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ABSTRACT

The generalized bracket framework is used to derive a family of compressible viscoelastic models. The framework accounts for both reversible and non-reversible
dynamics and ensures that the derived models are consistent with the laws of thermodynamics. The most general compressible forms of the UCM and Oldroyd B
models are derived. For these models the elastic strain energy is taken to be that for a Hookean material. Nonlinear elastic strain energy functionals are also considered
and used to derive new viscoelastic models. The viscometric behaviour of these models is investigated and model predictions are compared with experimental data

for Boger fluids and mLLDPE.

1. Introduction

The ability to predict the flow of non-isothermal viscoelastic fluids is
important in many processes in the polymer industry. Over the last 70
years many significant contributions to the study and characterization of
a vast collection of polymeric materials have been made. However, the-
oretical advances in modelling non-isothermal viscoelastic fluids have
developed at a more gradual pace.

A plethora of constitutive equations for modelling viscoelastic flu-
ids under incompressible and isothermal conditions exist in the litera-
ture. However, derivation of suitable models for compressible and non-
isothermal flow problems have received far less attention [5]. In many
numerical investigations bespoke rheological models are crafted to suit
specific flow problems and therefore are not applicable to more general
problems. In polymer processing applications, such as injection mould-
ing and high-speed extrusion, the pressure and flow rate may be large.
Furthermore polymer melt flow generally happens at high temperatures
where flow parameters and dynamics are a direct result of thermody-
namic relationships between state variables. Hence, compressible and
non-isothermal effects within the viscoelastic regime may become im-
portant and influence resulting flow phenomena.

Early work to account for temperature dependence of data used the
principle of time-temperature superposition [43] to superimpose me-
chanical property data at different temperatures by means of an exper-
imentally determined shift factor. This was based on extensive experi-
mental evidence of creep and recovery in polymeric liquids and allowed
data obtained at one temperature to be used to infer those at another. Of
course, this is an empiricism that is not universally valid. Nevertheless,
the approach works well for many liquids over a wide range of tem-

peratures. The assumption here is that temperature is a control variable
and that a given experiment is performed under isothermal conditions.
Unfortunately, it is not sufficient only to possess knowledge of how the
material properties depend on temperature since in many processing
applications such as injection moulding, film blowing and wire coating,
significant temperature gradients perpendicular to the flow direction
arise due to viscous heating. The spatial variation of the material pa-
rameters requires a more sophisticated modelling approach than simply
time-temperature superposition in order to describe the flow of poly-
meric liquids more generally. Thus it is necessary to develop a set of
evolution equations that are fully non-isothermal and universally valid.
This is a formidable mathematical modelling challenge.

Coleman and Noll [10,11] introduced the concept of a simple fluid in
which the stress tensor and heat flux vector at a given material point are
expressed as functions of the history of these quantities with diminish-
ing influence as one travels into the past. In this theory the stress tensor
and heat flux vector fields of the simple fluid depend on functionals of
the deformation gradient and temperature, which are required to satisfy
certain continuity and smoothness conditions in order to facilitate math-
ematical analysis. The complexity of the functionals has meant that the
approach has only been implemented in the simplest of situations and
so its applicability has been rather limited - for example, to linear vis-
coelasticity. Its restriction to fluids with fading memory also means that
the theory excludes Newtonian fluids [44] and all models that explicitly
contain a solvent viscosity since the Newtonian fluid is recovered as the
relaxation time tends to zero.

Marucci [36] developed a kinetic model for non-isothermal poly-
meric solutions based on Hookean dumbbell theory. The spring factor
in this non-isothermal theory is assumed to vary linearly with temper-
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ature. Gupta and Metzner [27] noted that the additional term in the
constitutive equation that accounts for non-isothermal effects has the
wrong sign compared with experimental data. They suggested a correc-
tion to the model in which the constant stiffness parameter is replaced
by a variable stiffness parameter which decays algebraically as temper-
ature increases.

Using an empirical dependence of viscosity on temperature the re-
sulting constitutive equation was used as the basis for numerical simula-
tions by Luo and Tanner [35] and McClelland and Finlayson [37] of film
blowing and extrusion, respectively. Wiest [49] extended these ideas to
the Rouse model and generalized them to models with a discrete spec-
trum of relaxation times. However, the resulting constitutive equations
are restricted to fluids with a low degree of elasticity which means that
they are not particularly suitable for use in many polymer processing sit-
uations in which elastic effects are just as important as thermal effects.
Sugeng et al. [46] proposed a non-isothermal generalization of the PTT
constitutive equation. However, it is restricted to incompressible fluids
and suffers from the difficulty in modelling spatial temperature varia-
tions in the kinetic theory.

The governing equations for fluid motion consist of balance laws
governing mass and momentum transfer as well as a constitutive equa-
tion relating stress and strain and an equation of state coupling ther-
modynamic variables (pressure, density and temperature). Several ap-
proaches exist for deriving classes of models that conform to fundamen-
tal principles in physics. Thermodynamic approaches are particularly
desirable since they are based on fewer physical assumptions.

The observed macroscopic behaviour of a viscoelastic material is a
result of interactions at the microscopic level. A significant difficulty
in developing mathematical models for complex fluids is how to con-
sistently abstract microscopic information to the macroscopic level of
description. Practical considerations usually mean that the laws of ther-
modynamics are compromised. Nowhere is this more apparent than
in the use of the incompressibility constraint. Invoking incompressibil-
ity eliminates the need to define pressure in terms of other thermody-
namic variables such as density and temperature and instead defines
it as a Lagrange multiplier [5]. However in many industrial processes
involving viscoelastic flows such as oil recovery and polymeric injec-
tion moulding, high pressure/temperature variation occurs. In these sit-
uations the incompressibility assumption is unphysical and results in
the irretrievable loss of important thermodynamic information. Nguyen
et al. [40] showed that compressible effects play a significant role in
the prediction of flow during microscopic injection moulding. For ex-
ample, density variations of over 10% were predicted when using the
compressible generalised Newtonian model.

There have been a number of advances in the development of models
for compressible viscoelastic fluids as well as nonisothermal flows [5].
Compressible and non-isothermal extensions to Maxwell models have
been proposed by Belblidia et al. [3] and Wilmanski et al. [50]. How-
ever, the availability of compressible forms of other models is rather
limited. The limitations of the UCM/Oldroyd-B models, especially with
regard to extensional flow problems, compel us to consider a wider
range of constitutive laws. Ad-hoc models for capturing thermorheo-
logical behaviour of polymer melts/polymer solutions usually result in
weak and contradictory predictions. Extending isothermal models to
non-isothermal ones is nontrivial and necessitates adherence to ther-
modynamic relations. The aim of this paper is to derive models capable
of capturing a wide range of viscoelastic phenomena.

Peters [41] developed a framework for deriving so-called ‘semi-
empirical’ differential models for nonisothermal flows. Importantly the
constitutive equations discussed by Peters were derived from an energy
equation. The thermodynamic admissibility of a model can be assessed
by use of the Clausius-Duhem inequality.

The earliest work on a bracket framework for describing fluids began
in the late 1980s [45]. The Hamiltonian/Poisson description of continua
provided an elegant and computationally powerful tool for analysing the
behaviour of large particle systems. However progress was hindered as

60

Journal of Non-Newtonian Fluid Mechanics 266 (2019) 59-71

it was only able to describe conservative systems and therefore friction-
less flows. The development of a bracket modelling dissipative phenom-
ena enabled the applicability of bracket fluid models to be extended to
engineering problems.

The dynamics of any real fluid system can be divided into two cat-
egories: reversible and irreversible. Deformation of purely elastic ma-
terials is a reversible process: mechanical energy is stored and can be
released into mechanical energy again. Deformation of viscous materials
is irreversible: mechanical energy is entirely dissipated. For viscoelas-
tic materials, mechanical energy is partly stored in elastic energy and
partly dissipated [6]. In addition to the partitioning of elastically stored
and dissipated energy, two different ways of storing elastic energy in a
viscoelastic material have to be distinguished: entropy and energy elas-
ticity.

In the generalised bracket description each of the terms in the equa-
tions governing state variables are delineated from derivatives of the
Helmholtz free energy. The reversible or conservative dynamics are
captured by the (continuous) Poisson bracket: a bilinear, antisymmet-
ric operator that satisfies the Jacobi identity. The irreversible dynamics
(viscosity, relaxation) is described by the dissipative bracket. Beris and
Edwards [4] combined the two to create the generalised bracket as a
means for deriving equations for general fluid systems. The underlying
mathematical structure of the generalised bracket in association with
the Hamiltonian/Helmholtz free energy provide powerful tools for de-
veloping properly structured equations.

This paper is primarily concerned with the modelling of compress-
ible viscoelastic fluids by means of the generalised bracket and en-
ergy/entropy formulation. The main contribution is the derivation of
a compressible version of the FENE model which also captures strain
hardening behaviour. An incompressible form of this model was im-
plemented by Gardufo et al. [17]. A compressible and nonisothermal
generalisation of this model is derived in this paper. In the generalised
bracket approach, the second strain hardening regime is modelled by
prescribing a non-zero form of the stick/slip tensor. This ensures that
strain hardening effects can be captured whilst the solvent viscosity
remains constant. Additionally compressible, nonisothermal Maxwell-
type viscoelastic models derived using the generalised bracket are com-
pared to several models proposed in the literature. The differences that
exist between them highlight the necessity for models to be derived from
a powerful theoretical framework that account for compressibility and
thermal effects. The aim is to derive models for viscoelasticity that are
consistent with thermodynamics, thus avoiding ad-hoc modifications to
existing models to account for compressible and thermal effects. Exam-
ples from the literature are discussed within this context.

This paper is organised as follows. Section 2 provides an overview
of the fundamental principles of thermodynamics and the derivation
of general governing equations using the generalised bracket formula-
tion. Compressible isothermal and non-isothermal forms of the Oldroyd-
B model derived using the generalized bracket formulation are pre-
sented in Section 3. Section 4 will emphasize key differences between
the compressible models derived using thermodynamic considerations
and some of the models that are have been proposed in the literature.
In Section 5 viscoelastic models based on nonlinear elastic strain en-
ergy formulations are discussed. The main contribution is a new non-
isothermal and compressible version of the FENE model that is derived
within the generalized bracket framework. Section 6 will then present
a viscometric analysis of the behaviour of the new model, specifically
shear and extensional viscosities. A summary of the paper is then pro-
vided in Section 7.

2. The generalised bracket formulation

The continuum mechanics description of fluid dynamics involves
modelling fluids based upon separate conservation principles. In the
thermodynamic approach conservation laws for thermodynamic state
variables are derived directly from the first and second laws of ther-
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modynamics, thus reducing the number of assumptions used [4]. In
this section we briefly review the generalised bracket and the underly-
ing mathematical principles that govern transport phenomena in fluids.
The central idea in this approach is that the dynamics of an arbitrary
functional, F, are governed by the evolution equation

dF _
E_{[F’H]} 2.1

where {[-, -1} is the generalised bracket and H is the energy of the sys-
tem, Q. The generalised bracket is itself composed of two sub-brackets

{[F,Gl} = {F,G} +[F,G] 2.2)

where F and G are arbitrary functionals over Q. The first bracket, {-, -},
is the Poisson bracket which describes the conservative dynamics of the
system. The second bracket [-, -] describes the dissipative processes,
specifically viscous dissipation, relaxation and non-affine motion. The
Poisson bracket has been used in descriptions of particle systems since
the development of Hamiltonian mechanics [29]. The Poisson bracket
formulation of Hamiltonian mechanics was originally developed for dis-
crete particle systems. The application of Poisson bracket formalism to
continuous systems began with Clebsch [8] who proposed a represen-
tation of the fluid velocity in a form that facilitates a canonical Hamil-
tonian description. In this case a variational description of the incom-
pressible Euler equations of fluid mechanics was derived. The use of
potentials to represent vector fields has a history that transcends the
familiar potential decomposition of electricity and magnetism. The aim
is to represent the fluid velocity in a form that facilitates a canonical
Hamiltonian description. The Poisson bracket can be expressed in terms
of these potentials. Arnold [2] discovered the relationship between the
Lagrangian and Eulerian descriptions of an incompressible fluid in group
theoretic terms and introduced the Poisson bracket for expressing the
kinematics of the velocity field. The Poisson bracket for continuous me-
dia was developed further by Morrison and Greene [38] and Edwards
and Beris [15], for example.

Fundamental to this approach is the formulation of the total energy
of a fluid system. One can express the total energy (the Hamiltonian) as

H = /h(p, u,5,C)dQ = /[K(p, u) + i(p, s) + w(C)] dQ (2.3)
Q Q

In the absence of any field potential the total energy, h, of the sys-
tem is divided into three parts: kinetic energy, K, internal energy, 4, and
elastic energy, w, where p is the density, u is the velocity vector, s is the
entropy and C is the conformation tensor. Furthermore, when consider-
ing dissipative processes, one has to consider the effects of mechanical
degradation and loss of available energy. Temporal evolution of the sys-
tem depends on the energy available to be converted into mechanical
work. As a result the total energy is replaced by the total available energy
or Helmholtz free energy

A= / (h—sT)dQ= / [mz'pm+w(C) +a(p, s(p,C,T)) — 5(p, C, T)T] dQ
Q Q

24

where m = pu is the momentum vector and T is the temperature. The
governing equations for a compressible and nonisothermal fluid system
are then determined by taking derivatives of A with respect to dynamic
state variables. To introduce the formulation, we begin by considering
the dynamics of non-dissipative systems.

2.1. Equilibrium thermodynamics: The Poisson bracket

The Poisson bracket is introduced by considering the dynamics of
reversible processes. A reversible process is one in which the system re-
mains in equilibrium and entropy is constant. Consider a closed system,
Q, with boundary 0Q. The system has an internal energy, U, which as
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we will see is related to the heat energy, Q, of the system. The change of
internal energy of a system is given by the heat energy transmitted into
the system plus work done, W, by the surroundings on the fluid body

dU =dQ +dW 2.5)

The infinitesimal change in heat energy is given by dQ = T'dS and
the work done by the system is d W = —pd V. Substituting these relations
into (2.5) yields the fundamental equation of thermodynamics. For some
closed system, Q the change in energy is determined by the equation

dU =TdS — pdV (2.6)

where p is the pressure exerted onto the surrounding wall, dQ, and V
is the volume of Q. The fundamental Eq. (2.6) forms the basis for the
definition of pressure (see Section 2.2). The fundamental equation gov-
erning non-dissipative fluid transport is given by

‘;—f = (F, H) @7

where F is some observable (functional) defined over Q.

The bracket {-, -} is anticommutative, distributive and satisfies the
Jacobi identity. Importantly, if any function, ¢ is constant over phase
space then {f,¢} = 0 for any f. The continuous Poisson bracket in La-
grangian coordinates is given by

6F6H &F 6H
{F,H}L:/ [———5—H5—F]d3r (2.8)

where I'(r, t) and I(r, ¢) are the Lagrangian position and momentum vec-
tor fields, respectively [4]. Assume that for a viscoelastic medium the
observable F is a function of the state variables we wish to model, specif-
ically p(x,1), m(x,1) := pu(x,1), s(X,t) and C(x, t). Use of a chain rule ex-
pansion yields

dF _ [ |eF o,
dt ép ot
Q
In order to obtain working equations, Eq. (2.8) must be expressed

using a (Cartesian) fixed coordinate frame. An expansion of derivative
terms in Eq. (2.8) yields

SF om
ém ot

6F ds | 6F . 0C
—— +—=: —|dQ 2.
5s01+5C at]d 29

6_F_/ SF 8p  8F m _6F bs  8F 6C 2.10)
5T~ 5p 6T ' 6m 6T  6s 6T ' 6C 6T )
Q
SF _ oF 6p  6Fom  SF és  S6F 6C| o @.11)
s Sp 6I1 ~ 6m S &s I ' 6C SII
Q

Substituting Egs. (2.10) and (2.11) into Eq. (2.8) and applying in-
tegration by parts utilizing the no-slip boundary conditions on 0Q, the
Eulerian form of the continuous bracket is derived.

oF 6H 6H SF
FoHY=- | |[22v 22 ) -2y (25 )]ae
e /[5” ’<p5’"f) & ’<p5mf>]

Q

[ sF 5H\ _ 6H 5H
- — Vil mi— ) - —V;| mi—
omy, om; omy, om;

[

[ [ere (o) -y, (o
&s T\ om; &s T\ om;

Q-

dQ

dQ

(2.12)
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For further details on the coordinate transformation for the contin-
uous Poisson bracket (2.8)-(2.12) see Beris and Edwards [4]. Substi-
tuting (2.9) and (2.12) into Eq. (2.7) general dynamic equations for p,
pu, s and C can be established by comparing coefficients in the expan-
sion. In order to complete the process however, one must establish an
expression for the energy functional (Hamiltonian/Helmholtz free en-
ergy) in terms of the dynamic variables that have been specified. The
simplest form of this expression is obtained through a decomposition of
energy into kinetic and stored/potential energy. In the absence of po-
tential fields (gravity/electromagnetism) the Helmholtz free energy can
be categorised into two parts: kinetic and internal energy. Beris and Ed-
wards [4] include further discussion of field energy potential terms that
can be modelled relatively easily using this method. Classical forms of
the expressions for K and # are used. Taking derivatives of Eq. (2.3) we
obtain

SH _m _ SH _

5m_p_ 5s

6H m-m 0i

—_ = + — 2.13
ép 20 Op @13

This equation demonstrates that derivatives with respect to the com-
ponents of structural variable C are solely dependent on the expression
for strain-energy, w, that is chosen. Substituting these expressions into
(2.12) and comparing coefficients we obtain the system of equations for
non-dissipative compressible viscoelastic flow

dp

L =-_V.

Y (pu)

L=V w

Ju oH

— =-Vp-pu-Vu+2v.{C.- =

Por p—pu-vu < ac)

oC T
E:—V-(uC)+Vu-C+C-Vu (2.14)

Pressure is automatically defined as a function of the dynamic vari-
ables and derivatives of the Helmholtz free energy density h:
oh oh oh
pil=p—+m-— :

e %y 2.15
op om a5 T @15

" oC

The first three equations in (2.14) represent the conservation of mass,
entropy (for non-dissipative processes) and momentum (in the absence
of diffusion). The non-dissipative description of fluid motion contains no
viscous or relaxation terms, hence the viscous stress tensor and relax-
ation terms in the conformation tensor equation do not appear. Another
significant feature of the continuous Poisson bracket is that the material
and upper convected derivatives are the natural time derivatives that
arise in the derivation of the balance law for u and C, respectively. The
last equation in (2.14) is equivalent to the vanishing Truesdell derivative
of C, hence material objectivity is satisfied from the outset.

In the case of non-dissipative systems, the total available energy and
total energy are equivalent. Distinctions between the two only become
important when considering the dynamics of entropy producing sys-
tems in which mechanical energy is degraded. The system Eq. (2.14) is
adequate for describing compressible fluids such as liquid helium and
other so-called superfluids that exhibit no dissipative phenomena (vis-
cosity/relaxation). When modelling particle systems that permit dissi-
pative phenomena, irreversible (non-equilibrium) thermodynamic pro-
cesses also need to be modelled.

2.2. Non-equilibrium thermodynamics: The dissipative bracket

When describing conservative systems the underlying assumption is
that the time scale for changes in the system are large when compared to
the time scale of changes of internal variables. If we intend to model sys-
tems that exhibit relaxation/dissipation on time scales similar to those
of the system it is no longer sufficient to assume that the dynamics of
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the system variables are reversible. All real viscoelastic fluids exhibit
dissipative behaviour in the form of viscous dissipation and stress relax-
ation, with both effects decreasing the amount of energy available to be
converted into mechanical work.

Since the Poisson bracket is only suitable for modelling conserva-
tive dynamics it is necessary to derive an additional bracket to model
irreversible dynamics. Early work on the combination of Hamiltonian
and dissipative dynamics is due to Dzyaloshinskii and Volovick [14],
Grmela [20], Kaufman [32], Morrison [39] and Grmela [19]. The con-
cept of the dissipation bracket was introduced by Grmela [19]. The first
application of the generalized bracket formulation in rheology appeared
in Grmela [21] where the Poisson bracket without the s variable was in-
troduced. A review of the recent development and applications of the
generalized bracket formulation can be found in Grmela [23]. Beris &
Edwards [15] introduced the unified bracket used in this paper. The in-
ternal dynamics of a viscoelastic fluid system is completely described
by Eq. (2.7) with A being the Helmholtz free energy. Unlike the Pois-
son bracket an exact expression for the dissipation bracket [F, G] cannot
be derived from an equivalent discrete binary operator applicable to ki-
netic modelling of particle systems and so is only makes sense when a
continuum approximation is used. Constraints and degeneracy condi-
tions are imposed to ensure the non-decrease of entropy (second law of
thermodynamics). For the generalized bracket we must also ensure that
dH/dt =0
dd—fti ={H,H}+[H,H]=0=>[H,H]=0

This arises by assuming the system is isolated, or at least surrounded
by an adiabatic wall [4]. Additionally the entropy functional, S, must

satisfy

5 (s M) +15,H12 0

which in turn means [S, H] >0 as {.S, H} = 0. Throughout this paper we
will use the Boltzmann definition of entropy (see Grmela and Carreau

[24] and Beris and Edwards [4] for further details)

k
S(/),C,T):/S(/),C,T)dﬂz/wlogdet KC ) 4o
2 ok, T
Q Q

(2.16)

where « is the mass fraction, k; is the Boltzmann constant, K is the spring
constant. The total mass of the system M is conserved where

M= /de,
Q

Therefore

‘%4 = (M.H) +[M,H] =0,

and hence [M, H] = 0. Moreover, the Hamiltonian must be generalised
in the non-equilibrium nonisothermal case to account for mechanical
degradation. Not all of the energy (represented by the Hamiltonian) is
‘available’ to be used for work in a nonisothermal system that is not
in thermal equilibrium. Instead a fraction of the total energy, propor-
tional to temperature and entropy, cannot be used. The Helmholtz free
energy A replaces the Hamiltonian as the generating functional used in
Eq. (2.7). Given two observables, F and G operating on Q, the most gen-
eral form of the dissipation bracket, obeying the first and second laws
of thermodynamics, is given by

o= [ |2 L] 8F. voF |, 86, 56
bw Sw | Sw ow
Q
_1sr (|56 ye6 | 56 56\ | g
T 6s bw  ow | dw Sw
where w = (p, ..., m) is a vector containing the dynamic variables, L[]
denotes that E is linear with respect to its arguments and Z is given by

~ OF 6G s OF oG
E=% A =22 4+ B v 2L
"’[ Yéw; sw; * ik s, k<5wj>

(2.17)
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OF \ 6G A oF 6G
+CljkV <5wi>ﬁ Duklvk5 V’(Sw

Eq. (2.17) represents the most general expression possible for a dis-
sipation bracket consistent with the first and second laws of thermody-
namics. In Eq. (2.17), A,;, B, €;j, D,j; are phenomenological coeffi-
cient matrices, which depend on the dynamic variables of the system.
Beris and Edwards [4] discuss the general forms that these coefficient
matrices take when used for modelling a range of fluids and composite
rheological materials. Most well-known viscoelastic models can be de-
rived by specifying a non-zero form of each phenomenological tensor.
In Section 5 we consider nonisotropic behaviour and therefore propose
nonzero forms of all four tensors. However Eq. (2.17) needs to be ex-
pressed in order to give physical meaning to each of the coefficient ma-
trices. For a general viscoelastic fluid the dissipation bracket takes the

form
>Vk< 5H > o
om

oF
rn=- [ Q"f"’v"<57,
Q
1 6F oH
?EQU"’V"(_«sm.

./ ()0

(2.18)

SF 6H
K SC, 6Cy

16F, &H 6H
T és UMsC,; 6Cy

e
(2 (2)
(2 ()

where A and Q are fourth-order relaxation and viscosity tensors, respec-
tively, L represents non-affine interactions between the velocity gradient
and conformation tensor fields and « is the thermal conductivity matrix.

The forms that the two dissipative tensors can take vary signifi-
cantly due to the limited number of assumptions used in this formu-
lation. Most importantly A, Q and L have to satisfy the Onsager recip-
rocal relations and frame indifference principles (which ensure that [-,
-] is non-negative definite). The generalised bracket for general non-
isothermal viscoelastic fluids is thus obtained by adding Egs. (2.19) to
(2.12). Expanding the left-hand side of Eq. (2.1) using the chain rule and
then comparing like terms with the right-hand side of Egs. (2.19) and
(2.12) we obtain the differential form of the governing equations for the
state variables

+

GF 5G
om; 5Cy

6G SF
om; 6Cyy

>dg

Q

oF

1
+ =5 (2.19)

P~ :0\ :0\ :o\ b*
>

dp
9LV (pu) = 2.20
o +V-(pw) (2.20)

ou
p(5+u~Vu>:—Vp+V-T @21)
as 1
E+V (su) = Q il <Vu®Vu>+?V~(aTVT)

I (sH _sH

+ A <_5c ®_5c> 2.22)

C+(V-u)Ce=-A 5—Z+L vu (2.23)
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where the upper-convected derivative of C is defined as

(v:— be _ Vu-C-C-vu’
Dt
and the extra-stress tensor, T, is given by
oH 5H

T=0Q: Vu+26— C+L: 5C

Egs. (2.20)—(2.23) is a generalization of single conformation tensor
viscoelastic fluid models. Constitutive equations are derived by specify-
ing the forms of the Hamiltonian (Helmholtz free energy in the case of
nonisothermal fluids) and tensors A, Q and L (for further discussion of
the general governing Egs. (2.20)-(2.23), see [4] p. 328-335).

(2.24)

2.3. The energy balance equation

A generalised form of the energy balance equation can be derived
from Egs. (2.20)-(2.23). The time derivative of the Helmholtz free en-
ergy is given by

Da D(p X
= _=Z( Eq. 2.2
D Dt<2u u+a(p,s,C)> (2.25)
Taking the derivative of 4 with respect to t yields

N 5D N N
ba _9aDp  daDs oi, DC (2.26)
Dt o0p Dt o0s Dt 0C Dt

It can be shown, via substitution of (2.22) into Eq. (2.26), that in the
absence of external thermal energy potential, the equation for internal
energy is given by

%+(V wi=V.-q+6:Vu (2.27)
where
6=T-pl (2.28)

and q = —aVT. The thermal conductivity matrix, a, is a function of the
conformation stress, to the extent dictated by the Cayley—Hamilton the-
orem (see [4] p. 331)

a=a1+a,C+a;C-C (2.29)

where scalar coefficients a;, a, and a; are, in general, functions of the
invariants of the conformation stress [4]. To ensure nonnegative entropy
production, the following conditions must hold:

ay >0, a3>0, ay> -2 (2.30)

Note that the conditions found in Eq. (9.1-6) of the book of Edwards
and Beris [16] are incorrect.

The body of theoretical and experimental work suggests thermal con-
ductivity in polymeric fluids is anisotropic under flowing conditions
[4,28]. Experiments on cross-linked elastomers show a significant en-
hancement in thermal conductivity in the direction of stretch for natu-
ral rubber subjected to uniaxial elongation [47]. Moreover, Cocci and
Picot [9] and Picot et al. [42] showed that, for polymeric liquids, ther-
mal conductivity in the direction of strain of the macromolecule was
much higher than perpendicular to it. For dilute polymer solutions Van
den Brule [48] defined a; as the anisotropic thermal conductivity of the
solvent and q; i€ {2, 3} are given by

aas

a, = —apk, (2.31)

2m
where m is the mass of the polymer and ¢ is the friction coefficient. A de-
tailed review of the theory behind the derivation of the energy equation
was given by Dressler et al. [12].

The nascent field of theoretical non-isothermal rheology contains
several controversies that need to be resolved in relation to nonequilib-
rium thermodynamics. The controversies arise when considering com-
plex fluids and nonlinear time evolution far from equilibrium. The ques-
tions that need to be addressed are: what are the additional state vari-
ables, what is the physical meaning and role of time evolution of con-
cepts such as nonequilibrium entropy and nonequilibrium temperature.

a3 =0
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Grmela et al. [25] chose two extra fields, one describing mechanical
deformation of the macromolecules and the other describing the entropy
flux. Grmela [22] argues that it is reasonable to expect that the govern-
ing equations on all levels of description possess a common structure
that guarantees that their solutions agree with the experimentally ob-
served compatibilities with equilibrium thermodynamics and between
the two levels of description. It is clear that in nonequilibrium thermody-
namics, rheology plays an important role and there remains much to be
accomplished. However, in the present paper we focus on the influence
of viscoelasticity on the energy equation and ignore, for the present, the
possible inclusion of internal variables.

2.4. Summary of the generalised bracket method

In this section we have presented the theory underlying the gen-
eralised bracket method for deriving viscoelastic fluid models, and de-
scribed important properties of the Poisson and dissipative brackets. The
generalised bracket method is modular and can be summarised as fol-
lows:

e Module 1: Choose variables that characterise the state of the system,
i.e mass density, p, momentum, m = pu, entropy, s and conformation
stress C. It is at this stage that the continuum approximation is made.
Module 2: Choose a form of the energy and entropy (or Helmholtz
free energy) functional. Throughout this paper we use the standard
Marrucci definition of entropy (Eq. (2.16)). The constitutive equa-
tion depends on the elastic strain energy and entropy functionals.

We consider both linear and nonlinear strain energy formulations

when developing the various models detailed in the next sections.

e Module 3: Choose the form of the phenomenological tensors in the
dissipative bracket, ensuring that the dissipative tensors satisfy the
Onsager reciprocal relations and the resulting constitutive equation
satisfies Hulsen’s theorem. In this paper we make use of the ‘non-
affine’ tensor (Beris and Edwards) to derive a new model for Boger
fluids.

These three modules provide a framework for deriving thermody-
namically consistent models for transport in viscoelastic fluids. In the
following sections compressible forms of the UCM and Oldroyd-B mod-
els are derived thermodynamically via this bracket formalism. The equa-
tions given by Egs. (2.20)-(2.23) provide the most general description
for thermodynamically consistent compressible models.

3. The compressible Oldroyd-B model

Maxwell-type fluids can be modelled within the generalised bracket
framework. The Oldroyd-B model is essentially an extension of the UCM
model that is able to provide a mathematical description of fluids with
a (Newtonian) solvent constituent in addition to an elastic or poly-
meric component. First of all, it is necessary to specify the form of
the Helmholtz free energy. Given a Helmholtz free energy of the form
(2.3) the system of equations for mass, momentum, entropy and consti-
tutive law are given by Egs. (2.20)—(2.23). For an Oldroyd-B fluid the
extra stress tensor is assumed to comprise polymeric and solvent contri-
butions. In order to capture these two contributions, nonzero forms of
A and Q need to be specified [4].

3.1. Isothermal compressible Oldroyd B model

In the first instance we consider the isothermal case where the fluid
parameters (viscosities, relaxation time) are assumed to be independent
of temperature. The components of the relaxation tensor are given by

2 (1 1
—~ [ ==—-=)s.C
3nK<,10 /12> ik

(3.1

1
Ajji = m(‘sﬂcﬁc + 6, Ciy+6;Cii + 63 Ci) +
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where 4, and A, are the relaxation times of the fluid, « is the mass
fraction of the polymer [12] and K is the spring factor. Essentially 4, and
A, represent the trace and the traceless stress relaxation, respectively.

The expression for A given by Eq. (3.1) satisfies the Onsager recipro-
cal relations and is non-negative definite. For the purposes of this paper
we will only consider fluids characterised by a single relaxation time
i.e. 4g =1, = 4. In general these material parameters are functions of
temperature i.e. A = A(T).

Eq. (3.1) is one of many forms that A can take. The only strict re-
quirement is that the equation for the conformation tensor ensures C(x, t)
is non-negative definite Vt> 0. We have chosen this form as it is one of
the simpler expressions for relaxation. In reality both the viscosity and
relaxation time of a fluid will be functions of pressure and temperature
with relationships being uniquely determined for each specific material.
The most general form of the viscosity tensor is given by

Ok = Hs(6ix 6y + 6116;1) + n3(665 — 6;161) + K;‘Siﬂski (3.2)

To satisfy frame indifference (principle of objectivity), #, has to be
set to zero so that

Qijrt = M (B8 + 648,1) + K156y (3.3)
where g is the shear viscosity and k! =« — % H, is the ‘second viscosity’.
Using «/ instead of the bulk viscosity k; permits the separation of gradient
and divergence free terms in the Newtonian viscosity.

Eq. (3.3) provides the most general form of a fourth order viscosity
tensor that satisfies the principle of frame indifference and the Onsager
reciprocal relations [4]. The subscript ‘s’ denotes that Q is normally as-
sociated with the viscosity of the solvent (Newtonian) component of the
fluid. The polymeric viscosity and relaxation time of the fluid are related
through the general elastic modulus, defined

G(p.T) = apkyT = p,(p, T)/ NT)

where « is the polymeric mass fraction, k; is the Boltzmann constant
Hp(p, T) is the polymeric viscosity and A(T) is the relaxation time. In
the case of isothermal flow the temperature is constant. The Helmholtz
free energy density is given by the sum of the kinetic and internal en-
ergy (elastic strain energy, chemical potential etc.) less a degradation
term proportional to the Boltzmann entropy and temperature (for more
details on the relationship between the Hamiltonian and Helmholtz free
energy and relationships between the derivatives of the two functionals
see Beris and Edwards [4])

(3.4)

Alp, pu,T,C] = / a(p, pu, T, C)dQ = / <” ot a(p,T,C)> aQ (3.5)
Q Q ’

where

A apK apk,T CK

a=ayp,T)+ 5 trC-3)— > log det< pka> (3.6)

The additional term, d,(p, T), in Eq. (3.5) represents the Helmholtz
free energy density for the fluid in the ‘rest’ state (i.e. not depending on
C) of a fluid. It then follows that
5A _ apK apk,T
sC 2 2

Substituting (3.7) and (3.1) into the equation for the conformation
tensor in (2.22) we can write

L SA

c! (3.7)

1. lapk,,TI

A —=-C s 3.8
6C A A K 38
thus obtaining a dynamic equation for the conformation tensor
v 1 G
C+V-uyC=—-—=(C-—1 3.9
+V - u) 7 ( K > (3.9)
Eq. (2.24) becomes
T = 2u,(T)D + «/(T)(V - WI + aK(T)C — apk,TI (3.10)
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The extra stress can be divided into solvent, 7, and polymeric, ),
parts where T = 7, + 7,,.The equation for the polymeric part of the extra
stress is given by

T,= aK(T)C — apk,T1 3.11)

Note that C = pc where p is the density and c is the kinematic con-
formation tensor. Conservation of mass can be written
Dp
Dr
Using Egs. (3.9) and (3.12) the constitutive equation in terms of the
kinematic conformation tensor can be derived
k,T
K(T)

Writing Eq. (3.11) in terms of the kinematic conformation stress

+p(V-u)=0 3.12)

AT) e +c= 1 (3.13)

7, =apK(T)e — apk,T1 3.14)
and taking the upper convected derivative of (3.14) we obtain

v Dp v v Dp

T,= aEKc+ach—apk,,T I —aEkaI. (3.15)

Eliminating the material derivative of p using Eq. (3.12) yields

v v
;p= apK ¢ —apk, T I —(V -w)apKc — apk,TI].

This equation can be simplified using Eq. (3.14) to give

v v v
T, +(V - u)rp =apK ¢ —apk,T 1 3.16)

and finally we arrive at the constitutive equation for the polymer stress

v
/1(11, (V- u)rp> +1, = 24apk,TD (3.17)

Eq. (3.17) represents the most general form of constitutive equation
for a compressible Oldroyd-B fluid with a single relaxation time. How-
ever, this equation is not in a form that can be used in any practical sense
to obtain numerical approximations to viscoelastic flow problems. In or-
der to reduce the equations to a more tractable form we write down the
constitutive equations for the solvent and polymeric contributions to T

T, =2uD + (V- wl

AT, +(1+ AV -w)r, = 24,0 (3.18)

When the incompressibility condition (V - u = 0) is imposed and defin-
ing the polymer viscosity u, = Aapk,T, we recover the incompressible
form of the Oldroyd-B constitutive law given by

T, =2uD

AT, 47, =2u,D (3.19)

Eq. (3.18) represents the constitutive equation for an isothermal
compressible Oldroyd-B fluid with relaxation time independent of C.
The system given by Egs. (2.20)-(2.23) is also capable of modelling vis-
coelastic fluids with a spectrum of relaxation times. We now consider
the extension of Eq. (3.18) to the nonisothermal case when the fluid
parameters are functions of temperature.

3.2. Nonisothermal and compressible Oldroyd B model

For the nonisothermal case we consider the fluid parameters to be
temperature dependent i.e. yu; = p(T), u, = p,(p,T) A = AT). The relax-
ation tensor is given by

1
Ay = ———
k= 20 pK(TYMT)

In several instances in the literature the spring factor is assumed to
have a linear dependence on temperature,

(6;;Ci + 6k Ciy + 6;Cji + 6;.C;p) (3.20)

K(T) = k,Tyu (3.21)
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where y is a constant dependent on the equilibrium extension of the
polymers. Linear dependence of the spring factor on temperature was
addressed by Gupta and Metzner [27], who pointed out that when
Eq. (3.21) is used the resulting constitutive model could not adequately
describe experimental data. We will consider the spring factor to be a
general function of temperature to be determined empirically.

The relaxation tensor with components given by (3.20) was initially
proposed by Dressler et al. [12]. Likewise the components of the viscous

dissipation tensor are given by
Oyt = (T (83851 + 8;8;1) + kL(T)5;;6y (3.22)

where K; (T) = k,(T) - % uy(T). With temperature a non-constant vari-
able, the upper convected derivative of (3.14) is given by

v Dp DK(T) v v Dp DT
T,= aE Ke+ap Dr c+apK e —apk,T I — aEkaI - apkbEI
(3.23)
Substituting Eq. (3.12) into (3.23) we obtain
v v DIn K(T
;p = apK ¢ —apk,T 1 +<—(V -u)+ HD—I()>[ach —apk,TT]

. (DPIKT) _DInT
Dt

Dr >apkaI

Eliminating ¢ using Egs. (3.13) and (3.14) yields
_ DInK(T)
Dt

DIn K(T) _ DInT
Dt Dt

i(T)(;p +<(V -u) >1p+apka ;) + (7, + apk,TT)

= apk,TT+ < >apkaI,

This equation contains additional terms due to the non-constant temper-
ature and spring constant. With the inclusion of the solvent stress the
constitutive law is given by

DIn K(T)
1+ /1(T)<V-u— T)]r,,

DInK(T) _DIn(T)\,
Dt Dt

v
AT) T, +

= G(p, T)AT) [ZID + (

T, = 2/45(T)([D> - %(V . u)I) + k(T)(V-wl (3.24)

Eq. (3.24) is a general form of the Oldroyd-B constitutive equation
applicable to non-isothermal compressible flow problems. The func-
tional dependence of the viscosity, relaxation time and spring constant
are determined experimentally and are dependent on the particular
polymer melt/solution under consideration. In the case of incompress-
ible and isothermal flow the model reduces to Eq. (3.19).

4. Discussion of viscoelastic models

One of the major hurdles in the analysis of compressible flow of non-
Newtonian fluids is the lack of universal agreement on the form of the
governing equations. As a result the tendency has been to construct ad-
hoc governing equations suitable for particular problems. Whilst being
a crucial tool in engineering applications, this approach fails to provide
equations consistent with fundamental principles in physics. Thus these
models have limited applicability and cannot be applied to a wide range
of viscoelastic flow problems.

4.1. Weakly compressible model [3]
Belblidia et al. [3] proposed a model for weakly compressible fluids.

The constitutive equations for the solvent and polymeric contributions
to the extra stress are given by

T, = 2/4SD+/4S<;—Z - §>(v~u)l

v
At, 471, =2p,D

4.1
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respectively. The system of governing equations is closed using the equa-
tion of state

ptB _ (2
pot+ B Po

where j=p- %tr(rp + 2u,D) is the augmented pressure. This compress-
ible viscoelastic model has been effective at simulating viscous flows at
low Mach numbers. Several applications to polymer processing opera-
tions exist, such as injection moulding and high-speed extrusion where
compressible effects are significant. The model used by Belblidia [3] has
features that resemble the isothermal compressible Oldroyd-B model de-
rived in Section 3. However, comparisons of Egs. (3.18) and (4.1) show
that additional compressible terms appear in the model derived using
the generalized bracket formulation.

4.2)

4.2. Model based on the Boltzmann equation approach

Wilmanski [50] derived a compressible viscoelastic model by taking
moments of the phase density, f, which satisfies the Boltzmann equation

af
" ox
where x and v are position and velocity fields of the continuum and
C is the collision operator. The Boltzmann equation relies on some of
the same fundamental assumptions that are used in the bracket theory,
namely that the interactions between particles are reversible at the mi-
croscopic level (microscopic reversibility) and that interactions between
particles occur one at a time. Starting from (4.3), universal balance laws
of extended thermodynamics can be obtained with which to model vis-
coelasticity. The theory is based on the derivation of balance laws for
modelling both viscous liquids and linear elastic solids [50]. For vis-
cous heat-conducting fluids the equations governing the state variables
of the system have the same structure as those governing the dynamics
of ideal gases, albeit with slightly different conditions on some scalar co-
efficients. An additional condition ensuring the non-decrease of entropy
is imposed in order to satisfy the second law of thermodynamics. With
this in mind the following set of governing equations for the extra-stress
and energy for a heat-conducting Maxwellian fluid are proposed

0

+b°. % =CIf. f] @3

v
Ay [T+§(T : D)I] +T =2u,DP

De
2= V.q+T:V
Dr q+ u
Dq
in-Fq:—KVT
1
T=0" p=-3tr@)  p=p(0) (4.4)

where e is the thermal energy, 4, is the stress relaxation time, 4, is a
thermal relaxation constant and « is the (isotropic) thermal conductiv-
ity parameter. AP denotes the trace free part of a tensor A. The model of
Wilmanski, unlike the GENERIC and bracket formulations, is based upon
a general balance law that is itself derived from the Boltzmann equation.
The extended thermodynamic technique used to derive (4.4) possesses
additional modelling potential as it can be used to derive field equa-
tions in non-inertial (relativistic) coordinates and can be generalised to
systems far from thermodynamic equilibrium.

4.3. Dressler model

Dressler et al. [12] provide a detailed thermodynamic analysis for
generating models for polymeric liquids. The methodology used in the
current paper and the analysis performed by Dressler et al. [12] are
based on the principle that all thermodynamic systems are encompassed
by a single mathematical structure of a general abstract equation.

Several nonisothermal extensions to well-established viscoelastic
models are proposed in [12] and the discussion of GENERIC provides
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the best context for the models discussed in this paper. A key point to
be emphasised is the discussion of the energy equation used to model
heat flow commonly used in engineering heat analysis

pc%:T:Vu—V‘q+pQ 4.5)

where T is temperature, q = —aVT is the heat flux vector field, c is
the specific heat capacity and Q is external heat energy. Dressler et al.
[12] point out that unless the internal energy is solely dependent on tem-
perature (i.e. u = u(T)) Eq. (4.5) is inadequate for describing frictional
heating behaviour in polymers and must be replaced by

DT

pc— =0 .

Du
D—V.q+ _ ==
Di qQ+p0-p

D (4.6)

T

an important contribution in this work was the following nonisothermal
generalisation of the Maxwell constitutive law

T ran(vou- 2EXD) o
_ DInK(T) DInT
=2u,(T) [D + <—Dt ST )1] .7

Eq. (4.7) is the most sophisticated model presented in this section,
and takes account of temperature dependence of the thermodynamic
variables. Note that the relaxation time is defined by A(T') = {/4K(T)
where ¢ is the friction coefficient and K(T) is the temperature dependent
elastic spring factor.

4.4. Other models for compressible viscoelasticity

There are many other models that have been proposed to de-
scribe compressibility in addition to those described in this section.
Chakraborty and Sader [7] reviewed a number of constitutive equations
for compressible viscoelastic flows in their linear limits. They were par-
ticularly concerned about the inability of earlier models to reproduce
the response of linear mechanical vibrations of bipyramidal nanoparti-
cles in simple liquids at high frequency (20 GHz). They show that only
a recent model is able to recover all the required features of a linear vis-
coelastic flow and provide a rigorous foundation for the analysis of vi-
brating nanostructures in simple liquids. This highlights the importance
of shear and compressional relaxation processes, as a function of flow
geometry, and the impact of the shear and bulk viscosities on nanometer
scale flows.

Huo and Yong [31] considered a compressible viscoelastic fluid
model. Although the model has a convex entropy, the Hessian matrix
of the entropy does not symmetrize the system of first-order partial dif-
ferential equations due to the non-conservative terms in the constitutive
equation. They show that the corresponding 1D model is symmetrizable,
hyperbolic and dissipative and satisfies the Kawashima condition. They
use these properties to prove the global existence of smooth solutions
near equilibrium and justify the compatibility of the model with the
Navier-Stokes equations.

Guaily [26] derived a temperature equation for polymeric fluids in
which elasticity and compressibility effects appear explicitly. An advan-
tage of this temperature equation is that it does not contain functions
that depend on a particular choice of model for the polymer stress.

5. Nonlinear elastic models

For Maxwell-type models the elastic energy term in the Helmholtz
free energy functional is linear in C. However, for many rubber-
like elastic solids and polymeric fluids empirical evidence would sug-
gest that the elastic energy stored is a nonlinear function of C. The
generalised bracket method provides a path for deriving thermody-
namically consistent models for viscoelastic fluids using nonlinear
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strain energy formula in the generating functional for the constitutive
equation.

From the point of view of thermodynamics, there are only a few
constraints on the forms that the strain energy and relaxation tensor
should take. This allows a number of potential models to be derived in
a manner consistent with the first and second laws. In addition to mass
and momentum conservation, further physical constraints exist on the
conformation tensor, C(X, t). The constraint that ensures thermodynamic
consistency was proposed by Hulsen [30]. For the system of governing
Egs. (2.20)-(2.23), the evolution equation for C takes the form

C+(V wC+A: %—L Vu=0 (5.1)
where

. A 2
A = a,(C)I + a,(C)C + a3(C)C (5.2)

sC
and 4,;(C) ie{1, 2, 3} are general functions of the principal invariants
of C which ensures that 4;(C) are objective or frame indifferent. Hulsen
[30] examined the mathematical behaviour of the conformation tensor
obeying (5.1) and provided a condition that ensures the consistency of
a model for a given Hamiltonian/Helmholtz free energy. The following
theorem summarizes this condition.

Theorem 5.1 (Hulsen [30]). Given that C satisfies the differential equation
given by (5.1) and C(x,0) is positive definite. Then if a;(C) < 0 and Vu finite,
C remains positive definite for all t > 0.

A proof and detailed discussion of Hulsen’s sufficient condition the-
orem is included in the monograph of Beris and Edwards [4] (Section
8.1.5 B). To invoke Hulsen’s theorem it is sufficient to analyse the be-
haviour of a,(C) for positive definite C [30] since satisfaction of the
conditions in the theorem determines if a given strain energy/relaxation
tensor model is physically admissible. Further investigation is needed in
order to determine the well-posedness of the mathematical equations
generated for given boundary conditions as well as how well the solu-
tions to these equations compare to experimental data. We now derive
a new viscoelastic model based on a hyperelastic strain energy formu-
lation for viscoplastic materials.

5.1. Compressible Mooney-Rivlin type model

The literature concerning models for hyperelastic materials is rich
with formulations for elastic strain energy density functions [13]. For
both the UCM and Oldroyd-B models the elastic potential energy is
that of a neoHookean material i.e. w(C) = g(I1 (C) — 3) where 4 = apK.
We now consider a fluid whose polymeric constituent behaves like a
Mooney-Rivlin material i.e. instead of a strain energy directly pro-
portional to I;(C) the strain energy depends on all three principal

invariants
w(C) = %(—Il(c)l - 3> + %( L©

I3(C)3 I3(C)3
where y; and p, are parameters to be determined empirically. The first
and second terms are associated with the stiffness of the polymeric con-
stituent and the third term is a compressible term associated with the
bulk viscosity. It is easy to verify that if I3(C)=detC=1, y, =0 and
u; = apK, then (5.3) reduces to the strain energy for a Maxwell mate-
rial. Taking the derivative of the Helmholtz free energy functional, with
elastic strain energy defined by (5.3) we obtain

- 3) + K02 -1 (53)

SA _ 12 ml | mh G\ -
<= < a 13)+614/3+315/3+ — |
3
+< #_, el >I— M 5.4)
/3 2/3 2/3 :

213 213 213
which we write in the form
6A _
3C - £1(0C™" + g(OI + g5(OC
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where

oy

u + apkyT
3?2

4/3
61,

g,(C) = <K -1+

Hy uyly
£(C) = +
2y 2’
Ha
&) = ——— (5.5)
N

3

Using the expression given by Eq. (5.4) for the energy derivative and
Eq. (3.1) for the relaxation we obtain

A 2 (1 (1 1
Ao 2 (Lo~ -+
5C aK</logl( )+3(zo /12>

X [gz(C)Il(C)+g3(C)(Il(C)—ZIZ(C))]>I (5.6)

T eOC+ £;(0)C?

2
ﬂ aK
where we have used the fact that 1#C2 =T 1(C) = 2I,(C). Consider once
more the case when relaxation is described via a single relaxation time,
4. In this case Eq. (5.6) reduces to

A OA

—_ 2
" 5C ok $3©C

o Kgl(c) + gz(C)C+

(5.7
=a;(C)I + az(C)C + a3(C)C2

Eq. (5.7) is of the form (5.2) and therefore by Theorem 5.1 the phys-
ical admissibility of the model depends on the behaviour of a,(C) =
2 £,(C). Substituting our strain energy expression into Egs. (2.22) and
(2.24), the governing equation for the conformation tensor is obtained

v

CHV - wC=-——1, 58
where

T=2uD+x,(V Wi+, (5.9)
7, = 28, (C) + 28,(C)C + 2g3(C)C2 (5.10)

Due to the additional complications introduced when g;#0,
Eq. (5.10) cannot be simplified further (i.e. C cannot be eliminated).
However further constraints on y; and y, exist in order to ensure 7, = 0
when C is at equilibrium. Using the Cayley-Hamilton Theorem, it can
be shown that the right-hand side of the dynamic equation for the con-
formation tensor can be written in the form

0A

A — =
6C

—(a0+a2a§1)l+ () +2a01a2)C—a2C2 (5.11)
where «; are functions of the invariants of C (and also functions of g;(C))
[4]. The parameter «(; is specifically chosen to be the ratio ¢y/a; so that
C = ay;I at equilibrium [4] i.e.

\4
C+V-w)C=0

when C = g1 (5.12)

5.2. Compressible nonisothermal FENE-P-type model

Recently, a new class of models has been proposed that displays both
shear-thinning and considerable extensional-hardening behaviour with
the aim of reproducing computationally the levels of drag enhancement
that are measured experimentally for the flow of polymeric liquids past
a sphere. Garduiio et al. [17] proposed a new hybrid dissipative model
based on a combination of FENE and White-Metzner models. An ex-
tensional viscosity that is strain-hardening was found to be a crucial
component in the modelling. The viscosity ratio was also found to be
an important factor for Boger fluids. The hybrid models were termed
swanINNF(q). The proposed model however, is an ad hoc model since
it was developed to possess certain behaviour by modifying existing
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models by including additional terms. In this section models with simi-
lar rheological properties that are suitable for describing nonisothermal
compressible viscoelastic fluids are derived from thermodynamic con-
siderations using the generalized bracket formulation with a nonlinear
elastic strain energy.

The resulting model is similar to the swanINNFM(q) model of Gar-
duiio et al. [17]. However, additional terms appear in the formulation
as a result of being derived from the general set of Egs. (2.20)—(2.23).
Although the additional terms do not play a significant role in viscomet-
ric flows, they may become important when predicting complex flows
in 2D and 3D. The FENE-P model has been particularly successful at
capturing the behaviour of polymeric liquids at large deformation rates.
At the microscopic level the linear spring force law for Hookean dumb-
bells is replaced by an asymptotically increasing force that limits the
extension of the dumbbells. The approximation introduced by Peterlin
[33] averages the interactions between the dumbbells so that the elas-
ticity can be described by a single conformation tensor. The closed form
expression for the elastic energy is given by

< trC >
n|1-——
b(T)

where bh(T) = R(T)? is the square of the maximum extension of the
dumbbell, which is taken to be temperature dependent. The Helmholtz

free energy is given by
trC G(T)
In (1 ﬁ) T ln(det C)

-

Q

_ nKb(T)? |

W@ =-—3F

(5.13)

apKb(T)?

dQ
2T

[ao(/)’ T) -

(5.14)

The last term is the expression for the Boltzmann entropy. The ex-
pressions for A and Q remain the same as in Section 3 (Egs. (3.20) and
(3.22)). Consider the following nonzero expression for the non-affine
tensor, L,

w(€)
Lijy = 2 {Cik5j1 +Cybji + Cpby + le5ik} (5.15)
where
) — 1
wie) = 2© b(é) = cosh (Apé), (5.16)

R
and ¢ = 313(D)/I,(D) is the generalised extension rate and 4y, is a dis-
sipation parameter. The tensor L, associated with non-affine motion
(stick/slip) within the system, is a crucial ingredient in enabling the
model to capture both shear thinning and strain hardening behaviour.
Through modelling in this way we are able to deduce that strain hard-
ening effects in the fluid are the result of nonlinear interactions between
the conformation tensor and velocity gradient fields. Specifically, poly-
mer chains ‘stick’ with respect to the solvent around them due to poly-
mer chain entanglement. The evolution equation for the conformation
tensor is given by

MT) [ ZI +(V- u)C] =- [f(trC)C - MI] + ATy (€)[C-D+D-C]
apK(T)
(5.17)
and the expression for the extra stress is
3 ,T
T =2u,(T)D + &' (TYV - wl + w(f(trC)C —G(p,T))  (5.18)

AT)

Note that, unlike the Oldroyd-B/UCM model this expression is non-
linear in C. Furthermore, it should be noted that the governing equation
for the conformation stress now has nonlinear dependence on the veloc-
ity gradient through ¢. This violates the general rule proposed by Beris
and Edwards [4], however (i) this is not the first time this has been
done [34] and (ii) the right-hand side of Eq. (5.17) satisfies Hulsen’s
sufficient condition theorem. We therefore conclude that this model fits
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within the generalised bracket framework and satisfies thermodynamic
consistency. The governing equations in terms of the solvent and poly-
meric contributions to the extra stress T are given by

T, =2u(T)D + &/ (T)(V - wI

DInZ
Dt

(Z + ATV -w)r, + AT) 7, —/{(T)<rp +G(p, T)I>

— AT (@)t D+D -1, = G, (p.T)

. DInK(T) DInT

where

3 1
Z=1+—(1+——t
b(T) < 3G(.T) "”)

where we have used Eq. (3.4) to define ﬂp(p, T). The constitutive equa-
tions represented by Eq. (5.19) is the bracket generated equivalent of
the swanINNFM(q) with FENE-P base model. The key difference be-
tween the two models is that, by using a non zero L tensor, the ad-
ditional terms in the constitutive equation can be derived in a man-
ner consistent with the laws of thermodynamics. Additionally, when
Ap =0 (¢p=1) we recover the nonisothermal FENE-P constitutive equa-
tion. This new model is constructed to be able to capture moderate
shear thinning and strain-hardening at high extension rates, an exper-
imentally observed characteristic of Boger fluids [18]. Eq. (5.19) is
highly nonlinear in 7, making analytical solutions impossible for non-
trivial flow problems. Future work is needed to develop efficient nu-
merical schemes for finding solutions to benchmark viscoelastic flow
problems. However, first we will analyse rheometrical properties of
Eq. (5.19).

(5.19)

6. Viscometric behaviour

The rheological properties of constitutive models play an important
role in terms of the type of behaviour that may be investigated using
them. Two simple flows which provide insight into model behaviour
are simple shear and uniaxial extension. The rheometric behaviour of
the model with solvent viscosity fraction f = u;/u; = 0.5 and 4, = 1 s is
displayed in Figs. 1-3. The material parameters A, and u are the relax-
ation time and viscosity of the fluid at the reference temperature, T.
The quantities in the figures that follow are non-dimensionalised: shear
and extensional viscosities using y, and first normal stress difference
using the rigidity modulus uq/Ag.

For steady simple shear flow u = (u, v, w) = (7,0, 0) the shear viscos-
ity and normal stress difference predictions of Eq. (5.19) are analysed.
In Fig. 1 we present the shear viscosity and first normal stress differ-
ence under isothermal conditions with T, = 293K for a range of values of
the dimensionless maximum extensibility parameter b.Significant shear-
thinning occurs at high shear rates particularly for large values of b. In
contrast, the Oldroyd B model predicts a constant shear viscosity and
a quadratic relationship between the first normal stress difference and
shear-rate and a zero second normal stress difference.

The variation of viscosity with shear-rate and temperature for poly-
meric fluids can be described by a master curve. We use the Arrhenius
model for the viscosities and relaxation time

1, (T) = ulkexp(E,/RT)  AT) = Aok exp(E,/RT) (6.1)

where k = exp(— E/RT,) is a normalisation constant, R is the Boltzmann
constant and E, and E are the activation energies for the polymeric
and solvent constituents, respectively. In Fig. 2 we present the influence
of temperature on the shear properties of the model for = 0.5, 4, =1
s, b=50, E; =500 J and E, = 5000 J. The temperature thinning cap-
tured by Eq. (5.19) is also in qualitative agreement with experimental
results in the literature on metallocene linear low density polyethylene
(mLLDPE) [1].
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Fig. 2. The effect of temperature on (a) shear viscosity and (b) first normal stress difference; 4y = 1's, pj /4y = 0.5, u3/py = 0.5, b =50, E; = 500 J and E, = 5000 J.

The dashed line is the prediction of the Oldroyd B model.

For uniaxial extensional flow u = (éx, — £y, — £ z) the extensional vis-
cosity predictions of Eq. (5.19) are analysed. In Fig. 3(a) the influence of
b on the extensional viscosity of both the model given by Eq. (5.19) and
the FENE-P model is presented for 1, = 0.01. In the case of the model
given by Eq. (5.19) the dissipation parameter is given by 1, = 0.01. After
an initial strain-hardening regime the extensional viscosity of the FENE-
P model reaches a plateau, whereas the model given by Eq. (5.19) pre-
dicts a second strain hardening regime at high shear rates (1,¢ > 10%).
The second strain hardening regime is a viscoelastic effect which is al-
most certainly a result of coupling between polymer molecules that,
under large enough strain-rate, cause the material stiffness to increase
massively. The dissipation parameter A, determines the onset of the sec-
ond strain hardening regime (see Fig. 3(b) where 1, = 0.01,0.02,0.03).
In Fig. 3(c) we see that temperature thinning effects on extensional vis-
cosity are not significant and do not lead to qualitatively different be-
haviour.

7. Conclusions

In this paper the generalised bracket framework for establishing
models for compressible non-isothermal flow of viscoelastic fluids has
been presented and discussed. In the literature a number of ad-hoc mod-
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ifications to incompressible Maxwell/Oldroyd models have been pro-
posed [5] for modelling compressible viscoelastic fluids. Many of these
violate the principles of thermodynamics and therefore are of limited
applicability. The generalised bracket formulation eliminates the need
to derive individual conservation laws by reducing the formulation of
physical variable dynamics to a single master equation from which bal-
ance laws can be derived. The principles of thermodynamics are em-
bedded in the master equation a priori. This approach provides a strong
theoretical foundation from which a large range of valid (thermodynam-
ically consistent) viscoelastic fluid models can be derived.

A compressible form of the Oldroyd-B model is derived using the
elastic strain energy for a Hookean material. Several compressible
Maxwell-type viscoelastic models from the literature have been re-
viewed and compared to the proposed model. We have demonstrated
that clear distinctions exist between Maxwell-type models derived us-
ing the generalised bracket formulation and some ad-hoc models in the
literature. A compressible nonisothermal form of the FENE-P model is
derived using a nonlinear strain energy related to the FENE model. The
resulting model displays both shear-thinning and strain-hardening be-
haviour in simple shear and uniaxial extensional flows, respectively.
These are phenomena associated with polymeric fluids. The derivation
of a particular model requires the specification of a strain energy, en-
tropy and phenomenological tensors such as the viscosity and relaxation
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tensors. Consistency with the laws of thermodynamics is ensured by this
approach.

The viscometric behaviour of these models has been investigated
and model predictions compared with experimental data for mLLDPE
[1] and numerical results for Boger fluids [17,18]. Furthermore tem-
perature thinning captured by Eq. (5.19) is also in agreement with ex-
perimental results in the literature [1]. In the future we would like to
investigate the behaviour of specific polymer solutions and melts under
nonisothermal/high pressure conditions, where the general model pro-
posed in Section 5.2 will be able to provide an accurate description of
the material consistent with thermodynamics.

A limiting factor of the generalised bracket formulation is the in-
creased mathematical complexity introduced by the fourth order phe-
nomenological tensors such as A and Q, and the energy functional w(C).
As we have demonstrated in this paper, constitutive equations derived
via the generalized bracket formulation can become intractable unless
further assumptions are made that reduce the complexity of the govern-
ing equations. Future work will use these models to solve suitable vis-
coelastic benchmark problems where compressible and non-isothermal
effects are important. Comparisons will be made with analytical and
numerical solutions, where they exist, and experimental measurements.
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