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a b s t r a c t 

The generalized bracket framework is used to derive a family of compressible viscoelastic models. The framework accounts for both reversible and non-reversible 
dynamics and ensures that the derived models are consistent with the laws of thermodynamics. The most general compressible forms of the UCM and Oldroyd B 
models are derived. For these models the elastic strain energy is taken to be that for a Hookean material. Nonlinear elastic strain energy functionals are also considered 
and used to derive new viscoelastic models. The viscometric behaviour of these models is investigated and model predictions are compared with experimental data 
for Boger fluids and mLLDPE. 
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. Introduction 

The ability to predict the flow of non-isothermal viscoelastic fluids is
mportant in many processes in the polymer industry. Over the last 70
ears many significant contributions to the study and characterization of
 vast collection of polymeric materials have been made. However, the-
retical advances in modelling non-isothermal viscoelastic fluids have
eveloped at a more gradual pace. 

A plethora of constitutive equations for modelling viscoelastic flu-
ds under incompressible and isothermal conditions exist in the litera-
ure. However, derivation of suitable models for compressible and non-
sothermal flow problems have received far less attention [5] . In many
umerical investigations bespoke rheological models are crafted to suit
pecific flow problems and therefore are not applicable to more general
roblems. In polymer processing applications, such as injection mould-
ng and high-speed extrusion, the pressure and flow rate may be large.
urthermore polymer melt flow generally happens at high temperatures
here flow parameters and dynamics are a direct result of thermody-
amic relationships between state variables. Hence, compressible and
on-isothermal effects within the viscoelastic regime may become im-
ortant and influence resulting flow phenomena. 

Early work to account for temperature dependence of data used the
rinciple of time-temperature superposition [43] to superimpose me-
hanical property data at different temperatures by means of an exper-
mentally determined shift factor. This was based on extensive experi-
ental evidence of creep and recovery in polymeric liquids and allowed
ata obtained at one temperature to be used to infer those at another. Of
ourse, this is an empiricism that is not universally valid. Nevertheless,
he approach works well for many liquids over a wide range of tem-
✩ Information on the data underpinning the results presented here, including ho
0.17035/d.2019.0069612855 or as a clickable web link http://doi.org/10.17035/d
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eratures. The assumption here is that temperature is a control variable
nd that a given experiment is performed under isothermal conditions.
nfortunately, it is not sufficient only to possess knowledge of how the
aterial properties depend on temperature since in many processing

pplications such as injection moulding, film blowing and wire coating,
ignificant temperature gradients perpendicular to the flow direction
rise due to viscous heating. The spatial variation of the material pa-
ameters requires a more sophisticated modelling approach than simply
ime-temperature superposition in order to describe the flow of poly-
eric liquids more generally. Thus it is necessary to develop a set of

volution equations that are fully non-isothermal and universally valid.
his is a formidable mathematical modelling challenge. 

Coleman and Noll [10,11] introduced the concept of a simple fluid in
hich the stress tensor and heat flux vector at a given material point are

xpressed as functions of the history of these quantities with diminish-
ng influence as one travels into the past. In this theory the stress tensor
nd heat flux vector fields of the simple fluid depend on functionals of
he deformation gradient and temperature, which are required to satisfy
ertain continuity and smoothness conditions in order to facilitate math-
matical analysis. The complexity of the functionals has meant that the
pproach has only been implemented in the simplest of situations and
o its applicability has been rather limited - for example, to linear vis-
oelasticity. Its restriction to fluids with fading memory also means that
he theory excludes Newtonian fluids [44] and all models that explicitly
ontain a solvent viscosity since the Newtonian fluid is recovered as the
elaxation time tends to zero. 

Marucci [36] developed a kinetic model for non-isothermal poly-
eric solutions based on Hookean dumbbell theory. The spring factor

n this non-isothermal theory is assumed to vary linearly with temper-
w to access them, can be found in the Cardiff University data catalogue at 
.2019.0069612855 . 
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ture. Gupta and Metzner [27] noted that the additional term in the
onstitutive equation that accounts for non-isothermal effects has the
rong sign compared with experimental data. They suggested a correc-

ion to the model in which the constant stiffness parameter is replaced
y a variable stiffness parameter which decays algebraically as temper-
ture increases. 

Using an empirical dependence of viscosity on temperature the re-
ulting constitutive equation was used as the basis for numerical simula-
ions by Luo and Tanner [35] and McClelland and Finlayson [37] of film
lowing and extrusion, respectively. Wiest [49] extended these ideas to
he Rouse model and generalized them to models with a discrete spec-
rum of relaxation times. However, the resulting constitutive equations
re restricted to fluids with a low degree of elasticity which means that
hey are not particularly suitable for use in many polymer processing sit-
ations in which elastic effects are just as important as thermal effects.
ugeng et al. [46] proposed a non-isothermal generalization of the PTT
onstitutive equation. However, it is restricted to incompressible fluids
nd suffers from the difficulty in modelling spatial temperature varia-
ions in the kinetic theory. 

The governing equations for fluid motion consist of balance laws
overning mass and momentum transfer as well as a constitutive equa-
ion relating stress and strain and an equation of state coupling ther-
odynamic variables (pressure, density and temperature). Several ap-
roaches exist for deriving classes of models that conform to fundamen-
al principles in physics. Thermodynamic approaches are particularly
esirable since they are based on fewer physical assumptions. 

The observed macroscopic behaviour of a viscoelastic material is a
esult of interactions at the microscopic level. A significant difficulty
n developing mathematical models for complex fluids is how to con-
istently abstract microscopic information to the macroscopic level of
escription. Practical considerations usually mean that the laws of ther-
odynamics are compromised. Nowhere is this more apparent than

n the use of the incompressibility constraint. Invoking incompressibil-
ty eliminates the need to define pressure in terms of other thermody-
amic variables such as density and temperature and instead defines
t as a Lagrange multiplier [5] . However in many industrial processes
nvolving viscoelastic flows such as oil recovery and polymeric injec-
ion moulding, high pressure/temperature variation occurs. In these sit-
ations the incompressibility assumption is unphysical and results in
he irretrievable loss of important thermodynamic information. Nguyen
t al. [40] showed that compressible effects play a significant role in
he prediction of flow during microscopic injection moulding. For ex-
mple, density variations of over 10% were predicted when using the
ompressible generalised Newtonian model. 

There have been a number of advances in the development of models
or compressible viscoelastic fluids as well as nonisothermal flows [5] .
ompressible and non-isothermal extensions to Maxwell models have
een proposed by Belblidia et al. [3] and Wilmanski et al. [50] . How-
ver, the availability of compressible forms of other models is rather
imited. The limitations of the UCM/Oldroyd-B models, especially with
egard to extensional flow problems, compel us to consider a wider
ange of constitutive laws. Ad-hoc models for capturing thermorheo-
ogical behaviour of polymer melts/polymer solutions usually result in
eak and contradictory predictions. Extending isothermal models to
on-isothermal ones is nontrivial and necessitates adherence to ther-
odynamic relations. The aim of this paper is to derive models capable

f capturing a wide range of viscoelastic phenomena. 
Peters [41] developed a framework for deriving so-called ‘semi-

mpirical’ differential models for nonisothermal flows. Importantly the
onstitutive equations discussed by Peters were derived from an energy
quation. The thermodynamic admissibility of a model can be assessed
y use of the Clausius–Duhem inequality. 

The earliest work on a bracket framework for describing fluids began
n the late 1980s [45] . The Hamiltonian/Poisson description of continua
rovided an elegant and computationally powerful tool for analysing the
ehaviour of large particle systems. However progress was hindered as
60 
t was only able to describe conservative systems and therefore friction-
ess flows. The development of a bracket modelling dissipative phenom-
na enabled the applicability of bracket fluid models to be extended to
ngineering problems. 

The dynamics of any real fluid system can be divided into two cat-
gories: reversible and irreversible. Deformation of purely elastic ma-
erials is a reversible process: mechanical energy is stored and can be
eleased into mechanical energy again. Deformation of viscous materials
s irreversible: mechanical energy is entirely dissipated. For viscoelas-
ic materials, mechanical energy is partly stored in elastic energy and
artly dissipated [6] . In addition to the partitioning of elastically stored
nd dissipated energy, two different ways of storing elastic energy in a
iscoelastic material have to be distinguished: entropy and energy elas-
icity. 

In the generalised bracket description each of the terms in the equa-
ions governing state variables are delineated from derivatives of the
elmholtz free energy. The reversible or conservative dynamics are
aptured by the (continuous) Poisson bracket: a bilinear, antisymmet-
ic operator that satisfies the Jacobi identity. The irreversible dynamics
viscosity, relaxation) is described by the dissipative bracket. Beris and
dwards [4] combined the two to create the generalised bracket as a
eans for deriving equations for general fluid systems. The underlying
athematical structure of the generalised bracket in association with

he Hamiltonian/Helmholtz free energy provide powerful tools for de-
eloping properly structured equations. 

This paper is primarily concerned with the modelling of compress-
ble viscoelastic fluids by means of the generalised bracket and en-
rgy/entropy formulation. The main contribution is the derivation of
 compressible version of the FENE model which also captures strain
ardening behaviour. An incompressible form of this model was im-
lemented by Garduño et al. [17] . A compressible and nonisothermal
eneralisation of this model is derived in this paper. In the generalised
racket approach, the second strain hardening regime is modelled by
rescribing a non-zero form of the stick/slip tensor. This ensures that
train hardening effects can be captured whilst the solvent viscosity
emains constant. Additionally compressible, nonisothermal Maxwell-
ype viscoelastic models derived using the generalised bracket are com-
ared to several models proposed in the literature. The differences that
xist between them highlight the necessity for models to be derived from
 powerful theoretical framework that account for compressibility and
hermal effects. The aim is to derive models for viscoelasticity that are
onsistent with thermodynamics, thus avoiding ad-hoc modifications to
xisting models to account for compressible and thermal effects. Exam-
les from the literature are discussed within this context. 

This paper is organised as follows. Section 2 provides an overview
f the fundamental principles of thermodynamics and the derivation
f general governing equations using the generalised bracket formula-
ion. Compressible isothermal and non-isothermal forms of the Oldroyd-
 model derived using the generalized bracket formulation are pre-
ented in Section 3 . Section 4 will emphasize key differences between
he compressible models derived using thermodynamic considerations
nd some of the models that are have been proposed in the literature.
n Section 5 viscoelastic models based on nonlinear elastic strain en-
rgy formulations are discussed. The main contribution is a new non-
sothermal and compressible version of the FENE model that is derived
ithin the generalized bracket framework. Section 6 will then present
 viscometric analysis of the behaviour of the new model, specifically
hear and extensional viscosities. A summary of the paper is then pro-
ided in Section 7 . 

. The generalised bracket formulation 

The continuum mechanics description of fluid dynamics involves
odelling fluids based upon separate conservation principles. In the

hermodynamic approach conservation laws for thermodynamic state
ariables are derived directly from the first and second laws of ther-
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odynamics, thus reducing the number of assumptions used [4] . In
his section we briefly review the generalised bracket and the underly-
ng mathematical principles that govern transport phenomena in fluids.
he central idea in this approach is that the dynamics of an arbitrary
unctional, F , are governed by the evolution equation 

𝑑𝐹 

𝑑𝑡 
= {[ 𝐹 , 𝐻]} (2.1)

here {[ · , · ]} is the generalised bracket and H is the energy of the sys-
em, Ω. The generalised bracket is itself composed of two sub-brackets

[ 𝐹 , 𝐺]} = { 𝐹 , 𝐺} + [ 𝐹 , 𝐺] (2.2)

here F and G are arbitrary functionals over Ω. The first bracket, { · , · },
s the Poisson bracket which describes the conservative dynamics of the
ystem. The second bracket [ · , · ] describes the dissipative processes,
pecifically viscous dissipation, relaxation and non-affine motion. The
oisson bracket has been used in descriptions of particle systems since
he development of Hamiltonian mechanics [29] . The Poisson bracket
ormulation of Hamiltonian mechanics was originally developed for dis-
rete particle systems. The application of Poisson bracket formalism to
ontinuous systems began with Clebsch [8] who proposed a represen-
ation of the fluid velocity in a form that facilitates a canonical Hamil-
onian description. In this case a variational description of the incom-
ressible Euler equations of fluid mechanics was derived. The use of
otentials to represent vector fields has a history that transcends the
amiliar potential decomposition of electricity and magnetism. The aim
s to represent the fluid velocity in a form that facilitates a canonical
amiltonian description. The Poisson bracket can be expressed in terms
f these potentials. Arnold [2] discovered the relationship between the
agrangian and Eulerian descriptions of an incompressible fluid in group
heoretic terms and introduced the Poisson bracket for expressing the
inematics of the velocity field. The Poisson bracket for continuous me-
ia was developed further by Morrison and Greene [38] and Edwards
nd Beris [15] , for example. 

Fundamental to this approach is the formulation of the total energy
f a fluid system. One can express the total energy (the Hamiltonian) as

 = ∫
Ω

ℎ ( 𝜌, u , 𝑠, C ) 𝑑Ω = ∫
Ω

[ 𝐾( 𝜌, u ) + ̂𝑢 ( 𝜌, 𝑠 ) + 𝑤 ( C )] 𝑑Ω (2.3)

In the absence of any field potential the total energy, h , of the sys-
em is divided into three parts: kinetic energy, K , internal energy, �̂� , and
lastic energy, w , where 𝜌 is the density, u is the velocity vector, s is the
ntropy and C is the conformation tensor. Furthermore, when consider-
ng dissipative processes, one has to consider the effects of mechanical
egradation and loss of available energy. Temporal evolution of the sys-
em depends on the energy available to be converted into mechanical
ork. As a result the total energy is replaced by the total available energy

r Helmholtz free energy 

 = ∫
Ω

( ℎ − 𝑠𝑇 ) 𝑑Ω= ∫
Ω

[ 

m ⋅ m 

2 𝜌
+𝑤 ( C ) + ̂𝑢 ( 𝜌, 𝑠 ( 𝜌, C , 𝑇 )) − 𝑠 ( 𝜌, C , 𝑇 ) 𝑇 

] 

𝑑Ω

(2.4) 

here m = 𝜌u is the momentum vector and T is the temperature. The
overning equations for a compressible and nonisothermal fluid system
re then determined by taking derivatives of A with respect to dynamic
tate variables. To introduce the formulation, we begin by considering
he dynamics of non-dissipative systems. 

.1. Equilibrium thermodynamics: The Poisson bracket 

The Poisson bracket is introduced by considering the dynamics of
eversible processes. A reversible process is one in which the system re-
ains in equilibrium and entropy is constant. Consider a closed system,
, with boundary 𝜕Ω. The system has an internal energy, U , which as
61 
e will see is related to the heat energy, Q , of the system. The change of
nternal energy of a system is given by the heat energy transmitted into
he system plus work done, W , by the surroundings on the fluid body 

 𝑈 = 𝑑 𝑄 + 𝑑𝑊 (2.5)

The infinitesimal change in heat energy is given by 𝑑𝑄 = 𝑇 𝑑𝑆 and
he work done by the system is 𝑑 𝑊 = − 𝑝𝑑 𝑉 . Substituting these relations
nto (2.5) yields the fundamental equation of thermodynamics. For some
losed system, Ω the change in energy is determined by the equation 

 𝑈 = 𝑇 𝑑 𝑆 − 𝑝𝑑 𝑉 (2.6)

here p is the pressure exerted onto the surrounding wall, 𝜕Ω, and V
s the volume of Ω. The fundamental Eq. (2.6) forms the basis for the
efinition of pressure (see Section 2.2 ). The fundamental equation gov-
rning non-dissipative fluid transport is given by 

𝑑𝐹 

𝑑𝑡 
= { 𝐹 , 𝐻} (2.7)

here F is some observable (functional) defined over Ω. 
The bracket { · , · } is anticommutative, distributive and satisfies the

acobi identity. Importantly, if any function, 𝜙 is constant over phase
pace then { 𝑓, 𝜙} = 0 for any f . The continuous Poisson bracket in La-

rangian coordinates is given by 

 𝐹 , 𝐻} 𝐿 = ∫
Ω

[ 

𝛿𝐹 

𝛿Γ
𝛿𝐻 

𝛿Π
− 

𝛿𝐹 

𝛿Π
𝛿𝐻 

𝛿Γ

] 

𝑑 3 𝑟 (2.8)

here Γ( r , 𝑡 ) and Π( r , 𝑡 ) are the Lagrangian position and momentum vec-
or fields, respectively [4] . Assume that for a viscoelastic medium the
bservable F is a function of the state variables we wish to model, specif-
cally 𝜌( x , 𝑡 ) , m ( x , 𝑡 ) ∶= 𝜌u ( x , 𝑡 ) , 𝑠 ( x , 𝑡 ) and C ( x , 𝑡 ) . Use of a chain rule ex-
ansion yields 

𝑑𝐹 

𝑑𝑡 
= ∫

Ω

[ 

𝛿𝐹 

𝛿𝜌

𝜕𝜌

𝜕𝑡 
+ 

𝛿𝐹 

𝛿m 

⋅
𝜕 m 

𝜕𝑡 
+ 

𝛿𝐹 

𝛿𝑠 

𝜕𝑠 

𝜕𝑡 
+ 

𝛿𝐹 

𝛿C 

∶ 𝜕 C 

𝜕𝑡 

] 

𝑑Ω (2.9)

In order to obtain working equations, Eq. (2.8) must be expressed
sing a (Cartesian) fixed coordinate frame. An expansion of derivative
erms in Eq. (2.8) yields 

𝛿𝐹 

𝛿𝚪
= ∫

Ω

[ 

𝛿𝐹 

𝛿𝜌

𝛿𝜌

𝛿𝚪
+ 

𝛿𝐹 

𝛿m 

𝛿m 

𝛿𝚪
+ 

𝛿𝐹 

𝛿𝑠 

𝛿𝑠 

𝛿𝚪
+ 

𝛿𝐹 

𝛿C 

𝛿C 

𝛿𝚪

] 

𝑑Ω (2.10)

𝛿𝐹 

𝛿𝚷
= ∫

Ω

[ 

𝛿𝐹 

𝛿𝜌

𝛿𝜌

𝛿𝚷
+ 

𝛿𝐹 

𝛿m 

𝛿m 

𝛿𝚷
+ 

𝛿𝐹 

𝛿𝑠 

𝛿𝑠 

𝛿𝚷
+ 

𝛿𝐹 

𝛿C 

𝛿C 

𝛿𝚷

] 

𝑑Ω (2.11)

Substituting Eqs. (2.10) and (2.11) into Eq. (2.8) and applying in-
egration by parts utilizing the no-slip boundary conditions on 𝜕Ω, the
ulerian form of the continuous bracket is derived. 

 𝐹 , 𝐻} 𝐸 = − ∫
Ω′

[ 

𝛿𝐹 

𝛿𝜌
∇ 𝑗 

( 

𝜌
𝛿𝐻 

𝛿𝑚 𝑗 

) 

− 

𝛿𝐻 

𝛿𝜌
∇ 𝑗 

( 

𝜌
𝛿𝐹 

𝛿𝑚 𝑗 

) ] 

𝑑Ω

− ∫
Ω′

[ 

𝛿𝐹 

𝛿𝑚 𝑘 

∇ 𝑗 

( 

𝑚 𝑘 

𝛿𝐻 

𝛿𝑚 𝑗 

) 

− 

𝛿𝐻 

𝛿𝑚 𝑘 

∇ 𝑗 

( 

𝑚 𝑘 

𝛿𝐻 

𝛿𝑚 𝑗 

) ] 

𝑑Ω

− ∫
Ω′

[ 

𝛿𝐹 

𝛿𝑠 
∇ 𝑗 

( 

𝑠 
𝛿𝐻 

𝛿𝑚 𝑗 

) 

− 

𝛿𝐻 

𝛿𝑠 
∇ 𝑗 

( 

𝑠 
𝛿𝐹 

𝛿𝑚 𝑗 

) ] 

𝑑Ω

− ∫
Ω′

[ 

𝛿𝐹 

𝛿𝐶 𝑖𝑗 
∇ 𝑘 

( 

𝐶 𝑖𝑗 
𝛿𝐻 

𝛿𝑚 𝑘 

) 

− 

𝛿𝐻 

𝛿𝐶 𝑖𝑗 
∇ 𝑘 

( 

𝐶 𝑖𝑗 
𝛿𝐹 

𝛿𝑚 𝑘 

) ] 

𝑑Ω

− ∫
Ω′

𝐶 𝑘𝑖 

[ 

𝛿𝐻 

𝛿𝐶 𝑖𝑗 
∇ 𝑘 

( 

𝛿𝐹 

𝛿𝑚 𝑗 

) 

− 

𝛿𝐹 

𝛿𝐶 𝑖𝑗 
∇ 𝑘 

( 

𝛿𝐻 

𝛿𝑚 𝑗 

) ] 

𝑑Ω

− ∫
Ω′

𝐶 𝑘𝑗 

[ 

𝛿𝐻 

𝛿𝐶 𝑖𝑗 
∇ 𝑘 

( 

𝛿𝐹 

𝛿𝑚 𝑖 

) 

− 

𝛿𝐹 

𝛿𝐶 𝑖𝑗 
∇ 𝑘 

( 

𝛿𝐻 

𝛿𝑚 𝑖 

) ] 

𝑑Ω (2.12) 
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For further details on the coordinate transformation for the contin-
ous Poisson bracket (2.8) –(2.12) see Beris and Edwards [4] . Substi-
uting (2.9) and (2.12) into Eq. (2.7) general dynamic equations for 𝜌,
u , s and C can be established by comparing coefficients in the expan-
ion. In order to complete the process however, one must establish an
xpression for the energy functional (Hamiltonian/Helmholtz free en-
rgy) in terms of the dynamic variables that have been specified. The
implest form of this expression is obtained through a decomposition of
nergy into kinetic and stored/potential energy. In the absence of po-
ential fields (gravity/electromagnetism) the Helmholtz free energy can
e categorised into two parts: kinetic and internal energy. Beris and Ed-
ards [4] include further discussion of field energy potential terms that

an be modelled relatively easily using this method. Classical forms of
he expressions for K and �̂� are used. Taking derivatives of Eq. (2.3) we
btain 

𝛿𝐻 

𝛿𝐦 

= 

𝐦 

𝜌
= 𝐮 𝛿𝐻 

𝛿𝑠 
= 𝑇 

𝛿𝐻 

𝛿𝜌
= − 

𝐦 ⋅𝐦 

2 𝜌2 
+ 

𝜕 ̂𝑢 

𝜕𝜌
(2.13)

This equation demonstrates that derivatives with respect to the com-
onents of structural variable C are solely dependent on the expression
or strain-energy, w , that is chosen. Substituting these expressions into
2.12) and comparing coefficients we obtain the system of equations for
on-dissipative compressible viscoelastic flow 

𝜕𝜌

𝜕𝑡 
= −∇ ⋅ ( 𝜌u ) 

𝜕𝑠 

𝜕𝑡 
= −∇ ⋅ ( 𝑠 u ) 

𝜕 u 

𝜕𝑡 
= −∇ 𝑝 − 𝜌u ⋅ ∇ u + 2∇ ⋅

( 

C ⋅
𝜕𝐻 

𝜕 C 

) 

𝜕 C 

𝜕𝑡 
= −∇ ⋅ ( u C ) + ∇ u ⋅ C + C ⋅ ∇ u 

𝑇 (2.14)

Pressure is automatically defined as a function of the dynamic vari-
bles and derivatives of the Helmholtz free energy density h : 

 ∶= 𝜌
𝜕ℎ 

𝜕𝜌
+ m ⋅

𝜕ℎ 

𝜕 m 

+ 𝑠 
𝜕ℎ 

𝜕𝑠 
+ C ∶ 𝜕ℎ 

𝜕 C 

− ℎ. (2.15)

The first three equations in (2.14) represent the conservation of mass,
ntropy (for non-dissipative processes) and momentum (in the absence
f diffusion). The non-dissipative description of fluid motion contains no
iscous or relaxation terms, hence the viscous stress tensor and relax-
tion terms in the conformation tensor equation do not appear. Another
ignificant feature of the continuous Poisson bracket is that the material
nd upper convected derivatives are the natural time derivatives that
rise in the derivation of the balance law for u and C , respectively. The
ast equation in (2.14) is equivalent to the vanishing Truesdell derivative
f C , hence material objectivity is satisfied from the outset. 

In the case of non-dissipative systems, the total available energy and
otal energy are equivalent. Distinctions between the two only become
mportant when considering the dynamics of entropy producing sys-
ems in which mechanical energy is degraded. The system Eq. (2.14) is
dequate for describing compressible fluids such as liquid helium and
ther so-called superfluids that exhibit no dissipative phenomena (vis-
osity/relaxation). When modelling particle systems that permit dissi-
ative phenomena, irreversible (non-equilibrium) thermodynamic pro-
esses also need to be modelled. 

.2. Non-equilibrium thermodynamics: The dissipative bracket 

When describing conservative systems the underlying assumption is
hat the time scale for changes in the system are large when compared to
he time scale of changes of internal variables. If we intend to model sys-
ems that exhibit relaxation/dissipation on time scales similar to those
f the system it is no longer sufficient to assume that the dynamics of
62 
he system variables are reversible. All real viscoelastic fluids exhibit
issipative behaviour in the form of viscous dissipation and stress relax-
tion, with both effects decreasing the amount of energy available to be
onverted into mechanical work. 

Since the Poisson bracket is only suitable for modelling conserva-
ive dynamics it is necessary to derive an additional bracket to model
rreversible dynamics. Early work on the combination of Hamiltonian
nd dissipative dynamics is due to Dzyaloshinskii and Volovick [14] ,
rmela [20] , Kaufman [32] , Morrison [39] and Grmela [19] . The con-
ept of the dissipation bracket was introduced by Grmela [19] . The first
pplication of the generalized bracket formulation in rheology appeared
n Grmela [21] where the Poisson bracket without the s variable was in-
roduced. A review of the recent development and applications of the
eneralized bracket formulation can be found in Grmela [23] . Beris &
dwards [15] introduced the unified bracket used in this paper. The in-
ernal dynamics of a viscoelastic fluid system is completely described
y Eq. (2.7) with A being the Helmholtz free energy. Unlike the Pois-
on bracket an exact expression for the dissipation bracket [ F, G ] cannot
e derived from an equivalent discrete binary operator applicable to ki-
etic modelling of particle systems and so is only makes sense when a
ontinuum approximation is used. Constraints and degeneracy condi-
ions are imposed to ensure the non-decrease of entropy (second law of
hermodynamics). For the generalized bracket we must also ensure that
 𝐻∕ 𝑑 𝑡 = 0 
𝑑𝐻 

𝑑𝑡 
= { 𝐻 , 𝐻 } + [ 𝐻 , 𝐻 ] = 0 ⇒ [ 𝐻 , 𝐻 ] = 0 

This arises by assuming the system is isolated, or at least surrounded
y an adiabatic wall [4] . Additionally the entropy functional, S , must
atisfy 

𝑑𝑆 

𝑑𝑡 
= { 𝑆, 𝐻} + [ 𝑆, 𝐻] ≥ 0 

hich in turn means [ S, H ] ≥ 0 as { 𝑆, 𝐻} = 0 . Throughout this paper we
ill use the Boltzmann definition of entropy (see Grmela and Carreau

24] and Beris and Edwards [4] for further details) 

( 𝜌, C , 𝑇 ) = ∫
Ω

𝑠 ( 𝜌, C , 𝑇 ) 𝑑Ω = ∫
Ω

𝛼𝜌𝑘 𝑏 

2 
log det 

( 

𝐾 C 

𝜌𝑘 𝑏 𝑇 

) 

𝑑Ω (2.16)

here 𝛼 is the mass fraction, k b is the Boltzmann constant, K is the spring
onstant. The total mass of the system  is conserved where 

 ≡ ∫
Ω

𝜌𝑑Ω, 

herefore 
𝑑 

𝑑𝑡 
= {  , 𝐻} + [  , 𝐻] = 0 , 

nd hence [  , 𝐻] = 0 . Moreover, the Hamiltonian must be generalised
n the non-equilibrium nonisothermal case to account for mechanical

egradation . Not all of the energy (represented by the Hamiltonian) is
available’ to be used for work in a nonisothermal system that is not
n thermal equilibrium. Instead a fraction of the total energy, propor-
ional to temperature and entropy, cannot be used. The Helmholtz free
nergy A replaces the Hamiltonian as the generating functional used in
q. (2.7) . Given two observables, F and G operating on Ω, the most gen-
ral form of the dissipation bracket, obeying the first and second laws
f thermodynamics, is given by 

 𝐹 , 𝐺] = ∫
Ω

[ 

Ξ

( 

𝐿 

[ 

𝛿𝐹 

𝛿𝜔 
, ∇ 

𝛿𝐹 

𝛿𝑤 

] 

; 𝛿𝐺 

𝛿𝑤 

; 𝛿𝐺 

𝛿𝑤 

) 

− 

1 
𝑇 

𝛿𝐹 

𝛿𝑠 
Ξ

( 

𝐿 

[ 

𝛿𝐺 

𝛿𝜔 
, ∇ 

𝛿𝐺 

𝛿𝑤 

] 

; 𝛿𝐺 

𝛿𝑤 

; 𝛿𝐺 

𝛿𝑤 

) ] 

𝑑Ω (2.17) 

here 𝜔 = ( 𝜌, … , m ) is a vector containing the dynamic variables, L [ · ]
enotes that Ξ is linear with respect to its arguments and Ξ is given by 

= Σ𝑖,𝑗 

[ 

�̂� 𝑖𝑗 

𝛿𝐹 

𝛿𝑤 𝑖 

𝛿𝐺 

𝛿𝑤 𝑗 

+ �̂� 𝑖𝑗𝑘 

𝛿𝐹 

𝛿𝑤 𝑖 

∇ 𝑘 

( 

𝛿𝐺 

𝛿𝑤 𝑗 

) 
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+ �̂� 𝑖𝑗𝑘 ∇ 𝑘 

( 

𝛿𝐹 

𝛿𝑤 𝑖 

) 

𝛿𝐺 

𝛿𝑤 𝑗 

+ �̂� 𝑖𝑗𝑘𝑙 ∇ 𝑘 

𝛿𝐹 

𝛿𝑤 𝑖 

∇ 𝑙 

𝛿𝐺 

𝛿𝑤 𝑗 

] 

(2.18) 

Eq. (2.17) represents the most general expression possible for a dis-
ipation bracket consistent with the first and second laws of thermody-
amics. In Eq. (2.17) , �̂� 𝑖𝑗 , �̂� 𝑖𝑗𝑘 , �̂� 𝑖𝑗𝑘 , �̂� 𝑖𝑗𝑘𝑙 are phenomenological coeffi-
ient matrices, which depend on the dynamic variables of the system.
eris and Edwards [4] discuss the general forms that these coefficient
atrices take when used for modelling a range of fluids and composite

heological materials. Most well-known viscoelastic models can be de-
ived by specifying a non-zero form of each phenomenological tensor.
n Section 5 we consider nonisotropic behaviour and therefore propose
onzero forms of all four tensors. However Eq. (2.17) needs to be ex-
ressed in order to give physical meaning to each of the coefficient ma-
rices. For a general viscoelastic fluid the dissipation bracket takes the
orm 

 𝐹 , 𝐻] = − ∫
Ω

𝑄 𝑖𝑗𝑘𝑙 ∇ 𝑖 

( 

𝛿𝐹 

𝛿𝑚 𝑗 

) 

∇ 𝑘 

( 

𝛿𝐻 

𝛿𝑚 𝑙 

) 

𝑑Ω

+ ∫
Ω

1 
𝑇 

𝛿𝐹 

𝛿𝑠 
𝑄 𝑖𝑗𝑘𝑙 ∇ 𝑖 

( 

𝛿𝐻 

𝛿𝑚 𝑗 

) 

∇ 𝑘 

( 

𝛿𝐻 

𝛿𝑚 𝑙 

) 

𝑑Ω

− ∫
Ω

Λ𝑖𝑗𝑘𝑙 
𝛿𝐹 

𝛿𝐶 𝑖𝑗 

𝛿𝐻 

𝛿𝐶 𝑘𝑙 
𝑑Ω

+ ∫
Ω

1 
𝑇 

𝛿𝐹 

𝛿𝑠 
Λ𝑖𝑗𝑘𝑙 

𝛿𝐻 

𝛿𝐶 𝑖𝑗 

𝛿𝐻 

𝛿𝐶 𝑘𝑙 
𝑑Ω

− ∫
Ω

𝐿 𝑖𝑗𝑘𝑙 

( 

∇ 𝑖 

𝛿𝐹 

𝛿𝑚 𝑗 

𝛿𝐺 

𝛿𝐶 𝑘𝑙 
− ∇ 𝑖 

𝛿𝐺 

𝛿𝑚 𝑗 

𝛿𝐹 

𝛿𝐶 𝑘𝑙 

) 

𝑑Ω

− ∫
Ω

𝛼𝑖𝑗 ∇ 𝑖 

( 

𝛿𝐹 

𝛿𝑠 

) 

∇ 𝑘 

( 

𝛿𝐻 

𝛿𝑠 

) 

𝑑Ω

+ ∫
Ω

1 
𝑇 

𝛿𝐹 

𝛿𝑠 
𝛼𝑖𝑗 ∇ 𝑖 

( 

𝛿𝐻 

𝛿𝑠 

) 

∇ 𝑘 

( 

𝛿𝐻 

𝛿𝑠 

) 

𝑑Ω (2.19) 

here 𝚲 and Q are fourth-order relaxation and viscosity tensors, respec-
ively, L represents non-affine interactions between the velocity gradient
nd conformation tensor fields and 𝜶 is the thermal conductivity matrix.

The forms that the two dissipative tensors can take vary signifi-
antly due to the limited number of assumptions used in this formu-
ation. Most importantly 𝚲, Q and L have to satisfy the Onsager recip-
ocal relations and frame indifference principles (which ensure that [ · ,
] is non-negative definite). The generalised bracket for general non-
sothermal viscoelastic fluids is thus obtained by adding Eqs. (2.19) to
2.12) . Expanding the left-hand side of Eq. (2.1) using the chain rule and
hen comparing like terms with the right-hand side of Eqs. (2.19) and
2.12) we obtain the differential form of the governing equations for the
tate variables 

𝜕𝜌

𝜕𝑡 
+ ∇ ⋅ ( 𝜌u ) = 0 (2.20) 

( 

𝜕 u 

𝜕𝑡 
+ u ⋅ ∇ u 

) 

= −∇ 𝑝 + ∇ ⋅ 𝕋 (2.21) 

𝜕𝑠 

𝜕𝑡 
+ ∇ ⋅ ( 𝑠 u ) = 

1 
𝑇 

Q ∶∶ 

( 

∇ u ⊗ ∇ u 

) 

+ 

1 
𝑇 
∇ ⋅ ( 𝜶𝑇 ∇ 𝑇 ) 

+ 

1 
𝑇 
𝚲 ∶∶ 

( 

𝛿𝐻 

𝛿C 

⊗
𝛿𝐻 

𝛿C 

) 

(2.22) 

▿
 + (∇ ⋅ u ) C = − 𝚲 ∶ 𝛿𝐻 + L ∶ ∇ u (2.23) 
𝛿C c  

63 
here the upper-convected derivative of C is defined as 
▿
 = 

𝐷 C 

𝐷𝑡 
− ∇ u ⋅ C − C ⋅ ∇ u 

𝑇 

nd the extra-stress tensor, 𝕋 , is given by 

 = Q ∶ ∇ u + 2 𝛿𝐻 

𝛿C 

⋅ C + L ∶ 𝛿𝐻 

𝛿C 

(2.24)

Eqs. (2.20) –(2.23) is a generalization of single conformation tensor
iscoelastic fluid models. Constitutive equations are derived by specify-
ng the forms of the Hamiltonian (Helmholtz free energy in the case of
onisothermal fluids) and tensors 𝚲, Q and L (for further discussion of
he general governing Eqs. (2.20) –(2.23) , see [4] p. 328–335). 

.3. The energy balance equation 

A generalised form of the energy balance equation can be derived
rom Eqs. (2.20) –(2.23) . The time derivative of the Helmholtz free en-
rgy is given by 

𝐷𝑎 

𝐷𝑡 
= 

𝐷 

𝐷𝑡 

( 

𝜌

2 
u ⋅ u + �̂� ( 𝜌, 𝑠, C ) 

) 

(2.25)

aking the derivative of �̂� with respect to t yields 

𝐷 ̂𝑎 

𝐷𝑡 
= 

𝜕 ̂𝑎 

𝜕𝜌

𝐷𝜌

𝐷𝑡 
+ 

𝜕 ̂𝑎 

𝜕𝑠 

𝐷𝑠 

𝐷𝑡 
+ 

𝜕 ̂𝑎 

𝜕 C 

∶ 𝐷 C 

𝐷𝑡 
(2.26)

t can be shown, via substitution of (2.22) into Eq. (2.26) , that in the
bsence of external thermal energy potential, the equation for internal
nergy is given by 

𝐷 ̂𝑎 

𝐷𝑡 
+ (∇ ⋅ u ) ̂𝑎 = ∇ ⋅ q + �̂� ∶ ∇ u (2.27)

here 

̂ = 𝕋 − 𝑝 I (2.28)

nd q = − 𝜶∇ 𝑇 . The thermal conductivity matrix, 𝜶, is a function of the
onformation stress, to the extent dictated by the Cayley–Hamilton the-
rem (see [4] p. 331) 

= 𝑎 1 I + 𝑎 2 C + 𝑎 3 C ⋅ C (2.29)

here scalar coefficients a 1 , a 2 and a 3 are, in general, functions of the
nvariants of the conformation stress [4] . To ensure nonnegative entropy
roduction, the following conditions must hold: 

 1 ≥ 0 , 𝑎 3 ≥ 0 , 𝑎 2 ≥ −2 
√
𝑎 1 𝑎 3 (2.30)

ote that the conditions found in Eq. (9.1–6) of the book of Edwards
nd Beris [16] are incorrect. 

The body of theoretical and experimental work suggests thermal con-
uctivity in polymeric fluids is anisotropic under flowing conditions
4,28] . Experiments on cross-linked elastomers show a significant en-
ancement in thermal conductivity in the direction of stretch for natu-
al rubber subjected to uniaxial elongation [47] . Moreover, Cocci and
icot [9] and Picot et al. [42] showed that, for polymeric liquids, ther-
al conductivity in the direction of strain of the macromolecule was
uch higher than perpendicular to it. For dilute polymer solutions Van
en Brule [48] defined a 1 as the anisotropic thermal conductivity of the
olvent and a i i ∈ {2, 3} are given by 

 2 = 

3 𝜁
2 𝑚 

𝛼𝜌𝑘 𝑏 𝑎 3 = 0 (2.31)

here m is the mass of the polymer and 𝜁 is the friction coefficient. A de-
ailed review of the theory behind the derivation of the energy equation
as given by Dressler et al. [12] . 

The nascent field of theoretical non-isothermal rheology contains
everal controversies that need to be resolved in relation to nonequilib-
ium thermodynamics. The controversies arise when considering com-
lex fluids and nonlinear time evolution far from equilibrium. The ques-
ions that need to be addressed are: what are the additional state vari-
bles, what is the physical meaning and role of time evolution of con-
epts such as nonequilibrium entropy and nonequilibrium temperature.
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Grmela et al. [25] chose two extra fields, one describing mechanical
eformation of the macromolecules and the other describing the entropy
ux. Grmela [22] argues that it is reasonable to expect that the govern-

ng equations on all levels of description possess a common structure
hat guarantees that their solutions agree with the experimentally ob-
erved compatibilities with equilibrium thermodynamics and between
he two levels of description. It is clear that in nonequilibrium thermody-
amics, rheology plays an important role and there remains much to be
ccomplished. However, in the present paper we focus on the influence
f viscoelasticity on the energy equation and ignore, for the present, the
ossible inclusion of internal variables. 

.4. Summary of the generalised bracket method 

In this section we have presented the theory underlying the gen-
ralised bracket method for deriving viscoelastic fluid models, and de-
cribed important properties of the Poisson and dissipative brackets. The
eneralised bracket method is modular and can be summarised as fol-
ows: 

• Module 1 : Choose variables that characterise the state of the system,
i.e mass density, 𝜌, momentum, m = 𝜌u , entropy, s and conformation
stress C . It is at this stage that the continuum approximation is made.

• Module 2 : Choose a form of the energy and entropy (or Helmholtz
free energy) functional. Throughout this paper we use the standard
Marrucci definition of entropy ( Eq. (2.16) ). The constitutive equa-
tion depends on the elastic strain energy and entropy functionals.
We consider both linear and nonlinear strain energy formulations
when developing the various models detailed in the next sections. 

• Module 3 : Choose the form of the phenomenological tensors in the
dissipative bracket, ensuring that the dissipative tensors satisfy the
Onsager reciprocal relations and the resulting constitutive equation
satisfies Hulsen’s theorem. In this paper we make use of the ‘non-
affine’ tensor (Beris and Edwards) to derive a new model for Boger
fluids. 

These three modules provide a framework for deriving thermody-
amically consistent models for transport in viscoelastic fluids. In the
ollowing sections compressible forms of the UCM and Oldroyd-B mod-
ls are derived thermodynamically via this bracket formalism. The equa-
ions given by Eqs. (2.20) –(2.23) provide the most general description
or thermodynamically consistent compressible models. 

. The compressible Oldroyd-B model 

Maxwell-type fluids can be modelled within the generalised bracket
ramework. The Oldroyd-B model is essentially an extension of the UCM
odel that is able to provide a mathematical description of fluids with
 (Newtonian) solvent constituent in addition to an elastic or poly-
eric component. First of all, it is necessary to specify the form of

he Helmholtz free energy. Given a Helmholtz free energy of the form
2.3) the system of equations for mass, momentum, entropy and consti-
utive law are given by Eqs. (2.20) –(2.23) . For an Oldroyd-B fluid the
xtra stress tensor is assumed to comprise polymeric and solvent contri-
utions. In order to capture these two contributions, nonzero forms of
and Q need to be specified [4] . 

.1. Isothermal compressible Oldroyd B model 

In the first instance we consider the isothermal case where the fluid
arameters (viscosities, relaxation time) are assumed to be independent
f temperature. The components of the relaxation tensor are given by 

𝑖𝑗𝑘𝑙 = 

1 
2 𝛼𝜌𝐾𝜆2 

( 𝛿𝑗𝑙 𝐶 𝑖𝑘 + 𝛿𝑗𝑘 𝐶 𝑖𝑙 +𝛿𝑖𝑙 𝐶 𝑗𝑘 + 𝛿𝑖𝑘 𝐶 𝑗𝑙 ) + 

2 
3 𝑛𝐾 

( 

1 
𝜆0 

− 

1 
𝜆2 

) 

𝛿𝑖𝑗 𝐶 𝑘𝑙 

(3.1)
64 
here 𝜆0 and 𝜆2 are the relaxation times of the fluid, 𝛼 is the mass
raction of the polymer [12] and K is the spring factor. Essentially 𝜆0 and

2 represent the trace and the traceless stress relaxation, respectively. 
The expression for 𝚲 given by Eq. (3.1) satisfies the Onsager recipro-

al relations and is non-negative definite. For the purposes of this paper
e will only consider fluids characterised by a single relaxation time

.e. 𝜆0 = 𝜆2 = 𝜆. In general these material parameters are functions of
emperature i.e. 𝜆 = 𝜆( 𝑇 ) . 

Eq. (3.1) is one of many forms that 𝚲 can take. The only strict re-
uirement is that the equation for the conformation tensor ensures C ( x , 𝑡 )
s non-negative definite ∀t > 0. We have chosen this form as it is one of
he simpler expressions for relaxation. In reality both the viscosity and
elaxation time of a fluid will be functions of pressure and temperature
ith relationships being uniquely determined for each specific material.
he most general form of the viscosity tensor is given by 

 𝑖𝑗𝑘𝑙 = 𝜇𝑠 ( 𝛿𝑖𝑘 𝛿𝑗𝑙 + 𝛿𝑖𝑙 𝛿𝑗𝑘 ) + 𝜂𝑠 ( 𝛿𝑖𝑘 𝛿𝑗𝑙 − 𝛿𝑖𝑙 𝛿𝑗𝑘 ) + 𝜅′
𝑠 
𝛿𝑖𝑗 𝛿𝑘𝑙 (3.2)

To satisfy frame indifference (principle of objectivity), 𝜂s has to be
et to zero so that 

 𝑖𝑗𝑘𝑙 = 𝜇𝑠 ( 𝛿𝑖𝑘 𝛿𝑗𝑙 + 𝛿𝑖𝑙 𝛿𝑗𝑘 ) + 𝜅′
𝑠 
𝛿𝑖𝑗 𝛿𝑘𝑙 (3.3)

here 𝜇s is the shear viscosity and 𝜅′
𝑠 
= 𝜅𝑠 − 

2 
3 𝜇𝑠 is the ‘second viscosity’.

sing 𝜅′
𝑠 

instead of the bulk viscosity 𝜅s permits the separation of gradient
nd divergence free terms in the Newtonian viscosity. 

Eq. (3.3) provides the most general form of a fourth order viscosity
ensor that satisfies the principle of frame indifference and the Onsager
eciprocal relations [4] . The subscript ‘s’ denotes that Q is normally as-
ociated with the viscosity of the solvent (Newtonian) component of the
uid. The polymeric viscosity and relaxation time of the fluid are related
hrough the general elastic modulus, defined 

( 𝜌, 𝑇 ) = 𝛼𝜌𝑘 𝑏 𝑇 = 𝜇𝑝 ( 𝜌, 𝑇 )∕ 𝜆( 𝑇 ) (3.4)

here 𝛼 is the polymeric mass fraction, k b is the Boltzmann constant

p ( 𝜌, T ) is the polymeric viscosity and 𝜆( T ) is the relaxation time. In
he case of isothermal flow the temperature is constant. The Helmholtz
ree energy density is given by the sum of the kinetic and internal en-
rgy (elastic strain energy, chemical potential etc.) less a degradation

erm proportional to the Boltzmann entropy and temperature (for more
etails on the relationship between the Hamiltonian and Helmholtz free
nergy and relationships between the derivatives of the two functionals
ee Beris and Edwards [4] ) 

 [ 𝜌, 𝜌u , 𝑇 , C ] = ∫
Ω

𝑎 ( 𝜌, 𝜌u , 𝑇 , C ) 𝑑Ω = ∫
Ω

( 

𝜌u ⋅ 𝜌u 

2 𝜌
+ �̂� ( 𝜌, 𝑇 , C ) 

) 

𝑑Ω (3.5)

here 

̂ = �̂� 0 ( 𝜌, 𝑇 ) + 

𝛼𝜌𝐾 

2 
( 𝑡𝑟 C − 3) − 

𝛼𝜌𝑘 𝑏 𝑇 

2 
log det 

( 

C 𝐾 

𝜌𝑘 𝑏 𝑇 

) 

(3.6)

The additional term, �̂� 0 ( 𝜌, 𝑇 ) , in Eq. (3.5) represents the Helmholtz
ree energy density for the fluid in the ‘rest’ state (i.e. not depending on
 ) of a fluid. It then follows that 

𝛿𝐴 

𝛿C 

= 

𝛼𝜌𝐾 

2 
I − 

𝛼𝜌𝑘 𝑏 𝑇 

2 
C 

−1 (3.7)

Substituting (3.7) and (3.1) into the equation for the conformation
ensor in (2.22) we can write 

∶ 𝛿𝐴 

𝛿C 

= 

1 
𝜆

C − 

1 
𝜆

𝛼𝜌𝑘 𝑏 𝑇 

𝐾 

I , (3.8)

hus obtaining a dynamic equation for the conformation tensor 

▿
 +(∇ ⋅ u ) C = − 

1 
𝜆

( 

C − 

𝐺 

𝛼𝐾 

I 

) 

(3.9)

Eq. (2.24) becomes 

 = 2 𝜇𝑠 ( 𝑇 ) 𝔻 + 𝜅′( 𝑇 )(∇ ⋅ u ) I + 𝛼𝐾( 𝑇 ) C − 𝛼𝜌𝑘 𝑏 𝑇 I (3.10)

𝑠 
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The extra stress can be divided into solvent, 𝝉s , and polymeric, 𝝉p ,
arts where 𝕋 = 𝝉𝑠 + 𝝉𝑝 .The equation for the polymeric part of the extra
tress is given by 

𝑝 = 𝛼𝐾( 𝑇 ) C − 𝛼𝜌𝑘 𝑏 𝑇 I (3.11)

Note that C ≡ 𝜌c where 𝜌 is the density and c is the kinematic con-
ormation tensor. Conservation of mass can be written 

𝐷𝜌

𝐷𝑡 
+ 𝜌(∇ ⋅ u ) = 0 (3.12)

Using Eqs. (3.9) and (3.12) the constitutive equation in terms of the
inematic conformation tensor can be derived 

( 𝑇 ) 
▿
c + c = 

𝑘 𝑏 𝑇 

𝐾( 𝑇 ) 
I (3.13)

Writing Eq. (3.11) in terms of the kinematic conformation stress 

𝑝 = 𝛼𝜌𝐾( 𝑇 ) c − 𝛼𝜌𝑘 𝑏 𝑇 I (3.14)

nd taking the upper convected derivative of (3.14) we obtain 

▿
𝑝 = 𝛼

𝐷𝜌

𝐷𝑡 
𝐾 c + 𝛼𝜌𝐾 

▿
c − 𝛼𝜌𝑘 𝑏 𝑇 

▿
I − 𝛼

𝐷𝜌

𝐷𝑡 
𝑘 𝑏 𝑇 I . (3.15)

Eliminating the material derivative of 𝜌 using Eq. (3.12) yields 

▿
𝑝 = 𝛼𝜌𝐾 

▿
c − 𝛼𝜌𝑘 𝑏 𝑇 

▿
I −(∇ ⋅ u )[ 𝛼𝜌𝐾 c − 𝛼𝜌𝑘 𝑏 𝑇 I ] . 

his equation can be simplified using Eq. (3.14) to give 

▿
𝑝 +(∇ ⋅ u ) 𝝉𝑝 = 𝛼𝜌𝐾 

▿
c − 𝛼𝜌𝑘 𝑏 𝑇 

▿
I (3.16)

nd finally we arrive at the constitutive equation for the polymer stress(▿
𝝉𝑝 +(∇ ⋅ u ) 𝝉𝑝 

)
+ 𝝉𝑝 = 2 𝜆𝛼𝜌𝑘 𝑏 𝑇 𝔻 (3.17)

Eq. (3.17) represents the most general form of constitutive equation
or a compressible Oldroyd-B fluid with a single relaxation time. How-
ver, this equation is not in a form that can be used in any practical sense
o obtain numerical approximations to viscoelastic flow problems. In or-
er to reduce the equations to a more tractable form we write down the
onstitutive equations for the solvent and polymeric contributions to 𝕋 

𝝉𝑠 = 2 𝜇𝑠 𝔻 + 𝜅′
𝑠 
(∇ ⋅ u ) I 

𝜆
▿
𝝉𝑝 +(1 + 𝜆(∇ ⋅ u )) 𝝉𝑝 = 2 𝜇𝑝 𝔻 (3.18) 

hen the incompressibility condition ( ∇ ⋅ u = 0 ) is imposed and defin-
ng the polymer viscosity 𝜇𝑝 = 𝜆𝛼𝜌𝑘 𝑏 𝑇 , we recover the incompressible
orm of the Oldroyd-B constitutive law given by 

𝝉𝑠 = 2 𝜇𝑠 𝔻 

𝜆
▿
𝝉𝑝 + 𝝉𝑝 = 2 𝜇𝑝 𝔻 (3.19) 

Eq. (3.18) represents the constitutive equation for an isothermal
ompressible Oldroyd-B fluid with relaxation time independent of C .
he system given by Eqs. (2.20) –(2.23) is also capable of modelling vis-
oelastic fluids with a spectrum of relaxation times. We now consider
he extension of Eq. (3.18) to the nonisothermal case when the fluid
arameters are functions of temperature. 

.2. Nonisothermal and compressible Oldroyd B model 

For the nonisothermal case we consider the fluid parameters to be
emperature dependent i.e. 𝜇𝑠 = 𝜇𝑠 ( 𝑇 ) , 𝜇𝑝 = 𝜇𝑝 ( 𝜌, 𝑇 ) 𝜆 = 𝜆( 𝑇 ) . The relax-
tion tensor is given by 

𝑖𝑗𝑘𝑙 = 

1 
2 𝛼𝜌𝐾( 𝑇 ) 𝜆( 𝑇 ) 

( 𝛿𝑗𝑙 𝐶 𝑖𝑘 + 𝛿𝑗𝑘 𝐶 𝑖𝑙 + 𝛿𝑖𝑙 𝐶 𝑗𝑘 + 𝛿𝑖𝑘 𝐶 𝑗𝑙 ) (3.20)

In several instances in the literature the spring factor is assumed to
ave a linear dependence on temperature, 

( 𝑇 ) = 𝑘 𝑇 𝜇 (3.21)
𝑏 

65 
here 𝜇 is a constant dependent on the equilibrium extension of the
olymers. Linear dependence of the spring factor on temperature was
ddressed by Gupta and Metzner [27] , who pointed out that when
q. (3.21) is used the resulting constitutive model could not adequately
escribe experimental data. We will consider the spring factor to be a
eneral function of temperature to be determined empirically. 

The relaxation tensor with components given by (3.20) was initially
roposed by Dressler et al. [12] . Likewise the components of the viscous
issipation tensor are given by 

 𝑖𝑗𝑘𝑙 = 𝜇𝑠 ( 𝑇 )( 𝛿𝑖𝑘 𝛿𝑗𝑙 + 𝛿𝑖𝑙 𝛿𝑗𝑘 ) + 𝜅′
𝑠 
( 𝑇 ) 𝛿𝑖𝑗 𝛿𝑘𝑙 (3.22)

here 𝜅′
𝑠 
( 𝑇 ) = 𝜅𝑠 ( 𝑇 ) − 

2 
3 𝜇𝑠 ( 𝑇 ) . With temperature a non-constant vari-

ble, the upper convected derivative of (3.14) is given by 

▿
𝑝 = 𝛼

𝐷𝜌

𝐷𝑡 
𝐾 c + 𝛼𝜌

𝐷𝐾( 𝑇 ) 
𝐷𝑡 

c + 𝛼𝜌𝐾 

▿
c − 𝛼𝜌𝑘 𝑏 𝑇 

▿
I − 𝛼

𝐷𝜌

𝐷𝑡 
𝑘 𝑏 𝑇 I − 𝛼𝜌𝑘 𝑏 

𝐷𝑇 

𝐷𝑡 
I 

(3.23) 

ubstituting Eq. (3.12) into (3.23) we obtain 

▿
𝑝 = 𝛼𝜌𝐾 

▿
c − 𝛼𝜌𝑘 𝑏 𝑇 

▿
I + 

( 

−(∇ ⋅ u ) + 

𝐷 ln 𝐾( 𝑇 ) 
𝐷𝑡 

) 

[ 𝛼𝜌𝐾 c − 𝛼𝜌𝑘 𝑏 𝑇 I ] 

+ 

( 

𝐷 ln 𝐾( 𝑇 ) 
𝐷𝑡 

− 

𝐷 ln 𝑇 
𝐷𝑡 

) 

𝛼𝜌𝑘 𝑏 𝑇 I 

liminating c using Eqs. (3.13) and (3.14) yields 

𝜆( 𝑇 ) 
( 

▿
𝝉𝑝 + 

( 

(∇ ⋅ u ) − 

𝐷 ln 𝐾( 𝑇 ) 
𝐷𝑡 

) 

𝝉𝑝 + 𝛼𝜌𝑘 𝑏 𝑇 
▿
I 

) 

+ ( 𝝉𝑝 + 𝛼𝜌𝑘 𝑏 𝑇 I ) 

= 𝛼𝜌𝑘 𝑏 𝑇 I + 

( 

𝐷 ln 𝐾( 𝑇 ) 
𝐷𝑡 

− 

𝐷 ln 𝑇 
𝐷𝑡 

) 

𝛼𝜌𝑘 𝑏 𝑇 I , 

his equation contains additional terms due to the non-constant temper-
ture and spring constant. With the inclusion of the solvent stress the
onstitutive law is given by 

𝜆( 𝑇 ) 
▿
𝝉𝑝 + 

[ 
1 + 𝜆( 𝑇 ) 

( 

∇ ⋅ u − 

𝐷 ln 𝐾( 𝑇 ) 
𝐷𝑡 

) ] 
𝝉𝑝 

= 𝐺( 𝜌, 𝑇 ) 𝜆( 𝑇 ) 
[ 
2 𝔻 + 

( 

𝐷 ln 𝐾( 𝑇 ) 
𝐷𝑡 

− 

𝐷 ln ( 𝑇 ) 
𝐷𝑡 

) 

I 

] 

𝝉𝑠 = 2 𝜇𝑠 ( 𝑇 ) 

( 

𝔻 − 

1 
3 
(∇ ⋅ u ) I 

) 

+ 𝜅( 𝑇 )(∇ ⋅ u ) I (3.24) 

Eq. (3.24) is a general form of the Oldroyd-B constitutive equation
pplicable to non-isothermal compressible flow problems. The func-
ional dependence of the viscosity, relaxation time and spring constant
re determined experimentally and are dependent on the particular
olymer melt/solution under consideration. In the case of incompress-
ble and isothermal flow the model reduces to Eq. (3.19) . 

. Discussion of viscoelastic models 

One of the major hurdles in the analysis of compressible flow of non-
ewtonian fluids is the lack of universal agreement on the form of the
overning equations. As a result the tendency has been to construct ad-
oc governing equations suitable for particular problems. Whilst being
 crucial tool in engineering applications, this approach fails to provide
quations consistent with fundamental principles in physics. Thus these
odels have limited applicability and cannot be applied to a wide range

f viscoelastic flow problems. 

.1. Weakly compressible model [3] 

Belblidia et al. [3] proposed a model for weakly compressible fluids.
he constitutive equations for the solvent and polymeric contributions
o the extra stress are given by 

𝝉𝑠 = 2 𝜇𝑠 𝔻 + 𝜇𝑠 

( 

𝜅𝑠 

𝜇𝑠 
− 

2 
3 

) 

(∇ ⋅ u ) I 

𝜆
▿
𝝉𝑝 + 𝝉𝑝 = 2 𝜇𝑝 𝔻 

(4.1) 
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espectively. The system of governing equations is closed using the equa-
ion of state 

�̃� + 𝐵 

�̃� 0 + 𝐵 

= 

( 

𝜌

𝜌0 

) 

(4.2)

here �̃� = 𝑝 − 

1 
3 tr ( 𝝉𝑝 + 2 𝜇𝑠 𝔻 ) is the augmented pressure . This compress-

ble viscoelastic model has been effective at simulating viscous flows at
ow Mach numbers. Several applications to polymer processing opera-
ions exist, such as injection moulding and high-speed extrusion where
ompressible effects are significant. The model used by Belblidia [3] has
eatures that resemble the isothermal compressible Oldroyd-B model de-
ived in Section 3 . However, comparisons of Eqs. (3.18) and (4.1) show
hat additional compressible terms appear in the model derived using
he generalized bracket formulation. 

.2. Model based on the Boltzmann equation approach 

Wilmanski [50] derived a compressible viscoelastic model by taking
oments of the phase density, f , which satisfies the Boltzmann equation

𝜕𝑓 

𝜕𝑡 
+ v ⋅

𝜕𝑓 

𝜕 x 
+ b 

0 ⋅
𝜕𝑓 

𝜕 v 
= 𝐶[ 𝑓 , 𝑓 ] (4.3)

here x and v are position and velocity fields of the continuum and
 is the collision operator. The Boltzmann equation relies on some of
he same fundamental assumptions that are used in the bracket theory,
amely that the interactions between particles are reversible at the mi-
roscopic level ( microscopic reversibility ) and that interactions between
articles occur one at a time. Starting from (4.3) , universal balance laws
f extended thermodynamics can be obtained with which to model vis-
oelasticity. The theory is based on the derivation of balance laws for
odelling both viscous liquids and linear elastic solids [50] . For vis-

ous heat-conducting fluids the equations governing the state variables
f the system have the same structure as those governing the dynamics
f ideal gases, albeit with slightly different conditions on some scalar co-
fficients. An additional condition ensuring the non-decrease of entropy
s imposed in order to satisfy the second law of thermodynamics. With
his in mind the following set of governing equations for the extra-stress
nd energy for a heat-conducting Maxwellian fluid are proposed 

𝜆𝜎

[ 

▿
𝕋 + 

2 
3 
( 𝕋 ∶ 𝔻 ) I 

] 

+ 𝕋 = 2 𝜇𝑒 𝔻 

𝐷 

𝐷𝑒 

𝐷𝑡 
= −∇ ⋅ q + 𝕋 ∶ ∇ u 

𝜆𝑞 
𝐷 q 

𝐷𝑡 
+ q = − 𝜅∇ 𝑇 

𝕋 = 𝝈
𝐷 𝑝 = − 

1 
3 

tr ( 𝝈) 𝜌 = 𝜌( 𝝈) (4.4)

here e is the thermal energy, 𝜆𝜎 is the stress relaxation time, 𝜆q is a
hermal relaxation constant and 𝜅 is the (isotropic) thermal conductiv-
ty parameter. A 

𝐷 denotes the trace free part of a tensor A . The model of
ilmanski, unlike the GENERIC and bracket formulations, is based upon

 general balance law that is itself derived from the Boltzmann equation.
he extended thermodynamic technique used to derive (4.4) possesses
dditional modelling potential as it can be used to derive field equa-
ions in non-inertial (relativistic) coordinates and can be generalised to
ystems far from thermodynamic equilibrium. 

.3. Dressler model 

Dressler et al. [12] provide a detailed thermodynamic analysis for
enerating models for polymeric liquids. The methodology used in the
urrent paper and the analysis performed by Dressler et al. [12] are
ased on the principle that all thermodynamic systems are encompassed
y a single mathematical structure of a general abstract equation. 

Several nonisothermal extensions to well-established viscoelastic
odels are proposed in [12] and the discussion of GENERIC provides
66 
he best context for the models discussed in this paper. A key point to
e emphasised is the discussion of the energy equation used to model
eat flow commonly used in engineering heat analysis 

𝑐 
𝐷𝑇 

𝐷𝑡 
= 𝕋 ∶ ∇ u − ∇ ⋅ q + 𝜌𝑄 (4.5)

here T is temperature, q = − 𝜶∇ 𝑇 is the heat flux vector field, c is
he specific heat capacity and Q is external heat energy. Dressler et al.
12] point out that unless the internal energy is solely dependent on tem-
erature (i.e. 𝑢 = 𝑢 ( 𝑇 ) ) Eq. (4.5) is inadequate for describing frictional
eating behaviour in polymers and must be replaced by 

𝑐 
𝐷𝑇 

𝐷𝑡 
= 𝝈 ∶ 𝔻 − ∇ ⋅ q + 𝜌𝑄 − 𝜌

𝐷𝑢 

𝐷𝑡 

|||||𝑇 (4.6)

n important contribution in this work was the following nonisothermal
eneralisation of the Maxwell constitutive law 

( 𝑇 ) 
▿
𝕋 + 

[ 

1 + 𝜆( 𝑇 ) 

( 

∇ ⋅ u − 

𝐷 ln 𝐾( 𝑇 ) 
𝐷𝑡 

) ] 

𝕋 

= 2 𝜇𝑝 ( 𝑇 ) 

[ 

𝔻 + 

( 

𝐷 ln 𝐾( 𝑇 ) 
𝐷𝑡 

− 

𝐷 ln 𝑇 
𝐷𝑡 

) 

I 

] 

(4.7) 

Eq. (4.7) is the most sophisticated model presented in this section,
nd takes account of temperature dependence of the thermodynamic
ariables. Note that the relaxation time is defined by 𝜆( 𝑇 ) = 𝜁∕4 𝐾( 𝑇 )
here 𝜁 is the friction coefficient and K ( T ) is the temperature dependent
lastic spring factor. 

.4. Other models for compressible viscoelasticity 

There are many other models that have been proposed to de-
cribe compressibility in addition to those described in this section.
hakraborty and Sader [7] reviewed a number of constitutive equations

or compressible viscoelastic flows in their linear limits. They were par-
icularly concerned about the inability of earlier models to reproduce
he response of linear mechanical vibrations of bipyramidal nanoparti-
les in simple liquids at high frequency (20 GHz). They show that only
 recent model is able to recover all the required features of a linear vis-
oelastic flow and provide a rigorous foundation for the analysis of vi-
rating nanostructures in simple liquids. This highlights the importance
f shear and compressional relaxation processes, as a function of flow
eometry, and the impact of the shear and bulk viscosities on nanometer
cale flows. 

Huo and Yong [31] considered a compressible viscoelastic fluid
odel. Although the model has a convex entropy, the Hessian matrix

f the entropy does not symmetrize the system of first-order partial dif-
erential equations due to the non-conservative terms in the constitutive
quation. They show that the corresponding 1D model is symmetrizable,
yperbolic and dissipative and satisfies the Kawashima condition. They
se these properties to prove the global existence of smooth solutions
ear equilibrium and justify the compatibility of the model with the
avier–Stokes equations. 

Guaily [26] derived a temperature equation for polymeric fluids in
hich elasticity and compressibility effects appear explicitly. An advan-

age of this temperature equation is that it does not contain functions
hat depend on a particular choice of model for the polymer stress. 

. Nonlinear elastic models 

For Maxwell-type models the elastic energy term in the Helmholtz
ree energy functional is linear in C . However, for many rubber-
ike elastic solids and polymeric fluids empirical evidence would sug-
est that the elastic energy stored is a nonlinear function of C . The
eneralised bracket method provides a path for deriving thermody-
amically consistent models for viscoelastic fluids using nonlinear
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train energy formula in the generating functional for the constitutive
quation. 

From the point of view of thermodynamics, there are only a few
onstraints on the forms that the strain energy and relaxation tensor
hould take. This allows a number of potential models to be derived in
 manner consistent with the first and second laws. In addition to mass
nd momentum conservation, further physical constraints exist on the
onformation tensor, C ( x , t ). The constraint that ensures thermodynamic
onsistency was proposed by Hulsen [30] . For the system of governing
qs. (2.20) –(2.23) , the evolution equation for C takes the form 

▿
 +(∇ ⋅ u ) C + 𝚲 ∶ 𝛿𝐴 

𝛿C 

− L ∶ ∇ u = 0 (5.1)

here 

∶ 𝛿𝐴 

𝛿C 

= 𝑎 1 ( C ) I + 𝑎 2 ( C ) C + 𝑎 3 ( C ) C 

2 (5.2)

nd 𝑎 𝑖 ( C ) i ∈ {1, 2, 3} are general functions of the principal invariants

f C which ensures that 𝑎 𝑖 ( C ) are objective or frame indifferent. Hulsen
30] examined the mathematical behaviour of the conformation tensor
beying (5.1) and provided a condition that ensures the consistency of
 model for a given Hamiltonian/Helmholtz free energy. The following
heorem summarizes this condition. 

heorem 5.1 (Hulsen [30] ) . Given that C satisfies the differential equation

iven by (5.1) and C ( x ,0) is positive definite. Then if 𝑎 1 ( C ) < 0 and ∇ u finite,

 remains positive definite for all t > 0 . 

A proof and detailed discussion of Hulsen’s sufficient condition the-
rem is included in the monograph of Beris and Edwards [4] (Section
.1.5 B). To invoke Hulsen’s theorem it is sufficient to analyse the be-
aviour of 𝑎 1 ( C ) for positive definite C [30] since satisfaction of the
onditions in the theorem determines if a given strain energy/relaxation
ensor model is physically admissible . Further investigation is needed in
rder to determine the well-posedness of the mathematical equations
enerated for given boundary conditions as well as how well the solu-
ions to these equations compare to experimental data. We now derive
 new viscoelastic model based on a hyperelastic strain energy formu-
ation for viscoplastic materials. 

.1. Compressible Mooney–Rivlin type model 

The literature concerning models for hyperelastic materials is rich
ith formulations for elastic strain energy density functions [13] . For
oth the UCM and Oldroyd-B models the elastic potential energy is
hat of a neoHookean material i.e. 𝑤 ( C ) = 

�̂�

2 ( 𝐼 1 ( C ) − 3) where �̂� = 𝛼𝜌𝐾.
e now consider a fluid whose polymeric constituent behaves like a
ooney–Rivlin material i.e. instead of a strain energy directly pro-

ortional to 𝐼 1 ( C ) the strain energy depends on all three principal
nvariants 

 ( C ) = 

𝜇1 
2 

( 

𝐼 1 ( C ) 

𝐼 3 ( C ) 
1 
3 

− 3 

) 

+ 

𝜇2 
2 

( 

𝐼 2 ( C ) 

𝐼 3 ( C ) 
2 
3 

− 3 

) 

+ 𝜅′
𝑝 
( 𝐼 3 ( C ) 1∕2 − 1) 2 (5.3)

here 𝜇1 and 𝜇2 are parameters to be determined empirically. The first
nd second terms are associated with the stiffness of the polymeric con-
tituent and the third term is a compressible term associated with the
ulk viscosity. It is easy to verify that if 𝐼 3 ( C ) = det C = 1 , 𝜇2 = 0 and

1 = 𝛼𝜌𝐾, then (5.3) reduces to the strain energy for a Maxwell mate-
ial. Taking the derivative of the Helmholtz free energy functional, with
lastic strain energy defined by (5.3) we obtain 

𝛿𝐴 

𝛿C 

= − 

( 

𝜅′
𝑝 
( 𝐼 1∕2 3 − 𝐼 3 ) + 

𝜇1 𝐼 1 

6 𝐼 4∕3 3 

+ 

𝜇2 𝐼 2 

3 𝐼 5∕3 3 

+ 

𝐺( 𝑇 ) 
2 

) 

C 

−1 

+ 

( 

𝜇1 

2 𝐼 1∕3 3 

+ 

𝜇2 𝐼 1 

2 𝐼 2∕3 3 

) 

I − 

𝜇2 

2 𝐼 2∕3 3 

C (5.4) 

hich we write in the form 

𝛿𝐴 

𝛿C 

= 𝑔 1 ( C ) C 

−1 + 𝑔 2 ( C ) I + 𝑔 3 ( C ) C 
67 
here 

 1 ( C ) = − 

( 

𝜅′
𝑝 
( 𝐼 1∕2 3 − 𝐼 3 ) + 

𝜇1 𝐼 1 

6 𝐼 4∕3 3 

+ 

𝜇2 𝐼 2 

3 𝐼 5∕3 3 

+ 

𝛼𝜌𝑘 𝑏 𝑇 

2 

) 

 2 ( C ) = 

( 

𝜇1 

2 𝐼 1∕3 3 

+ 

𝜇2 𝐼 1 

2 𝐼 2∕3 3 

) 

 3 ( C ) = − 

𝜇2 

2 𝐼 2∕3 3 

(5.5) 

Using the expression given by Eq. (5.4) for the energy derivative and
q. (3.1) for the relaxation we obtain 

∶ 𝛿𝐴 

𝛿𝐂 

= 

2 
𝛼𝐾 

( 

1 
𝜆0 
𝑔 1 ( 𝐂 ) + 

1 
3 

( 

1 
𝜆0 

− 

1 
𝜆2 

) 

×
[
𝑔 2 ( 𝐂 ) 𝐼 1 ( 𝐂 ) + 𝑔 3 ( 𝐂 ) 

(
𝐼 1 ( 𝐂 ) − 2 𝐼 2 ( 𝐂 ) 

)]) 

𝐈 

+ 

2 
𝜆2 𝛼𝐾 

𝑔 2 ( 𝐂 ) 𝐂 + 

2 
𝜆2 𝛼𝐾 

𝑔 3 ( 𝐂 ) 𝐂 

2 

(5.6) 

here we have used the fact that 𝑡𝑟 C 

2 = 𝐼 1 ( C ) − 2 𝐼 2 ( C ) . Consider once
ore the case when relaxation is described via a single relaxation time,

. In this case Eq. (5.6) reduces to 

∶ 𝛿𝐴 

𝛿𝐂 

= 

2 
𝜆𝛼𝐾 

𝑔 1 ( 𝐂 ) 𝐈 + 

2 
𝜆𝛼𝐾 

𝑔 2 ( 𝐂 ) 𝐂 + 

2 
𝜆𝛼𝐾 

𝑔 3 ( 𝐂 ) 𝐂 

2 

= 𝑎 1 ( 𝐂 ) 𝐈 + 𝑎 2 ( 𝐂 ) 𝐂 + 𝑎 3 ( 𝐂 ) 𝐂 

2 
(5.7) 

Eq. (5.7) is of the form (5.2) and therefore by Theorem 5.1 the phys-
cal admissibility of the model depends on the behaviour of 𝑎 1 ( C ) =
2 
𝛼𝐾 
𝑔 1 ( C ) . Substituting our strain energy expression into Eqs. (2.22) and

2.24) , the governing equation for the conformation tensor is obtained

▿
 +(∇ ⋅ u ) C = − 

1 
𝜆𝛼𝐾 

𝝉𝑝 (5.8)

here 

 = 2 𝜇𝑠 𝔻 + 𝜅𝑠 (∇ ⋅ u ) I + 𝝉𝑝 (5.9)

𝑝 = 2 𝑔 1 ( C ) I + 2 𝑔 2 ( C ) C + 2 𝑔 3 ( C ) C 

2 (5.10)

Due to the additional complications introduced when g 3 ≠0,
q. (5.10) cannot be simplified further (i.e. C cannot be eliminated).
owever further constraints on 𝜇1 and 𝜇2 exist in order to ensure 𝝉𝑝 = 𝟎
hen C is at equilibrium. Using the Cayley–Hamilton Theorem, it can
e shown that the right-hand side of the dynamic equation for the con-
ormation tensor can be written in the form 

∶ 𝛿𝐴 

𝛿𝐂 

= − 

(
𝛼0 + 𝛼2 𝛼

2 
01 
)
𝐈 + 

(
𝛼1 + 2 𝛼01 𝛼2 

)
𝐂 − 𝛼2 𝐂 

2 (5.11) 

here 𝛼i are functions of the invariants of C (and also functions of 𝑔 𝑖 ( C ) )
4] . The parameter 𝛼01 is specifically chosen to be the ratio 𝛼0 / 𝛼1 so that
 = 𝛼01 I at equilibrium [4] i.e. 

▿
 +(∇ ⋅ u ) C = 0 when C = 𝛼01 I (5.12)

.2. Compressible nonisothermal FENE-P-type model 

Recently, a new class of models has been proposed that displays both
hear-thinning and considerable extensional-hardening behaviour with
he aim of reproducing computationally the levels of drag enhancement
hat are measured experimentally for the flow of polymeric liquids past
 sphere. Garduño et al. [17] proposed a new hybrid dissipative model
ased on a combination of FENE and White–Metzner models. An ex-
ensional viscosity that is strain-hardening was found to be a crucial
omponent in the modelling. The viscosity ratio was also found to be
n important factor for Boger fluids. The hybrid models were termed
wanINNF(q). The proposed model however, is an ad hoc model since
t was developed to possess certain behaviour by modifying existing
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odels by including additional terms. In this section models with simi-
ar rheological properties that are suitable for describing nonisothermal
ompressible viscoelastic fluids are derived from thermodynamic con-
iderations using the generalized bracket formulation with a nonlinear
lastic strain energy. 

The resulting model is similar to the swanINNFM(q) model of Gar-
uño et al. [17] . However, additional terms appear in the formulation
s a result of being derived from the general set of Eqs. (2.20) –(2.23) .
lthough the additional terms do not play a significant role in viscomet-
ic flows, they may become important when predicting complex flows
n 2D and 3D. The FENE-P model has been particularly successful at
apturing the behaviour of polymeric liquids at large deformation rates.
t the microscopic level the linear spring force law for Hookean dumb-
ells is replaced by an asymptotically increasing force that limits the
xtension of the dumbbells. The approximation introduced by Peterlin
33] averages the interactions between the dumbbells so that the elas-
icity can be described by a single conformation tensor. The closed form
xpression for the elastic energy is given by 

 ( C ) = − 

𝑛𝐾𝑏 ( 𝑇 ) 2 

2 𝑇 
ln 

( 

1 − 

tr C 

𝑏 ( 𝑇 ) 

) 

(5.13)

here 𝑏 ( 𝑇 ) = 𝑅 ( 𝑇 ) 2 is the square of the maximum extension of the
umbbell, which is taken to be temperature dependent. The Helmholtz
ree energy is given by 

 = ∫
Ω

[ 

𝑎 0 ( 𝜌, 𝑇 ) − 

𝛼𝜌𝐾𝑏 ( 𝑇 ) 2 

2 𝑇 
ln 

( 

1 − 

tr C 

𝑏 ( 𝑇 ) 

) 

− 

𝐺( 𝑇 ) 
2 

ln ( det C ) 

] 

𝑑Ω

(5.14)

The last term is the expression for the Boltzmann entropy. The ex-
ressions for 𝚲 and Q remain the same as in Section 3 ( Eqs. (3.20) and
3.22) ). Consider the following nonzero expression for the non-affine
ensor, L , 

 𝑖𝑗𝑘𝑙 = 

𝜓( ̇𝜖) 
2 

{ 

𝐶 𝑖𝑘 𝛿𝑗𝑙 + 𝐶 𝑖𝑙 𝛿𝑗𝑘 + 𝐶 𝑗𝑘 𝛿𝑖𝑙 + 𝐶 𝑗𝑙 𝛿𝑖𝑘 

} 

(5.15)

here 

 ( ̇𝜖) = 

𝜙( ̇𝜖) − 1 
2 

, 𝜙( ̇𝜖) = cosh 
(
𝜆𝐷 ̇𝜖

)
, (5.16)

nd �̇� = 3 𝐼 3 ( 𝔻 )∕ 𝐼 2 ( 𝔻 ) is the generalised extension rate and 𝜆D is a dis-
ipation parameter. The tensor L , associated with non-affine motion
stick/slip) within the system, is a crucial ingredient in enabling the
odel to capture both shear thinning and strain hardening behaviour.
hrough modelling in this way we are able to deduce that strain hard-
ning effects in the fluid are the result of nonlinear interactions between
he conformation tensor and velocity gradient fields. Specifically, poly-
er chains ‘stick’ with respect to the solvent around them due to poly-
er chain entanglement. The evolution equation for the conformation

ensor is given by 

( 𝑇 ) 

[ 

▿
C +(∇ ⋅ u ) C 

] 

= − 

[ 

𝑓 ( tr C ) 𝐂 − 

𝐺( 𝜌, 𝑇 ) 
𝛼𝜌𝐾( 𝑇 ) 

I 

] 

+ 𝜆( 𝑇 ) 𝜓( ̇𝜖)[ C ⋅ 𝔻 + 𝔻 ⋅ C ] 

(5.17)

nd the expression for the extra stress is 

 = 2 𝜇𝑠 ( 𝑇 ) 𝔻 + 𝜅′( 𝑇 )(∇ ⋅ 𝐮 ) 𝕀 + 

𝜙( ̇𝜖) 𝜇𝑝 ( 𝜌, 𝑇 ) 
𝜆( 𝑇 ) 

( 𝑓 ( tr C ) C − 𝐺( 𝜌, 𝑇 ) I ) (5.18)

Note that, unlike the Oldroyd-B/UCM model this expression is non-
inear in C . Furthermore, it should be noted that the governing equation
or the conformation stress now has nonlinear dependence on the veloc-
ty gradient through 𝜙. This violates the general rule proposed by Beris
nd Edwards [4] , however (i) this is not the first time this has been
one [34] and (ii) the right-hand side of Eq. (5.17) satisfies Hulsen’s
ufficient condition theorem. We therefore conclude that this model fits
68 
ithin the generalised bracket framework and satisfies thermodynamic
onsistency. The governing equations in terms of the solvent and poly-
eric contributions to the extra stress 𝕋 are given by 

𝝉𝑠 = 2 𝜇𝑠 ( 𝑇 ) 𝔻 + 𝜅′
𝑠 
( 𝑇 )(∇ ⋅ u ) I 

( 𝑍 + 𝜆( 𝑇 )(∇ ⋅ u )) 𝝉𝑝 + 𝜆( 𝑇 ) 
▿
𝝉𝑝 − 𝜆( 𝑇 ) 

( 

𝝉𝑝 + 𝐺( 𝜌, 𝑇 ) I 

) 

𝐷 ln 𝑍 

𝐷𝑡 

− 𝜆( 𝑇 ) 𝜓( ̇𝜖)[ 𝝉𝑝 ⋅ 𝔻 + 𝔻 ⋅ 𝝉𝑝 ] = 𝜙( ̇𝜖) 𝜇𝑝 ( 𝜌, 𝑇 ) ( 

2( 𝜓( ̇𝜖) + 1) 𝔻 + 

( 

𝐷 ln 𝐾( 𝑇 ) 
𝐷𝑡 

− 

𝐷 ln 𝑇 
𝐷𝑡 

) 

I 

) 

(5.19) 

here 

 = 1 + 

3 
𝑏 ( 𝑇 ) 

( 

1 + 

1 
3 𝐺( 𝜌, 𝑇 ) 

tr 𝝉𝑝 

) 

here we have used Eq. (3.4) to define 𝜇p ( 𝜌, T ). The constitutive equa-
ions represented by Eq. (5.19) is the bracket generated equivalent of
he swanINNFM(q) with FENE-P base model. The key difference be-
ween the two models is that, by using a non zero L tensor, the ad-
itional terms in the constitutive equation can be derived in a man-
er consistent with the laws of thermodynamics. Additionally, when

𝐷 = 0 ( 𝜙≡1) we recover the nonisothermal FENE-P constitutive equa-
ion. This new model is constructed to be able to capture moderate
hear thinning and strain-hardening at high extension rates, an exper-
mentally observed characteristic of Boger fluids [18] . Eq. (5.19) is
ighly nonlinear in 𝝉p making analytical solutions impossible for non-
rivial flow problems. Future work is needed to develop efficient nu-
erical schemes for finding solutions to benchmark viscoelastic flow
roblems. However, first we will analyse rheometrical properties of
q. (5.19) . 

. Viscometric behaviour 

The rheological properties of constitutive models play an important
ole in terms of the type of behaviour that may be investigated using
hem. Two simple flows which provide insight into model behaviour
re simple shear and uniaxial extension. The rheometric behaviour of
he model with solvent viscosity fraction 𝛽 = 𝜇𝑠 0 ∕ 𝜇0 = 0 . 5 and 𝜆0 = 1 s is
isplayed in Figs. 1–3 . The material parameters 𝜆0 and 𝜇0 are the relax-
tion time and viscosity of the fluid at the reference temperature, T 0 .
he quantities in the figures that follow are non-dimensionalised: shear
nd extensional viscosities using 𝜇0 and first normal stress difference
sing the rigidity modulus 𝜇0 / 𝜆0 . 

For steady simple shear flow u = ( 𝑢, 𝑣, 𝑤 ) = ( ̇𝛾𝑦, 0 , 0) the shear viscos-
ty and normal stress difference predictions of Eq. (5.19) are analysed.
n Fig. 1 we present the shear viscosity and first normal stress differ-
nce under isothermal conditions with 𝑇 0 = 293 𝐾 for a range of values of
he dimensionless maximum extensibility parameter b .Significant shear-
hinning occurs at high shear rates particularly for large values of b . In
ontrast, the Oldroyd B model predicts a constant shear viscosity and
 quadratic relationship between the first normal stress difference and
hear-rate and a zero second normal stress difference. 

The variation of viscosity with shear-rate and temperature for poly-
eric fluids can be described by a master curve. We use the Arrhenius
odel for the viscosities and relaxation time 

𝑝 ( 𝑇 ) = 𝜇
𝑝 

0 𝑘 exp ( 𝐸 𝑝 ∕ 𝑅𝑇 ) 𝜆( 𝑇 ) = 𝜆0 𝑘 exp ( 𝐸 𝑝 ∕ 𝑅𝑇 ) (6.1)

here 𝑘 = exp (− 𝐸∕ 𝑅𝑇 0 ) is a normalisation constant, R is the Boltzmann
onstant and E p and E s are the activation energies for the polymeric
nd solvent constituents, respectively. In Fig. 2 we present the influence
f temperature on the shear properties of the model for 𝛽 = 0 . 5 , 𝜆0 = 1
, 𝑏 = 50 , 𝐸 𝑠 = 500 J and 𝐸 𝑝 = 5000 J. The temperature thinning cap-
ured by Eq. (5.19) is also in qualitative agreement with experimental
esults in the literature on metallocene linear low density polyethylene
mLLDPE) [1] . 
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Fig. 1. The effect of maximal chain extension, b , on (a) shear viscosity and (b) first normal stress difference for 𝜆0 = 1 s, 𝜇
𝑝 

0 ∕ 𝜇0 = 0 . 5 , 𝜇
𝑠 
0 ∕ 𝜇0 = 0 . 5 , 𝑏 = 50 , 𝐸 𝑠 = 500 J 

and 𝐸 𝑝 = 5000 J. 

Fig. 2. The effect of temperature on (a) shear viscosity and (b) first normal stress difference; 𝜆0 = 1 s, 𝜇
𝑝 

0 ∕ 𝜇0 = 0 . 5 , 𝜇
𝑠 
0 ∕ 𝜇0 = 0 . 5 , 𝑏 = 50 , 𝐸 𝑠 = 500 J and 𝐸 𝑝 = 5000 J. 

The dashed line is the prediction of the Oldroyd B model. 
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For uniaxial extensional flow u = ( ̇𝜖𝑥, − 

�̇�

2 𝑦, − 

�̇�

2 𝑧 ) the extensional vis-
osity predictions of Eq. (5.19) are analysed. In Fig. 3 (a) the influence of
 on the extensional viscosity of both the model given by Eq. (5.19) and
he FENE-P model is presented for 𝜆𝐷 = 0 . 01 . In the case of the model
iven by Eq. (5.19) the dissipation parameter is given by 𝜆𝐷 = 0 . 01 . After
n initial strain-hardening regime the extensional viscosity of the FENE-
 model reaches a plateau, whereas the model given by Eq. (5.19) pre-
icts a second strain hardening regime at high shear rates ( 𝜆1 ̇𝜖 ≥ 10 2 ).
he second strain hardening regime is a viscoelastic effect which is al-
ost certainly a result of coupling between polymer molecules that,
nder large enough strain-rate, cause the material stiffness to increase
assively. The dissipation parameter 𝜆D determines the onset of the sec-

nd strain hardening regime (see Fig. 3 (b) where 𝜆𝐷 = 0 . 01 , 0 . 02 , 0 . 03 ).
n Fig. 3 (c) we see that temperature thinning effects on extensional vis-
osity are not significant and do not lead to qualitatively different be-
aviour. 

. Conclusions 

In this paper the generalised bracket framework for establishing
odels for compressible non-isothermal flow of viscoelastic fluids has

een presented and discussed. In the literature a number of ad-hoc mod-
 t  

69 
fications to incompressible Maxwell/Oldroyd models have been pro-
osed [5] for modelling compressible viscoelastic fluids. Many of these
iolate the principles of thermodynamics and therefore are of limited
pplicability. The generalised bracket formulation eliminates the need
o derive individual conservation laws by reducing the formulation of
hysical variable dynamics to a single master equation from which bal-
nce laws can be derived. The principles of thermodynamics are em-
edded in the master equation a priori. This approach provides a strong
heoretical foundation from which a large range of valid (thermodynam-
cally consistent) viscoelastic fluid models can be derived. 

A compressible form of the Oldroyd-B model is derived using the
lastic strain energy for a Hookean material. Several compressible
axwell-type viscoelastic models from the literature have been re-

iewed and compared to the proposed model. We have demonstrated
hat clear distinctions exist between Maxwell-type models derived us-
ng the generalised bracket formulation and some ad-hoc models in the
iterature. A compressible nonisothermal form of the FENE-P model is
erived using a nonlinear strain energy related to the FENE model. The
esulting model displays both shear-thinning and strain-hardening be-
aviour in simple shear and uniaxial extensional flows, respectively.
hese are phenomena associated with polymeric fluids. The derivation
f a particular model requires the specification of a strain energy, en-
ropy and phenomenological tensors such as the viscosity and relaxation
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Fig. 3. The effect of (a) maximal chain extension, b , (for 𝜆𝐷 = 0 . 01 ), (b) dissipation parameter, 𝜆D , (c) temperature (for 𝑏 = 50 ), on extensional viscosity for 𝜆0 = 1 
s, 𝜇𝑝 0 ∕ 𝜇0 = 0 . 5 , 𝜇

𝑠 
0 ∕ 𝜇0 = 0 . 5 . The dashed line is the prediction of the FENE-P model. 
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ensors. Consistency with the laws of thermodynamics is ensured by this
pproach. 

The viscometric behaviour of these models has been investigated
nd model predictions compared with experimental data for mLLDPE
1] and numerical results for Boger fluids [17,18] . Furthermore tem-
erature thinning captured by Eq. (5.19) is also in agreement with ex-
erimental results in the literature [1] . In the future we would like to
nvestigate the behaviour of specific polymer solutions and melts under
onisothermal/high pressure conditions, where the general model pro-
osed in Section 5.2 will be able to provide an accurate description of
he material consistent with thermodynamics. 

A limiting factor of the generalised bracket formulation is the in-
reased mathematical complexity introduced by the fourth order phe-
omenological tensors such as 𝚲 and Q , and the energy functional w( C ).
s we have demonstrated in this paper, constitutive equations derived
ia the generalized bracket formulation can become intractable unless
urther assumptions are made that reduce the complexity of the govern-
ng equations. Future work will use these models to solve suitable vis-
oelastic benchmark problems where compressible and non-isothermal
ffects are important. Comparisons will be made with analytical and
umerical solutions, where they exist, and experimental measurements.
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