
Predicting ConceptNet Path Quality
Using Crowdsourced Assessments of Naturalness

Yilun Zhou
MIT CSAIL

yilun@mit.edu

Steven Schockaert
Cardiff University

SchockaertS1@cardiff.ac.uk

Julie A. Shah
MIT CSAIL

julie_a_shah@csail.mit.edu

ABSTRACT
In many applications, it is important to characterize the way in
which two concepts are semantically related. Knowledge graphs
such as ConceptNet provide a rich source of information for such
characterizations by encoding relations between concepts as edges
in a graph. When two concepts are not directly connected by an edge,
their relationship can still be described in terms of the paths that
connect them. Unfortunately, many of these paths are uninformative
and noisy, which means that the success of applications that use such
path features crucially relies on their ability to select high-quality
paths. In existing applications, this path selection process is based on
relatively simple heuristics. In this paper we instead propose to learn
to predict path quality from crowdsourced human assessments. Since
we are interested in a generic task-independent notion of quality,
we simply ask human participants to rank paths according to their
subjective assessment of the paths’ naturalness, without attempting
to define naturalness or steering the participants towards particular
indicators of quality. We show that a neural network model trained
on these assessments is able to predict human judgments on unseen
paths with near optimal performance. Most notably, we find that
the resulting path selection method is substantially better than the
current heuristic approaches at identifying meaningful paths.

CCS CONCEPTS
• Information systems→Crowdsourcing; Answer ranking; • Com-
puting methodologies→Knowledge representation and reason-
ing; Natural language processing.

KEYWORDS
Crowdsourcing, Knowledge Graph, Feature Selection, Common-
sense Knowledge, ConceptNet

ACM Reference Format:
Yilun Zhou, Steven Schockaert, and Julie A. Shah. 2019. Predicting Con-
ceptNet Path Quality Using Crowdsourced Assessments of Naturalness. In
Proceedings of the 2019 World Wide Web Conference (WWW’19), May 13–
17, 2019, San Francisco, CA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3308558.3313486

1 INTRODUCTION
Many applications require information about the semantic relation
between two (or more) words, concepts, or entities. For example, a

This paper is published under the Creative Commons Attribution 4.0 International (CC-
BY 4.0) license. Authors reserve their rights to disseminate the work on their personal
and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313486

recommender system needs to recommend items related to a user’s
browsing history, a task allocation agent needs to match people’s
experiences and skills to a pool of problems to maximize problem-
solving efficiency, and a household robot given the instruction to
“wash the plates” needs to infer that a dishwasher could be used.
Open-domain knowledge graphs such as ConceptNet (27) allow us
to characterize such semantic relationships in the form of relational
paths. Compared to the use of word embeddings (21) for character-
izing relatedness, knowledge graphs have the potential advantage
of producing easier-to-understand characterizations, and they can
capture relationships that go beyond what is encoded in standard
word embeddings (33).

Typical knowledge graphs (KGs), such as DBpedia and WikiData,
are concerned with named entities and their relations (e.g. “Abra-
ham Lincoln” is one of “United States Presidents”). In this paper,
however, we are concerned with capturing semantic relationships
between common nouns or concepts, which requires a commonsense
KG such as ConceptNet. Despite its indisputable value, however,
effectively using ConceptNet in applications comes with a unique
set of challenges. The knowledge captured in ConceptNet is, by
design, often informal, subjective and vague. Due to the fact that
ConceptNet partly consists of unverified crowdsourced assertions, it
is also noisier than many other KGs. Furthermore, many common-
sense assertions are true only under some circumstances and to some
extent. For example, ConceptNet encodes that “popcorn” is required
for “watching a movie”, which captures the useful commonsense
knowledge that eating popcorn is associated with watching a movie,
but the statement that popcorn is required is nonetheless false. In
addition, ConceptNet only disambiguates concepts to a coarse part-
of-speech level (e.g. noun meaning vs verb meaning of the word
“watch”). Finally, a lot of concepts are linked by the generic “Relat-
edTo” relation, which covers relationships as diverse as collocations
(“Tire RelatedTo

←−−−−−−→ Spare”), hypernyms (“Tire RelatedTo
←−−−−−−→ All Seasons

Tire”), co-meronyms (“Tire RelatedTo
←−−−−−−→ Exhaust”), homonyms (“Tire

RelatedTo
←−−−−−−→ Tier”), and very loosely related terms (“Tire RelatedTo

←−−−−−−→
Clothes”).

Because of those challenges, few authors use relational paths
from ConceptNet in applications. In particular, while several authors
have found the knowledge encoded in ConceptNet to be highly
valuable, they typically restrict themselves to using relationships
that are directly encoded as an edge. For example, Speer et al. (27)
showed that ConceptNet can be used to improve word embeddings
by incorporating the intuition that words which are linked by an
edge in ConceptNet should be represented by similar vectors. We
believe that this common restriction to direct edges is due to the lack
of sufficiently accurate methods for filtering nonsensical paths, or
conversely, for identifying the most natural paths. This path selection
problem is the focus of our paper.

https://doi.org/10.1145/3308558.3313486
https://doi.org/10.1145/3308558.3313486

In existing work (11, 19), the problem of selecting high-quality
ConceptNet paths has been addressed in a heuristic way (see Section
4). While some intuitions about high-quality paths can easily be
formulated (e.g. shorter paths tend to be more informative than
longer paths, the nodes occurring in natural paths tend to have similar
word vector representations), such heuristic methods still fail to filter
out many nonsensical paths, and conversely sometimes erroneously
filter out highly valuable paths. For example, the best path between
“lead” and “poison” found by one of the standard heuristics (pairwise
baseline, see Section 4.3) is “Lead Synonym

←−−−−−−→ Take DistinctFrom
←−−−−−−−−→ Give

RelatedTo
←−−−−−−→ Poison”, which uses the verb meaning of “lead”, despite
the fact that the noun meaning (i.e. the poisonous chemical element
Pb) is more relevant in this case.

Rather than trying to construct increasingly intricate heuristics,
we propose to learn to predict path quality using a neural network
model. To this end, we rely on crowdsourced assessments about the
naturalness of ConceptNet paths. Specifically, to collect training
data, human annotators were asked to choose the more natural path
among a pair of paths, without any guidance on how to interpret
naturalness. This notion of naturalness was chosen because it is
intuitively easy to understand for crowdsourcers (as opposed to e.g.
terms such as “semantic coherence” or “predictive value”). The term
is also deliberately vague, as we do not want to steer annotators to-
wards particular types of features. The resulting pairwise judgments
are then used to train a neural network to predict a latent naturalness
score, which can be used for path ranking or path selection.

The main contribution of our work is to show that people’s in-
tuitive understanding of naturalness is sufficiently coherent to be
used as training data for a data-driven path selection method. To
this end, we train a simple neural network model to predict latent
naturalness scores that are predictive of human pairwise judgments.
We find that our model can predict such judgments with a perfor-
mance that is close to the optimum suggested by the inter-annotator
agreement (Sec 4.2). For example, the best path found by our model
for the above example is “Lead HasProperty

−−−−−−−−−−→ Toxic RelatedTo
←−−−−−−→ Lethal

RelatedTo
←−−−−−−→ Poison”. We also show, for a number of different evalu-
ation tasks, that our method allows us to select semantically more
meaningful paths than the previously proposed heuristics.

2 RELATED WORK
Knowledge graphs: KGs explicitly encode relationships between
different entities as subject-predicate-object triples. Such triples can
be seen as defining a graph, where the subject and object entities
refer to nodes of the graph and the predicates correspond to edge
labels. KGs are typically constructed by a domain expert, via crowd-
sourcing, or by extracting assertions from a natural language corpus
(6). In this work, we used ConceptNet (20), one of the most com-
prehensive commonsense knowledge graphs with 46 relation types,
nearly 1 million concepts (words and phrases), and nearly 3 million
edges (i.e. triples). ConceptNet partly obtained through crowdsourc-
ing, but also incorporates external sources such as OpenCyc (18),
WordNet (22), Verbosity (29), DBPedia (2), and Wiktionary1.

Knowledge base construction by crowdsourcing: While the use
of crowdsourcing for constructing knowledge bases has already been

1https://www.wiktionary.org/

well studied, most existing approaches focus on knowledge acquisi-
tion. This can involve, for instance, direct collaborative editing of
a knowledge base (3, 31) or indirect construction of a knowledge
base through the use of an interactive game (29). In contrast to these
works, our focus is on using crowdsourcing for learning how to
detect noisy paths within an existing knowledge graph.

An important challenge with crowdsourcing is the fact that there
will inevitably be disagreements within the collected data. One
framework (1) suggests that this can be due to (i) the inclusion of low-
quality participants, (ii) an ambiguous interpretation of the input data
and (iii) an ambiguous definition of the labels that crowdsourcers
are required to provide. In our work, we mitigated the first issue
with a quality control mechanism (Section 4.1). To address the
remaining two issues, we will rely on a probabilistic generative
model to interpret the provided ratings.

Word embeddings: Word embedding methods (21, 24) represent
each word in a relatively low-dimensional space of typically around
300 dimensions, which is estimated from word co-occurrence sta-
tistics. With most training procedures, vector differences represent
abstract relations in the resulting embedding space: for example,
vking − vqueen ≈ vman − vwoman, in which vword represents the
embedding of a given word.

Both KGs and word embeddings capture aspects of meaning, and
can thus to some extent be seen as alternatives. One advantage of
word embeddings is that they capture types of knowledge which are
difficult to encode symbolically. For example, the cosine similarity
between word vectors tends to correlate very strongly with human
perceptions of word similarity. On the other hand, although related
words are often close to each other in the embedding space, it is
difficult to “reverse-engineer” and describe the specific relation
from the vector difference (5). Moreover, when multiple relations
exist between two concepts (e.g. “France BorderWith

←−−−−−−−→ Germany” and

“France AllyWith
←−−−−−→ Germany”), the vector difference can only reflect

an aggregate. Apart from issues which arise because of the use of
vectors, there are also some problems that are more generally related
to the use of co-occurrence statistics for representing meaning. As
a simple illustration of such problems, a system (16) incorrectly
assumes that garlic has wings, because of the prevalence of phrases
such as “garlic chicken wings”.

Given the complementary nature of the KGs and word embed-
dings, it is perhaps not surprising that several studies have found it to
be beneficial to integrate these two types of resources. Some studies
(e.g., (10, 27, 33)) reported that knowledge graphs can be used to
improve embeddings to achieve better results on various benchmark
tasks such as synonym selection and analogy question solving. Con-
versely, embeddings can also be incorporated into methods that rely
on paths in knowledge graphs, for example to cluster such paths
(11), or as features for a path selection method, as in our work.

Path Features in Applications: Several prior works have described
systems that incorporated knowledge graph paths as features. For ex-
ample, Boteanu and Chernova (4) used ConceptNet to solve analogy
questions (e.g., “dog is to animal as banana is to fruit”) by comparing
similarities between paths. Lin et al. (19) proposed models for learn-
ing the embeddings of paths and showed that they performed better
on problems such as relation prediction compared to embeddings
computed by previous methods. Guu et al. (12) proposed to answer

https://www.wiktionary.org/

compositional queries (e.g., “Q: What is the population of the capital

of Russia?” “A: Russia Capital
−−−−−−→Moscow Population

−−−−−−−−−→ 12.2 million”)
by traversing the knowledge graph in vector space, representing
traversal as a series of matrix-vector multiplications. Das et al. (8)
proposed a recurrent neural network (RNN) model with attention
mechanism to reason over entities and relations in a knowledge
graph, and observed improved performance in path query answering
upon that by Guu et al. (12).

Among many applications, knowledge graph completion (i.e.,
inferring missing relations from existing paths) has been a popu-
lar target. Lao and Cohen (17) used path features for knowledge
graph completion in the path ranking algorithm (PRA). Gardner
et al. (11) incorporated embeddings of the relations, allowing the
system to recognize semantically similar relations, such as “(river)
runs through (city)” and “(river) flows through (city).” Neelakantan
et al. (23) built upon the same PRA idea, but used an RNN to model
paths. Toutanova et al. (28) proposed a dynamic programming algo-
rithm that can incorporate both edge and vertex features and reported
better performance on knowledge graph completion. While all of
the above-mentioned knowledge graph completion works use some
version of PRA to generate paths, Xiong et al. (32) trained a rein-
forcement learning agent for path generation that rewards accuracy,
efficiency and diversity, and demonstrated better performance than
PRA-generated paths.

Path Selection: The number of paths between two nodes in a knowl-
edge graph tends to grow exponentially with path length. In addition,
while each type of path can be viewed as encoding a kind of se-
mantic relationship, for many paths this relationship is difficult to
interpret. Thus, all of the works described above mitigate the scal-
ability and/or quality problem via heuristics. To limit the number
of paths, Boteanu and Chernova (4) stopped the path search after a
pre-defined number of nodes are explored. Lao and Cohen (17) and
Guu et al. (12) limited the maximum path length. To obtain natural
paths, Gardner et al. (11) favored paths that contain words with
higher embedding similarity. Lin et al. (19) calculated the quality of
paths using a heuristic based on vertex degree and network flow.

We note that while ConceptNet has been proven useful, most
works only use direct edges, with one work (4) being a notable ex-
ception. For other types of knowledge graphs, it was already shown
that incorporating longer relational paths can be highly beneficial,
and there is no reason to assume that this situation would be any
different for ConceptNet. For instance, while there is an intuitively
obvious semantic relationship between the words “beach” and “sun”,
there is no direct edge connecting these words in ConceptNet. How-
ever, this relationship can be uncovered by observing that Concept-
Net contains the path “Beach RelatedTo

←−−−−−−→ Sunbathing RelatedTo
←−−−−−−→ Sun”.

Nevertheless, to enable more effective use of such relational paths
from ConceptNet, we believe that more work is needed on how to
avoid nonsensical paths, which is the focus of this paper.

3 METHOD
3.1 Problem Formulation
Our goal in this work is to train a classifier for predicting path
quality based on crowdsourced information. Specifically, we ask
human annotators to assess the naturalness of ConceptNet paths.

Rather than trying to provide guidelines on how naturalness should
be understood, we simply rely on annotators’ intuitive understanding
of this notion. This has several advantages, including the fact that we
do not steer annotators towards particular indicators and the fact that
this makes the annotation task much easier. Moreover, given that we
are interested in a task-independent form of path quality (i.e., our
focus is on eliminating non-sensical and uninformative paths, rather
than on selecting the best paths for a particular application), it is
not clear what further guidance would be meaningful for annotators.
As we will discuss in more detail in Section 4.2, despite the lack of
guidance on how naturalness should be understood, we observed a
high inter-annotator agreement in practice.

Clearly, however, asking participants to provide ratings on an
absolute scale is problematic: people have varying thresholds for
naturalness, and these thresholds may also change over time. After
observing a large number of unnatural paths, people may lower
their thresholds to be more willing to accept a path as natural, and
vice versa. Therefore, we instead asked participants about pairwise
comparisons: determining which of two given paths is more natural.
In this setting, if one path is more natural than the other, two raters
would provide the same answer even if they maintained different
absolute naturalness thresholds, or if they shifted their underlying
absolute threshold unconsciously over time.

If the two paths are equally (un)natural, the selected answer would
be more or less arbitrary, and even the same annotator might not
consistently give the same answer when presented with the same pair
more than once. Therefore, in our model, we assume that answers to
these pairwise comparison questions are probabilistically generated
from a latent naturalness score. Specifically, each path is assumed
to have a latent naturalness scorem, such that for a pair paths with
scores m1 and m2, the observed answer is drawn from a Bernoulli
distribution, with probability em1/(em1 + em2) that the first path
is selected. The problem we consider is to learn a model that can
predict the naturalness scorem of a given path, using crowdsourced
answers of pairwise comparisons as supervision signal.

3.2 Model
In the big picture, our model consists of an encoder and a pairwise
predictor. The encoder is a long short-term memory (LSTM) network
(13) that transforms a path into a code vector. The predictor then
takes the path codes and computes the probability that one path is
more natural than the other. Each path is represented by an alternat-
ing sequence of vertex and edge representations, (v1, e1,v2, e2, ...,
en−1,vn). Each vertex representation is a list of nv features, vi = (
vi,1, vi,2, ..., vi,nv), with j-th feature being a dvj -dimensional vector.
The edge representations are structured similarly. The features which
we use are summarized in Section 3.4.

A standard LSTM architecture can only process sequential data of
the same dimension. Thus, vertex and edge representations must first
pass through an encoder. Figure 1a depicts how a neural network
encodes a vertex into a vertex code of pre-defined length lf . Each
feature (such as the word embedding and absolute frequency in
some large corpus) is transformed through a rectified linear unit
(ReLU)-activated fully-connected (FC) layer to a vector of length lf .
The overall code is the average of the vectors. The encoding of an
edge to the same length lf is conducted in a similar fashion. Figure

𝑅𝑒𝐿𝑈 ∘ 𝐹𝐶 𝑅𝑒𝐿𝑈 ∘ 𝐹𝐶 𝑅𝑒𝐿𝑈 ∘ 𝐹𝐶 𝑅𝑒𝐿𝑈 ∘ 𝐹𝐶

Embedding Frequency Degree Sense

𝐴𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔

Vertex Code

(a) The encoding of a vertex.

𝑣1 Code 𝑒1 Code

𝐿𝑆𝑇𝑀

𝑣𝑛 Code 𝑣2 Code

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀

Output Output

…

Output

Path Code

Output

(b) The encoding of the path.

Path 1 Code

Path 2 Code

𝐹𝐶

Prሺpath 1 is betterሻ

=
𝑒𝑚1

𝑒𝑚1+𝑒𝑚2

𝑚2

𝐹𝐶

𝑚1

(c) The predictor model.

Figure 1: LSTM model architecture. Blue (bottom) cells repre-
sent raw features (of variable lengths). Green (middle) cells rep-
resent transformed features (of length lf). Orange (top) cells
represent the final code for the vertex (of length lf). The en-
coding of an edge is computed in a similar fashion. The codes
(yellow) for vertices and edges are successively processed by an
LSTM network. The last state h2n−1 (orange) is used as the
code for the entire path. The path codes (orange) first pass sepa-
rately through fully-connected layers (with shared weight) with
an output dimension of 1. A softmax layer then calculates the
probability that path 1 is more natural than path 2.

1b depicts the way in which the path code is calculated. After the
codes for each vertex and edge are computed, they are sequentially
aggregated by an LSTM network. The last state h2n−1 is interpreted
as the code of the path. As shown in Figure 1c, the predictor then
outputs the pairwise comparison result. It first transforms each path
code to a score (m1 andm2) using linear layers with shared weight.
The softmax function is then applied to the two scores to calculate
a probability. While the network predicts pairwise comparisons, it

is the scoremi produced by the network – or, at least, the ordering
induced by the scores – that matters for applications.

The problem we consider falls under the broad umbrella of learn-
ing to rank, for which many algorithms have already been proposed.
We use an LSTM encoder because it elegantly deals with variable
length input, while most other methods can only take fixed length
input representations.

3.3 Training
We used the negative-log-likelihood (NLL) loss as our objective func-
tion, along with the Adam optimization algorithm (14). Although
the neural network model seems like a natural choice for the data
generation process described in Section 3.1, here we show that the
predicted scores m indeed converge to the latent scores from which
the pairwise comparison results were generated, up to a constant
difference.

Consider two paths with scores m1 and m2. According to our
generative model, the first path is selected with probability pm1m2 =

em1/(em1+em2). Note that from em1/(em1+em2) = em
′
1/(em

′
1+em

′
2)

it follows thatm1−m′1 =m2−m′2 by simple algebra. This means that
if our system can correctly predict the probabilities pm1m2 , for any
pair of paths, then it must be the case that there is a fixed constant
c such that for each path with naturalness score m, the predicted
naturalness scorem′ is such thatm =m′ + c.

It remains to be shown that the NLL objective will indeed lead
our neural network model to predict the correct probabilities. Specif-
ically, assume that observations {yi ∼ Bernoulli(qθ (xi))}ni=1 are
given, where xi is the feature representation of a given pair of paths
and qθ (xi) is the corresponding output of our neural network model
when the parameters are set as θ . We show that minimizing the NLL
objective will result in parameters ϕ such that qθ = qϕ . For any fixed
xi , given a set of observations {(xi ,yi,1), ..., (xi ,yi,ni)}, we define
the expected data likelihood with respect to qi to be as follows:

Eqi
[
Pr(yi,1:ni |xi)

]
= E

ni∏
j=1

[
yi, jqi + (1 − yi, j)(1 − qi)

] .
When yi,1:ni is generated by Bernoulli (qθ (xi)), it can be shown
that argmaxqi Eqi

[
Pr(yi,1:ni |x)

]
= qθ (xi). For the entire dataset

{(x1,y1), .., (xn ,yn)}, since the yi ’s are independent of each other
given xi , the expected joint likelihood for the entire dataset

Eqϕ [Pr(y1:n |x1:n)] = E

n∏
j=1

[
yjqϕ (xj) + (1 − yj)(1 − qϕ (xj))

]
is then maximized for qϕ (x) = qθ (x) for all x. Therefore, we can
simply minimize NLL (i.e. − log [Pr(y1:n |x1:n)]).

Note in particular that the network will converge to optimal predic-
tions even with only one answer for each pair, which we can exploit
to maximize the diversity of the crowdsourced annotations: by only
collecting a single annotation for each pair of paths, a broader range
of paths can be assessed (with a fixed budget) than with multiple an-
notations per pair. While each individual answer will to some extent
be arbitrary (e.g., the fact that path 1 was selected could mean that
path 1 is more natural or that both paths are approximately equally
natural and that path 1 was selected by chance), because the network

is trained on many different pairs, it will still learn to differentiate
between clear-cut cases and borderline cases.

3.4 Features
In this section, we describe the features we used to encode ver-
tices and edges. The number in parenthesis after each feature name
indicates the dimension of that feature.

Vertex embedding (300) This feature is taken directly from the 300-
dimensional GloVe (24) embedding, pre-trained on the Common
Crawl2 dataset with 840 billion tokens. In some experiments, we
used principal component analysis (PCA) to first reduce the dimen-
sionality of this feature before inputting it into the neural network.
Vertex frequency (1) This feature is a scalar representing the fre-
quency of the given word. We estimated the (unnormalized) fre-
quency using Zipf’s law (35) from word occurrence ranks, which
can be derived from the pre-trained GloVe embedding since it or-
ders words by frequency. For example, the word “science” is ranked
717th, and is thus assigned a frequency of 1/717=1.39e-3.
Vertex degree (1) This feature is the number of neighbors (in both
directions) of the vertex in the graph, representing how well con-
nected the word is within ConceptNet.
Vertex sense score (1) This feature is a number between 0 and 1
representing how consistent is the overall meaning of the vertex
compared to its neighbors on the left and right. For example, the
sense score for the word “book” in the path “Knowledge HasA

←−−−−

Book RelatedTo
←−−−−−−→ Restaurant” would be quite low because it is used

in two different senses . On the other hand, the sense score for
“book” in “Knowledge HasA

←−−−− Book RelatedTo
←−−−−−−→ Paper” would be high.

We believe that a lower sense score would result in the path being
considered less natural. In calculating this feature, we borrow and
extend the idea of “word sense profile” proposed by (7). The details
of the sense score calculation can be found in the appendix of the
extended version3.
Edge ends similarity (1) For an edge connecting two vertices (s, t),
this feature is the cosine similarity of the embeddings of s and t .
Edge direction (3) This feature is a one-hot vector that represents if
the edge is forward (“Dog IsA

−−−→ Animal”), backward (“Wheel HasA
←−−−−

Car”), or bidirectional (“Big Antonym
←−−−−−−→ Small”).

Edge relation (46) This feature is a one-hot vector that represents
the relation type of the edge.
Edge provenance (6) In ConceptNet, each edge is derived from
at least one source. In the case of multiple sources, the weight is
the sum of the weights across all sources. However, weights across
sources are not directly comparable; for example, nearly all edges
from WordNet have a weight of 2.0, while those from Wiktionary
have a weight of 1.0. This does not necessarily mean that WordNet
is more reliable than Wiktionary. Thus, we encode the provenance
of an edge using a 6-dimensional vector, with one component for
each possible source: WordNet, DBpedia, Verbosity, Wiktionary,
OpenCyc, and Open Mind Common Sense (26). When an edge has
only one source, its component in the vector has a value equal to
the weight, and all other entries are 0. When an edge has multiple

2http://commoncrawl.org/
3https://arxiv.org/pdf/1902.07831.pdf

associated sources, we split the weight across the sources using the
most common weight of each source (e.g., 2.0 for WordNet).
Edge sense score (1) Similar to the vertex sense score, this feature
is also a number between 0 and 1 characterizing the consistency of
meaning, but at an edge level. Again, the details are included in the
extended version3.

4 EXPERIMENTS
In this section, we first describe our data collection procedure. Then
we present an evaluation of the collected data and learned model.4

4.1 Data Collection
For our experiments, we used Amazon Mechanical Turk to collect
pairwise human rating data. Each questionnaire consisted of 73 pairs,
including 60 genuine pairs and 13 quality-control pairs. The quality-
control pairs consisted of an obviously good path and an obviously
bad path. The good paths were manually specified and meant to be
very natural and straightforward (e.g., Email UsedFor

−−−−−−−→ Communica-
tion UsedFor
←−−−−−−− Telephone). To generate bad paths, words and relations

were sampled independently at random (e.g., “Beautiful IsA
−−−→ Other

RelatedTo
←−−−−−−→ Them MotivatedBy

←−−−−−−−−−− Rug”). We only used answers from
questionnaires for which all 13 quality-control questions were an-
swered correctly. The genuine pairs consisted of randomly sampled
paths from ConceptNet. We used a number of different strategies to
sample these paths, as outlined below. Overall, around 1,500 valid
responses were collected, giving us around 90,000 pairs of paths to
use in different settings of the experiment.

4.2 Inter-Annotator Agreement
The human annotators were provided with a generic question: “which
of the two paths is more natural?” Different participants may inter-
pret this question slightly differently, focusing on different aspects of
naturalness. Thus, one important question is how much humans agree
with each other about naturalness. Establishing the inter-annotator
agreement level is also useful because it serves as an intrinsic, model-
agnostic performance upper bound.

Our default data collection strategy is to obtain only one answer
for each pair of paths. This strategy maximizes the coverage of our
dataset, while still allowing the model to make probabilistic predic-
tions, as discussed in Section 3.3. However, to evaluate the inter-
annotator agreement, we also collected a multi-response dataset,
with 59 questions each answered by 16 different participants.

Table 1 summarizes the results of an analysis of this dataset. The
first column lists the different possible opinion splits for a given
question; for example, 13/3 corresponds to a question for which 13
people preferred one of the paths, and 3 people preferred the other.
The second column shows how many of the 59 questions have a
given opinion split.

The last two columns of Table 1 refer to results obtained by
our model trained in the 1st setting described below in Section
4.3. The third column shows the number of questions predicted
correctly, i.e. the number of questions for which the prediction of our
model coincides with the majority opinion of the human participants.

4The code and data for the experiments can be found at https://github.com/YilunZhou/
path-naturalness-prediction

http://commoncrawl.org/
https://arxiv.org/pdf/1902.07831.pdf
https://github.com/YilunZhou/path-naturalness-prediction
https://github.com/YilunZhou/path-naturalness-prediction

The last column is the model’s average confidence in the majority
consensus. The 8/8 row does not include prediction statistics because
there is no majority consensus for these questions.

A number of conclusions can be drawn from these results. First,
given the disagreement levels shown in the second column, the theo-
retically best performing model, which always predicts the majority
preference, would achieve 70.1% accuracy on this dataset. This
shows that while people do not agree with each other on all of the
questions, for the majority of pairs, human annotators do have a
clear preference. Note that we should not expect a perfect agreement,
since in some cases both of the paths may be equally natural or
equally unnatural. This is illustrated in Table 2, which shows exam-
ples of pairs with different opinion splits. As can be seen from these
examples, the fact that there is no majority for a given pair does not
necessarily mean that the paths involved are of low quality. It simply
means that the two paths are approximately equally natural.

As can be seen from the third column in Table 1, when there is a
clear human consensus about which of the two paths is most natural,
our model can predict this with a very high accuracy; e.g. for all
questions where the opinion split was 14/2 or better, the majority
view was predicted correctly. Furthermore, there is a strong positive
correlation between the confidence scores predicted by our model,
shown in the last column, and the amount of disagreement among
human annotators. Our model is thus able to distinguish between
cases where the difference in naturalness is clear-cut and cases where
human annotators would be undecided.

Opinion Split # Q # Correct Avg Conf

8/8 7 NA NA
9/7 11 5 52.2%
10/6 6 5 60.1%
11/5 8 7 64.4%
12/4 11 7 56.6%
13/3 5 4 70.0%
14/2 5 5 72.5%
15/1 4 4 76.2%
16/0 2 2 89.8%

Table 1: Results for the multi-response dataset.

4.3 Prediction Accuracy
4.3.1 Experimental Setup. In this set of experiments we studied
how well our model can predict human judgements in three settings.

• In the 1st setting, we first determined a set of 100 words. To
this end, starting from the center word “science”, we per-
formed a random walk on ConceptNet, considering only
elementary-school-level nouns5, until 100 different words
had been sampled. We then sampled pairs of paths with 4 or
less nodes in the subgraph induced by these 100 words. This
dataset included about 10,000 paths. The training set contains
40,000 pairs sampled from 8,000 paths, and the test set con-
tains 1,000 pairs put together from the remaining 2,000 paths.

5http://www.k12reader.com/

OS Paths (The one on top is favored by the majority)

8/8

Forest AtLocation
←−−−−−−−−− Country RelatedTo

←−−−−−−→ Geography RelatedTo
←−−−−−−→ Land

Kingdom Synonym
←−−−−−−→ Land MadeOf

←−−−−−−Mountain RelatedTo
←−−−−−−→ Hill

Dream RelatedTo
←−−−−−−→ State AtLocation

←−−−−−−−−− City RelatedTo
←−−−−−−→ Population

Desk RelatedTo
←−−−−−−→ Office RelatedTo

←−−−−−−→ Area RelatedTo
←−−−−−−→ Science

11/5
Blood AtLocation

−−−−−−−−−→ Person RelatedTo
←−−−−−−→ Home Antonym

←−−−−−−→ Street

Range RelatedTo
←−−−−−−→ Food AtLocation

−−−−−−−−−→ Home Antonym
←−−−−−−→ Office

12/4
Kingdom RelatedTo

←−−−−−−→ Country AtLocation
←−−−−−−−−− City AtLocation

←−−−−−−−−− Office
Sun RelatedTo
←−−−−−−→ Source RelatedTo

←−−−−−−→ Blood RelatedTo
←−−−−−−→ Tissue

13/3
Person RelatedTo

←−−−−−−→Woman DistinctFrom
←−−−−−−−−→Men RelatedTo

←−−−−−−→ People
Type RelatedTo

←−−−−−−→ Unit RelatedTo
←−−−−−−→ Card RelatedTo

←−−−−−−→ Holiday

16/0

School AtLocation
−−−−−−−−−→ City IsA

←−−− Town AtLocation
−−−−−−−−−→ Country

Point RelatedTo
←−−−−−−→Mountain RelatedTo

←−−−−−−→Wave IsA
−−−→Woman

People RelatedTo
←−−−−−−→ Life PartOf

←−−−−− Fun IsA
←−−− Soccer

Plane Antonym
←−−−−−−→ Point RelatedTo

←−−−−−−→ Hand RelatedTo
←−−−−−−→ Instrument

Table 2: Pairs of paths with different opinion splits (OS). In
each cell the most favored path is shown on top.

This evaluation allows us to assess the performance of our sys-
tem in a domain-specific setting, since the model is evaluated
on paths involving the same words as those in the training
paths (but nonetheless different paths). This performance is
recorded in Table 3.
• In the 2nd setting, we collected another set of 100 words

using the same method as above, but using “money” as the
center word, while additionally ensuring that there is no over-
lap between this set of 100 words and those from the “sci-
ence” dataset. We then collected 1,000 paths among those 100
words, and put them into 500 pairs, which we use to evaluate
models trained on the “science” dataset. In this way, we can
assess the transfer learning performance of our model. This
performance is recorded in Table 4.
• In the 3rd setting, we selected the nouns, verbs and adjectives

from the 5,000 most frequent English words in the Corpus of
Contemporary American English6, for a total of 3,887 words.
We then sampled 80,000 paths of up to 5 nodes, which we
split into 20,000 training pairs and 20,000 testing pairs (ensur-
ing that there are no overlapping paths between training and
testing sets). Compared with the 1st setting, this represents
much wider coverage of the set of words (i.e., embedding
space), but much sparser coverage of paths, allowing us to as-
sess the performance of our model in an open-domain setting.
This performance is recorded in Table 5.

To put our performance into context, we also considered the follow-
ing four heuristic baselines, all of which have similar mechanics:
computing a score for each path (as does our model), and then
selecting the path with the higher score.
Source-Target Baseline (ST-B) scores paths using the cosine simi-
larity between the embeddings of the source and target words (note

6https://www.wordfrequency.info/

http://www.k12reader.com/
https://www.wordfrequency.info/

that the two paths in a pairwise comparison do not typically start
and end with the same words);
Pairwise Baseline (Pair-B) scores paths using the average cosine
similarity of all word pairs connected with an edge in the path;
Resource Flow Baseline (Flow-B) scores paths using the “path
reliability” method proposed by Lin et al. (19) with the idea that a
path is better if there are less branches out of the path;
Length Baseline (Path-B) scores paths solely by their length, and
favors shorter paths to longer ones.

We performed a grid search of two hyper-parameters: vertex
embedding dimension in {2, 10, 50, 100, 300} and path code length
in {1, 2, 5, 10, 20}. For the first hyper-parameter, we used principal
component analysis (PCA) for dimensionality reduction. We also
tested one-hot encodings of words for the 1st setting. For the other
settings, this one-hot encoding cannot be used, because it cannot
generalize to unseen words (2nd setting) or scale to a large number
of words (3rd setting). In addition, Length-B performance is only
available for the 3rd setting, because for the first two settings we did
not explicitly control for path length. As a result, the vast majority of
paths are of the cutoff length of 4, and path length is not predictive.

Path Code Length
1 2 5 10 20

E
m

b.
D

im
. 2 62.1 63.1 65.8 65.3 65.6

10 63.6 65.5 65.6 67.5 66.4
50 63.7 65.5 66.9 67.4 67.7
100 65.4 65.9 66.1 68.2 67.6
300 66.2 66.6 67.6 67.6 67.7

One-Hot 67.0 66.4 67.0 67.5 67.9

ST-B 53.4

Pair-B 58.0

Flow-B 51.6

Table 3: Test accuracy (in percentage) in the domain-specific
setting of “science” related words.

Path Code Length
1 2 5 10 20

E
m

b.
D

im
. 2 60.5 64.6 63.9 65.1 65.5

10 60.1 61.7 64.8 64.9 64.8
50 62.5 62.8 63.1 63.3 64.0
100 60.0 61.8 63.1 64.2 64.8
300 58.8 60.5 61.1 62.0 62.1

ST-B 53.9

Pair-B 55.9

Flow-B 52.5

Table 4: Test accuracy (in percentage) in the transfer learning
setting, where the model was trained on the “science” dataset
and evaluated on the “money” dataset.

Path Code Length
1 2 5 10 20

E
m

b.
D

im
. 2 61.4 60.5 63.1 62.9 63.3

10 61.2 62.6 65.0 64.9 64.2
50 61.6 64.5 64.8 65.4 65.8
100 62.0 64.3 65.0 67.9 65.1
300 61.9 63.0 65.7 65.4 65.4

ST-B 52.3

Pair-B 57.5

Flow-B 46.8

Length-B 55.8

Table 5: Test accuracy (in percentage) in the open-domain set-
ting of the most frequent English words.

4.3.2 Quantitative Analysis. For the first setting (Table 3), we
can see that performance was relatively insensitive to embedding
dimension and code length, as long as both were sufficiently high.
However, performance on the 2nd setting (Table 4) dropped signifi-
cantly with higher embedding dimensions, suggesting an overfitting
problem, with an embedding dimension of 2 achieving best general-
ization performance. This suggests that a model that was trained on
one domain can indeed successfully be applied to another domain,
as long as the embedding dimension is small enough to allow for
sufficient generalization. In the 3rd setting (Table 5), we found that
a higher embedding dimension is necessary, most likely because the
range of meanings is more diverse for this dataset, which includes
not only nouns, but also verbs and adjectives.

For all three settings, considering the level of agreement found in
Section 4.2, we found that the performance of our model approaches
the expected performance upper bound. Moreover, our model per-
forms substantially and consistently better than all of the baselines.
In fact, in Table 5 we can see that only one of the baselines is able
to outperform the simple path length heuristic (Length-B), and only
in a minimal way.

4.3.3 Qualitative Analysis. To qualitatively compare how our
model prediction differs from the baselines, Table 6 presents the best
paths between the words “health” and “computer” (of up to 4 nodes)
selected by our method and the two strongest baselines.

We can see that the top paths found by the pairwise baseline lack
variety, most likely due to the high embedding similarity between
“health” and “care”. In addition, the length baseline does not perform
satisfactorily because the shortest paths are not easily understandable
without more explanation, with nearly all relations being the generic
“ RelatedTo
←−−−−−−→”. By contrast, our model (trained on the 3rd open-domain

setting) selects paths that overcome both drawbacks. It covers a
wider variety of concepts such as “virus” and “expensive” and favors
longer paths with smoother transition of node semantics.

In another evaluation, we inspect paths for which our model and
the pairwise baseline significantly disagree. We randomly sampled
120,000 paths from the entire ConceptNet graph and use the two
methods to predict their quality. Table 7 lists paths that are predicted
to be among the top 10% most natural by our model but are in the

Pa
ir

w
is

e

Health RelatedTo
←−−−−−−→ Care IsA

−−−→Work RelatedTo
←−−−−−−→ Computer

Health RelatedTo
←−−−−−−→ Care RelatedTo

←−−−−−−→ Help RelatedTo
←−−−−−−→ Computer

Health RelatedTo
←−−−−−−→ Care RelatedTo

←−−−−−−→ Do CapableOf
←−−−−−−−− Computer

Health RelatedTo
←−−−−−−→ Care Desires

←−−−−−− Person Desires
−−−−−−→ Computer

L
en

gt
h

Health RelatedTo
←−−−−−−→ System RelatedTo

←−−−−−−→ Computer

Health RelatedTo
←−−−−−−→ Level RelatedTo

←−−−−−−→ Computer

Health RelatedTo
←−−−−−−→ Apple RelatedTo

←−−−−−−→ Computer

Health RelatedTo
←−−−−−−→Well RelatedTo

←−−−−−−→ Screw AtLocation
−−−−−−−−−→ Computer

O
ur

M
od

el

Health Antonym
←−−−−−−−− Disease Causes

←−−−−−− Virus AtLocation
−−−−−−−−−→ Computer

Health RelatedTo
←−−−−−−→ Care IsA

−−−→Work RelatedTo
←−−−−−−→ Computer

Health RelatedTo
←−−−−−−→ Insurance HasProperty

−−−−−−−−−−→ Expensive HasProperty
←−−−−−−−−−− Computer

Health→ Sickness→ Virus AtLocation
−−−−−−−−−→ Computer

Table 6: Best paths of 4 or less nodes between “health” and
“computer” ranked by baselines and our model.

Lead HasProperty
−−−−−−−−−−→ Toxic RelatedTo

←−−−−−−→ Toxicant Synonym
←−−−−−−→ Poison

Wave IsA
−−−→ Fluctuation RelatedTo

←−−−−−−→ Brainwave DerivedFrom
−−−−−−−−−−→ Brain

Space MadeOf
←−−−−−− Passageway AtLocation

−−−−−−−−−→ Building RelatedTo
←−−−−−−→ Station

Food RelatedTo
←−−−−−−→ Hechsher RelatedTo

←−−−−−−→ Kashrut RelatedTo
←−−−−−−→ Law

Table 7: Paths predicted to be among 10% most natural by our
model, but 10% least natural by the pairwise baseline.

Bee RelatedTo
←−−−−−−→ A RelatedTo

←−−−−−−→ After RelatedTo
←−−−−−−→ Attack

Space RelatedTo
←−−−−−−→ Very RelatedTo

←−−−−−−→ Little RelatedTo
←−−−−−−→Moon

Lead Synonym
←−−−−−−→ Run RelatedTo

←−−−−−−→ Very RelatedTo
←−−−−−−→ Poison

Adult RelatedTo
←−−−−−−→ A RelatedTo

←−−−−−−→ The RelatedTo
←−−−−−−→ English

Table 8: Paths predicted to be among 10% most natural by the
pairwise baseline, but 10% least natural by our model.

bottom 10% according to the pairwise baseline. Table 8 conversely
shows paths that are among the 10% least natural according to our
model but the 10% most natural according to the baselines. Paths in
both tables were selected at random.

As we can see, the paths in Table 7 are intuitively quite meaning-
ful, with all paths using some rather uncommon but relevant words,
which is perhaps clearest in the last example (Hechsher refers to
a certification given to a food product that complies with Jewish
religious law and Kashrut refers to the set of Jewish dietary laws).
By comparison, the paths in Table 8 mostly use very common but
uninformative words. This analysis suggests that the pairwise base-
line suffers from the so-called hubness problem, i.e. the problem that
in high-dimensional vector space embeddings, there are typically a
few central objects which are highly similar to many of the other
objects (25), an issue which is known to affect word embeddings (9).

The pairwise baseline favors paths with very common words, even
if they are not semantically related, because these words act as hubs
in the word embedding.

4.4 Ablation Study on Feature Importance
To discern the contribution of each feature to the prediction perfor-
mance, we trained variants of our model with subsets of the full
feature set. For this analysis, we used the 3rd evaluation setting with
the best performing hyper-parameters (embedding dimension of 100
and path code length of 10). The results are summarized in Table 9.

All Features 67.9%

No vertex embedding 65.4%
No vertex frequency 67.3%
No vertex degree 67.1%
No edge ends similarity 63.5%
No edge direction 67.8%
No edge relation 67.3%
No edge provenance 67.2%
No vertex and edge sense scores 66.9%

Vertex features only 61.6%
Edge features only 63.7%

Table 9: Ablation study on feature importance.

We can see that leaving out the edge ends similarity feature hurts
performance most. This is also in accordance with the fact that
pairwise baseline in Table 5, which only uses this feature, performs
best among the four baseline methods. Furthermore, the second-
highest reduction is found when leaving out the vertex embedding
feature. Finally, we see that neither vertex features nor edge features
alone can achieve optimal prediction performance.

4.5 Naturalness as a Path Selection Criterion
Next we discuss three experiments which are aimed at assessing how
well naturalness indicates path quality. We start with an intrinsic
evaluation of the semantic coherence of natural paths, after which
we discuss two extrinsic tasks: information retrieval and analogy
inference.

4.5.1 Semantic Coherence. Let us define the type of a path as
the sequence of relations appearing in that path, e.g. the type of the
path “A IsA

−−−→ B HasA
−−−−→ C” is (IsA

−−−→, HasA
−−−−→). In this experiment, we

consider pairs of nodes in ConceptNet that are connected with a
relational path of a given type, as well as a one-step relation (e.g.,
“A HasA
−−−−→ C”). In this situation, we call the latter relation a path-

summarizing (PS) relation for the considered path type. Many path
types uniquely determine the PS relation, or at least narrow down the
set of candidate PS relations to a small number. For instance, for a
path of type (IsA

−−−→, HasA
−−−−→) we would expect to only see HasA

−−−−→ as the
PS relation. However, due to the presence of noise in ConceptNet,
some relations of this type will actually have a different PS relation.
Motivated by this view, as an intrinsic evaluation task, we propose
to assess the extent to which a path selection method is able to select

Figure 2: Average entropy of path-summarizing relations for
different proportions of natural paths.

semantically coherent paths in terms of the variability of the PS
relations among the selected paths.

In particular, for a set of paths, we first determine a mapping from
path types to counters of PS relations: {p1 → [(r11, c11), (r12, c12),
..., (r1n , c1n)], ...,pm → [(rm1, cm1), (rm2, cm2), ..., (rmn , cmn)]}, in
which each pi is a path type, each ri j is one of 46 relation types from
ConceptNet, and each ci j is the number of times the relation ri j was
found as a PS relation for path type pi . The average entropy of the
PS relations is then defined as:

−
∑m
i=1

[
Ci ·

∑n
j=1 pi j ln(pi j)

]
C

,

where Ci =
∑n
j=1 ci j ,C =

∑m
i=1Ci ,pi j = ci j/Ci . A higher average

entropy suggest a higher proportion of spurious PS relations and
thus less semantically coherent paths.

Using the 3,887 words from the 3rd setting, we generated 126,600
length-4 paths whose source and target nodes are also directly con-
nected by a relation (i.e. the PS relation). Our model was applied to
rank the paths by naturalness. Based on this ranking, we calculate
the average entropy of top N% natural paths, where N varies from
10 to 100, and plot the result in Figure 2. We compared our model to
Pair-B, the best-performing baseline for predicting naturalness. The
entropy for a random shuffle of the dataset is also depicted for com-
parison. We see that using our model to select the most natural paths
consistently leads to the lowest entropy. Note that all three methods
will converge to the same entropy at the 100% mark, at which point
all paths are used, regardless of the path selection method.

4.5.2 Information Retrieval. When using a search engine, users
often provide under-specified queries, e.g. because they assume that
the search engine is “smart” enough to infer their true intention or
because they do not actually have a clear idea on how to formulate a
better query. Moreover, even if a query is unambiguous, it may use
different terms than those appearing in the most relevant documents.
To deal with such issues, many information retrieval systems rely
on some form of query expansion (34), a strategy for automatically
adding semantically related keywords to the user’s query. In this
experiment, we study the performance of a query expansion method
based on natural ConceptNet paths.

We use the TREC 2004 Robust Retrieval Track dataset (30),
commonly known as ROBUST04, consisting of 250 queries and
around 260,000 documents. Each query from this dataset typically
consists of 2 or 3 words, and is associated on average with 1,000
annotated documents (marked as either positive or negative). We use
a simple TF-IDF retrieval model, in which the TF-IDF weighting
scheme is used to vectorize both the documents and the queries
and the cosine similarity is used as the ranking metric. Following
the work by Kotov and Zhai (15), we focus on hard queries, which
are defined as those with Precision at 10 (P@10) performance of 0
when only using the original query terms. We then evaluate how the
performance can be improved by expanding the query with terms
that are selected using a given strategy. There are 44 examples of
such hard queries among the original 250 queries.

To expand queries based on ConceptNet, we first find all paths,
consisting of up to 4 nodes, which connect any two of the query
terms. For example, if the query is “drug crime organization”, we
find paths between the pairs (drug, crime), (drug, organization), and
(crime, organization). We then add the words from the most natural
paths to the original query. In particular, we add a fixed number of
words by processing the paths in the order defined by the chosen
path ranking method. To this end, we have considered the following
strategies for ranking paths:

(1) naturalness score, which is calculated from our model trained
on the open-domain (3rd) setting;

(2) pairwise score, which is the pairwise baseline;
(3) length score, which is the length baseline (i.e. shorter paths

are better), with random tie-breaking;
(4) random score, which assigns a random score to each path;
(5) naturalness+length score, which first favors shorter paths, but

uses our naturalness score to rank paths with same length.

To put our results into context, we also compared this method with
a query expansion strategy based on the GloVe word embedding.
Specifically, in this case we add the words that are closest to the
query words, ordered by their cosine similarity in the vector space.
Note that each of the considered strategies will yield an ordered
list of possible words to add to the query. We study the retrieval
performance of using different cut-offs in this list.

The P@10 and MAP performances are shown in Figure 3. We
can see that for both evaluation metrics, the naturalness+length
score achieves the highest performance, suggesting that while nodes
in shorter paths are generally more relevant to original queries,
considerable gains can be made by using naturalness to rank paths of
the same length. The word embedding model also performs well, but
it cannot reach the best overall performance of the two naturalness
based methods.

4.5.3 Analogy Inference. Boteanu and Chernova (4) used rela-
tion paths to solve analogy questions of the following form:

Question: Dog:Animal::
A: Table:Chair
B: Apple:Fruit
C: Fast:Slow
D: Ice:Cold

Figure 3: Performance of query expansion for hard queries in
terms of Precision at 10 (P@10, top) and Mean Average Preci-
sion (MAP, bottom).

The goal is to select the word pair which has the same relation as
the query pair (e.g. the correct answer in the question above is B
because dog is a type of animal, and apple is a type of fruit). In their
proposed method, the quality of the analogy a : b :: c : d (meaning a
is to b as c is to d) is calculated using the proportion of overlapping
relations on paths connecting (a,b) and (c,d) respectively. Boteanu
and Chernova (4) considered paths of two (i.e. direct connection)
and three (i.e. with an intermediate hop) nodes.

We found that when direct connections exist between words in
the query pair, using only these direct connection (and not including
3-node paths) achieves the best performance. However, not all query
pairs have direct connections, in which case we are required to use 3-
node paths. For our dataset of 85 questions, 74 have associated direct
edge connections. Thus, we study the effect of only considering the
most natural paths, rather than all of them, on the remaining 11
questions. Figure 4 shows the performance of the prediction as a
function of the proportion of 3-node paths used. Using our model
to filter 3-node paths, the best performance is obtained when only
the 30% most natural paths are considered. As a comparison, the
pairwise baseline is not able to outperform a random selection.

Across all three evaluations, we consistently find that including
all (or too many) paths leads to sub-optimal performance, due to the
inclusion of noisy paths, and that our proposed method outperforms
existing heuristics based on word embedding and path length.

Figure 4: Performance on the 11 analogy questions for which
direct connections are not available, using various proportions
of natural paths.

5 CONCLUSIONS
Our work is motivated by the observation that commonsense knowl-
edge graphs such as ConceptNet are noisy and informal, and that
many of the relational paths in such knowledge graphs are therefore
non-sensical. This means that the only way in which applications
can successfully make use of relational paths from such resources is
by relying on a method to filter out these non-sensical paths. While
this problem has already been studied by others, previous solutions
relied on relatively simple heuristics to select higher-quality paths,
which we found to perform poorly in practice. In fact, in the extrinsic
evaluation tasks, we found that some heuristics were not even able
to outperform random selection (Figures 3 and 4).

Rather than engineering more sophisticated heuristics, the solu-
tion we proposed in this paper is to take a data-driven approach
and learn the concept of path naturalness based on crowdsourced
judgments. The main insights we obtained are as follows:

(1) although we intentionally left the interpretation of natural-
ness open to crowdsourcers, they do largely share a common
perception of this concept;

(2) this concept can be effectively learned by an LSTM model,
with accuracy close to an empirical upper bound derived from
the inter-annotator agreement level; and

(3) our learned model outperforms previously proposed heuristics
as a path selection method in several intrinsic and extrinsic
evaluation tasks.

ACKNOWLEDGMENT
Steven Schockaert was supported by ERC Starting Grant 637277.

REFERENCES
[1] Lora Aroyo and Chris Welty. 2014. The Three Sides of CrowdTruth. Human

Computation 1 (2014), 31–34.
[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. 2007. DBpedia: A Nucleus for a Web of Open Data. The
Semantic Web (2007), 722–735.

[3] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: A Collaboratively Created Graph Database for Structuring Human
Knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data. ACM, 1247–1250.

[4] Adrian Boteanu and Sonia Chernova. 2015. Solving and Explaining Analogy Ques-
tions Using Semantic Networks. In AAAI Conference on Artificial Intelligence.
AAAI, 1460–1466.

[5] Zied Bouraoui, Shoaib Jameel, and Steven Schockaert. 2018. Relation Induction in
Word Embeddings Revisited. In Proceedings of the 27th International Conference
on Computational Linguistics (COLING). 1627–1637.

[6] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hr-
uschka Jr, and Tom M Mitchell. 2010. Toward an Architecture for Never-Ending
Language Learning. In AAAI Conference on Artificial Intelligence. 1306–1313.

[7] Junpeng Chen and Juan Liu. 2011. Combining ConceptNet and WordNet for Word
Sense Disambiguation. In International Joint Conference on Natural Language
Processing (IJCNLP). 686–694.

[8] Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCallum. 2017.
Chains of Reasoning over Entities, Relations, and Text Using Recurrent Neural
Networks. In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics (EACL), Vol. 1. 132–141.

[9] Georgiana Dinu, Angeliki Lazaridou, and Marco Baroni. 2015. Improving Zero-
Shot Learning by Mitigating the Hubness Problem. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR).

[10] Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris Dyer, Eduard Hovy,
and Noah A. Smith. 2015. Retrofitting Word Vectors to Semantic Lexicons. In
Proceedings of the Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL:HLT).
Association for Computational Linguistics, 1606–1615.

[11] Matt Gardner, Partha Talukdar, Jayant Krishnamurthy, and Tom Mitchell. 2014.
Incorporating Vector Space Similarity in Random Walk Inference over Knowl-
edge Bases. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP). 397–406.

[12] Kelvin Guu, John Miller, and Percy Liang. 2015. Traversing Knowledge Graphs in
Vector Space. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

[13] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780.

[14] Diederik Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimiza-
tion. In Proceedings of the International Conference Learning Representations
(ICLR).

[15] Alexander Kotov and Chengiang Zhai. 2012. Tapping into Knowledge Base
for Concept Feedback: Leveraging ConceptNet to Improve Search Results for
Difficult Queries. In Proceedings of the 5th ACM International Conference on
Web Search and Data Mining (WSDM). ACM, 403–412.

[16] Alicia Krebs, Alessandro Lenci, and Denis Paperno. 2018. SemEval-2018 Task
10: Capturing Discriminative Attributes. In Proceedings of the 12th International
Workshop on Semantic Evaluation (SemEval). 732–740.

[17] Ni Lao and William W Cohen. 2010. Relational Retrieval Using a Combination
of Path-Constrained Random Walks. Machine Learning 81, 1 (2010), 53–67.

[18] Douglas B Lenat. 1995. CYC: A large-scale investment in knowledge infrastruc-
ture. Communications of the ACM (CACM) 38, 11 (1995), 33–38.

[19] Yankai Lin, Zhiyuan Liu, Huanbo Luan, Maosong Sun, Siwei Rao, and Song
Liu. 2015. Modeling Relation Paths for Representation Learning of Knowledge
Bases. In Proceedings of the Conference Empirical Methods in Natural Language

Processing (EMNLP). 705–714.
[20] Hugo Liu and Push Singh. 2004. ConceptNet—a Practical Commonsense Reason-

ing Tool-Kit. BT Technology Journal 22, 4 (2004), 211–226.
[21] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed Representations of Words and Phrases and Their Compositionality. In
Advances in Neural Information Processing Systems (NIPS). 3111–3119.

[22] George A Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and
Katherine J Miller. 1990. Introduction to WordNet: An On-line Lexical Database.
International Journal Lexicography 3, 4 (1990), 235–244.

[23] Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. 2015. Composi-
tional Vector Space Models for Knowledge Base Completion. In Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (ACL &
IJCNLP). Association for Computational Linguistics, 156–166.

[24] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe:
Global Vectors for Word Representation. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP). 1532–1543.

[25] Miloš Radovanović, Alexandros Nanopoulos, and Mirjana Ivanović. 2010. Hubs
in Space: Popular Nearest Neighbors in High-Dimensional Data. Journal of
Machine Learning Research (JMLR) 11 (2010), 2487–2531.

[26] Push Singh, Thomas Lin, Erik T Mueller, Grace Lim, Travell Perkins, and Wan Li
Zhu. 2002. Open Mind Common Sense: Knowledge Acquisition from the Gen-
eral Public. In OTM Confederated International Conferences “On the Move to
Meaningful Internet Systems”. Springer, 1223–1237.

[27] Robert Speer, Joshua Chin, and Catherine Havasi. 2017. ConceptNet 5.5: An
Open Multilingual Graph of General Knowledge. In AAAI Conference on Artificial
Intelligence. AAAI, 4444–4451.

[28] Kristina Toutanova, Victoria Lin, Wen-tau Yih, Hoifung Poon, and Chris Quirk.
2016. Compositional Learning of Embeddings for Relation Paths in Knowledge
Base and Text. In Procedings of the 54th Annual Meeting of the Association for
Computational Linguistics (ACL), Vol. 1. 1434–1444.

[29] Luis Von Ahn, Mihir Kedia, and Manuel Blum. 2006. Verbosity: A Game for
Collecting Common-Sense Facts. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI). ACM, 75–78.

[30] Ellen M Voorhees. 2004. Overview of the TREC 2004 Robust Retrieval Track. In
TREC.

[31] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: A Free Collaborative
Knowledgebase. Communications of the ACM (CACM) 57, 10 (2014), 78–85.

[32] Wenhan Xiong, Thien Hoang, and William Yang Wang. 2017. DeepPath: A
Reinforcement Learning Method for Knowledge Graph Reasoning. In Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing
(EMNLP). 564–573.

[33] Chang Xu, Yalong Bai, Jiang Bian, Bin Gao, Gang Wang, Xiaoguang Liu, and Tie-
Yan Liu. 2014. RC-NET: A General Framework for Incorporating Knowledge into
Word Representations. In Procedings of the 23rd ACM International Conference
Information and Knowledge Management (CIKM). ACM, 1219–1228.

[34] Jinxi Xu and W. Bruce Croft. 1996. Query Expansion Using Local and Global
Document Analysis. In Proceedings of the 19th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM, New
York, NY, USA, 4–11.

[35] George Kingsley Zipf. 1935. The Psycho-Biology of Language. (1935).

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Problem Formulation
	3.2 Model
	3.3 Training
	3.4 Features

	4 Experiments
	4.1 Data Collection
	4.2 Inter-Annotator Agreement
	4.3 Prediction Accuracy
	4.4 Ablation Study on Feature Importance
	4.5 Naturalness as a Path Selection Criterion

	5 Conclusions
	References

