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Abstract

In the recent years, increased research activity in the area of facial ageing modelling

has been recorded. This interest is attributed to the potential of using facial ageing

modelling techniques for a number of different applications, including age estimation,

prediction of the current appearance of missing persons, age-specific human-computer

interaction, computer graphics, forensic applications, and medical applications. This

thesis describes a general AAM model for modelling 4D (3D dynamic) ageing and

specific models to map facial dynamics as people age. A fully automatic and robust

pre-processing pipeline is used, along with an approach for tracking and inter-subject

registering of 3D sequences (4D data). A 4D database of 3D videos of individuals has

been assembled to achieve this goal. The database is the first of its kind in the world.

Various techniques were deployed to build this database to overcome problems due

to noise and missing data. A two-factor (age groups and gender) analysis of variance

(MANOVA) was performed on the dataset. The groups were then compared to assess

the separate effects of age on gender through variance analysis. The results show that

smiles alter with age and have different characteristics between males and females.

We analysed the rich sources of information present in the 3D dynamic features of

smiles to provide more insight into the patterns of smile dynamics. The sources of

temporal information that have been investigated include the varying dynamics of lip

movements, which are analysed to extract the descriptive features. We evaluated the

dynamic features of closed-mouth smiles among 80 subjects of both genders. Multi-

level Principal Components Analysis (mPCA) is used to analyse the effect of naturally
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occurring groups in a population of individuals for smile dynamics data. A concise

overview of the formal aspects of mPCA has been outlined, and we have demonstrated

that mPCA offers a way to model the variations at different levels of structure in the

data (between and within group levels).
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Chapter 1

Introduction

In recent years, the computer vision community has become increasingly interested

in addressing the various issues associated with facial ageing such as age estimation,

appearance modelling and face recognition/verification. The temporal nature of these

facial ageing problems pose numerous challenges in establishing a formal dataset com-

pared with other challenges such as illumination differences, pose variations and facial

expressions. The success of any modelling that is employed for facial ageing is al-

ways dependent on how effectively the facial ageing datasets capture the appearance

variations that occur as a result of ageing. The first obstacle for modelling facial age-

ing dynamics and understanding patterns of ageing is the lack of relevant data. Over

the past 10-15 years, many facial ageing databases have been created. These include

numerous images and videos for individuals in different age groups. These databases

may consist of 2D still images, 2D videos and 3D still images. The images are em-

ployed for a variety of research applications including age verification/identification,

age synthesis and estimation, and age simulation and progression. The development

of 3D scanners, however, is relatively recent. Therefore, collections of 3D scans of

individuals over time are both scarce, and often incomplete. Waiting for individuals to

age in order to re-scan them is challenging: it takes time. In addition, analysis of hu-

man facial expressions is an important task in developing automatic Human-Computer

Interaction systems; a field that has garnered increasing attention over the past two

decades [17, 215] . The dynamics of facial expressions convey important information

(discriminating) and to date remain a relatively unexplored area. Automatic analysis
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of facial expression investigates changes in facial appearance that result from changes

in expression, as well as the dynamics of the changes. Changes in appearance are vis-

ible even in static images, while dynamics require temporal information, such as the

timing, the duration and the speed of the temporal phases of various facial dynamics.

While the primary focus of most work in facial expressions analysis is changes in ap-

pearance, both the dynamics and the configuration of facial parts are essential for the

interpretation of the observed expressions [12, 159].

1.1 Research Motivation and Contributions

This study involves research to explore how facial dynamics change as people age

using longitudinal 3D facial database which was collected over nine years.

The contributions of the thesis can be summarised as follows:

1. A 3D dynamic ageing database is the important product of this study. This study

explores the changes in 3D facial dynamics over time by the capture of 3D videos

of volunteers perform 3D dynamic face scans: two smiles, saying a sequence of

single words and saying four sentences, which were collected over nine years.

It is important to generate 3D dynamic ageing datasets to consider the problems

of facial ageing. To date, no publicly available 3D dynamic databases exist. A

pre-processing process using a meshlab script was developed to clean the data

and fill the holes that occurred. Interpolation techniques were used to fill the

gaps in the data for some people who had missing years due to absence, illness,

etc. The methods were validated and tested by adding the interpolated data to

the experiments in the next chapters (Chapter 3).

2. A novel method is developed to extract the dynamic features from the phases

(onset, apex, and offset) of a dynamic smile from the first Principal Component

(PC1) by building a general model of 4D (3D dynamic) sequences instead of
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considering only static appearance features as in previous studies. The findings

are displayed in the form of a graph to study the relationship between facial dy-

namics and age using linear regression model. This work aims to be certain has

created a linear model of the dataset that shows the relation between progression

of the dynamic features and age (Chapter 4).

3. When the automatic segmentation of a smile was carried out, three non over-

lapping phases are detected, namely, the onset, the apex and the offset and a set

of dynamic features were extracted. Static features were computed for compar-

ison, to investigate the influence of temporal facial information in different age

groups. The experiments were carried out on the subjects who were divided in

two age groups and each group was further subdivided by gender. A novel set of

3D geometric features is also presented in this study. These features are approx-

imate geodesic/shortest path distances between the anthropometric landmarks

(Chapter 5).

4. This thesis introduces for the first time the application of the multilevel Principal

Component Analysis (mPCA) method to analyse 3D dynamic smile data. This

data possesses a natural multilevel clustering of the subjects by both age and

gender groups (between- group variation), and every subject has their own smile

expression (within-group variation); mPCA uniquely exploits and is shown to

offer an improvement over more traditional PCA methods (Chapter 6).

1.2 Thesis Outline

The remainder of the thesis is structured as follows. Chapter 2 conducts an overview

of what has been done previously to investigate the techniques used and a critical ex-

amination of these studies indicates how further progress in the field can be made.

Chapter 3 describes the 4D scanning system and the data acquisition protocol, as well

as the pipeline that will be used for processing the data. Next, Chapter 4 describes the
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construction of a generic and person-specific statistical face model as well as its use

in synthesising a new face model. Then, Chapter 5 presents the dynamic features that

were used to evaluate smiles in the different age groups and detect gender differences.

Chapter 6 describes how the dynamics of smiles change in different age groups and

the multivariate principle components used to analyse dynamical smiles. Finally, the

thesis is concluded in Chapter 7 which highlights our contributions to knowledge in

this field as well as giving directions for the future work.

1.3 Publications

Research conducted during the period of study has produced the following papers:

1. K. Al-Meyah, D. Marshall and P. Rosin, 4D Analysis of Facial Ageing Using

Dynamic Features, Procedia Computer Science, 2017, Elsevier, Vol. 112, pp.

790-799.

2. DJJ Farnell1, J Galloway, A Zhurov, S Richmond, D. Marshall, PL Rosin, K

Al-Meyah, P Pirttiniemi, and Raija Lahdesmaki. What’s in a Smile? Initial

Results of Multilevel Principal Components Analysis of Facial Shape and Image

Texture. In Annual Conference on Medical Image Understanding and Analysis,

pages 177-188. Springer, 2018.
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Chapter 2

Literature Review

A variation that affects all personal characteristics (identity, gender, expression) is the

variation caused by ageing. Although ageing affects almost all types of biometric

features, to date, the topic of assessing facial dynamics over time has not received

much attention regarding modelling these dynamics statistically. The main reason for

this is the difficulty involved in collecting suitable training data for studying age-related

effects on biometric features. The challenge of biometrics is the ability to construct a

dataset and use the same subject over many years. Recent years, have seen an increased

amount of research activity in the area of facial ageing simulation. This interest is

attributed to the potential of using facial ageing modelling techniques.

This chapter surveys the relevant studies that have been reported, including age es-

timation, simulating ageing, and face verification across age progression. The chapter

also discusses previous studies related to facial ageing, the statistical models and the

extraction methods with reference to facial features that have been widely used for face

modelling. They all depend on having suitable datasets for studying ageing variations.

Therefore, this chapter reviews the publicly available datasets for ageing and the 3D

dynamics for various applications related to age.

This chapter is organised as follows: Section 2.1 introduces the statistical modelling

analysis and the techniques used in this study. A matching time series algorithm is

presented in Section 2.2. Section 2.3 reviews the current literature on human ageing,

while Section 2.4 discusses the feature extraction methods. Next, longitudinal related
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data is described in Section 2.5, and finally, Section 2.6 concludes the chapter.

2.1 Statistical Modelling Analysis

Statistical methods for representing the facial form vary in how closely they model the

structures of the face and how they exploit the shape information [166]. The following

sections describe the main techniques used for the statistical analysis of the shape and

the appearance of facial data, which are usually restricted to features.

2.1.1 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is a supervised method and it principle consists

of projecting the data linearly in such a way that the projected data are best separ-

ated. In supervised methods the data are labelled in order to identify to which to class

they belong. Let us assume that we have c classes and that the data are categorised as

X1, ..., Xc, where Xi ∈ <m×ni and ni represent the number of samples that belong to

the ith class, which means that the data are ordered in accordance with their class mem-

bership. The latent space in supervised methods is constructed in a discriminant way

so as to assign the categorisation of the data into different classes. LDA has been

successfully used as a dimensionality reduction technique with many classification

problems, such as speech recognition, face recognition, and multimedia information

retrieval [154, 212]. LDA, which was introduced by Belhumuer et al. [22], assumes

that classes/labels are being used and that the features of the different classes/labels

have a Gaussian distribution with the same covariance matrix but a different mean.

The approach of LDA is to project all the data points into a new space, normally of

a lower dimension, which maximises the between-class separability while minimising

the within-class variability [143].
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2.1.2 Principal Component Analysis (PCA)

Principal Component Analysis was originally formulated by Pearson [164] as a min-

imisation of the sum of squared residual errors between the projected data points and

the original data [58]. PCA is a classical type of feature extraction and data represent-

ation; it is a standard dimensionality reduction technique widely used in the areas of

pattern recognition and computer vision. The main idea of PCA is to extract the most

important features that characterise the original information and manage the data in a

low dimensional feature space to reduce data redundancy. At the same time, PCA can

retain the most important information of the original data, and so PCA can solve the

problem of high-dimensional data. The idea of applying PCA is not novel, but the ad-

vantage of PCA is that it reduces feature dimensionality and the amount of calculation

and storage required [214]. In particular,PCA is a popular technique for parameterising

shape, appearance and motion [30, 52, 147, 152, 197]. These learned PCA represent-

ations have proven useful for solving problems such as face and object recognition,

tracking, detection and background modeling [29, 52, 147, 152, 156]. PCA has been

extensively applied in data mining, pattern recognition and information retrieval for

unsupervised dimensionality reduction [213]. Unsupervised methods such as PCA de-

termine the statistical properties of the input data to discover relevant features. Thus,

PCA is widely applied in computer vision applications, particularly in face processing

studies. For example, when applied to face images [197], PCA yields a set of ei-

genfaces and these eigenfaces are the eigenvectors that are associated with the largest

eigenvalues of the covariance matrix of the observed data. Each face image can be re-

constructed based on the weighted average of the principal components of the original

training set of face images. PCA projections are optimal for reconstruction from a low

dimensional basis; however they may not be optimal from a discrimination standpoint

as they do not use class information in the projection [22, 197]. The Point Distrib-

uted Model (PDM), Active Shape Model (ASM), Active Appearance Model (AAM)

and 3D Morphable Model are other examples of approaches that employ PCA to model
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faces [197]. There has been a strong trend lately in face processing research away from

geometric models towards appearance-based models. Appearance-based models em-

ploy dimensionality reduction to represent faces more compactly in a low-dimensional

subspace which is found by optimising certain criteria [183]. These models represent

faces as points in high-dimensional image spaces and employ dimensionality reduction

to find a more meaningful representation, thus, addressing the issue of the problem of

dimensionality [183]. Dimension reduction is a process of reducing the number of

variables under observation. Though face images can be considered as points in a

high-dimensional space, they often lie on a manifold (i.e., subspace) of much lower

dimensionality, though embedded in the high-dimensional image space. Originally,

the main issue in dimensionality reduction is how to properly define and determine a

low-dimensional subspace of face appearance in a high-dimensional image space. The

dimensionality reduction approaches are divided into unsupervised (i.e, Eigenfaces) by

Turk et al. [197] and supervised (i.e, Fisherfaces) by Belhumeur et al. [22].PCA has the

advantage of capturing holistic features but ignores the localised features. In contrast,

Fisher’s faces which employ the LDA technique [22], extract discriminating features

between classes, and perform better for large datasets.The main difference between

LDA and PCA is that LDA is a supervised method. It searches for the project axes on

which the data points of different classes are far from each other while requiring data

points of the same class to be close to each other. When label information is available,

e.g., for a classification task, LDA can achieve a significantly better performance than

PCA. Given a number of independent features relative to which the data are described,

LDA creates a linear combination of those which yields the largest mean differences

between the desired classes. Even though LDA is said to perform better than PCA in

classification, LDA requires more computation compared to PCA. Another important

point to mention is that LDA is much more sensitive to different training sets than is

PCA. The performance accuracy of the implementation of LDA could also be relative

to the size of the training set [216]. A similar problem was identified and researched in

detail by Martínez et al. [146], who concluded that when the training set is small, PCA
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can outperform LDA.ASM and the AAM were proposed by Cootes et al. [51]. An

AAM contains a statistical model of the shape and grey-level appearance of the object

of interest, which can be generalised to almost any valid example. A year later, the

3D Morphable Model was introduced by Blanz et al. [31]; the 3D Morphable Model

is derived from a data set of 3D face models by automatically establishing correspond-

ence between the examples. It captures the variations observed within a data set of 3D

scans of examples and converts their shape and texture into a vector space representa-

tion [31].

2.1.3 Active Shape Models (ASM)

Since its introduction by Cootes et al. [54], the ASM has become one of the most

popular algorithms for analysing 2D and 3D images. In this work, we used the method

as a feature-based approach in 3D video data. Using a set of landmarked training faces,

we built an ASM to extract facial dynamics from the variations in the 3D shape [25].

Undoubtedly the most generic and, at the same time, the simplest method used to

represent shapes is a set of points distributed across the surface, which can be extracted

from volume data. Coordinates for all k points are concatenated to one vector x, which

describes the shape [106].

X = (x1, y1, z1, ...., xk, yk, zk)
T

Essentially, constructing a statistical shape model involves extracting the mean shape

and a number of modes of variation, via PCA, from a collection of training samples.

Obviously, the methods employed depend greatly on the chosen representation of

shape. An essential requirement for building shape models with PCA is that landmarks

on all the training samples should be located in corresponding positions. Chapter 4 dis-

cusses this requirement in details.
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2.1.4 Active Appearance Models (AAM)

AAMs are generative models which use a compact set of parameters to describe the

shape and texture variation of objects in images [160]. Parametric models of shape

and texture, such as AAMs [52], are a widely used technique for object appearance

modeling. The AAM has been employed in computer vision research for more than 15

years due to its ability to deal with a high level of information using a small number

of parameters. These models of shape and appearance can generate instances of spe-

cific object class (e.g., faces) given a small number of model parameters that control

shape and appearance variations. Such parametric models can be applied to both im-

age synthesis and analysis problems. Representative applications are object tracking in

video [60, 180], face recognition [32], face synthesis [120], and image stitching [191].

Many researchers have used the AAMs in modeling 2D and 3D faces [55]. AAMs

build on the idea of the ASMs, which is a model-based statistical approach to locating

shapes in an image [50]. AAMs use annotated images where key areas are labelled

using landmark points. Landmark schemes vary by the number and location of points.

AAMs include both shape and texture information by combing a model of shape and

texture variations. The combining appearance model is computed by concatenating the

resulting shape and shape normalised texture vectors, and performing PCA a final time

to account for possible shape-texture correlation [52].

2.2 Matching time series

A time series is a sequential set of data measured over time. To compare one sequence

with another, in some domains, a simple distance measure, such as Euclidean distance,

is adequate (Figure 2.1 (a)). However, a problem that often arises is how to find the

similarity between two time series with different lengths or different sample rates and

that are variable along the time axis. A more robust technique to measure the distance

for a time series is Dynamic Time Warping (DTW) [124]. DTW is sufficiently flexible
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to match similar shapes even they vary in the length along the time axis; therefore,

DTW is widely used in science, medicine, and industry [123].

Figure 2.1 (b) shows this in a simple example. In order to find the similarity between

such sequences, warping the time axis of one or both sequences achieves a better align-

ment. DTW makes it possible to efficiently achieving this warping [124]. Further

details about DTW and its derived forms are given in the next section.

(a) Euclidean distance. (b) Time series processed by DTW.

Figure 2.1: Examples of comparing between sequences using, (a) Euclidean dis-

tance, (b) Dynamic Time Warping..

2.2.1 Dynamic Time Warping (DTW)

DTW is a familiar method for measuring the similarity between sequences that vary

in time or speed. The technique was originally developed for speech recognition, but

several researchers have applied it in other domains, in particular, those that are time-

dependent such as data mining, gesture recognition and signature authentication; sev-

eral variants have been developed, such as derivative DTW (DDTW) [124, 172, 175].

Figure 2.1 shows an example of the process of aligning two out of phase sequences us-

ing DTW. The DTW technique computes an optimal match between two sequences by

allowing a nonlinear mapping of one sequence to another and stretching or shrinking

the signal along its time axis. The sequences are warped nonlinearly to accommodate

any nonlinear variations in the time dimension between two sequences [117, 118, 123].



2.2 Matching time series 12

Figure 2.2: The optimal warping path through the distance matrix.

In this study, we used DTW, which has the flexibility to accept sequences with variable

lengths; this is a useful property because videos are of varying lengths.

The methodology for standard DTW assumes a sequence A of length n and a sequence

B of length m. A distance matrix of size m by n is created where the (ith, jth) element

of the matrix consists of the distance between the two points ai and bj . Then, an optimal

path through the distance matrix, from (1, 1) to (m,n) is found by moving one step in a

horizontal, vertical, or diagonal direction [19, 175] (see Figure 2.2).

Classic DTW suffers from the limitation that it is defined on a sequence of discrete

points and is therefore sensitive to the sampling rate. Where the sampling is sparse,

there is a lack of resolution in the matching process due to the fact that the algorithm

matches only discrete samples rather than continuous curves [79]. Continuous DTW

(CDTW) is an extension of classic DTW that maps a sample point in one of the curves

to a virtual point between two samples in the other curve [151]. The classic DTW

algorithm [175] determines the warping path based on distances between data points,

which can yield pathologic results in some particular cases. For instance, consider two

data points P4 and Q3 in Figure 2.3 that are close, but one belongs to a rising slope and
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Figure 2.3: Curve matching using Dynamic Time Warping and its derived forms

Continuous DTW (CDTW) and Derivative DTW (DDTW) [26].

the other to a falling slope. DTW considers a mapping between P4 and Q3 optimal,

although it would be inaccurate to map a rising trend to a falling trend. By taking into

account the derivatives, WDTW correctly maps P3 to Q3, and P4 to Q4.

Derivative DTW (DDTW) was developed to prevent this problem as a modification of

DTW and CDTW. It does not consider the y-values of the data points, but rather the

higher-level feature of shape. Information about shape is obtained by also consider-

ing the first derivative of the sequences, hence DDTW [124]. A further extension to

DDTW called weighted DDTW (WDDTW) was proposed recently to include more

than the first derivative in the algorithm [26] (See Figure 2.3). For example, the first

derivative may give information on speed, the second on accelerations and decelera-

tions including further derivatives; this theoretically provides a more accurate match.

However since derivatives are noise sensitive, weighting factors also need to be incor-

porated so as their inclusion does not impair the performance of the algorithm.

2.3 Research activity related to human ageing

In recent years, there has been a growing interest in addressing the many problems

related to facial ageing. This section discuss some of the interesting studies in computer

vision on these topics of age estimation, appearance modeling, face recognition and

verification as people get older.



2.3 Research activity related to human ageing 14

2.3.1 Age estimation

Automatically estimating facial ageing is an important technique with a wide range of

applications, it is still a challenging problem to estimate a person’s age from a facial

images [82]. Age estimation techniques often targeted the shape and texture-based

features that were extracted from faces. While feature-based approaches to estimat-

ing age used anthropometric distances extracted from different facial regions, holistic

approaches typically adopted subspace methods to reduce the dimensionality of faces

and subsequently used regression techniques to estimate age from facial images. The

mainly methods employed can be described as follows:

2.3.1.1 Anthropometric models

Face anthropometry is the scientific study of the measurements and proportions of the

human face [62]. Such studies provide a quantitative description of the craniofacial

complex using measurements taken between key landmarks on human faces at differ-

ent ages [83, 84] and have played a critical role in surgical procedures employed on

the faces of growing children [179]. In [83], Farkas provides a comprehensive over-

view of face anthropometry and its many significant applications. Kwon and Lobo

in [131, 132] proposed an age classification approach that identifies the age group that

a face image belongs to, based on the anthropometry of the face and the density of

its wrinkles. In one study, they consider three age groups, namely, infants, young

adults and senior adults, adopting craniofacial development theory [10]. Anthropo-

metric method, which also considers the facial geometry, has limitations; including the

fact that it is suitable for age estimation or modelling for young people only, because

the shape of adults’ faces does not change much.
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Figure 2.4: Vectorisation of the ageing pattern.The missing parts in the ageing

pattern vector are marked by ‘m’. Originally shown in [93].

2.3.1.2 Ageing pattern subspace

To model the ageing process, a sequence of face images in the course of an individual’s

ageing can be used together instead of dealing with each image separately, This is

called the AGing pattErn Subspace (AGES) [93, 94]. An ageing pattern can be defined

as a sequence of personal face images, coming from the same person and arranged

in temporal order. If an individual’s face images at all ages are available, the corres-

ponding ageing pattern is called a complete ageing pattern, otherwise, it is called an

incomplete ageing pattern. The AGES method can synthesise the missing ages by us-

ing an EM-like iterative learning algorithm. The age of a test face is determined by the

projection in the subspace that can best reconstruct the face image [174].



2.3 Research activity related to human ageing 16

2.3.1.3 Age regression

Facial features are often extracted using the Active Appearance Model (AAM) using

regression. Adopting the AAM approach by [52], Lanitis et al. [136, 138] presented

a combined shape and appearance model to represent the face images. Face images

are then represented by a set of fitted model parameters which are the principal com-

ponents of the eigenspaces that correspond to facial shape and appearance. Lanitis et

al. [138] investigated three formulations for the ageing function; linear, quadratic and

cubic, in turn, Deffenbacher et al. [61] debate whether the ageing factor has essentially

sequential patterns which are quite similar to age morphing [168]. When a large num-

ber of ageing data are provided, ageing can present a significant trend of underlying

sequential patterns.

Fu and Huang [88], built a low-dimensional manifold from a set of age-separated face

images using such manifold learning approaches as Locality Preserving Projections

(LPP), Orthogonal Locality Preserving Projections (OLPP) and Conformal Embedding

Analysis (CEA), in estimating the age of a face, used linear and quadratic regression

functions on the low dimensional feature vectors from the respective manifolds. On

very similar lines, Guo et al. [101] adopted a manifold learning approach and used

support vector regression to estimate the age of faces having low-dimensional repres-

entation. They reported that local adjustments made on the regression result lead to

improved accuracy in age estimation.

Yang and Ai [209], proposed a learning-based approach to classifying face images on

the basis of their age group. The Local Binary Pattern (LBP) is used as an image

operator and the LBP histogram is extracted and subsequently used for texture charac-

terisation. Adopting the Ada Boost technique [27], they identified a sequence of local

features which when combined into a strong classifier performs the task of age clas-

sification successfully. Ahonen et al. [1], proposed for age estimation, multiple linear

regression on the discriminate ageing manifold based on a quadratic function of face

images for age estimation as in Figure 2.5.



2.3 Research activity related to human ageing 17

Figure 2.5: Framework of age estimation by face image analysis, originally shown

in [89].

2.3.2 Modelling / Simulating the ageing process

For age synthesis (also called age progression) is often implemented by building a

generic face model. Age progression is used to modify and improve the image in law

Figure 2.6: Age synthesis, originally shown in [190]

enforcement, by computer or manually, to identify the purpose of suspects/victims and

missing people. This technique has been developed for applications in police investig-

ative work. When images of missing family members (especially children) or wanted

fugitives are no longer up to date, professionals can predict the natural ageing of the

subjects’ faces and produce updated face images, employing all the available individual

information, such as facial features, lifestyle, occupation and genetics. Age synthesis

by computer can significantly enhance the efficiency of a professional’s work and at

the same time provides more photo-realistic ageing effects that can satisfy aesthetic
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needs. From the perspective of computer vision, the ageing problem can be summed

up as follows:

1. Shape vs. Texture: The effects of facial ageing appear in the shape of the face in

the formative stages, while there are also variations in texture such as wrinkles.

Other skin affects are clearly shown through the later stages of adulthood. The

facial ageing problem of characterising facial shape and texture can be described

as a functions of time. Due to the temporal nature of the induced variation,

therefore, it is necessary to build models that have the same characteristics.

2. Feature Selection: To develop a model of facial growth or of facial ageing re-

quires a convenient form of data to be identified that provides all the desired

descriptions of the case. The data may be individual specific or population-

specific. There are some forms of data that can help characterise the growth of

a face, such as fiducial features (2D or 3D) extracted from age-separated faces,

2D facial imagery or 3D facial scans extracted from individuals across different

ages and face anthropometric measurements extracted from a population.

3. Other factors: Regardless of the biological factors influencing the growth of fa-

cial bones, loss of elasticity in facial muscles and facial fat, many factors can be

shown to influence the effects of facial ageing, such as ethnicity, gender, dietary

habits and climatic conditions. Moreover, facial appearance changes with age,

due to factors such as changes in hair-style. Therefore, all these factors should

be taken into account when building a facial ageing model [83].

Parke et al. [162] built a 3D mesh model to generate cartoon faces. Animated facial

expression is synthesised by analysing a typical pair of real face photographs. In addi-

tion, a quantity of face models, both 3D and 2D, photo-realistic and non-photo-realistic

have been developed and reported for different applications. Burt and Perrett [37], de-

veloped an ageing simulation approach taking both shape and colour information into

consideration. The age-related visual differences between the composite faces from
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Figure 2.7: Face ageing using active appearance model and principal component

analysis. (a) Active appearance model [51, 52]. (b) Ageing appearance simulation

result [138].

different age groups were added to the new test face images to produce the effects of

ageing.

Tiddeman et al. [194] found limitations in the above method and proposed a new al-

gorithm based on wavelets that captures the age information lost in the blending pro-

cess. The age transformations are more accurate and reach the target age bracket.

Further, Tiddeman et al. [195] achieved more realistic textures using a wavelet Markov

random field method.

Lanitis et al. [138], presented certain ageing functions that define the relationship

between an individual’s age and the model parameters of the corresponding face im-

ages that are obtained on the basis of AAM. In particular, to account for the effects of

individuals’ lifestyles on their ageing process, these factors were considered in their al-

gorithm and found to simulate more realistically the effects of ageing. Figure 2.7 shows

an example of AAM and result of simulating the appearance of ageing by method of

Lanitis et al.

Fu et al. [90] present a framework called Merging Face (M-Face) for appearance-based
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photo-realistic facial modeling. An ageing ratio image is used to render texture of

ageing and rejuvenating. The caricatured shape is changed by exaggerating individual

distinctiveness.

Ramanathan and Chellapa [168, 171] propose a craniofacial growth model that char-

acterised the shape variations in human faces at various ages. The authors observe that

the growth parameter k for different facial features across ages can be adapted in the

model to characterise facial growth.

Ramanathan and Chellapa [167] also propose a two step approach for modeling ageing

in adults, which consists of a shape and texture variation model. The formulation of

shape variations is performed by constructing physical models which characterises the

functionalism of the facial muscles.

Suo et al. [190] propose a statistical model to present a dynamic ageing model of the

face with multi-resolution and multilayer image representations. A hierarchical (AND,

OR) graph representation is adopted with which faces are decomposed into different

parts and organised in graph structures. A dynamic Markov process model is built on

the graph structures of the training data. In particular, hair styles are processed as one

kind of ageing effects. To simulate new ageing faces, the graph structures over different

age groups are finally sampled regarding the dynamic model. Figure 2.8 shows this

model and some ageing simulation results which exhibit highly photo-realistic results.

Ling et al. [142] propose a method to simulate the adult ageing effects on face images

by means of super- resolution in tensor space and active appearance models. A super-

resolution technique is used to construct high-resolution images based on the images

in low resolution. Multi-linear analysis is introduced to deal with the problem that

occurs when more than one kind of change needs to be considered and processed in

the training and test face image set. An active appearance model normalises the faces

in the images.



2.3 Research activity related to human ageing 21

Figure 2.8: Multi-layer dynamic face ageing model and results[190]

2.3.3 Face verification across age progression

Face verification has a very wide range of applications in computer vision such as

surveillance, human computer interaction and image retrieval. Human faces undergo

significant variations with ageing. However, many researchers have detected the range

of factors such as illumination variations, pose variations, facial expression and occlu-

sions that affect face recognition. Still it is useful to study the role of natural factors

such as ageing effects in face recognition.

In the past few years, Biswas et al. [28] have studied feature drifting in face images of

people at different ages and applied it to the task of facial verification. Other studies

and age transformation were used for verification [93, 185, 204, 161, 163]. Some

previous research has been applied to age progression for the task of face verification.

In a comparison of two photos, these methods transform one photo so that it seems to

portray the same age as the other, or transform both to reduce effects of ageing. One

of the earliest studies is that of Lanitis et al. [138], where a statistical model is used to
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capture the variation of facial shapes over age progression. The model is then used in

age estimation and face verification.

Ramanathan and Chellappa [168] use a face growing model for face verification tasks

involving people under the age of eighteen. To perform face verification across time,

two methods are proposed, the generative and non-generative. Since ageing needs to

be modelled, the above methods can be classified as generative. Most of them use

verification to evaluate the age modelling algorithm. Generative methods, however,

have some limitations: for example, the construction of the ageing model usually re-

quires the images being compared to carry additional information in the form of the

actual age of the subject and the location of landmark points on each face image. The

68 landmark points that are used in this method are pre-labelled in each photo in the

FGnet dataset [81].

To overcome these problems, non-generative approaches have been proposed for the

ageing problem. The approaches proposed by Ling et al. [142] and Biswas et al. [28]

are non-generative. Then derive an age-invariant signature from faces and use this to

perform face verification in the course of age progression. Ling et al. [142] studied the

problem of face recognition with age variation. They proposed a robust face descriptor,

the gradient orientation pyramid, for face verification tasks at different ages. In com-

parison with previous descriptors such as image intensity, this descriptor is more robust

and performs well on face images with wide age differences. The pyramid technique

enables the descriptor to capture hierarchical facial information. The new method has

demonstrated very promising results on two challenging passport databases.

Biswas et al. [28] analyse the coherence of the drifts in various facial features to verify

whether or not two age-separated images belong to the same individual. The main point

of this approach is to look for forward coherencies in facial feature drifts as people get

older. These writers investigate whether the coherency of some selected facial features

is greater on two different images of the same person at different ages. In this work,

only the most frontal fiducial features were selected, because the features on the outer
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boundaries of the face tend to change rapidly as the head pose changes and various

expressions (laughing, even smiling) are performed.

Li et al. [141] develop a discriminate model that uses scale-invariant feature transform

(SIFT) as a descriptor and a multi-feature discriminant analysis (MFDA) algorithm

for dimensional reduction. The model can be recognised as a familiar face despite

variations in illumination, pose and expression. Li et al.’s experiments were conducted

on two public domain databases (MORPH and FGNET) to show the effectiveness of

the proposed method.

2.4 Feature Extraction Methods

Extracting the features is one of the key functions which is reacquired according to the

approach used. It involves reducing the number of items of information required to

describe a large set of data while still describing the data with sufficient accuracy [134,

207, 208, 217]. Some of these approaches have been successfully employed in many

static face recognition problems. The next sections presents the commonly methods in

this area, whose the features can be divided into the following classes:

2.4.1 Static Feature Extraction

The recent methods of feature extraction can be split into three categories: local, global

and hybrid approaches. The following sections describe the major facial feature extrac-

tion techniques.

2.4.1.1 Local Features

Guo et al. [102] proposed biologically-inspired features (BIF) of ageing for age es-

timation. These features are based on Gabor filter responses for different orientations
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and scales. Alnajar et al. [11] introduced intensity and gradient-based features to ad-

opt a learning-based encoding method for age estimation under unconstrained imaging

conditions. For each pixel, neighbouring pixels are sampled in a ring-based pattern

to form a low-level feature vector. Then, the features are encoded using a PCA-tree

based codebook [211] to model the completed local binary patterns (CLBP) using an

SVM regression. Choi et al. [43, 44] propose the extraction of wrinkles using a set of

region specific Gabor filters in conjunction with the use of a local binary pattern (LBP)

skin extractor. Bekhouche et al. [21] present a novel method to estimate the age from

face images, using binarised statistical image features (BSIF) and local binary patterns

(LBP) histograms as features, as performed by support vector regression and kernal

ridge regression (KRR). This study evaluates a PAL database and finds better perform-

ance when combining BSIF and LBP features, but, this work does not consider gender,

ethnic and pose variations. A new method to estimate possible ages for facial image is

proposed in [133] with a novel measurement, where by three stages are described. The

LBP model extracts local skin features. Jana et al. [119] describe a new methodology

for estimating someone’s real age by analysing the wrinkled areas of the facial images.

Most significant features such as the distances between facial objects and the analysis

of wrinkled areas considered. This study imposes some constraints, including the need

to make all images a frontal views with uniform light on each part of the face and to

contain only one face, with a forehead clear of hair.

2.4.1.2 Global Features

The global features that represent overall facial characteristics have largely been used

to estimate detailed age. Methods used to determine global features include Active

Appearance Models (AAM), Gabor wavelet transform (GWT), and subspace features

using image intensity [211] and image frequency. Many previous ways of determining

facial features based on the AAM model have been proposed. The AAM is a well-

known method that represents faces in statistical terms appearance and shape models
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using PCA. The first age estimation algorithm using AAM features and regression

methods is proposed by Lanitis et al. [138]. In their work, the relationship between age

and features is defined as quadratic ageing function and the facial age is then estimated

using ageing features. At this point, Lanitis et al, used the AAM features to compare

different classifiers for age estimation. Geng et al. [92] proposed the ageing pattern

subspace (AGES) method, using the subspace representation of a sequence of indi-

vidual ageing face images. In their work, an AAM is also used as a feature extractor.

Yan et al. [41] designed a regression based on training samples with uncertain non-

negative labels using AAM features. Though the AAM is frequently used in the above

works, its features may not include information about wrinkles and skin, because of

the dimensional reduction made by the PCA.

2.4.1.3 Hybrid approaches

Hybrid features are a combination of global and local features, proposed by Suo et

al. [189], to solve the above problem with the features of AAM; they also design a

minimal number of features consisting of the AAM, wrinkles, skin, hair and the con-

figuration of the facial component features using the hierarchical face model. Topo-

logy, geometry, photometry and configuration features are four types that are extracted

in each component. For example, the geometric features of wrinkles are described

by a set of landmarks. However, extracting the landmarks of the wrinkles is more

unstable than analysing their texture. The landmarks of the wrinkles represent the po-

sitions on the wrinkle edges, but, because facial wrinkles are include both fine and

deep wrinkles, they are not always clearly portrayed in facial images. Extracting the

landmarks of wrinkles is seen as a very challenging problem and a texture analysis of

the wrinkle area is a more stable method of analysing various wrinkles. Hair features

are extracted using a graph cut and generative hair model [190]. However, the prob-

lems associated with using this approach to an actual age estimation system remain

unsolved, due to the inherent difficulties associated with hair modelling. Even when
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complicated method is used, it does not improve the estimation of age as much as other

research methods using only the AAM features [44]. Choi et al. [44] propose a new

extraction method for wrinkle and skin features in order to improve performance. The

wrinkle features are effectively extracted by a Gabor Filter set based on the direction

of wrinkles on the face. Ali et al. [8] propose a combined PC and LBPV features to

accommodate a range of age groups. Dibeklioglu et al. [64] propose a new method for

verifying that combine spatio-temporal facial features and facial expression dynamics,

which they call Completed Local Binary (CLBP-TOP) and combine with dynamics

features. Dibeklioglu and his team have completed many studies in term of combining

global and local features using 2D videos of facial expressions. We describe their work

in Section 2.7 below.

2.4.2 Dynamic Feature Extraction

Most of previous studies regarded static face images as the most reliable evidence for

conveying a significant amount of information such as the identity, emotional state,

ethnic origin, gender, and age of a person shown in a face image [136]. Researchers

have of late, however, attempted to quantify facial ageing effects through various other

strategies. Ageing has been considered as the fourth dimension [177, 178]. The human

face undergoes many skeletal and soft tissue cellular changes, due to age progression

which consequently affects its functional behaviour [98, 140]. Studies have shown

that lips become less elastic and less mobile with ageing [74, 127]. Oral structures

such as teeth and periodontium also change with age. These changes may affect the

smile. Moreover, facial movements differ between the genders (i.e. they have different

smile behaviour), especially in adulthood [46, 158]. One of the most frequently studied

facial expressions for the analysis of facial dynamics is the smile, because it is the most

frequently used facial expression and the easiest facial expression to exhibit [80]. Thus,

the focus of this study will be on the smile as a form of facial dynamic.

However, the earlier studies of smile aesthetics, these differences were not statistically
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tested [63, 199]. Geld [199] and Desai et al. [63] by means of videos, have recently

studied age related changes in smiles. The lack of information concerning gender

and age differences has prevented gender differences in age-related changes in smiles

from being explicitly identified. Chetan et al. [42] propose a cross-sectional study

to determine the tendencies and patterns between the different age groups and check

whether gender plays an important role in these tendencies. The findings from this

study are as follows:

• There is a difference between male and female smiles.

• Smiles change with age. As individuals age, they are lose of muscle tone which

leads to a reduction in the extent of their smiles.

• In smiling, females exhibit greater horizontal movement and males exhibit greater

vertical movement.

Facial dynamics yields further information, allowing for more detailed analysis. This

allows for greater discrimination across wider age differences. In the last decade, to

discriminate between smiles their dynamic features (such as their duration, speed and

amplitude), as opposed to morphometric cues, have received attention. Cohn et al. [48]

analyse the correlations between lip-corner displacements, head rotations and eye mo-

tion during spontaneous smiles. In another study, Cohn and Schmidt [49] report that

spontaneous smiles have a less onset amplitude of lip corner movement, but a more

stable relation between amplitude and duration. Furthermore, the maximum speed of

the smile onset is higher in the posed samples, and the posed eyebrow raises have

higher maximum speed and larger amplitude, but they end sooner than spontaneous

ones. The linear discriminant classifier were proposed to distinguish between spontan-

eous and deliberate enjoyment smiles using duration, amplitude and duration amplitude

measures of smile onsets. Cohn and Schmidt analyse the significance of the proposed

features and show that the amplitude of the lip corner movement is a strong linear

function of duration in spontaneous smiles, but not in deliberate ones. Krumhuber et
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al. [129, 130] study the effects of the dynamic attributes of smiles in human and syn-

thetic faces and ask whether facial dynamics tell us something about the genuineness

of an emotion. The findings demonstrate that an authentic smile was perceived as more

likeable, attractive and trustworthy than a fake smile or a neutral expression.

Recently, Dibeklioglu et al. [66] have proposed a method of using facial expression

dynamics to form a database for exploring the effect of dynamic features for age es-

timation. In another study the dynamic features of a person’s smile are used for age

estimation; using a person’s smile and it was shown that the facial expression dynam-

ics with appearance information are much more reliable for group classification tasks.

Furthermore, experiments were carried out on disgust expression to evaluate the effect-

iveness of the proposed method in this study on a different expression and the results

significantly improve the age estimation accuracy [65]. Also, Dibeklioglu et al. [67, 71]

proposed using the dynamics of eyelid, cheek, and lip corner movements to distinguish

between spontaneous and posed smiles, where distance-based and angular features are

defined in terms of changes in eye aperture. One main aim of this study is to explore

the effects of dynamic features in different age groups and gender differences. Despite

the fact that the age of a person plays an important role during interaction, so far no

researcher has been involved extracting dynamic features system based on 3D facial

dynamic from feature vectors in low dimensional. For these reasons we need to select

a feature extraction strategy that applies well to all these dynamics. ASM and AAM

appear a suitable choice.

2.5 Longitudinal Related Databases

A large number of face databases have been collected over the years for the purposes

related to face recognition [170]. However, it is difficult to compile large ageing data-

bases that involve series of age images of individual. Very few publicly available data-

sets specifically address facial ageing in comparison to the datasets that address other
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problems in face recognition. Here, we summarise well known public databases con-

cerning to facial ageing.

2.5.1 2D Static Databases

The publicly available MORPH face database was collected by the face ageing group

in the University of North Carolina at Wilmington, for the purpose of face biometrics

applications. This longitudinal database records individuals meta-data, such as age,

gender, ethnicity, height, weight, and ancestry, which is organised into two albums.

Album 1 contains 1,724 face images of 515 subjects taken between 1962 and 1998.

The ages range from the average of 27.3 to maximum 68 years. There are 294 images

of females and 1,430 images of males. The age span is from 46 days to 29 years. Fig-

ure 2.9 show image examples for MORPH album 1. Album 2 contains about 55,000

face images which about 77% images are Black faces, 19% are White, and the remain-

ing 4% includes Hispanic, Asian, Indian, and Other. Figure 2.10 show example images

for MORPH album 2.

The FG-NET (face and gesture recognition research network) ageing database [42]

comprises 1002 images of 82 subjects (6–18 images per subject) in the age range 0 –

69 years. The database also provides 68 landmark features that were identified manu-

ally, on all the face images. In addition, the following meta-information is available

for all the images in the dataset namely: image size, age, gender, spectacles, hat, mus-

tache, beard, horizontal pose and vertical pose. Since the images were retrieved from

real-life albums of different subjects, aspects such as illumination, head pose, facial

expressions, etc. are uncontrolled in this dataset. Nevertheless, this database is the

only publicly available resource that provides multiple age-separated face images of

individuals in the age range 0–18 years. YGA contains 8000 colour images of 1600

subjects, out of which 800 are females and 800 are males. Each subject is having on

an average 5 frontal face images. Age range of this database is 0 to 93 [87].
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Figure 2.9: Some sample images from MORPH album 1 [173]

The WIT-DB (Waseda human-computer Interaction Technology DataBase) comprises

of images collected from more than 5000 different subjects of Japanese origin. It

includes around 2500 females and 3000 male subjects. It has 1-14 images per subject.

Age range of subjects is from 3 to 85 years. All images are further divided according

to their actual age into 11 age groups. The faces in the database are frontal views and

are captured in wide variety of lighting conditions [198].

The VLF (Vietnamese Longitudinal Face) database has 227 Vietnamese colour im-
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Figure 2.10: Some sample images from MORPH album 2 [173]

Figure 2.11: Some sample images from FG-NET [174]

ages of 28 subjects, comprising of 12 males and 16 females. Age range of subjects is

between 1 to 80 years of age. Each subject has around 8 frontal pose images provided

along with ground truth age and annotated with 68 landmarks. This database was

collected for analysing growth and development stage and facial heredity of familial
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members [76].

The IFDB (Iranian Face Database) contains over 3600 colour images that were cap-

tured from 621 Caucasian faces. Subjects have age range from 1 to 85years. The data-

base includes 4 different poses, 2 different expressions and one image with spectacles

of every subject. Information regarding plastic surgeries, age, skin type, occupation,

fingerprints is also collected from subjects [62].

2.5.2 3D Static Databases

Many 3D face databases have been produced in order to be used for face modelling

and recognition in the past two decades. Chang et al. [38], presented the first 3D static

facial expression dataset involves the six basic facial expressions. Using off-the-shelf

NTSC video equipment and pair of cameras/projectors including in a custom-built sys-

tem, also an active stereo using structured light projections the database is not publicly

available and more details about 3D static databases have been discussed by Sandbach

et al. [176]. The BU-3DFE database is available to the research community (e.g., areas

of interest come from as diverse as affective computing, computer vision, human com-

puter interaction, security, biomedicine, law-enforcement, and psychology). presently

contains 100 subjects (56% female, 44% male), ranging from 18 to 70 years of age,

with a variety of ethnic/racial ancestries, including White, Black, East-Asian, Middle-

east Asian, Indian, and Hispanic Latino. Each subject performed seven expressions in

front of the 3D face scanner. Except for the neutral expression, each of the six proto-

typic expressions (happiness, disgust, fear, angry, surprise and sadness) includes four

levels of intensity [14, 210]. The 3D Morphable Database [87], this database contains

the 3D scans of 200 adult (half males and half females) faces and 238 teenage faces

(8-16 years), with 125 males and 113 females and a resolution of 76,800 vertices per

scan (320× 240).
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2.5.3 2D Dynamic Databases

UvA-NEMO Smile Database, this database has been gathered in the Science Centre

NEMO (Amsterdam). It was archived to analyse relationship between change in dy-

namics of smiles and progression of age. This database contains coloured videos which

were recorded under a resolution of 1920 × 1080 pixels. Videos were recorded under

controlled environment conditions. Around 400 subjects were recorded and from them

1240 smile videos were collected. Age (ranging from 8 to 76 years) and gender dis-

tribution is given for each individual. Both posed and spontaneous smile expression

is recorded in each video. Each video segment starts and ends with a neutral expres-

sion [66]

2.5.4 3D Dynamic Databases

The first database including of 4D faces is BU-4DFE in [210], which is presented by

the same continued effort of institution that produced the static database BU-3DFE

using the DI3D capturing system of dynamic face, and including 101 subjects and

temporal segments (onset, apex and offset) of sequences of the six prototypical facial

expressions. The resolution of temporal and spatial are 25 frames/s. In order to eval-

uate the individualism of facial motion for person verification a database was created

in [25]. Using the 3DMD Face Dynamic System, the dataset was collected, and also

involving of 94 participants uttering a word. Smiles were recorded from about 50 sub-

jects. Another database which is called the D3DFACS created in [57]. It involves 10

subjects, consisting 4 FACS experts. The 3dMD Face Dynamic System used to capture

the database. As well as, it is the first database to contain coded of dynamic 3D AUs

and will allow research into dynamic 3D AU recognition and analysis.
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2.5.5 Overview of Cardiff Longitudinal 3D Face Database

The longitudinal 3D dynamic face data is a novel longitudinal database that offers 3D

dynamic data of expression and spoken sentences of different individuals over a period

of nine years. Over the years, numerous face databases have been collected to help

study the different problems related to face recognition. Given the difficulty in compil-

ing face datasets that comprise of age-separated face images, there are very few pub-

licly available datasets that specifically address facial ageing in comparison to the data-

sets that address other problems in face recognition (discussed in details above). Three

publicly available databases comprise of age separated face image samples namely, the

MORPH Database, the FG-NET Ageing Database and the FERET Database [6]. Here,

we provide a list of existing databases in relevance to facial ageing as shown in Table

2.1. Table 2.1 shows in the last column on the right side of the table the longitudinal

3D data used in this study. However, there are three dynamic databases (UvA-NEMO,

BU-4DFE, D3DFACS) but, UvA-NEMO is a 2D video, and others a dynamic 3D fa-

cial expression data set based on the Facial Action Coding System. The rest group of

databases consist 2D static face images. Overall, none of these existing databases con-

tain face images in all possible 4D (3D plus time) of the human face; all face images

in front view, all individuals have static and dynamic of 3D face scans with video rate

60f/s and special conditions (dark room and no glasses). We used the Cardiff Longit-

udinal 3D Face database in this study which is discussed in further details in Chapter

3.
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2.6 Conclusion

Facial Ageing is a challenging area of research as different persons age in different

ways under the influence of many biological and environmental factors. Facial ageing

is a complex process that causes significant variation in both shape and appearance.

From previous research [1, 52, 55, 62, 82, 83, 87, 89, 90, 92, 93, 94, 101, 135, 136, 137,

138, 162, 167, 168, 169, 171, 174, 190, 209], it can be seen that a number of studies

have been conducted in the tasks of age estimation, simulation and face verification

across age progression. All of this research was carried out for different purposes using

various techniques and using different datasets. The common aim for these studies

can be described as an attempt to determine the role of natural factors such as ageing

effects in face recognition and to increase accuracy as the ageing process itself differs

from one person to another for a myriad of reasons, which makes the accuracy of

the estimation and prediction rather difficult. It can also be noted that these previous

studies have not concentrated on the modeling of the facial dynamics over time.Recent

studies [64, 65, 66, 67, 68, 69, 70, 71] have shown that the smile changes with age

and there is a difference between male and female smiles. These studies used facial

dynamics for more detailed analysis and for greater discrimination across large age

differences. The dynamic features of a smile, such as duration, speed, and amplitude,

have been compared to static features to determine the trends and patterns between

the different age groups and whether gender plays an important role. Some work in

studying facial expressions have extracted dynamic features in different face regions,

for example the work in [64, 65, 66, 67, 68, 69, 70, 71]. However, these approaches

are currently limited to 2D due to the unavailability of 3D dynamic face data. In this

thesis, for the first time, we use 3D video of faces and demonstrate how this can be

used for modelling facial ageing. This allows for greater realism when compared to

previous 2D video approaches.

For the facial ageing, the size and quality of an ageing database is a major challenge
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as mentioned in previous sections. Table 2.1 summarises the various facial ageing

databases that were used by researchers, including the details on each database. The

vast majority of the previous and current research, in both facial ageing estimation

and facial ageing simulation, adopts two-dimensional approaches, mainly owing to the

limitation of available 3D data resources. 3D facial ageing has the potential to achieve

better accuracy than its 2D equivalent by explicitly measuring the geometry of rigid

features on the face.Currently almost all research efforts in facial ageing aspects deal

with static images. However, temporal information that includes both face movements

and expressions can also provide important age-related clues. In order to support the

studies stated above, there is a clear need for the development of new ageing datasets

that contain 3D face images and video sequences. In summary, this chapter has re-

viewed previous work in the area of facial age estimation, ageing simulation and face

verification across age has been reviewed. The statistical models were briefly discussed

to prepare the reader for Chapter 4 in which statistical models were applied for mod-

elling facial dynamics as people age. In the last decade, the study of dynamic features

of smiles has received some attention to discriminate between individuals or smile

types. These features have been adopted in this study. Also, the most common of the

databases related to age have been reviewed. Note that the FG-NET Ageing database

and MORPH database are both publicly available. The other databases are potentially

available by contacting the owners. The MORPH collected databases (MORPH1 and

MORPH2) are large-size ageing face databases which are promising for data-driven

statistical algorithms of age estimation, such as AAM and age manifold with the regres-

sion model. The FG-NET is a baseline database for comparisons with many existing

age synthesis and estimation techniques, such as AGES, the 3D morphable database

specifically collected for 3D age synthesis. The other dynamic databases mentioned

here were widely used in facial analyses and recognition, but might be useful for some

specific applications. We will use the Cardiff Longitudinal 3D Face database in this

study which is discussed in further details in Chapter 3.
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Chapter 3

4D Longitudinal Data and

Pre-Processing

3.1 Introduction

As stated in the literature review (Chapter 2), a longitudinal database can be used in

a variety of applications, such as in biometrics, medicine and psychology. Such a

resource also provides the research community with natural data that could be used in

a variety of research areas. For example, in the field of analysing facial movement in

3D over time, there is a lack of available data. To date, there is no 3D facial dynamic

database available for facial ageing and if there is any plan to create a new database,

it will take decades to develop one. Thus, we provide the first database of its kind

in the world. This database was captured because existing longitudinal databases did

not meet our requirements for the 4D capture of the faces of individuals in terms of

ageing. In this chapter, the hardware and the software of the two generations of 4D

captured systems are described in Sections 3.2 and 3.3 respectively. Sections 3.4 and

3.5 produce the longitudinal database and the process of the 3D frame. This data

was validated and used to build statistical models for creating and analysing a general

model of the facial dynamics as people age. This model’s creation is described in

detail in Chapter 4. To remove unwanted mesh issues and create a single-view, that

is, a Unified Texture Map (UTM), this chapter describes the preprocessing pipeline in

the Section 3.6. This pipeline was developed by Vandeventer [201] in a previous PhD
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at Cardiff university and used in this study. This chapter also discusses the problems

that occurred during the capturing process. The modifications methods that are used to

tackle these problems, such as smoothing the meshes, colour matching, and filling the

gaps (interpolation), are discussed further in the following sections.

3.2 3dMD Dynamic Face Capture System

Two generations of a commercially available 3dMD 4D (3D temporal) system were

used for our data captures; both are different generations of the 3dMDface Dynamic

System (3dMD, Atlanta, GA). The first 3dMDface Dynamic System (old system) is

based on active stereophotogrammetry using a random infrared speckle projection.

This generation of system employs six camera, as shown in Figure 3.1, that is, a two

pods system comprising six 1.3 mega pixel cameras: two colour (Figure 3.2) and four

grey scale (Figure 3.3). It can capture static images as well as sequential imaging up to

60 fps. The output files (OBJ) are 3D geometry definition files that are generated as a

one point cloud produced from the two stereo camera viewpoints. The point cloud can

theoretically eliminate the data errors associated with merging/stitching the left and

right sides from separate cameras.

Distortion of the infrared speckle as it projects onto a subject’s face allows the gen-

eration of 3D coordinates of the face through complex algorithms; several thousand

points make up the vertices for a 3D image of the face. White light is used to capture

colour texture images of the face simultaneously with the infrared pattern produced

by the 3D data. However, small infrared components of the white light may have the

potential to drown some of the infrared speckle pattern and therefore compromise im-

age capture [57, 166]. We used the old generation system to capture 3D faces over the

first four years, and the last generation of the 3dMD face capture system (new system)

was used to capture the remaining data for our research. The system uses structured

light to capture a textured 3D mesh and capture the front and sides (beyond the ears) of
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Figure 3.1: Figure shows the old generation of 3dMD capture system used to

capture the 3D data for our research over the first four years employing two pods

system comprising of six cameras; two colour and four grey scale.

.

the subjects’ faces. The system consisted of seven cameras, three LED light panels,

two speckle projectors (Figure 3.4), and a PC with 3dMD capturing and processing

software. The PC was a 64-bit, Windows 7, 3.60Ghz, Intel Core i7-3820 with RAM

of 64 GB, with a GeForce 620 GPU, and seven 250GB Samsung EVO SSDs (one for

each camera). The system consisted of 7 Allied Vision Technologies Prosilica GT

cameras: 3 colour (Figure 3.5) and 4 monochrome (Figure 3.6). These cameras were 2

megapixel cameras with a gigabit Ethernet interface, Truesense KAI-02050, 2/3 CCD

Progressive sensors, and Auto Iris, having a resolution of 1600 × 1200, a bit depth of

14-bit (momo) and 12-bit (colour), and a maximum frame rate of 62fps [201]. The

layout of these cameras consisted of two pods containing two mono cameras on the
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Figure 3.2: The 2 colour images of a single frame using old generation 3dMD

capture system.

Figure 3.3: The 4 mono images of a single frame using old generation 3dMD

capture system.

top and bottom, with a colour camera in the middle. These pods were on the left

and right side of the subject, with the seventh camera, a single colour camera, in the

centre of the subject. This camera was placed in front and slightly above the subject.

The speckle projectors were modified Moritex Schott LLS 3 LED light sources, which

have an optical output of 550 lumens and fast triggered strobe capabilities.

The mono cameras and speckle projector were slightly offset with the colour cameras

and 3 LED light panels. The LED panels oscillate at 120 Hz. When the LED pan-

els are on, each colour camera captures a texture frame (Figure 3.5). When off, the
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Figure 3.4: Figure shows the last generation of 3dMD capture system used to

capture the remaining data for our research over the last five years, consisted

of two pods containing two mono cameras on the top and bottom, with a colour

camera in the middle.

projectors project a speckle pattern onto the subject and the mono cameras capture a

frame (Figure 3.6).This results in seven images per frame, which are used with the

camera calibration information to create a 3D frame using 3dMD’s proprietary MSte-

reo software program. The two file formats provided by MStereo are TSB (propriet-

ary) and OBJ (open-source format). A lapel microphone was used for audio capture

(44.1 KHZ). Both systems can be considered as true three-dimensional motion cap-

ture systems, as the output data obtained are three dimensional in nature, and therefore

changes in surface topology, shape, and volume can be analysed. Both systems output

geometry definition file formats (OBJ), which are simple data-formats that represents
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Figure 3.5: The 3 colour images of a single frame using new generation 3dMD

capture system.

Figure 3.6: The 4 mono images of a single frame using new generation 3dMD

capture system.

three-dimensional geometry alone, namely, the position of each vertex, the texture co-

ordinate associated with a vertex, the normal at each vertex, and the faces that make

each polygon. The new system captured facial scans at a higher mesh density com-

pared to those acquired with the old system. Both systems essentially provided the

same mesh data; the difference was in the accuracy of the mesh, and the last one im-

proved the texture resolution.



3.3 The Data Capture System Software 44

Figure 3.7: Figure shows the software provided by 3dMD capturing system

3.3 The Data Capture System Software

The 3dMD hardware consisted of 7 cameras and two projectors which were all used

simultaneously to capture 3D video of an individual’s face. There were three colour

cameras and four cameras that only recorded in black and white. The capture system

came with a third-party software tool, Norpix’s StreamPix [113] for the actual capture

process. This assists in viewing the scene and saving the captured data to disk. In order

to start utilising the system, the user first needs to open up the software Gen3dynamic

and Streampix5, which can be located on the desktop (Figure 3.7). Once they have

started up, the user needs to go on to Streampix5 and select the ‘tools’ tab and select the

‘load’ icon (Figure 3.8). Before the user can begin capturing video of the participant,

they need to ensure that these cameras are calibrated correctly. In order to calibrate the

cameras, the user will firstly need to get the calibration board into position in front of

the cameras (Figure 3.9). Once the file has been opened, the user then needs to make
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Figure 3.8: Figure shows the first window of Streampix5 that were started up:

Select the tools tab and select the load icon..

Figure 3.9: Figure shows the calibration board; calibrate before using the system

sure that the cameras and LED projector have been switched on. The user will then

need to click the trigger pulses on the button, which should activate the camera views

on the streampix5 software showing the user four views of the cameras (Figure 3.10).

Appendix C shows the guide to the main steps of the 3D imaging system. As we had to

collect data, we needed volunteers whom we could scan. Previous scans were recorded

in a spreadsheet. From this spreadsheet, contact was carried out previous volunteers

by email for a re-scan every year and, sometimes volunteers were booked in person.

Prior to recording participants, we gave them an information leaflet about the scan we
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Figure 3.10: The figure shows cameras views activate on the streampix 5 software

showing the user 4 views of cameras and Gen3 Dynamic software showing lighting

and trigger control.

were doing and a consent form asking for permissions for follow up scans, and asking

if their data could be used for research and online (see Appendix C). This software

system was originally capturing the data in a proprietary format, for each of the seven

cameras. One BMP for each frame was captured for each of the seven cameras. A

Python [114, 200] script was used for moving these BMPs to a destination folder and

renaming each file as appropriate to follow the 3dMD file format guidelines. Along

with these BMPs, system calibration information and other relevant files were copied

to the destination folder. From here, it was be possible to run 3dMD’s proprietary

MStereo program to produce the 3D frames. 3dMD’s MStereo program, which uses

the seven BMPs and calibration information to create the 3D frames, was used.

For each frame, the seven BMPs along with calibration information was fed into the

MStereo program, and as output, a TSB file was created. This process included a

simple multiple-processing approach and bypassing the on screen displaying feature,
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as shown in Figure 3.11.

The TSB file is a 3dMD proprietary format and is useful in a variety of 3dMD software.

However, because of its closed format, it would not be useful for reading in viewing

programs, such as Blender [115] or Meshlab [45], nor would it allow for editing of

information. Using a 3dMD program, the TSB files were converted to OBJs (with a

three-view texture map BMP file and MTL file) (Figure 3.13 (a) and 3.14 (a)).

(a) (b)

(c) (d)

(e)
(f)

Figure 3.11: Visualisation of MStereo 3D reconstruction process

3.4 Longitudinal Studies

A large amount of data from a relatively small number of subjects is provided by our

longitudinal study, which included taking repeated performances of the same individu-

als over time. The data aims to highlight individual changes, in particular those caused

by time such as the individual ageing, which may not be detected in a cross sectional
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Figure 3.12: The age and gender distribution of the subjects in the Cardiff longit-

udinal 3D face database.

study. Longitudinal analysis gives more consistent and meaningful results because

growth changes are often subtle and not always observed when data is evaluated cross

sectionally. However, longitudinal studies have many disadvantages. This type of

study is more expensive and takes longer to carry out than cross sectional studies.

Our study required the data to be collected over a long period of time. Often several

factors influence these studies; for example, the sample size of longitudinal studies is

often small because of the loss of subjects due to absence, migration, retirement, or

withdrawal from the study. Further details about this the data is given in Section 3.5.



3.5 Cardiff Longitudinal 3D Face Database 49

3.5 Cardiff Longitudinal 3D Face Database

Over the last nine years, the 3D longitudinal database of 3D videos was collected for

our research. Prof. David Marshall from the Cardiff School of Computer Science and

Informatics carried out the supervision of this project, and we were able to recruit 306

unpaid volunteers (209 male and 97 female) of different ethnicities, and ranging from

approximately 4 to 61 years of age which were distributed in different age groups as

shown in Figure 3.12. The participants were mainly staff and students of the Schools of

Computer Science and Informatics and Engineering, and also students of the summer

school at Cardiff University. Approximately 15 minutes were needed to capture every

session. Each session consisted of four sentences, a sequence of single words, and

two smile sequences (open and closed mouth). Participants were given approximately

a minute before each capture session to allow them to become comfortable with the

environment. They were given an indication of when recording began, and then eight

sequences captures were recorded. Many participants were asked to come back yearly

for a further scan to see the differences in ageing, and whether the facial dynamics had

changed over time. Thus, nine consecutive years of data has been gathered for some

participants, while some have gaps in the data because of the loss of subjects due to

absence at the specific time of data collection (see Table 3.1). Table 3.1 shows the

number of subjects over scan years -starting any year and allowing a one year gap.

The first column denotes the number of scan years, with data captured over nine years.

The table provides information on the number of subjects for both males and females.

We excluded 23 subjects from the total number of volunteers in the Table 3.1. This

information is also clearly labelled in the table and takes into account the gaps for

some participants. 3D video face scans of volunteers were acquired using the available

3dMD face dynamic system.
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3.5.1 3D Acquisition Protocol

Subjects were asked to perform two non-verbal facial expressions,that is, smile with

lips closed and smile with lips open and to say six verbal facial gestures:"puppy",

"rope", "baby", "bob", "password" and "bubble" in a normal relaxed manner. This was

carried out at every session and repeated yearly. The participants were also asked to

say four sentences, that is, two used by a Ormond Street Hospital, cleft lip study [181],

and the others from Messiah corpus [192, 193], which were phonetically rich. These

sentences were designed so that the facial muscles would be pulled to extremes and

to make the participant move their face in certain controlled directions. The sentences

were spoken in a neutral speaking style (no expression), and the lighting was adjusted

to ensure the visible articulators were clear in the video. The sentences were recor-

ded to add to a vast database containing useful speech for use in the future. They

were recorded to define normal values for lip movements based on consonant-vowel-

consonant (CVC) sequences and for tongue movements based on vowel-consonant-

vowel (VCV) sequences. The sentences taken from the Great Ormond Street Sen-

tences [181] were "The puppy was playing with the rope" and "Bob is a baby boy".

The Messiah sentences were "Look out of the window and see if it’s raining" and

"He scooped a large spoonful from the foaming vat". The sentences were designed to

capture all the consonants which extent pressure lip strong, lip lateral stretch, and lip

vertical aperture and lips touching.

3.5.2 3D Frame Processing

The database consists of data captures (eight sequences) at 60fps of every individual.

Therefore, each sequence consists of approximately 150-500 frames, with seven cam-

era images for each frame: three colour (Figure 3.5) and four mono (Figure 3.6). The

camera calibration information and seven images are used to create 3D frames. The

frames are 3D surface object OBJs (OBJ), with a three-view texture map (BMP) (Fig-
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ure 3.16). Each OBJ consists of approximately 40,000 vertices, 80,000 faces (poly-

gons), texture coordinates and normals. The total size per 3D frame (OBJ and BMP)

(a) Multi-View Texture Map (b) Single-View, Unified Texture Map (UTM)

Figure 3.13: The figure shows (a) multi-view texture map and (b) unified texture

map.

is typically around 20 MB. A cleaned OBJ is then produced using the tools that were

developed by Vandeventer [201]. The cleaning process removes non-manifold ver-

tices and edges, isolated vertices, and small components, and it then produces a unified

(single-view) texture map (PNG) (Figure 3.16(c)). Further details of this process can

be described in the Section 3.6.1. The total size of the new OBJ and PNG is typically

around 6 MB.

3.6 Pre-processing Stage

The sections below describe the cleaning process for removing unwanted mesh issues

(e.g., non-manifolds) and the process for creating a single-view, Unified Texture Map

(UTM). This new texture map allows us to modify a mesh (i.e., modified mesh ver-

tex locations) without creating mesh texture problems. However, the UTM cannot be
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created until the unwanted mesh issues are removed by the cleaning process. The fol-

lowing sections explain the issues that occur with the data and why, these issues occur,

and the methods that are implemented for fixing these issues.

3.6.1 Mesh Cleaning and Unified Texture Map (UTM) Creation

To use the meshes for modelling the facial dynamics in this research, we used a fully

automatic cleaning process developed by Vandeventer [201] for cleaning the meshes

and creating a single-view texture map (UTM) from the raw data provided by the

capture system, which produces multi-view texture maps and meshes with duplicate

vertices. The cleaning process involves removing unwanted mesh artefacts (e.g., non-

manifolds) and creating a single-view (Unified Texture Map (UTM)). One of the main

issues with the captured meshes is the existence of duplicate vertices. A duplicate ver-

tex arises when a single vertex location is a member of multiple faces and, thus, refers

to multiple texture coordinates. When the vertices of a mesh are modified, their corres-

ponding textures are modified, which may result in texture UV coordinates in separate

images of a multi-view texture map (Figure 3.16 (b)). Modifying the location of the

vertices is necessary for the registration approach, and these registered data is neces-

sary for building the statistical models we used in this research (Chapter 4). Therefore,

it was necessary that we perform the pre-processing step to use these data with cleaned

meshes and a new texture map (UTM).

The cleaning steps include removing non-manifold edges and vertices, along with

small components and isolated vertices, and the holes created from the removal of

these imperfections are identified and filled. Further details of cleaning process are

described in Vandeventer [201, 202]. The UTM is created by simply flattening the

surface mesh onto a plane (2D planar parameterisation), filling the mesh faces with

the appropriate texture values, and rendering the mesh as an image. This new image

becomes the texture map used by the cleaned 3D mesh. In order for this flattening

to occur, the mesh needs to be cleaned of problematic issues, such as non-manifold
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(a) Three Wide Texture Map (b) Stacked Image Texture Map

Figure 3.14: The figure shows 3dMD texture map layouts of the new generation

system.

vertices and edges, isolated (floating) vertices, and small components (separate mesh

areas disconnected from the main mesh).

The issue of small components occurs in messy areas of the mesh capture, such as

the neck and shoulders. These issues are often caused by clothing. Isolated vertices

are vertices which are not members of any mesh faces. Using the vertex structure and

faces structure, any vertex structure indices that do not exist in the faces structure are

identified as isolated vertices. These vertices are deleted and the update and shifting

process is performed.

The other issue that occurs is non-manifold edges which arise when a single edge

is occupied by more than two faces. A non-manifold edge therefore consists of two

vertices. To find non-manifold edges, a vertex face adjacency matrix is computed.

This provides information about which faces are connected to which vertices.

If any pair of vertices are connected to more than two faces, they contain non-manifold

edges. A non-manifold vertex can also be identified and removed by this process. A
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non-manifold vertex exists when a vertex connects two faces that do not share an edge.

The most important approach of the cleaning process is the filling of holes which are

created from the removal of these imperfections; these are identified and filled. This

approach, of deletion and hole filling was found to be the most generalised but success-

ful way of dealing with the variety of complex issues arising from non-manifolds in a

dense mesh. In many instances the holes created by removing non-manifolds consist of

(a) Example of holes to be filled (b) The figure shows the result of filling a holes

Figure 3.15: Example of holes resulting by removing Non-manifolds

new or not-yet-repaired non-manifold vertices or edges that are part of the hole in some

way. Figure 3.15 shows an example of two holes in a surface mesh. There are many

types and configurations of issues and resulting holes that occur when non-manifold

edges are removed. Further interesting information about the whole cleaning process

can be found in Vandeventer [201].
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(a) Original mesh (b) Multi-view texture map

(c) Unified Texture Map (UTM) (d) Cleaned mesh

Figure 3.16: The figure shows 3dMD dynamic scanner example
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3.6.2 Mesh Smoothing

The data from the scanner can also contain errors, e.g., noise and missing data, which

manifests itself as holes on the face. Noise can be dealt with using a smoothing oper-

ator, but holes are a more serious problem, requiring detection and interpolation. Even

when using high accuracy 3D scanners to create 3D face models, the acquired 3D mod-

els are occasionally noisy. Thus, the facial surfaces need to be smoothed to reduce the

noise using a suitable software technique. In order not to distort the source mesh, a

fast and robust mesh smoothing method is required to remove the undesirable noise

before further processing is carried out and to preserve the geometric details. There-

fore, the Laplacian smoothing method with shape and volume preservation is adopted

in this study [196]. A wide variety of mesh smoothing algorithms have been proposed

in recent years [121].

Laplacian smoothing is a method to smooth a polygonal mesh. For each vertex in a

mesh, a new position is chosen based on local information (such as the position of

neighbors), and the vertex is moved there. Where a mesh is topologically a rectangular

grid, each internal vertex is connected to four neighbors, and this operation produces

the Laplacian of the mesh [108, 188]. In our study, we used a simple method, inspired

by existing methods, which computes vertex positions as a Laplacian. This is a high

pass filter operator that computes second order derivatives. This method is supported

by [111]. The geometry captured during the scanning process consists of a 3D surface

with a very high resolution. To register the vertices, it is necessary to filter the geo-

metry. This pre-processing is achieved by reducing the noise and smoothing the data,

that is, removing the noise (the high frequencies) and keeping the overall shape (the

low frequencies). Compute mesh Laplacian method [111] is used, and the result is as

shown in Figure 3.17.
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(a) Original mesh (b) Smoothed mesh

Figure 3.17: Smoothing: original mesh (a), and the smoothed mesh (b)

3.6.3 Colour Equalisation

A standard problem in the field of image processing and computer vision is image con-

trast enhancement. It is widely used in many image processing applications, such as

object recognition and medical image processing, and as a pre-processing step in video

processing applications [153]. Image enhancement can be defined as the improvement

of the quality of an image using a variety of techniques. These include contrast en-

hancement, colour enhancement, and edge enhancement. In this study, due to using

two generations of 3dMD face systems and different light conditions, the resulting im-

age from these systems varied in the contrast of the texture image map. We used the

histogram equalisation function to adjust the contrast of the image. Histogram equal-

isation (HE) is a very popular method for image enhancement in the image processing

of contrast adjustment using the image’s histogram. It shows a good performance in

almost all types of images due to its simplicity. The histogram matching function [110]

was used to adjust an image to match its histogram to that of another image, B = IM-

HISTMATCH (A, REF). Thus, this function transforms the input grayscale or truecolor

image A, so that the histogram of the output image B approximately matches the his-
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togram of the reference image REF , when the same number of bins are used for both

histograms. For truecolor images, each colour channel of A is matched independently

to the corresponding colour channel of REF (see Figure 3.18).

(a) Input image (b) Reference image (c) Output image

Figure 3.18: The figure shows the results of colour equalisation function (a) the

input image (A), (b) the reference image (REF) and (c) the histogram matched

image (B) .

3.6.4 Tracking and Registration

To analyse the facial dynamics and to build statistical models for 4D facial ageing

data, facial feature points for each frame are required. This section describes the

tracking and registration approach used in this research. These feature points provide

a sparse correspondence between frames and facilitate dense registration. In recent

years, a semi-automatic 4D tracking and registration method has been developed by

Vandeventer [201, 202], and this approach was adopted in this study, as it keeps the

3D information for each frame and results in high-resolution, accurate, inter-subject

densely registered 3D frames. In this work, the tracked feature points were used for

our registration method. This registration method produces the output that was used

as an input to build the statistical models. In total, 41 manually placed landmarks

were used to analyse the face surface shape and appearance: 4 points to the corners

of each eye, the nose bridge, the nose tip; 7 points around the nose; 12 points at each
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lip corner; 1 point over the chin; 8 points for the contour of the face; and 2 points

on the left and the right cheek. The approach used in this study requires the user to

landmark a single mesh from the sequence, clicking on the ordered sequence of 41

facial feature points: eye corners, centre of upper eyelids, nose bridge and tip, nason

nose, lip corners, contour of face, and cheek centre. To produce realistic and accurately

tracked 4D sequences a tracking approach is required that uses actual 3D information

(3D texture and shape), where the 3D texture comes from the texture information from

the 3D mesh faces (not from the 2D texture map) and the 3D shape comes from the

mesh surface curvature information [201].

3.6.5 3D Landmarking Method

The approach used in this study requires the user to landmark a single mesh from the

sequence, clicking on the ordered sequence of the facial feature points: eye corners,

the centre of upper eyelids, nose bridge and tip, nason nose, lip corners, contour of

face, and cheek centre. The Matlab function interface with Blender software was used

to help annotate the first frame of each sequence; Blender is a 3D computer graph-

ics software program. The 3D annotation tool consists of a Matlab function to select

the files and launch a Blender program to load the mesh file to be annotated; it also

provided the view of two Python scripts as shown in the screen-shot of this tool in Fig-

ure 3.19. The landmark selected by the user writes out to file using the Python script.

This file has the same name as the mesh file, and it is used to create the file needed

for the automatic tracking process. This tool allowed us to manipulate the 3D mesh to

place the landmark quickly and accurately. The tool also helps as well to remove and

add the landmark points, and the speed of annotation is according to the annotator’s

ability. These points are then automatically tracked following the approach proposed

by Vandeventer [201, 202], and this enables us to analyse the facial dynamics sub-

sequently, as shown in Figure 3.20. A tracking method is required that uses the 3D

information to produce realistic and accurately tracked 4D sequences.
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Figure 3.19: The figure shows the window of the 3D Blender annotation tool
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Figure 3.20: The figure shows the tracked smile sequence of three frames

3.6.6 Inter-Subject Registration

After the feature points have been tracked automatically, then these feature points are

used as control points to create a dense correspondence between meshes. These control

points can be used to correspond any sequences in the same order, which makes it

possible to carry out both intra-subject and inter-subject registration. The facial area

of the individual is the region of interest for our research. Thus, the unwanted areas,

such as the chest, shoulder, neck, and hair, are removed from the selected frame of

the subject to be the reference mesh. This mesh is called the registration mask, and

all other frames are registered to that mask. Using Blender software, the vertices are

selected from the section of face that needs to be kept, and the other areas are deleted.

This process can be performed manually and is easily achieved with Blender. The same

landmarking technique was selected to annotate the registration mask, which was used

as a reference mesh for the registration process. We can summarise this process in

several steps [24, 201, 202]

• Select a mesh frame, Tref as a face template (registration mask or reference
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mesh) for registering any other mesh frame, Tk. This can be a noise free frame

selected from the training set. Every vertex in Tk must have a corresponding

vertex in Tref .

• Using Thin Plate Splines (TPS) [33, 202], Tref is warped to the other mesh Tk

and this creates the registered vertices for Tk which are called Tnew.

• The interpolated mesh resulting from step 2 produces new vertices and is ap-

proximately identical to the original shape of Tk. The remaining displacement is

between the surface of Tnew and Tk is removed by snapping each vertex of Tnew

onto the surface of Tk.

TPS is an effective tool for interpolation, as it has multidimensional data points and

involves minimising the bending energy function [33]. TPS has been widely used for

the non-rigid transformation of data for image alignment.
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Figure 3.21: Temporal variation of the ASM for full landmark of smile of the first

mode of variation from the same subject over nine years.

3.7 Performance of 3D Specific-Person ASM and AAM

One of our goals in this work is to analyse the 3D dynamic ageing data; as we men-

tioned previously, no such 3D dynamic data has been available to date. Therefore, we

built a specific AAM for each subject to analyse these dynamics to depict how facial

dynamics change over time. Figure 3.23 shows the variation of AAM for one subject

over nine years; the issue with texture is because the scanner is not accurate with tex-

ture, and there is a large variation in colour in the first mode. However, we are looking

how the dynamic changes, and so the texture is not in the scope of our research. We
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validate this issue by building the ASM using the full landmark and mouth landmark

of a smile, and the results were improved, as shown in Figure 3.21 and Figure 3.22.

Figure 3.22: Temporal variation of ASM for mouth landmark of smile of the first

mode of variation from the same subject over nine years.

3.8 Ageing Pattern

The interesting problem is that people age differently, so the concept of the ‘age’ is

specific to each person. An ageing pattern can be defined as a sequence of personal
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Figure 3.23: Temporal variation of AAM of smile of the first mode of variation

from the same subject over nine years.

face images sorted in time order. In an ageing pattern, all face images must come from

the same person and be ordered by time [87, 93]. The 2D matrix I represents the face

image, where I(x, y) is the intensity of the image pixel (x, y). Thus, the 3D matrix

P represents the ageing pattern of the face image at time t, where the P (x, y) is the

intensity of the image pixel (x, y). Figure 3.24 is an example of the ageing pattern,

where each image represents the scan year of the subjects. Over nine years (2009 to

2017), each age is allocated one position. If the scan year is available for certain ages,

they are filled with the corresponding positions. If not, the positions are left blank

(squares). If positions are filled over nine years, the ageing pattern is called a complete

ageing pattern. Otherwise, it is called an incomplete ageing pattern. The missing scans
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for people are a problem for our research.

Figure 3.24: Sample 3D scans of the same subject from the longitudinal database

over 9 years, blank square means the missing year.

Incomplete datasets may lead to results that are different from those that would have

been obtained from a complete dataset. One approach to solving incomplete data prob-

lems is the adoption of interpolation techniques [122]. To prepare enough data for our

project, nine consecutive years of data were gathered for some people, while some had

gaps due to the loss of subjects because of absence, illness, migration, retirement, and

graduation or withdrawal from the study. In addition, the data was collected at a spe-

cific time, and some of these people were not available at that time. However, we can

fill the gaps in the database using the interpolation techniques. To evaluate the miss-

ing years, which can be estimated from the existing years, we used the performance

indicators to measure the difference between the prediction and the actual value.
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3.8.1 The Interpolation Techniques

Different interpolation techniques were used to estimate the missing values. We used

the linear interpolation function, as supported by [109], and specified an alternative

interpolation method: ‘linear’, ‘nearest’, ‘cubic’, and ‘spline’. The linear interpolation

function returns interpolated values of a function of n variables at specific query points

using linear interpolation. We used the interpolation specified by the method to gener-

ate the missing data. We tested our data with two methods (linear and cubic), which

are described in the following sections.

3.8.2 Linear Interpolation

The simplest form of interpolation is to connect two data points with a straight line.

This technique is called linear interpolation. If the two known points are given by the

coordinates (x0, y0) and (x1, y1), the linear interpolant is the straight line between these

points. For a value x in the interval (x0, x1), the value y along the straight line is given

from the equation of slopes [91].

y − y0
x− x0

=
y1 − y0
x1 − x0

, (3.1)

Solving this equation for y, which is the unknown value at x, gives

y = y0 + (x− x0)
y1 − y0
x1 − x0

=
y0(x1 − x) + y1(x− x0)

x1 − x0
, (3.2)

3.8.3 Cubic Interpolation

When four data points are available, a third-order polynomial (also called a cubic poly-

nomial) can be applied. The cubic interpolation formula has the form:[18]

f3(x) = b0 + b1(x− x0) + b2(x− x0)(x− x1) + b3(x− x0)(x− x1)(x− x2) (3.3)
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(a) Target Mesh (b) Interpolated Mesh

(c) Target Mesh (d) Interpolated Mesh

(e) Target Mesh (f) Interpolated Mesh

Figure 3.25: The figure shows the examples of interpolated mesh from different

individuals.
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The equation of the linear interpolation function is: [39]

f1(x) = b0 + b1(x− x0) (3.4)

where x is the independent variable, x is a known value of the independent variable

and y is the value of the dependent variable for a value x of the independent variable.

b0 = f(x0) (3.5)

b1 =
(f(x1)− f(x0)

x1 − x0
(3.6)

b2 =
(f(x2)− f(x1)

x2 − x1
(3.7)

The procedure to determine the coefficients of b0, b1 and b2 are the same as in Equa-

tions (3.5) to (3.7). b3 is given by

b3 =

f(x3)−f(x2)
x3−x2 − (f(x2)−f(x1)

x2−x1 − f(x1)−f(x0)
x1−x0

x3 − x0
(3.8)

From the equations above, x is the vector representing vertex position of known values

and the f(x) represents the interpolated vector of missing year.

3.8.4 Performance Indicator

The performance indicator was used to describe the goodness-of-fit or the distribution

when missing values are estimated using interpolation techniques. Both the root mean

square error (RMSE) and the mean absolute error (MAE) are regularly employed in

model evaluation studies. We used MAE, the most commonly used measurement, to

compute the error between the interpolated and the actual values of the data.

3.8.5 Mean Absolute Error (MAE)

MAE is a measure of difference between two continuous variables. Assume X and

Y are variables of paired observations that express the same phenomenon; examples
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of Y versus X include comparisons of predicted versus observed, subsequent time

versus initial time, and one technique of measurement versus an alternative technique

of measurement. Consider a scatter plot of n points, where point i has coordinates (xi,

yi). MAE is the average vertical distance between each point and the Y =X line, which

is also known as the one-to-one line. MAE is also the average horizontal distance

between each point and the Y =X line.

The Mean Absolute Error is given by:

MAE =

∑n
i=1|yi − xi|

n
(3.9)

In our experiment, we considered the MAE to be the average of the difference between

the predicted and the actual values of the data. MAE is conceptually simpler, more in-

terpretable, and fundamentally easier to understand than the square root of the average

of the sum of squared deviations. MAE does not require the use of squares or square

roots.

The mean absolute error (MAE) is evaluated by the equation:

MAE =

∑n
i=1|yi − y

′
i|

n
(3.10)

Where y′
i is the prediction and yi the true value. Mean absolute error (MAE) ranges

from 0 to infinity and a perfect fit is obtained when MAE equals to 0.

3.8.6 Experiment 1: Performance of Interpolation Technique Us-

ing MAE

Before we worked on real data, we wanted to generate some interpolation sequences

and test our method on them. In this section, we used 10 complete ageing patterns

(10 subjects), removed one year scan from the existing data, and then interpolated the

missing year. The test data was the data after registration, where the frames in the

sequence have the same topology (i.e., the same vertices). For example, the data for
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Table 3.2: The table shows the performance of interpolation technique using

MAE.

MAE

Subjects Linear Method Cubic method

Subject 1 0.0131 0.0135

Subject 2 0.0159 0.0176

Subject 3 0.0091 0.0195

Subject 4 0.0204 0.0222

Subject 5 0.3006 0.3137

Subject 6 0.0113 0.0155

Subject 7 0.0244 0.0265

Subject 8 0.0149 0.0172

Subject 9 0.0128 0.0137

Subject 10 0.0152 0.0195

each subject was represented by matrix (v× 3×m), where v is the number of vertices,

and m is the number of frames in each sequence. Using existing years as a test data

and taking out one year, we then applied the interpolation function on this year to

interpolate the year that was taken out. We used the MAE to evaluate the results (see

Table 3.2) and obtained good results when computing the error between the target year

in the real data and the interpolated year. All landmark measurements were expressed

in pixels.

Table 3.2 shows the MAE between the actual values and the interpolated values using

different methods. Clearly, the performance of linear interpolation was better com-

pared with the cubic method. Figure 3.25 shows the frames from different subjects in

the missing year interpolated from the existing years.
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3.8.7 Experiment 2: Dynamic Time Warping Interpolation (DTWI)

In Chapter 2, we presented DTW, a technique introduced in 1978 by H. Sakoe and

S.Chiba in a study about spoken word recognition [175]. DTW is a well-known tech-

nique to find an optimal alignment between two given (time-dependent) sequences

under certain restrictions (Figure 3.26). Intuitively, the sequences are warped in a non-

linear fashion to match each other. Originally, DTW was used to compare different

speech patterns in automatic speech recognition [150].

In fields such as data mining and information retrieval, DTW has been successfully

applied to cope automatically with the time deformations and different speeds associ-

ated with time-dependent data. In order to find the similarity between such sequences,

or as a preprocessing step before averaging them, we must “warp” the time axis of

one (or both) sequences to achieve a better alignment. DTW technique achieves this

warping efficiently [124]. The following search for an optimal warping path between

the elements in position (1, 1) and (n,m) of that matrix led us to find the similarities

between the two sequences. We introduced the interpolation strategy based on DTW to

solve the problem of incomplete data. Specifically, we applied the DTWI to interpolate

the unknown sequences that existed between two known sequences. Considering two

time-dependent sequences:-

X = x1, x2, ...xN ,

Y = y1, y2, ...yM

where N and M are the dimensions of each sequence. The new sequence represents

the DTWI result where the interpolated sequence is the middle of X and Y . Let us

suppose there are two feature vectors, which are, respectively, depicted by two se-

quences of discrete data points of a smile (Figure 3.27 and Figure 3.28); we compute

the average of the warping sequence (Figure 3.29) and the second sequence to obtain

the interpolated sequence (Figure 3.30). The number of frames of the interpolated

sequence was determined by averaging the warping and the second sequence. The

proposed method for interpolating the missing year includes building a PCA model
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Figure 3.26: The figure shows an alignment of two time-dependent sequences. The

grey lines represent the correlations between the series, originally shown in [157].

of two sequences (smile videos) and projecting the data (sequences) into the model

to obtain the feature vectors of the two sequences, which are used to interpolate the

new sequence (missing year). The DTW technique, described in Chapter 2, is used to

warp the first sequence (t− 1), and the second sequence (t+ 1) is used to generate the

missing sequence (t). The average between these sequences presents a new sequence

(interpolated sequence). This sequence is projected into the PCA model to construct

the missing sequence. In this experiment, the temporal variation of the ASM/AAM

component(s) have been interpolated. This data was validated and used to build the

models in the next chapters.
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Figure 3.27: The figure shows example of the first sequence (smile: Year

2009).The unit of time is the number of frames, and the amplitude is the measured

eigenvalue of PC.

3.9 Summary

In this chapter, the 3dMD 4D capture system to collect data for a 3D video scan data-

base. The number of participants that have taken part in this study to date is 306

subjects. This database is the first in the world and will assist researchers in many

applications in the fields of medicine, psychology, and computer vision research for

analysing facial movement in 3D over time. A robust pre-processing technique was

described for cleaning 3D meshes and creating a single-view texture map (UTM) from

systems which provide multi-view texture maps and meshes with duplicate vertices. To
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Figure 3.28: The figure shows example of the second sequence (smile: Year 2011).

The unit of time is the number of frames, and the amplitude is the measured

eigenvalue of PC.

build 3D AAMs models of smile expressions as people age, the 4D tracking and inter-

subject registration techniques are performed on the database. These registered meshes

are used for building statistical models and are described in the following chapter.

Smoothing and equalisation steps were used to filter noise from the meshes. Two

experiments were used to interpolate missing data. In the first experiment, the linear

interpolation technique was used to fill the missing years in our data; we used the MAE

as the criteria to compute the error between the interpolated and the actual year. The

second experiment was the interpolation strategy based on DTW was used for missing

data interpolation.
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Figure 3.29: The figure shows warping sequences (smile: Year 2009 and Year

2011). The unit of time is the number of frames, and the amplitude is the meas-

ured eigenvalue of PC.
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Figure 3.30: The figure shows interpolation smile of missing year (smile 2010).

The unit of time is the number of frames, and the amplitude is the measured

eigenvalue of PC.
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Chapter 4

3D/4D Statistical Modelling of Age

Data

4.1 Modelling Facial Appearance

In this chapter, we introduce the principal methodology of this thesis which is covered

in Sections 4.1.1, 4.2 and 4.5. The method discusses the approach for building both a

general and a specific model of 4D (3D dynamic) sequences and for synthesising new

frames by modifying the model parameters. This method is used for creating a 4D,

highly realistic model of facial ageing using a training set of 3D dynamic face scans of

a smile expression to train a statistical ageing model. The contribution of this chapter

is to build a general and a person-specific AAM model and to extract the dynamic

features from the first Principal Component (PC1) of a smile sequence to analyse the

facial dynamics over years. This chapter presents a method to determine how the

facial appearance models can be generated. Following the approach of Edwards et

al. [78], our statistical appearance models were generated by combining a model of

face shape variation with appearance variations. Active Appearance Models (AAMs)

are a well-known method that have been successfully used for face modelling in a

variety of applications such as face alignment, face tracking, face recognition, and

real time modification of facial expressions and for conversation expressions, analysis,

synthesis appearance models, and the synthesis of highly realistic facial expression

sequences [20, 184, 201].
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In order to build 3D/4D statistical models of facial dynamics over age, a database of

facial dynamics over age is required. Such a database was compiled over nine years for

this research. Full details can be found in Chapter 3. To build an Active Appearance

Model (AAM) of facial dynamics over age (e.g.,smile sequences) for all subjects, the

data must be inter-subject registered. We adopted the 4D tracking approach that was

developed by Vandeventer [201]. For this approach, it is necessary to landmark a single

mesh from the each sequence, and the feature points must be tracked automatically,so

they can be used them to create a dense correspondence between meshes. Meshes

are aligned using Procrustes Analysis, then warped into close proximity using thin-

plate splines. The Thin Plate Spline (TPS) based algorithm is used to achieve a dense

correspondence (see Chapter 2). The registered data is used as input to an AAM. The

Principal Component Analysis (PCA) and 3D Procrustes Analysis were performed on

shape, texture, and combined weighted shape and texture by building an AAM model.

The core technique of the AAM to analyse the statistical properties of the shape and

texture is the PCA.

PCA is performed, and the end result is a shape and texture model that reduces the

dimensionality of the mesh data down to comparatively few modes of variation. An

AAM model with five modes of variation was created, which described 95% of the

variance. The section below explain this technique and describes the steps for calcu-

lating the PCA.

4.1.1 Principle Component Analysis for Feature Extraction

PCA is a statistical analysis technique used by the majority of scientific specialities

to reduce the dimensionality of a data while preserving as much as possible of the

variation existing in the data set [77, 186, 206]. The main goal of PCA is to identify

patterns in data or to detect the correlation between variables. PCA is used for finding

the directions of maximum variance in high-dimensional data and projecting this data

onto a smaller dimensional subspace while retaining the most salient information. PCA
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is a linear transformation method which yields the directions (principle components)

that maximize the variance of the data.

In our work, we used PCA to extract the important information from the data and to

regard this information as a set of new variables called principal components. PCA is

performed using the following process as described by Cootes et al. [55, 186].

In the first step, the data is arranged in a matrix X of vectors xi, where each element of

that vector is a variable of the x, y, and z values. Each vector is placed into the m× n

matrixX , wherem is the number of variables in each observation, and n is the number

of frame in the matrix.

The next step required is to calculate the mean of the data. The mean is calculated for

every variable as follows. To create a vector of the mean values:

X =
1

N

n∑
i=1

xi (4.1)

Calculate the covariance matrix C of the data as follows:

C =
1

N − 1

n∑
i=1

(xi − x)(xi − x)T (4.2)

Where xi is a data point in x and N is the number of elements in x.

The eigenvectors Φ and λi eigenvalues of covariance matrix C are calculated. An

eigenvector of C is a non-zero vector Φ such that C multiplied by Φ yield λi. λ is

the eigenvalue corresponding to the eigenvector Φ. The eigenvalues λi are sorted in

descending order (highest to lowest) variation, so that the first Principal Component

(PC1) depicts the highest variation by performing the AAM. To reduce the number

of principle components k, a percentage p% of the total variations are kept, which is

equivalent to retaining the k first mode of variations. The higher order of eigenvectors

are considered as noise. k can be calculated as follows:

k∑
i=1

λi ≥
p

100

3M∑
i=1

λi (4.3)
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By applying the square root of the eigenvalues, their standard deviations can be ob-

tained. We can approximate new shape x by varying b in

x ≈ x+ Φsbs (4.4)

where x is the mean shape and Φ is the matrix of the k largest eigenvectors depicting

p% of the shape variation, and bs is the k−dimensional vector of Eigencoefficients

corresponding to the shape x. whereas b is constrained by bi = ±3
√

(λi). By solving

Equation 4.4 with respect to b, it is possible to calculate the set of model parameters

corresponding to a given example.

bs ≈ ΦT (x− x) (4.5)

In our research, these steps are required to describe a new 3D frame in relation to the

model. By projecting the unseen data into the AAM model, we can obtain the vector b

of parameters corresponding to the model (Equation 4.5), which shows the trajectory

of the facial dynamics depicted in the PCA space spanned by the first three modes of

variation.

Using the b vector and the AAM, we can project out the data to reconstruct the 3D

frame (Equation 4.6).

S ≈ x+ Φsbs (4.6)

4.1.2 Combining Shape and Appearance Models

Following the original AAM approach described by Cootes et al. [55], we built sep-

arate PCA models of the shape variation and then built combined weighted shape and

appearance models into a single PCA by merging the input vectors. The texture map

computed by systems captured comes from multi-viewpoint images. These images

need to be merged into a continuous texture map in order to build the AAM.
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Suppose a set of image texture vectors:

gk = (rk1 , g
k
1 , b

k
1, ..., r

k
i , g

k
i , b

k
i , ..., r

k
M , g

k
M , b

k
M)T

Where (ri, gi, bi) are the RGB component values of ith pixel in the kth image. A texture

model can be built:

g ≈ g + Φgbg (4.7)

Where g is the mean texture map, Φg = (Φ1,Φ2, ...,Φt) is the matrix of the k largest

eigenvectors depicting p% of the shape variation, and bg is the matrix of the eigenvalues

of the texture variation.

In order to build a combined AAM model, we can concatenate the shape and shape

normalised texture into a single model. Ws is a matrix that needs to be introduced to

be appropriate to expand the difference in units between the shape and texture models

so that they can be represented in the same coordinate space (for further details, see

Cootes et al. [55]).

b =

(
Wsbs
bs

)
=

(
WsΦ

T
s (x− x)

ΦT
g (g − g)

)
(4.8)

PCA is applied to b, then we can obtain b = Qc. Where c is the vector of appearance

parameters that describe both the shape and texture variations of the combined model.

Q contains the first t eigenvectors that describe both shape and texture variations, and

may be separated into two matrices Qs and Qg:

Q =

(
Qs

Qg

)
(4.9)

Thus, s and g can be written as a function of c using equation

x = x+ ΦsW
−1Qsc (4.10)

g = g + ΦgQgc (4.11)
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For example, we carried out the first experiment on a 1, 908 frames video sequence of

a subject performing a smile over 4 years. An AAM was built from these data, which

allows a decomposition of the complex facial action sequence into several modes of

variation. Figure 4.3 shows some faces synthesised by varying the first four modes of

variation of 3D ASM built from a training set of N = 1, 908 face images, depicting

a subject smile over 4 years. Inverting Equation 4.9 and equation 4.10 and applying

them (respectively) to shapes and texture maps, the appearance parameters c can be

computed corresponding to each frame.

4.1.3 Implementation of an ASM

In 3D, the first step in building an ASM is to register the shapes to eliminate the vari-

ations due to rigid movements of the head, such as translation rotation, and scaling.

This can be performed by applying the procrustes analysis as follows [24]:

1. Translate each face so that its centre of gravity is at the origin.

2. Choose one face as an initial estimate of the mean shape and the scale where

s = 1.

3. Record the first estimate as s0 to define the default reference frame.

4. Align all the shapes with the current estimate of the mean shape.

5. Re-estimate the mean from the aligned shapes.

6. Apply constraints on the current estimate of the mean by aligning it with s0 and

scaling where s = 1.

7. If not converged, return to 4. (Convergence is achieved if the estimate of the

mean does not change significantly after an iteration).
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Figure 4.1 and Figure 4.2 show examples of the shapes taken from the original training

set, which are not aligned, and the corresponding shapes after alignment using the

Procrustes Analysis. Figure 4.3 shows some face smiles synthesised by varying the

(a) Faces with different poses (b) After Alignment

Figure 4.1: The figure shows the position of the landmark (x,y) and the shapes

with different poses (a), and after alignment with Procrustes (b).

first four modes of variation of a 3D ASM built from a training set of face shapes,

depicting a subject smiling.

As an example, let us consider a 1,882 frames video sequences Sk, k = 1, ....1, 882

(corresponding texture maps gk, k = 1, ..., 1, 882) of a subject smiling. An AAM is

built from this data, which allows a decomposition of the complex facial poses corres-

ponding to the variations of the first four modes of variation. Frames from a neutral-

peak-neutral smile expression were used to build an AAM model. Figure 4.4 shows

the AAM of intra-subject variations of texture of the first four modes. The individual

images in Figure 4.5 show the deviations from the mean of the AAM model. The intra-

subject variations can be observed in Figure 4.5 where smiles of the same subject have

been recorded over nine years. Standard deviations of the range -3 to +3 are applied as

this is a commonly used range for observing realistic deviations from the mean. Fig-

ures 4.6, 4.7 and 4.8 show the dynamics of the first three modes of variation of a smile

expression. Tests conducted on 1, 882 frames show that 98% of the shape variations
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Figure 4.2: 3D Procrustes, reference (red), original (green), registered (blue).

are contained in the first five modes of variation. The dynamics exhibit familiar pat-

terns, e.g., the same trends of the onsets and offsets with similar duration and signal

magnitudes.
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Figure 4.3: ASM model: -3 to +3 standard deviation for first four modes.

Figure 4.4: AAM model: Variation of texture, 3 to +3 standard deviation for first

four modes..
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Figure 4.5: AAM model: Variation shape with texture, -3 to +3 standard deviation

for mode 1..

Figure 4.6: Temporal variations of the first mode for a subject smiling
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Figure 4.7: Temporal variations of the second mode for a subject smiling

4.2 Modelling Age

Recognising that age is a confounding influence in modelling human faces, ageing ef-

fects need to be examined in greater depth to gain an understanding of how age might

be more effectively modelled. Hutton [116], reported that the effects of age are import-

ant to various specific applications in many domains, such as medicine, where many

genetic conditions exhibit symptoms that alter with age, or as facial characteristics

develop over time. During mid-life, bone structure varies little, but cartilage growth

continues, particularly in men, most significantly altering the shape of the nose. In ad-

dition, in later life, reductions in muscle tone and skin elasticity dramatically alter the

outer shape of the face. Modelling these intricate variations necessitates a significant
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Figure 4.8: Temporal variations of the third mode for a subject smiling

quantity of raw input data and more advanced models.Using longitudinal data would

be ideal by conducting 3D scans of the same subjects at various ages throughout their

lives. Their ageing path could then be plotted for each subject through the shape-space

correlated with the ageing process their ageing trajectory. However, 3D scanning tech-

nology has only become widely available in recent years, and therefore, such longitud-

inal data is only now becoming readily available. In addition, even while such data is

available, many subjects are still required so that a robust estimate of general growth

patterns could be obtained, taking individual differences into consideration. Longitud-

inal studies of facial ageing employing retrospective photographs have been conducted

previously in [138] with ten time samples for each individual; their trajectory through

the parameter space of an appearance model was modelled as a linear, quadratic, or

cubic curve. They suggested that ageing could be simulated for a new example by
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Figure 4.9: Dynamics of the smile sequence of subject over 2009; the first mode of

variation (PC1).

using a weighted combination of the ageing trajectories for the subjects in the dataset,

based on appearance or lifestyle similarities. It was shown that a subject’s age could

be used to improve the performance of face recognition systems. In addition, several

longitudinal studies on landmark positioning have utilised morphometric techniques,

including work on faces from laser scans by [59, 149, 155, 203]. A dense correspond-

ence to examine the growth of the human mandible has also been reported by Andresen

et al. [13]. This investigation demonstrated that growth of all subjects followed a linear

relationship. However, a major problem affecting nearly all previous studies has been
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Figure 4.10: Dynamics of the smile sequence of subject over 2010; the first mode

of variation (PC1).

the paucity of available longitudinal information. Growth analysis would then become

a technique of identifying models for ageing that conformed well with the data, despite

the incorporation of confounding factors, such as gender, lifestyle, ethnic background,

diet, and genotype. Statistical analytical methodologies for inferring underlying trends

from within datasets are generally referred to as “regression” techniques. A variety

of polynomial regression techniques have been reported by Lanitis et al. [138], from

linear to cubic. However, modelling more complex curves in this way requires high

numbers of data points in order to obtain robust estimates.
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Figure 4.11: Dynamics of the smile sequence of subject over 2011; the first mode

of variation (PC1).

4.2.1 Expression Sequence Modelling

Ageing data included dynamic facial expressions. These expressions can differ greatly

in intensity and length, and their variations may be encoded different. Since our interest

is to build statistical models of facial dynamics expression as people age, the sequences

will need to be comparable while maintaining their expression characteristics. As first

described in Section 4.1, by projecting a 3D frame into the AAM, we obtained para-

meters that described the 3D frame in relation to the AAM. These values are known as

b vectors and are the Principal Component (PC) weights for the projected frame. Fig-
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Figure 4.12: Dynamics of the smile sequence of subject over 2015; the first mode

of variation (PC1).

ure 4.6 shows the b vector values for the first three PCs for each frame in a sequence.

In this example, the sequence is a controlled smile expression (neutral-peak-neutral).

4.2.2 Similarity measuring for dynamic signals

Faces are represented as discrete points in a low-dimensional subspace in a static face

recognition. The distance between the points is measured to determine whether two

faces belong to the same individual, using Euclidean distance or the cosine of the

projection angles[197]. Facial performance in dynamic expressions is represented by

trajectories in a low-dimensional subspace. Measuring the similarity between two mul-
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Figure 4.13: The two smiles before and after alignment using DTW; x axis rep-

resents the number of frames and y represents the amplitude of smile.

tidimensional time series of different lengths is challenging and presents several prob-

lems. For example, Figure 4.6 shows the temporal variations of the first mode of vari-

ation depicting repetitions of a subject’s smile over a nine year period, and shows these

nine trajectories in the space distribution by the first mode of variation. Modelling

temporal facial information requires a model that can handle temporal information. In

this study, we considered a Dynamic Time Warping (DTW), because temporal facial

information can be represented as a sequence of symbols. DTW has the advantage

that it accepts sequences with variable lengths, which is useful because the videos are

of varying lengths, as shown in Figures 4.9, 4.10, 4.11, and 4.12. DTW is a robust

method for measuring the similarity between sequences that vary in time or speed.

To accommodate such variations, DTW computes the optimal alignment between two

time series by nonlinearly warping one signal to the other, stretching or shrinking the
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Figure 4.14: The Weighted Derivative Dynamic Time Warping of two smiles

Figure 4.15: The distance matrix showing the optimal path along diagonal
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signal along its time axis. Figures 4.13, 4.14, and 4.15 show the alignment between

sequences that vary in time using DTW method and the distance matrix showing the

optimal path respectively.

4.3 Experiments

In order to evaluate the tracking, inter-subject registration, and modelling used in this

study, two experiments were devised. These experiments were conducted using data

from the Cardiff longitudinal 3D face database, which is the main data used in this work

and which is described in detail in Chapter 3. The first involved is generic and person-

specific ASMs as described in the next subsection. In the second experiment, a linear

regression model was used to find the best fit for the ageing model based on dynamic

features. The details for each experiment will be described in the next subsections.

4.3.1 Generic and Person-Specific ASMs

We performed this experiment to validate the Cardiff longitudinal 3D face database

for creating a 4D, highly realistic model of facial ageing using a training set of 3D

dynamic face scans of smile expressions to train a statistical ageing model. An AAM

was built from these data, which allows a decomposition of the smile sequence into

several modes of variations. Figure 4.16 shows the facial poses corresponding to the

variations of the first five modes of variations. For example, the first mode of vari-

ations that depicts the dynamics of a smile (neutral-smile-neutral). AAMs can be built

by a variety of methods; for example, an AAM might be required to model the vari-

ation in the appearance of a single person over pose, illumination, and expression.

Person-specific AAMs may find an application in interactive user interfaces requiring

an estimation of head pose, gaze, or expression. On the other hand, an AAM might

be constructed in an attempt to depict any face, including unseen subjects not in the
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Table 4.1: Number of eigenvectors required to retain a given percentage of the

variations of smile dynamics.

Number of Eigenvectors Eigen-energy Cumulative Energy Variation Cumulative Variation

PC1 1420.209 1420.209 88.005 88.005

PC2 107.009 2840.418 6.631 94.6367

PC3 35.589 2947.428 2.205 96.842

PC4 15.728 2983.018 0.974 97.816

PC5 13.134 2998.746 0.813 98.630

PC6 11.647 3011.880 0.721 99.352

PC7 10.450 3023.528 0.647 100

training set. The most obvious use of such a generic AAM is face recognition. As pre-

viously mentioned, evidence indicates that person-specific AAMs have been shown to

be significantly more effective than generic AAMs. This effectiveness of an AAM de-

pends on the ability of the AAM to generate 3D faces in the class under consideration

of modelling and the success of the AAM in fitting a new input face. AAMs comprise

a shape element and an appearance element.

This study so far has given consideration only to the configuration where a single AAM

is constructed for the entire dataset in terms of ageing. However, we construct person-

specific AAMs to investigate how facial dynamics change over years. We empirically

compared generic and person-specific AAMs. The results showed that building a gen-

eric shape model, as shown in Figure 4.16, is comparatively easy, whereas building

a generic appearance model requires far more training data, as shown in Figure 4.17.

The merging of different faces into a single model for building an ageing model enables

the traditional AAM to capture and encode not just the behavioural data, but also the

physiological anomalies between different individuals. For example, if one person has
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a long nose whilst another possesses a large forehead, this increased amount of data

requires encoding via a larger number of modes of variation. Alternatively, a person-

specific AAM will only encode the behavioural data. For example, a common AAM

for 40 sequences from different subjects performing a smile expression over time typ-

ically needs a high number of modes of eigenvectors to preserve 98% of the variations,

whilst a person-specific AAM requires just 4 to 5 eigenvectors (see Figures 4.3, 4.4

and 4.5). The results in Table 4.1 show the number of eigenvectors required to retain a

given percentage of the variations of generic AAM. Thus, the first column of the table

represents the number of eigenvectors, the second column shows the energy of each

eigenvector and the percentage of the variations of each eigenvector was described in

the fourth column.

Figure 4.16: The first five modes of the shape variation of AAM for multi-subjects.



4.3 Experiments 100

Figure 4.17: The first five modes of the texture variation of AAM for multi-

subjects.

4.3.2 Determining the Relationship between Facial Dynamics and

Age via Linear Regression

In this experiment, we model the relationship of age and facial dynamics to predict

which dynamic features change due to ageing, and therefore, which features might

be used to estimate the individual’s age. Regression expresses the relationship in the

form of an equation. In our case, we show the change in facial dynamic features (the

predictor or x variable) with the age (the response or y variable). We want to estim-

ate the underlying linear relationship so that we can predict the age from the invariant

dynamic features. Regression can be used to find the equation of this line, which is
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Figure 4.18: The distribution energy of the eigenvectors of the generic AAM

Figure 4.19: The cumulative energy of the Generic AAM
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usually referred to as the regression line. In dynamic face recognition, facial perform-

ances are represented as trajectories in a low-dimensional subspace. However, the

problem here is how to find the relationship between the two variables. For example,

Figures 4.9, 4.10, and 4.9 show the temporal variations of the first mode of variation

(PC1) depicting the dynamic of a subject performing a smile over a 3-year period.

These values are known as b vectors and are the Principal Component (PC) weights for

the projected frame. Smile amplitude is estimated as the trajectories computed from

the PC1. A temporal segmentation of the smile is used to analyse the facial dynam-

ics using the dynamic features of temporal phases (onset, apex, and offset) as used in

Section 5.3 and Equation 5.1.

In our experiment, we extract a set of dynamic features from three phases of the PC1.

Further details of the dynamic features can be seen in the next chapter.

There is no quantitative information on the progression of facial dynamics over the

years, which might be because individuals age in a different manner under different

conditions. However, in this work, we are trying to find the best possible modelling of

the relationship between the variable dynamic features against age.

Because the values of the dynamic features change over different genders and age

groups, it should be noted that a straight “best fit” line can be drawn across the points

(Figure 4.20). In mathematics, or more precisely, in statistics, this whole operation

is called a Linear Regression Model [23, 138], and the “best fit” line is called the

Least Squares Regression Line [16]. The linear regression model was chosen because

the linear regression method is useful as a primary tool for modelling data due to its

effectiveness and completeness. Our finding demonstrates that the linear regression

cannot model the dependence between the selected feature and the age as shown in

Figure 4.20, since the black line shows the best fit across the points of dynamic features

between different subjects. It is clear that the line differentiates the data into two age

groups: young people (group 1: ages 15-30 years) and adults (group 2: ages 31-60

years). Undoubtedly, there is a variation between individuals in age groups, but there
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Figure 4.20: The regression line. The scatter diagram shows the dynamic features

and two age groups for a representative sample of 80 subjects age 15-60.

are no significant differences using dynamic features. The result might be improved by

including more age groups. Figure 4.20 shows a scatter plot of the example data.

Linear regression consists of finding the best-fitting straight line through the points,

which is called a regression line. The black line in Figure 4.20 is the regression line,

and it consists of the predicted score on y for each possible value of x. The distance

from the points to the regression line represents the errors of prediction. As we can

see, some points are very near the regression line; thus, its error of prediction is small.

In contrast, the majority of points are much higher than the regression line, and there-

fore its error of prediction is large. A sample graph is presented in Figure 4.21, for

person ‘A’, which shows the dynamic features progression over nine years. The differ-

ent patterns (Asterisk, Fill Circle, Squares, Downward-triangle, Plus sign, Diamond,

Upward-triangle, and Star) correspond to the dynamic features, which are displayed in

the legend.
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Figure 4.21: A sample graph presenting the change in facial dynamic features

over nine years of person A and the “best fit” line is drawn across the points.

In this work, we start by assuming a simple linear model given by,

y = a+ bx (4.12)

Where a is the point of interception and b is the gradient of the line, and they can be

found by the following:

a = y − bx (4.13)

b =

∑
(x− x)(y − y)∑

(x− x)2
(4.14)

If n is the number of the scattered points, then:
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x =

∑
(x)

n
(4.15)

y =

∑
(y)

n
(4.16)

Figure 4.21 depicts the best fit line of the relationship drawn between the points of

dynamic features of the smile of person ‘A’ over nine years and shows which of these

dynamic features change with age. The visual results presented in Figure 4.21 demon-

strate that there is a small change in some features over age due to the ages being close

and there being no long span.

4.4 Summary

In this chapter, generic and specific ageing models were presented. We demonstrated

the steps of modelling the facial dynamics and analyse these dynamics using an ASM

and an AAM. The percentage of the variation of smile dynamics, the cumulative en-

ergy, and the distribution of the energy of the eigenvectors of the general model were

computed. The dynamic features from the PC1 were extracted by projecting the data

that is used to build the model into the model. The results of the experiments for the

temporal alignment of pairs of videos from our data were provided; the selected pairs

had the same expression. Finally, we attempted to find a relationship between two vari-

ables (dynamic features against age) by projecting a 3D frame into the AAM, and we

obtained parameters that describe the 3D frame in relation to the AAM.
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Chapter 5

The Dynamics of A Smile in Different

Age Groups

5.1 Introduction

In this chapter, we present the dynamic features used to evaluate smiles in different

age groups and detect gender differences. The effects of age and gender related facial

changes are recorded using dynamic 3D facial scans. The source of temporal informa-

tion that is investigated is lip movement in a closed mouth smile. In order to investigate

the influence of temporal facial information on different age groups, data was collec-

ted and processed. To achieve this, experiments were carried out on the subjects, who

were divided into two groups by age (15-30 years and 31-60 years). Each group was

further subdivided by gender. Facial features were extracted and then automatically

tracked through the duration of the data capture. The smile was automatically segmen-

ted into three phases: onset, apex, and offset. Subsequently, a set of dynamic features

were computed from these facial features, as well as from the static features for com-

parison. A two-way multivariate analysis of variance (MANOVA) of these features

demonstrated that statistically significant age and gender-related differences could be

detected. We show that 3D facial dynamics provide more useful information than static

features for the characterisation of smiles. In this thesis, we focus on dynamic facial

behaviour analysis and in particular on the analysis of facial dynamics (smile expres-

sion). Facial expressions encoded in terms of smile activation are manifested by the
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motion of individual facial parts or facial muscles.Therefore, facial dynamics can be

modelled as temporally evolving deformations of local facial parts (e.g., the mouth in

the case of a smile). It is widely argued that the temporal dynamics of a smile expres-

sion are typically described by the following temporal segments: neutral- there is no

facial motion; onset- the facial motion starts until it reaches an apex; apex- the point

of the strongest possible facial deformation. The person that displays the expression

usually stands still for some moments; and offset- the reverse path from the apex to the

relaxed neutral position (see Figure 5.1).

Figure 5.1: Ground truth of the temporal dynamics of smile
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5.2 Facial Ageing Analysis

The human face conveys important information related to personal characteristics, in-

cluding identity, gender, ethnicity, and age. Age can play an important role in many

applications, such as age estimation in crime investigation, age-adaptive targeted mar-

keting, and age-invariant person identification [87], and is also the main risk factor

for many complex diseases [144]. As facial ageing is one of the most prominent and

accessible phenotypes of human ageing, it is important for assessing the risks of age-

related diseases and for designing individualised treatments [40]. Ageing is an inevit-

able process that leads to many soft-tissue changes, and this process particularly affects

the lips, causing many changes, such as thinning and an increase in length [56, 75].

Since the ageing process can change the characteristics of the smile, it is critical to ac-

quire knowledge of age-related facial changes to inform the above applications. How-

ever, to date, gender differences in age-related changes in the 3D dynamics of the smile

have remained unexplored. A lack of suitable datasets in particular has proved to be

the limiting factor. To address this issue we have conducted a study using 3D videos

of closed mouth smiles for 80 subjects to determine whether ageing affects smile ex-

pressions.

5.3 Proposed Method of 3D Smile Analysis

One of the main contributions of this chapter is a method for the temporal segmenta-

tion of a smile to analyse the facial dynamics using the the dynamic features of tem-

poral phases ( e.g., neutral, onset, apex, and offset). In this section, details of the

proposed method are summarised. Figure 5.2 shows the proposed method followed in

this chapter.
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Figure 5.2: The proposed method for smile segmentation

5.3.1 Data Collection

We have recently processed a 3D smile video to analyse the dynamic of smiles. Data

collection was carried out as a part of research in the 3D innovative research program

of computer science at Cardiff University to analyse facial movement. This data was

captured using the 3dMD capture system over nine years. Videos were recorded with

a high resolution at a rate 60 frames per second. Full details can be found in Chapter

3. The database has 316 subjects, both male and female, and the age of subjects ranges

from 4 to 61 years. For posed smiles, each subject was asked to pose a smile expres-

sion as realistically as possible after being shown in a picture the proper way to make a

smiling face. A Closed mouth smile is formed from a neutral expression into a closed

mouth smile and back to neutral. Figure 5.5 shows sample frames of this. In this work,

we have used 80 subjects who performed closed mouth smiles; they were subdivided

into two groups according to age, specifically, young people (Group 1: ages 15-30

years) and adults (Group 2: ages 31-60 years). Both groups contained 40 subjects split

equally between males and females. The data underwent several pre-processing steps

that were necessary to remove artefacts and improve the subsequent processing steps.

These steps were performed to clean the 3D meshes and create a single-view texture

map (UTM) (Section 3.5).



5.3 Proposed Method of 3D Smile Analysis 110

Figure 5.3: The Unified Texture Map (UTM) and cleaned mesh for 4 subjects.

5.3.2 Facial Tracking and Registration

The tracking approach we used requires the user to annotate a single mesh from the se-

quence, clicking on the ordered sequence of 41 facial feature points: eye corners, centre

of upper eyelids, cheek centre, nose tip, lip corners, and contour of face. These points

were then automatically tracked following the approach proposed by Vandeventer [201,

202], and they enabled us to subsequently analyse the facial dynamics as shown in Fig-

ure 5.4. In each frame of a sequence, the face should be aligned before feature extrac-

tion to eliminate any effects of head movement. This is carried out using Procrustes

analysis to determine the rigid transformation.

5.3.3 Temporal Segmentation

Typically, dynamics are related to temporal segmentation, in which the speed and the

duration of temporal phases (e.g., neutral, onset, apex, and offset) have to be analysed

from the stream of the facial expression [215]. This allows a more detailed analysis

of the feature dynamics to occur. Most of these features were originally proposed to

analyse the smile expression [66], and a similar set has been employed for automatic

kinship estimation through smile dynamics [64].
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Figure 5.4: View of the 3D landmarked frame with annotated points

A smile can be defined as the upward movement of the lip corners, which corresponds

to Action Unit 12 in the facial action coding system (FACS) [80]. Most facial expres-

sions are composed of three non-overlapping temporal phases, namely, onset, apex,

and offset. Onset is the initial phase of a facial expression, and it defines the dura-

tion from the neutral to the expressive state. The apex phase is the stable peak period

(which may be short in duration) of the expression between onset and offset. Offset

is the final phase from expressive to neutral state. Following the registration step, the

onset, apex, and offset phases of the smile are detected using the approach proposed

by Dibeklioğlu et al. [65]. Smile amplitude is estimated as the mean amplitude of the

right and left lip corners, normalised by the length of the lip. Let Dlip(t) be the value

of the mean amplitude signal of the lip corners in frame t.

Dlip(t) =
ρ
(
l118+l

1
24

2
, lt18

)
+ ρ

(
l118+l

1
24

2
, lt24

)
2ρ (l118, l

1
24)

(5.1)

where lti denotes the 3D location of the ith point in frame t, and ρ is the Euclidean

distance between two points. Temporal smoothing is applied to lti using a robust local
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regression smoothing method [47]. Then, the onset phase is determined by the longest

continuous increase in Dlip. Similarly, the offset phase is detected as the longest con-

tinuous decrease in Dlip. The phase between the last frame of the onset and the first

frame of the offset defines the apex. Smile amplitude is computed, and polynomials

are fit to the resulting function for smoothing purposes. Subsequently, onset, apex, and

offset are selected on the smoothed curve [65, 66, 67].

Segmentation of the smile is performed automatically by detecting the main positive

and negative peaks in the first derivative of the smile amplitude. The first positive peak

in the first derivative is selected as the first frame of the onset phase. Likewise, the

last negative peak determines the last frame of the offset phase. The phase between the

onset and offset contains the peak of the smile. It is determined by finding the end of the

onset and the start of the offset. The former is estimated by starting at the first frame of

the onset and then repeatedly moving to the following frame while the smile amplitude

decreases until the first derivative drops below an experimentally determined threshold.

The end of the peak smile phase is found in an analogous manner. Each phase is

divided into increasing and decreasing segments to provide a more detailed analysis

of the feature dynamics. See Figure 5.5 and Figure 5.6 for examples of automatic

segmentation and smoothed smiles; the left blue line is the first frame of the smile

onset, the section between the two red lines is the apex phase, and the right blue line

delimits the last frame of the smile offset.
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Figure 5.5: Temporal segmentation of smiles (a female subject)

5.3.4 Dynamic Feature Extraction

To provide more insight into the patterns of smile dynamics, a set of dynamic features

were extracted from three phases of the mouth region. In fact, in our procedure, we

used the same dynamic features that were adopted by Dibeklioğlu et al. [65]. The

dynamic features extracted from the lip region were grouped by the temporal phases
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Figure 5.6: Temporal segmentation of smiles (a male subject)

(onset, apex, offset), as can be seen in Table 5.1. In addition to smile amplitude, speed

V and acceleration A signals were extracted by computing the first and second deriv-

atives of amplitude, respectively.

V (t) =
dD

dt
(5.2)

A(t) =
dV

dt
(5.3)
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Dynamic Features Description

Duration
[
n(D+)

ω
,
n(D−)

ω
,
n(D)

ω

]
Maximum Amplitude max(D)

Mean Amplitude
[∑

(D)

n(D)
,

∑
(D+)

n(D+)
,

∑
(D−)

n(D−)

]
Standard deviation of Amplitude std(D)

Max Speed
[
max(V +),max(| V − |)

]
Mean Speed

[∑
(V +)

n(V +)
,

∑
(V −)

n(V −)

]
Max Acceleration

[
max(A+),max(| A− |)

]
Mean Acceleration

[∑
(A+)

n(A+)
,

∑
(A−)

n(A−)

]

Table 5.1: Dynamic features used in the study

The features were extracted separately from each phase of the smile. In order to obtain

a more detailed analysis of the feature dynamics, each phase was further divided into

increasing and decreasing segments; symbols (+) and (−) are used to denote the type

of segments. For exampleD+ (respectivelyD−) represents the increasing (respectively

decreasing) segments inD, whereD refers to amplitude signals. The number of frames

is represented as n, and the frame rate of the video by ω.

5.3.5 Static Features Extraction

The medical literature describes studies to evaluate smiles in different age groups.

Chetan et al. [42] considered the perioral zone at rest and smiling when analysing

smiles in different age groups by using video records of these subjects. A cross-

sectional study was performed to measure the characteristics within groups of different
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Static Measurements Description

1. Upper lip length Distance measured between subnasale and stomion super-

ius.

2. Upper lip thickness Distance measured between labrale superius and stomion

superius.

3. Outer intercommissural width Distance measured between right and left outer lip corner.

4. Commissural height Distance measured from horizontal line passing through

subnasale to outer commissure.

Table 5.2: Static measurements used in the Chetan et al. [42]

Static Measurements Male (P value=0.05) Female (P value=0.05)

Intercommissural width 0.985 0.168

Commissural height 0.960 0.605

Table 5.3: Comparisons of static measurements between Group 1 vs Group 2

within males and females.

ages and determine whether they were significantly affected by gender. The four linear

measurements listed in Table 5.2 were computed from rest and smile photographs.

In our approach, we automatically extracted two of these measurements (3 and 4, see

Table 5.2) as static features, and their values were computed for one rest and one smile

frame and then the average was calculated. The percentage change from the corres-

ponding distance in the rest position can be considered as a normalisation to avoid

anatomical variation due to physical size differences between the individuals. The res-

ults obtained are shown in Table 5.3.
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5.3.6 Geodesic Path and Distance

Finding shortest paths and shortest distances between points on a surface S in a 3D

space is a well-studied problem in differential geometry and computational geometry.

The shortest path between two points on S is called a geodesic path, and the shortest

distance between two points on S is called a geodesic distance [34]. Given the set of

corresponding points and their connections, the second step is to determine the shortest

paths between each pair of connected surface points [205]. Figure 5.7 illustrates the

difference between the geodesic distance or path and the Euclidean distance in neutral

and smile expressions respectively. The Euclidean distance d(p, q) between points p

and q in three dimensions, as defined by their coordinates (Xp, Yp, Zp) and (Xq, Yq, Zq)

is calculated using the classic formula:

d(p,q) =
√

(Xp −Xq)2 + (Yp − Yq)2 + (Zp − Zq)2 (5.4)

A geodesic curve is the shortest curve joining two points xs, xe ∈ S. The geodesic

distance between two points xs, xe is the length of γ∗.

where xs and xe are the starting and ending points, and γ∗ is the geodesic curve or

path [165].

γ∗ = arg min
γ∈ρ(xs,xe)

L(γ) (5.5)

where L(γ) is called geodesic distance between xs and xe.

d(xs,xe) = min
γ∈ρ(xs,xe)

L(γ) = L(γ∗) (5.6)

Figure 5.8 shows an example of the surface, together with a set of geodesics join-

ing pairs of points and geodesic paths. There are many methods to solve the prob-

lem of finding the shortest surface path. The algorithm we used is based on Kim-

mel’s two methods [125, 126], and is almost the same as his extended Fast Marching

Method [126]. The Fast Marching Method [182] is an extremely fast numerical al-

gorithm for solving the Eikonal equation ∇T = F (x, y) on a rectangular orthogonal
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(a) (b)

(c) (d)

Figure 5.7: Geodesic distance (a) and (c) is the shortest surface distance between

any two landmarks on the mesh, while Euclidean distance (b) and (d) are the

straight-line distance between the two landmark in neutral and extreme expres-

sion between mouth corner (Ch-Ch) landmarks on the mesh of smile for the same

individual.
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(a) (b)

(c) (d)

Figure 5.8: The fast marching algorithm was used to compute geodesic paths and

geodesic distance: The figure shows examples of using specific start points; (a)

geodesic distance and paths, start point in Chin (b) geodesic distance and paths,

start point in neck (c) geodesic distance and paths, start point in right lower eye

(d) geodesic distance and paths, start and end points in external eyes corners.
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mesh in O(M log M) steps, where M is the total number of grid points. 3D facial

data can provide a promising way to understand the features of the human face in 3D

space and has the potential to improve the performance of the face recognition system.

There are some distinct advantages of using 3D information: sufficient geometrical

information, in variance of measured features relative to transformation, and a capture

process by laser scanners that is immune to illumination variation [105]. For auto-

mated human face recognition, 3D facial images have some advantages over 2D facial

images. They provide structural information about the face (e.g., surface curvature and

geodesic distances), which cannot be obtained from a single 2D image during image

acquisition [103]

Geodesic distance is an important geometric measure for understanding complex shapes.

One of the first uses in brain analysis was by Griffin [100], who used the mean geodesic

distance to characterise cortical shapes. We computed geodesic distances along the

facial surface using the fast marching path algorithm [112] as shown in Figure 5.9.

Besides 3D Euclidean distances, the motivation for employing geodesic distances was

that previous studies have shown that geodesic distances are better than 3D Euclidean

distances at representing ‘free-form’ 3D objects [104]. Furthermore, a recent study has

suggested that changes in facial expressions may be modelled as isometric deforma-

tions of the facial surface [36]. When a surface is deformed isometrically, the intrinsic

properties of the surface, including Gaussian and mean curvature and geodesic dis-

tances, are preserved [73]. Hence, algorithms based on geodesic distances are likely to

be robust to changes in facial expressions [103].

Peyre’s MATLAB fast marching toolbox [112] was used to determine geodesic paths

and geodesic distances between landmarks. To this end, a number of landmark pairs

were selected; the same landmarks were used to calculate the respective the dynamic

features that are used in this study, as shown in Figure 5.10. Figure 5.9 illustrates

examples of the paths that will be used for further analysis in four facial regions: fore-

head/eyes, nose, and mouth. For each face, nine paths were used for the forehead/eyes



5.3 Proposed Method of 3D Smile Analysis 121

(a) (b)

(c) (d)

Figure 5.9: Figure shows geodesic paths used in the algorithm. The curvature

features were extracted for these paths’ surface points. Each face trait or region

has a different number of geodesic paths. (a): forehead/eyes paths; (b): nose

paths; (c): upper lip paths; (d): lower lip/chin paths.
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region, nine paths for the nose region, and sixteen paths for the upper and lower lip

region (mouth). These paths were selected following our scheme of the landmark. Our

second experiment used geodesic distances to evaluate smiles in different age groups

and detect gender differences. For each face, 34 geodesic distances were calculated

between the same landmarks that were utilised to extract the geodesic paths. To ex-

(a) (b)

Figure 5.10: Landmarks on 3D face. (a) 41 automatically annotated landmarks

shown on a shaded 3D model. (b) 19 biologically significant landmarks [83]. La-

belled points are 19 landmarks selected out of the 41. Note that the distance

between Ch in left side and Ch in right side increases significantly in expressions

involving a gap between the lips.

tract the geodesic path distance from the meshes in our data, it was necessary perform

extra pre-processing process for cleaning the meshes from non-manifold vertices and

non-manifold edges. The holes which are created after cleaning pre-processing should

be closed. Using MeshLab, which is an open source, portable, and extensible system
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for the processing and editing of unstructured 3D triangular meshes, we extended the

pre-processing pipeline including the MeshLab script to perform mesh cleaning and

hole filling as described in Appendix A.

5.4 Experimentation and Results

To demonstrate the effectiveness of our proposed methods, experiments were conduc-

ted on real data. Regarding 3D dynamic data, we employed the available data, as

described in detail in Chapter 3. We performed a number of experiments to search for

the best features that evaluate the influence of temporal facial information in different

age and gender groups, and to investigate the robustness of these features in different

concepts. Experiments 1 to 2 aimed to searching for the feature types that are pos-

sibly used by the face recognition system in discriminating the individuals. A detailed

explanation of these experiments is given in the following subsections.

5.4.1 Experiment-1: Analyse Age and Gender Differences

In order to investigate the age and gender differences of dynamics,the close smile ex-

pressions of 80 subjects were used as a sample in this experiment. Experiments were

carried out on the balanced data of the 80 videos of smile expression (neutral-to smile-

to neutral) for different subjects, who were divided into two groups by age (15-30

years and 31-60 years) and further subdivided by gender. A two-factor (age groups and

gender) analysis of variance (MANOVA) test was conducted for the dynamic and static

features by using age groups (Group 1 and Group 2) as the between groups factor with

the dependent variables.To analyse the differences between groups in several variables,

we performed a multivariate ANOVA (MANOVA). The MANOVA or multivariate ana-

lysis of variance tests the hypothesis that one or more independent variables, or factors,

have an effect on a set of two or more dependent variables. The null hypothesis, H0, is

the commonly accepted fact, and it is the opposite of the alternate hypothesis Ha. The
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null hypothesis H0 of MANOVA is that the multivariate means of all groups are equal.

We were interested in testing the null hypothesis that group mean vectors are all equal

to one another. Mathematically this is expressed as:

H0 = µ1 = µ2 = .... = µk. (5.7)

Here, we work to reject the null hypothesis and then work to test and come up with an

alternative hypothesis that there is a difference between at least one pair of samples on

at least one variable, or:

Ha = µi 6= µj (5.8)

for at least one i 6= j and at least one variable k.

The significance level p-value, also denoted as alpha or α, is the probability of rejecting

the null hypothesis when it is true. For example, a significance level of 0.05 indicates

a 5% risk of concluding that a difference exists when there is no actual difference. To

investigate the differences in smile with age and gender, a two-factor (age groups and

gender) analysis of variance (MANOVA) using general linear models was performed.

All statistical tests were performed with the SPSS software package with consideration

for a significance level of 5% and a confidence interval of 95%; descriptive statistics

(means and standard deviations) were obtained for the groups. The groups were then

compared to evaluate the effect of age in men and women separately by the analysis of

variance. For analysis of the main hypothesis, an alpha level of 0.05 was used.

The results shown in Table 5.5 analyse differences between gender and age groups.

There are significant differences (p < 0.05) between the male and female groups of

young people for the maximum and mean amplitude of their smile. Also, the maximum

acceleration feature in Group 1 was more significant (p < 0.05) than in Group 2

between genders. The mean acceleration feature is significant (p < 0.05) in Group

2 between genders (Table 5.5). Interestingly, there were also significant (p < 0.05)

differences in gender in all dynamic features of the smile.

Further investigation has shown that although there are clear differences between age

groups they are not statistically significant. This is probably because of the relatively
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Static Measurements Groups
Gender

(P value=0.05)
Male Female

Mean SD Mean SD

Commissural width Group 1 0.010277 0.000176 0.010216 0.000111 0.202

Group 2 0.010276 0.000185 0.010377 0.000370 0.278

Commissural height Group 1 0.102441 0.001271 0.102914 0.002603 0.470

Group 2 0.102424 0.000664 0.103089 0.001341 0.054

Table 5.4: Static measurements results obtained between male and female within

age groups.

small sample size or due to the existence of extreme values. The exception was for the

maximum amplitude with a significant difference for males in Group 1 compared to

the age Group 2 (Table 5.6). Table 5.4 shows that given the sample size, static features

do not provide statistically significant discrimination between gender or age groups. In

contrast we have shown that dynamic features are more powerful, given that they are

statistically significant even for the small data set.

Our experiments show that temporal facial information — the fusion of onset, apex and

offset phases of smile of lip region — provides discriminative information for different

age groups and gender differences. While our sample range is relatively small, our res-

ults still produce statistically significant results and support previous results [42, 65] on

larger data sets but using 2D static and 2D dynamic data respectively that have demon-

strated the powerful of dynamic features and have been used in many applications. Our

experiment demonstrates that 3D video has good potential for further investigation. 3D

data has a distinct advantage in that all measurements are actual physical (3D) distance

measures that do not suffer from (2D) projective distortion, yielding more accurate

and reliable measures. Further experiments will evaluate this aspect. In summary,

the results show that the most significant differences between young people and older
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adults are in the maximum acceleration of lip corner movements during smiles for both

males and females. The results also show that the old adult people have less amplitude

of smile. This conforms with clinical studies that have found that the elasticity of a

person’s lips decreases with age [72, 74].

Dynamic Features Groups
Male Female

(P value=0.05)
Mean SD Mean SD

Duration Group 1 0.29083 0.13195 0.36083 0.15776 0.427

Group 2 0.27416 0.13759 0.33333 0.15700 0.644

Maximum Amplitude Group 1 0.75227 0.15175 0.89415 0.43618 0.025

Group 2 0.66543 0.11548 0.72926 0.11722 0.614

Mean Amplitude Group 1 0.72216 0.14594 0.85037 0.42517 0.028

Group 2 0.63976 0.11560 0.69705 0.10695 0.846

Standard deviation Group 1 0.25546 0.21776 0.34695 0.19738 0.770

Group 2 0.22103 0.12977 0.26803 0.16529 0.179

Max Speed Group 1 0.01638 0.017335 0.14634 0.11672 0.090

Group 2 0.02678 0.05162 0.01024 0.00841 0.062

Mean Speed Group 1 0.00354 0.00302 0.00418 0.00301 0.883

Group 2 0.00499 0.00759 0.00301 0.00237 0.095

Max Acceleration Group 1 0.01705 0.022772 0.00995 0.01012 0.014

Group 2 0.01107 0.01269 0.00724 0.00681 0.029

Mean Acceleration Group 1 0.00035 0.00115 0.00049 0.387 0.387

Group 2 0.00283 0.00871 0.00005 0.00030 0.026

Table 5.5: Descriptive statistics and significance of mean differences of dynamic

features between males and females within age groups.
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Dynamics features Male (P value=0.05) Female (P value=0.05)

Duration 0.698 0.584

Max Amplitude 0.049 0.111

Mean Amplitude 0.055 0.126

Standard deviation 0.547 0.178

Max Speed 0.398 0.180

Mean Speed 0.511 0.186

Max Acceleration 0.211 0.327

Mean Acceleration 0.505 0.456

Table 5.6: Comparisons of dynamics features Group 1 vs Group 2 within males

and females.

5.4.2 Experiment-2: 3D Euclidean and Geodesic Distance

Our experiments using geodesic and Euclidean distances are conducted on the still

frames and are concerned only with gender. Researchers in the past have frequently

used geodesic and Euclidean distances as features for 3D facial recognition, 3D facial

morphology analysis, and gender identification. Gordon and Moreno et al. [99, 148]

noted that the sub-parts of the human face have distinct surface curvature properties.

High resolution 3D scans record a massive amount of detailed geometrical information

of the human face shape [145]. In [83], Farkas et al. used the 3D Euclidean dis-

tance to measure the deviation of the morphological face traits from the normal face;

these distances were also used by Aldridge et al. in [7] to delineate syndromes. Stud-

ies have shown, however, that the geodesic distance is more appropriate for gender

identification and for measuring levels of facial masculinity or femininity [96, 97].

Therefore, this work uses the Euclidean and geodesic distances as features for ana-

lysing gender differences in different age groups. To compare their performance with
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the proposed method, the dynamic features in Section 5.3.4 (i.e., duration, maximum

amplitude, mean amplitude, standard deviation, max speed, mean speed, max accel-

eration, and mean acceleration for the euclidean distances between landmark) were

used to evaluate smiles in different age groups and detect gender differences.For each

face, six geodesic distances and six Euclidean distances were calculated between the

same landmarks that were utilised to extract the geodesic paths shown in Figure 5.12.

The fast marching algorithm and Equation 5.4 were used to produce the geodesic and

Euclidean distances respectively. Note that the geodesic distance on triangulated sur-

faces may also be effectively computed using the fast marching method introduced

in [126].In addition, studies suggest that geodesic distances may represent 3D models

in a better way compared to 3D Euclidean distances [104, 187]. Gupta et al. [103] argue

that algorithms based on geodesic distances are likely to be robust to changes in facial

expressions. Our experiments show that the geodesic distance has good potential for

further investigation and provides discriminative information for age and gender differ-

ences. In contrast to the Euclidean distance, which is more suitable for linear spaces,

the geodesic distance has the advantage of being able to capture the intrinsic geomet-

ric structure of the data [15, 104]. While our sample range was small and time was

needed to perform the pre-processing of the data, further experiments will evaluate this

aspect. Figure 5.11 shows the 3D Euclidean and geodesic distance between the left

mouth corner and the eye corner in neutral and extreme smile expressions of the same

individual. The geodesic distance does not vary while there is a significant change

in the Euclidean distance. Given these properties of 3D Euclidean and geodesic dis-

tances, it seems appropriate to use them for the facial gender classification of images

with variations in expression. We used two feature types, i.e., the 3D Euclidean and the

geodesic distances between the biologically relevant landmarks. Given 19 landmarks

on a 3D face, we extracted 24 3D Euclidean and 23 geodesic distances between them.

The extraction of Euclidean distances is a straight forward task. We define geodesic

distance as the length of the curve generated by orthogonal projection of the Euclidean

line on the 3D facial surface. This is precisely the reason for normalising the pose of
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(a) (b)

(c) (d)

Figure 5.11: Figure shows the 3D Euclidean and geodesic distance between the

left mouth corner and left outer eye corner in neutral (a) and (b) and in smile

expression (c) and (d). Notice how the geodesic distance is preserved even in the

presence of extreme expression.
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Landmark Landmark Definition

(N-Prn) Nasion and Nose Tip

(Ex-Ex) Outer Eye Corners

(Li-Pg) Labrale inferius and Pogonion

(En-En) Inner Eye Corners

(Go-Go) Gonion width

(Ft-Ft) Forehead width

(Ch-Ch) Mouth Corners

Table 5.7: Definition of the cephalometric significant landmarks [95, 128] that can

be used for facial gender classification.

each 3D face, as variations in pose can present a different surface to the viewing angle.

Each facial scan was described by a set of 41 landmarks (Figure 5.10). Table 5.7 shows

the path definition of the cephalometric significant landmarks that were used for facial

gender classification (Tables 5.8 and 5.9).In this experiment, we used 100 subjects (50

females and 50 males); all the facial meshes had a better shape, and the vertices were

distributed more evenly. For each face, 7 geodesic distances and 7 Euclidean distances

were extracted between the 19 biologically significant landmarks from 6 face regions as

shown in Figure 5.10 (b) for gender discrimination. Our proposed algorithm classifies

faces correctly as male or female (Table 5.8 and 5.9). It is interesting to note that the

outer eye corners (Ex-Ex), mouth corners (Ch-Ch), forehead width (Ft-Ft), nasal bridge

length (N-Prn), intercanthal width (En-En) and nasal tip protrusion (sbal-prn-sbal) are

selected by the algorithm as the most differentiating features. The results in Table 5.9

show that the geodesic distances are selected as gender discriminating features. These

features allow a significant discrimination of facial gender indicating their superiority

over 3D Euclidean distances (Table 5.8). Further investigation has shown that although

there are clear differences between gender groups, 3D Euclidean distances do not seem
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to be the feature of choice for classifying gender (Table 5.8) compared with geodesic

distances (Table 5.9). Table 5.9 shows that geodesic distances between biologically

significant landmarks yield better gender discrimination. The statistical differences in

each table were assessed by applying the MANOVA test as a function of gender groups

with consideration of a significance level of 5% (P value=0.05)).

(a) (b)

Figure 5.12: 3D Euclidean (a) and geodesic (b) features selected by our experi-

ments to classify facial gender shown on extreme smile expression faces.
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Face Part
Male Female

(P value=0.05)
Mean SD Mean SD

Ft-Ft 61.9202 27.3218 59.0713 25.5551 0.5357

Ex-Ex 43.7047 26.8847 52.9066 18.8113 0.0502

N-Prn 57.5171 26.0117 55.2887 15.5791 0.6044

Sbal-Prn-Sbal 45.8602 16.1597 48.6633 17.8631 0.4125

En-En 60.9938 22.4661 63.5836 21.9346 0.5611

Ch-Ch 58.6036 34.1149 69.2954 30.7832 0.1031

Table 5.8: Gender discrimination results based on Euclidean distances; signific-

ance of means of facial distances determined by MANOVA test between male and

female.

5.5 Summary

Generally, a pre-processing stage is required to remove holes and spikes, and to fill

missing parts as a result of the capture process. Then, detection of some face land-

marks is usually required to separate the face region from the unwanted parts of the

obtained face scan. Points of facial features are located in the first frame and tracked

during the rest of the smile video using an automatic tracking method, These points

are used to calculate the displacement signals of the lip corners. Finally, pose nor-

malisation is also required to minimize overall deviations between the landmark sets.

This can be achieved by Procrustes analysis of the landmark sets through translation,

rotation, and scaling. Static and dynamic features were extracted separately to eval-

uate smile in different age groups. Comparison of the results showed that 3D facial

dynamics provide more useful information than static features for the characterisa-

tion of smiles. Smiles change with age, and their characteristics differ between males

and females. We analysed the rich sources of information present in the 3D dynamic
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Face Part
Male Female

(P value=0.05)
Mean SD Mean SD

Ft-Ft 42.4944 23.1955 33.00564 21.1985 0.03523

Ex-Ex 56.6583 22.2045 45.4250 15.8350 0.0044

N-Prn 51.5339 15.8017 43.5805 21.5092 0.03766

Sbal-Prn-Sbal 44.1256 22.0323 52.3501 20.9414 0.05863

En-En 52.87609 31.1618 63.56847 20.54625 0.04553

Ch-Ch 59.0505 23.47065 47.8884 25.4969 0.02492

Table 5.9: Gender discrimination results based on geodesic distances; signific-

ance of means of facial distances determined by MANOVA test between male and

female and statistically significant (P value=0.05) are highlighted in bold.

features of smiles to provide more insight into the patterns of smile dynamics. The

sources of temporal information that were investigated were the various dynamics of

lip movement, which were analysed to extract the descriptive features. Direct Euc-

lidean and geodesic distance measures were extracted between 3D facial landmarks

as a local geometric features using the fast marching algorithm. We evaluated the dy-

namic features of closed mouth smiles of 80 subjects of both genders and all landmark

measurements were expressed in pixels.
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Chapter 6

Multilevel Principal Components

Analysis of Dynamical Smiles

6.1 Introduction

Principal Component Analysis is a key step for building most statistical shape mod-

els. Statistical models, including active shape models (ASMs) and active appearance

models (AAMs), are commonly used in various applications of computer vision to

detect certain shapes or features within images. Nevertheless, in the event that the

data set contains naturally-occurring clustering or multilevel data structures, the eigen-

values and eigenvectors determined from the straightforward application of principal

components analysis (PCA) are not wholly reflective of the real variability within the

collection of images or shapes.

Our 3D video facial scans data has naturally occurring multilevel clustering of the

subjects by both age and gender groups (between-group variation); in addition, each

subject has their own smile expression (within-group variation). In view of this, a

multilevel PCA (mPCA), which is characterised by the simultaneous and autonomous

implementation of PCA for the within-group and between-group levels, serves as a vi-

able way to model the structural framework of an image and of 3D data in conjunction

with groupings that occur between images. In the context of 3D faces, the within-group

level is ‘nested’ inside the between-group level as shown in Figure 6.1.
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Figure 6.1: The "Nested" nature of multilevel data

One of the fundamental benefits of this technique is the possibility of constraining

any segmentation, thereby meaning that a model’s fit is continuously aligned in a re-

latively close way to the training set utilised in model creation. A notable process

in which mPCA was applied to create ASMs was in the segmentation of the human

spine [139]. The spinal column comprises vertebrae linked to one another. Classical

statistical models have difficulty dealing with this dependence between items since all

points are treated identically whether they belong to the same sub-structure or not. As

shown to by the study’s findings, mPCA is characterised by considerably more flex-

ibility and by the ability to represent deformations which can not be modelled using

conventional statistical models.

In another study, mPCA was used to build ASMs related to the field of dental ima-

ging [85], where proof-of-principle was evaluated for the modelling of basic perioral

expressions (approximated to the mouth-lip connection). A Monte Carlo sampling

method was applied to create a data set, drawing on a quadratic function y = cx2

(which represented the centre line between the upper and lower lip) in combination

with a value of c controlled ‘expression’. Various expressions (sad, neutral and happy)

were modelled with respect to the between-group level; the modelling of a group of

expressions took place correctly, and the modelling of variations in lip width also
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took place accurately at the within-group level. One of the notable findings to emerge

from the study was that accurate within-group variation and between-group variation

of cases were well modelled by mPCA, while the same could not be achieved with

conventional PCA.

In addition to this, two clinicians implemented mPCA for the purpose of analysing

a dataset, which included landmark points situated on panoramic mandibular radio-

graphs, thereby establishing two distinct groups of landmark points for the group of

images. The within-group level of mPCA was employed to model changes in cortical

bone shape [9], while variance between the groups of images produced by the experts

was examined at the between-group level. As expected, eigenvalues demonstrated that

variance owing to modifications in cortical bone shape being more significant than the

placement differences resulting from the two independent clinicians evaluations. It is

worth noting that the clinicians provided qualitative reports outlining the difficulties

associated with situating the point along the boundaries, and it was also found that the

initial model of variation for the between-group level was an accurate reflection of this

category of change.

In the recent application by Farnell et al. [86], mPCA is utilised for the purpose of

studying the landmark points of three-dimensional (3D) laser scans captured of male

and female participants from various locations in Europe (specifically, Croatia, Fin-

land, Wales, and England). Following this, eigenvalues and eigenvectors are given,

and in turn component scores are derived by fitting the mPCA model to every group of

points corresponding to the participants.

Finally, after comparatively examining the outcomes yielded by mPCA and conven-

tional (single-level) PCA, the implications of the key points of variance are examined.

The aim of this research was to investigate the impact of naturally-occurring groups

within the sample group of Croatian, Finnish, Welsh, and English participants. Fol-

lowing a concise overview of the formal aspects of mPCA, the researchers demon-

strated that one of the key advantages of the technique is the flexibility it affords in
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modelling variability for multilevel data structures (namely, at the between-group and

within-group levels). An investigation of the eigenvalues indicated that each source

of variability was consequential, where the modes of variability seemed to be logical.

With respect to the within-group mPCA’s initial mode, evidence was found to sug-

gest that this was implicated in determining facial width, while regarding the between-

group mPCA’s initial mode, this appeared to determine nose and/or facial length and

shape. The researchers also found evidence to indicate that the preliminary outcomes

of mPCA for facial shape data, due to the fact that consistency was observed between

males and females for the Croatian, Finnish, Welsh, and English samples, suggest clus-

tering regarding the between-group component scores.

Conventional PCA displayed signs of clustering, but this was ambiguous for the most

part. In addition, ias initially expected, point-to-point errors with respect to model fits

for PCA and mPCA were reduced while the number of eigenvectors was maintained

In view of these findings, the authors reported that where a dataset contains naturally-

occurring clustering or multilevel data structures, mPCA is characterised by a higher

order of control and adaptability than conventional PCA.

In this thesis, mPCA is applied for the first time to analyse the landmark points of

three-dimensional (3D) dynamic smiles of male and female participants in different

age groups; details of the data were given in Chapter 3. In the previous chapter, there

was a problem in analysing the data due to the grouping that occurred between subjects

by age and gender groups and between subjects themselves in smile dynamics, which

standard PCA cannot account for.

The new contribution presented in this chapter is the observation that by using mPCA,

we present a basic fundamental of mPCA and offer better discrimination between

classes and to perform much interpreted. This shows the undoubted potential of the

relatively new mPCA approach. This study takes the dynamics of the smile dataset of

80 subjects to explore an application of mPCA to investigate the link between the three

levels of the principle components of subjects in level one, the variation between smile
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phases in level two, and the variation within smile phases. Our findings demonstrate

that the changes in lip shape due to the dynamic change in the lips during the smile is

far outstripped by variability in the natural lip shape between subjects, which accounts

for 71.97% of the variability of lip shape across our subject set in all phases of the

smile. This work, to some extent, follows on from the previous study developed by

Farnell in [85, 86], which studied the landmark points of 3D laser scans of the head of

subjects in different ethnicities and both gender.

The details of the mathematics that support the mPCA for ASMs techniques are presen-

ted in Section 6.2. We present the results of the eigenvectors and eigenvalues, and the

component scores are found by projecting the mPCA model to each set of points for

each subjects in the dataset and comparing the results of standard (single-level) PCA.

The major modes of variation are explored. Further details of the results are presented

in Section 6.3.

6.2 Methods

6.2.1 Mathematical Formalism

Following the mathematical notation of Farnell in [85, 86], in this section, we present

the formalism for mPCA. The ASM method’s use of PCA has been widely documented

in the literature [9, 53, 54, 55]. Applying PCA for the covariance matrix and the ei-

genvalues and eigenvectors is discussed in detail in Chapter 4. Landmark points are

represented by a vector, Zi, and the kth element of this vector is given by Zik. The total

number of such points is n, and the mean shape vector (averaged over all N subjects)

is given by Z. The covariance matrix is found by evaluating

Ck1k2 =
1

N − 1

N∑
i=1

(Zik1 − Zik1)(Zik2 − Zik2) (6.1)

where k1 and k2 indicate elements of the covariance matrix. We find the eigenvalues λl
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and eigenvectors ul of this matrix, and we rank all of the eigenvalues Λl in descending

order. We choose the largest m eigenvalues of largest magnitude to be retained in the

model. Any new shape is given by

Z = Z +
m∑
i=1

aiui (6.2)

The eigenvectors ul are orthonormal, and so we can determine the coefficients, al, for

a fit of the model to a new shape vector, z, readily by using

al = ul.(Z − Z) (6.3)

Constraints may be placed on these a−coefficients, such as |al| ≤ 3
√
λl, which ensures

that the subsequent model fits a new shape vector and never ‘strays too far’ from the

normal cases in the training set.

The formalism for mPCA is more complicated, and further details are given in [85].

In mPCA, we observe here that the two covariance matrices for the two-level model

are formed. First, there is a within-group covariance matrix, which is the covariance

evaluated over all subjects within the group and with respect to their local group means

or centroids, and this matrix is then averaged for all groups. Second, there is a between-

group covariance matrix that is the covariance matrix of the centroid of the groups with

respect to a ‘grand’ mean shape Z of the average of these centroids. The rank of this

matrix is limited by the number of groups.

Applying PCA for the within-group covariance matrix of the above equation, the lth

eigenvalue is denoted by λwl , and its eigenvector is denoted by uwl . Independently, PCA

is also applied to the between-group covariance matrix given above. The lth eigenvalue

is denoted by λbl and its eigenvector is denoted by ubl . All of the eigenvalues are ranked

λb and λw in descending order for the between- and within-group levels separately, and

then we retain themb andmw as the largest of such eigenvectors, respectively. The new

shape is now given by

Z = Z +
mw∑
l1=1

awl1u
w
l1

+

mb∑
l2=1

abl2u
b
l2

(6.4)
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Constraints may again be placed on these a−coefficients, such as |abl | ≤ 3
√
λbl and

|awl | ≤ 3
√
λwl , which ensures that the subsequent model fits a new shape vector and

never ‘strays too far’ from the cases in the training set with respect to both the within-

group variation and the between-group variation. The covariance matrices are sym-

metrical and so all the within-group eigenvectors uwl are orthogonal to all other within-

group eigenvectors (and similarly for the between-group eigenvectors). However, the

eigenvectors uwl and ubl do not necessarily have to be orthogonal with respect to each

other, and so an equivalent projection to Equation 6.3 for mPCA becomes problematic.

A fit of the model given by Equation 6.4 to a set of candidate points is achieved by

minimising the overall (squared) error with respect to the coefficients awl and abl .

6.2.2 4D Acquisition and Preprocessing

The data capture and preprocessing procedure have been described in Chapter 3. Forty-

one reliable facial landmarks were automatically tracked for each subject. Each land-

mark point vector Z was of size 123 (= 41 × 3). These facial landmarks are shown

in 6.1. The numbers of subjects in the two groups were female (n = 40) and male

(n = 40) in the first age group (age < 30), and female (n = 40) and male (n = 40)

in the second age group (age > 30). Landmark points were scaled by Procrustes

transformation so that all sets of points were on broadly the same scale.
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Figure 6.2: Forty-one landmarks points on 3D facial scans of participants

6.3 Results

6.3.1 3 Levels mPCA Model of Dynamical Smiles

In this study, we propose a solution and investigation to build multilevel statistical

shape models for the variations of smile dynamics in different age groups and genders.

based on multilevel component analysis (mPCA). The concept of mPCA was intro-

duced in [85, 86] as an extension of PCA for multilevel structures.

Our experiment includes our dataset, which consisted of 3D video shape data, where

12 points were placed (and tracked) along the outer boundary of the mouth. After

20 smile subjects were excluded, the smile of 60 subjects of adult staff and students

at Cardiff University (31 male and 29 female) were analysed. The number of frames
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in the video was between approximately 100 and 250 frames during all phases of a

smile for each subject. In these experiment, preprocessing consisted of centring the 3D

shapes only. A three-level mPCA model was used for the dataset: level 1, "between

subject" due to a natural face shape not attributed to smiling; level 2, "between smile

phases" variation due to differences between seven different phases of a smile; and

level 3, "within smile phases" variation due to residual differences within the different

phases of a smile. Phases of the smile were identified automatically by inspection of

the dynamics of smile amplitudes [5] for each subject individually.

We built a hierarchy with three levels. At the highest level of hierarchy (level-1) are

subject related factors, such as gender, age, and ethnicity. Situated at the middle level

of the hierarchy (level-2) is the variation between smile expressions. Level-2 variables

are nested within level-1 groups and are affected by level-1 variables. For example,

a smile (level-2) changes with age and differs between males and females, thereby

affecting (level-2 variables) in the (level-1 variables). Variables at the lowest level of

the hierarchy (level-3) are nested within level-2 groups and also experience the effect

of level-2 variables. In our example, variables of smile phases variables, such as onset,

apex, and offset (level-3), are situated within (level-2).

Let us consider a three-level mPCA model of dynamical smiles: the idea is to decom-

pose the data into a level-1: the variation between-individual components; level-2: the

variation between smile phases; and level-3: the variation within-smile phases. Let us

assume a sample with 80 subjects excluded 20 subjects, divided into 2 age groups of

30 subjects each of both genders. The shape of 3D lips was averaged with 12 landmark

points over all subjects in each group (age and gender). The number of groups at level

3 was 420 (7 expressions and 60 subjects), level-2 expression level, it contains one

group and level-1, subjects level, it contains 60 groups.

Figure 6.3 shows the eigenvalues from the standard single-level PCA and the within-

group and between-group eigenvalues from mPCA. The first major mode from the

single-level PCA corresponds to between-subject variations. The variations in shape
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occur for all phases of a smile (size of mouth, upturned or down-turned mouth). The

second major mode occurs during all phases of smile (irrespective of size of mouth,

upturned or down-turned mouth). The third major mode from the single-level PCA

corresponds to between-subjects variations. Variation within smile phases is negligible.

Tables 6.1 and 6.2 show the changes in lip shape due to dynamical changes in the lips

Figure 6.3: Eigenvalues from mPCA level 1 (between-subject variation), level 2

(between-smile variation: facial expression), and level 3 (within-smile variation:

smile phases)..

during the smile. These changes in the lips during the smile are far outstripped by

variability in the natural lip shape between subjects, which accounts for 71.97% of the

variability of lip shape across our subject set in all phases of the smiles. Variation of

single-level PCA for eigenvector is computed by

j =
100× λi∑l

i=1 λi
(6.5)
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Table 6.1: The Ten-first eigenvalues of the variation of mPCA

Eigenvalue

Eigenvalue Number Single-Level PCA mPCA:level-1 mPCA:level- 2 mPCA:level-3

1 139.4 124.8 82.7 2.1

2 57.0 57.5 12.7 0.5

3 47.5 31.3 5.4 0.4

4 28.1 25.3 4.0 0.4

5 21.5 14.9 3.8 0.3

6 15.1 14.2 2.7 0.3

7 13.8 10.0 2.0 0.2

8 10.3 8.7 1.5 0.2

9 8.4 7.1 1.2 0.2

10 7.5 6.0 1.0 0.1

While the variation of mPCA for eigenvector j at level k is computed by

j =
100× λki∑l1

i1
λ1i1 +

∑l2
i2
λ2i2 +

∑l3
i3
λ3i3

(6.6)

Figure 6.4 indicates the predicted mouth shape from, left, the single-level PCA in the

third major mode and, right, the second major mode between-subjects level-1 of the

mPCA. These modes are changes in size or fullness of mouth. Figure 6.5 shows the

predicted mouth shape: left- single-level PCA second major mode; right- between-

subjects level-2 mPCA first major mode. These mode are related to changes in the

size of the mouth during a smile irrespective of size of mouth and resting mouth shape,

i.e., smiling: mouth becomes wider and taller and the edges of the mouth go slightly

upwards, and the corners of the lips pull back strongly in the XY plane.
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Table 6.2: The variation of lip shape between subjects

Variation%

Eigenvalue Number Single-Level PCA mPCA:level-1 mPCA:level- 2 mPCA:level-3

1 35.9 27.37 18.1 0.5

2 14.7 12.60 2.8 0.1

3 12.3 6.86 1.2 0.1

4 7.2 5.54 0.9 0.1

5 5.6 3.12 0.6 0.1

6 3.9 14.2 2.7 0.3

7 3.6 2.19 0.4 0.0

8 2.7 1.90 0.3 0.0

9 2.2 1.55 0.3 0.0

10 1.9 1.31 0.2 0.0

Sum 100 71.97 26.99 1.3

Figure 6.6 shows the predicted mouth shapes from left the single-level PCA in the first

major mode and the first major mode between subjects level-1 of the mPCA at the

right. These modes are related to up-shaped or down-shaped mouths irrespective of

the smile phase in the XZ plane-some differences in the XY plane.

6.3.2 Component Scores

The scores are used for the visualisation of data or, in conventional classification, clus-

tering or regression methods. When principal component scores are used to visualise

high-dimensional data, it is common to display the m first important sample scores

in two-dimensional plots (or possibly in 3D). These score plots can be used to com-
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Figure 6.4: The Major modes of variation between subjects of standard PCA and

the mPCA in the 3rd and 2nd mode.

pareobservations, detect subgroups, or identify outliers [107]. In our experiment, we

used the component scores to detect and visualise the multilevel structure in our data

using the mPCA model. Component scores were found by fitting the single level PCA

and mPCA models to each set of landmark points for each subject in the data set. Res-

ults for single-level PCA, shown in Figures 6.7 and 6.8, indicate some evidence of a

difference by gender in the component score for PCA 1 (shape of mouth) for single-

level PCA (males in positive part and female in negative part), though any gender

difference in the component scores for PCA 2 (smile) is harder to see. Figures 6.9

and 6.10 show some evidence of a difference by gender in the component score for

PCA 1 (shape of mouth) for mPCA-level 1 (mPCA : l1 = 15, l2 = 3, and l3 = 0).
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Figure 6.5: The major modes of variation between smile phases of standard PCA

and the mPCA in the 1’st and 2nd mode.

No obvious divisions by gender are apparent in Figure 6.11, though the variation in

the component score is very large. In general, men and women smile in the same way.

However, there is considerable variation by subject in the dynamical smile changes by

subject that cannot be excluded from the natural reset mouth shape (mPCA : l1 = 15,

l2 = 3, and l3 = 0).

6.3.3 Distances between centroids

It is possible to infer the distance between group centroids directly from the distances

between points in each group. Each group has a well-defined centroid (i.e., average
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Figure 6.6: The major modes of variation between subjects of standard PCA and

the mPCA in the 1’st ans 2nd mode.

across all the points in the group).Representing each group by its centroid, the distance

between groups is a distance between centroids. Centroids for the standardised scores

for males and females are shown in Table 6.3. Distances between the centroids show

some differences in the centroids for subject level-1 mPCA, but not for the between-

smile phases level-2 mPCA. Subject level-1 mPCA has the largest distance between

the centroids, which is as expected, as this mode relates to mouth size, and so indicates

that men have bigger mouths than women. This result supports the study reported by

Chetan et al. in [42], where males have more vertical movements whereas females

have more horizontal movements during a smile.
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Figure 6.7: Difference by gender in component scores centroids for each subject

(Single-Level PCA for PCA 1 and PCA 2) .

Figure 6.8: Difference by gender in component scores centroids for each subject

(Single-Level PCA For PCA 1 and PCA3) .
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Figure 6.9: mPCA Level (1): Variation between subjects for PCA 1 and PCA 2

Single-Level PCA Subject Level (1) mPCA Between Smile Phases Level (2) mPCA

PCA1 PCA2 PCA3 PCA1 PCA2 PCA3 PCA1 PCA2 PCA3

Females -0.18 -0.13 -0.20 -0.20 -0.26 -0.03 -0.08 0.11 -0.33

males 0.17 0.39 0.09 0.22 0.19 -0.01 -0.19 -0.03 0.60

Distance 0.35 0.52 0.29 0.41 0.45 0.03 0.11 0.14 0.93

Table 6.3: The distances between centroids

6.3.4 Standardisation

Standardisation is achieved by dividing the component scores for a given PCA com-

ponent by the square root of its eigenvalue. The component scores may finally be

standardised to give “standard scores” by dividing the scores for each subject with-

respect to each principal component by its standard deviation (i.e., the square root of

its eigenvalue: (a11 /
√
λ11, a

2
2 /
√
λ22, a

3
3 /
√
λ33)) such that all scores can be plotted on

the same (standardised) scale. The lth eigenvalue at level 1 (gender: male or female)
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Figure 6.10: mPCA Level (1): Variation between subjects for PCA 1 and PCA 3

is denoted by λl1 with associated eigenvector µl1, whereas the lth eigenvalue at level 2

(between-subject variation) is denoted. Figure 6.12 shows that men and women smile

in the same way; however, the variation in the component scores is very large. Again

there is considerable variation by subject in the manner in which smiles dynamically

change by subject, which cannot be excluded from the natural rest mouth shape. A

clear cycle is observed in standardised scores at an appropriate level of the mPCA

model which reflects these phases in these initial calculations. Figures 6.17 and 6.18

show some evidence of a cycle by phase of smile, especially for the component score

PCA 2 for single-level PCA. Figures 6.19 and 6.20 arguably also show some evid-

ence of a ‘cycle’ or variation by phase of a smile in the component scores in both

PCA 1 and PCA 2, which is not what we would expect because this level is intended

to capture this source of variation between subjects and not between phases of smile

(mPCA : l1 = 10, l2 = 2, and l3 = 0). This indicates that different people (or

different groups of people, e.g., males and females) have different types of smile.

Figure 6.21 shows very strong evidence of a ‘cycle’ or variation by phase of smile
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Figure 6.11: mPCA Level (2): Variation between smile phases for PCA 1 and PCA

2.

in the component scores in both PCA 1 and PCA 2, which is what we would expect

because this level is intended to capture this source of variation (mPCA : l1 = 10,

l2 = 0, and l3 = 0).

In addition, Figure 6.22 shows strong evidence of a ‘cycle’ or variation by phase of

smile in the component scores in both PCA 1 and PCA 2, which is what we would

expect because this level is intended to capture this source of variation (mPCA : l1 =

15, l2 = 3, and l3 = 0).

Figures 6.23 and 6.24 also show the same variation by phase of smile in the component

scores in both PCA 1 and PCA 2 for mPCA (mPCA : l1 = 15, l2 = 3, and l3 = 0).

Figures 6.25 and 6.26 display strong evidence of a ‘cycle’ or variation by phase of

the smile for the component scores PCA 2 for single-level PCA; indeed, there is clear

evidence of a cycle in these scores: rest pre-smile and rest post-smile. This is strong

evidence that seven phases of a smile exist (rest pre-smile, onset 1, onset 2, apex, offset

1, offset 2, and rest post-smile).
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Figure 6.12: Single-Level PCA: Variation between subjects for PCA 1 and PCA

2.

Figure 6.27 again shows strong evidence of a ‘cycle’ or variation by phase of smile

in the component scores in both PCA 1 and PCA 2, which is what we would expect

because this level is intended to capture this source of variation (mPCA : l1 = 15,

l2 = 3, and l3 = 0).

Figures 6.28 and 6.29 also show some evidence of a ‘cycle’ or variation by phase of

smile for the component scores in both PCA1 and PCA 2. However, now we have

standardised the scores, this is much weaker than at level 2. Centroids of standard-

ised scores at level 2 (i.e., between smile phases level) in each of the seven proposed

phases of the smile were obtained by averaging these scores over all subjects in each

phase. The results are shown in Figures Figure 6.17 to 6.29. We see that there is clear

evidence of a seven-phase cycle in these scores: rest pre-smile, onset 1 (acceleration),

onset 2 (deceleration), apex, offset 1 (acceleration), offset 2 (deceleration), and rest



6.4 Summary 154

Figure 6.13: Single-Level PCA: Variation Between Subjects for PCA 1 and PCA

3.

post-smile.

6.4 Summary

Multilevel statistical shape models (mPCA) can be used to analyse the effect of nat-

urally occurring groups in a population of individuals for data of smile dynamics. An

investigation of eigenvalues indicated that each source of variability was significant in

both between and within-group sources of variation. The formalism for mPCA has

been described briefly, and we have shown that mPCA allows us to model variations at

different levels of structure in the data (between-group and within-group levels). Con-

ventional PCA displayed signs of clustering, but this was ambiguous for the most part.

However, the mPCA makes it possible to separate the data in multilevel. The major
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Figure 6.14: mPCA Level (1): Variation between subjects for PCA 1 and PCA 2

modes of variation of the standard PCA and the mPCA in the first three modes are

shown in this chapter. We conclude that mPCA correctly decomposes sources of vari-

ation due to subjects’ variation (shape, gender), facial expression (smile and neutral),

and smile phases (onset, apex and offset). This study has therefore been rigorous initial

test of the usefulness of mPCA in terms of the modelling of shape.
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Figure 6.15: mPCA Level (1): Variation between subjects for PCA 1 and PCA 3

Figure 6.16: mPCA Level (2): Variation between Smile Phases for PCA 1 and

PCA 2.
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Figure 6.17: Single-level PCA: Centroids by phase of smile for PCA 1 and PCA 2.

Figure 6.18: Single-level PCA: Centroids by Phase of smile for PCA 1 and PCA 3.
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Figure 6.19: mPCA Level (1): Variation between smile phases, centroids by phase

of smile.

Figure 6.20: mPCA Level (1): Variation between smile phases, centroids by phase

of smile.
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Figure 6.21: mPCA Level (2): Variation between smile phases, centroids by phase

of smile.

Figure 6.22: mPCA Level (2): Variation between smile phases, centroids by phase

of smile.
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Figure 6.23: mPCA Level (2): Variation between smile phases, centroids by phase

of smile.

Figure 6.24: mPCA Level (2): Variation between smile phases, centroids by phase

of smile.
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Figure 6.25: mPCA Level (2): Variation between smile phases, centroids by phase

of smile.

Figure 6.26: mPCA Level (2): Variation between smile phases, centroids by phase

of smile.
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Figure 6.27: Centroids of standardised “scores” from mPCA at level 2 (“between

smile phases”).

Figure 6.28: Centroids of standardised “scores” from mPCA at level 1 (“between

smile phases”).
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Figure 6.29: mPCA Level (1): Variation between smile phases, centroids by phase

of smile.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Facial ageing is a challenging area of research; every human ages in a different manner

under the influence of a wide variety of biological and environmental factors. Facial

ageing includes the progress of all factors that lead to changes to the skull, muscles,

tissues, cells, and facial wrinkles. Research related to facial motion is a relatively new

yet growing area of study. Based on the fact that facial dynamics are a viable biomet-

ric feature, and therefore suitable for identity recognition, the aim of this work was

to investigate changes in these dynamics due to facial ageing by utilising statistical

models to analyse such dynamics, and by using a novel 3D dynamic database collec-

ted over several years in an effort to overcome the current limitations associated with

2D data. It thus contributes to the research in a variety of areas, including, but not

limited to, security, medical, computer graphics, and forensics applications. Based on

this information, the present thesis attempts to analyse the facial motion and to demon-

strate that smiles change with age, and their characteristics differ between males and

females, through a series of experiments. As opposed to static analysis, research re-

lated to facial motion is a relatively growing area of study. The work presented in this

thesis takes advantage of a new longitudinal 3D face database that was created with

the aim to study facial dynamics more specifically, and to consider individual-specific

models with ageing. For these purposes, 3D videos of face scans were collected with

larger spans of time between samples of individuals than in traditional ageing data-
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bases, including longitudinal spans over nine years. In addition to the scans, the data

was collected for individuals, including information such as age and gender, which can

be used to study individual-specific ageing factors.

7.1.1 Original Contributions

In this thesis, we have studied the facial dynamics in ageing. The main contributions

presented in this thesis can be summarised as follows.

1. In Chapter 3, we introduced the the world’s first 4D longitudinal database to in-

clude 3D video scans of 316 subjects performing different facial movements over

years such as smiles, sentences, and single words. 3D frames were created from

a seven BMPs and information was calibrated using 3DMD’s MStereo program;

in addition, a fully-automatic cleaning process was used for cleaning the meshes

and creating a single-view texture map (UTM) from the raw data. This data was

used for modelling the facial dynamics in this research to overcome the mesh

artefacts which were produced by capture systems. The Pre-processing step was

the one of the significant tasks in this research.

• A tracking and inter-subject registration was performed using the method

developed by [202]. This tracking and inter-subject registration approach

allowed for the building of statistical models, which was necessary for con-

ducting our research.

• Moreover, some experiments were also conducted using cubic interpola-

tion techniques, and compared to the linear interpolation method, the latter

proved to have the lowest error rates in most cases. Another advantage of

the linear interpolation method over the quadratic and cubic methods is that

linear interpolation is the simplest method.

• This research tackled the missing data gaps in the current database by de-

veloping a method to predict the length of the sequence in the missing year
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and using linear interpolation to estimate the frames in the sequence at any

given age.

2. In Chapter 4, different approaches in relation to data description have been con-

sidered, including Active Shape Models (ASMs), which provide shape inform-

ation, and Active Appearance Models (AAMs), which produce texture inform-

ation. The overall objectives were to extract the dynamic of human faces in the

form of dynamic features by projecting the training data into the model and using

the dynamic features extracted from the first mode of variation (PC1) to compare

the intra-subject dynamics. We presented a performance analysis of subspace-

based specific and general models to solve the problem of facial dynamics over

age. The experiments were performed using 3D dynamic datasets over time ob-

tained from the longitudinal database. This dataset demonstrate the efficiency on

both female and male facial dynamics. In the case of females and age, mPCA

achieves greater accuracy compared to PCA.

3. In Chapter 5, smile segmentation is automatically categorised into three phases,

namely, onset, apex, and offset. Then, a set of dynamic features were computed

from the facial features and the static features for comparison. The aim of this

investigation was to measure the effects of age and gender related facial changes

using dynamic 3D facial scans. Experiments were carried out on the subjects,

who were divided into two groups by age (15-30 years and 31-60 years). Each

group was further subdivided by gender. Two-way multivariate analysis of vari-

ance (MANOVA) of these features demonstrated that statistically significant age

and gender related differences could be detected. In Chapter 5, a new set of

3D geometric features are derived from curvedness measures obtained along the

geodesic path between 3D facial anthropometric landmarks. These features de-

scribe the face surface shape variation relying on the biological landmarks rather

than the simple anthropometric measurements, which provide poor surface in-

formation. The impact of these features on face morphology categorisation is
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tested compared to anthropometric measurements. We also showed that 3D fa-

cial dynamics provide more useful information than static features for the char-

acterisation of smiles.

4. In Chapter 6, we introduced the first time application of the Multilevel Principle

Component Analysis (mPCA) method to analyse 3D dynamic smile data. This

data has naturally occurring multilevel clustering of the subjects by both age and

gender groups (between- group variation). In addition, every subject has their

own smile expression (within- group variation), which mPCA uniquely exploits,

and is an improvement on more traditional PCA methods. We showed that there

is clear evidence that seven phases of a smile indeed exist. The experiments were

carried out and tested on 3D meshes of 80 individuals that were taken from the

4D facial ageing database.

The experiments were limited to the dynamics of smiles, as the problem with the data

is the time factor, given that pre-processing such a database takes time. Based on the

results, it can be concluded that smiles change with age, and their characteristics differ

between males and females. We studied the influence of gender and conclude that

gender plays a crucial role in facial feature analysis. We analysed the rich sources

of information present in the 3D dynamic features of smiles to provide more insight

into the patterns of smile dynamics. The sources of temporal information that are

investigated are various dynamics of lip movement, which are analysed to extract the

descriptive features. We evaluated the dynamic features on closed-mouth smiles of 80

subjects of both genders.

7.2 Future Work

Looking forward, it is clear that this investigation is expandable and can serve as a

basis for additional research on facial dynamical analysis as people age.
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This data has a potential use as an effective biometric for person identification. There

is also evidence that dynamic information is not redundant and may be beneficial for

various aspects of face processing, including age, gender, and identity recognition.

In future investigations, it will be possible to use different regions of the face, such as

the eyelids and cheeks, to evaluate which dynamic features are more related to age,

and it will be possible to apply our methodology to investigate other factors beyond

age, such as race and medical conditions[35, 2, 4, 3]. Future research can focus on

modelling the effects of ethnicity, gender, age, genetic information, or diseases (e.g.,

effects perhaps previously hidden in the “5% of variation”) on facial shape or appear-

ance using mPCA in terms of modelling of the 3D facial expression shape.
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Appendix A: Meshlab CleanMesh

Script

<!DOCTYPE FilterScript>

<FilterScript>

CleanMeshScript

Meshlabserver script

This script will Remove non Manifold Vertices and

Edges from the mesh and then close the holes in the mesh.

<filter name="Remove Duplicate Faces"/>

<filter name="Remove Duplicate Faces"/>

<filter name="Select non Manifold Vertices"/>

<filter name="Delete Selected Vertices"/>

<filter name="Select non Manifold Edges "/>

<filter name="Delete Selected Vertices"/>

<filter name="Close Holes">

name="MaxHoleSize" tooltip="The size is expressed as number of edges composing

the hole boundary" description="Max size to be closed " type="RichInt" value="30"/>

<Param name="Selected" tooltip="Only the holes with at least one of the boundary

faces selected are closed" description="Close holes with selected faces" type="RichBool"

value="true"/>

<Param name="NewFaceSelected" tooltip="After closing a hole the faces that have
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been created are left selected. Any previous selection is lost. Useful for example

for smoothing the newly created holes." description="Select the newly created faces"

type="RichBool" value="true"/>

</filter>

</FilterScript>
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Appendix B: 3D Imaging System

Quick Guide
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Appendix C: Participant Consent

Form
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