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Abstract: Lowering the threshold gain of InAs quantum dot lasers grown on Silicon, 

significantly extends device lifetime. Measurements on degraded devices show increased 

optical mode loss is responsible for degradation and a consequent shortening of lasing 

wavelength. 

Reliable and efficient electrically-pumped silicon-based lasers are currently required as sources in silicon 

photonic integrated circuits and ultimately to enable full integration of photonics and electronics. While wafer 

bonding of Compound Semiconductors (CS) and Silicon is the favoured immediate solution, in the longer 

term epitaxial growth of CS on silicon is seen as the ideal for large scale manufacturing. Recent results using 

Quantum Dots (QDs) show promising lifetimes [e.g. [1] [2]] even though epitaxially grown CS Quantum well 

(QW) laser on Si structures degrade within seconds. It is understood that both the number and size of defects 

present in a laser structure can increase during operation and this in-turn degrades performance and ultimately 

shortens the device lifetime. In QW lasers it has been shown that the primary mechanism for degradation is 

the increased non-radiative recombination rate that accompanies the defects, although an increased internal 

optical mode loss can also contribute.  QDs bring two major advantages, firstly, they can effectively deflect 

defects or pin them preventing loop formation, and secondly, they localise charge carriers preventing them 

from diffusing laterally and recombining non-radiatively at a defect site. The latter, reduces the rate of 

degradation because it suppresses recombination enhanced defect reactions (REDR), a process which can 

cause dislocation climb, further reducing device performance. QDs are effective at isolating carriers and 

limiting the recombination at defect sites, however, the optical mode propagates along the entire length of the 

laser cavity and therefore will always suffer from the increase in dislocations via optical scattering, 

characterised by the internal optical mode loss. In this study, we test the reliability of deep-etched ridge-

waveguide QD lasers grown directly on Si substrates and investigate how factors such as cavity length, and 

hence carrier density, affect degradation rate whilst running in continuous wave (CW) operation. Using a 

segmented contact structure, that can be run as either a laser or a single-pass gain structure, we show that 

measured optical mode loss increases for devices on life test and is a major contributing factor on the eventual 

degradation of performance in these QD-on-Si lasers.   

The samples examined here are similar designs to those used in reference [1], but with a larger dot size 

distribution and consequently somewhat higher threshold current density for similar cavity lengths. However, 

most importantly the approaches to minimise defects propagating towards the active region, comprising 

5 layers of InAs dots each grown in a dot-in-a-well (DWELL) on In0.15Ga0.85As surrounded by a GaAs core, 

are similar. These include Si(100) wafers with 4° offcut to the [011] plane, on which a thin nucleation layer 

made of AlAs was deposited by migration enhanced epitaxy using alternating Al and As4 flux at a low growth 

temperature of 350 °C, then three layers of GaAs grown at 350 °C, 450 °C, and 590 °C for 30 nm, 170 nm, 

and 800 nm, respectively and strained layer superlattices (SLSs) grown as dislocation filter layers (DFLs).  

The structures are represented in Figure 1a. We expect these samples to have a low density of threading 

dislocations at the active region of on the order of 105 cm-2 as has been observed using TEM in samples 

incorporating a similar layer structure. Ridge waveguides, shown schematically in Fig. 1b were dry-etched to 

a depth of approximately 3.2 microns using an Oxford Instruments Plasmalab 100. The epi-side n-contact 

(AuGe/Ni/Au) was deposited and annealed prior to planarising with Benzocyclobutene (BCB) and later re-

exposed by back-etching the BCB using reactive ion etching (RIE) with a C4F8/O2 plasma before final curing 

at 300˚C. Cr/Au was deposited for the p-contact to a thickness of 10 and 400 nm respectively. Cleaved-facet 

devices are produced by first thinning the Si substrate by lapping. Devices are mounted on T08 transistor 

headers epi-side up using a silver-loaded epoxy resin and each laser wire bonded using 30 µm wires. It is 

appreciated that this method of mounting is not optimized for heat extraction and therefore limits the 

performance of the devices when operating CW. The power-current (P-I) characteristics for a typical 

10 µm × 3000 µm CW operated laser are shown in Fig. 2a as a function of temperature. The inset shows the 

lasing wavelength measured 10 % above threshold at 21˚C and has a peak value of 1297 nm. There is a 
characteristic thermal roll-over in the power level as the current is increased, which is evident when we 

compared to pulsed operation at the same heat-sink temperature, as illustrated in Fig. 2b. As expected, there 

is also an increase in threshold current in CW operation due to the effects of self-heating. When performing 

CW measurements, there is a finite amount of time for self-heating to take full effect as the current increases 

and therefore the P-I data was taken in a quasi-steady state with a step rate of ~1.4 mAs-1. 

Lasers with different cavity lengths have different threshold gain and different threshold carrier density and 

so we tested lasers with cavity lengths of 2000, 3000 and 4000 µm. Each device was operated CW at a constant 

current (1.3 times threshold) with the light output, voltage and temperature monitored at 5 minute intervals. 

Testing was only interrupted to perform light-current-voltage (L-I-V) and wavelength measurements. The 
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experiment revealed a reduction in the light output for lasers of all cavity lengths, with degradation occurring 

more rapidly for lasers with shorter cavity lengths (a greater fractional loss in light output with time). 

Threshold current values (Jth) extracted from interval L-I measurements, plotted in figure 3, show an increase 

in threshold current with aging, which is significant for the shortest (2000 µm) laser which failed to operate 

CW beyond 1000 hours. As aging proceeds, the external differential efficiency of the lasers also reduced, with 

the most significant fall occurring within the first few hundred hours of operation as shown in the insert of 

figure 3 for a 4000 µm long laser. Another 4000 µm laser was operated at 3.0 times threshold to observe how 

the increase in current density, for a given cavity length, would affect degradation rate. Despite the higher 

current density, which was comparable to the operating current density of the 2000 µm laser, the degradation 

rate did not increase significantly. The reason for this, is that above threshold the stimulated emission process 

causes rapid recombination of carriers in the active region of the laser and therefore, does not significantly 

increase the available carriers which can recombine by non-radiate processes, via a defect site.. The 

consequence of this, is that degradation is not so affected by operating current density, but rather the current 

density required to reach threshold. The experimental optical loss data has been obtained by the electrically 

pumped segmented contact method [3]. The early on-set of increased modal-loss is illustrated in figure 4, 

where the modal absorption is plotted as a function of wavelength before and after CW operation of the device. 

The modal-loss includes inter-band absorption of the inhomogeneously broadened dot states and the internal 

optical mode loss (αi)(identified by the dashed lines), observable below the absorption wavelengths of the 

dots. The internal optical loss increased from 2.77 +/- 0.09 cm-1 to 3.15 +/- 0.08 cm-1. This is consistent with 

the blue-shift we observe for laser wavelength following life-tests. 

In summary InAs QD ridge-waveguide lasers of different length grown directly on Si substrates have been 

operated at constant current and interval measurements of L-I-V characteristics used to determine changes in 

threshold current and slope efficiency. The rate of degradation depended on the cavity length of the laser being 

tested, revealing that the lower the operating carrier density, the lower the rate of degradation. Measurements 

also reveal that optical mode loss increases with time on test. 
This research is based on work supported by the UK Engineering Physical Sciences Research Council (EPSRC) under 

grant number EP/P006973/1.   

 
Fig. 1: (a) Schema of epitaxial growth structure including details of defect 

filters and (b) Ridge-waveguide on Si substrate. 

 
Fig. 2 (a) Power-current characteristics vs. temperature for a 10 µm × 3000 

µm laser operating CW. Inset: shows lasing wavelength at 21˚C. (b) 
Power-current curves for 10 µm × 3000 µm laser operated pulsed and CW. 

 

Fig. 3: Threshold current density versus CW operating 

time for lasers of different cavity length. Inset showing 

external differential efficiency (EDE) vs. time for a 

4mm laser aged at 1.3 times threshold. 

 

Fig. 4: Modal loss vs. wavelength showing absorption 

due to the dot states and the observable region of the 

internal optical mode loss (αi) The loss has shifted 

from 2.77 +/- 0.09 cm-1 to 3.15 +/- 0.08 cm-1. 
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