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HIGHLIGHTS 
 

A microfluidic platform for the specific isolation of antigen specific T-cells with high sensitivity 

(0.005%). 
 

Release of T-cell from the device using a single point direct current (DC) pulse. 
 

Monitoring TCR expression heterogenity on antigen specific T-cells using SERS. 

T-cell receptor expression analysis on individual T-cells using SERS-nanotags. 

 

ABSTRACT 
 

T-cells play a major role in host defense mechanisms against many diseases. With the current 

growth of immunotherapy approaches, there is a strong need for advanced technologies to detect 

and characterize these immune cells. Herein, we present a simple approach for the isolation of 

antigen specific T-cells from the complex biological sample based on T-cell receptor (TCR) and 

peptide major histocompatibility complex (pMHC) interaction. Subsequently, we characterize those 

antigen specific T-cells by profiling TCR expression heterogeneity. Our approach utilizes an 

alternating current electrohydrodynamic (ac-EHD) based microfluidic platform for isolation and 

surface enhanced Raman scattering (SERS) for TCR expression profiling. The use of ac-EHD 

enables specific isolation of T-cells by generating a nanoscopic shear force at the double layer of 

the sensing surface which enhances the frequency of pMHC and TCR interactions and 

consequently shears off the nonspecific targets. TCR expression profiling of the isolated T-cells 

was performed by encoding them with SERS-labelled pMHCs followed by SERS detection in bulk 

as well as in single T-Cell. In proof-of-concept experiments, 56.93 ± 7.31% of the total CD4+T-

cells were captured from an excess amount of nonspecific cells (e.g., PBMCs) with high specificity 

and sensitivity (0.005%). Moreover, TCR analysis data using SERS shows the heterogeneity in the 

T-cell receptor expression which can inform on the activation status of T-cells and the patient’s 

response to immunotherapy. We believe that this approach may hold potential for numerous 

applications towards monitoring immune status, understanding therapeutic responses, and effective 

vaccine development. 

https://www.sciencedirect.com/science/article/pii/S0925400518322184?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0925400518322184?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0925400518322184?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0925400518322184?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0925400518322184?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0925400518322184?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0925400518322184?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0925400518322184?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0925400518322184?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0925400518322184?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0925400518322184?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0925400518322184?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0925400518322184?via%3Dihub#!
https://www.sciencedirect.com/topics/chemistry/microfluidics
https://www.sciencedirect.com/topics/chemistry/antigen
https://www.sciencedirect.com/topics/engineering/t-cell
https://www.sciencedirect.com/topics/engineering/direct-current
https://www.sciencedirect.com/topics/engineering/t-cell-receptor


1. INTRODUCTION 

T-cell mediated immunotherapy has gained wide attention over the years for its success in disease 

management. Monitoring the therapeutic response in patients requires characterization of antigen 

specific T-cells to understand their potential role in immune response [1].  The mechanism that plays 

a major role in the regulation of downstream immune responses is usually characterized by the 

interaction of T-cell receptor (TCR) with antigenic peptides presented by the major 

histocompatibility complex (pMHC) on the surface of antigen presenting cells (APCs) [[2], [3], [4]]. 

This interaction initiates the activation and maturation of T-cells and triggers the adaptive host 

immune response towards specific antigens [5].  Thus the characterization of pMHC-TCR 

interactions is of fundamental importance to better understand the immune system and to facilitate 

the development of antigen-specific therapeutic formulations and vaccines for disease control [6,7]. 

However, TCR specificities towards various antigenic peptides presented by MHC molecules (class 

I and class II) are diverse, antigen-specific cells are rare in circulation and most interactions are of 

low affinity (Kd˜ 0.1–500 μM) which makes their detection extremely challenging [8]. Thus, a 

suitable biosensor platform that can enable the identification of T-cells using pMHC-TCR 

interactions with high sensitivity and specificity is highly desirable. 

 

Development of soluble pMHC multimers has aided the analysis of specific T-cells using 

conventional flow cytometry [[9], [10], [11], [12], [13]]. For example, Greten and co-workers utilized 

pMHC multimers in flow cytometry assay to detect HTLV-1 Tax11–19-specific CD8 + T cells 

in peripheral blood of HAM/TSP patients [10]. Furthermore, the use of different combinatorial 

approaches has enabled to detect multiple antigen specific T-cells simultaneously by different 

cytometry based approaches. Utilizing 10 metal labels in combinations for pMHC tetramer based 

staining, Newell et al. demonstrated the applicability of mass cytometry for the screening of 109 

different antigen specific T-cells in one sample [11]. More recently, Bentzen et al. developed a DNA 

barcoding assay technique by tagging different pMHC molecules with signature DNA tags. This 

allows the screening of T-cells with more than one thousand different peptide loaded MHCs [12]. 

Although cytometry-based methods provide multiplexed analysis of T-cell populations, they are 

limited by sample volume, optical encoding, expensive instruments and analysis time[14].  

Alternative methods including Enzyme-Linked ImmunoSpot (ELISpot) and Enzyme-Linked 

immunosorbent assay (ELISA) require prior assumption of the secretory profile of the activated  

T-cells, and therefore isolation of antigen specific T-cells using these methods are challenging [15].  

To address these shortcomings, a limited number of array-based approaches have been developed 

(Table 1) for T-cell analysis by functionalizing the array surface with pMHC multimers [14,[16], [17], 

[18], [19], [20]].  In a modified microarray approach, Shen et al. combined magnetic assisted cell sorting 

with the functional assay for simultaneous sorting and characterization of antigen specific T-cells. 

They developed an artificial antigen-presenting cell microplate (termed AAPC-microplate) 

containing pMHCs and anti-CD28 co-labeled magnetic beads and anti-cytokine antibodies in each 

well which facilitated parallel isolation and functional characterization of  

T-cells [21].  In a most recent report, Zhu et al. developed graphene-based MHC–peptide multimers 

(HRGO/ pMHC multimers) by loading pMHC molecules on hemin functionalized reduced 

graphene oxide (HRGO) for T-cell analysis. This approach allows more pMHCs per multimeric 

complex which could be potentially advantageous for T-cell analysis with the weak affinity 

between pMHC and T-cell receptors [22].  Further, this method utilizes a catalytic reaction between 

HRGO and tetramethylbenzidine (TMB)/H2O2 for detection which avoids the common problem 

of photo-bleaching associated with fluorescence based detection approaches.  Although microarray 

platforms demonstrated numerous advantages over flow cytometry, the array techniques require a 

large number of target cells and it is difficult to control the flow conditions and appropriate pMHC 

orientation on array surface which limits their sensitivity and specificity [18,[17], [18], [19], [20],23]. 
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In recent years, microfluidic techniques have become attractive assay platforms for cellular analysis 

due to their ability to facilitate faster target diffusion and control over the fluidic process to cater 

low-affinity interactions upon alteration of fluid flow [[24], [25], [26], [27]].  We have recently developed 

a microfluidic platform based on alternating current (ac) electrohydrodynamic (ac-EHD)-induced 

fluid flow phenomenon to improve the sensitivity and specificity of biomolecule detection [26,27]. 

However, microfluidic techniques mostly use fluorescence labeling for detecting the captured 

targets in the device under a fluorescence microscope. Recently, Surface enhanced Raman 

scattering (SERS) have become more attractive detection reagents over fluorescence-based 

detection, because of their high photostability, sensitivity (down to single-cell detection) and 

extensive multiplexing capability [28,29]. We have recently reported a SERS based report that can 

monitor the change in cellular phenotypic expression of circulating tumor cells during drug 

treatment [30].  Thus, a SERS technique integrated with the microfluidic platform may potentially 

facilitate the characterization of T-cells using pMHC-TCR interactions and overcome the above-

stated limitations associated with current techniques. 

 

In this study, we develop a simple microfluidic-SERS platform for isolation and characterization of 

antigen specific T-cell. The platform utilizes specific pMHC-TCR interaction using an ac-EHD 

enabled microfluidic device for specific T-cell isolation and SERS technique to characterize TCR 

distribution in both bulk population and single T-cells. The integration of ac-EHD induced fluid 

micromixing inside the microfluidic channels enhances the collision between target T-cells and the 

pMHC functionalized surface; hence significantly improve the capture efficiency in comparison to 

the pressure driven flow system. Our approach also shows high specificity and sensitivity (0.005%) 

for capturing T-cells from complex biological samples (PBMCs). Moreover, on-chip labelling of 

the isolated T-cell with SERS-pMHCnanotags obviates the need of multiple wash steps associated 

with cell labelling which is often unsuitable for rare cell analysis due to the loss of target cells 

during washing. Subsequent cell release using single point direct current (DC) pulse permits the 

SERS screening of average TCR expression level from the released T-cells in bulk as well as 

empowered the system to screen single T-cell TCR expression which is currently difficult to 

achieve with existing techniques. Finally, our method is simple, multiplexable and requires small 

sample volume to operate which we believe can potentially be suitable for clinical applications. 

 

 

2. EXPERIMENTAL SECTION 

 

2.1. Reagents 

Immunoassay reagents were obtained from Abcam (Australia), R&D/Life Technologies 

(Burlington, ON), Thermo-Fisher Scientific (Australia), Invitrogen (Australia) and Altor 

BioScience Corporation (USA). All other reagents unless stated otherwise were purchased from 

Sigma-Aldrich (Australia). Commercial reagents from Altor BioScience Corporation include p53 

(aa264-272) Star™Multimer (human leukocyte antigen (HLA)-A2.1 restricted), and biotinylated 

p53-HLA-A2 monomers. Biotinylated HA306-318-HLA-DRB1*04:01 monomers and Streptavidin-

PE (phycoerythrin)tetramers (pMHC II) were synthesised as previously described [26]. 

 

2.2. Device design and fabrication 

This chip contains 264 pairs of asymmetric planar electrodes (electrode sizes: 100 μm and 400 μm) 

connected by two gold connecting pads act as cathode and anode(Figure S1). Small and large 

electrodes in a pair are separated by 50 μm and the distance between two pairs is 150 μm.  The 

electrode geometry in our device was optimized to engender effective ac-EHD fluid flow and 

maintained uniformly throughout each channel as: r0/d2 = 0.125, r1/d2 = 0.375, d1/d2 = 0.25, 
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respectively [27]. The device works on the principle of electric field induced fluid flow phenomena 

as described in the previous literature [27,31,32]. 

 

Device fabrication was performed using standard photolithography. Detailed procedures of device 

fabrication are available in the supplementary information(Figure S2). 

 

2.3. Device functionalization 

Initially, clean device was incubated with biotinylated BSA solution (250 μl of 200 μg/mL) at 37 °C 

for 2 h, then with streptavidin solution (100 μg/mL in PBS) for 1 h at 37 °C. Finally, biotinylatedp 

MHC monomer was added and incubated at 4 °C for 1 h (Figure S3). For tetramer functionalization, 

after streptavidin attachment, biotinylated anti-PE was incubated for 1 h and then PE-labeled 

pMHC tetramer solution (1 μg/mL) was added to the anti-PE functionalized device and incubated 

(4 °C) for 1 h (Figure S4). The functionalized device was washed with PBS (1 mM, pH 7.0) and 

incubated with BSA solution. PDMS defined channel was attached to the device and the device was 

connected to a signal generator to perform experiments. The storage performance of the device was 

tested by keeping the device in a vacuum sealed box from 0 to 4 weeks which showed high 

reproducibility in capturing targets even after 4 weeks of storage time (Figure S5). 

 

2.4. Cell culture and flow cytometry analysis 

Hemagglutinin306-318 (HA) specific- CD4+T-cell clones were generated as described previously [33]. 

A detailed description of CD4+ T-cell is described in the supplementary section. Control SKBR-3 

cells were maintained in RPMI 1640 growth medium supplemented with 10% FBS, 1% penicillin 

and 1% glutamax and grown in 5% CO2 at 37 °C. 

 

2.5. Cell capture, labelingand detection 

CD4+T-cells were labeled with DiO (3,3′-Dioctadecyloxacarbocyanine Perchlorate) fluorescence 

dye by incubating at 37 °C for 10 min (5 μL of DiO dye for 100,000 cells/sample). After labeling, 

cells were washed with PBS buffer to remove any staining debris. 

Sample containing a designated number of cells in PBS (200 μL) ran through the device under 

optimal ac-EHD field (f  = 600 Hz, Vpp = 100 mV). Captured cells were then optically detected 

under a fluorescence microscope (Figure S3). For TCR distribution analysis, captured cells were 

incubated (45 min, on chip) with SERS labelledpMHC tetramer (see supplementary information for 

SERS-pMHC tag preparation), then released by applying a reductive DC pulse (1.4 V for 200 s) 

across the capture domain, washed with PBS and collected from the outlet (1 mM, pH 7.0) [26]. 

Recovered cells were energized with a single laser (SnIR IM-52 portable Raman microscope) to 

record the SERS spectra from T-cells (Figure S4). To this end, individual T-cell was scanned under 

Raman microscope and SERS intensity of each cell was divided by the total cell area to get average 

SERS intensity for a given cell. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1. Immunochip for T-cell capture and phenotypic analysis 

For isolation and immune-phenotyping of T-cells, we fabricated an ac-EHD microfluidic chip 

containing an array of asymmetric electrode pairs across the whole channel (Figure 1, S1). This 

new device comprises a serpentine channel with U shaped turns in each corner that facilitates 

smooth fluid flow across the channel and minimized nonspecific adsorption of molecules in the 

corners. The long serpentine PDMS-based microchannel provided additional fluid micromixing for 
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the improved interaction of target cells with the functionalized surface under ac-EHD. Figure 1 

depicts the detailed working principle of immunochip for T-cell analysis. In brief, the application of 

ac potential across asymmetric electrode pairs induces a non-uniform electric field (E). It leads to 

asymmetric distribution of charges between the electrodes. Due to the asymmetric charge layer 

formation on electrode surfaces, the resultant force F (F = ρEt, where ρ = charge density, Et = 

tangential component of E) on larger electrode become stronger than that of the smaller electrode 

(Fs ;Fl>Fs). This variation in localized body forces pushes sample fluid inside the microchannel 

from smaller to the larger electrode. Simultaneously, it generates micromixing that enhances 

interactions of T-cells with pMHC functionalized surface - thereby increases capture efficiency. At 

the same time the force also assists to drag off and remove loosely bounded nonspecifically 

adsorbed molecules from the device surface [26]. Post capture, T-cells were labelled onchip by 

flowing SERS nanotags (SERS nanoparticle tagged with pMHC molecules) under the same ac-

EHD condition to allow better interaction of captured T-cells with SERS-pMHCnanotags. 

Subsequently, SERS tagged T-cells were released from the capture domain by the application of a 

single point DC pulse that broke the thiol bond between capture molecules with gold electrodes. In 

the final stage, the released cells were then characterized for TCR expression level using Raman 

scattering. 

 

3.2. Interrogation of synthetic pMHC-TCR interaction on-chip 

To evaluate TCR-pMHC interaction on chip under ac-EHD flow condition, we first analyzed the 

interaction of commercially availed HRP labeled soluble TCR (p53 (aa264-272) Star™Multimer 

(HLA-A2.1 restricted)) and its cognate p53-MHC I molecule (biotinylated p53-HLA-A2). Prior to 

run ac-EHD experiments, we evaluated the effect of ac electric field on pMHC-TCR interaction by 

conducting electrochemical analysis and found minimal to no effect of the applied field on pMHC-

TCR bindings (see supporting information for details, Figure S6) To perform on-chip experiment, 

we functionalized biotinylated pMHC molecules (monomer) on the chip surface using avidin-biotin 

chemistry. Different concentrations of HRP labelled soluble TCR solutions were then flown 

through the functionalized channel under applied ac electric field (f  = 600 Hz and Vpp = 100 mV, 

calculated electric field = 2 mV/μm). In this case, we utilized an optimized ac-EHD condition used 

in our previous work [30] and used three different concentrations of TCR molecules (250 ng/mL, 

500 ng/mL and 1 μg/mL) spiked in PBS (1 mM, pH 7.0). After completing the capture experiment, 

3, 3′, 5, 5′-Tetramethylbenzidine (TMB) solution was driven through the channels to allow 

colorimetric reaction for 5 min and the resulting solution was collected from the outlet for 

absorbance measurements using a UV–vis spectrophotometer. Control experiments were done by 

flowing TCR solution through the non-pMHC functionalized device. As shown in Figure 2, the 

positive TCR-pMHC interaction with three different concentrations of TCR solution showed higher 

absorbance value in comparison to the control experiment. The lowest concentration for detection 

was found to be 250 ng/mL of HRP labeled TCR (average UV absorbance of 0.14 ± 0.02, n = 3). 

This data clearly demonstrates that our method is capable of interrogating TCR-pMHC interaction 

on chip with high specificity and sensitivity and may potentially be able to capture the antigen 

specific T-cells. 

 

3.3. Specificity of the assay in capturing T-cells 

To investigate the capture of antigen specific T-cells on pMHC functionalized immunochip under 

ac-EHD, we first generated Hemagglutinin306-318 (HA) specific CD4+ T-cells form HLA-

DRB1*04:01+ healthy control by following the standard protocol (see supplementary section for 

details). To confirm the presence of TCR expression on target HA-specific CD4+ cloned T-cells, 

we performed FACS analysis of PE-pMHC tetramer stained cells. The FACS data in Figure 3a 

clearly shows the TCR expression level in our HA-specific CD4+ cloned T-cells. We then 
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performed capture experiments with 500 CD4+ T-cells (prestained with DiO) in 1 mM PBS on anti-

pMHC (monomer) functionalized device under optimized ac-EHD conditions (f = 600 Hz, 

Vpp = 100 mV) (see supplementary information for ac-EHD optimization, Figure S7) and counted 

the captured T-cell under a fluorescence microscope [34]. As a control to our ac-EHD flow system 

and to compare the capture performance, we also performed capture experiments using pressure 

driven flow system. Under these ac conditions, our system was able to isolate 33.58 ± 4.50% spiked 

T-cells whereas only 17.33 ± 2.02% capture efficiency was recorded when capture experiments 

were performed under pressure driven flow condition (i.e., no ac-EHD, Figure 3b). This data clearly 

demonstrated the feasibility of immunochip for T-cell capture using pMHC-TCR interaction. 

 

To further improve the capture performance, we utilizedpMHC tetramer as capture agents instead 

of pMHC monomers due to their higher avidity toward TCRs on T-cells [9,35]. In this case, we 

used biotin streptavidin followed by anti-PE based functionalization procedure to ensure 

appropriate orientation of pMHC tetramers on the surface (Figure 4a, see supplementary 

information for more details, Figures S4, S8). To evaluate the on-chip capture efficiency, we then 

spiked 500 target CD4+T-cells in 1 mM PBS and the samples were driven through the tetramer 

functionalizeddevice. Under optimal ac-EHD condition (f  = 600 Hz, Vpp = 100 mV), 56.93 ± 7.31% 

target cells were captured in a pMHC tetramer modified device in comparison to a monomer 

immobilized device (33.58 ± 4.50% of spiked T-cells) (Figure 4b). The increase in capture 

efficiency on a tetramer functionalized device might be the result of the stronger affinity of pMHC 

tetramer with multiple TCRs expressed on T-cell surfaces [9]. Control experiments by flowing target 

T-cells (spiked in 1 mM PBS) under ac-EHD through i) no-pMHC ii) anti-HER2 and iii) non-target 

pMHC functionalized immunochip showed minimal non-specific adsorption (<0.5%) which 

demonstrated the specificity of our system in capturing T-cell using pMHC-TCR interaction 

(Figure 4b). 

 

3.4. Analytical performance of the device in capturing T-cells 

To investigate the analytical performance of the system, PBS samples containing designated 

number of target CD4+ T-cells (i.e., 100, 200, 500, 750 and 1000) were subjected to capture 

experiments under optimized ac-EHD condition (Vpp = 100 mV and f  = 600 Hz). Average number 

of cell captured were found to be 58.66 ± 2.60 (for 100 spiked cells), 108 ± 5.05 (for 200 spiked 

cells), 284.66 ± 7.31 (for 500 spiked cells), 424 ± 2.33 (for 750 spiked cells), and 562.33 ± 2.90 (for 

1000 spiked cells), respectively. This data clearly indicates the dynamic range of the immunochip 

for capturing T-cells (i.e., 100–1000 T-cells) using pMHC-TCR interaction (Figure 5a). However, 

experiments with T-cell number below 100 spiked cells in 1 mM PBS did not show reproducible 

capture efficiency. Thus we conclude that the limit of detection for our microfluidic platform is 100 

cells. To test the efficacy of our method in capturing T-cells from complex mixtures, we spiked 

different number of T-cells (100, 500 and 1000) in 106 healthy PBMCs and flown through our 

system. As shown in Figure 5b, our system provided high sensitivity (0.005%) for T-cell isolation 

from complex biological fluid (Figure 5b). This level of sensitivity is comparable with the existing 

standard techniques for T-Cell isolation (Table 1) [11,12,36]. 

 

3.5. TCR expression analysis of T-cells 

In order to analyze TCR expression level, captured T-cells were labelled with pMHC-SERSnanotag 

on chip (see supplementary information for pMHC-SERSnanotag preparation). SERS labelled T-

cells were then released from the microfluidic device by applying 1.4 V DC electric pulse for 200 s. 
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In our previous work, we already showed that this optimised DC pulse successfully released cells 

from the device [26]. Released cells were then subjected to SERS measurement to record the signal 

from responsive cells. Approximately 200 spectra were recorded for each sample and analyzed to 

extract average TCR expression level (SERS signal intensity is proportional to TCR expression 

level due to the pre-labelling of cells with SERS nanotag). As shown in Figure 6a,b, average TCR 

expression of bulk T-cells in solutions (1 mM PBS) increased proportionally with increasing 

number of T-cells. In contrast, the control experiments with nonspecific pMHC-SERS nanotag 

showed negligible signal for TCR expression. Furthermore, the frequency vs intensity curve for 

1000 T-cells shown in Figure 6c provided a clear heterogeneous distribution of TCR expression in 

comparison to the control experiment without target pMHC. This data suggest that our method may 

potentially be able to monitor the heterogeneity in T-cell TCR population which could significantly 

facilitate the clinical outcome. 

 

To further analyze the diversity in TCR expression level in single T-cell, we characterized TCR 

expression level of individual T-cell following a protocol explored by Choo and co-workers for cell 

surface protein analysis [37]. In our experiment, released T-cells were placed on a plain glass surface 

and scanned individually by the Raman microscope. Figure 6d shows false color SERS mapping 

images of three representative T-cells and their average SERS intensities representing the TCR 

expression levels of the corresponding cells. These data further clarify that TCR expression levels 

are highly heterogeneous in antigen specific T-cells. Since activation and function of T-cells 

depends on the level of TCR expression and its interaction with specific pMHC presented by 

antigen presenting cells, this information could be highly important for clinical application [38].  This 

information could be of further use to design new therapeutic formulations and improve existing 

ones. However, further experiments with different T-cell populations need to be performed to 

precisely validate the diversity among individual T-cells within the same population. 

 

 

4. CONCLUSION 

 

We reported a simple technique for detection and characterization of antigenspecific T-cells by 

combing ac-EHD enabled microfluidic platform with a sensitive SERS based detection system. To 

the best of our knowledge, this is the first demonstration of a miniaturized microfluidic system for 

antigen specific immune cell isolation and subsequent characterization of their TCR expression 

using SERS barcoding. As a proof-of-concept study, our system was able to isolate 56.93 ± 7.31% 

of target antigen specific T-cells from a complex mixture with high specificity and sensitivity 

(0.005%). Furthermore, the use of SERS nanotag labelling enabled the screening of TCR 

expression on bulk T-cell samples as well as on individual T-cell surface which can potentially 

inform on the T-cell activity under certain diseased conditions. We envisage that the developed 

method will be of interest for antigen specific T-cell detection and characterization as well as for 

monitoring the adaptive immune therapy in clinics. 
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Table 1.  

pMHC arrays for T-cell analysis. 

Platform Detection limit Reference 

Microarray with pMHC tetramer coated 
slide and fluorescence detection. 

Detection limit 0.1% for CD8 T-cells, 
can screen 7 different antigen specific 
T-cells per assay. 

Soen et al. 
(2003) 

Microarray co-spotted with dimeric pMHCs 
and anti-cytokine antibodies.  Fluorescence 
based detection. 

Detection limit 0.01% for CD8 T-cells, 
7 different CD8 T-cell population can 
be assayed. 

Chen et al. 
(2005) 

Microarray of co-spotted pMHCs, anti-
cytokine antibodies and costimulatory 
molecules. Fluorescence based detection. 

Detection limit 0.1% for CD8 T-cells. 
Stone et al. 
(2005) 

pMHC microarray immobilized on antibody 
spotted polyacrylamide microscopy slide 
and fluorescence based detection. 

Detection limit 0.01% for CD8 T-cells. 
Deviren et al. 
(2007) 

Microarray containing DNA probed pMHCs 
immobilized on complementary DNA probe 
printed glass slide and fluorescence based 
detection. 

Detection limit 0.1% for CD8 T-cells, 3 
different antigen specific T-cells can 
be screened per assay. 

Kwong et al. 
(2009) 

pMHC tetramer microarray and 
fluorescence based detection. 

Detection limit 0.02% for CD8 T-cells, 
>40 specific T-cells can be screened. 

Brooks et al. 
(2015) 

Staining of T-cells with DNA barcode 
labelled pMHC and detection by 
sequencing 

Detection limit 0.002% for CD8 T-
cells, 1031 different antigen specific T-
cells can be screened per assay 

Bentzen et al. 
(2016) 

Mass cytometry 
Detection limit 0.001% for CD8+ T 
cells with ability to assay 109 different 
T-cells per assay. 

Newell et al. 
(2013) 

Flow cytometry Not reported 
Klinger et al. 
(2015) 

AAPC-microplate for T-cells isolation using 
pMHC and anti- CD28 coated magnetic 
beads followed by optical microscopy and 
ELISPOT for cell counting and secretion 
analysis. 

Detection limit 0.001% for CD8+T-
cells. 

Shen et al. 
(2017) 

pMHC array for T-cell isolation and hemin 
functionalized reduced graphene oxide 
(HRGO)/pMHCmultimers for colorimetric 
detection. 

Not reported 
Zhu et al. 
(2018) 

pMHC dodecamer based T-cell staining 
and flow cytometry based analysis. 

Not reported, can detect low affinity 
TCR-pMHC interaction often not 
possible for tetramer based 
techniques 

Huang et al. 
(2016) 
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Figure 1.  

Schematic representation of isolation and analysis of T-cells using pMHC-TCR interaction 

enabled by electric field induced T-cell capture, cell release under DC pulse and TCR 

expression analysis using designated SERS-nanotags. 
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Figure 2.  

On chip interrogation of pMHC-TCR interaction under ac-EHD field (Vpp = 100 mV, 

f = 600 Hz). (a) Colorimetric detection of captured soluble TCR tetramer (250 ng/ mL – 1 μg 

/ mL) in PBS under ac-EHD field. (b) Corresponding UV–vis absorption spectra obtained 

from respective colorimetric solutions. 
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Figure 3. 

(a) Flow cytometry analysis of HA + CD4+T-cell clones with (left) no tetramerstaining 

(control) and (right) PE labeled pMHCII tetramer staining; (b) Capture efficiency of CD4+ 

T-cells (500 T-cells spiked in 1 mM PBS) on monomer functionalized immunochip under 

ac-EHD and pressure (no ac-EHD) flow conditions. (c) Representative fluorescence 

images of captured T-cells under ac-EHD (top) and pressure driven flow conditions 

(bottom). Scale bar is 20 μm. 
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Figure 4.  

(a) Schematic illustration of T-cell capture on pMHCtetramer functionalized device;  

(b) Capture performance of ac-EHD device functionalized with target specific pMHC 

monomer (olive bar) and tetramer (red bar) for T-cell isolation. Control experiments with 

no-pMHC, nonspecific antibody(anti-HER2) and non-target pMHC tetramer showed 

negligible signal (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article 
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Figure 5.  

Sensitivity of the immunochip (a) Dynamic range of the assay for capturing T-cell spiked in 

1 mM PBS under ac-EHD condition, n = 3.  (b) Capture performance of ac-EHD 

microfluidic assay in capturing designated number (100, olive bar; 500, green bar; 1000, 

red bar) of T-cells in presence of a large number (106 cells) non-target peripheral 

blood mononuclear cells, n = 3 (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article) 
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Figure. 6.  

(a) SERS spectra for TCR expression on designated number of T-cells ranging from 1000 

to 5000 cells/mL and (b) Average SERS signal for 1000–5000 T-cells numbers, (n = 3), 

signal to noise ratio of SERS signals for all three T-cell concentrations measured are 9.01, 

20.83 and 27.90, respectively. (c) Frequency distribution of TCR expression among T-cells 

(for 1000 T-cells) and (d) SERS mapping images of individual T-cells (top) and their 

corresponding SERS spectra (bottom) showing the level of TCR expression (represented 

by SERS intensity) on individual T-cells. Scale bar is 10 μm. 
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