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ARTICLE INFO ABSTRACT

Keywords: We propose a general strategy for surface phase discrimination by dark-field imaging using low energy electrons,
LEEM which maximizes contrast using diffraction spots, at selected optimal energies. The method can be automated to
Dark-field produce composite phase maps in real space and study the dynamics of complex phase transformations in real-
GaAs

Surface phase

time. To illustrate the capabilities of the technique, surface phases are mapped in the vicinity of liquid Ga
droplets on the technologically important GaAs (001) surface.

1. Introduction

Low energy electron microscopy (LEEM) is a powerful technique for
imaging surface dynamic phenomena in real-time and the technique is
described in detail in a number of excellent reviews [1,2] and texts [3].
The key to LEEM operation is that the specimen surface of interest
forms part of an immersion lens and is maintained at a potential close to
that of the electron source. A uniform electric field between the ob-
jective lens anode and the sample surface decelerates the incident
electrons to an energy controlled by the bias between the specimen and
the electron source potential. Typically, this is of the order of several
electron volts. Following the low energy interaction and reflection from
the sample surface, the electrons are re-accelerated to the gun energy
on their return to the objective lens. For crystalline surfaces, a low
energy electron diffraction (LEED) pattern is formed in the back focal
plane of the objective lens. After transfer to the imaging column via the
magnetic sector field, the diffraction pattern is reproduced at a con-
jugate plane to the back focal plane via a transfer lens. An image is then
formed by selecting one of these diffracted beams using a contrast
aperture located in this plane. If the specular beam is selected, this is
termed bright-field imaging. Imaging with non-specular beams is re-
ferred to as dark-field imaging. The imaging column optics can be ad-
justed to produce a magnified image on the microchannel plate/phos-
phor screen detector. Alternatively, the optics can be adjusted to image
the diffraction pattern.

Typically, LEEM dark-field imaging is applied at constant incident
beam energy. This has been used to discriminate between numerous
surface reconstructions [1-10]. The difference in I(V) curves (i.e. dif-
fracted intensity against incident beam energy or bias), even for the

specular (00) beam, has also readily allowed the identification between
(7 x 7) and (1 x 1) domains at constant energy [11]. However, with
complex surfaces exhibiting varying stoichiometry, such as GaAs (001),
the diffraction information itself and hence, dark-field images, can be
highly misleading at a given energy. Consider, for example, the two
LEED patterns obtained from GaAs (001) at differing incident beam
energies contained in Fig. 1. The first pattern at 10.6 eV displays a
(4 x 1) periodicity. However, at 6.6 eV the pattern displays a c(8 x 2)
periodicity. This simple case illustrates that one must scan the LEED
pattern across a range of incident beam energy to determine the highest
periodicity of the surface structure. This is further complicated in some
GaAs (001) reconstructions where, for a (I X n) periodicity, not all
diffracted orders in the LEED pattern are visible at a single energy,
making an incident energy scan essential for accurate characterisation.
In some cases, LEED spots from different phases can also overlap and it
is necessary to select energies to optimise phase discrimination (see
Section 3). For these reasons, it is therefore necessary to establish a
strategy to distinguish phases on complex surfaces based on I(V) mea-
surements, which is explored in the following section.

2. Selected energy dark-field LEEM

To illustrate the use of selected energy dark-field (SEDF) imaging to
optimise surface phase discrimination in LEEM, we focus on the GaAs
(001) surface. Experiments were carried out with a commercial
ELMITEC LEEM instrument specially modified to study the III-V system
[12,13]. This includes the incorporation of an As cracker source and an
integrated liquid nitrogen cooling shroud to control the As background
pressure in the chamber. The base pressure of the microscope is in the
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Fig. 1. LEED patterns of the c¢(8 x 2) surface reconstruction at (a) 10.6 eV and (b) 6.6 eV. The apparent (4 x 1) periodicity in (a) is misleading. (1,0) and (0,1) type
spots are indicated by red circles. (1, n) and (1, n) rows of spots lie outside the Ewald sphere and are represented by yellow circles.
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Fig. 2. (a) Schematic superimposition of ¢(8 x 2) (yellow) and (6 x 6) (red) LEED patterns. (b) Dark-field image of the c¢(8 X 2) phase obtained with the (1/4, 0) spot
at 6.2 eV (see Fig. 3(a)). (c) Dark-field image of the (6 X 6) phase obtained with the (0, 3/6) spot at 5.0 eV (see Fig. 3(c)). (d) Composite SEDF LEEM image obtained
by assigning yellow to the dark-field ¢(8 x 2) intensity in 2(b) and red to (6 X 6) intensity in 2(c). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 3. I(V) curves for selected diffraction spots high-
lighted by colours in the LEED pattern insets. (a) (1/4,
0) spot of ¢(8 x 2), (b) (0, 3/6) spot of (6 x 6), (c) (1/
3, 0) spot of (3 x 6) and (d) (0, 1/4) spot of f2(2 x 4).
The LEED patterns are obtained at the optimal en-
ergies indicated by the black arrows under the I(V)
curves (arrow 1 in panel (b)). In (b) the blue dashed

c(8x2)

curve corresponds to the (0, 2/4) spot of 2(2 x 4).
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web version
of this article.)
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low 107! Torr regime. During As deposition, the pressure increases to
higher 1078 Torr and the beam equivalent pressure (BEP) of As flux is
typically 1077 Torr. The initial planar c¢(8 x 2) surface is obtained via a
well-developed technique by running the Ga droplets over a rough
GaAs (001) surface following oxide desorption [14-16]. This is de-
scribed in detail in [16] but, briefly, the Ga droplets are produced by
heating the sample above the congruent temperature at 650 °C. The
temperature is then lowered to just below the congruent evaporation
temperature (~590 °C) and droplets are allowed to run across the
surface [14]. Planar c(8 x 2) trails are then left behind the droplets and
are the regions used for imaging. The droplets can also be removed by
annealing the sample at about 570 °C when required [16]. The GaAs
sample is held firmly against a support ring by a Mo cap. A W/
Re3%-W/Re25% thermocouple, spot-welded to the support ring, is
used for temperature calibration in combination with infrared pyro-
metry.

To illustrate the principle of SEDF LEEM, we consider the relatively
simple case of discriminating between (6 X 6) and c(8 x 2) phases.
Coexistence between these two phases is obtained by removing droplets
from the surface by annealing and then reducing the temperature to
530 °C [15]. Fig. 2(a) contains a schematic of the superimposed LEED
pattern of the (6 x 6) and c(8 x 2) phases. Clearly, there are several
reflections which can be used to differentiate between the two phases
using dark-field imaging. Here we select the (1/4, 0) spot of the c
(8 x 2) phase highlighted in yellow on the LEED pattern inset con-
tained in Fig. 3(a). For this spot, the electron energy can be optimised to
provide significant intensity. The intensity of this spot as a function of
incident electron beam energy, the so-called I(V) curve, is also shown in
Fig. 3(a). The optimum choice of energy to maximise the intensity is
illustrated by the arrow and occurs at 6.2 eV. The resulting (1/4, 0)
dark-field LEEM image for this optimum energy is contained in
Fig. 2(b). Similarly, the (0, 3/6) beam for the (6 X 6) reconstruction
and its associated I(V) curve is contained in Fig. 3(b). The optimum
energy is 5.0 eV, as illustrated by arrow 1 in Fig. 3(b) and the resulting
(0, 3/6) dark-field LEEM image is contained in Fig. 2(c). Note that the
optimum energy for the (0, 1/6) spot is approximately 11eV (not
shown), but this reflection is much less intense than that of the (0, 3/6)
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spot. The dark-field images in Fig. 2(b) and (c) can be combined in a
single composite image by assigning different colors to the intensities
from the two phases. In this case we assign yellow to ¢(8 x 2) and red
to (6 x 6) giving the composite SEDF LEEM image contained in
Fig. 2(d). This contains all the information present in the two original
dark-field images and provides an efficient means of visualising the
coexisting phases on the surface. We note that since the contrast
aperture only allows the signal from selected phases, the intensity on
the detector from non-selected phases is in principle zero (neglecting
inelastic scattering). Compared with conventional bright-field imaging,
which can also show contrast between two phases at an optimized
energy, this is likely to provide much higher contrast.

3. SEDF LEEM of droplet epitaxy on GaAs (001)

Droplet epitaxy [17] has emerged as a flexible technique for con-
trolling the morphology of quantum structures [18-24] including
double-dots [18], molecules [19], rings [20] and multi-rings [21-24].
In this approach, liquid metal droplets are first deposited on a semi-
conductor surface. Then exposure to a group-V flux results in the for-
mation of a crystalline epitaxial quantum structure. Here we apply
SEDF LEEM to identify surface phases surrounding liquid Ga droplets
on GaAs (001) under As flux.

During droplet epitaxy on GaAs (001), we find that (3 X 6) and
B2(2 x 4) reconstructions also occur in addition to the ¢(8 x 2) and
(6 x 6) phases. A full discussion of these surface phases and their re-
lationship to the GaAs (001) phase diagram is provided in [15,25,26]
and references contained therein. The ¢(8 X 2) and (6 X 6) phases are
known to be Ga-rich [15,25] and the f2(2 x 4) phase is As-rich [25].
The LEED I(V) curve for the (1/3, 0) reflection of the (3 X 6) phase is
shown in Fig. 3(c). Similarly, the I(V) curve for the (0, 1/4) reflection of
the f2(2 x 4) reconstruction is contained in Fig. 3(d). The arrows under
the LEED I(V) curves in panels 3(c) and 3(d) indicate the optimal
imaging energies as 5.0 and 11.2eV.

To discriminate between the phases we must also note the compli-
cation that the (0, 2/4) spot of f2(2 X 4) is at the same reciprocal space
(momentum) position as (0, 3/6) of (6 X 6) (panel 3(c)). The LEED I(V)
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Fig. 4. LEEM images of a droplet trail on GaAs (001) after exposing to As flux for 1500 s: (a) bright-field image obtained at 8.6 eV. Dark-field images obtained with
(b) the (1/4, 0) spot of ¢(8 x 2), (c) the (0, 3/6) spot of (6 x 6), (d) the (1/4, 0) spot of (3 x 6) and (e) the (0, 1/4) spot of f2(2 X 4). The dark-field images are
obtained at the optimal energies indicated by the arrows under the I(V) curves in Fig. 3 (arrow 2 in panel(b)).

droplet

c(8x2)

curves of the (0, 2/4) spot is superimposed as the blue dashed line in
panel 3(b). Clearly, the use of 5 eV (arrow 1 in panel 3(b)) for the (0, 3/
6) reflection will also include a large contribution from S2(2 x 4). To
avoid this, we use the next optimized energy of the (0, 3/6) dark-field
image of the (6 x 6) phase indicated by arrow 2 in panel 3(b). Here, the
intensity of the (0, 2/4) reflection is much lower than that of (0, 3/6). In
principle, we might alternatively use (0, 1/6) to avoid overlap with (0,
2/4), but, in this case, the intensity of (0, 1/6) is too low for imaging,
even at its optimum energy. Additionally, the position of (0, 1/6) is
close to the (0, 1/4) spot used for imaging the f2(2 X 4) phase so that
small misalignments of the contrast aperture could still mix dark-field
signals from the two phases. We therefore use the (0, 3/6) spot at 7.7 eV
for (6 x 6) (arrow 2, panel 3(b)) and the (0, 1/4) spot at 11.2eV for
B2(2 x 4) (arrow in panel 3(e)).

With the optimised parameters for the four surface reconstructions
(Fig. 3), we can program the microscope's control software to
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Fig. 5. Composite SEDF LEEM image formed
by respectively assigning the colours yellow,
red, green and blue to the intensities of the ¢
(8 x 2), (6 X 6), (3x6)and B2(2 x 4) dark-
field images contained in Fig. 4(b)-(e). Note
the irregular shape of the droplet is due to
contact line pinning. (For interpretation of the
references to colour in this figure legend, the
reader is referred to the web version of this
article.)

automatically attain a sequence of optimal dark-field images for the
four phases [27]. Since the LEEM images are measured at different
electron energies, the current offsets of the objective lens have to be
pre-programmed for the recording of image sequences, due to chro-
matic aberration. A sequence of one bright and four dark-field images is
typically attained in several seconds, which is considerably faster than
the rate of surface phase transformations for our deposition conditions.
Consequently, we can study droplet epitaxy with temporally resolved
SEDF LEEM.

Fig. 4(a) displays a bright-field image of a droplet and smooth
surface trail following exposure to As flux for 1500 s. The trail had been
formed previously by droplet motion [14] at 590 °C before the exposure
to the As flux. This technique has been usefully applied to create
smooth GaAs surface regions for surface science studies [16]. Panels
4(b)-(e) show the corresponding dark-field images for the c(8 x 2),
(6 X6), (3x6) and f2(2 x 4) phases obtained using selected
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diffraction spots at optimal energies, as discussed earlier (see Fig. 3). It
can be seen that the phases are located in different spatial regions of the
trail. Here, the droplet under As flux is stationary, but the phase
boundaries are slowly moving towards the droplet from right to left
(~0.4um/min.). The order of the observed phases reflects the Ga
adatom concentration profile (i.e. the Ga chemical potential) which
decreases with distance away from the droplet. Hence, the order of the
phases is consistent with existing knowledge of the GaAs phase diagram
[15,25,26] and the Ga-rich or As-rich nature of the phases, as discussed
earlier. Note that the (6 x 6) phase occupies a narrow spatial band
located approximately 4 um form the droplet edge. Interestingly, this
cannot be distinguished in the bright-field image (panel 4(a)) because
the (0, 0) I(V) curves of the (3 X 6) and (6 X 6) phases (not shown) are
very similar.

As with Fig. 2(d), we can form the composite SEDF LEEM image by
respectively assigning the colours yellow, red, green and blue to the
intensities of the c(8 x 2), (6 X 6), (3 X 6) and B2(2 X 4) phases con-
tained in Fig. 4(b)-(e). Since the time taken to obtain the sequence of
images in Fig. 4 is 12.6 s, which is fast compared to phase boundary
motion, the resulting image in Fig. 5 can be regarded as an in-
stantaneous snapshot of the surface phase distribution under As flux,
surrounding the droplet. This temporally resolved spatial phase dis-
tribution, made visible by SEDF LEEM, provides a new basis for
studying the surface thermodynamics of GaAs (001) reconstructions
and related phase transformation mechanisms.

4. Conclusions

We have proposed, and experimentally demonstrated, the technique
of SEDF LEEM for phase discrimination on complex surfaces of varying
local structure and stoichiometry. Composite images are created by
combining dark-field images for each phase formed by selecting dif-
fracted beams at optimal energies to maximise contrast. The optimal
selection of the diffracted beams and energies is based on the mea-
surement of I(V) curves. We have applied this method to investigate the
surface phase distribution around liquid Ga droplets on GaAs (001)
under As flux. The strategy and methods presented here are quite
general and should be applicable to the characterisation of complex
surfaces and study of phase transformation dynamics across a wide
range of materials systems.
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