝑌𝑚 + 𝜆𝐴𝑚−1 (5.8) 

where 𝑅 is the responsibility matrix, 𝑅 = [𝑟(𝑡𝑖, 𝑡𝑗)], and 𝐴 is the availability matrix, 𝐴 =

[𝑎(𝑡𝑖, 𝑡𝑗)].  AP continues updating r(𝑡𝑖 , 𝑡𝑗) and a(𝑡𝑖 , 𝑡𝑗)  until they remain constant for a 

specified number of iterations, and then both types of messages are combined to discover 

the exemplar candidate terms in 𝑇𝐷, specified as follows: 

 𝜀𝑗  ← 𝑎𝑟𝑔1≤𝑗≤𝑁max[𝑟(𝑡𝑖 , 𝑡𝑗) + 𝑎(𝑡𝑖, 𝑡𝑗)]  , 𝑤ℎ𝑒𝑟𝑒 𝑁 = |𝑇𝐷| (5.9) 

where 𝜀𝑗 is a term in 𝑇𝐷 and is regarded as an exemplar of term 𝑡𝑖. Eventually, every term 

in 𝑇𝐷 is annotated with its exemplar. The number of clusters, and other clustering 

information, are directly obtained by grouping terms based on their shared exemplars. At 

start-up, we allow the set 𝑇𝐷 to be redundant in order to incorporate not only the semantic 

and lexical information of each term 𝑇𝐷 but also the influence of its frequency information 

on the clustering results, such that, if the term 𝑡𝑖 is highly frequent in the document, its 

frequency can be a reason to qualify as an exemplar on the condition that 𝑡𝑖 is always 

allocated the same WordNet synset 𝑠𝑖𝑗 in all its occurrences in 𝐷.  
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5.4.5 Seeds selection  

Typically, clustering-based AKE approaches use the centroids of clusters as seeds 

[55,238,222], and any phrase in 𝐷 containing one or more centroids is chosen as a 

keyphrase. From our empirical observation, we suggest that direct selection of centroids 

resulting from the adopted clustering algorithm may lead to poor keyphrase extraction 

recall and/or precision, due to the following reasons:  

 

Theme-independent seed selection  

Clustering-based methods assign equal importance to all cluster centroids [222,234]. Thus, 

a phrase containing a centroid of an unimportant cluster is ranked exactly equivalent to a 

phrase containing a centroid of an extremely important cluster relative to the document 

theme [234]. Consequently, there is no guarantee that the extracted keyphrases are the best 

representative phrases. Our solution to this is to discard irrelevant or marginally related 

clusters and keep the most relevant ones. The solution is largely based on the observation 

that clusters that sufficiently cover the document theme tend to be semantically more 

related to each other than irrelevant or marginally related clusters. Regarding AP, the 

exemplar is the best representative of its cluster’s semantics. Therefore, we assess the 

average of semantic relatedness strength of each exemplar against all other exemplars, and 

any cluster whose exemplar exhibits weak semantic relatedness is removed. Let 𝐶𝐷 be the 

set of clusters resulting from clustering 𝑇𝐷, 𝐶𝐷 = {𝐶1, 𝐶2, … , 𝐶𝑁},where 𝑁 = |𝐶𝐷|. For 

each cluster 𝐶𝑖, we compute its exemplar’s average semantic relatedness, 𝐴𝑣𝑒(𝜀𝑖), as 

follows: 

 𝐴𝑣𝑒(𝜀𝑖) =
∑ 𝑆𝑅(𝜀𝑖, 𝜀𝑗)𝑖≠𝑗

𝑁 − 1
 , 𝑁 > 1 (5.10) 

Here 𝑆𝑅(𝜀𝑖, 𝜀𝑗) is a metric to quantify the semantic relatedness between the exemplars of 

two clusters 𝐶𝑖 , 𝐶𝑗.  Each cluster 𝐶𝑖 is ranked based on its exemplar average score and is 

removed from 𝐶𝐷 if its average score, 𝐴𝑣𝑒(𝜀𝑖),  is below the average of all clusters. 

𝑆𝑅(𝜀𝑖, 𝜀𝑗) is concerned with measuring the relatedness between 𝜀𝑖 and 𝜀𝑗 rather than their 
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latent semantic similarity. For instance, the terms “drug” and “Olympics” are not similar, 

but, because of their tendency to co-occur together (“drug use” appears frequently in 

“Olympics” themes), they are judged semantically related. To quantify such relatedness in 

an unsupervised cross-domain environment, we expand SemCluster to take advantage of 

Wikipedia, the largest and fastest growing knowledge base. There are a number of 

approaches that measure semantic relatedness by exploiting Wikipedia. Explicit Semantic 

Analysis [211] is one of the most accurate Wikipedia-based measures that, to an extent, 

comes close to the accuracy of a human [249], and, hence, is employed by SemCluster to 

compute the relatedness of exemplars.  

Search space restriction 

Relying solely on the centroids of clusters may lead to restricting the search space for 

finding the best representative phrases in a given document and, consequently, may result 

in degrading keyphrase extraction recall and/or precision. Suppose we have a valid 

keyphrase containing a term 𝑡𝑗 that is semantically close to a centroid term 𝜀𝑖. The phrase 

will not be selected as a candidate keyphrase simply because 𝑡𝑗 is not a centroid. This may 

explain why the Spectral Clustering algorithm outperforms AP in KeyCluster experiments 

– the former allows multiple terms close to a cluster centroid to be chosen as seeds and 

accordingly, extends the keyphrase search space. Taking advantage of this observation, 

SemCluster expands the selection of seeds from AP clustering in a fashion similar to that 

of spectral clustering. Let 𝐶𝐷
′ be the final set of clusters resulting from clustering 𝑇𝐷 using 

AP after centroid relatedness average ranking, where  𝐶𝐷
′  ⊆ 𝐶𝐷 , 𝐶𝐷

′ = {𝐶1, 𝐶2, … , 𝐶𝑘}. 

For each cluster 𝐶𝑖, 𝑖 ≤ 𝑘, we select its exemplar 𝜀𝑖 as a seed. We regard each member 

𝑡𝑗  in 𝐶𝑖 ( 𝑡𝑗 ≠ 𝜀𝑖) as an additional seed if 𝑆(𝜀𝑖, 𝑡𝑗)  ≥ 𝜏, where 𝑆(𝜀𝑖, 𝑡𝑗) is the computed 

score stored in 𝒜 from the previous step (see section 5.4.3), and 𝜏 is a predefined distance 

threshold specifying how semantically close 𝑡𝑗 should be to the centroid 𝜀𝑖 in order to 

qualify as a seed. We repeat this procedure for all the clusters in 𝐶𝐷
′ to obtain a set of 

appropriate seeds from the extended search space. 
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5.4.6 Candidate phrases extraction and keyphrases selection 

After the selection of the seeds, each chunk 𝑁𝑃𝑖 in D is scanned by SemCluster. Any 

sequence of words in 𝑁𝑃𝑖 is regarded as a candidate phrase if it satisfies the following 

conditions: (i) it contains a seed, and (ii) it matches any of the following POS-based 

extraction rules:  

 𝑁𝑃𝑖 contains a seed extracted using an E-pattern  

 If 𝑁𝑃𝑖 contains a seed extracted using a 𝒞-pattern, then two cases are considered: 

if the seed starts with (JJ), then the sequence matching the pattern (𝒞) ∗

(NN|NNS) + is extracted from 𝑁𝑃𝑖; if the seed starts with (NN), then the sequence 

matching pattern (JJ) ∗ (𝒞) + is extracted from 𝑁𝑃𝑖) 

 If 𝑁𝑃𝑖 contains a seed extracted using a 𝒩-pattern, then the sequence matches 

pattern (JJ) ∗ (𝒩) + is extracted from 𝑁𝑃𝑖  

Once all NP chunks have been scanned and processed, the step proceeds to the next phase 

– refining the set of extracted candidate phrases. The refining phase starts by pruning 

redundant candidate phrases. Two or more candidate phrases may be semantically 

equivalent but exist in different forms. They may be synonymous phrases, for example, in 

Figure 5.1, both “Olympics” and “Olympic Games” belong to the synonyms list of the 

same WordNet synset, or adjective-synonymous phrases. For example, in the Wikipedia 

article about “Bernard Madoff”47, there are many candidate phrases which share the same 

representative seed “fraud”, such as “financial fraud”, “gigantic fraud”, “massive fraud”, 

and in this case, we keep the first occurring candidate phrase and remove the others. There 

is also the case of subphrases, as in the example of “Johnson” and “Ben Johnson”. Both 

phrases contain “Johnson”, so we keep the longer phrase, which is more specific, and 

discard the shorter one.  

By default, refined candidate phrases are selected as appropriate keyphrases for the input 

document 𝐷. However, for documents with moderate content size, the set of output 

keyphrases may be relatively large, which would affect the algorithm’s performance. To 

                                                 

47 https://en.wikipedia.org/wiki/Bernard_Madoff  

https://en.wikipedia.org/wiki/Bernard_Madoff
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overcome this drawback, we adopt an empirically effective heuristic from [236], where 

the position that a given candidate term first occurs in a lengthy document in significant 

in two ways: (i) it is likely that the keyphrase of more importance appears sooner in the 

document than others, and (ii) after a certain location in the document, candidate phrases 

that appear for the first time, are highly unlikely to be keyphrases. Based on such an 

empirical heuristic, for a lengthy input document, we predefine a window of size 𝑘, and 

any candidate phrase that occurs beyond a window starting from the first word up to the 

𝑘𝑡ℎ word is disregarded.  

5.5 SemCluster component overview 

5.5.1 Semantic representations 

While the mean of AKE is to extract important keyphrases from an input document, the 

justified end is to annotate the document with the extracted keyphrases towards modelling 

its content into a condensed representation that is easier to handle and process. ASA 

follows a similar approach, but it derives semantic metadata from an input document to 

model its content into machine-readable semantic representation. Both approaches play 

vital roles in many management tasks such as document summarization [54], relationships 

discovery (e.g. classification [250], clustering [251]), and retrieval [252]. SemCluster 

combines AKE and ASE approaches to offer dual interconnected representations for 

modelling and metamodeling the contents of input documents on two levels of detail: 

literal and conceptual. 

Keyphrase appropriateness 

Tomokiyo et al. [253] suggest that an appropriate keyphrase is a semantically and 

syntactically correct phrase without any unnecessary words, and propose a measure called 

phraseness for quantifying the appropriateness of keyphrases. Similarly, Liu et al. [55] 

suggest that keyphrases should be understandable to humans to qualify as appropriate 

keyphrases. The authors give an example that the phrase “machine learning” is appropriate 

whereas the phrase “machine learned” is not. Existing approaches in NLP literature 
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typically reduce the inflectional forms – and sometimes derivationally related forms – of 

keyphrases to their common bases (stems) using a text stemming algorithm [217]. An 

example of stemming is reducing the phrase “international libraries” to “intern librari”. 

Stemming can dramatically improve string matching based operations [262], however, it 

drastically degrades the appropriateness of phrases for humans. For example, it is difficult 

for a user to understand that “intern librari” refers to international libraries. Based on our 

experiments with SemCluster, we observe that any output keyphrase is appropriate and 

fully understandable to humans. This is because candidate phrases are initially extracted 

from an input document using a set of NLP patterns that encode generally accepted 

linguistic knowledge/feature assumptions [220] (see section 5.4.1). Nevertheless, instead 

of stemming, SemCluster reduces the constituents of a given keyphrases to its 

syntactically-correct linguistic base (lemmas) using an internal WordNet-based lemmatiz-

ation approach. 

Table 5.2 – SemCluster extraction results from the article depicted in Figure 5.1 

Candidate Phrase Centroid Seed Valid 

NNP/Ben NNP/Johnson wn:athlete#1 wn:#9820263 Yes 

NNPS/Olympics wn:olympics#1 wn:#7457126 Yes 

JJ/100-meter NN/dash wn:prize#1 wn:#7469043 Yes 

NN/gold NN/medal wn:prize#1 wn:#3444942 Yes 

NNP/Carl NNP/Lewis wn:athlete#1 wn:#11131135 Yes 

NNP/Johnson wn:athlete#1 wn:#9820263 No 

JJ/anabolic NN/steroid wn:drug#1 wn:#15111116 Yes 

JJ/urine NN/sample wn:olympics#1 wn:#6026635 Yes 

NNP/Stanozolol wn:drug#1 wn:#3247620 Yes 

NN/drug NN/use wn:drug#1 wn:#3247620 Yes 

JJ/Olympic NNPS/Games wn:olympics#1 wn:#7457126 No 
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To illustrate this, consider applying SemCluster on the news article depicted in Figure 5.1. 

The results are listed Table 5.2. It can be readily observed that all the keyphrases are 

human-readable and without any unnecessary words. Generally, keyphrase appropriate-

ness is not important when AKE is an intermediate task in the workflow of an NLP process 

(e.g. plagiarism detection). However, such importance surges in information retrieval 

scenarios that involve direct human interaction (e.g. visualization). For example, consider 

a third-party service plugged in PDL’s access layer and it aims to offer a GUI for 

navigating through the keyphrases maintained by SemCluster. The user could click on a 

keyphrase to display all its associated documents, or even expanding the results by loading 

similar keyphrases and choosing the most suitable ones to refine/expand the results. The 

common user here should be able to read each keyphrase in its correct linguistic form. 

Semantic metadata 

Unlike existing AKE approaches, SemCluster outputs keyphrases that are automatically 

associated with two types of machine-readable metadata as presented in Table 5.2, which 

are: (i) the WordNet synset of the seed embedded in the keyphrase, and (ii) the WordNet 

synset of the cluster’s centroid to which the seed belongs. This kind of semantic metadata 

offers a natural way to unambiguously link keyphrases within the same document, or even 

across independent documents, Furthermore it offers benefits to multiple tasks such as 

content aggregation and recommendation [255,256], and automatic content relationship 

identification [254]. In fact the semantic metadata artefacts generated using SemCluster 

are equivalent to those generated using a traditional ASA tool [257,258] but with higher 

accuracy, granularity, and richer modelling potential. We can revisit Table 5.2 to illustrate 

an empirical application of the semantics-based linking: the candidate keyphrases 

“anabolic steroid”, “Stanozolol”, and “drug use” are grouped together as they share the 

common annotation concept wn:drug#1 from WordNet. Similarly, the keyphrases “Ben 

Johnson” and “Carl Lewis” are grouped based on the common concept wn:athlete#1. 

Figure 5.4. depicts the semantics-based linking of the keyphrases listed in Table 5.2. The 

middle layer of the artefacts in the figure (pink circles) reflects the literal representation 

over the document, whilst the highest layer in the figure (blue circles) reflects the semantic 

representation over the keyphrases as well as the textual content of the input document. 

From MMF metamodeling perspective, both layers represent the model, and metamodel 
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levels over the document. The model layer offers common management functionalities 

(e.g., keyword-based search, browsing, and so forth), whereas the metamodel layer offers 

far richer functionalities, one among which is semantic-aware content retrieval (i.e. cross-

document semantic linking). Consider a semantic search query for retrieving SemCluster-

processed documents that contain the search term “Ethylestrenol”, (or similar sport-doping 

drugs48). SemCluster recognises this term as a text entity during the processing of 

documents as discussed in section 5.4.1. Although the term is not available in WordNet, it 

is maintained as an entry with the labelled type class Drug in DBPedia49.  

 

Figure 5.4– Unstructured data metamodeling in SemCluster 

During retrieval, all the documents associated with this search term are returned as 

matched query results. These results could be further enriched by adding the news article 

in Figure 5.1. Though the article does not contain the input search term, it is annotated 

with the concept wn:Drug#1 which is the WordNet hypernym for the keyphrases 

“Ethylestrenol” and “Stanozolol”, nevertheless, the gloss definitions of these keyphrases 

indicate them as anabolic steroid substances, and such indication may serve as a strong 

contextual clue to justify adding the article to the search results. 

                                                 

48 https://en.wikipedia.org/wiki/List_of_drugs_banned_by_WADA  
49 http://lookup.dbpedia.org/api/search.asmx/KeywordSearch?QueryString=Ethylestrenol  

https://en.wikipedia.org/wiki/List_of_drugs_banned_by_WADA
http://lookup.dbpedia.org/api/search.asmx/KeywordSearch?QueryString=Ethylestrenol
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5.5.2 Storage and querying 

SemCluster is implemented as an MMF component with a dedicated architecture that 

offers management functionalities to the common user over the unstructured personal data 

stored in PDL. Figure 5.5 depicts an overview of this architecture, it consists of three 

components: SemCluster algorithm, WordNet-based query engine, and the annotations 

repository. Section 6.2.2 describes the building blocks for a full implementation of 

SemCluster algorithm. The query engine is a simple semantic search engine that accepts 

keyphrases and/or WordNet-defined concepts as input search terms, and it retrieves all the 

documents that are associated with an input search term, with optional query expansion 

based on the WuPalmer measure given in equation 5.1. The measure expands an input 

concept based on a specified criteria, which can be either WordNet relation, or semantic 

similarity score. Annotations repository represents the backend of SemCluster, and it uses 

a compound index approach where different types of metadata artefacts are stored in 

separate direct or inverted indexes similar to Mimir tool in the GATE project [259]. A 

direct index is key-value table that stores the unique identifier of an input unstructured 

document in the key field and the sequence of keyphrases/concepts assigned to the 

document by SemCluster algorithm in value field. In contrast, an inverted table stores a 

keyphrase in the key field and the identifiers of all the documents wherein the keyphrase 

occurs in the value field. Note that the metadata information stored in the linkage table is 

conceptually an inverted index.  

Similar to SemLinker, SemCluster, as an MMF component, is physically isolated from the 

ingestion layer and its single point of input is the lineage manager (see Figure 5.5). Such 

separation of concern enables the lineage manager to forward raw data to SemCluster with 

associated lineage information that is necessary to optimise the metadata management and 

storage tasks. Ingested unstructured data is dispatched to SemCluster with only key 

information, since materializing the by-concept type abstraction for an entity is empirically 

difficult for common users – compared to structured and semistructured data (section 

3.3.2). Because SemCluster does not maintain an internal data parser, input raw data is 

expected to be in bare textual form, therefore the lineage manager tackles this issue during 

PDLSF deserialisation stage. Upon receiving the content of an ingested unstructured data 
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entity, SemCluster component invokes its underlying algorithm and the output is a set of 

keyphrases and their associated metadata artefacts that are stored in the direct and inverted 

indexes underlying the annotations repository. When metadata processing finishes, the 

processed data entity and its associated metadata information are dispatched to storage 

layer and stored using the approach specified in section 3.5.2.  

 

Figure 5.5– Overview of SemCluster component architecture 

SemCluster can be queried to retrieve any unstructured personal data stored in PDL based 

on its associated representations. A SemCluster-specific input query is entered in the query 

interface within the access layer by the user, a third party service, or SemLinker, and then 

it is passed to SemCluster for execution over the annotations repository. In following, we 

describe three kinds of SemCluster-specific query formulations:  

1. Keyphrase-based Selection 

A keyphrase-based selection query follows the below syntax: 

SELECT key FROM SemCluster WHERE <keyphrase> IN  

{(𝑝ℎ𝑟𝑎𝑠𝑒0,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛0),(𝑝ℎ𝑟𝑎𝑠𝑒1,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1),…,(𝑝ℎ𝑟𝑎𝑠𝑒𝑛,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑛)} 
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The query modifier key specifies retrieving the unique identifier of each document that 

matches the selection criteria in the IN clause. The internal keyword <keyphrase> 

instructs the query engine to target keyphrase-related indexes only. A selection criteria is 

a non-empty set of ordered pairs in the form (𝑝ℎ𝑟𝑎𝑠𝑒,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)where 𝑝ℎ𝑟𝑎𝑠𝑒 is an 

input search term, and 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 is a predefined inline function, or null. The following 

query is an example of a keyphrase-based selection formulation: 

SELECT key FROM SemCluster WHERE 

<keyphrase> IN {(“Ben Johnson”, NULL)} 

This query aims to retrieve any textual documents stored in PDL that contain the keyphrase 

“Ben Johnson”. The 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 part here omitted using the null value. 

2. Concept-based Selection 

A concept-based query follows the below syntax: 

SELECT key FROM SemCluster WHERE <concept> IN  

{(𝑐𝑜𝑛𝑐𝑒𝑝𝑡0,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛0),(𝑐𝑜𝑛𝑐𝑒𝑝𝑡1,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1),…,(𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑛,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑛)} 

Similar to the former kind, key specifies retrieving the unique identifier of each document 

that is annotated with a concept which matches the selection criteria in the IN clause. The 

internal keyword <concept> instructs the query engine to target the concept-related 

indexes only. A selection criteria is a non-empty set of ordered pairs in the form 

(𝑐𝑜𝑛𝑐𝑒𝑝𝑡,𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)where 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 is an input concept drawn from SemCluster’s 

ontology, and 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 is a predefined inline function, or null. The following query is an 

example of a concept-based selection formulation: 

SELECT key FROM SemCluster WHERE  

<concept> IN {(“wn:Athlete#1”, NULL)}

  

This query aims to retrieve any textual documents stored in PDL that are annotated with 

the first sense of the WordNet concept athlete. The 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 part here omitted using 

the null value. 
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3. Combined Selection 

The third kind of SemCluster query formulations is called the combined selection and it 

refers to composing queries by mixing keyphrase-based and concept-based formulations. 

Composition can be achieved by using the logical operators AND and OR. The following 

query is an example of such composition: 

SELECT key FROM SemCluster WHERE 

<keyphrase> IN {(“drug use”, NULL)}  

OR <concept> IN {(“wn:Drug#1”, WuP(0.9))} 

This query aims to retrieve any documents that contain the keyphrase “drug use” or are 

annotated with WordNet concept wn:Drug#1. The query involves passing the selection 

criteria with an internal function that instructs SemCluster to load all the documents that 

are annotated with a concept whose semantic similarity with wn:Drug#1 is 0.9 or higher 

based on the similarity computation of the WuPalmer measure. Another combined 

selection query example is depicted below and it has a similar requirement to the former 

query, but it instructs SemCluster to load any documents that are annotated with a concept 

related to the input concept through the semantic relationship hyponym and with a 

semantic radius of one edge inside WordNet ontology. 

SELECT key FROM SemCluster WHERE  

<keyphrase> IN {(“drug use”, NULL)} 

AND <concept> IN {(“wn:Drug#1”, Hyponym(1))} 
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5.6 Summary 

In this chapter, we presented SemCluster, the third MMF component that is responsible 

for unstructured data management in PDL. The main purpose of this component is to 

overcome the fundamental limitation of SemLinker by adopting an automatic annotation 

method for enriching unstructured documents with data-driven metadata and materializing 

explicitly defined representations over them. This component is based on a generic 

unsupervised clustering-based AKE algorithm that is designed to address the requirements 

stated in section 5.1. It incorporates extensible background knowledge to identify and 

extract semantically important terms from an input document, clusters them, and identifies 

thematically important seeds that are then used to search for representative phrases, and 

from which appropriate keyphrases are selected. Unlike other unsupervised AKE 

algorithms, SemCluster outputs are appropriate (understandable) keyphrases that are 

automatically annotated with formal ontological classes. SemCluster was reported in the 

computational intelligence literature by two research papers [260,261]. To the best of our 

knowledge, it is the first approach that dynamically incorporates extensible background 

knowledge in the extraction task from a collection of integrated knowledge bases. This 

feature may have multiple applications, one important among which is incorporating 

personal knowledge sources that are audited by the common user for personalising the 

AKE task over intimate textual contents for faster retrieval and more convenient 

integration with data of other structure types. 

The presented component models the semantic annotations of unstructured documents into 

machine-readable semantic representations that can be further utilised for offering various 

functionalities over the documents. In the context of this research, we are mainly interested 

in semantic search and bridging-based holistic integration with (semi)structured data for 

meeting the requirements of various usage workloads that demand data integration across 

structural heterogeneities. 
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Chapter 6 Empirical Evaluation 

In previous chapters, we explored the proposed MMF, its integration in PDL (Chapter 3), 

and its principal components: the lineage manager (Chapter 3), SemLinker (Chapter 4), 

and SemCluster (Chapter 5). While the first component is a traditional data tracking 

system, the latter two are advanced metadata management systems that are based on 

several new algorithms and techniques developed during our doctoral research. The aim 

of this chapter is to evaluate and subsequently validate the performances of SemLinker 

and SemCluster as part of our adopted DSRM methodology. In this regard, we conduct an 

interesting set of experiments to rigorously assess the efficiency and effectiveness of 

SemLinker and SemCluster using disciplined assessment measures. Then, we carry out an 

experiment to illustrate the utility of MMF in PDL and its relative ease of use for the PDL 

user. This experiment demonstrates an empirical example for holistic data integration by 

first combining structured and semistructured raw data and then utilising independent 

unstructured textual data as backstory information to uncover interesting relationships in 

the integrated data, thus addressing the recommendations discussed in [1] and [183] which 

are reviewed in sections 4.1 and 5.1.  

Although the experiments presented in this chapter may largely fall in the personal domain, 

we are not using any personal data that is linkable to a real person, but rather general 

purpose and publicly available data. Besides the copyright and privacy issues that may 

stem from the former case, we prefer the latter kind of data to: (i) demonstrate how MMF 

components can generalise over different data types while taking into account that even 

general purpose data may be regarded as personal when it can be linked to a data subject 

under any of Jones’ defined senses [1] (see Table 1.1), and (ii) to ensure the accuracy of 

the evaluation results, particularly for performance benchmarking with the comparative 

approaches that have been previously evaluated using the same data. 
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6.1 SemLinker evaluation 

The purpose of this section is centered upon the following question: can SemLinker serve 

as a standard solution for effectively integrating frequently-changing large-scale 

heterogeneous datasets and facilitating query-based value creation, while ensuring 

performance robustness?”. Although this question addresses the essence of the research 

efforts presented in Chapter 4, we are also interested in comparing the user-experience of 

SemLinker against a recent approach [52] that is closely related to our work. To answer 

this question and to validate the methods covered in Chapter 4, a prototype of SemLinker 

was developed as a full proof of concept in order to be evaluated in two use cases with 

real-world data drawn from multiple domains; in the first, we examine the accuracy of 

SemLinker’s mapping computations on data with substantial heterogeneities, and in the 

second, we investigate the system’s integration effectiveness and runtime functional 

complexity on heterogeneous data with frequent and rapid schema evolutions. 

6.1.1 Evaluation data 

We chose 11 publicly available datasets as the evaluation data in SemLinker experiments 

(see Table 6.1). These datasets exhibit a high degree of heterogeneity. Each dataset 

consists of a moderately large number of data entities, and each entity may be of a schema 

with a different release version. The first 3 datasets – HAR-1, HAR-2, and HAR-3 – 

contain sensor streams (accelerometer and gyroscope) that are generated by personal 

devices (smartphones and smartwatches) worn by human subjects, and were collected 

during the human activity recognition experiments described in [48, 49]. The evaluation 

data also includes six social media datasets independently collected from several service 

platforms as shown in Table 6.1. Each among these datasets exists with more than one 

evolved schema and it may either contain social media posts or a combination of user 

opinions, reviews, and ratings of popular business establishments (e.g. hotels, restaurants, 

pubs) in the city of London. The last two datasets are public data published by multiple 

UK government agencies; the first lists geospatial as well as other details about business 

establishments in UK, and the second lists the geospatial information associated with every 

postcode in UK. 
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Table 6.1 – SemLinker evaluation datasets 

Source Domain Format #Attributes #Items #Evolutions 

HAR-1 [263] Scientific CSV 10 3540962 0 

HAR-2 [263] Scientific CSV 10 3205431 0 

HAR-3 [264] Scientific CSV 4 200471 0 

Facebook [265] Social JSON 17 19770 4 

Twitter [266] Social JSON 19 169000 2 

Foursquare [267] Social JSON 17 15712 2 

Flickr [268] Social XML 10 20000 3 

TripAdvisor [269] Social Spread S. 13 19998 4 

Tourpedia [270] Social JSON 7 115732 3 

EnglandPubs [271] Public CSV 9 51566 4 

OpenPostCode [272] Public CSV 7 2525575 1 

6.1.2 Evaluation setup 

For simulating personal data ingestion, the actual content of each dataset is split into raw 

data entities that are serialised into PDLSF objects and temporarily stored in the messaging 

queue component of PDL’s ingestion layer. RabbitMQ [273], an open source50 message 

queue software, was used to implement the messaging queue component. We implemented 

a lineage manager prototype and configured it to automatically pull PDLSF objects from 

the queue whenever it is idle. The meta section of a pulled object holds the appropriate 

source URI which reflects the unique identifier of its dataset (see section 4.5.1). Our 

chosen type concepts are as follows: we used sc:Review to tag “TripAdvisor” and 

“Tourpedia” datasets, sc:LocalBusiness for “EnglandPubs” dataset, and finally 

                                                 

50 https://www.rabbitmq.com/  

https://www.rabbitmq.com/
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sc:PostalAddress to tag “OpenPostCode” dataset. Furthermore, 𝒢 was extended to 

include more specific concepts. The concept sc:SensorReading is an extension of 

sc:Dataset and was used to tag “HAR-1”, “HAR-2”, and “HAR-3” datasets. The 

concept sioc:Feed is extenstion of sc:SocialMediaPosting and was used to tag 

“Facebook”, “Twitter”, “Flickr”, and “Foursquare” datasets. We also performed other 

extensions on the property level of the used concepts, mainly to add the global properties 

geo:latitude and geo:longitude whenever they are missing in the above tagging 

concept, as these properties are heavily utilised in the second experiment. Full information 

about 𝒢 and the extensions used in our evaluations are made publically available in the 

GitHub repository of SemLinker [274].  

One of our main evaluation goals is to investigate the accuracy of SemLinker’s mapping 

computations between the schema of each dataset and its tagging concept. Three schema 

matcher plugins are used to implement the function Matcher() in the mapping algorithm 

(see Algorithm 2, line 3). The first two, SemanticTyper [93] and AgreementMaker [192], 

are open source schema matching approaches51,52. SemanticTyper is an instance-level 

schema matcher that collects statistical information about data based on their types and 

decides if two schema elements match. AgreementMaker comprises multiple internal 

automatic matchers that are grouped into three layers. Each layer uses a different 

representation and similarity comparison measure, with the third layer being a combination 

of the other two. For AgreementMaker, because PDL lacks a priori knowledge regarding 

the native schemas of the ingested data, we use only the first layer which represents 

features of schema elements (labels, comments, instances, etc) in TF.IDF vectors and 

computes their similarities using the Cosine Metric or a similar string-based similarty 

measures (e.g., Edit Distance). The third plugin, SemMatcher, is the system’s default 

matcher, and it is currently implemented as a combination of AgreementMaker, the 

schema-level matcher, and SemanticTyper, the instance-level matcher, therefore it can be 

regarded as a linguistics-based approach that measures the similarity between two input 

schema elements based on their syntactic similarities and the overlapping between their 

                                                 

51 https://github.com/agreementmaker/agreementmaker  
52 https://github.com/tknandu/SemanticLabelingRepo  

https://github.com/agreementmaker/agreementmaker
https://github.com/tknandu/SemanticLabelingRepo
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textual descriptions that are retrieved from an external schema dictionary [193]. In Chapter 

7, we discuss our intended future work to search for a more sophisticated approach (e.g. 

ML-based) to implement this plugin.  

The accuracy of SemLinker output mapping computation is measured by comparing the 

system’s output mappings against gold standard mappings using the following equation: 

𝐴𝑐𝑐(𝑆𝑖𝑗, 𝑔) =
𝑀𝑆𝑒𝑚𝐿𝑖𝑛𝑘𝑒𝑟(𝑆𝑖𝑗, 𝑔)

𝑀𝐺𝑜𝑙𝑑(𝑆𝑖𝑗, 𝑔)
        

(6.1) 

Where 𝑀𝑆𝑒𝑚𝐿𝑖𝑛𝑘𝑒𝑟(𝑆𝑖𝑗, 𝑔) is the number of correct mappings – between the source schema 

version 𝑗 of the dataset 𝑖 and the global tagging concept 𝑔 – that are automatically 

computed by SemLinker, and the total number of gold standard mappings 𝑀𝐺𝑜𝑙𝑑(𝑆𝑖𝑗, 𝑔) 

between the same constructs. Unfortunately, the evaluation data are utilised beyond their 

intended application, thereby, we could not find publicly available mappings for the 

provided schemas. To overcome this technical limitation, we use a specialised schema 

management tool called Karma53. This tool is an open source research project with full 

details that are covered in the specified reference. To obtain gold standard mappings, we 

input 100 samples that are taken from each dataset with their default as well as evolved 

schemas as depicted in Table 6.1. Karma is semiautomatic, thus it requires manual 

guidance during computations. The final mapping results are manually supervised and 

therefore we regard them as our gold standard. Besides obtaining SemLinker’s mapping 

accuracy on individual schemas of each dataset using equation 6.1, we are also interested 

in obtaining the overall accuracy score of the mapping computations for the default schema 

as well as its subsequent evolved versions for each dataset. To obtain this, we formulate 

the following equation: 

𝐴𝑣𝑒(𝑆𝑖, 𝑔) =
∑ 𝐴𝑐𝑐(𝑆𝑖𝑗, 𝑔)
𝑁
𝑗=1

𝑁
 

(6.2) 

Where N is the total number of evolutions (release versions) of the physical schema of 𝑖.  

                                                 

53 https://github.com/usc-isi-i2/Web-Karma  

https://github.com/usc-isi-i2/Web-Karma
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6.1.3 Automatic mapping management evaluation 

The evaluation was run three times, each using a different schema matcher. Figure 6.1 

displays the comparison results of the overall precision score when using different schema 

matchers. The results clearly indicate that the accuracy of a computed mapping is very 

much determined by the adopted schema matcher plugin. The system’s own matcher, 

SemMatcher, outperforms the other two matchers on most of the datasets. SemanticTyper 

successfully captures correct matches wherever AgreementMaker fails, and this, to an 

extent, explains why SemMatcher, which combines the best features of the matchers, gets 

almost full scores on 6 of the datasets. The fact that SemMatcher is also linguistics-based 

suggests that, for social and public datasets, by providing proper schema-level linguistic 

information (e.g., meaningful labels), schema matching can achieve a better precision. 

 

Figure 6.1–The overall mapping precision scores of the adopted matchers 

6.1.4 Functional efficiency and query complexity evaluation 

To evaluate the functional efficiency of SemLinker in integrating big data with frequently 

changing schemas and the time complexity of executing queries, we compare SemLinker 

with a similar integration-oriented and ontology-based prototype system that is used in the 

SUPERSEDE project and is discussed in [52] (we refer to this as the BDI Ontology 

system). The BDI Ontology system prototype is implemented using a MongoDB [146] 

database backend to store JSON data, and SQL to store CSV and XML data. The downside 

of using the BDI Ontology system is immediately apparent as substantial effort (including 

manual interactions) is required to maintain its global ontology and to manage the source 
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attributes found in the data collected from data sources. Each schema evolution also 

requires manual (re)mappings. Two scenarios are used in the evaluation: 

Scenario 1 (involving datasets HAR-1, HAR-2, and HAR-3) 

It is assumed that user wants to retrieve the gyroscope readings ingested from gyroscope 

sensors and passes them to a specialised HAR application plugged in the access layer for 

running HAR analysis workload. To meet this requirement, the following SQL-like query 

is formulated and executed by SemLinker’s query engine: 

SELECT Sensor.reading  

FROM sc:SensorReading Sensor  

WHERE Sensor.sensor-type = “gyroscope” 

A gyroscope reading, such as [0.0041656494, -0.0132751465, 0.006164551], consists of 

values corresponding to the x, y and z axes.  The global concept SensorReading, which 

has one property, reading, has been used to tag all three HAR datasets. This apparently 

simple gyroscope data has some complexity: the readings in HAR-2 are expressed by three 

separate attributes, X, Y, and Z, whereas the readings in HAR-3 are expressed by only one 

attribute. However, before the query execution takes place, such heterogeneity problem is 

already solved when HAR-2 reading were ingested and the schema mappings computed. 

During mapping, the source schema, 𝑆𝐻𝐴𝑅−2,𝑉1.0, was virtually transformed into the virtual 

source attribute “reading”.  Consequently, the above input query is sufficient to retrieve 

the required data without any extra pre- or post-processing steps. Regarding the 

comparative BDI Ontology system, since there is no automatic solution for structural 

heterogeneities in the source schemas, it is impossible to directly execute the above query.  

We should either transform the data so that HAR-2 and HAR-3 share the same physical 

structure, or tag them with different concepts and query them separately.  

Scenario 2 (involving social and public datasets):  

It is assumed we are interested in local businesses in London such as hotels, restaurants, 

and pubs, and would like to know their full address (including postcode), and reviews and 
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ratings about them. We may also apply sentiment analysis to gauge the polarity in the 

comments that are retrieved.  

SELECT  

sc:LocalBusiness.name, Review.reviewRating, 

Sentiment(Review.reviewBody),sc:PostalAddress.postcode 

FROM sc:Review Review  

JOIN sc:LocalBusiness ON 

sc:LocalBusiness.name = Normalise(Review.name) 

JOIN sc:PostalAddress ON 

sc:PostalAddress.latitude =  

Radius(sc:LocalBusiness.latitude,5) 

AND sc:PostalAddress.longitude =  

Radius(sc:LocalBusiness.longitude,7) 

WHERE Review.about IN  

(WordNet(“hotel”,1),WordNet(“restaurant”,1)) 

AND Review.location = “london” 

The above query may seem to be complicated. The raw data relevant to the query exists in 

different formats (structural heterogeneities), with multiple semantic contexts (semantic 

heterogeneities), and contains instance-level discrepancies (syntactic heterogeneities). 

While SemLinker handles the first and second kinds of heterogeneities by metamodeling 

the data after its ingestion by PDL, its query engine enables plugging predefined inline 

functions that can fulfill certain relevant tasks to resolve any syntactic heterogeneities. To 

illustrate, there are defects in the actual contents of the relevant datasets, such as a postcode 

missing from the reviewed business, or some geolocation is inaccurate, or the name of a 

business may have different spelling (e.g, using “&” for “and” or “65” for “sixty-five”, 

and so on). If such problems are though of in advance, as in our case, customized inline 

functions may be designed and imported prior to the query formulation to deal with these 

situations at time of query execution. Here we use Sentiment(string) to produce a polarity 

representing the user opinion (i.e., positive, negative, or neutral),  Normalise(string) to 
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normalise the business names, Radius(float, integer) to generate x values around an input 

spatial coordinate, and WordNet(string,int) (a WordNet-based function)  to retrieve all the 

possible synonyms and hyponyms of an input string. In addition, there is also the 

complication regarding schema evolution that has already been dealt with by SemLinker. 

Once all elements are in place, the user can retrieve the desired information using the query 

formulation depicted above.  

 

Figure 6.2– Real-time query execution performance comparison 

For both scenarios, we ran 20 queries targeting raw data in the range 0-800K data instances 

on both SemLinker and the BDI Ontology prototype system, and we measure and compare 

their query execution times. The recorded time for each query includes input query 

translation, query unfolding, and data retrieval from the backend. Figure 6.2 presents the 

runtime benchmark data recorded for the query executions of each system. We observe 

that when the number of datasets is small, the difference in the execution times for the two 

systems is insignificant, but when the retrieved data are moderately large, SemLinker 

significantly outperforms the BDI Ontology system. For example, SemLinker requires 8 

seconds on average to retrieve and integrate 40K review results, whereas the BDI ontology 

system requires 96 seconds on average to perform the same task. SemLinker’s significant 

improvements are mainly due to the following reasons:  

1. Since SemLinker fully supports the storage, integration, and querying of raw data 

regardless of its formats and structures, any high-performance key-value store can 
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be adopted as backend in our experiments. Based on our discussions in section 3.5, 

we adopt in-memory RDF triple store for housing metadata (i.e. the schemas 

repository), and Redis server to store raw data (unified repository) and its 

associated metadata information (linkage table). Compared to the data access and 

query execution overheads imposed on the BDI Ontology system due to reliance 

on advanced database systems (i.e. MongoDB and SQL – see [52]), SemLinker’s 

storage technologies are conceptually RAM-based big hash tables with extremely 

fast data access and retrieval complexities – O(1).  

2. In SemLinker, the source schemas of each dataset are modelled as subgraphs 

grouped into one RDF graph (i.e., the local schema) whose graph context is defined 

by a single URI reflecting the input source’s identifier (see section 4.5.1). In 

contrast, each source schema in the BDI Ontology system is treated as a separate 

RDF graph. As expected, SemLinker, which executes its internal SPARQL queries 

on a single graph for each dataset, is much faster than the BDI Ontology system, 

which executes its queries on several graphs for each data set. SemLinker’s 

metadata storage-optimised approach, and supported by O(1) retrieval complexity, 

significantly contributes in boosting the query rewriting and unfolding. In fact, the 

intermediate SPARQL query processor (see Figure 4.5) adds negligible overheads 

on the overall SQL-like query execution process. 

Housing the schemas repository  𝑆 in the physical memory may arise performance concern 

in terms of resource consumption, given the size growth of 𝑆 overtime is affected by: (i) 

the continuous addition of new RDF triples reflecting the local schemas of newly added 

input sources to PDL, along with their associated mappings to the global ontology, and (ii) 

the continuous addition of new RDF triples reflecting new source schemas generated by 

SemLinker as result of automatic reactions to schema evolutions (velocity). To investigate 

this concern, we downloaded 245 datasets from UCI Machine Learning Repository54 and 

190 datasets from Kaggle55. The datasets belong to various domains with varying sizes 

and physical schemas. Subsequently, we applied SemLinker on the data collection to 

generate schema metadata and store it in our volatile triple store underlying  𝑆. A Windows 

                                                 

54 https://archive.ics.uci.edu/ml/index.php  
55 https://www.kaggle.com/datasets  

https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/datasets
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server with 128GB- RAM and E3-1230-V2-3.30GHz-CPU was used in this investigation. 

We dumped the store’s content on the hard disk and found that the total size of 𝑆 was 

~4MB. It is important to note that the size of 𝑆, denoted as |𝑆|, is solely dependent on 

SemLinker’s RDF data outputs due to the two reasons given above. Let the growth of |𝑆| 

be denoted as △, then |𝑆| after any invocation of Algorithm (1) and Algorithm (2) becomes 

|𝑆| ×△. For example, if we simulate 5 evolutions in the physical schemas of all the 

evaluation datasets, then then |𝑆| is expected to be ~19MB. Figure 6.3 depicts the overall 

growth in |𝑆| after applying schematic changes in the physical schemas of the datasets. 

We have also measured the size shrinkage resulted from the deletion of the source schemas 

v.5.0 and v.4.0 from each dataset and found that |𝑆| roughly shrunk back to its original 

size. This empirical finding indicates that it is practically safe to adopt an in-memory RDF 

triple store as a metadata repository for SemLinker without any technical issues on the 

long term. 

 

Figure 6.3– Schemas repository size growth correlation with schema evolutions 

6.2 SemCluster evaluation 

To evaluate SemCluster, two experiments are conducted using two evaluation datasets, 

and the results are reported in this section. In the first experiment, we examine the impact 

of SemCluster parameter settings on the keyphrase extraction performance, and provide 

guidelines for optimal parameter setting in two popular domains. In the second experiment, 

SemCluster is compared with multiple AKE methods in terms of precision, recall, and F-

measure of the reported keyphrases. 
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6.2.1 Evaluation data and metrics 

Two frequently used datasets in AKE literature are chosen as the evaluation datasets: 

Inspec56 [220], and DUC-200157. Both datasets consist of free-text documents with 

manually assigned keyphrases and differ in length and domain (see Table.6.2), and 

therefore are appropriate to test the robustness of SemCluster AKE performance over 

documents that belong to different domains.  

The Inspec dataset is a collection of abstracts of scientific papers from the Inspec database, 

consisting of 2000 abstracts. Each abstract is represented by three files: .abstr, .contr and 

.uncontr. The file .abstr contains the abstract content; .contr contains keyphrases restricted 

to a specific dictionary; and .uncontr contains keyphrases freely assigned according to the 

personal judgements of human curators. In Hulth’s work [220], the evaluated AKE method 

was supervised, and the dataset was split into three partitions: 1000 abstracts for training, 

500 for validation, and 500 for testing. TextRank, and KeyCluster are unsupervised 

methods, and thus only the test partition was used in their evaluations. Since SemCluster 

is also unsupervised, we adopt a similar approach and use only the test partition to provide 

a precise comparison with the other AKE methods mentioned. As listed in Table 6.2, the 

average length of each abstract (𝑾/𝑫) is 121.824, and the average number of keyphrases 

assigned to each abstract (𝑲𝑷/𝑫) is 9.826. However, since the manual assignment of 

keyphrases is uncontrolled, not all the keyphrases in a particular .uncontr file necessarily 

occur in the corresponding .abstr file. Instead, any phrases regarded by the human curators 

as suitable are stored in .uncontr as valid keyphrases. For the purpose of this evaluation, 

we programmatically58 scan each .uncontr file and filter out any keyphrases that do not 

occur in the corresponding .abstr file. A similar preprocessing practice has been applied to 

the dataset during the experimental evaluations of TextRank, ExpandRank [54], and 

KeyCluster as well as many others. After processing the dataset, the average number of 

assigned keyphrases (𝒆𝑲𝑷/𝑫) drops to 7.726.  

                                                 

56 https://github.com/alrehamy/SemCluster/data/inspec  
57 http://www-nlpir.nist.gov/projects/duc/guidelines/2001.html  
58 Datasets statistics are calculated using the code at: https://github.com/alrehamy/SemCluster/data/stats  

https://github.com/alrehamy/SemCluster/data/inspec
http://www-nlpir.nist.gov/projects/duc/guidelines/2001.html
https://github.com/alrehamy/SemCluster/data/stats
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The DUC-2001 dataset is a collection of news articles retrieved from TREC-9, originally 

consisting of 309 articles with one duplicate (d05a\FBIS-41815 with d05a\FBIS-41815~). 

The dataset was originally published as a benchmark for document summarization tasks, 

and [54] have used human curators to manually annotate each article with 10 keyphrases 

in order to evaluate the ExpandRank algorithm. The Kappa statistic of inter-agreement 

between the curators regarding manual keyphrase assignments was 0.7, and assignment 

conflicts were resolved by discussions, and therefore, the 𝑲𝑷/𝑫 dropped to 8.08.  Each 

article is represented as a .txt file and consists of multiple HTML tags. In our evaluation, 

we only consider the textual content in text tags (i.e. <text> … </text>).  

Table 6.2 – SemCluster evaluation datasets. 

Name Domain #𝐷 𝑊/𝐷 𝐾𝑃/𝐷 𝑒𝐾𝑃/𝐷 

Inspec Scientific 500 121.824 9.826 7.726 

DUC News 308 740 8.080 - 

𝐷: document, 𝑊: word, 𝐾𝑃: manually assigned keyphrase, 𝑒𝐾𝑃: 𝐾𝑃 exists in the text. 

As mentioned earlier, the metrics used for all SemCluster evaluations are Precision (P), 

Recall (R), and F-measure (F), which are defined as follows: 

𝑃 = 
𝐾𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝐾𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑

  , 𝑅 =  
𝐾𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝐾𝑃𝑔𝑜𝑙𝑑

, 𝐹 = 2 × 
𝑃 × 𝑅

𝑃 + 𝑅
               (6. 3) 

where 𝐾𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the number of correct keyphrases extracted by SemCluster, 𝐾𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡 is 

the total number of keyphrases extracted, and 𝐾𝑃𝑔𝑜𝑙𝑑 is the total number of keyphrases 

manually assigned by human curators, which in our case, are considered the gold standard. 

An output phrase extracted from a given input document is regarded as a valid keyphrase 

if it is identical to, semantically equivalent to, or is a sub-phrase of, a gold standard 

keyphrase manually assigned to the document in any given dataset. 

 



6.2 SemCluster evaluation 151 

 

6.2.2 Evaluation setup 

SemCluster prerequisites 

In the first step of SemCluster, we adopt OpenNLP59, an opensource and publicly available 

NLP library, for text pre-processing. The content of an input document is tokenized using 

a rule-based tokenizer, whereas sentence boundary detection, POS tagging, and chunking 

are performed using a Maximum Entropy sequence labelling algorithm that utilises large 

machine learning models trained on corpora in multiple domains. The default background 

knowledge source of SemCluster is WordNet60 v.3.1. We perform slight modifications on 

the data.noun and index.noun files to accommodate our needs, including re-indexing the 

original byte-based synsets’ indices for faster access, POS-tagging the tokens in each 

synset’s gloss, filtering out any token that is not tagged as a noun or adjective, and 

lemmatizing the result gloss to improve string-based operations during disambiguation and 

similarity computations of terms (see sections 5.4.2 and 5.4.3).  

To support SemCluster with rich and tractable background information, we adopt two 

external knowledge bases to reinforce the semantic coverage of WordNet: DBPedia, and 

BabelNet. For DBPedia integration, its schema ontology is aligned with the WordNet 

ontology using the alignment algorithm described in section 5.4.1, and the alignment 

results are made publicly available61. For computational efficiency, we adopt a lookup-

server62 that allows DBPedia to be run in a local mode. BabelNet is a lexicalized semantic 

network that combines and interlinks knowledge facts extracted from many online 

resources [51], providing unified access to them63. Similar to the structure of WordNet, a 

noun phrase in BabelNet may have one or more synsets, with each synset consisting of a 

short definition that is often extracted from Wikipedia, and a list of one or more type 

classes that are expressed as concepts and linked with the noun phrase using an Is-A 

relationship. Unlike DBPedia, BabelNet utilises WordNet directly as its schema ontology, 

which makes its integration in SemCluster a straightforward undertaking. Finally, we use 

                                                 

59 http://opennlp.apache.org 
60 WordNet v.3.1 is available at https://wordnet.princeton.edu/wordnet/download  
61 https://github.com/alrehamy/SemCluster/extensions/dbpedia/alignment  
62 https://github.com/dbpedia/lookup  
63 http://babelnet.org/download  

https://wordnet.princeton.edu/wordnet/download
https://github.com/alrehamy/SemCluster/extensions/dbpedia/alignment
https://github.com/dbpedia/lookup
http://babelnet.org/download
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EasyESA64 as a local server for measuring the relatedness between cluster centroids using 

the Wikipedia-based ESA metric (see equation 5.10). 

Architectural Integration 

Similar to SemLinker (section 6.1.2), we implemented SemCluster as full concept of proof 

system and integrated it as MMF component in PDL. The lineage manager dispatches the 

actual content 𝐷 (e.g., pdf file, word document, text file, etc.) of any unstructured PDLSF 

object pulled from RabbitMQ, and without associated lineage metadata (see section 3.3.4) 

except its unique identifier. The lineage manager handles the extraction of the object’s raw 

content by utilising Apache Tike or other internal parsers for non-traditional file formats 

that are not natively supported by Tika. 

Comparative methods and parameter setting 

Three unsupervised AKE methods relevant to the SemCluster workflow are selected for 

comparative evaluation: TextRank, ExpandRank, and KeyCluster. TextRank is a graph-

based method that computes the importance scores of candidate words using only local 

structure information embedded in the word graph of the document; ExpandRank is also 

a graph-based method that exploits an external textual neighbourhood in addition to the 

local structure information of the document’s word graph to enhance co-occurrence 

relations between graph nodes; KeyCluster is a cluster-based method that exploits 

Wikipedia as an external background knowledge source to capture the semantic relations 

between candidate terms and compute their pairwise similarities. As discussed in section 

5.3, the underlying clustering algorithm of KeyCluster can implemented using any of the 

following algorithms: Hierarchal Clustering (HC), Spectral Clustering (SC), and Affinity 

Propagation (AP). Due to the poor performance of HC reported in [55], we evaluate 

KeyCluster based on only SC and AP implementations.  

During the test, only the best results under the best possible parameter settings, if any, for 

a given method are considered. As shown in Table 6.2, the 𝒆𝑲𝑷/𝑫 of each dataset is less 

than 10, therefore we set the co-occurrence window in ExpandRank to 10, whereas for 

                                                 

64 http://treo.deri.ie/easyesa  

http://treo.deri.ie/easyesa
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TextRank, the co-occurrence window size is set to 2 for Inspec, and 5 for DUC-2001. The 

PageRank dumping factor is a constant value that is used to balance the probability of a 

random walk from a given node to a random node in the graph. Setting this factor to 0.85 

has been shown to be the best empirical setting not only in web surfing [227], but also in 

keyphrase extraction [53]. For ExpandRank, we set the number of neighbor documents to 

5, because for this setting ExpandRank obtains the highest F score. The setting for 

KeyCluster-SC is that, m, the predefined number of clusters, is 𝑚 =
2

3
𝑛, where 𝑛 = |𝑫|. 

For KeyCluster-AP, the maximum number of iterations is set to 1000, the propagation 

damping factor is set to 0.9, and the clustering preference is computed using 𝑚𝑒𝑎𝑛, which 

has been shown to outperform other preference functions in KeyCluster experiments. 

Although SemCluster performs AKE in fully automatic mode, it requires general tuning 

for a set of parameters, which are: (i) WSD context windows size 𝑁 (section 5.4.2), (ii) 

AP algorithm parameters (section 5.4.4), (iii) distance threshold 𝜏 (section 5.4.5), and (iv) 

window size 𝑘 (section 5.4.6). From empirical observation, SemCluster performs the best 

possible WSD when 𝑁=10. However, when 𝑁<10, WSD performance degrades, whereas 

𝑁>10 has no discernable influence on the task. The default tuning of AP parameters is as 

follows: 𝑚 is set to 500, and 𝜆 is set to 0.9 similar to that of KeyCluster.  

As indicated earlier, AP iteratively computes responsibilities and availabilities, and the 

execution terminates only if decisions for the exemplars and the cluster boundaries are 

unchanged for convit iterations. For computational efficiency, we set convit to 50. The 

custom tuning of AP parameters has no influence on the clustering results regardless of 

the dataset used during evaluation or its domain, because the input similarities are always 

positive and in the range [0,1]. Unlike KeyCluster, we choose the 𝑚𝑒𝑑𝑖𝑎𝑛 function as 

SemCluster’s clustering preference, to ensure that SemCluster performs clustering with 

higher granularity (i.e. a larger number of clusters) so that unimportant terms with weak 

inter-cluster relations can be automatically allocated in unimportant clusters, and hence 

easily identified and pruned from the clustering results using Equation (10). As shown in 

Table 2, the 𝑾/𝑫 of Inspec abstracts is very low, and therefore we set 𝑘 = |𝑫|. 

Conversely, the 𝑾/𝑫 of DUC-2001 articles is relatively high, and therefore we set 𝑘 =

400 [236], and, if 𝑘 > |𝑫| then 𝑘 = |𝑫|.  
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               (a) P/R of runs on Inspec dataset.                                (b) P/R of runs on DUC-2001 dataset. 

Figure 6.4– 𝜏 impact on SemCluster performance using settings in 0.5 ≤ 𝜏 < 1. 

The distance threshold 𝜏 has a direct influence on SemCluster’s performance, such that, 

when 𝜏=1, only centroids of clusters are chosen as seeds to identify and extract candidate 

keyphrases; when 𝜏 = 0, all the terms in 𝑇𝐷 (except those belonging to the pruned clusters) 

are selected as seeds, and hence most NP chunks in D are chosen as keyphrases. Given 

that the pairwise semantic similarity score 0.5 is the least extent to which two terms can 

be judged similar on scale from 0 (dissimilarity) to 1 (identicality) [275], then 𝜏 can be 

assigned any value in the range 0.5 ≤ 𝜏 < 1. Estimating the optimal value of 𝜏 is a 

hyperparameter optimisation problem that can be readily solved either by multiple trials 

or by employing a dedicated optimisation search algorithm such as Random Search [276]. 

In this work, we design a sampling-based procedure to infer the best 𝜏 setting: from each 

evaluation dataset we select 100 random documents as inputs to SemCluster, select 

different 𝜏 settings starting from 𝜏 = 0.99 and gradually decrease it in the series 𝜏𝑖+1 =

𝜏𝑖 − 0.01, testing the precision and recall of SemCluster’s output from each run using the 

value 𝜏𝑖+1.  

The results of our sampling-based trials are plotted in Figure 6.4 for both datasets. As 

depicted in Figure 6.4a, the precision and recall scores are very low when 𝜏 > 0.8, and 

this is because a relatively large number of important candidate terms are not close enough 

to their cluster centroids in order to qualify as seeds, and consequently, many valid 

keyphrases are not identified by SemCluster as construed in section 5.4.5. However, when 

𝜏 < 0.8, the performance gradually improves as semantically important terms start being 

qualified as seeds, which contributes towards improving the total number and the quality 
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of extracted keyphrases. SemCluster’s best performance (P=0.401, R=0.742) is achieved 

when 𝜏 = 0.665. Similarly, Figure 6.4b depicts SemCluster’s performance for the DUC-

2001 dataset using different 𝜏 settings. A prominent performance improvement is achieved 

when 𝜏 < 0.8, and continues to gradually improve until 𝜏 = 0.59, where the best 

performance (P=0.364, R=0.692) is realized. 

Table 6.3 – Performance comparison of SemCluster and other algorithms 

Methods Inspec  DUC-2001  

P R F P R F 

TextRank 0.312 0.431 0.362 0.189 0.391 0.127 

ExpandRank 0.344 0.471 0.398 0.288 0.354 0.317 

KeyClsuterSC 0.350 0.660 0.457 0.256 0.529 0.345 

KeyClusterAP 0.330 0.697 0.448 0.239 0.538 0.331 

SemCluster 0.401 0.742 0.520  0.364 0.692 0.477 

Bold values indicate the best result for each dataset 

6.2.3 Performance comparison and results 

Using Inspec and DUC-2001, we compare SemCluster’s performance with the methods 

described in the previous section. Table 6.3 presents the evaluation results of each 

evaluation dataset in terms of the precision, recall, and F-measure of the extracted 

keyphrases.  

The results show that, for both datasets, SemCluster outperforms the compared methods 

on the recall of correct keyphrases and the precision of the extracted keyphrases. 

Comparing with KeyCluster-SC, which has the second-best performance, SemCluster 

achieves F-measure improvements of ~14% and ~38%, respectively. Although both 

SemCluster and KeyCluster-AP utilise the same clustering algorithm, the former 

outperforms the latter with F-measure improvements of ~16% and ~44%, respectively. To 
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the best of our knowledge, SemCluster’s F-measure scores of 0.520 and 0.477 are the 

highest among current state-of-the-art unsupervised cluster-based methods. 

The main contributors to the significant improvements in the F measure in SemCluster can 

be summarized as follows:  

1. Given sufficient background knowledge, we extract n-grams from the input 

document’s content as potential candidates, including successfully mapped noun 

phrases and proper named entities (see Table 5.1), while other state of the art 

approaches typically extract single words only, causing many potentially important 

candidates to be either eliminated early or to become semantically inadequate 

during the selection of terms. For example, instead of selecting “third world” as a 

candidate term (which is a compound noun manually assigned as a keyphrase for 

the article AP880926-0203/ DUC-2001), all comparative methods extract the 

words “third” and “world” separately. The drawback of n-gram terms selection, 

however, is that it may lead to keyphrase overgeneration [222]. SemCluster 

overcomes this issue by eliminating semantically irrelevant candidates during 

cluster pruning, as discussed in section 5.4.5, thus boosting SemCluster’s recall.  

2. Although the background knowledge obtained from relevant documents used in 

ExpandRank, and the vector representation of terms based on Wikipedia articles 

used in KeyCluster, contribute to enhancing their F scores compared with 

TextRank, SemCluster’s extensible background knowledge is more effective. This 

is because SemCluster clusters candidate terms based on their latent semantic 

relations rather than frequency and co-occurrence statistics, and also obtains 

thematically representative seeds even if they occur infrequently in the input 

document to improve the keyphrase extraction precision.  

3. We observe that expanding seeds with 𝜏 equal to 0.665 and 0.59 for Inspec and 

DUC-2001, respectively, allows SemCluster to extract keyphrases that match the 

gold standard keyphrases, while KeyCluster fails to identify them because their 

corresponding seeds often do not qualify as cluster centroids and are thus 

eliminated from the clustering results. This accounts for the significant 

improvements in the recall and precision of SemCluster, compared with both 

implementations of KeyCluster.  
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It is also noteworthy that SemCluster is more computationally efficient than the other 

methods, especially KeyCluster. Due to its reliance on WordNet, SemCluster loads the 

WordNet ontology and any related ontology alignments into its physical memory 

(WordNet noun files and external ontology mapping files require ~22MB) so that 

accessing the semantics of a term in 𝑫 requires O(1) time. Because of this, our method 

performs AKE with significant improvements in computational complexity compared with 

other methods. For example, KeyCluster requires ~5M Wikipedia articles to be crawled in 

order to construct the Wikipedia-based conceptual vector for each term in 𝑫 during the 

pairwise similarity computation of terms. Furthermore, Wikipedia crawling is correlated 

with the length of the input document, whereas SemCluster accesses Wikipedia only for 

computing the relatedness averaging for cluster centroids, which we have observed often 

requires less than 15 centroids in the evaluation. 

Table 6.4 – Comparison of SemClusterDBP and SemClusterDBP,BN. 

Versions Inspec  DUC-2001  

P R F P R F 

SemClusterDBP 0.392 0.721 0.507 0.371 0.639 0.475 

SemClusterDBP,BN 0.401 0.742 0.520  0.364 0.692 0.477 

* Bold values indicate the best result for each dataset 

One of the main contributions of SemCluster is the way that background knowledge 

extensibility is leveraged to overcome knowledge and semantic losses. To evaluate the 

impact of knowledge extensibility on SemCluster performance, we produced two 

implementations of SemCluster. In the first implementation, denoted as SemClusterDBP, 

we extend WordNet using DBPedia only, and in the second version, denoted as 

SemClusterDBP,BN, WordNet is extended with DBPedia as well as BabelNet. Table 6.4 

presents a performance comparison between these implementations using the same 

evaluation datasets and settings described above. These empirical results indicate that 

SemClusterDBP,BN outperforms SemClusterDBP in all the metrics except for the precision 

metric on DUC-2001. Although the improvements in SemClusterDBP,BN performance are 
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not significant, they provide empirical evidence that background knowledge extensibility 

can enhance the AKE performance of the unsupervised clustering-based method.  

 

Figure 6.5– Influence of background knowledge on the keyphrase extraction result 

As depicted in Figure 6.5, it can be readily seen that both SemCluster implementations 

perform AKE more efficiently on Inspec than DUC-2001. This performance aspect is also 

shared by all the comparator methods as presented in Table 6.3. In SemCluster, this may 

be explained as follows: (i) as presented in Table 6.2, Inspec documents are shorter than 

their DUC-2001 counterparts, such that, for any given document 𝑫, 𝑘 = |𝑫|, whereas for 

DUC-2001 documents, 𝑘 = 400, and accordingly, valid keyphrases that occur outside the 

window 𝑘 are eliminated in the early steps of the SemCluster workflow, leading to 

degraded recall; (ii) Inspec documents contain more scientific and technical noun phrases 

than DUC-2001, many of which have matching entries in BabelNet, and therefore are 

picked by SemCluster as valid keyphrases, thus boosting both implementation’s F scores. 

In contrast, a news article in DUC-2001 often contains more named entities that tend to 

have high semantic similarities due to infrequent topic shifting or changing [277], 

consequently leading to the over generation of keyphrases and degraded recall. 

6.3 Holistic data integration 

In this section, we demonstrate the utility of the proposed MMF in supporting holistic-

integration over heterogeneous personal data within PDL environment. The demonstration 



6.3 Holistic data integration 159 

 

is conducted as a multi-step analysis workload over a collection of datasets with severe 

structural heterogeneities in the art domain.  

Table 6.5 – Integration experimental datasets 

Name Format #Attributes #Size Structure 

Tate-Art [278] CSV 20 69203 Structured 

Tate-Artist [279] JSON 4 3533 Semistructured 

Tate-Text [280] Text 0 850 Unstructured 

6.3.1 Experimental data 

The data used in this experiment consists of the datasets listed in Table 6.5, the first and 

second are publicly available data offered by Tate65, a UK institution that houses British 

and international modern and contemporary artefacts. The dataset Tate-Art is a CSV file 

that consists of a collection of records, each record stores a set of attributes describing an 

artwork that is displayed on Tate website. Although we designate this dataset as structured 

in Table 6.5, it is not neatly authored since many CSV records contain missing or erroneous 

field values, and in an empirical sense the dataset may be regarded as semistructured. The 

Tate-Artist dataset consists of JSON documents, each document describes the personal 

details of the artists who crafted the artworks listed in Tate-Art. The Tate-Text dataset is a 

collection of unstructured documents, each document contains a textual content that briefly 

describes an artwork in Tate-Art. This dataset contains 850 documents collected from Tate 

website via web crawling. The website offers descriptions for almost all the artworks, 

however we crawled only those with free license to ensure using the crawled data under 

appropriate copyrights. It is important to note that the filename of a document is identical 

to the title of its corresponding artwork in Tate-Artwork.  

                                                 

65 http://www.tate.org.uk  

http://www.tate.org.uk/
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6.3.2 Experimental setup  

The experimental setup involves using the implementations discussed in sections 6.1.2 and 

6.2.2 for ingesting raw data in PDLSF format, storing it in RabbitMQ, parsing it by the 

lineage manager, dispatching it to the appropriate metadata-processing component in 

MMF, and finally storing it in Redis server. The same parameter settings used earlier for 

SemLinker and SemCluster are adopted in this experiment. Regarding data ingestion in 

PDL, each dataset is split into raw data entities that are serialised in PDLSF format and 

stored in the messaging queue component. The settings for the attributes in the meta 

section of a PDLSF object are listed in Table 6.6. To illustrate, a PDLSF object that belong 

to Tate-Art holds the URI http://www.tate.org.uk/art in the source attribute of its meta 

section, and is tagged with the concept sc:VisualArtwork to reflect the type 

abstraction of its raw content relative to Schema.org. As listed in Table 6.5, Tate-Art is 

structured, therefore all its PDLSF objects hold the value 1 in their assert meta attribute. 

In a real-world scenario, the attributes listed in Table 6.6 are expected to be provided by 

the ingestion agent, and are automatically obtained by the lineage manager during PDLSF 

parsing as indicated in section 3.4.3. Given a PDLSF object that belongs to Tate-Art (or 

Tate-Artist), it is normally processed by SemLinker, which initiates the workflow covered 

in Chapter 4 to generate a source schema that reflects the physical schema of the dataset 

which the input PDLSF object belongs to. For example, applying Algorithms (1) and (2) 

on Tate-Art entails one-to-one mappings between the physical schema of this dataset and 

its tagging concept sc:VisualArtwork. A fragment of the mapping results is depicted 

in Figure 6.6. 

Table 6.6 – Meta section settings for Tate data 

Dataset source type context assert 

Tate-Art www.tate.org.uk/art sc:VisualArtwork -- 1 

Tate-Artist www.tate.org.uk /artist sc:Artist -- 2 

Tate-Text www.tate.org.uk /art-text Null -- 3 
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Likewise, a PDLSF object that belongs to Tate-Text holds URI http://www.tate.org.uk/art-

text in the source attribute of its meta section. The type attribute is set to null since the 

dataset is unstructured (see section 3.3.2). Essentially, the value 3 in the assert attribute 

for any object belongs to Tate-Text implies that the lineage manager should dispatch the 

object to SemCluster as bare. After processing and storing Tate datasets in PDL, the query 

interface is used to submit input queries with three requirements: (i) structured and 

semistructured data retrieval, (ii) unstructured data retrieval, and (iii) cross-referencing 

based insight mining. 

 

Figure 6.6– The metamodeling of Tate-Art source schema to sc:VisualArtwork 

6.3.3 Experiment Scenario 

Initially, it is assumed that we are interested in associating each artwork in Tate-Art with 

the personal details of its creator(s) from Tate-Artist. To familiarize ourselves with the 

elements of the unified view that is produced by SemLinker for each among these datasets, 

we need to submit the following exploratory queries to SemLinker’s query engine through 

the query interface in PDL’s access layer: 
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SELECT * FROM sc:VisualArtwork WHERE  

sc:VisualArtwork.root = 

“http://www.tate.org.uk/art” 

And subsequently 

SELECT * FROM sc:Artist WHERE  

sc:Artist.root = 

“http://www.tate.org.uk/artist” 

The first query aims to retrieve the unified view over Tate-Art which represents the 

metamodeling of its local schema to the concept sc:VisualArtwork. Likewise, the 

second query retrieves the unified view reflecting the metamodeling of the local schema 

of Tate-Artist to its tagging concept sc:Artist. For example, executing the first query 

yields loading all the records of Tate-Art that are stored in PDL with their native schema 

– which is depicted in the high level of Figure 6.6 (pink circles) – however, the records are 

returned as query results in a source schema that is organized according to the ontological 

structure of the tagging concept – which is depicted in the low level of Figure 6.6 (blue 

circles). By playing the role of a PDL user, or even a third party data consumer, we assume 

no prior knowledge regarding the access, storage, or retrieval details of Tate data, therefore 

executing these queries enables us to learn the necessary information for posing more 

complex queries. With such information at hand, one can readily formulate the following 

query to automatically integrate the datasets by joining their unified views. 

SELECT  

sc:VisualArtwork.identifier, sc:VisualArtwork.about, 

sc:VisualArtwork.dateCreated, 

sc:VisualArtwork.image, sc:Artist.id, 

sc:Artist.name, sc:Artist.gender, sc:Artist.url 

FROM sc:VisualArtwork 
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JOIN sc:Artist 

ON sc:Artist.id = sc:VisualArtwork.id 

AND sc:Artist.root= ”http://www.tate.org.uk/artist” 

WHERE sc:VisualArtwork.root =  

“http://www.tate.org.uk/art” 

Here the attention is tuned to specific attributes of the data, namely:  

 The identifier of the artwork: identifier⟶ 𝑖𝑑. 

 The name of the artwork: about⟶ 𝑡𝑖𝑡𝑙𝑒. 

 The creation date of the artwork: dateCreated⟶ 𝑑𝑎𝑡𝑒𝑇𝑒𝑥𝑡. 

 The thumbnail image of the artwork: image⟶ 𝑡ℎ𝑢𝑚𝑏𝑛𝑎𝑖𝑙𝑈𝑟𝑙. 

 The identifier of the artist(s) who created the artwork: id⟶ 𝑖𝑑. 

 The name of the artist: name⟶ 𝑛𝑎𝑚𝑒 

 The gender of the artist: geneder⟶ 𝑔𝑒𝑛𝑒𝑑𝑒𝑟. 

 The photo of the artist: url⟶ 𝑢𝑟𝑙. 

A pair property⟶ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 is an interpretation of a formal GAV mapping from a 

property in the tagging concept (view) to its semantically corresponding attribute in the 

physical schema of the meta-modelled data. Such pair is equivalent to the RDP mapping 

triple 〈𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑀:𝑚𝑎𝑝𝑠𝑇𝑜 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒〉. One important advantage of the above query is 

that the retuned results may uncover obvious relationships between the data of Tate-Art 

and Tate-Artist, for instance, what artworks are created by a given artist (i.e. grouping). 

Therefore, we are able to jointly query heterogeneous raw data that exists in different 

schemas and formats (CSV and JSON), and process them on the metadata level without 

the need to change their representations on the physical level. However, such querying is 

incapable of revealing any hidden relationships that might exist between the integrated 

datasets. By exploiting the holistic integration feature offered by the proposed MMF, the 

next requirement is to mine hidden relationships through cross-referencing. To meet this 

requirement, one would plug the Tate-Text dataset as backstory information in the current 

usage workload. An interesting observation in SemCluster’s processed data is that: the 

phrase Tulane University is extracted as keyphrase from multiple unstructured documents. 
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To test the applicability of this keyphrase as backstory information, one can formulate the 

following query: 

SELECT  

sc:VisualArtwork.identifier, sc:VisualArtwork.about, 

sc:VisualArtwork.dateCreated, sc:VisualArtwork.image, 

sc:Artist.id, sc:Artist.name, sc:Artist.gender, 

sc:Artist.url 

FROM sc:VisualArtwork 

JOIN sc:Artist 

ON sc:Artist.id = sc:VisualArtwork.id 

AND sc:Artist.root= ”http://www.tate.org.uk/artist” 

WHERE sc:VisualArtwork.root =  

“http://www.tate.org.uk/art” 

AND sc:VisualArtwork.about IN 

 #SemCluster:( 

  SELECT Lineage.filename(key) FROM SemCluster 

  WHERE <keyphrase> IN {(“Tulane University”, NULL)}  

 ) 

From a technical viewpoint, this query is identical to its former counterpart but with one 

difference: there is a new SQL-like filtering statement added in the Where clause. When 

SemLinker detects the syntax #SemCluster:(…) during the compilation of this query, 

it understands that the query formulation inside the brackets is meant to be executed by 

SemCluster, accordingly, its execution is postponed by SemLinker’s query engine until 

the rest of the input query is executed and the query results are loaded from the metadata 

repository, the linkage table, and the unified repository. Once the results are ready, the 

query formulation inside #SemCluster:(…)is sent from SemLinker to SemCluster for 

execution, and its results are sent back to SemLinker , which are then used to filtering the 

loaded data.  
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Table 6.7 – Documents associated with “Tulane University” in Tate-Text dataset 

Key (Lineage) Filename Contains  

6B86B273FF From the Freud Museum Tulane University 

D4735E3A26 Trestle Trains Tulane University 

4E07408562 Elevated Smoke Tulane University 

4B227777D4 Burial at Sea Tulane University 

EF2D127DE3 Diamond Express Tulane University 

E7F6C01176 Cubie Smoke Tulane University 

 

To illustrate this workflow, SemLinker executes the entire formulation of the above query 

(except for part #SemCluster:(…))to integrate the data of Tate-Art and Tate-Artist. 

Subsequently, the SemCluster-specific formulation is submitted to SemCluster in order to 

find all the documents that are annotated with the keyphrase Tulane University. The 

underlying information need here is to load the value associated with the filename attribute 

(lineage metadata) of each matched document. As indicated in section 6.3.2, the filename 

of each document in the Tate-Text dataset is identical to the title attribute in the Tate-Art 

dataset. These values can be exploited to filter the Tate-Art/Tate-Artist integrated data. 

Table 6.7 lists the results of executing the SemCluster-specific query on Tate-Text data. 

The first column (key) represents the unique identifiers assigned to a document by the 

lineage manager during its ingestion, the second column (Filename) lists the original 

filename of the document, and the third column (contains) indicates that the document 

contains the keyphrase specified in the input query. SemLinker utilises these results to 

refine the data loaded from executing the original input query. The refined results are 

depicted in Figure 6.7. In this visualization figure66, we found that 6 artworks in Tate-Art 

are associated with the keyphrase Tulane University, 5 among which were crafted by 

William Crutshfield, and the last was crafted by Susan Hiller. This finding indicates that 

                                                 

66 We designed a program to draw a visualization of the query results to simplify their understanding. 
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there is a hidden relationship between these artists. By examining the documents listed in 

Table 6.7, we learned that both artists studied at Tulane University and this is why their 

artworks seem to be related. Based on this experiment, it is empirically evident that 

querying over well-managed and holistically integrated raw data is effective and can lead 

to reveal hidden patterns in the queried data towards generating new knowledge and 

deriving value. 

 

Figure 6.7– Visualization of the holistic integration querying results 
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6.4 Summary 

The main methods and algorithms introduced in this thesis are empirically validated and 

evaluated, using proof of concept implementations and a multitude of real-world datasets. 

We conducted two experiments using 11 datasets to evaluate SemLinker. The first tested 

the robustness of automatic schema mapping computation on 3 semantically similar but 

schematically heterogeneous datasets, and using one tagging concept that is drawn from 

Schema.org. The second experiment tested the integration and querying performance of 

SemLinker against a current state of the art method and using 8 heterogeneous datasets. 

During this experiment, we simulated evolutions in the physical schemas of the integrated 

data to examine the tractability of the proposed system in handling data velocity. The 

results obtained from both experiments not only validate the integration effectiveness and 

functional efficiency of the system, but also indicate that the performance is robust and 

promising. SemLinker stores output metadata in an “in-memory” triple store, this aspect 

requires empirical feasibility test. We applied SemLinker on a collection of 435 datasets 

and recorded the initial memory consumption rate and the consumption increment after 

each simulated evolution wave in the physical schemas of the datasets. The results indicate 

that the memory consumption is insignificant and it is practical to implement SemLinker’s 

metadata repository using any in-memory store.  

Next, we conducted one main experiment to validate SemCluster and evaluate multiple 

aspects of its performance, namely: keyphrase extraction recall, precision, F1-measure, 

tractability across domains, and the effect of background knowledge on the keyphrase 

extraction task. Popular datasets in NLP literature were used in the experiment. The 

performance of SemCluster was compared against 3 AKE methods under the best possible 

parameter settings. The results indicate that SemCluster outperforms the comparative 

methods with significant performance improvements. Finally, we conduct a casual 

experiment to demonstrate the utility of MMF in performing holistic integration over 

semantically similar but structurally heterogeneous datasets. We showed the usefulness of 

the proposed MMF as a foundation for querying heterogeneous personal raw data and 

discovering new interesting insights from it through cross-referencing. 
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Chapter 7 Conclusions and Future Work 

There is an evident need for common users to have their own self-controlled personal 

spaces in a response to the pressing problems of digital autonomy and the asymmetry of 

power between the user and the large-scale service providers (and any other third-party 

personal data consumers for that matter). In [11], the authors discuss the trending paradigm 

of provider-centric data centralisation and its implications on those users who want to 

manage their own data and derive value from it. In [281], the authors argue that the missing 

governance of personal data markets threatens to undermine the common user’s trust in 

data sharing practice, given that data sharing underlies not only a series of valuable public 

services, but also the whole digital industry. Motivated by these as well as similar ideas, 

we designed PDL as a highly suggestive mean for putting the common user at the centre 

of personal data management, and market. PDL enables its user to accumulate large 

amounts of a potentially useful personal data in a central space, which the user has full 

control on, and which serves as a platform for value creation and fair information exchange 

with third-party data consumers, to serve various gainful purposes as conceived by the 

user. The PDL solution naturally solves the known fragmentation problem of personal 

data, albeit the centralised data within it may quickly exhibit qualitative characteristics that 

are identical to the 3Vs model of big data, but on a smaller scale; the scale of an individual. 

Common users obviously do not have sufficient knowledge to deal with the 3Vs 

characteristics or the inherent isolations stem from the heterogeneity of personal data, and 

even if they do, it is still a tedious and time consuming manual undertaking. In this thesis, 

we argue that equipping PDL with an automated solution for meta data management can 

address all the problems of personal data. To verify this argument, we propose a novel 

extensible MMF that operates on the metadata level of the personal data to orchestrate its 

storage and usage within PDL environment, thus enabling the PDL user to integrate, query, 

and analyse personal data in its native representations and with minimum time and efforts.  
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7.1 Conclusions 

This thesis introduces an extensible MMF to annotate (semi)structured and unstructured 

personal raw data, that are collected from a plurality of heterogeneous data sources, with 

lineage and semantic metadata artefacts, which can then be exploited to model the data 

based on a formal metamodel. Throughout this research we designed, implemented, and 

evaluated multiple algorithms and techniques for automating many downstream tasks in 

the metadata and data management workflows with a focal aim of isolating the PDL user 

from the complex technical details typically imposed by these tasks. We showed that such 

automation enables the user to focus on knowledge discovery and value creation through 

formulating and executing formal queries over MMF’s metamodel.  

The proposed MMF consists of three solutions for data provenance; (semi)structured data 

management, and unstructured data management. The first solution, lineage manager, is a 

data tracking system that focuses on recording information about the line, age, and privacy 

of the data in PDL environment. This system controls who can access the stored data, and 

on what levels of accessibility, thus it provides agile but effective mechanism to protect 

the user privacy and prevent unauthorized access to the stored data. The second solution, 

called SemLinker, is an ontology-based data integration system that follows Lenzerini 

theoretical integration framework [39]. It consists of (i) an extensible OWL ontology that 

serves as a global schema, (ii) an RDF-based metadata repository to store local schemas 

that correspond to the physical schemas of the (semi)structured personal data in PDL, and 

(iii) formal mapping specifications that define the correspondences between the global and 

the local schemas. SemLinker focuses on automating data integration and offering partial 

unified views over PDL data on the metadata level. Such views can be readily qureied by 

analysis workloads. During our initial experiments with SemLinker, we observed that the 

velocity of personal data is faster, in terms of schema evolution, than what we anticipated 

at an early stage of our research. For example, the schema of Facebook Graph API has 

evolved three times over the last year (v.2.8, v.2.9, v.3.0). This provides the following 

insight: an efficient integration system that operates in a DL system needs to effectively 

address many challenges, one compelling among which is schema evolution. Tackling this 

challenge requires self-adaptability to external dynamics imposed by the integrated data 
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sources, and with lack of such feature then automating the data integration workflow may 

become a near-impossible undertaking. Accordingly, we redefine the “local schema” as a 

collection of source schemas, each among which corresponds to the physical schema of 

the given source at a certain point in its schema evolution timeline. This definition enables 

SemLinker to readily automate the integration process, but it introduces a new challenge; 

there are always structural and/or semantic differences between the current schema version 

and its previous counterpart, otherwise evolution would not take place. It is critical for an 

automated integration system to identify and reconcile such heterogeneities to prevent the 

tasks operating on the schema from crashing. The fact that raw data must be stored by a 

DL system in untransformed state complicates this challenge as we are forced to come up 

with a solution to the heterogeneity reconciliation without applying physical transform-

ations on the data. To address such a solution, we introduce the idea of virtual transform-

ations on the metadata level of the data. In Chapter 6, we evaluated all the proposed 

techniques in SemLinker to validate them and to examine the overall system performance. 

Two experiments are conducted to serve these requirements. The evaluation results not 

only validate the automated integration effectiveness and efficiency but also indicate that 

the performance is robust and promising. Query execution is really fast, in fact, SemLinker 

is ~10 times faster than a comparative recently introduced method. The metamodeling 

approach of SemLinker and its flexibility in supporting schema-less storage are major 

contributors to the performance improvements.  

The third solution, called SemCluster, is an ontology-based AKE-based ASA system for 

automatically annotating unstructured textual data with semantic data-driven metadata. 

The system consists of: (i) an extensible global WordNet-based ontology that serves as a 

formal metamodel, (ii) a repository of keyphrases and their associated metadata artefacts, 

which serves as a collection of semantic representations over the textual data, and (iii) 

formal mappings between the semantic representations and the global ontology, which are 

WordNet-defined relationships. The underlying algorithm of the system is an AKE six-

step algorithm that automatically extracts thematically important keyphrases from the 

body of an input document, and associates each extracted keyphrase with fine-grained 

ontological information drawn from the global ontology. The presented algorithm is the 

first of its kind, it dynamically incorporates external background information in the AKE 
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task, which is obtained from generic, specialised, or personalised knowledge sources that 

are integrated with WordNet through agile alignment on the schema level, and which can 

be systematically queried using an internal knowledge querying algorithm. The ASA 

performance of the system is solely dependent on its underlying AKE algorithm, therefore, 

we evaluated SemCluster using datasets of different size and domain, against three 

comparative methods. The evaluation results indicate that SemCluster outperforms the 

compared methods across all the evaluation metrics. This empirical finding verifies the 

findings of Liu et. al. [55] that unsupervised clustering-based AKE methods can be 

effective and robust, even across multiple domains. Background knowledge plays vital 

role in improving the AKE, however, we needed to empirically verify this observation. 

Accordingly, we conducted an experiment to compare between the performances of two 

implementations of SemCluster, in the first we plugged only one external knowledge 

source (DBPedia), and the second we added another source (BabelNet). The F1-measure 

scores indicate that there is performance improvement in the second implementation, but 

it is not significant due to technical issues related to the domains of the experimental data.  

To demonstrate the usefulness of MMF and its roles in simplifying the usability of PDL, 

we conducted an experiment where the metadata of all MMF components are combined 

and jointly queried to perform a personal analytics workload over holistically integrated 

heterogeneous personal data. The goal of this experiment was to reveal hidden insights in 

3 datasets that suffer severe structural heterogeneity. The scenario of the experiment 

involved extracting lineage information from the datasets by the lineage manager, then 

applying SemLinker on 2 (semi)structured datasets to generate partial unified views over 

their native representations, and applying SemCluster on a collection of unstructured text 

documents to construct keyphrase-metadata representation for each document, and finally 

querying MMF with a combined SQL-like query that utilises the keyphrases of the 

unstructured documents as backstory information about particular entities in the integrated 

data. Using relatively simple query formulations, it was applicable to discover obvious and 

hidden relationships between the structured and semistructured datasets. Overall, the 

evaluations presented in Chapter 6 demonstrate remarkable potential for the PDL user to 

understand, manage, and utilise personal raw data through MMF-based queries. 
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Although most of our discussions tie MMF with PDL, the framework is in fact loosely 

coupled with PDL architecture in two ways: first, MMF is not concerned with the 

workflow details of the ingestion layer since it only requires pulling raw data entities from 

a queue (e.g. the messaging queue component). Secondly, MMF is not concerned with the 

implementation details of the storage layer, it expects the PDL backend to be a giant hash 

table that could be modelled into two logical components: the unified repository and the 

linkage table. MMF handles data storage by passing the metadata-processed data entities 

to the backend in the form of key-value pairs of raw data and their associated metadata 

information. Furthermore, MMF introduces querying capability by means of an ontology-

based metamodel for query formulation, and internal engines to execute input queries on 

the metadata level of the stored data regardless of its native schemas, structures, or formats. 

By eliminating the need for external support to data storage and querying, MMF offers a 

natural support to database agnosticism in DLs. Based on these architectural independence 

characteristics, and motivated by the experimental results elaborated above, we plan to 

examine the applicability of MMF in different DL architectures. Our initial aim is to 

integrate the framework as a management solution for a full-fledged Hadoop DL system 

and study its empirical effectiveness and efficiency. 

The results of this work support the claim that the use of lineage and semantic metadata 

for the purpose of data management can compensate the inherent lack of data governance 

and quality in the data lake concept. However, these kinds of metadata are not sufficient 

enough as an effective mechanism against potential security risks. PDL preserves all the 

personal data of the user in a central space that is controlled by the user, not a third party. 

Currently, MMF enables the PDL user to specify basic metadata-based access control for 

various kinds of personal data as described in section 3.4.3. A data consumer who 

approaches PDL for mining useful information must request access to the stored data from 

the user. If the request sounds invasive, the user can simply reject it. However, the potential 

risks arise upon requests approval. A nefarious third party with permissible access to a 

particular kind of personal data could formulate MMF-based queries that elicit more data 

pieces than the PDL user intends to disclose, for instance, by allowing a third party 

geolocation service to access GPS history data, it may conduct pattern mining to infer the 

user’s current location without the consent of that user. Accordingly, equipping PDL with 
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safeguards against information breaches through using and mining personal data is critical 

and has to evolve in parallel with considerations about the requirements of each third party 

data consumer and the user’s awareness of those requirements, for example, an effective 

safeguard should allow the service in the former example to retrieve GPS data up to a 

certain point in time, thus preventing it from predicting the current location of the user.  

Another security risk in the user-centric data centralisation paradigm lies in the safety of 

the personal data in the long term. PDL collects a variety of raw data from different data 

sources, many among which are not necessarily guaranteed to provide risk-free data, for 

instance, a RAS agent running on a device infected with a malicious software (e.g. Trojan, 

Ransomware, etc.) may propagate infected files to the PDL, which once are situated within 

the PDL premises, they can contaminate other preserved files, leading to irrevocable 

corruption of particular personal data that may be regarded of high importance to the user. 

Therefore, PDL should also be equipped with a mechanism that scans any ingested raw 

data entities and filters out those with potential security bugs.  

7.2 Future work directions 

Future work could take many directions. In the following subsections, we summarize the 

pressing ones. 

7.2.1 Simplifying query formulation  

Gartner [283] outlined personal analytics in its hype cycle of emerging technologies. The 

firm believes this technology is promising and may attract competitive advantages in the 

foreseen future. We share the same expectation and further argue that as the size and 

convergence of personal data increasingly become a norm, the common users’ need to 

derive personal insights and patterns from their data on their own will keep augmenting. 

PDL can serve as single point of centralisation for all the personal data of the common 

user, whilst MMF is the PDL-compatible framework that can be exploited to discern 

insights in personal habits, patterns, and motives in the course of the user’s daily activities 

and across various contexts including: work, health, finance, leisure, emotions, and so 
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forth. The main enabler for such services is “querying”. The presented MMF components 

require constructing SQL-like queries, mostly based on a priori knowledge of the concepts 

and properties associated with the metamodel which is used to manage the personal data 

and over which such queries are executed. Although from a technical perspective MMF 

components have been shown to hide considerable data management complexities, they 

still require a higher level of query formulation abstraction for allowing the common user 

to run personal analytics workloads in PDL without the need to write verbose queries, 

which the user may not understand or does not have the experience to expand in order to 

conduct advanced workloads. We set two future directions to overcome this limitation: 

first, we plan to build an interactive graphical query designer tool as the frontend of the 

query interface currently available in the access layer. Such tool provides both a graphical 

query design GUI and a text-based query design GUI for creating queries to retrieve meta-

modelled personal data from PDL. The first GUI would be used to interactively build an 

SQL-like query and view the results for different source types like PDL backend, the 

lineage database, SemLinker metadata repository, and SemCluster annotations repository. 

The second GUI would be used to specify multiple statements, complex query or command 

syntax, and expression-based queries similar to those shown in Chapter 6. The second 

direction is to exploit the gravity feature of PDL. Our aim here is to develop a multitude 

of general-purpose gravity-enabled services to cover analytics which any PDL user might 

need, and distribute them as compiled code which would be easily downloaded by the user 

and plugged in the access layer. In this context, a service would either tune itself with the 

MMF’s metamodel in an adaptive way to formulate queries on the behalf of the user and 

based on their information needs, or it contains predefined query formulation patterns 

which the user would directly trigger without the need to be concerned with their technical 

details. By reviewing the digital society (i.e., blogs, forums, news), we prioritise building 

gravity-enabled services for manipulating integrated social media data coming from 

multiple social services, such as graphical search and analysis (sentiment analysis, 

infographs), services for analysing integrated health data coming from smartphones and 

watches, services for mining relationships between unstructured textual documents, and 

services for geolocation informatics. 
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7.2.2 Intrinsic tagging and plugging in SemLinker 

To the best of our knowledge, SemLinker is the first domain-agnostic integration system 

that offers self-adapting capabilities to automatically integrate raw data with frequently 

evolving schemas based on solid theoretical foundations as explained in Chapter 4. 

However, though in many aspects SemLinker can be regarded as an automatic system, it 

still has two vital tasks that need to be dealt with manually: data source tagging and 

selecting a schema matcher plugin. Using machine learning based approaches to label data 

sources with ontological concepts automatically, and thus relieving users of the burden of 

manual data source tagging during the installation of ingestion agents, is one of our future 

research goals. As for schema matcher selection, though the performance of SemMatcher 

in the evaluation is promising, we intend to extend it by combining a number of other 

matching approaches, so that it offers good matching solution for schemas of various 

characteristics, reducing the need for users to resort to other schema matchers. 

7.2.3 Similarity and WSD in SemCluster 

Although SemCluster exhibits better performance than other approaches, there is still room 

for improvement. In an experiment on a collection of mixed documents from Inspec and 

DUC-2001, we replaced the WuPalmer measure with the Jiang-Conrath metric [284] and 

used Babelfy [285] for the WSD task. An improvement in F1-measure compared with that 

of SemClusterDBP,BN was observed, however, its computational efficiency significantly 

decreased because Babelfy is available only as an online service. This suggests a potential 

enhancement to SemCluster, particularly by improving its semantic similarity metric and 

WSD algorithm. We are also interested in extending WordNet with more personalised 

knowledge sources and study their impact on performance using personal documents with 

greater length and domain variance (e.g. emails, health records, microblogs, etc.) than the 

currently used datasets. 

7.2.4 Extending multimedia support 

At the end of this doctoral research, a pressing idea in MMF development was extending 

its metadata management capabilities to support unstructured multimedia data. At present, 
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MMF provides limited support for these kinds of data in the form of lineage recording. 

However, we plan to develop a fourth integral component in MMF, called SemMedia, to 

handle the metadata processing of different image and video files. With lineage manager, 

SemLinker, SemCluster, and SemMedia in place, MMF would be able to handle a wide 

spectrum of personal data, hence greatly benefiting the PDL user by extending the support 

of storing and managing new personal data types, and offering multiple choices for 

backstory information support during personal informatics and analytics, compared to the 

current text-based support only. 
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