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Abstract

The resonant-state expansion (RSE) is generalised to open optical systems with an

arbitrary dispersion of the dielectric constant. In the non-dispersive case we use

frequency independent refractive index, moving onto to cases which display disper-

sion. The RSE converts the Maxwell wave equation into a linear matrix eigenvalue

problem in the basis of unperturbed resonant states, in this way numerically exactly

finding all relevant eigenmodes of the optical system. The present generalisation

is verified by applying it to the analytically solvable system of a spherical metallic

nano-particle in vacuum, with the dispersion of the dielectric constant described by

the Drude model and extended with the addition of Lorentz poles. Approximat-

ing the frequency dispersion of the permittivity of materials with simple analytical

functions is of fundamental importance for understanding and modeling the optical

response of materials and resulting structures. In the generalised Drude-Lorentz

model, the permittivity is described in the complex frequency plane by a number of

simple poles having complex weights, which is a physically relevant and mathemati-

cally simple approach: By construction, it respects causality and represents physical

resonances of the material, and can be implemented easily in numerical simulations.

We report here an efficient method of optimising the fit of measured data with the

Drude-Lorentz model having an arbitrary number of poles. We show examples of

such optimisations for metals and semiconductors, for different frequency ranges.

We use this to produce accurate parameters for us to realistically simulate large

perturbations starting from dielectric materials such as sand, to dispersive materials

such as gold and gallium arsenide. We also analyse the evolution of surface plasmons

in gold and use the RSE to perturb gallium arsenide into the gain threshold.
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Chapter 1

Introduction

1.1 Resonant states

The concept of resonant states (RSs) is a mathematically rigorous way of treating

the resonances which, formally, are the eigenmodes of the system. These are found

by solving Maxwell’s wave equation satisfying outgoing wave boundary conditions,

specifically electromagnetic waves. In open optical systems the RS eigenfrequencies

ωn are generally complex which physically reflects the fact that the energy leaks

out of the system. The real part of ωn corresponds to the frequency position of

the resonance in an optical spectrum of the system and the imaginary part to its

half width at half maximum, also determining the quality factor of the resonance

as half of the ratio between the two. In quantum mechanics RSs are known as

Gamow or Siegert states [1, 2] and have real-valued eigenenergies and orthogonal

and normalised wavefunctions. However in open systems the eigenstates have a finite

lifetime so the energies will be complex-valued. This leads to the corresponding

eigenfunctions non-orthogonal in the usual sense and to grow exponentially in the

outer space. The energies and wave vectors have negative imaginary parts resulting

in a wave function ∝ exp[−Γ(t − r/v)] where Γ = − Imωn, v is the phase velocity.

This shows the exponential growth as the wave front propagates away from the

system which was excited at an earlier time. Because of leakage to outside of the

system the stationary bound states are not strictly stationary but are called resonant

states (RSs) [3].
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1.1. Resonant states

As mentioned before the leakage due to complex frequencies means that the RSs

which grow exponentially outside of the system cannot be normalised by the usual

integration of the square modulus [3]. Instead the normalisation and orthogonality

is given by an integral over the finite volume of the system and the energy flux to

the outside in the form of a surface term as has been shown in [4].

Moving away from the real-energy axis into the complex plane can cause problems

in perturbation theory due to a continuum of stationary scattered states. These can

effectively be eliminated from the spectrum and replaced by a countable number

of RSs. This is achieved by imposing boundary conditions of no incoming waves,

i.e. no waves travelling towards the system. Due to the RSs forming an infinite but

countable set of states instead of the uncountable infinite continuum states, we can

use matrix diagonalisation algorithms to treat the perturbation. While the RSs are

general solutions to Maxwell’s wave equations we want to find the solutions to a

non-magnetic system with µ = 1.

By using the equations B = µH and D = εE we can transform Maxwell’s

equations,

∇× E = −∂B
∂t

−→ ∇× E = −µ∂H
∂t

(1.1)

∇×H = J + ∂D

∂t
−→ ∇×H = J + ε

∂E

∂t
, (1.2)

where the quantities E and H are the electric and magnetic field intensities and the

quantities D and B are the electric and magnetic flux densities. D is also called the

electric field displacement, and B, the magnetic induction. J is the electric current

density.

We can then use Eq. (1.1), Eq. (1.2) and J = σE to give us

∇×∇× E = −µ ∂
∂t

(∇×H)

= −µ ∂
∂t

[
J + ε

∂E

∂t

]
= −µ ∂

∂t

[
σE + ε

∂E

∂t

]
(1.3)

and apply outgoing wave boundary conditions. We do this by introducing the
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Chapter 1. Introduction

solution to Maxwells wave equation, the solution being Ẽn(r, t) = En(r) exp(−iωnt),

and substituting it into Eq. (1.3) giving us

∇×∇×En(r) = k2
n ε̂(r)En(r) . (1.4)

Here r is the spatial position, ε̂(r) is the dielectric constant and En(r) is its electric

field eigenfunction in 3D space. The time-dependent part of the RS wave function

is given by exp(−iωnt), where ωn = ckn, so that the RSs are solutions of Eq. (1.4)

which are either stationary or decaying in time given that Imωn < 0. We use both

ω and k throughout this thesis for the frequency depending on the units wanted. As

follows from Eq. (1.4) and the divergence theorem, the RSs are orthogonal according

to [5]

0 = (k2
n′−k2

n)
∫
V
drEn(r) · ε̂(r)Em(r)+

∮
SV

dS

(
En · ∂Em

∂s
−Em · ∂En

∂s

)
, (1.5)

where the first integral in Eq. (1.5) is taken over an arbitrary simply connected

volume V while the second integral is taken over the closed surface SV , the boundary

of V .

Fig. 1.1 shows an example of RSs for a dielectric microsphere which shows the

Fabry-Pérot modes at higher frequencies and the whispering gallery modes at lower

frequencies. The Fabry-Pérot modes are almost evenly spaced with a near-constant

imaginary part of frequency. The high-quality whispering gallery modes are formed

in the ray picture due to the total internal reflection within the sphere. We expect

the distribution of modes to be symmetric with respect to the imaginary axis due

to using the complex conjugate solution as well.

We show in detail how we find the RSs of a sphere in Sec. 3.2.

1.2 Resonant-state expansion

Analytic solutions are often not possible with eigenvalue problems, so many of them

which involve perturbation theory are approximately solved, usually by comparing

the "solution of interest" to another, ideally analytic, solution. The most common

– 3 –



1.2. Resonant-state expansion

- 5 0 - 4 0 - 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0 4 0 5 0
0 . 1

1

1 0

L e a k y  m o d e s

 B a s i s  R S s
-Im

(kR
)

R e ( k R )

F a b r y - P e r o t  m o d e s
W h i s p e r i n g  g a l l e r y  m o d e  ( W G M )

T M  p o l a r i s a t i o n ,  l  =  5

n  =  1 . 5 ,  r  =  2 0 0 n m

Figure 1.1: RSs for a dielectric sphere with a radius of 200nm, at the fundamental l-
number for TM polarisation. Refractive index n = 1.5. The sphere has a rich
spectrum of modes containing both leaky and high-quality whispering gallery
modes (WGM), the latter having a small Im kn.

method in quantum mechanics is to write out the solution as a series expansion in

terms of the perturbation which introduces the idea of orders of perturbation [6].

Because the series expansion can become very complex, the solution used will be

made up of only a few orders of perturbation, usually the first and second orders.

This then leads to poor convergence properties as we increase the perturbation

strength [7, 8, 9, 10, 11, 12]. We want to be able to use a method which has greater

accuracy which we achieve by getting a finite number of states for the solutions of

Maxwell’s equations for electromagnetic open systems.

In order to overcome this disadvantage we can formulate the solution as a matrix

diagonalisation problem which takes into account all orders of perturbation for the

basis used. Because, in theory, we can have an infinite number of basis states, we

use a suitable truncatrion in order to make the basis finite. The condition we use,

|nkn| < kf where kf ∼ 1 depending on the material, has the benefit of truncating

both far-field RSs and the RS frequencies which arise from introducing dispersion

to ε̂(r) (discussed in Sec. 3.3). This means we can calculate very large perturbations

– 4 –



Chapter 1. Introduction

accurately. Typical perturbation theories will also use a finite number of states but

for a finite order of perturbation. Because of the completeness of RSs inside the

system, we can expand the RSs of a perturbed system into the unperturbed RSs.

This is the basis of the resonant-state expansion (RSE) being a powerful perturbation

tool [4, 5, 13, 14].

Other available methods, finite-difference time-domain [15] or finite element

method [16, 17], struggle with such sharp resonances due to needing a large time

domain (FDTD) because of the slow decay of the optical modes in time. Finite

element methods also need excessively large domain in real space to describe the

far-field asymptotics properly. The RSE is not hindered by the need to have a large

real space domain as it produces the eigenstates and their wave numbers directly

from the diagonalisation of the matrix determined by near-field properties only.

Furthermore, RSs being discrete eigenstates of the optical system provide a natural

discretisation of the problem.

A crucial element of the RSE is the introduction of the Green’s function (GF)

which provides the complete system response and allows for the calculation of ob-

servables such as emission, scattering, or transmission. This is explored in detail in

a previous paper where the transmission for a layered planar structure is written in

terms of the GF [5]. We also show how you can extract the rest of the observables

using the GF in three dimensions in a later paper [18]. The wave vectors of resonant

states are the most essential part of the calculation as they most strongly affect the

optical properties of the system through the poles of the GF. This pole structure

is what eventually allows us to describe the permittivity of materials simply and

accurately.

The unperturbed RSs can be used to calculate the GF Ĝk(r, r′), of the system

using the Mittag-Leffler theorem [19, 20]. The GF satisfies the same outgoing wave

boundary conditions and Maxwell’s wave equation with a delta function source term,

−∇×∇× Ĝk(r, r′) + k2ε̂(r)Ĝk(r, r′) = 1̂δ(r− r′) , (1.6)

where 1̂ is the unit tensor and ω is the frequency of the electromagnetic field in

– 5 –



1.2. Resonant-state expansion

vacuum which is real for treating observables, but it is possible to make an analytic

continuation into the complex ω-plane, which is used in the RSE. The GF expansion

in terms of the direct (dyadic) product of the RS vector fields is given in previous

RSE papers [4, 5, 13].

Ĝk(r, r′) =
∑
n

En(r)⊗En(r′)
2kn(k − kn) (1.7)

where the direct vector product (dyadic product)⊗ is defined as c(a ⊗ b)d = (c · a)(b · d).

By substituting Eq. (1.7) into Eq. (1.6) we can write the sum rule

∑
n

En(r)⊗En(r′)
2kn

= 0 (1.8)

to give us

Ĝk(r, r′) =
∑
n

En(r)⊗En(r′)
2k(k − kn) . (1.9)

Eq. (1.8) along with the closure relation

1
2
∑
n

ε̂(r) En(r)⊗En(r′) = 1̂δ(r− r′) , (1.10)

are what demonstrate the completeness of the RSs.

Eq. (1.9) requires that the RSs are normalised according to

1 + δkn,0 =
∫
V
drEn(r) · ε̂(r)En(r) + lim

k→kn

∮
SV

dS

(
En · ∂E

∂s
−E · ∂En

∂s

)
k2 − k2

n

(1.11)

where E(ω, r) is an analytic continuation of the RS wave function En(r) around the

point ωn in the complex ω-plane and δωn,0 is the Kronecker delta accounting for a

factor of two in the normalisation of ωn = 0 modes. For any spherical surface SR of

radius R, the limit in Eq. (1.11) can be taken explicitly leading for ωn 6= 0 modes

[4, 5] to

1=
∫
VR

drEn · ε̂En + 1
2k2

n

∮
SR

dS

[
En· ∂

∂r
r
∂En

∂r
− r

(
∂En

∂r

)2]
(1.12)

where r = |r|, with the origin at the center of the chosen sphere. Static ωn = 0

– 6 –



Chapter 1. Introduction

modes, if they exist in the GF spectrum, are normalised according to

2 =
∫
drEn · ε̂En (1.13)

which comes from reducing Eq. (1.11) given ωn = 0. Their wave functions decay at

large distances as 1/r2 or quicker, and the volume of integration in Eq. (1.11) can

be extended to the full space for which the surface integral is vanishing.

The completeness of RSs allows us to treat exactly a modified (perturbed) prob-

lem

∇×∇× Eν(r) = κ2
ν

[
ε̂(r) + ∆ε̂(r)

]
Eν(r) , (1.14)

in which the RS frequency κν and the electric field Eν are modified as compared

to ωn and En, respectively, due to a perturbation ∆ε̂(r) with compact support, i.e.

vanishing outside a finite volume. Note that this volume contains all the inhomoge-

nieties in ε̂(r) while the surface integral contains the gradients normal to the surface

in the homogeneous space outside the system. We treat this problem by solving

Eq. (1.14) with the help of the GF,

Eν(r) = −κ2
ν

∫
dr′Ĝκν (r, r′)∆ε̂(r′)Eν(r′) . (1.15)

We use the spectral representaion of the GF [5]

Eν(r) = −κ2
ν

∑
n

En(r)
∫
dr′En(r′) · ∆ε̂(r′)Eν(r′)

2κν(κν − kn) , (1.16)

to expand all of the perturbed wave functions into the unperturbed ones. This

allows us to write the perturbed states as linear combinations of the normalised

unperturbed RSs,

Eν(r) =
∑
n

bnνEn(r) . (1.17)

This is the RSE method. The use of the unperturbed GF is an essential element

of the RSE as Eq. (1.15) guarantees that the perturbed wave functions satisfy the

outgoing boundary condition. By substituting Eq. (1.17) into Eq. (1.16) and equat-

ing coefficients with the same basis functions En(r) we arrive at a linear matrix

– 7 –



1.2. Resonant-state expansion

eigenvalue problem

κν
∑
m

(δnm + Vnm/2)bmν = ωnbnν , (1.18)

which is reduced, using a substitution bnν = cnν
√
κν/kn , to the matrix equation [4]

∑
m

(
δnm
kn

+ Vnm

2
√
knkm

)
cmν = 1

κν
cnν . (1.19)

We use Eq. (1.19) as it can be solved by diagonalising a symmetric complex matrix

while Eq. (1.18) is a generalised eigenvalue problem.

- 1 0 0 1 0 2 0 3 0 4 0 5 0

0

2

4

0 2 4 6 8 1 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
1 0 - 9

1 0 - 7

1 0 - 5

1 0 - 3

1 0 - 1

T M  p o l a r i s a t i o n ,  l  =  5

n  =  1 . 5 ,  r  =  2 0 0 n m

( a )

 

 U n p e r t u r b e d  ( B a s i s )
 E x a c t  p e r t u r b e d
 R S E  p e r t u r b e d

-Im
(kR

)

ωn = 0  p o l e  r e q u i r e d  f o r  R S E

( b )

 

 N = 5 0
 N = 1 0 0
 N = 2 0 0

rel
ativ

e e
rro

r

R e ( k R )

Figure 1.2: RSs for a dielectric sphere at the fundamental l-number for TM polarisation,
perturbed from n = 1.5 to n = 2.5. We also show the relative error and how
is changes as we increase the basis size (N = number of RSs in the basis).

This allows us to find the wave frequencies κν and the expansion coefficients cnν
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Chapter 1. Introduction

of the perturbed RSs. The matrix elements of the perturbation are given by

Vnm =
∫

En(r) · ∆ε̂(r)Em(r) dr . (1.20)

Using constant values for ∆ε̂(r) we can describe the perturbation of a dielectric

microsphere showing the sharp resonances in the spectrum, for example caused by

whispering gallery modes (WGMs). We will refer to the RS frequencies as ‘poles’

due to them presenting the simple poles of the GF.

Fig. 1.2 is a demonstration of the RSE for a purely dielectric sphere with the same

parameters as Fig. 1.1. To clarify, a dielectric material is one with bound charges

but will still exhibit absorption at certain frequencies, this leads to the permittivity

being frequency independent. In the first graph we can see that the RSE results line

up well with the exact solution for low frequencies. The method of finding the basis

states and the exact perturbed solution is explained in full in Sec. 3.2. Also discussed

in Sec. 3.2 is the zero frequency pole (ωn = 0) which is required for completeness

and the accuracy of the method for TM polarisation [5].

We also show the relative error of the RSE result with respect to the exact

solution for different numbers of RSs in the basis. We can see that the error scales

as 1
N3 showing very quick convergence to the exact solution.

1.3 Materials with dispersion

For purely dielectric materials the phase velocity does not depend on the frequency,

which means we can measure the instantaneous response of the electric field to the

presence of a material. This is known as the electric field displacement (D = εE)

where ε is the permittivity which is constant for dielectric materials. Materials

with a frequency-dependent dielectric constant are referred to as dispersive. This is

where we can measure the ‘memory’ of the material after the presence of it in an

electric field.The frequency dependence comes about because when a time-varying

electric field is applied, the polarization response of the material cannot be instan-

taneous. Such dynamic response can be described by the convolutional (and causal)

constitutive relationship [21]
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1.3. Materials with dispersion

D̃(r, t) =
t∫

−∞

ε̃(r, t− t′)Ẽ(r, t′)dt′ (1.21)

where the permittivity ε̃(r, t), is now a function of time. By taking the Fourier trans-

form (FT) of Eq. (1.21) we get an equation which depends on frequency according

the to convolution theorem. The FT of D̃(r, t) is D(r, ω) which is given by

D(r, ω) = ε(r, ω)E(r, ω), (1.22)

where ε(r, ω) and E(r, ω) are the FT of ε̃(r, t) and Ẽ(r, t) respectively. Note that

ε(ω) = (n+ iκ)2 where n is the refractive index and κ is the absorption index, both

being measurable quantities and functions of ω. This is discussed in Sec. 1.3.1.

1.3.1 Experimental data

Our main source of experimental data for dispersive materials is the Johnson and

Christy paper [22] on the optical properties of the noble metals: gold, silver and

copper. The tables of data in the paper provide values for n and κ, as well as the

experimental errors, for the frequency range between 0.64 eV and 6.6 eV. This is the

optical range where we see dispersion when plotting permittivity against frequency.

From Fig. 1.3 we can see that the infra-red range where n is small and κ is large,

the free electron behaviour dominates which is described well by the Drude model,

see Sec. 1.3.2 and Sec.A, as a realistic and analytic model. This results in larger

percentage errors for n than κ. We can also see that the interband absorption range

dominates the visible (1.77-3.26 eV) and UV (3.26 eV and above) range where n and

κ are on the order of unity.

While the results from the JC paper are not universal they are a well known

starting point for theoretical analysis with errors of about 12% for n and about

4% for κ. The data was retrieved from conducting experiments on thin films of

the material in question. The refractive index n(ω) and absorption index κ(ω) are

determined at a number of real frequencies ωj providing nj = n(ωj) and κj = κ(ωj).

We then define ∆εj = ∆ε(ωj), treating all quantities in Eqs. (1.23) and (1.24)
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Figure 1.3: The refractive and absorption index from Johnson and Christy’s paper for

gold, silver and copper [22]. The shaded regions are guides for the eye to see
the frequency ranges.

as functions of ω. The quantities ε′ = n2 − κ2 and ε′′ = 2nκ are purely real. We

introduce a fit method in chapter 2 in which we choose to fit ε instead of n and

κ due to the linear parameters present in ε, see Sec. 2.3 for more details. These

quantities are shown in Fig. 1.4. The measured values are assumed here to have an

error defined by the root-mean square (RMS) deviation, ∆nj and ∆κj , respectively.

We therefore calculate ε = ε′ + iε′′ = (n+ iκ)2 and determine its RMS error ∆ε by
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1.3. Materials with dispersion

assuming statistically independent errors ∆n and ∆κ, which yields

∆ε′ =

√(
∂ε′

∂n
∆n
)2

+
(
∂ε′

∂κ
∆κ
)2

= 2
√

(n∆n)2 + (κ∆κ)2 , (1.23)

∆ε′′ =

√(
∂ε′′

∂n
∆n
)2

+
(
∂ε′′

∂κ
∆κ
)2

= 2
√

(κ∆n)2 + (n∆κ)2 . (1.24)
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Figure 1.4: As in Fig. 1.3 but for real and imaginary parts of ε.
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1.3.2 Ohm’s law and the Drude model

While it is always possible to resort to interpolations of experimental data, the

advantages of having a simpler analytic model for the permittivity are tremendous.

Ideally we want an accurate model with a small number of physically meaningful

parameters. This makes analysis of ε(ω) easier to understand when considering

modification due to any external perturbations. A recurring model in literature is

the Drude model which describes metals well for certain frequency ranges [23]. The

model owes its simplicity to neglecting any electron interactions and assumes a high

number of "free electrons". The model is derived from taking the Fourier transform

of the equation of motion and using the definition of a dipole moment to arrive at

an expression for the susceptibility. We derive the Drude model fully in Sec.A. In

the Drude model we can write the expression for the permittivity as

ε(ω) = 1 +
ω2
p

ω(ω + iγ) (1.25)

where ω2
p is the plasma frequency and γ is the damping rate. As we will expand

on in Sec. 2.2, we can write ω2
p in terms of the complex conductivity σ and the high

frequency term ε∞; ω2
p = γσ

ε∞
. We can visualise the Drude pole of the permittivity

as having a frequency position on the imaginary axis at −iγ.

Another model we can use is the Ohm’s law dispersion which arises from splitting

Eq. (1.25) into multiple terms and neglecting the high frequency asymptotes which

are ε ∝ ω−2:

ε(ω) = ε∞ + iσ

ω
−
�

�
��iσ

ω + iγ
(1.26)

The Ohm’s law model is only suited for very low frequencies (ω << γ) and is

therefore not practical.

1.3.3 Beyond the Drude Model

The Drude model has its limits and while being able to accurately describe the

visible/near-uv region for certain materials, if the interband transitions are close

to this range we need to introduce extra terms. Simple Lorentz oscillator terms,
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discussed in Sec. 2.2.1, can be used to describe any feature of the line shape but

suffer from the same problem as the interpolation of the experimental data would,

meaning you would need too many of them which gives you a complicated expression

with many parameters leading to an intractable number of transitions. This is due to

the transitions being asymmetric in terms of the line shape leading to the inclusion of

many artificial transitions which give no insight into the dispersion of the material.

In a paper by Etchegoin et al [23], a model called the critical point model is

discussed which, like the Drude model, has poles at a particular frequency with a

complex weight. This type of analytic model can describe the interband transitions

in metals and semiconductors with minimal parameters even when many "critical

points" are used. When looking at ε(ω) the critical points Lk(ω), or Lorentz poles

as we will call them throughout this thesis, take the form of

Lk(ω) = iσk
ω − Ωk

+ iσ∗k
ω − Ω∗k

(1.27)

where σk is the complex conductivity and Ωk is the position in frequency space.

It is possible to include a family of analytic models for transitions in solids,

which satisfy a certain set of minimum requirements and reproduce most of the line

shapes in ε(ω) observed experimentally. A mixture of the Drude model and the

critical point model discussed will give rise to an analytic model which fits any set

of experimental data given.

1.4 Plan of this thesis

We have discussed the RSE for non-dispersive materials in Sec. 1.2 which is suitable

for dielectric materials, however metals, semiconductors, and even realistic dielectric

materials (glass), all have frequency dispersion which requires an analytic model to

descibe the permittivity. This drastically changes the perturbation matrix Eq. (1.20)

and as a result changes the RSE method. Substituting ε̂(r, ω) into Eq. (1.20) makes

the RSE non-linear and in need of significant reformulation (see chapter 3).

In chapter 2 we introduce a method of fitting experimental data for the per-

mittivity to what we call the Drude-Lorentz model. The method is semi-analytic,
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meaning half of the parameters are solved quickly by matrix diagonalisation with

unique solutions, and another part by gradient decent, which is iterative and thus

slower, and can lead to several solutions. The method takes into account the ex-

perimental errors where they are given. This makes it fast and reliable at fitting

the Drude-Lorentz model to a set of experimental data and gives us a good base to

model the material using RSs and perturb them using the RSE which requires this

form of the dispersion. This work has already been published for metals [24] and

semiconductors [25].

In chapter 3 we introduce the method behind using a dispersive permittivity in

the RSE and what we need to alter, in order to implement the method correctly. We

call this the dispersive RSE. We test an unperturbed dispersive basis states which

is perturbed to another set of dispersive basis with a different ε(ω). We use the fit

program to give us accurate parameters for materials which we use for non-dispersive

to dispersive perturbation for realistic materials. We also explore the evolution of

surface plasmons with respect to nanosphere radius for gold and how to model gain

for GaAs at the first interband transition using the RSE.
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Chapter 2

Drude-Lorentz model and fit

program

2.1 Motivation

The interest in nanotechnology has increased greatly over the past decade, par-

ticularly in nanophotonics, which exploits optical properties of structures on the

nanoscale, composed of different materials. Working with objects which approach

or are smaller than the wavelength of visible light come with its own challenges,

the scattering and transmission properties can vary significantly. This can lead to

metamaterials where materials can be engineered to produce properties which do

not exist natuarally, for example, lenses which have a negative refractive index for

imaging of nanoparticles.

In order to design photonic structures and predict and optimise their properties,

such as optical field enhancement, chirality, or enhanced radiative emission via the

Purcell effect, the electromagnetic response of the underlying materials has to be

simulated. An effective medium approach of the optical response is suited for many

structures in which nonlocal effects can be neglected. The properties describing the

linear optical response of non-chiral media are the frequency dependent permittivity

tensor ε̂(ω) and permeability tensor µ̂(ω). In most relevant natural materials, the

permeability is close to unity, so that we concentrate here on ε̂(ω). However, the

method is applicable equivalently to µ̂(ω) or, in general, to other material response
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functions.

Using an analytical model of ε̂(ω), which contains only simple poles, is moti-

vated by physical arguments, such as the presence of resonances in the material self

energy and response functions. Furthermore, this form of the permittivity can be

efficiently implemented in numerical methods, such as the finite difference in time

domain (FDTD) method [26], and in the more analytic and rigorous approaches,

such as the dispersive resonant-state expansion[27]. The pole structure of the per-

mittivity naturally includes a zero-frequency pole of the Ohm’s law dispersion, which

however works well only in the long wavelength limit and is not suited to describe

the material properties in the optical range. Real metals are much better described

by the Drude model[22], which takes into account the finite mass of the charge car-

riers. Adding real-valued Lorentz components[28] to the Drude model is suited to

represent electronic interband transitions. A further refinement of the model uses

complex weights (residues) of the Lorentz poles[23]. This is known in some of the

literature as the critical point model[26, 29, 30]. We use this generalisation in the

present work and call it a Drude-Lorentz (DL) model.

A fit of the material permittivity with the DL model has been performed in a

number of publications [23, 26, 29, 30] for its further use in FDTD solvers. How-

ever, the experimental errors available in the literature[22] have not been taken into

account in those fits. Here we provide an efficient algorithm of fitting experimental

data, using available errors, with the DL model with an arbitrary number of Lorentz

poles. This algorithm combines an exact analytical approach for determining the

linear parameters of the model, with a numerical solver for optimising its nonlinear

parameters. We illustrate the resulting pole positions and their weights in the com-

plex plane to give some physical insight how the model approximates the electronic

transitions in real materials.

2.2 Drude-Lorentz general model

The analytic model for the permittivity of materials can be seen as a collection of

resonances. Without an applied electric field, the electrons around the nuclei are
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symmetric and at rest however they will start to resonante with the introduction of

an electromagnetic wave. We can extrapolate from this response to an electric field

with the Drude-Lorentz model. This is derived fully from simple harmonic motion

of the resonant electrons in the appendix, Sec.A.

Quite generally, the permittivity ε̂(r, ω) can be treated as an analytic function

in the complex frequency plane, having a countable number of simple poles and

therefore, according to the Mittag-Leffler theorem, can be expressed as

ε̂(ω) = ε̂∞ +
∑
j

iσ̂j
ω − Ωj

, (2.1)

where ε̂∞ is the high-frequency value of the permittivity and Ωj are the resonance

frequencies, which are the poles of the permittivity, determining its dispersion, with

the weight tensors σ̂j corresponding to generalised conductivities of the medium

at these resonances. The Lorentz reciprocity theorem requires that all tensors in

Eq. (2.1) are symmetric, and the causality principle requires that ε̂(ω) has no poles

in the upper half plane of ω and that ε̂∗(ω) = ε̂(−ω∗)[21]. Therefore, for a physically

relevant dispersion, each pole of the permittivity with a positive real part of Ωj

has a partner at Ω−j = −Ω∗j with σ̂−j = σ̂∗j . Poles with zero real part of Ωj

have real σ̂j . For simplicity, we assume in the following an isotropic response,

such that the conductivities and thus the permittivity are described by scalars.

We note however that it is straightforward to extend the presented treatment to a

nonisotropic response.

We first separate the poles with zero real part of the frequency, which describe

the conductivity of materials in the Drude model:

εD(ω) = ε∞ + iσ

ω
− iσ

ω + iγ
= ε∞ −

γσ

ω(ω + iγ) , (2.2)

where ε∞ is the permittivity at high frequencies and σ is the real DC conductivity.

The pole at zero frequency represents Ohm’s law, corresponding to the ω−1 low-

frequency limit of the dispersion. Together with the second pole, at −iγ, it provides

the ω−2 high-frequency asymptotics, originating from the nonzero mass of the charge
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carriers. In real materials, the carrier mass and the damping can show a frequency

dependence, which is not included in the Drude model. To describe such effects, the

DC conductivity can be split [31] into several Drude contributions, with fractions

ηd and dampings γd, so that

εD(ω) = ε∞ + iσ

ω
− σ

D∑
d=1

iηd
ω + iγd

, (2.3)

where ∑D
d=1 ηd = 1. Adding the poles Ωk with nonzero real part, which are called

Lorentz poles and describe material resonances at finite resonance frequencies, such

as phonons or electronic interband transitions, we arrive at

ε(ω) = εD(ω) +
L∑
k=1

(
iσk

ω − Ωk
+ iσ∗k
ω + Ω∗k

)
, (2.4)

where L is the number of pairs of Lorentz poles. The generalised conductivities

σk = σ′k+iσ′′k are complex. We denote real and imaginary parts of complex quantities

with prime and double prime, respectively, and keep using this notation throughout

the thesis.

The model of the permittivity ε(ω) given by the analytic function Eq. (2.4) with

Ω′′k ≤ 0 respects the constrain of causality by construction. The parameters of

the model, which are the conductivities and the resonance frequencies, have to be

determined from the experimentally measured data.

2.2.1 Classical Lorentz oscillator and optical gain

To describe the interaction between atoms and electric fields in classical terms, we

say that the electron (a particle with some small mass) is bound to the nucleus of

the atom (with a much larger mass) by a force that behaves according to Hooke’s

Law - that is, a spring-like force. An applied electric field would then interact with

the charge of the electron, causing ’stretching’ or ’compression’ of the spring, which

would set the electron into oscillating motion. This is what we call a classic Lorentz

oscillator (CLO).

Using a pendulum as an aid we can visualises these resonances. At low frequen-
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cies the driving force is present on the object and it has the same phase as the

displacement of the object, this is analogous to the displacements of electrons in an

electric field. The permittivity for a CLO is,

ε(ω) = ε∞ +
ω2
p

(ω2
0 − ω2) + iωγ

, (2.5)

where ω2
p is the plasma frequency and ω0 is the resonance. Since the polarisation

vector and electric field are related by the electric susceptibility, we analyse the

magnitude and phase of χ (see Sec.A for more details), where χ(ω) = ε(ω) − ε∞.

By splitting ε(ω) into real and imaginary parts we get

εr(ω)− 1 = ε′(ω)− ε∞
ε∞

=
ω2
p(ω2

0 − ω2)
(ω2

0 − ω2)2 + ω2γ2 (2.6)

εi(ω) = ε′′(ω)
ε∞

=
ω2
pγω

(ω2
0 − ω2)2 + ω2γ2 . (2.7)

The amplitude and the phase can be written as |χ(ω)| =
√

(εr(ω)− 1)2 + εi(ω)2 and

φχ = arctan(εi(ω)/(εr(ω)− 1)). The amplitude is ‘medium’ for low frequencies due

to |χ(0)| ≈ ω2
p/ω

2
0 when ω ≈ 0, with the phase being φχ ≈ arctan(0) = 0. At the

resonance frequency, ω = ω0, the amplitude is the highest due to |χ(ω0)| ≈ ω2
p/ω0γ

where γ << ω0 and the phase is φχ ≈ arctan(∞) = π/2 meaning the driving force

and the displacement are π/2 out of phase. For high frequencies the amplitude

vanishes as the driving force and displacement are π out of phase due to |χ(∞)| = 0

and φχ ≈ arctan(0) = 0 or π. This is shown in Fig. 2.1.

When compared to the complex weighted Lorentz poles, the classical Lorentz

oscillator has a purely imaginary conductivity which translates to a purely real

Lorentz weight. This leads to a phase of π/2 which is appropriate when describing

isolated features, i.e. individual interband transitions. We will use this method for

modelling optical gain in GaAs by fitting the first interband transition with Lorentz

oscillators only and changing the sign of the purely imaginary conductivity σ of

the lowest frequency oscillator, corresponding to the transitions close to the band

gap, leading to iσ being purely real in Eq. (1.27). The fit of the first GaAs interband

transition is explored in detail in Sec. 3.6 as well as how we can perturb an absorptive
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Figure 2.1: Sketch of amplitude and phase lag of a harmonic oscillator, where rmax is the
maximum displacement.

system to one with optical gain.

2.3 Fit procedure and algorithm

With the analytic model Eq. (2.4) of the permittivity, the task of fitting the exper-

imental data reduces to finding the parameters of the model which minimise the

error weighted deviation E between the analytic and the measured values of ε, as

this maximises the probability of the model given the data. Assuming Gaussian

errors, we use the squared deviation, weighted with the RMS errors:

E =
N∑
j=1

(
ε′(ωj)− ε′j

∆ε′j

)2

+
(
ε′′(ωj)− ε′′j

∆ε′′j

)2

, (2.8)

where εj are experimental values and ∆εj are the corresponding errors discussed

in Sec. 1.3.1. Considering that typical experimental data sets consist of tens to

hundreds of points, and ε(ω) is an analytic function of ω with a large number of

parameters, typically in the order of ten, a robust and efficient algorithm is needed.

To achieve this goal, we first make use of an exact, analytical minimisation with

respect to the parameters in which ε is linear – these are all the conductivities
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and ε∞. This is the reason why it is advantageous to fit ε instead of the complex

refractive index n + iκ, as for the latter none of the parameters is linear. Then for

the rest of the parameters, in which ε is nonlinear – these are the pole frequencies

– we use an iterative minimisation with a gradient decent and a suited selection of

starting points.

We assume that the frequencies ωj are sorted in ascending order, and that the

minimum (maximum) frequency is ω1 (ωN ).

2.3.1 Exact minimisation over linear parameters

An exact minimisation of the RMS deviation is available for all the parameters in

which the model is linear. To make this linear dependence clearer, we write the

permittivity as

ε(ωj) =
2L+D∑
l=0

Algl(ωj) (2.9)

with 1 +D+ 2L real linear parameters Al and the related complex functions gl(ωj)

as given in Table 2.1.

l Al gl(ω)
0 ε∞ 1
d σηd − γd

ω(ω + iγd)

2k +D − 1 σ′k
i

ω − Ωk
+ i

ω + Ω∗k
2k +D σ′′k

−1
ω − Ωk

+ 1
ω + Ω∗k

Table 2.1: Linear parameters Al and related functions gl(ωj) used in the model, with the
integers d = 1..D and k = 1..L.

Minimisation of the total error E, given by Eq. (2.8), with respect to Al can be

done analytically by setting the derivatives to zero,

∂E

∂Al
= 2

N∑
j=1

g
′
l(ωj)

(∑
m
Amg

′
m(ωj)− ε′j

)
(∆ε′j)2 +

g′′l (ωj)
(∑
m
Amg

′′
m(ωj)− ε′′j

)
(∆ε′′j )2

 = 0.

(2.10)

These provide a set of 1 +D+ 2L linear equations for Am which can be written
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as
2L+D∑
m=0

HlmAm = Bl, (2.11)

where

Hlm =
N∑
j=1

(
g′l(ωj)g′m(ωj)

(∆ε′j)2 + g′′l (ωj)g′′m(ωj)
(∆ε′′j )2

)
, (2.12)

Bl =
N∑
j=1

(
g′l(ωj)ε′j
(∆ε′j)2 +

g′′l (ωj)ε′′j
(∆ε′′j )2

)
. (2.13)

Equation (2.11) can be solved using standard linear algebra packages with a com-

putational complexity of (1 + D + 2L)2, which is smaller than the complexity of

N(1 +D+ 2L)2 for calculating Hlm and Bl for typical sizes of datasets and number

of poles. We can fix the value of ε∞ if necessary, removing it from the set of lin-

ear parameters, by subtracting our chosen value ε∞ from ε(ωj) (see an example in

Table 2.2).

2.3.2 Minimisation over nonlinear parameters

Using the values of Al found in Sec. 2.3.1 by exact minimisation of E, we now define,

via Eq. (2.8), a new error function Ẽ, which has been already minimised with respect

to the linear parameters Al and depends only on the nonlinear parameters, which

are the Drude dampings γd and the complex frequencies Ωk of the Lorentz poles.

Overall, there are D + 2L real parameters over which Ẽ has to be minimised. To

represent the average deviation of the model from the measured data points relative

to their experimental RMS error, we introduce

S =

√
Ẽ

2N . (2.14)

A fit to the experimental data has two sets of independent errors relative to the

correct ε(ω): the error of the measurements and the errors of the fit. For a fit

which is equal to the correct ε(ω), we expect, by definition, S = 1. If instead the

magnitude of both errors are the same, and they are uncorrelated, we expect S =
√

2.

Therefore, for a fit dominated by the measurement errors, the S values are expected
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to be close to unity, below
√

2. Furthermore, we note that there are 1+2D+4L fitting

parameters and 2N data values, which can be of comparable number. Therefore,

there are only 2N − 1− 2D− 4L values which cannot be exactly fitted by the model

function. Indeed, the set of the fit conditions is overdetermined and thus provides

a finite error of the fit, resulting in finite values of S below unity. Specifically, we

would expect for the best fit a value of S =
√

1− (1 + 2D + 4L)/(2N). When the

expression under the square root is zero or negative, it is possible to fit the data

exactly, i.e. S can approach zero – we will see examples of this later.

During the minimisation, we found instances (specifically when fixing ε∞) where

the pole frequency and the corresponding weight diverged simultaneously with fixed

ratio, representing a frequency-independent permittivity component iσ̂j/Ωj . Fur-

thermore, we observed poles at nearly equal positions, or Lorentz poles on the imag-

inary axis. All these situations correspond to local minima of Ẽ which should be

avoided. We also found poles with positive imaginary part, which are not compatible

with causality of the response. In order to avoid the corresponding un-physical pole

properties while not significantly compromising the resulting error S, we minimise

not Ẽ, but Ẽζ instead, where

αi =
(

1 + s2
1δ

2

|Ω′i|
2

)(
1 + s2

2δ
2

|Ω′′i |
2

)
(2.15)

βi =
∏
j>i

1 + s2
3δ

2∣∣∣Ω′i − Ω′j
∣∣∣2 +

∣∣∣Ω′′i − Ω′′j
∣∣∣2
 (2.16)

ζ =
∏
i

αiβiζi, ζi =

 1 for |Ωi| < ωN ,

1 + s2
4

(
|Ωi|
ωN
− 1

)2
else .

(2.17)

The Drude poles are included in the product Eq. (2.17) using their pole frequencies

Ω = −iγd. The parameter δ denotes the maximum frequency distance between data

points. The factors s1 and s2 determine the strength of the repulsion of the Lorentz

poles from the imaginary and real axes respectively, s3 determines the strength of

the repulsion between Lorentz poles, and s4 determines the strength of the repulsion

for absolute pole position larger than ωN . We used s1 = 0.2, s2 = 0.5, s3 = 0.2 and

s4 = 0.04 for the results shown in this work. Generally, the repulsion parameters are
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Figure 2.2: Sketch of the procedure for choosing start values for Lorentz pole frequencies
Ωk, with an increasing number of Lorentz pole pairs L.

increased from zero to suppress non-physical pole positions and to find the global

minimum of Ẽ.

To minimise Ẽζ over theD+2L nonlinear parameters we use known minimisation

algorithms based on the gradient descent (implemented in MATLAB as function

‘fminunc’). The main challenge is to select suited starting points for the parameters,

from which the algorithm finds local minima. The starting points should be selected

in a way that the global minimum amongst the local minima is found.

The complexity of the problem depends on the number of Drude poles D and

Lorentz poles L. For L = 0 and D = 1, only a single parameter γ1 has to be varied,

which results in a reliable convergence towards the global minimum independent

of the choice of its start value. Increasing D to D + 1, we use as starting value

γD+1 = 2γD.

For L = 1, we have an additional pair of Lorentz poles given by a single complex

parameter Ω1. For the starting value of Ω1, we use a random logarithmic distribution

within the range of the measured data, specifically

Ω1 = ω1

(
ωN
ω1

)Y
− i(ωN − ω1)NY ′−1 (2.18)

where Y and Y ′ are random numbers with a uniform distribution between 0 and

1. The minimisation is repeated with different starting points until at least three

resulting S values are equal within 10%, and the parameters for the lowest S are
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accepted as global minimum.

The parameter space volume to be covered in such a procedure increases ex-

ponentially with L, making it computationally prohibitive to use this approach for

large L. Increasing L, we therefore revert to a different strategy. Instead of guessing

all Ωk randomly, we use the optimised values for Ω1, ...,ΩL−1 of the model with L−1

poles as starting values for the simulation for L poles, and choose the starting value

for the additional pole as ΩL = [1 − i/(L+ 1)]ωN . This procedure is sketched in

Fig. 2.2. It is fast but can result in not finding the global minimum. However, we

can vary the range of the experimental data to be fitted in order to provide more

starting points. Here, we choose to keep the lowest frequency ω1 fixed but vary ωN

and consequently N . Increasing or decreasing N by one, we use as starting point

the optimised values for N .

Furthermore, going back, from L+1 to L, just removing one pair of Lorentz poles

provides L+ 1 additional starting values for the simulation with L poles. It is also

possible to go back multiple steps, e.g., from L + 2 to L provides (L + 2)(L + 1)/2

starting values – this however has not been used to produce the S values in this

paper.

Remaining abrupt changes of S with N can (but do not have to) indicate that the

global minimum was not yet obtained, and more starting values should be employed.

2.4 Results for metals

Here we discuss examples of the DL model optimised for measured material disper-

sions. As previously mentioned in Sec. 1.3.1, the main example we use the data for

gold by Johnson and Christy[22], which is widely used in the literature and we can

compare our model with previous approaches.

The data by Johnson and Christy[22] covers the ~ω range from 0.64 eV to 6.6 eV,

and provides n and κ with their errors as discussed in Sec. 1.3.1. Previous works[26,

30] concentrated on a narrower region 1.24 – 3.1 eV, corresponding to the extended

visible light range 400 – 1000 nm. We start by using this range for the optimisation,

as it is the most relevant range for applications, and also allows us to directly
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compare our results with previous findings. We use D = 1, which is sufficient in the

frequency range considered, as the photon frequency is much higher than the Drude

damping, i.e., ω � γ.

2.4.1 Gold

The optimised model using L = 1 is compared with the experimental data in

Fig. 2.3(a). The refraction and absorption indices are shown as functions of the

photon energy, with the measured data including error bars and lines representing

the fit functions of the DL model. The poles of the model [see Eqs.(2.2) and (2.4)]

are shown as circles in Fig. 2.3(b), centered at their pole positions Ωj in the complex

photon energy plane, with the complex pole weight represented by the circle area

proportional to |σj | and the color giving the phase. We find S = 2.47 for this fit,

with other parameters given in Table 2.2. One can see the dominant contribution

of the Drude pole having the weight about 200 times larger than the Lorentz pole.

We can also see that the Lorentz pole is properly positioned to model the interband

transitions of gold above 2.3 eV. The phase of σ1 is π/4 close to the phase π/2 of

a classical damped Lorentz oscillator, such as a mass on a spring. The resonance

is at Ω′1 ∼ 2.7 eV, around the center of the interband transition within the optimi-

sation range, and the half-width of the resonance, −Ω′′1 ∼ 0.7 eV, is approximately

covering the width of the interband transitions in the same range. Comparing the

model with the data in Fig. 2.3 we can see that using only a single Lorentz pole is

insufficient to describe the measured data within their error, which is confirmed by

the corresponding value of S above unity.

Moving to a model with two pairs of Lorentz poles, L = 2, the error is decreased

to S = 1.0. The value of S below
√

2 indicates that this is sufficient to model the

data in the optimisation range. This is also seen in Fig. 2.4, with the corresponding

parameters given in Table 2.2. We show in Figs. 2.4(c) and (d) the data and the fit

also for ε′ and ε′′, the quantities which are actually fitted, according to Eq. (2.8).

Individual pole contributions to ε′ and ε′′ are displayed as well. The interband

transitions are now described by two Lorentz poles. The first pole is at Ω′1 ∼ 2.6 eV,

close to the onset of the interband transition region, with a half-width of −Ω′′1 ∼
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Figure 2.3: (a) Refractive index n and absorption index κ of gold according to[22] (circles
and error bars) and the DL model Eq. (2.4) for L = 1 (solid lines) as functions
of the photon energy ~ω. The fit is optimised for the range 1.24 6 ~ω 6 3.1 eV.
(b) Pole positions Ωj and weights σj of the fitted ε(ω). The circle area is
proportional to |σj |, and color gives the phase of σj as indicated. For the
Lorentz poles, σj is multiplied by a factor of 1000 for clarity.

0.3 eV. This pole describes the edge of the interband transitions. Indeed, it has a

phase close to zero, which is appropriate to describe the asymmetry of the edge, see

Fig. 2.4(c). The second pole is at Ω′2 ∼ 2.9 eV, with a half-width of −Ω′′2 ∼ 1.2 eV.

This pole describes the central part of the interband transition region. It has a weight

about ten times higher than the first pole, and a phase close to π/4. The contribution

to ε′′ has accordingly a peak at around the resonance, while the contribution to ε′

is more dispersive.
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Figure 2.4: As Fig. 2.3, but for L = 2. Additionally, the permittivity, ε′ and ε′′, is shown
in (c) and (d), together with the individual terms of the model Eq. (2.4).
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Concerning the relation of the poles to intraband transitions in solids, it is im-

portant to emphasise that in microscopic theory the optical response is due to a large

number of transitions, often described by a continuum. This continuum, however,

can be represented by an infinite or a finite number of poles of the self-energy de-

scribing the effects of screening and frequency dispersion. Therefore, the model with

a limited number of Lorentz oscillators presents a fully physical though approximate

approach, collecting the oscillator strength and transition energies of the continuum

into a finite number of poles. The resulting pole positions and weights depend on

the energy range to be described and represent sets of microscopic transitions in the

material.

As we have seen, we can optimise the model parameters for a given photon energy

range and quantify the fit quality by the resulting value of S. Now we use a variable

optimisation range, from the lowest measured photon energy to a variable upper

boundary of the photon energy ~ωN taking all available measured values. We show

the resulting S values in Fig. 2.5(b) for different numbers of poles taken into account.

We can see that with an increasing number of poles, the error S is decreasing, as

expected considering the increasing number of parameters. Instead, increasing ~ωN

results in larger values of S, since a model of a given number of parameters is used

to describe an increasing number of data.

When keeping only the ω = 0 pole, corresponding to an Ohm’s law dispersion, the

error is always above
√

2. This is expected, as Ohm’s law is suited only to describe

the dispersion at photon energies well below the Drude damping, which is about

0.1 eV for gold. Moving to two poles, representing the Drude model, we see that

the error stays below unity until ~ωN approaches the interband transitions, seen in

Fig. 2.5(a) as a region of increasing ε′′ above 2 eV. This shows that the Drude model

is well suited to describe the measured data, as long as the influence of the higher

energy electronic transitions can be represented simply by a background constant ε∞.

Adding the first pair of Lorentz poles (L = 1), the effect of the interband transitions

can be described up to about 2.6 eV, where the plateau in ε′′ commences. Adding

the second pair of Lorentz poles (L = 2), the effect of the interband transitions can

be described up to about 4.9 eV, where ε′′ starts to decrease. Adding the third pair
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Figure 2.5: (a) ε′′
j as function of ~ωj . (b) Error S as function of the upper photon energy

limit of the fitted data range for Au data taken from [22]. Results for various
number of poles in the model are given. Lines are guides for the eye. The
maximum photon energy ranges suited for the different number of poles are
indicated in (a) by vertical lines.

of Lorentz poles (L = 3) allows us to adequately describe the full range of measured

data up to 6.5 eV.

Figure 2.6 shows the error S for L = 2 and L = 3, and both lower and higher

limits of the fitted range changing. Including more data points results in higher
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in [22]. The circle indicates the range 1.24 6 ~ω 6 3.1 eV used in [26].

errors, as seen by the gradient of S towards the lower right corner. We can see that

any range of the available data can be described by the DL model with L = 3 with

errors S <
√

2. The region of interest used in previous works[26, 30], 1.24 6 ~ω 6

3.1 eV, is also indicated by red circles. Using the parameters of [26], corresponding

to the model with L = 2, we find S = 1.96, which is larger than the value S = 1 we

found (see Table 2.2). This can be attributed to the fact that in [26] the absolute

error of ε was minimised, not taking into account the experimental errors. Such

a minimisation corresponds in our case to setting ∆ε′ = ∆ε′′ = 1 for all data

points. Using these errors, both in the definition of S and in the optimisation of the

parameters, we find S = 0.019 for L = 2, while using the parameters of [26] results

in S = 0.028. This confirms the high quality of our optimisation method.

The model with L = 3 optimised for the full data range is compared with the

measured data in Fig. 2.7. The fitted parameters are given in Table 2.2. We see

that the first two Lorentz poles are similar to those in the L = 2 model used for

the limited range and shown in Fig. 2.4. To describe the full range, an additional

pole at higher energy, having Ω′3 ∼ 7.3 eV and a half-width of −Ω′′3 ∼ 21.8 eV, is

needed. This pole describes the continuum of interband transitions, and takes over
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Figure 2.7: As Fig. 2.3, but for L = 3 and optimised for the full data range of ~ω given in
[22], from 0.64 eV to 6.6 eV.

the role of ε∞, which in this fit has a value below
√

2. The weight of the pole is

about ten times higher than for the second pole, and the phase is close to −π/4.

Fixing ε∞ = 1, which is well suited for FDTD methods, the main difference (see

Table 2.2) is a change in the high energy third pole.
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L 1 2 3 3
ε∞ 3.9199 2.6585 −10.534 1
γ(eV) 0.0893 0.07247 0.07373 0.074018
σ(eV) 875.79 1056.9 997.41 995.13
Ω′1(eV) 2.7326 2.5509 2.5997 2.6039
Ω′′1(eV) −0.69021 −0.27427 −0.43057 −0.42417
σ′1(eV) 3.0701 0.57604 1.4835 1.4145
σ′′1(eV) 2.9306 0.18443 0.88382 0.89754
Ω′2(eV) − 2.8685 3.7429 3.685
Ω′′2(eV) − −1.2195 −1.2267 −1.2475
σ′2(eV) − 4.1891 1.1372 1.5109
σ′′2(eV) − 4.2426 3.8223 3.9555
Ω′3(eV) − − 7.3145 17.087
Ω′′3(eV) − − −21.843 −0.41705
σ′3(eV) − − 225.27 −30.678
σ′′3(eV) − − −193.27 13.987
~ω1(eV) 1.24 1.24 0.64 0.64
~ωN (eV) 3.1 3.1 6.6 6.6

2N 30 30 98 98
Fit parameters 7 11 15 14

S 2.4735 1.0029 1.4747 1.4872

Table 2.2: Optimised model parameters for different number of Lorentz pole pairs L and
optimisation energy ranges corresponding to the data shown in Figs. 2.3, 2.4,
and 2.7. The number of data values 2N , the number of fit parameters, and the
resulting error S are also given. The last column shows an example where we
choose ε∞ = 1.

2.4.1.1 Single-crystalline gold

In Fig. 2.8 we show results for gold using the newer experimental data from [32].

This data does not provide the experimental error. We therefore have chosen here

to minimise the relative error instead, using ∆ε = ε in Eq. (2.8). We see a similar

behavior as for the data from [22], see Fig. 2.5.
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Figure 2.8: As Fig. 2.5, but for gold using data from [32]. We show a dashed line at 2%
relative error as a guide to a satisfactory fit.

2.4.2 Silver and copper

Here we show the results of the fit of the DL model for silver. As in Fig. 2.5 of the

main text, we use a variable upper limit ~ωN of the optimisation range and show the

resulting S values for different numbers of poles. In Fig. 2.9 we show results for silver

using the data from [22], having the lower photon energy limit at ~ω1 = 0.64 eV. Ag

has interband transitions above 4 eV. We find that the Drude model is sufficient up
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Figure 2.9: As Fig. 2.5, but for silver.

to photon energies of 2.4 eV, one additional pair of Lorentz oscillators up to 3.7 eV,

two up to 4.0 eV, three up to 4.7 eV, and four up to a value above the upper limit of

6.6 eV.

In Fig. 2.10 we show results for copper using the data from [22], having the lower

photon energy limit at ~ω1 = 0.64 eV. Cu has interband transitions above 2 eV. We

find that the Drude model is sufficient up to photon energies of 1.9 eV, one additional

pair of Lorentz oscillators up to 2.2 eV, two up to 4.7 eV and three up to 6 eV.
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Figure 2.10: As Fig. 2.5, but for copper.

The parameters fitted for the full spectral range shown in Figs. 2.9, 2.10, and

2.8, with L = 3 and 4, are given in Table 2.3.
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Material Ag Cu Au Au
L 4 4 3 4
ε∞ 0.77259 12.294 1.1584 0.83409
γ(eV) 0.02228 0.07044 0.02321 0.02334
σ(eV) 3751.4 1137.9 3155.3 3134.5
Ω′1(eV) 3.9173 2.1508 2.1339 2.6905
Ω′′1(eV) −0.06084 −0.23449 −3.4028 −0.16645
σ′1(eV) 0.09267 0.95283 12.0 −0.01743
σ′′1(eV) 0.01042 −0.12983 −5.5574 0.3059
Ω′2(eV) 3.988 4.6366 2.6319 2.8772
Ω′′2(eV) −0.04605 −0.68811 −0.33701 −0.44473
σ′2(eV) −0.0015342 0.97953 1.0547 1.0349
σ′′2(eV) −0.062233 0.48395 0.53584 1.2919
Ω′3(eV) 4.0746 4.9297 4.0803 3.7911
Ω′′3(eV) −0.63141 −4.6932 −0.99872 −0.81981
σ′3(eV) 1.4911 −61.583 −1.3103 1.2274
σ′′3(eV) 0.40655 35.021 2.7819 2.5605
Ω′4(eV) 4.6198 8.8317 − 4.8532
Ω′′4(eV) −2.8279 −0.2679 − −13.891
σ′4(eV) 4.2843 −12.186 − 9.85
σ′′4(eV) 4.2181 5.1474 − 37.614
~ω1(eV) 0.64 0.64 0.1 0.1
~ωN (eV) 6.6 6.6 6.0 6.0

N 49 49 69 69
S 1.2684 1.0956 0.01151 0.00826

Table 2.3: As Table 2.2, but for the data[22] for Ag and Cu and for the data[32] for Au,
corresponding to the full fit range shown in Figs. 2.9, 2.10, and 2.8, respectively.

– 38 –



Chapter 2. Drude-Lorentz model and fit program

2.5 Results for semiconductors

In this section we will describe semiconductors which have a negligible free carrier

density, and thus a negligible Drude pole weight. Their susceptibility in the visible

and ultraviolet range is dominated by interband transitions. We thus use a version

of ε(ω) which contains only pairs of Lorentz poles,

ε(ω) = ε∞ +
L∑
k=1

(
iσk

ω − Ωk
+ iσ∗k
ω + Ω∗k

)
, (2.19)

where L is the number of such pairs. Both the pole positions Ωk = Ω′k + iΩ′′k and

generalised conductivities σk = σ′k + iσ′′k are complex.

As before, the model of the permittivity ε(ω) given by the analytic function

Eq. (2.19) with Ω′′k 6 0 respects the constrain of causality by construction. The

parameters of the model, which are the conductivities and the resonance frequencies,

have to be determined from the experimentally measured data.

Here we discuss examples of the Lorentz model optimised for measured material

dispersions. We show results for crystals of silicon (Si), gallium arsenide (GaAs)

and germanium (Ge) where the data is from[33]. As semiconductors do not have a

significant free carrier density, they do not require a Drude pole, so we have fitted

the experimental permittivity with the background term (ε∞) and up to five pairs

of Lorentz poles. We use a variable optimisation range, from the lowest measured

photon energy ~ω1 to a variable upper boundary of the photon energy ~ωN taking all

available measured values. We show the resulting S values for Si in Fig. 2.11(b) for

different numbers of poles taken into account. We can see that with an increasing

number of poles, the error is decreasing, as expected considering the increasing

number of parameters. Also, increasing ~ωN results in larger S values, since a

model of a given number of parameters is used to describe an increasing number of

data.

As we have no experimental errors for the permittivity we use in this work

∆εj = εj , which means that the S values we use are the normalised relative error.

We show a dashed line in Fig. 2.11(b) at 2% relative error as a guide to a satisfactory

fit.
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Figure 2.11: (a) ε′′
j as function of ~ωj for Si. (b) Error S as function of the upper photon

energy limit of the fitted data range for Si[33]. Results for various number
of poles in the model are given. Lines are guides for the eye. The maximum
photon energy ranges suited for the different number of poles are indicated
in (a) by vertical lines.

For Si, adding the first pair of Lorentz poles (L = 1) we see the effect of the inter-

band transitions can be described up to the first peak in ε′′, around 3.4 eV. Adding

the second pair of Lorentz poles (L = 2), the effect of the interband transitions can

be described up to about 4 eV, as ~ωN approaches another peak in ε′′. Three pairs

(L = 3) describe both peaks in ε′′ up to 4.7 eV and finally four pairs of Lorentz poles
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Figure 2.12: (a) Refractive index n and absorption index κ of Si according to[33] and the
Lorentz model Eq. (2.19) for L = 5 (solid lines) as functions of the photon
energy ~ω. The fit is optimised for the full range 1.0 6 ~ω 6 7.6 eV of
available data. (b) Pole positions Ωj (center of the circle) and weights σj of
the fitted ε(ω). The circle area is proportional to

√
|σj |, and color gives the

phase of σj as indicated.

adequately describes the full range of measured data up to 7.6 eV, with S = 0.0162.

We do see a significant improvement in S when going to five pairs of poles.

The optimised model for Si with L = 5 is compared with the experimental data

in Fig. 2.12(a). The refraction and absorption indices are shown as a function of

the photon energy, with the measured data as circles and lines representing the fit

functions of the Lorentz model. The poles of the model [see Eq.(2.19)] are shown

as circles in Fig. 2.12(b), centered at their pole positions Ωj in the complex photon

energy plane, with the complex pole weight represented by the circle area propor-

– 41 –



2.5. Results for semiconductors

tional to
√
|σj | and the color giving the phase. We find S = 0.0102 for this fit, with

other parameters given in Table 2.2. We can see that the Lorentz pole is properly

positioned to model the interband transitions of silicon. The phases of all 5 poles

are close to π/2, corresponding to a classical damped Lorentz oscillator, such as a

mass on a spring or a pendulum. The resonances Ω′1 ∼ 3.4 eV and Ω′3 ∼ 4.3 eV

are around the centers of the two interband transitions well seen in Fig1.(a) within

the optimisation range, and the half-width of the resonances, −Ω′′1 ∼ 0.1 eV and

−Ω′′3 ∼ 0.2 eV, are approximately covering the half-width of these transitions.

We obtained similar results for GaAs and Ge, shown in Sec. B, which can be seen

in Fig. B.1 and Fig. B.3. As in Fig. 2.11, we use a variable upper limit ~ωN of the

optimisation range and show the resulting S values for different numbers of poles.

For GaAs we find that the model with one pair of Lorentz oscillators works well up

to 1.6 eV, two up to 2.9 eV, three up to 4.6 eV, four up to 5 eV, and five up to a value

above the upper limit of 6 eV. For Ge we find that the one pair of Lorentz oscillators

is a good approximation up to 1.1 eV, two up to 2.2 eV, three up to 4.2 eV, four up

to 5.6 eV, and five beyond the upper limit of 6 eV.

In Fig. B.2, the first Lorentz pole conductivity σ1 is multiplied by a factor of

10 for clarity. We find phases of all poles close to π/2, corresponding to a classical

damped Lorentz oscillator. There are similar results for Ge which can be seen in

Fig. B.4, most poles having a phase close to π/2 with the exception of the first pole

which has a phase very close to zero. We note that the indirect band gap of both Si

and Ge is less suited for the modeling by simple poles, due to the phonon-assisted

absorption leading to a weak tail in the absorption spectrum. We can see this clearly

in the absorption index for ~ω < 1 eV, shown in Fig. B.4(a).

All parameters and values of S for the fits shown in Fig. 2.12, Fig. B.2 and Fig. B.4

can be found in Table 2.4.
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Chapter 2. Drude-Lorentz model and fit program

2.6 Summary

In this chapter we discuss the advantages of using the Drude-Lorentz model for ε̂(ω)

due to the simple pole structure and the physical arguments such as the presence

of resonances. This links back with the GF, explained in Sec. 1.2, which provides

the complete system response and allows for the calculation of observables such as

emission, scattering, or transmission. The pole structure is what leads to describ-

ing the permittivity of materials simply and accurately and further allows for the

description of material properties through the GF.

With this analytic model, we can fit the experimental data by finding the param-

eters of the model which minimise the error weighted deviation between the analytic

and the measured values. We use an exact minimisation of the linear parameters

and a gradient decent method for the non-linear parameters. This gives us a more

accurate fit across a larger range of data. We provide an efficient algorithm of fitting

the data using an arbitrary number of Lorentz poles. We illustrate the resulting pole

positions and their weights in the complex plane to give some physical insight how

the model approximates the electronic transitions in real materials. This has been

shown for metals, which require the Drude pole due to the high free electron density,

and also for semiconductors, which we model using Lorentz poles only. In principle

we can use this method to fit the frequency-dependent permittivity of any material.
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Material Si GaAs Ge
ε∞ 0.81568 −0.54651 0.79842

Ω′1(eV) 3.3736 1.4377 1.168
Ω′′1(eV) −0.11402 −0.05948 −0.33778
σ′1(eV) 1.6934 0.01981 0.47159
σ′′1(eV) 2.084 0.01122 0.01002
Ω′2(eV) 3.6519 2.7229 2.174
Ω′′2(eV) −0.52378 −1.2972 −0.28077
σ′2(eV) 5.2573 7.8336 3.2926
σ′′2(eV) 8.0106 8.3274 4.1239
Ω′3(eV) 4.2877 2.8922 3.781
Ω′′3(eV) −0.21116 −0.23992 −1.1461
σ′3(eV) −1.7164 2.706 0.86584
σ′′3(eV) 5.9939 1.616 18.898
Ω′4(eV) 5.3188 4.5222 4.3232
Ω′′4(eV) −0.18434 −0.42072 −0.20006
σ′4(eV) −0.00528 2.1137 −1.7377
σ′′4(eV) 0.32911 4.6445 2.5278
Ω′5(eV) 5.5064 4.9278 5.6442
Ω′′5(eV) −1.7892 −0.19972 −0.41214
σ′5(eV) −3.8438 −1.243 0.10451
σ′′5(eV) 6.9298 1.4424 1.0292
~ω1(eV) 1.0 1.3 0.5
~ωN (eV) 7.6 6.0 6.0

2N 662 190 222
1 + 4L 21 21 21
S 0.01016 0.01157 0.01327

Table 2.4: Optimised model parameters for different semiconductors, using the fit function
with five pairs Lorentz pole and optimisation energy ranges corresponding to
the data shown in Figs. 2.12, B.2, and B.4. The number of data values 2N , the
number of fit parameters 1 + 4L, and the resulting error S are also given.
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Chapter 3

Dispersive RSE

3.1 Formulism of dispersive RSE

So far the RSE has been applied to non-dispersive one-, two- and three-dimensional

systems [4, 5, 13, 14]. Using non-dispersive permittivities is insufficient for realistic

systems which always show a frequency dispersion of the refractive index, including

dielectric materials such as glass. A previous paper [34] describes how we modify

the RSE for such materials with dispersion, we discuss the method here. As previ-

ously discussed in Sec. 2.2, we can use the Drude-Lorentz model to fit the measured

permittivity.

Quite generally, the permittivity ε̂(r, ω) can be treated as an analytic function

in the complex frequency plane, having a countable number of simple poles, see

Eq. (2.1). Here we use both k = ω/c and ω for brevity of notations. We use a model

which consists of an arbitrary number of poles given by

ε̂(r, ω) = ε̂∞(r) +
∑
j

iσ̂j(r)
ω − Ωj

, (3.1)

where ε∞ is the permittivity at high frequencies and the generalised conductivities

σ̂j(r) are complex. Eq. (3.1) is a generalisation of Eq. (2.1) with tensor weights for

the poles enabling to describe anisotropic media.

We start with the dispersive basis of RSs which are the eigen solutions of the

Maxwell wave equation Eq. (1.4), in which ε̂(r, ω) is Eq. (3.1), with the outgoing
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3.1. Formulism of dispersive RSE

wave boundary conditions [13]. The GF of Maxwell’s wave equation has the spectral

representation [4, 13, 14] shown in Sec. 1.2,

Ĝk(r, r′) =
∑
n

En(r)⊗En(r′)
2k(k − kn) , (3.2)

where the sum is taken over all RSs. We substitute Eq. (3.2) into Maxwell’s equation

Eq. (1.4) with a delta-function source term in the form of

−∇×∇× Ĝk(r, r′) + k2 ε̂(r, ω)Ĝk(r, r′) = 1̂δ(r− r′) (3.3)

and using Eq. (1.4) and Eq. (3.3) we can obtain the closure relation [5]

∑
n

k2ε̂(r, ω)− k2
nε̂(r, ωn)

2kn(k − kn) En(r)⊗En(r′) = 1̂δ(r− r′) . (3.4)

Given a single Lorentz pole of the form σ/(ω − Ω) we can write Eq. (3.4) as

σ

2ωn(ω − ωn)

(
ω2

ω − Ωj
− ω2

n

ωn − Ωj

)
= σ

2(ωn − Ωj)
+ σω

2(ω − Ωj)

(
1
ωn
− 1
ωn − Ωj

)
,

(3.5)

with the constant term ε̂∞(r) written as

k2ε̂∞(r)− k2
nε̂∞(r)

2kn(k − kn) = k
ε̂∞(r)
2kn

+ ε̂∞(r)
2 . (3.6)

We use Eq. (3.5) and Eq. (3.10) in Eq. (3.4) to give us another closure relation

∑
n

ε̂(r, ω)
2 En(r)⊗En(r′) = 1̂δ(r− r′) (3.7)

and sum rules

ε̂∞(r)
∑
n

En(r)⊗En(r′)
ωn

= 0 (3.8)

and

σ̂j(r)
∑
n

En(r)⊗En(r′)
ωn − Ωj

= 0 . (3.9)

The latter holds for every Ωj contributing to the permittivity given by Eq. (3.1).
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Chapter 3. Dispersive RSE

Eq. (3.8) and Eq. (3.9) are used to modify GF Eq. (3.2) along with appropriate al-

gebraic identities. Using the algebraic identity

1
ωn(ω − ωn) −

1
2ωωn

= 1
2ω(ω − ωn) (3.10)

for the non-dispersive part, we obtain

Ĝ0
k(r, r′) =

∑
n

En(r)⊗En(r′)
2kn(k − kn) − 1

2k
∑
n

En(r)⊗En(r′)
kn

, (3.11)

and using the identity

1
ω(2ω − ωn) + Ω

2ω2(ωn − Ω) = ωn(ω − Ω)
2ω2(ωn − Ω)(ω − ωn) (3.12)

for the dispersive part we obtain

Ĝj
k(r, r

′) = Ĝ0
k(r, r′) + Ωj

2k2

∑
n

En(r)⊗En(r′)
ωn − Ωj

. (3.13)

Along with the new forms of the GF, Ĝ0
k(r, r′) and Ĝj

k(r, r′), we introduce

F 0
n(ω) = 1

2k F jn(k) = kn
2k2

ω − Ωj

ωn − Ωj
, (3.14)

to rewrite the GF as

Ĝk(r, r′) = Ĝj
k(r, r

′) =
∑
n

F jn(k)En(r)⊗En(r′)
k(k − kn) . (3.15)

Eq. (3.15) is an additional spectral representation Ĝj
k of the GF for each pole in the

permittivity. Note that the Ohm’s law dispersion introduces a ω = 0 pole in the

permittivity which leads to the sum rule Eq. (3.9) with Ω0 = 0, identical to Eq. (3.8).

The ω = 0 pole is actually present also in the non-dispersive system owing to the

longitudinal ωn = 0 modes [5], see Sec. 3.2. As a result, the sum rule Eq. (3.8) [or

Eq. (3.9) with Ω0 = 0] holds even without dispersion[13, 14], due to the constant

term ε̂∞(r) which, physically, is the permittivity at high frequencies.
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3.1. Formulism of dispersive RSE

Let us now consider a perturbed system, in which ε̂(r, ω) is replaced by ε̂(r, ω)+

∆ε̂(r, ω), with the perturbation ∆ε̂(r, ω) in the form of Eq. (3.16) described by

∆ε̂∞(r) and ∆σ̂j(r), non-zero only inside the unperturbed system. The poles of the

perturbation are at the same frequencies Ωj but have different weights:

∆ε̂(r, ω) = ∆ε̂∞(r) + i∆σ̂j(r)
ω − Ωj

. (3.16)

The formal solution the electric field E(r) and the eigenfrequency k of a perturbed

RS is found using the integral equation [35]

E(r) = −k2
∫

Ĝk(r, r′)∆ε̂(r′, ω)E(r′)dr′ (3.17)

and can be split into the individual Lorentzian terms with the corresponding form

of the GF used in each term

E(r) = −k2
∫

Ĝ0
k(r, r′)∆ε̂∞(r)E(r′)dr′ − k2∑

j

Ĝj
k(r, r

′) i∆σ̂j(r)
ω − Ωj

E(r′)dr′ (3.18)

Expanding the perturbed RSs into the complete basis of unperturbed ones,

E(r) =
∑
n

cnEn(r) , (3.19)

and equating the expansion coefficients at different basis functions En(r) results in

a quadrilateral eigenvector equation. This is the RSE with dispersion.

kn
∑
m

(
δnm + Unm

2

)
cm = k

∑
m

(
δnm + Vnm

2

)
cm (3.20)

where the matrix elements defined by

Vnm =
∫

En(r) · ∆ε̂∞(r)Em(r) dr (3.21)

Unm =
∑
j

Bj
nm

ωn − Ωj
(3.22)

Bj
nm =

∫
En(r) · ∆σ̂j(r)Em(r) dr . (3.23)
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3.2 Eigenmodes of a sphere

Applying the RSE to a nanosphere requires us to first know the basis. We choose

here the RSs of a nanosphere with dispersive permittivity of radius R surrounded

by vacuum, since they are analytically known. The basis functions of a dielectric

sphere are shown in a previous paper on the RSE in 3D systems [5]. The solutions

of Maxwell’s equations split into four groups: TE, TM, longitudinal electric (LE),

and longitudinal magnetic (LM) modes [36] for a spherically symmetric system. In

this section we will be considering TM solutions only as surface plasmons appear in

TM polarisation. Note for this section we use c = 1 therefore k = ω. The TM group

of modes of a dispersive sphere can be written as

iH = −r×∇f and E = ∇× iH
ε(r, k)k , (3.24)

where f(r) is a scalar function satisfying the Helmholtz equation

∇2f + k2ε(r, k)f = 0 , (3.25)

with the permittivity of the dielectric sphere in vacuum given by

ε(r, k) =

 nR(k)2 for r 6 R

1 for r > R ,
(3.26)

where nR(k) = n(k) + iκ(k). Owing to the spherical symmetry of the system, the

solution of Eq. (3.25) splits in spherical coordinates r = (r, θ, ϕ) into the radial and

angular components:

f(r) = Rl(r, k)Ylm(Φ) , (3.27)

where Φ = (θ, ϕ) with the angle ranges 0 6 θ 6 π and −π 6 ϕ 6 π. The angular

component is given by the spherical harmonics,

Ylm(Φ) =
√

2l + 1
2

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)χm(ϕ) , (3.28)
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3.2. Eigenmodes of a sphere

where Pml (x) are the associated Legendre polynomials, which are the eigenfunctions

of the angular part of the Laplacian Λ̂,

Λ̂(Φ)Ylm(Φ) = −l(l + 1)Ylm(Φ) , (3.29)

Note that the azimuthal functions are defined here as real functions

χm(ϕ) =


π−1/2 sin(mϕ) for m < 0

(2π)−1/2 for m = 0

π−1/2 cos(mϕ) for m > 0 ,

(3.30)

in order to satisfy the orthogonality condition without using the complex conjugate,

as required by Eq. (1.5). The radial components Rl(r, k) satisfy the spherical Bessel

equation, [
d2

dr2 + 2
r

d

dr
− l(l + 1)

r2 + ε(r, k)k2
]
Rl(r, k) = 0 (3.31)

and have the following form

Rl(r, k) =

 jl(nR(k)kr)/jl(nR(k)kR) for r 6 R

hl(kr)/hl(kR) for r > R ,
(3.32)

in which jl(z) and hl(z) ≡ h(1)
l (z) are, respectively, the spherical Bessel and Hankel

functions of the first kind, where z = nR(k)kR.

In spherical coordinates, a vector field E(r) can be written as

E(r, θ, ϕ) = Erer + Eθeθ + Eϕeϕ =


Er

Eθ

Eϕ

 ,

where er, eθ, and eϕ are the unit vectors. The electric field of the RSs then has the

form
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ETM
n (r) = ATM(kn)

ε(r, kn)knr



l(l + 1)Rl(r, kn)Ylm(Φ)

∂

∂r
rRl(r, kn) ∂

∂θ
Ylm(Φ)

∂

∂r

rRl(r, kn)
sin θ

∂

∂ϕ
Ylm(Φ)


(3.33)

for TM modes. We require that the RSs are normalized according to [14]

1 + δ0,kn =
∫
V

En(r) ·
∂
(
k2ε̂(r, k)

)
∂(k2)

∣∣∣∣∣
kn

En(r) dr

+ 1
2k2

n

∮
SV

(
En · ∂Gn

∂s
−Gn · ∂En

∂s

)
dS , (3.34)

where Gn = (r ·∇)En, V is an arbitrary simply connected volume with a boundary

surface SV enclosing the inhomogeneity of the system, and the derivative ∂/∂s is

taken along the outer surface normal. This leads to the following normalisation

constant [27]:

ATM(k) =

√
2ε

l(l+1)R3(ε−1)√(
jl−1(z)
jl(z) −

l
z

)2
+ l(l+1)

k2R2 + η(k)Cl(k)
, (3.35)

where the dispersion has given rise to the terms

η(k) = 1
ε

∂(k2ε)
∂(k2) − 1 (3.36)

Cl(k) = ε

ε− 1

(
2(l+1)
z2 +

j2
l+1(z)
j2
l (z) −

jl+2(z)
jl(z)

)
. (3.37)

The Maxwell boundary conditions, namely the continuity of the tangential com-

ponents of E and H across the spherical material-vacuum interface, lead to the

the fields given by Eq. (3.24) to the following secular equation determining the RS

wavenumbers kn, (zn = nR(kn)knR):

nR(k)j′l(zn)
jl(zn) − n2

R(k)h′l(knR)
hl(knR) − n2

R(k)− 1
knR

= 0 (3.38)

where j′l(z) and h′l(z) are the derivatives of jl(z) and hl(z), respectively. While the
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3.3. Dispersive to dispersive perturbation

LE modes are the RSs easiest to calculate due to a simple power-law form of their

radial functions,

Rl(r, 0) =

 (r/R)l for r 6 R

(R/r)l+1 for r > R ,
(3.39)

we treat them in the RSE as part of the TM family of RSs. Indeed, for r 6 R they

coincide with the TM modes taken in the limit kn → 0:

ELE
n (r) =

√
l(n2

R(kn)− 1) lim
ωn→0

ETM
n (r) . (3.40)

Even though kn = 0 is not a solution to the secular equation Eq. (3.38), using the

analytic dependence of the wave functions of TM modes on kn is taken into account

when calculating the matrix elements containing LE modes. This limit kn → 0

has to be carefully approached in the matrix eigenvalue problem Eq. (3.20) due to

the divergent behaviour. We found that adding a finite negative imaginary part to

static poles, knR = −iδ, with δ typically of order 10−7 (determined by the numerical

accuracy) is suited to the RSE converging to the correct solution [5]. Note this

solution is not needed if we include a Drude pole due to the Ohm’s law contribution

having a pole at kn = 0 already, as previously stated.

There are an infinite number of RSs in theory so we muist truncate them in

order to have a finite set of states. The condition we use is |nR(kn)kn| < kmax where

kmax ≈ 1 and can be modified to select the most suitable states.

3.3 Dispersive to dispersive perturbation

Due to the nature of Eq. (3.38), we expect an infinite number of RS frequencies

close to the poles in ε̂(r, ωn). These arise from the secular equation due to the

argument of the spherical bessel functions diverging at the pole z = nR(ω)kR. The

addition of a pole in ε̂(r, ωn) doubles the size of the basis compared with a constant

permittivity, with nR(ω) no longer constant there are non-degenerate solutions of

the secular equation around the pole position.

In order to find suited starting points for the numerical solutions of Eq. (3.38)
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for these solutions, we observe that the approximate values of these frequencies can

be derived using an approximation for spherical Bessel functions,

jl(z) ≈
1
z

cos
(
z − π l + 1

2

)
(3.41)

j′l
jl(z)

≈ − tan
(
z − π l + 1

2

)
(3.42)

which can be used in Eq. (3.38), results in the approximate secular equation,

tan β = −nR(ω)h′l(kR)
hl(kR) − n2

R(ω)− 1
z

, (3.43)

where

β = z − π(l + 1)
2 . (3.44)

This means that as the pole-related RSs get closer to the pole, tan β →∞ giving us

a set of solution for β ≈ π
2 ,

3π
2 ,

5π
2 , ..., therefore

β ≈ π
(
m+ 1

2

)
.

with m > 0. Using Eq. (3.44), we can now write an expression for z

z = nR(ω)kR ≈ π
(
l + 2m

2

)
. (3.45)

Eq. (3.45) can now be used to calculate the approximate position of the RS fre-

quencies, with respect to the original Drude or Lorentz pole, by substituting in the

appropriate values of the refractive index depending on the model. Assuming m is

an infinite number of positive integer values, our new frequencies will get closer to

the non-zero pole in ε̂(r, ω) as m increases.

For the Drude-Lorentz model the refractive index of the pole-related RSs around

one of the poles is single term only, as all other terms are negligible due to ω − Ωj

being very small,

n2
R(ω) = ε(ω) ≈ − iσj

∆ωj
(3.46)

where ∆ωj = ω − Ωj and ω ≈ Ωj . Here ∆ωj is used to represent the separation
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Figure 3.1: (a) Frequency space graph showing the basis states as well as both the exact
and RSE perturbed solutions, inset shows the same for the Drude pole-related
RSs. n is perturbed from 1.5 to 2.5 and the conductivity of the Drude pole
~σ = 100 to 110eV. Drude pole position is −0.1i. (b) The relative error with
an inset showing the error of the Drude pole-related RSs.

between the pole and the pole-related RSs. By combining Eq. (3.45) and Eq. (3.46),

we can write an expression for the separation between the pole-related RSs and the

exact position of the pole

∆ωj ≈
iσjΩ2

jR
2

π2
(
l
2 +m

)2 . (3.47)

We use ω = Ωj + ∆ωj as a guess value for solving Eq. (3.38).
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Figure 3.2: (a) As Fig. 3.1, but the inset also shows the reststralen band where no modes
exist. n is perturbed from 1.5 to 2.5 and the conductivity of the Drude pole
~σ= 10 to 110eV with the Drude pole at −i. Ω1 = 30 − i with σ1 perturbed
from 1.0 to 4.0 eV. (b) The relative error with an inset showing the error of
the Lorentz pole-related RSs.

The inclusion of Drude or Lorentz poles is a step closer toward a realistic model

with which to model metallic spheres. From Fig. 3.1, which shows the perturbation

of a dispersive basis with a Drude pole. The RSE solution is compared with the

exact solution which is found in the same way as the basis but with the perturbed

permittivity. The error of RSE solution diverges away from the exact solution at
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high frequencies when approaching the edge of the basis used. This is an expected

effect of the finite basis, and can be controlled via the basis size chosen. The goal

is to not calclate the exact solution at all as the RSE is much faster, however we

need to include some checks to make sure the calculations are staying on track from

a computational point of view. This can be done by calculating a few prominent

and sensitive RSs in order to check against the RSE solution and prevents spurious

solutions.

The inset of Fig. 3.1(a) shows the new pole-related frequencies which come from

the solution to Eq. (3.38). As in Fig. 1.2, we see the error scale as 1
N3 , where N is

the number of RSs, which means the RSE solution converges very quickly to the

exact solution, equal to the non-dispersive RSE . We choose a cut off criteria for the

basis states where |nR(kn)kn| < kmax which limits the RSs at the high frequencies

and the pole-related RSs with large nR(kn) (kmax ≈ 1).

We also see the introduction of surface plasmons (SPs) in Fig. 3.1 which comes

from modelling a metallic nanosphere which are important modes for applications

such as plasmonic biosensing. These are modes which propagate along the surface

of the sphere [37, 38] and are the conduction electrons resonating with an incoming

ray of light. The resonance is at the interface and decays exponantially either side.

As previously mentioned, they only appear with TM polarisation, due to the per-

meability (µ) of any material always being positive so there is never an electric field

component along the surface for excitaion during TE polarisation.

In Fig. 3.2 we expand upon that by introducing a Lorentz pole into ε̂(r, ω).

We still see excellent agreement between the exact solution and the RSE with the

relative error scaling as 1
N3 . The inset of Fig. 3.2(a) shows what we call the ’rest-

strahlen band’ which appears as a result of the presence of the Lorentz pole. This

phenomenon is discussed in more detail in Sec. 3.5.3.

3.4 Infinitesimal-dispersive basis to dispersive

In this section we apply the dispersive RSE to metal and semiconductor nanopar-

ticles, by taking as the basis (unperturbed) system a dielectric sphere with no dis-
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persion. This approach has been already used in [34], however in the case of the

Drude model only. Here we apply the same method to a system with dispersion of

the permittivity involving up to three pairs of Lorentz poles.

The reason for using an infinitesimal-dispersive basis for the RSE is to be able

to perturb σj from zero to something finite, essentially creating poles where there

weren’t any before. As previously mentioned, due to the nature of Eq. (3.16) we

expect an infinite number of RSs close to the poles in ε̂(r, ωn) (ωn = knc), for an

infinitesimal-dispersive basis this manifests itself as an infinite number of degenerate

modes sitting at the pole position which has zero weight in the permittivity (σj → 0).

Technically, this causes divergences in Eq. (3.22) because ωn = Ωj but this can be

solved by introducing a factor which equals zero for the pole-related RSs and one for

normal RSs. This factor, which we call αn, removes the divergences by multiplying

them by zero giving us a finite value (due to zero divided by zero):

αn =


1 for normal RSs√

ωn−Ωj
Ωj for degenerate modes.

(3.48)

This allows us to properly take the limit σ → 0 as
√
ωn − Ωj due to the new RSE

matrix equation remaining finite. This new equation, along with the perturbation

matrices are defined using this new factor αn.

We will first look at the divergence in the normalisation of the perturbation

matrices which stems from η Eq. (3.36). If we assume our permittivity is of the form

ε(ω) = ε∞ + σ

ω − Ω , (3.49)

in the limit that σ → 0 and ω → Ω we can write ωn − Ω = σ/βn where ε(ω) =

ε∞ + βn = εn. We cannot solve the secular equation Eq. (3.38) for the frequencies

directly, due to the divergences, but we can solve for nR due to all the frequency

degenerate modes having a unique nR. Here εn = n2
R. The divergence is within the

differential of ε(ω)
dε(ω)
dω

(ωn) = − βn
ωn − Ω →∞ (3.50)
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which, if we look at Eq. (3.36), leads to

η = ω

2ε(ω)
dε(ω)
dω

∣∣∣∣
ωn

= − ωn2εn
βn

ωn − Ω →∞. (3.51)

This can be solved with the factor αn we introduced earlier by modifying η to no

longer be divergent:

η = ηα2
n = − ωn2εn

βn
ωn − Ωα

2
n = (ε∞ − εn)

2εn
ωn
Ωj
. (3.52)

The normalisation for TM polarisation (Eq. (3.35)) can be written as

1
ATM

= l(l + 1)R3(ε(ω)− 1)
2ε(ω)


(
jl−1(z)
jl(z)

− l

z

)2
+ l(l + 1)

k2R2︸ ︷︷ ︸
A

+ηCl(k)

 (3.53)

where for the the new normalisation we replace η and multiply A by α2
n to ensure

the factor has been universally applied, which gives us

1
ATM

= l(l + 1)R3(εn − 1)
2εn

[
Aα2

n + ηCl(k)
]

(3.54)

We introduce two new and finite perturbation matrices and eigenvectors

Snm = Unmαn
2

2αnαm
, Qnm = Vnm

2αnαm
, bn = αncn, (3.55)

and substitute them into Eq. (3.20) to give us a new, but mathematically identical,

RSE equation

∑
m

(δnmωn − Snm) bm = ω
∑
m

(
δnm +Qnmα

2
n

)
bm. (3.56)

In order for Snm and Qnm to be finite and Eq. (3.56) resolves all divergences, we have

use the new normalisation ATM which compensates for αnαm in the denominator.
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In general we can say

ÃTM =

 ATM for normal RSs

ATM for pole-related RSs.
(3.57)

When using the RSE to calculate the new RSs it is also important to note there

are multiple terms for the matrix equations, but the contributions for the pole-

related RSs come only from the corresponding terms in Eq. (3.22) as all other terms

are removed by αn. For the Lorentz poles, which are made up of a pair of poles,

even the equal and opposite pole is removed. We take Eq. (3.23) and split it into

the corresponding pole. For the Drude pole

Bnm =
∫

En(r) · ∆σ̂(r)Em(r) dr , (3.58)

and for the Lorentz poles where p is the Lorentz pole number (p = 1, 2, 3, ...),

Bp
nm =

∫
En(r) · ∆σ̂p(r)Em(r) dr (3.59)

Bp∗
nm =

∫
En(r) · ∆σ̂∗p(r)Em(r) dr. (3.60)

The independence of the poles is shown below using Eq. (3.22), Eq. (3.58), Eq. (3.59)

and Eq. (3.60). By starting with Unm for a fully dispersive set of basis states which

includes a Drude and a Lorentz pole,

Unm = −γBnm
ωn + iγ︸ ︷︷ ︸

Drude part

+ ωnB
1
nm

ωn − Ω1
+ ωnB

1∗
nm

ωn + Ω∗1︸ ︷︷ ︸
Lorentz part

(3.61)

we can show what it would look like, for example, for the infinitesimal-dispersive

Drude pole-related RSs only (all Lorentz terms are removed),

Unmα
2
n = −γBnm

ωn + iγ

ωn + iγ

−iγ
= −iBnm. (3.62)

With this set up we are able to perturb basis states from one realistic material to

another by having the poles for both materials present in the basis RSs. This is a
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3.5. Results for infinitesimal-dispersive basis

good approach when the materials differ greatly i.e. non-dispersive to dispersive.

This approach can also be used for changes in the positions of poles. However if the

change in position is small enough this change can be accounted for using a 1st-order

perturbation, see Sec. 3.7.2.

3.5 Results for infinitesimal-dispersive basis

3.5.1 Results for metals

As described in Sec. 2 we can fit any experimental data for the permittivity with the

Drude-Lorentz model and can do so by choosing the value for ε∞. This is favourable

for us when using the RSE as we can adjust this parameter to give us the best set

of RSs for optimum accuracy. The parameters for this fit are shown in Table 3.1 In

Fig. 3.3(a) we see a fit using ε∞ = 0.5 and a Drude and three Lorentz poles. This has

been fitted to the data for gold from Johnson and Chrity’s paper with an S-value

of roughly
√

2 fulfilling our condition for an accurate fit (S = 1.48).

We start with a nanosphere of silica (n = 1.4585) in the basis with the Drude and

Lorentz poles for gold present but with zero weight, these are denoted in Fig. 3.3(b)

by γ and Ωk where k = 1, 2, 3. They are lined up with our fit for n and κ to illustrate

how they influence the line shape. Note that we need to have the ωn = 0 pole in the

basis as the dispersion is infinitesimally small so behaves like a dielectric.

After pertubation we see the SPs appear due to the nanosphere now being metal-

lic. While in Fig. 3.1 the SPs are clearly seen, for our model of a gold nanosphere of

radius 10nm there seem to be multiple modes which can be described as SPs. This

is unexpected and seemed to not be the case for spheres modelled with the Drude

model only[34]. We will look at the evolution of these modes with respect to radius

in Sec. 3.5.2, however for now we can say that there are three SPs in total for this

model of gold, one for each of the Lorentz poles. There is also a possible SP above

the Drude pole.

The inset in Fig. 3.3(b) shows the pole-related RSs for the first Lorentz pole. For

this radius they behave like the RSs for the Drude pole, with the real part opf the

frequency hardly changing at all.
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We can also see from the figure that the RSE solution matches very well with

the exact perturbed solution much like Fig. 3.1, however due to the position of the

Lorentz poles it is difficult to reproduce the exact solution for all modes reliably from

Eq. (3.38). The RSE can find these solutions without issue due to the completeness

of RSs and should work for systems without analytic solutions. Investigating the

relative error shows a familiar 1
N3 dependence on the number of states we have in

our basis. While this is the case for almost all modes, the plasmonic modes seem to

saturate at an error in the order of 10−6. This can be seen in the inset of Fig. 3.3(c).

While they do decrease as we increase the basis size they converge to the exact

solution at a much slower rate than the other modes. We assume that the relative

errors we see for the plasmonic modes are sufficient to say the infinitesimal-dispersive

RSE is an effective method.
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Figure 3.3: (a) Refractive index n and absorption index κ of gold according to [22] (circles
and error bars) and the DL model Eq. (2.4) for L = 3 (solid lines) as func-
tions of the photon energy ~ω. (b) Silica (n = 1.4585) to gold (parameters
in Table 3.1) with inset showing the first Lorentz pole-related RSs. (c) Rela-
tive error of RSE solution compared with the exact perturbed solution. Inset
showing the error for the Drude pole-related RSs.
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3.5.2 Plasmonic modes

In Sec. 3.5.1, we introduced the phenomenon of multiple SPs at small radii for gold

nanospheres. In Fig. 3.4 we look at the evolution of these SPs with respect to

nanosphere radius to see which is the fundemental one. In a previous paper on the

dispersive RSE [34], we see the prescence of one SP in the RSs of a gold nanosphere

which was modelled using the Drude model only, which red-shifts and broadens with

radius. Here, the energetically close interband transitions, and thus Lorentz poles,

complicate the situation, leading to multiple dipole modes, one for each pole. We

show three but there are four in total (including the Drude pole) with the fourth

one being ill-defined using the secular equation Eq. (3.38). The absoprtion lineshape

is therefore not just a single resonance, but more complex, as also observed in the

experiment.

We check the presence of these SPs across a range of 1nm to 100nm in increments

of 1nm. We choose a maximum radius of 100nm because with larger spheres the

electric field cannot penetrate and stays on surface making the uses of the gold

nanoparticles limited. Here we use the dipole mode, l = 1 for TM, which contains

the fundamental SP. The fundamental SP will have the lowest real part of the

energy. We find for small radii, in the dipole limit, the lowest SP has an energy

of 2.35 eV and a linewidth of about 0.3 eV, comparable to the absorption features

seen in experiments. The second SP at around 2.8 eV has a linewidth of 1.5 eV, and

will mostly account for the intraband absorption features seen in the experiments.

Note however that in calculating the absorption and scattering properties, these SPs

will interfere [18], so that the lineshape is expected to be non-lorentzian, again in

agreement with experiment.

With increasing radius, the second SP mode is red-shifting, crossing the first

mode around 80nm radius. This will lead to a redshift and broadening of the ob-

served SP resonance in absorption, in qualitative agreement with experiment [39].

To analyse this in more detail, the absorption and scattering cross-sections should be

calculated, extending the treatment of [18] to the dispersive RSE, which is beyond

the scope of this thesis.
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3.5. Results for infinitesimal-dispersive basis

Figure 3.4: 3-D plot of the real and imaginary part of the energy of three SPs with l=1
(dipolar modes), as they evolve with increasing radius of a gold nanosphere.
The black spheres show the size evolution in complex space while the projec-
tions show the real and imanginary parts separately with respect to radius and
to each other.
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3.5.3 Results for GaAs

There is a sharp resonance at the phonon energy range (28-40meV) in GaAs which

we can describe by simply using a single Lorentz pole which has a purely imaginary

conductivity. This translates to a purely real pole weight and represents a classic

Lorentz oscillator as described in Sec. 2.2.1. Fig. 3.5(a) shows the fit of this region.

We use the infinitesimal-dispersive RSE to perturb a dielectric nanoshpere, with the

same ε∞ term as GaAs fitted at this range, to the fully dispersive GaAs. Here we

choose the l-number and radius of the nanosphere in order for the resonance energy

to be in the same range as the WGM.

From Fig. 3.5(b) we see in the inset that there is a gap at the Lorentz pole

where there are no modes. This is the reststrahlen band; a region where there are

no modes because the permittivity is dominantly negative, so that the waves are

non-oscillatory but exponentially decaying which is the case for the real frequencies.

Because the permittivity is negative, i.e. κ >> n, in this region the nanosphere has

metallic behaviour.

We can also see this gives us two sets of WGMs either side of the resonance

after perturbation. Below the resonance there is an infinite set of WGMs with

increasing radial quantum number which are getting denser due to the diverging

index and above the reststrahlen band you have a similar set, again increasing the

radial quantum number, and merging with the Fabry-Pérot modes.

We have the same situation as Fig. 3.3 where it is difficult to find the exact

solution to all of the pole-related RSs while the RSE is able to find them without

issue.
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Figure 3.5: (a) Refractive index n and absorption index κ of GaAs in the phonon range
[40](circles) and the Lorentz model Eq. (2.4) for L = 1 (solid lines) as func-
tions of the photon energy ~ω. (b) Dielectric material (n = 3.317) to GaAs
perturbation showing the Lorentz pole-related RSs and the reststrahlen band
around the resonance where there are no RSs. (c) Full picture showing the
WGMs and the inclusion of ωn = 0 due to no drude pole.
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3.6 Gain

We simulate gain by fitting the first optical interband transition with Lorentz poles

with purely real weights (imaginary conductivities), as in Sec. 3.5.3, and changing

the sign of σ1 from positive to negative. Physically, this results in an increase in

optical power due to the sphere transferring energy to the electric field.

In Fig. 3.6(a) we fit the range 1.3-1.65 eV with four Lorentz poles, three of which

are at the transition and are very sharp and the fourth being further out and much

broader. We can also see the effect of changing the first Lorentz pole into one with

gain causing the absorption index κ to become negative around 1.5 eV.

This perturbation is simulated using the RSE in Fig. 3.6(b) and shows the RSs

lined up with the energy of the absorption index fit. We can see after the perturba-

tion some of the RSs dip below into the region where they have a positive imaginary

part of the frequency which corresponds to gain modes. We only expect a few gain

modes due to the small amount of gain we see when we change the conductivity. We

chose a sphere of radius 10 microns to show the circular arrangement of pole-related

RSs. This arrangement of RSs close to the gain pole (GP), which appears due to

the reversed influence of the resonance to the refractive index (n). The refractive

index decreases approaching the resonance from lower energies, such that nRk is

limited (k = ω/c), and thus the number of modes is limited. This is the opposite

to what is seen for the phonons in GaAs in Fig. 3.5. The Lorentz-pole related RSs

then form a circle-shape starting below the pole in the real part, and then circling

around to above the pole in real part, where the refractive index is increased, and

then towards the pole, where the refractive index diverges and an countable infinite

number of RSs are present.

We show a similar plot for modelling gain using a radius of 940nm in Fig. 3.7.

We chose this specific radius because the resonance lines up with one of the WGMs

and causes it to shift into the positive imaginary region. We also show the evolution

of this WGM into a gain mode (GM) as we incrementally change the conductivity

from positive to negative with the same magnitude.
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Figure 3.6: (a) Absorption index κ of GaAs in the band gap range at the first interband
transition 1.3-1.65eV[40](circles) and the Lorentz model Eq. (2.4) for L = 4
(red line) as a function of the photon energy ~ω. The blue line models gain
in energy for GaAs shown by the absorption index moving into the negative
range. (b) Absorption to gain perturbation showing the Lorentz pole-related
RSs for the first three Lorentz poles (the fourth is outside the optimisation
range). The inset shows the RSs of the perturbed Lorentz pole. (c) Picture in
log scale for Im ~ω showing the WGMs and the leaky modes.
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3.7 Pole position perturbation

Being a perturbative approach, the RSE is a very efficient method for treating small

perturbations of the refractive index, when treating non-dispersive optical systems,

or small perturbations of the conductivities, when treating systems with frequency

dispersion and using as basis RSs of a dispersive system with the same poles of

the permittivity. Indeed, small perturbations of the conductivity or refractive index

require only a few RSs to be taken into account in the basis. However, even small

changes in the positions of the poles of the permittivity becomes a challenge for

the RSE, as they would require to add the shifted pole-related RSs. We therefore

explore a possible solution to this problem by replacing small perturbations of the

pole positions with changes only of the conductivities in the Drude-Lorentz model

and another method where we use 1st-order perturbation, i.e. no off-diagonal matrix

elements.

3.7.1 Attempt at an analytic model

By incorporating the pole position shift into ∆σj we were hoping to have an elegant

solution to a slight prturbation (<5%) to the pole position. While it did not give us

the results we wanted it is worth exploring the method for future implementation.

Let’s take a pair of symmetric Lorentz poles at postion Ω which has been per-

tubed to Ω̃, the changed part of the permittivity is

∆ε(ω) = i∆σ
ω − Ω̃

+ i∆σ∗

ω + Ω̃∗
= σf1(ω) + σ∗f2(ω) (3.63)

where σ is the old conductivity and

f1(ω) = i

ω − Ω̃
f2 = i

ω + Ω̃∗
. (3.64)

We want to approximate this change by introducing

∆̃ε(ω) = i∆σ̃
ω − Ω + i∆σ̃∗

ω + Ω∗ = σ̃g1(ω) + σ̃∗g2(ω) (3.65)
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where the pole has the same position but a new conductivity σ̃ and

g1(ω) = i

ω − Ω g2 = i

ω + Ω∗ . (3.66)

We do this, in a similar way to Eq. (2.8), by minimising the error

E =
∞∫
−∞

∣∣∣∆ε− ∆̃ε
∣∣∣2 (3.67)

=
∞∫
−∞

dω (σ∗f∗1 + σf∗2 − σ̃∗g∗1 − σ̃g∗2) (σf1 + σ∗f2 − σ̃g1 − σ̃∗g2) (3.68)

by requiring ∂E
∂σ̃∗

= 0 which results in Aσ̃ +Bσ̃∗ = Cσ +Dσ∗ where

A =
∞∫
−∞

dω (g∗1g1 + g∗2g2) B =
∞∫
−∞

dω (2g∗1g2)

C =
∞∫
−∞

dω (g∗1f1 + f∗2 g2) D =
∞∫
−∞

dω (g∗1f2 + f∗1 g2) .

From these expressions we can finally obtain an equation for σ̃

σ̃

Ω∗ − Ω + σ̃∗

2Ω∗ = σ

Ω∗ − Ω̃
+ σ∗

Ω∗ + Ω̃∗
. (3.69)

We can solve this approximately for small Ω̃ − Ω by substituting in Ω = Ω0 − iΓ

and Ω̃ = Ω + ∆Ω to obtain an expression and taking the complex conjugate of that

to obtain a second expression. Use the expressions to eliminate σ̃∗ to produce an

expression for σ̃

σ̃

(Ω∗
iΓ + iΓ

Ω

)
= 2σ

( Ω∗
2iΓ−∆Ω + iΓ

2Ω + ∆Ω

)
+ 2σ∗

( Ω∗
2Ω∗ + ∆Ω∗ −

iΓ
2iΓ + ∆Ω∗

)
.

(3.70)

Eq. (3.70) is the exact expression but by using the 1st-order Taylor expansion we

obtain

σ̃

(Ω∗
iΓ + iΓ

Ω

)
≈ σ

(Ω∗
iΓ + iΓ

Ω

)
+σ∆Ω

2

( Ω∗
(iΓ)2 −

iΓ
Ω2

)
+σ∗∆Ω∗

2

( 1
iΓ −

1
Ω∗
)
. (3.71)
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Figure 3.8: (a) Real and imaginary parts of the unperturbed permittivity for an ε with
a single Lorentz pole. We use ρ = R/c to maintain units. (b) Comparison
between unperturbed, exact perturbed and σ-perturbed for ε′ at resonance.
(c) As (b) but for ε′′.

Using Eq. (3.71) we have an expression for σ̃(∆Ω). This is what we call σ-perturbation

for the pole position Ω. Fig. 3.8 shows comparison between the σ-perturbation and

the exact solution found using Eq. (3.38). We can see that the solution match poorly.

For ε′ we can even see that, at the resonance, the σ-perturbed solution has a much

higher ε′ than the unperturbed ε′, moving the opposite way to the exact perturbed

solution.
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3.7.2 1st-order perturbation

A simple method we developed was to use the pole-related RSs for the original pole

position to reproduce the pole-related RSs for the perturbed pole position. This is

achieved by only using the diagonal elements of the matrix equation which translates

to a 1st-order perturbation. The reasoning behind this is that the pole-related RSs

dominate and all off-diagonal terms are negligible due to a very small perturbation.

If we look at Eq. (3.20), we can take n = m and write a much simpler equation

for the pertubed RSs

kn = k

( 2
2 + Unn

)
(3.72)

which is the diagonal matrix problem for 1st-order perturbations using the RSE. In

this case Vnn = 0 and

Unn =
[

1
kn − Ω̃

− 1
kn − Ω

] ∫
En(r) · σ̂j(r)Em(r) dr (3.73)

where Ω̃ is the perturbed pole position.

We previously described, in Sec. 3.4, that one method would be to have the all of

the pole-related RSs in the basis for both the original pole location and the perturbed

location. Simply by "turning" one pole position on an the other off we would be able

to accurately demonstrate pole position change. This is a computationally inefficient

method though and here we show that you only need to find the pole-related RSs

for the unperturbed pole position and these are enough to reproduce most of the

perturbed RSs. The argument here is while the perturbed pole-related RSs are

different than the unperturbed ones, the wavefunctions are similar enough that for

small pole position changes (∼ 1%) we can use them in the RSE to approximate the

RSs.

Fig. 3.9 shows that the RSE solution will converge with the exact solution as

you get to modes which are further away from the Lorentz pole. As expected we do

not get perfect convergence which would require another set of basis states at the

new pole location, but many modes can be reproduced if the perturbation is small

enough.
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Figure 3.9: Frequency-space graph showing the pole-related RSs for 1st-order pole position
perturbation of ∼ 1%.

We show the RSE with all terms in the perturbation matrix as well as the RSE

with diagonal terms only as they will dominate in a set up such as this. The off-

diagonal terms which correspond the normal RSs have very little influence on the

RSE result. This is seen by both verisons of the RSE agreeing very well. While this

is not an ideal solution for the problem of the pole position shifting it demonstrates

the ability to produce meaningful results using the RSE for such situations. The

physical properties in scattering and absorption are expected to be dominated by

the RSs further way from the poles, as they contain a larger fraction of external

field - close to the pole the permittivity is very high, screening the outside field.

Furthermore, for the response at real frequencies the specific position of the RSs

close to the poles are expected to be of minor influence.

These are qualitative arguments, the efficiency of this method should be investi-

gated in a scattering calculation along [18] .

3.8 Summary

In this chapter we show the previously published methods of how to find the eigen-

modes of a dielectric sphere modified for one with frequency dispersion. We show
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Material Au GaAs (phonon range) GaAs (band gap range)
ε∞ 0.5 11.0 8.6013
γ(eV) −0.065748 − −
σ(eV) 1133.0 − −
Ω′1(eV) 2.5936 0.033314 1.497
Ω′′1(eV) −0.41875 1.4904× 10−4 −0.03665
σ′1(eV) 1.4029 0.0 0.0
σ′′1(eV) 0.76857 0.033262 0.01224
Ω′2(eV) 3.8192 − 1.5612
Ω′′2(eV) −1.3246 − −0.05643
σ′2(eV) 0.41939 − 0.0
σ′′2(eV) 4.5468 − 0.02432
Ω′3(eV) 9.6899 − 1.6463
Ω′′3(eV) −4.2933 − −0.0457
σ′3(eV) 0.012244 − 0.0
σ′′3(eV) 14.817 − 0.02404
Ω′4(eV) − − 2.2853
Ω′′4(eV) − − −0.00778
σ′4(eV) − − 0.0
σ′′4(eV) − − 2.9302
~ω1(eV) 0.64 0.031 1.3
~ωN (eV) 6.6 0.0372 1.65

2N 49 47 8
S 1.4795 0.0372 0.0055

Table 3.1: Optimized model parameters for Au and GaAs (phonon and optical ranges),
using the fit function with optimization energy ranges corresponding to the
data shown in Figs. 3.3, 3.6 and 3.7, and 3.5. The number of data values 2N
and the resulting error S are also given. For gold the experimental errors were
used leading to a higher value for S.

the extension of the RSE to work with frequency dispersion in the basis along with

associated normalisations, by using the Drude-Lorentz model for the permittiv-

ity. Using arbitrary parameters in the DL model, we show the accuracy of the

RSE for dispersive nanospheres. We extend the RSE further by introducing the

infinitesimal-dispersive basis, which allows us to perturb a dielectric material to one

with frequency dispersion. This is tested using realistic parameters, for Au and

GaAs, found using the fit program we develop, shown in chapter 2. We also show

the evolution of surface plasmons in Au and model gain in energy for GaAs. With

regards to the problem of pole position perturbation, we show an attempt at an

analytic solution and a much simpler method using only 1st-order perturbation.
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Conclusion

We started with the RSE method developed to be able to reproduce the perturbed

eigenmodes of a dielectric sphere and the goal of this thesis was to further de-

velop this method to include materials with frequency dispersion modelled using

the Drude-Lorentz model. We wanted to model realistic materials so created a fit

program to reliably provide accurate parameters for measured data of dispersive

materials.

4.1 Fit program

We have presented an optimisation algorithm to determine the parameters of a

generalised Drude-Lorentz model for the permittivity of materials. For L pairs of

Lorentz poles and D Drude poles taken into account, the developed algorithm uses

an analytic minimisation over the 2L + D + 1 linear parameters of the model (the

generalised conductivities and high frequency value ε∞), and a gradient descent

method for determining the 2L+D nonlinear parameters of the model (the Drude

and Lorentz pole frequencies), with a suited choice of the starting values, resulting

in fast and reliable determination of the best global fit.

Comparing our results with previous literature[26], we find that the weighted

error is improved by a factor of two for the same number of poles. For gold, we

find that the Drude model is sufficient up to photon energies of 2 eV, one additional

pair of Lorentz oscillators up to 2.6 eV, two up to 4.8 eV, and three up to 6.5 eV. We
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provide parameters for more materials in the Appendix, including a recent dataset

for monocrystalline gold[32].

We have also demonstrated the performance of our optimisation algorithm to

determine the parameters for the permittivity of semiconductors, which can be mod-

eled with Lorentz poles only. For L pairs of Lorentz poles taken into account, the

developed algorithm uses an analytic minimisation over the 2L+1 linear parameters

of the model. Examples of the fit using up to 5 pairs of Lorentz poles are provided

for Si, GaAs and Ge.

The optimisation program implementing the described algorithm is provided [24]

for modelling any measured data for the refractive index or permittivity.

4.2 Dispersive RSE

We show the RSE method for using a frequency-dependent permittivity modelled

using the DL model. We show the accuracy of the dispersive RSE due to the error

scaling as N−3, similar to the dielectric case, where N is the number of basis modes.

They also show the phenomenon of pole-related RSs, which are required for the high

accuracy of the RSE. We introduce the infinitesimal-dispersive RSE which allows

us to perturb a dielectric material into one with frequency dispersion by having the

required pole-related RSs exist in the basis with zero weight.

Using our fit program for the accurate parameters, we fit gold with one pole and

three Lorentz poles. We perturb a 10nm nanosphere of sand, with these poles in

the basis, into a gold nanosphere showing the error also scaling as N−3. We also

analyse the evolution of the surface plasmons showing the interference of the first

and second SP around 80nm radius.

As with gold, we use the fit program to fit the phonon range, 31-37.2meV, for

GaAs with a single Lorentz pole, and perturb a dielectric 50µm sphere to GaAs. We

also see two sets of WGMs either side of the resonance after perturbation. Fitting

the band gap range of GaAs, 1.3-1.65 eV, we perturb σ1 → −σ1 resulting in gain.

For a sphere of 10µm we see the refractive index decrease approaching the resonance

limiting the number of modes and causing a circular set of modes at the resonance.
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For a sphere of 940nm we line the resonance up with a WGM causing it to shift to

the positive imaginary part after perturbation.

We also show an attempt to incorporate a pole position perturbation into a ∆σ

perturbation. While this was unsuccessful we provide a successful method using

1st-order perturbation which, for small position perturbations ( 1%), reproduces

the perturbed modes with greater accuracy the further the modes are from the

resonance.

4.3 Future work

We plan to publish the work covered in chapter 3 in a paper showing the infinitesimal-

dispersive RSE, the evolution of SPs and modelling gain in GaAs. The development

of the RSE is still ongoing and we want to have it as a tool to use the optical reso-

nances of gold nanoparticles as the basis for advanced biosensors. The fit program

will continue to be updated to include more options, there is also strong interest

for it to be included in an open source integrated photonics toolbox as the interface

between data and solver.
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Appendix A

Derivation of the Drude model

First we define how material polarisation ~P is taken account of in the electric field

displacement,
~D = ε0 ~E + ~P = ε0ε ~E = ε0 ~E + ε0χ~E , (A.1)

where ε0 is the permittivity of free space and ε is the relative permittivity. From

Eq. (A.1) we can write

~P = ε0χ~E (A.2)

ε = 1 + χ (A.3)

where χ is the susceptibility.

Using the idea of resonance and simple harmonic motion we can use the equation

of motion of a displaced electron, where ~r is the displacement, as a starting point to

derive the Drude model.

m
∂2~r

∂t2︸ ︷︷ ︸
acceleration force

where m=me
(mass of electron)

+ mΓ∂~r
∂t︸ ︷︷ ︸

frictional force
where Γ is the
damping rate

+ mω2
0~r︸ ︷︷ ︸

restoring force
where ω0 is the

natural frequency

= −q ~E︸ ︷︷ ︸
electric force

(A.4)

We want to use the Drude model for modelling metals primarily so we assume

free electrons which are not bound to the nucleus. This gives us a negligible restoring

force and we do not have a natural frequency removing the third term from Eq. (A.4).

We can now take the Fourier Transform of Eq. (A.4) which, after simplification, gives
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us

(
−meω

2 − iωmeΓ
)
~r(ω) = −q ~E (A.5)

which we can rearrange to give us the displacement

~r(ω) = −q ~E(ω)
me(−ω2 − iωΓ) . (A.6)

We then use the definition for the electric dipole moment to give us

~d(ω) = −q~r(ω) = q2 ~E(ω)
me(−ω2 − iωΓ) . (A.7)

By linking the electric dipole moment (~d) and the electric field ( ~E) we arrive at an

expression for the polarisability for a single electron α(ω)

~d(ω) = α(ω) ~E(ω) (A.8)

α(ω) = q2

me(−ω2 − iωΓ) . (A.9)

We now need to define the polarisation per unit volume V as a function of the

average dipole moment over N electrons

~P (ω) = 1
V

∑
V

~di(ω) = N
〈
~di(ω)

〉
(A.10)

to give us an expression for the susceptibility which is frequency dependent. Using

Eq. (A.2), Eq. (A.8), Eq. (A.9) and Eq. (A.10) we can say

χ(ω) = Nα(ω)
ε0

=
(
Nq2

ε0me

)
1

−ω2 − iωΓ =
ω2
p

−ω2 − iωΓ (A.11)

where the plasma frequency is

ω2
p = Nq2

ε0me
. (A.12)
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Recall that ε(ω) = 1 + χ(ω) and we can write

ε(ω) = 1−
ω2
p

ω2 + iωΓ (A.13)

for a material in a vacuum. This is essentially the Drude model, however for our

purposes we have a background permittivity greater than that of free space ε∞

which effectively takes into account the background effect of the other resonances,

at higher frequencies, not treated. We also rewrite the plasma frequency as ω2
p = σΓ

where σ is the conductivity. This gives us the expression we use as the Drude model

ε(ω) = ε∞ −
σΓ

ω2 + iωΓ (A.14)

which is identical to Eq. (1.25).

Using the Drude model, an isolated electron will accumulate momentum as it

travels. If we neglect the momentum of the electron the expression for the current

density is
~J(ω) = −Nq~r(ω) (A.15)

which, using Eq. (A.6) and then Eq. (A.12), we can rewite as

~J(ω) = iω
Nq2

me

~E(ω)
ω(ω + iγ) = iω

ε0ω
2
p
~E(ω)

ω(ω + iγ) . (A.16)

Usings Ohm’s Law ~J(ω) = σ(ω) ~E(ω) we can writer an expression for the conduc-

tivity σ(ω)

σ(ω) =
iωε0ω

2
p

ω(ω + iγ) . (A.17)

From Eq. (A.11), we can see that σ(ω) = iε0χ(ω) which in turn can be rewritten,

using Eq. (A.3), as the Ohm’s Law dispersion permittivity ε(ω)

ε(ω) = ε0 + iσ

ω
. (A.18)

Fig.A.1 shows the comparison of the Ohm’s Law Eq. (A.18) and the Drude model

Eq. (A.14). While the Ohm’s Law is very similar to the Drude model for ε′ at high
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Figure A.1: Ohm’s Law permittivity and the Drude model where ε∞ = 1, σ = 1 and
γ = 1. We also take ~ = c = 1.

frequencies, it is unsuitable for the lower frequencies where the Drude model can

describe the high electron density in metals much better as shown in chapter 2.
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Results for semiconductors cont.

Here we show the results of the fit program for GaAs and Ge in a similar style to Si

(Fig. 2.11 and Fig. 2.12).
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