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Abstract 

 

Colorectal cancer (CRC) is one of the most common cancers in Europe and the fourth 

most common in the UK, being influenced by environmental factors, genetic mutations and 

interactions with the host immune system. The Wnt pathway plays a key role in maintaining 

intestinal homeostasis. Constitutive activation of Wnt occur in more than 80% of CRC, 

primarily due to the loss of the Apc gene. This mutation occurs in the intestinal stem cells 

(ISC), the cell of origin for CRC. ISCs are identified by Lgr5 expression. The immune 

microenvironment of these tumours plays a key role in their progression. The local recruitment 

of immunosuppressive Foxp3+ regulatory T-cells (Tregs) has been demonstrated in CRC 

patients, however it is unclear whether they limit or promote the anti-tumour immune 

responses. Importantly most of the studies were done in patients with advanced disease, 

highlighting the need to understand the role of these cells in the early stages of 

tumourigenesis. 

To understand the influence of Tregs on an ISC following an oncogenic mutation, 

genetically modified mice were used. Using the Lgr5 transgene, to conditionally delete Apc in 

the intestinal stem cell (ISC), it is possible to model the initial stages of CRC. This mouse was 

crossed with the Foxp3DTR mouse, which expresses the human diphtheria toxin receptor under 

the control of the Foxp3 promotor (Lgr5CreERT2Apcfl/flFoxp3DTR). Selective depletion of Tregs 

can be achieved by injection of diphtheria toxin, enabling the investigation of the role that 

Tregs and conventional T-cells play during malignant transformation. To identify the role of 

other immune cell populations in the anti-tumoral immune response, CD4+ and CD8+ cells 

were depleted and IFNγ was neutralized in the Lgr5CreERT2Apcfl/flFoxp3DTR mouse model. 

 Here, it was shown that 15 days following Apc deletion, the number of Tregs increased 

in the small and large intestines, spleen and mesenteric lymph nodes (MLN). Treg depletion, 

in Apc deleted mice, resulted in a reduction of the intestinal tumour burden. The same was 

observed in mice where CD4+ and CD8+ cells were depleted. IFNγ neutralization had no 

effects. 

In this mouse model, data suggest that CD4+, CD8+ cells or IFNγ do not play a role in 

the anti-tumour immune responses. Overall these data indicate that Tregs inhibit the immune 

recognition of newly transformed ISCs suggesting that Tregs play a key role in the early stages 

of intestinal cancer by promoting tumourigenesis. This is particularly important as Tregs can 

be a possible target in the early stages of CRC and their modulation might prevent tumour 

progression, improving the outcome of CRC patients. 
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1 General Introduction 

 

1.1 Cancer 
 

Cancer is responsible for about 8.2 million deaths worldwide and is the leading cause 

of human mortality (Cancer Research UK). There are various factors implicated in the 

development of cancer, such as genetic mutations and environmental factors (e.g. poor diet, 

smoking, exposure to sunlight, obesity and others) (Whiteman and Wilson 2016). 

 

 

1.2 Colorectal Cancer 
 

Colorectal cancer (CRC) is the second most common cancer diagnosed in Europe and 

the fourth most common cancer in the UK accounting for 12% of all new cancer cases (Cancer 

Research UK). Since the early 1970s the mortality rates of CRC have decreased by 44% in 

the UK, however the five-year survival rate of people diagnosed with CRC remains at 59% 

(Cancer Research UK). 

The risk of developing CRC depends on several factors such as environmental (e.g. diet 

and microbiome), epigenetic, familiar history of CRC, inflammatory bowel disease (IBD) are 

also involved in the high incidence of CRC (Brenner et al. 2014).   More than 90% of the CRC 

are adenocarcinomas that arise from adenomatous polyps, also known as adenomas (Giuliani 

et al. 2006). To understand the oncogenic process in the intestine it is needed to understand 

the basic biology that will be described in the next sections.  

 

 

1.2.1 Intestinal anatomy and function 

 

The intestine is part of the digestive system, where the food passes through and the 

nutrients are absorbed. It is formed by the small and the large intestines, approximately 7.5 

metres long in humans (Drake et al. 2005) and 49 cm in mice (Fox et al. 2006). 

The small intestine is divided into three parts: the duodenum, the jejunum and the 

ileum. The luminal surface of the small intestinal is formed by a single layer of epithelial cells. 

These cells are polarised and organized into finger-like projections called villi, responsible for 

increasing the surface area to optimize the absorption, and invaginations called the crypts of 

Lieberkühn, generally known as crypts. Beneath the villi and the crypts lies the lamina propria 
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which is composed of mesenchymal stromal fibroblasts which encase the blood supply of the 

small intestine. Underneath the epithelial and stromal compartment  is located the smooth 

muscle layer which is responsible for the peristaltic movements of the food through the 

intestine (figure 1.1) (Williams et al. 1989). 

 The large intestine is divided into caecum, colon, rectum and anal canal. Most of the 

water that is ingested is absorbed in the large intestine. It is also where the faecal material is 

stored before it is egested (Williams et al. 1989). The large intestine is formed by a single layer 

of epithelial columnar cells, however only the crypts are present. Similar to the small intestine 

it also contains lamina propria, stromal fibroblasts and the sub and muscularis mucosae (figure 

1.1). The majority of the cells that form the large intestine are mucus secreting cells (Barker 

et al. 2008). 
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The small intestine is formed by villi and crypts. Bellow the crypts there are the mucosae and the smooth 

muscle layer. The large intestine is formed by a single epithelial layer, forming the crypts and, bellow 

them, there are the mucosae layer. Scale bars represent 50 µm. 

  

Figure 1.1 Histology of the murine small and large intestines.  
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1.2.2 Intestinal Epithelial Homeostasis  
 

The small intestinal epithelium is a highly dynamic and regulated tissue with 6-9 crypts 

feeding cells into each villus. The stem cells, which are located in bottom of the crypts, 

continuously proliferate, migrate and differentiate. The intestinal epithelium is renewed every 

5-6 days in humans and every 2-3 days in mice (Creamer 1967; Wright and Alison 1984) and 

there is a constant balance between proliferation and differentiation. There is a tight control of 

the genes that participate in these processes and this is done through various signalling 

pathways, such as Notch (Noah and Shroyer 2013; Kadur Lakshminarasimha Murthy et al. 

2018), TGF-β/BMP (Beck et al. 2003; Ihara et al. 2017), Hedgehog (Buller et al. 2012) and 

Wnt (Fevr et al. 2007; Krausova and Korinek 2014; Koch 2017). The Wnt signalling pathway 

will be discussed in more detail due to its relevance in this project. 

The intestinal stem cells are generally known as Crypt Base Columnar cells (CBC). 

CBC cells, can be identified by the expression of markers such as the leucine-rich repeat-

containing G-protein coupled receptor (Lgr5), olfactomedin 4 (Olfm4), achaete-scute family 

bHLH transcription factor 2 (Ascl2) and SRY-box 9 (Sox9) (figure 1.2). Due to the relevance 

in this project the Lgr5 marker will be discussed in more detail. CBC cells proliferate and 

originate the cell progenitors, the transit amplifying (TA) cells that divide 4-5 times while they 

migrate along the crypt. Depending on the specific signals that are received, TA differentiate 

into the 4 different cell types that are found in the intestine, namely the enterocytes, goblet 

cells, enteroendocrine cells and Paneth cells (Gerbe et al. 2011). This process of migration 

and differentiation is controlled by conserved signalling pathways such as Wnt and Notch 

signalling pathways (Gregorieff et al. 2005), as well as Eph/ephrin signalling (Poliakov et al. 

2004). 

Most of the differentiated cells located in the villi are enterocytes. These cells are 

responsible for the absorption of the nutrients as well as secretion of hydrolytic enzymes that 

participate in the digestion of the food. The enterocytes are tightly pack together by cell-to-cell 

adhesions and form the barrier that prevents the movement of the microbes to the bloodstream 

avoiding, in this way, immune reactions against them (Barker 2014).  

To assist the transit of luminal contents mucus is produced from the goblet cells, which 

produced a variety of mucin proteins. These mucins are responsible for the lubrication of the 

epithelium, protecting it from the mechanical stress caused by the food movement. In addition 

to mucins they produce trefoil proteins involved in tissue repair (Barker 2014). These cells are 

mainly located at the crypt-villus junction, particularly towards the distal end of the small 

intestine. Goblet cells are present in a higher frequency in the colon when compared to the 

small intestine (Mowat and Agace 2014) 
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Enteroendocrine cells, found throughout the crypt-villus axis, are present in a much 

lower number when compared to the other differentiated cell types. These cells secrete 

hormones, such as serotonin and secretin that control some of the intestinal functions 

including the regulation of glucose levels, modulation of food intake, gastrointestinal tract 

movement as well as mucosal immunity and repair (Schonhoff et al. 2004; Engelstoft et al. 

2008; Moran et al. 2008).  

Paneth cells, located exclusively in the bottom of the crypts (Barker et al. 2008), are 

long-lived (6-8 weeks) secretory cells that arise directly from the quiescent intestinal cells 

(Buczacki et al. 2013). In contrast to the other differentiated cells, Paneth cells migrate back 

down the crypt-villus axis, forming the intestinal stem cells (ISC) niche (Batlle et al. 2002). 

Paneth cells promote the immunity and protection of the ISC by secreting various 

antimicrobials such as cryptdins, lysozymes and other factors including TGF-α and Wnt3, 

being crucial in the intestinal homeostasis (Bevins and Salzman 2011). 
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A) The stem cells are located in the bottom of the crypts. These cells proliferate and originate the 

progenitor cells that will then migrate along the villi and differentiate into either absorptive or secretory 

cells depending on the signals that they receive. B) The cell populations present in the intestinal 

epithelia can be identified by the expression of different markers. The Wnt signalling pathway has a 

very important role in the control of the intestinal homeostasis, being particularly active in the bottom of 

the crypts (Carulli et al. 2014).

Figure 1.2 Organization of the intestinal epithelia and the markers for the different cell populations. 

A 

B 
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1.2.2.1 Intestinal Stem Cell Competition 

 

Intestinal stem cells (ISCs), located at the bottom of the crypts, are able to differentiate 

into all cell types within the intestine (Barker et al. 2007; Barker et al. 2008) during homeostasis 

or injury. This a highly regulated mechanism that is coordinated with cell death that occur in 

the villi, avoiding excessive loss of intestinal cells or, the opposite, abnormal accumulation of 

cells.  

Stem cells can divide in three different ways. Under normal circumstances the cells 

divide asymmetrically which results in the formation of a daughter stem cell and a daughter 

TA cell, allowing self-renewal of the stem cell compartment as well as expansion of the TA 

compartment (Figure 1.3) (Potten and Loeffler 1990). Following injury, stem cells undergo 

symmetrical division originating either two daughter stem cells or two daughter TA cells, which 

contributes to the maintenance of intestinal homeostasis. On the other hand, in the absence 

of sufficient numbers of stem cells, TA cells are also able to de-differentiate back to true-stem 

cells, maintaining the intestinal homeostasis (Figure 1.3) (Shahriyari and Komarova 2013; 

Barker 2014).  

During the differentiation process, cells move out of the crypt onto the villi, where they 

are shed. Contrary to the other differentiated lineages, Paneth cells move down to the crypt, 

where they assume position between the stem cells and form part of the stem cell niche (Sato 

et al. 2011). Buczacki and colleagues have demonstrated that in the mouse intestine, 

quiescent label retaining cells, the population that mature into enteroendocrine and Paneth 

cells during homeostasis can, in fact, upon injury, undergo rapid proliferation originating the 

main epithelial cell types. This research shows that established quiescent cells can function 

as a clonogenic reserve (Buczacki et al. 2013)  

The ISC clones compete to occupy the stem cell niche, resulting in the ongoing 

monoclonal conversion in all crypts and leading to the elimination of mutant cells (Lopez-

Garcia et al. 2010; Snippert et al. 2010; Ritsma et al. 2014). Snippert and colleagues 

generated a multi-colour Cre reporter and performed fate mapping of individual stem cells. 

The authors showed that Lgr5hi cells divide symmetrically giving rise to either two stem cells 

or two TA cells supporting the hypothesis that ISCs undergo neutral competition (Snippert et 

al. 2010), and contradicting the previously proposed model in which ISCs divide 

asymmetrically (Potten et al. 2002; Smith 2005). Further studies using computational and 

mouse models have confirmed the theory that stem cells located in the bottom of the crypts 

have a significant advantage to compete over the other cells located above (Mirams et al. 

2012; Ritsma et al. 2014). More recently, with the use of a 3D individual cell-based model to 

study clonal competition in the intestine, Thalheim and colleagues have shown that not only 

cell distribution, but also niche composition, can impact on clonal competition (Thalheim et al. 
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2016). The authors have studied the impact of Wnt and Notch signalling pathways on clonal 

competition due to their importance for stem cell self-renewal and lineage specification, and 

have shown that mutations in these pathways result in phenotypic changes; this demonstrates 

that fixation probability of mutations is dependent on mutation acquisition (Thalheim et al. 

2016). The model of ISC symmetric division predominates, however the mechanisms that 

drive fate choices regarding stem cell division are still unclear, being essential to test 

experimentally the mechanisms unveiled by multi-scale computational modelling.  

 

 

 

ISCs – Grey cells; TA – Orange cells 

 

 

1.2.3  Wnt Signalling Pathways  
 

There are various signalling pathways involved in intestinal epithelial homeostasis that 

maintain the balance between cell proliferation, migration and apoptosis. One of the most 

important pathways is the Wnt signalling pathway due to its importance in morphogenesis 

during both embryogenesis and in the adult tissue self-renewal homeostasis (Clevers 

2006).Three different Wnt pathways have been described: the canonical Wnt/β-catenin 

pathway, the non-canonical planar cell polarity pathway and the non-canonical Wnt/calcium 

pathway. 

 The canonical Wnt pathway is the major regulator of intestinal homeostasis and it will 

be described in more detail in the next section.  The best characterized non-canonical pathway 

Figure 1.3 Schematic representation of the potential outcomes of ISC division.  
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is the planar cell polarity pathway. As the name suggests, this pathway controls cell polarity 

in morphogenetic mechanisms in vertebrates, including neural tube closure and gastrulation, 

through cytoskeletal changes (Zallen 2007). The Wnt/calcium pathway controls the calcium 

levels, regulating the transcription of genes important for cell fate and cell migration (Kohn and 

Moon 2005). 

 

1.2.3.1 Canonical Wnt Signalling Pathway 

 
The canonical Wnt pathway, a conserved signalling pathway involved in development, 

regeneration, survival and cell proliferation, is crucial to the maintenance of homeostasis within 

the intestinal epithelia. Deregulation of this pathway occurs in 80% of human CRCs, leading 

to aberrant stem cell differentiation (Mazzoni and Fearon 2014).  

 In the absence of a Wnt ligand the pathway is in its “off state”. β-catenin is 

phosphorylate by the destruction complex formed by the scaffold protein Axin, Adenomatous 

Polyposis Coli (APC) tumour suppressor, glycogen synthase kinase-3β (GSK-3β) and casein 

kinase 1 α (CK1- α). After phosphorylation, β-catenin is recognized by the β-transducin repeat-

containing protein (β-TrCP) of the E3 ubiquitin ligase complex catalysing its ubiquitination. 

Following ubiquitination β-catenin is degraded in the proteasome. Low levels of free 

cytoplasmatic β-catenin allow the interaction of Groucho-related gene (GRO) repressors with 

T-cell factor (TCF) proteins, leading to the recruitment of histone deacetylases (HDACs) 

resulting in the inhibition of Wnt target genes (figure 1.4) (Clevers 2006; Clevers et al. 2014).  

Wnt activation occurs when the Wnt ligands bind to the Frizzled (FZD) and low-density 

lipoprotein-receptor related protein (LRP) co-receptor complex (Clevers 2006; Clevers et al. 

2014), leading to the phosphorylation of LRP receptors by CK1- α and GSK-3β. After this, DVL 

and Axin proteins are recruited to the plasma membrane where they become polymerized and 

activated. The destruction complex is inactivated by the DVL polymers, resulting in the 

accumulation of β-catenin in the cytoplasm, which translocate to the nucleus, binding to TCF 

proteins and activating the transcription of downstream target genes, including c-Myc, Cyclin 

D1 and others (figure 1.4). Mutation of the APC gene leads to the activation of the Wnt 

signalling, even if Wnt ligands are not present, by promoting the dissociation of the destruction 

complex. Similar to what happen in the presence of Wnt ligands, β-catenin accumulate in the 

cytoplasm and translocate to the nucleus activating the transcription of Wnt target genes 

(figure 1.4) and promoting uncontrolled cell growth (Mazzoni and Fearon 2014). These 

transformed cells do not differentiate, remaining located at the crypt bottoms, leading to the 

initiation of CRC. 
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In the absence of a Wnt ligand β-catenin binds to the destruction complex formed by APC, Axin, GSK-3β and CK1-α being phosphorylated and, after 

ubiquitination, degraded in the proteasome. In the presence of Wnt ligand, the destruction complex is inactivated and the β-catenin accumulate in the cytoplasm, 

translocate to the nucleus and promote the transcription of genes involved in proliferation and tumorigenesis. When the APC gene is mutated the destruction 

complex is not formed, leading to the translocation of β-catenin to the nucleus, promoting the transcription of Wnt target genes. 

 

 

Figure 1.4  Schematic representation of the canonical Wnt signalling pathway in normal colonic and cancer cells. 
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1.2.4 Cancer Stem Cells 
 

The concept of the existence of cancer stem cells (CSCs) was first proposed by 

Schofield a few decades ago (Schofield 1978) who suggested the tumour growth was 

sustained by a small population of cancer cells with the ability to self-renew. It has been shown 

that these cells reside in dedicated niches within the tumours, although their identification and 

elimination has been more challenging than what was expected (Batlle and Clevers 2017). 

The existence of this cell population explains the common recurrence of cancer in patients 

who have gone through initial successful chemotherapy and/or other treatments such as 

radiotherapy. 

After Schofield, other researchers have shown evidence supporting the existence of 

CSC population. Bonnet and Dick showed that transplanting immune-deficient mice with a 

population of human acute myeloid leukemic cells characterized by the expression of a 

combination of the surface markers CD34+CD38- was sufficient for these mice to develop 

leukaemia (Bonnet and Dick 1997). Similar studies were performed to further analyse the 

presence of CSCs and their function in CRC initiation (Zhou et al. 2018). Dalerba and 

colleagues collected CRC solid tissues from surgical specimens and xenografts developed in 

nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice, and performed flow 

cytometry to analyse surface markers (Dalerba et al. 2007); epithelial cancer cells expressing 

heterogeneous surface markers were cell sorted, and the capacity of different cell subsets to 

initiate tumours was tested by injecting them in NOD/SCID mice. The authors showed that the 

capacity to initiate tumours in the transplanted mice was restricted to a subpopulation of cells 

with enriched expression of epithelial cell adhesion molecule (EpCAMhigh) as well as 

expression of the surface marker CD44+ (Dalerba et al. 2007).  

Other studies have shown that a high density CD133+ cell population could initiate 

tumour formation when injected in immunodeficient mice, whereas injection of CD133- cells 

failed to initiate tumourigenesis (O'Brien et al. 2007; Ricci-Vitiani et al. 2007). However, a year 

later, another study contradicted these results by showing that both CD133+ and CD133- 

metastatic colon cells could initiate tumour formation (Shmelkov et al. 2008). More CSC 

markers have been identified in CRC such as aldehyde dehydrogenase 1 (ALDH1) (Hessman 

et al. 2012; Rassouli et al. 2016), octamer-binding transcription factor 4 (OCT 4) (Matsuoka et 

al. 2012; Wahab et al. 2017), SRY (sex determining region Y)-box 2 (SOX-2) (Neumann et al. 

2011; Talebi et al. 2015), Nanog Homeobox (NANOG) (Hadjimichael et al. 2015; Wahab et al. 

2017),  c-Myc (Takahashi and Yamanaka 2006; Markowitz and Bertagnolli 2009) and the 

leucine rich repeat containing G protein-coupled receptor 5 (LGR5) which will be discussed in 

more detail in the following section (Barker et al. 2009; Ricci-Vitiani et al. 2009; Shimokawa et 

al. 2017; Leng et al. 2018). 



12 
 

 Altogether, these studies agree with the cancer stem cell hypothesis, showing that 

this cell population can be identified by a variety of markers and can initiate tumourigenesis. 

 

 

1.2.5 Lgr5 stem cells as the origin of CRC 
 

The identification of a true stem cell population in the mouse intestine has been 

controversial. Several studies have suggested potential stem cell markers based on positional 

information of gene expression, which itself does not give enough evidence to define genes 

as ISCs markers (Barker et al. 2012). However, through lineage tracing (Barker and Clevers 

2007) and in situ hybridization (Gregorieff et al. 2005) several markers have been identified. 

Barker and colleagues have identified the Lgr5 as a marker of rapidly dividing stem cells in 

the small and large intestines (Barker et al. 2007). Lgr5 was selected from a panel of genes 

due to its restricted crypt expression; it was shown by lineage tracing that Lgr5+ CBC cells 

generated the epithelial lineages, suggesting that Lgr5 represents the stem cell of both small 

and large intestines (Barker et al. 2007).   

Lgr5 is a G-protein coupled receptor (GPCR) of the class A Rhodopsine-like family of 

GPCRs. These receptors control a variety of key functions by binding ligands such as 

hormones and neurotransmitters (Kumar et al. 2014). Leucine-rich repeat-containing GPCRs 

(LGRs) are distinct from the other GPCRs as they contain a large extracellular domain with, 

as the name suggests, multiple leucine-rich repeats. Apart from being a marker for intestinal 

stem cells, other studies have given insights into other functions of Lgr5, mainly from analysis 

of null or loss-of-function mutants. Disruption of Lgr5 resulted in total neonatal lethality, 

indicating the importance of Lgr5 in development. The Lgr5-null mice were characterized by 

gastrointestinal tract dilation and, interestingly, accelerated maturation of the Paneth cells, 

possibly indicating that during intestinal development Lgr5 negatively regulates Wnt signalling 

(Garcia et al. 2009). Lgr5 has been shown to modulate Wnt signalling pathway, upon biding 

to its ligand, R-spondin (RSPO). In the absence of RSPO, there is internalisation of two 

transmembrane E3 ligases (RNF43 and ZNRF3) and degradation of the Wnt receptors (FZD 

and LPR), keeping Wnt levels low. When RSPO binds to Lgr5, the E3 ligases are neutralised, 

and Wnt receptors are able to bind to the Wnt ligands as they are no longer degraded, leading 

to subsequent Wnt signalling activation (Carmon et al. 2011; de Lau et al. 2011; Glinka et al. 

2011). 

 Following the confirmation that Lgr5 is a marker for intestinal stem cells (Barker et al. 

2007), Barker and colleagues demonstrated that loss of the Apc gene in Lgr5 stem cells led 

to their transformation within days, resulting in adenoma development (Barker et al. 2009). 

The transformed stem cells remained located in the bottom of the crypts giving origin to 
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microadenomas that developed into adenomas within 3-5 weeks. When the Apc gene was 

deleted in the non-stem cell compartment small lesions formed in the intestinal epithelium, 

although they did not form tumours even 200 days post induction (Barker et al. 2009), 

indicating that only the stem cells located in the bottom of the crypt were responsible for 

adenoma formation.  

More recently, Shimokawa and colleagues have confirmed that human LGR5+ cells 

act as cancer stem cells giving new insights into their plasticity (Shimokawa et al. 2017). The 

authors performed lineage tracing experiments with a tamoxifen-inducible Cre knock in allele 

of LGR5 in patient-derived CRC organoids and showed the capacity of Lgr5+ tumour cells to 

self-renew and differentiate (Shimokawa et al. 2017). Following ablation of the Lgr5+ tumour 

cells in LGR5-iCaspase 9 knock in organoids, tumour regression was observed, however a 

few days later there was a re-emergence of the LGR5+ CSCs. Further experiments showed 

that LGR5- cells dynamically replenished LGR5+ after they were ablated and that the newly 

generated LGR5+ cells would be killed following consecutive ablation, demonstrating why 

targeting CSCs can be so challenging, considering the robust plasticity of non-targeted cancer 

cells (Shimokawa et al. 2017).  

 

 

1.2.6 Multi-step carcinogenesis of the intestine 

 
In 1990 Fearon and Vogelstein described a multistep genetic model for the initiation 

and progression of CRC (Fearon and Vogelstein 1990). This model was formulated following 

a mutational profile study in CRC samples collected from different stages of the disease. 

Fearon and Vogelstein proposed that various mutations, from inactivation of tumour 

suppressor genes to activation of oncogenes, in a preferential sequence, were essential in the 

process of colorectal tumourigenesis (Figure 1.4) (Fearon and Vogelstein 1990). Since then, 

other studies have supported this model (Pino and Chung 2010).  

The initiation of adenomas starts with intestinal crypt hyperplasia and the formation of 

aberrant crypts. A key and early event in intestinal tumourigenesis is the mutation of APC, a 

tumour suppressor gene (Kinzler and Vogelstein 1996). Dysfunction of the APC gene occurs 

in about 80% of CRCs (Rowan et al. 2000) leading to Wnt signalling activation and highlighting 

the importance of this gene in intestinal tumourigenesis (Morin et al. 1997; Zhang and Shay 

2017). Mutations or deletion of the APC gene leads to the development of familiar 

adenomatous polyposis (FAP), an autosomal dominant trait characterized by the development 

of colonic adenomatous polyps throughout life. These polyps are benign, however they can 

progress to adenocarcinomas if left untreated (Groden et al. 1991) 
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 Following APC mutation, there is a hyper-proliferation of the abnormal cells giving 

origin to tumour mass growth and alteration of the normal tissue anatomy. The process of 

tumour progression encompasses activation of the KRAS or BRAF oncogenes (Fearon and 

Vogelstein 1990; Boutin et al. 2017) and loss of the tumour suppressor gene TP53 (Li et al. 

2015) leading to the formation of carcinoma and, ultimately, invasion and metastasis (Figure 

1.5) (Fearon and Vogelstein 1990). Together with these changes there are other associated 

aberrations, including epigenetic changes such as DNA hypo-methylation and CpG island 

hyper-methylation. These changes in the DNA will directly influence the expression of 

oncogenes and silencing of tumour suppressor genes promoting tumour progression. 

Mismatch repair (MMR) gene mutations have also been implicated in CRC development (Li 

and Martin 2016)  
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Updated multi-step tumourigenesis model proposed by Fearon and Vogelstein (Fearon and Vogelstein 1990). Intestinal cancer initiation and progression occurs 

in a step-wise accumulation of mutations in various genes such as APC, KRAS/BRAF, DCC, TP53, 17p and PIK3CA/PTEN. DNA hypo-methylation, CpG island 

hyper-methylation and mutations in MMR genes can be present throughout tumour initiation and progression (adapted from (Hanahan and Weinberg 2011) 

 

Figure 1.5 Multi-step tumourigenesis of the intestinal epithelium 
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1.3 CRC and the Host Immune Environment 
 

1.3.1 Cancer Immunosurveillance 
 

In the early 1900’s Paul Ehrlich proposed that the immune system could recognize, 

target and eliminate cancer cells. Around 50 years later, Burnet and Thomas proposed that 

the immune system has an important role in the control of cancer progression and created the 

hypothesis of the “Cancer Immunosurveillance”. This hypothesis states that lymphocytes act 

as sentinels, recognizing and eliminating newly transformed cells (Burnet 1957). However, 

years later, this hypothesis was questioned by Stutman, who showed that there were no 

evidence that there was a difference in the number of tumours between immunodeficient and 

immunocompetent mice (Stutman 1974). Despite many studies performed in mice supporting 

this hypothesis of the transformed cells clearance, it is still difficult to show evidence in 

humans. People where immunosurveillance cleared any potential cancer, would not develop 

the disease and, as a consequence, would not be included in further studies. On the other 

hand, people diagnosed with cancer could be considered that their immune-mediated 

mechanisms of tumour control have failed (Gallimore and Godkin 2008). 

 

 

1.3.2 Cancer Immunoediting 
 

Immunosurveillance of the tumour cells is one part of the interaction between the 

immune system and the cancer. More recent studies have showed that the immune system, 

apart from eliminating cancer, is also able to initiate it, particularly during chronic inflammation  

(Grivennikov et al. 2010). The “Cancer Immunoediting” hypothesis, not only includes the 

capacity of the immune system to protect against cancer initiation, but also the fact that it can 

modify the immunogenicity of the developing tumour, allowing the escape of the tumour from 

the anti-tumour immune responses (Shankaran et al. 2001). 

The “Cancer Immunoediting” hypothesis is described as consisting in three distinct 

phases: Elimination, Equilibrium and Escape. “Elimination” refers to the previously described 

immunosurveillance, when both innate and adaptive immune responses eliminate newly 

transformed cells (Figure 1.6 A) (Schreiber et al. 2011).  

The “Equilibrium” phase occurs when not all the transformed cells are immediately 

destroyed by the immune system. Some of them are edited and sculpted by the adaptive 

immune system, leading to the dormancy of the tumour (Figure 1.6 B) (Schreiber et al. 2011).  



17 
 

Finally, “Escape” refers to the tumours that were previously edited by the immune 

system but escaped immune recognition. There are various mechanisms described by which 

escape can happen, such as loss of tumour antigen expression, an immunosuppressive 

microenvironment and resistance to cytotoxicity (Figure 1.6 C) (Schreiber et al. 2011).  
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A) “Elimination” involves both innate and adaptive immune responses to eliminate transformed cells. B) 

During “Equilibrium” the transformed cells that are not eliminated they can undergo immunogenicity 

editing and sculpting. C) During “Escape” the transformed cells lose their MHCs and/or antigen 

presentation capacity, they won’t be recognised by the immune system, escaping to the effector 

immune cells. 

  

Figure 1.6 Schematic representation of the three different phases of the concept of cancer 

immunoediting. 

A 

B 

C 
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1.3.3 Immune response 
 

In the presence of a foreign antigen the first response to its presence is given by the 

innate immune system, which recognize and destroys the antigen in a non-specific manner. 

There are various cell populations involved in this response, such as natural killer (NK) cells, 

macrophages, dendritic cells (DCs), neutrophils, eosinophils and basophils. These cells 

express pattern recognition receptors (PRRs) that recognize pathogen-associated molecular 

patterns (PAMPs) that usually are not present in the mammalian body, triggering an immune 

response to eliminate the foreign antigens (Parham 2015a). 

On the other hand, when the innate immune system is not able to control an infection, 

another immune response is built by the adaptive immune system which has a more 

specialized and long-lasting response against the antigens. The adaptive immune response 

is performed by lymphocytes which recognize the pathogens by using cell-surface receptors 

that are specifically of just one molecular type. Each cell-surface receptor can have a very 

high number of different versions that bind to different ligands building a very specific response 

(Parham 2015b).  

The adaptive immune response is mounted by B and T lymphocytes. B lymphocytes 

can act through two different ways: they can either recognize an antigen that binds to the B 

cell receptors promoting the proliferation of plasma cells and, as a consequence, there is the 

secretion of antibodies. The second mechanism relies on the fact that B cells can act like 

antigen-presenting cells (APCs), processing and presenting the antigens to the major 

histocompatibility complex (MHC) for recognition (Parham 2015c). T cells are distinguished 

from other lymphocytes be the expression on their surface of highly variable T cell receptors 

(TCRs) that recognize peptides presented by MHCs. The reactions that follow the binding of 

the peptides to the TCRs or MHCs depend on the T cell subpopulation that is participating. 

There are two different types of MHCs: MHC class I, which is responsible by presenting 

antigens from intracellular pathogens and MHC class II that presents antigens from 

extracellular pathogens (Parham 2015d).  

 

 

1.3.3.1  T-cells 

 

T-cells are lymphocytes that are produced in the bone marrow and mature in the 

thymus. During development, they express cell-surface glycoproteins which determine their 

function and can be used to identify them. T-cells can give rise to two different lineages that 

arise from a common thymocyte progenitor: α:β T-cells that are the majority of the T-cells and 

γ:δ T-cells. α:β T-cells share the expression of the surface marker CD3 and can be divided 
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into two different sub lineages depending on the expression of the co-receptors CD4 and CD8 

that are part of the immunoglobulin superfamily of proteins. These co-receptors help the T-cell 

receptors recognize the antigens and MHC molecules. The CD4 co-receptors binds 

specifically to MHC class II molecules and CD8 co-receptors bind to MHC class I molecules. 

CD4 and CD8 are functionally similar but their structures are different. CD4 is a single 

polypeptide formed by four extracellular immunoglobulin-like domains. CD8 is a heterodimer 

formed by an α and a β chain. Each of the chains are connected to the membrane-spanning 

region by immunoglobulin-like domains (Parham 2015d).   

 

 

1.3.3.1.1 CD8+ T-cells 

 

CD8+ T-cells, also known as cytotoxic T-cells (CTLs), participate in the immune 

response against intracellular pathogens, such as bacteria and viruses, but also in anti-tumour 

immune responses (Harty and Bevan 1999; Radziewicz et al. 2007; Hadrup et al. 2013). CD8+ 

T-cells can exert their cytotoxic activity by three different mechanisms. Firstly, via the secretion 

of the cytokines IFNγ and TNFα. These two cytokines have anti-viral and anti-tumour effects. 

Secondly CD8+ T-cells can release cytotoxic granules, such as perforin and granzymes, which 

are serine proteases. As the name suggests, perforins are proteins that able to form pores in 

the membrane of the targeted cell allowing the granzymes to enter the cell (Trapani and Smyth 

2002). In the 1990’s, an experiment showed that perforin-deficient mice developed more 

tumours, demonstrating the importance of CD8+ T-cells in cancer immunosurveillance (van 

den Broek et al. 1996). Granzymes will then cleave proteins inside the infected/malignant cell 

resulting in the apoptosis of the cell. Once this is done, CD8+ T-cells can then move to another 

infected cell, eliminating it.  

Finally, CD8+ T-cells induce a cell to undergo apoptosis via Fas/Fas-ligand 

interactions. Fas-ligands (or CD95) are expressed by activated CD8+ T-cells on their surface. 

Fas-ligand will then bind to Fas that are located on the surface of the target cell. After the 

binding, Fas, through trimerization, will activate signalling molecules and, as a consequence, 

the caspase cascade, resulting in the apoptosis of the infected cell (Waring and Mullbacher 

1999). Mice where Fas/Fas-ligand were mutated showed higher incidence of B-cell 

lymphomas. It has also been shown that cell death mediated by Fas/Fas-ligand interactions 

is fundamental for T-cell mediated immunosurveillance for B-cell lymphoma in mice (Davidson 

et al. 1998). 
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1.3.3.1.2 CD4+ T-cells 

 

Naïve CD4+ T-cells differentiate into functionally effector cells upon T-cell receptor 

(TCR) stimulation by peptide-MHC present in APCs, usually DCs. CD4+ T-cells are part of a 

very heterogeneous population and can be divided into different subpopulations that secrete 

cytokines that will either activate or suppress other immune cells, promoting various types of 

immune responses. The CD4+ T-cell subpopulations can be distinguished by the cytokines 

and transcription factors that induce and determine, respectively, their differentiation, the 

cytokines that they produce and the cells that are helped by them (figure 1.7) (Tripathi and 

Lahesmaa 2014).  

The first helper subsets that were described were the Th1 and Th2 (Mosmann et al. 

1986). With subsequent research identifying Th9, Th17, Th22, follicular T cells (Tfh) and Treg.  

The differentiation of Th1 cells is initiated by the cytokine IL-12 and their specific gene 

expression programme is regulated by the transcription factor T-bet (Szabo et al. 2000). Th 1 

cells produce cytokines such as IL-12, IFN-γ, TNFα and lymphotoxin (LT) that will help 

macrophages combat intracellular bacterial and viral infections (Szabo et al. 2003).  

Th2 cells help B-cells, mast cells, basophils and eosinophils control parasite infections 

by producing IL-4, IL-5, IL-6 and IL-13 cytokines (Zhu and Paul 2010). The transcription factor 

that define Th2 differentiation is GATA3 (Zheng and Flavell 1997) and their differentiation is 

initiated by IL-4.  

Th17 cells enhance neutrophils response against extracellular fungal and bacterial 

infections. The cytokines involve in their responses are IL-17, IL-22 and IL-23 (Zhu and Paul 

2010). The transcription factor that determine Th17 differentiation is RORγT but other 

transcription factors have been described as being part of the Th17 differentiation program. 

IL-6, IL-23 and TGF-β can initiate the differentiation of Th17 cells (Chen et al. 2007). 

Recently other T-cells were described, including Th9, Th22 and Tfh cells. Th9 

development depends on the transcription factors PU.1 and IRF4 and their differentiation is 

initiated by IL-4 and TGF-β (Tripathi and Lahesmaa 2014). These cells can have both 

beneficial and detrimental functions. Th9 cells promote immunity against helminth parasites 

and also participate in anti-tumour activity, particularly in melanoma by secreting IL-9 and IL-

21. On the other hand, Th9 cells can exacerbate the immune response in the case of asthma; 

they also contribute to inflammatory bowel disease (IBD), impairing tissue repair processes 

and increasing intestinal permeability (Kaplan et al. 2015).  

Th22 cells depend on the IL-6 and TNF to differentiate and aryl hydrocarbon receptor 

(AhR) for their transcriptional control (Duhen et al. 2009). These cells are characterized by a 

high production of IL-22, a cytokine that is secreted also by Th17 and NK cells. Although 

secretion of IL-22 is a common feature between these cell populations, Th22 cells are unique 
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in the secretion of IL-22 and absence of IL-17 and IFN-γ production (Duhen et al. 2009). This 

cell population is believed to have an important role in tissue repair, particularly damaged 

epithelial barriers as well as promoting responses against some pathogens. Other functions 

of Th22 cells include skin homeostasis by inhibition of keratinocytes differentiation as well as 

gastrointestinal and respiratory tract cells. Protective effects in models of inflammatory bowel 

disease, pancreatitis and hepatitis have also been associated to Th22 cells (Trifari et al. 2009; 

Sabat et al. 2014).   

Tfh cells participate in generation of B cell responses in germinal centres by secreting 

IL-21 and their differentiation depend on IL-6 and IL-21. Tfh cells are regulated by the 

transcription factor Bcl6 (Tripathi and Lahesmaa 2014).  

Tregs lineage and function is defined by the expression of the transcription factor 

Foxp3 and these cells are responsible for the suppression of effector immune responses. 

Tregs secret immunosuppressive molecules such as IL-10, TGF-β and IL-35 (Corthay 2009). 

Tregs will be described in more detail in the following section due to their relevance to this 

project. 

 

 

1.3.3.1.3 Interferon-gamma (IFN-γ) 

 

IFN-γ is produced by a variety of cells such as CD4+ T-cells, CD8+ T-cells, NK and 

NKT cells and it is a critical cytokine in the innate and adaptive immune system (Schoenborn 

and Wilson 2007). The receptor of IFN-γ is formed by two subunits: IFN-γR1 and IFN-γR2 

(Dunn et al. 2006). When IFN-γ binds to its receptor there is the recruitment and activation of 

the Janus kinase (JAK1 and JAK2), leading to the activation of STAT1 and interferon 

regulatory factor 1 (IRF1). Following STAT1 and IRF1 phosphorylation, and translocation to 

the nucleus, IFN-γ-regulated genes are transcribed (Horvath 2004).  

Various studies have shown the importance of IFN-γ in the anti-tumour immune 

responses in CRC (Wang et al. 2015a; Katlinski et al. 2017; Liu et al. 2017). Wang and 

colleagues have shown in a mouse model of Apc-mediated intestinal cancer (ApcMin/+), that 

mice deficient in IFN-γ or IFN-γ receptor subunit 1 (IFN-γR1) had an increased number and 

size of adenomas, with about 41% of the mice developing adenocarcinomas. The authors 

have also shown that heterozygous deletion of IFN-γ promoted activation of the EGFR/Erk1/2 

and Wnt signalling pathways (Wang et al. 2015a). More recent studies have shown that 

downregulation of IFN-γR1 occurs in human CRC as well as mouse models of CRC. 

Downregulation of IFN-γR1, apart from causing tumour development, promoted the formation 

of an immune-privileged niche and was associated with a poor prognosis. On the other side, 
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stabilization of IFN-γR1 improved response to anti-PDL1 therapy and survival, indicating the 

importance of IFN-γR1 in the efficacy of immunotherapies (Katlinski et al. 2017).  

IFN-γ has been shown to promote apoptosis in malignant cells (Liu et al. 2011; 

Kotredes and Gamero 2013; Ni and Lu 2018). Liu and colleagues have shown that metastatic 

colon carcinoma cell lines treated with TNFα and IFN-γ reduced resistance to TNF-related 

apoptosis-inducing ligand (TRAIL), a protein that induces cell death by apoptosis, being very 

important in the anti-tumour responses. The authors treated a mouse model of metastatic 

CRC with TRAIL together with TNFα and IFN-γ, and observed a reduced expression of the 

antiapoptotic protein Bcl-xL. This resulted in increased apoptosis through TRAIL-induced 

caspase 8 activation, leading to the suppression of the metastasis (Liu et al. 2011). Taken 

together, these studies and others show the importance of IFN-γ in the anti-tumour immune 

responses.  

 

 

 



24 
 

Figure 1.7 Differentiation of Naive CD4+ T-cells. 

 

Upon activation by DCs, and in the presence of specific cytokines, naïve CD4+ T-cells differentiate into 

different T helper (Th) or Foxp3+ regulatory T-cells (Treg) subsets. Each subset is defined by the 

expression of lineage specific transcription factors, and by the production of effector or 

immunosuppressive cytokines. 
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1.3.3.1.4 Foxp3+ Regulatory T cells (Tregs) 

 

1.3.3.1.4.1 Tregs – an introduction to their discovery and function 

 

Several studies showed evidence of the presence of a T-cell subpopulation 

responsible for suppression of active immune cells. The first marker identified for these cells 

was CD25 and its depletion would cause a series of autoimmune diseases.  These mice could 

be rescued by reintroducing CD4+CD25+ but not CD4+CD25- cells (Sakaguchi et al. 1995). 

Subsequent studies identified a subpopulation of CD25+ cells which expressed the Forkhead 

box protein 3 (Foxp3).  Foxp3 is a transcription factor encoded on the X chromosome which 

belongs to the member of the forkhead/winged-helix family. Studies performed in mice that 

had uncontrolled CD4+/CD8+ T-cell proliferation showed that Foxp3 was not functional due to 

a mutation (Brunkow et al. 2001). It was demonstrated that CD4+CD25+ T-cells had higher 

expression levels of Foxp3 when compared to CD4+CD25- T-cells. Furthers experiments 

demonstrated that CD4+CD25+Foxp3+ T-cells could suppress the proliferation of 

CD4+CD25- T-cells (Fontenot et al. 2003).  

Bennett and colleagues demonstrated that, in humans, a mutation in the Foxp3 gene 

affected Treg cells development and function. This was the cause of Immune dysregulation 

Polyendocrinopathy Enteropathy, X-linked (IPEX) syndrome, a fatal, early-onset, autoimmune 

disorder. The same was observed in the scurfy mice, where a spontaneous Foxp3 mutation 

occurs, leading to the development of a lymphoproliferative disease with multiple organ 

inflammation (Godfrey et al. 1991; Bennett et al. 2001). All these evidences showed that Treg 

cells had a very important role in the regulation of the immune responses. 

Further experiments were possible due to the creation of a mouse model that allowed 

the depletion of Foxp3+ cells after injection of the diphtheria toxin. These mice expressed the 

human diphtheria toxin receptor under the control of the Foxp3 promotor. Deletion of Foxp3+ 

cells caused a similar phenotype presented by the mice that were Foxp3 deficient, developing 

autoimmunity (Kim et al. 2007; Lahl et al. 2007). 

Tregs can have different origins. Most of them derive from the thymus (tTregs), also 

known as natural Treg cells (nTregs), develop during the negative and positive selection. 

Tregs can also be induced in the periphery (pTregs) after antigen stimulation of the CD4+ T-

cells.  

One of the main functions of the Tregs is to maintain self-tolerance and the prevention 

of autoimmunity by controlling the expansion of T-lymphocytes that react against self-

antigens. By promoting self-tolerance, Tregs prevent the occurrence of autoimmune diseases, 

promote feto-maternal tolerance and suppress allergies. They are also important in the 

prevention of chronic inflammatory diseases (Maloy and Powrie 2001). 
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1.3.3.1.4.2 Immunosuppressive mechanisms of Tregs 

 

There are several mechanisms by which Tregs can exert their immunosuppressive 

activity have been demonstrated. Immunosuppression by Tregs can be achieved by the 

modulation of the APCs activity by contact-dependent interactions (Schmidt et al. 2012). It 

was shown that this activity was dependent on CTLA-4, a surface marker that is expressed 

on Tregs (Takahashi et al. 2000) and LAG-3 (lymphocyte-activation gene 3), a transmembrane 

protein. Gene expression studies performed by several groups allowed the identification of 

molecules with suppressive activity, such as: galectin-1 and galectin-10, TGF-β, IL-10 and IL-

35, a member of the IL-12 heterodimeric cytokine family (Shevach 2009). Tregs are also able 

to promote direct cytolysis as they express perforins and granzymes. This was observed in 

both humans and mice (Shevach 2009; Hoves et al. 2010). 

 

 

1.3.3.1.4.3 Tregs in Cancer 

 

It is well known that Tregs are essential in maintaining peripheral tolerance and that 

they do it by preventing self-reactivity. In the 1970s and 1980s several studies started to 

establish a connection between a population of suppressive cells and anti-tumour immune 

responses (Zou 2006). After the identification of the CD25 as a Treg marker (Sakaguchi et al. 

1995) other studies showed that the depletion of cells expressing this marker induced CD8+ 

T-cell responses and controlled the tumour growth (Onizuka et al. 1999; Shimizu et al. 1999). 

The opposite was observed after adoptive transfer of CD4+CD25+ T-cells to tumour-bearing 

mice, where the anti-tumour immunity was suppressed (Turk et al. 2004; Antony et al. 2005). 

Other experiments that were done after the discovery of the Foxp3 marker demonstrated that 

depletion of Foxp3+ cells would prevent the tumour initiation and development (Klages et al. 

2010; Teng et al. 2010; Hindley et al. 2012).  

Several studies showed increased numbers of Tregs in the tumour microenvironment in 

a variety of different cancers, such as: melanoma, lymphoma, pancreatic, breast, lung, gastric 

and others, when compared to tissue from healthy donors (Nishikawa and Sakaguchi 2010; 

Quezada et al. 2011; Scurr et al. 2012; Whiteside 2012). However, it is controversial whether 

this increased number of Tregs indicates a good or a bad prognosis, having different studies 

reporting opposite conclusions (Curiel et al. 2004; Alvaro et al. 2005; Sato et al. 2005; Bates 

et al. 2006; Mantovani et al. 2008; Perrone et al. 2008; Ladoire et al. 2011). This highlights 

the importance of studying the types of cancer and their origin, as Tregs may play different 

roles depending on that. In the case of inflammation-driven tumours, Tregs may have anti-
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tumour effects by suppressing the inflammation that promoted the cancer initiation and 

development (Erdman et al. 2005; Grivennikov et al. 2010; Ruffell et al. 2010). 

 

 

1.3.4 T-cells and CRC  
 

Cancer patients with increased tumour immune infiltrate correlates with an improved 

clinical outcome, when compared to patients with lower immune infiltrates in different types of 

cancers such as melanoma (Mihm and Mulé 2015), ovarian (James et al. 2017), head and 

neck (Schneider et al. 2018), breast (Ingold Heppner et al. 2016) and CRC (Braha et al. 2016). 

An extensive study from Pagès and colleagues has shown that the absence of 

metastasis in human CRC samples was associated with increased infiltration of effector 

memory T-cells in the primary tumour (Pages et al. 2005). It was also reported that patients 

without metastasis and that remained disease-free had increased levels of granzyme B, T-

bet, interferon regulatory factor 1 (IRF-1) and IFNγ when compared with patients that relapsed 

(Pages et al. 2005). T-cell markers, such as CD3+, CD4+ and CD8+ were also significantly 

increased in patients with a better outcome (Pages et al. 2005). Following this study, the same 

group showed that, in three different cohorts of CRC patients, there was a high density of 

CD3+ and CD8+ T-cells, alongside with granzyme B and CD45RO, within the tumour centre 

and invasive margin (Galon et al. 2006). The high levels of these markers were associated 

with a longer disease-free survival for the three groups when compared to groups that showed 

a lower infiltration of these immune markers (Galon et al. 2006). A number of studies have 

associated lymphocytes infiltration in CRC with a better prognosis (Ropponen et al. 1997; 

Pages et al. 2005; Galon et al. 2006; Pages et al. 2009; Mei et al. 2014; Jakubowska et al. 

2017), however it has becoming evident that disease outcome does not depend only in the 

quantity of the lymphocytes that are present, but also their type can have a distinct impact in 

the prognosis. A study by Tosolini and colleagues showed that CRC patients with increased 

expression of Th1 related-genes had a better survival when compared to patients with a lower 

gene expression. The opposite was observed with Th17 associated-genes. CRC patients with 

significantly higher expression of Th17 associated-genes had a earlier relapse, even in the 

presence of higher expression of Th1 associated-genes, indicating that Th17 responses were 

stronger in the tumour progression comparing to the anti-tumour responses by Th1 cells 

(Tosolini et al. 2011). Later, it was shown that CRC patients had increased levels of Th17 cells 

in their blood, particularly in more advanced stages of the disease, suggesting a key role of 

the Th17 cells in CRC progression (Wang et al. 2014). 
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1.3.4.1 Tregs and CRC development 

 

As previously described, there is a number of different malignancies where it is 

observed an increased frequency of Tregs, however it is still controversial whether this T-cell 

sub-population promotes or limits tumour progression. This is also applied in the case of CRC. 

Studies have demonstrated in the blood of CRC patients there was a higher frequency of 

Tregs (Wolf et al. 2003; Clarke et al. 2006). In vitro experiments showed that removal of these 

cells would increase T-cell responses against tumour antigens (Clarke et al. 2006). The 

increased frequency of Tregs in CRC patients was also observed in their intestines, when 

compared to healthy intestines (Ling et al. 2007). A study from our group analysed the CD4+ 

T-cells responses against the tumour antigens 5T4 and carcinoembryonic antigen (CEA) in 

CRC patients before and at multiple time-points following surgery (Betts et al. 2012). It was 

demonstrated that CRC patients had significantly increased levels of Foxp3+ when compared 

to healthy age-matched controls. The levels of Foxp3+ decreased to normal following the 

surgery, suggesting that CRC drives the activity of Tregs. Patients that relapsed had a 

significantly lower activity of 5T4 and CEA T-cell responses that was suppressed by Tregs, 

suggesting that Tregs contribute to tumour progression (Betts et al. 2012). A further study from 

our group supported this finding. It was shown that 5T4-specific T-cell responses were 

decreased in CRC patients, when compared to healthy controls, and they were further 

diminished with disease progression (Scurr 2013). 

On the other side, several studies have associated increased frequencies of Tregs in 

CRC patients with a better outcome and improved survival. Both Salama et al. and Vlad et al. 

showed independently that a higher density of Tregs in the tumour was associated with a 

better outcome and improved survival (Salama et al. 2009; Vlad et al. 2015).  In another study 

it was shown that lower frequencies of Tregs were associated with shorter CRC patient 

survival time (Sinicrope et al. 2009).  

 

 

1.3.4.2 The intestinal immune system 

 

The intestine represents the biggest compartment of the immune system, containing 

many more immune cells than any other tissue in the body. The intestine is continually 

exposed to antigens and dietary immunomodulatory agents. The majority of the immune 

processes occurs in the mucosa, also referred as intestinal barrier. This barrier separates the 

inner and the outer environments blocking the passage of potentially harmful substances, but 

allowing the passage of nutrients and electrolytes, preserving the epithelial barrier, the 

immune responses, as well as allowing the tolerance against the intestinal microbiota. The 
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mucosal immune system is formed by three lymphoid areas: the lamina propria, the 

intraepithelial compartment and the Peyer’s patches (PPs). The PPs are secondary lymphoid 

tissues, located in between the submucosa layer of the ileum and mucosa layer. They are 

covered by follicle-associated epithelium (FAE) that are formed by specialized microfold (M) 

epithelial cells that are responsible by the capture of the antigens that are in the intestinal 

lumen and their transport to the associated subepithelial dome (SED) (Reboldi and Cyster 

2016). 

In mice, both lamina propria and PPs contain a large number of B lymphocytes. The 

intraepithelial compartment contains more CD8+ T cells (Lefrancois and Lycke 2001; Jung et 

al. 2010). The PPs contain a higher number of CD4+ cells, (~45% of the CD3+ T-cells), when 

compared to CD8+ T-cells (~34%) and Tregs (~5%). They also contain other immune cell 

populations such as memory T-cells, naïve T-cells and dendritic cells (DCs) (Jung et al. 2010). 

All these lymphoid areas participate actively to respond to immunological insults in the 

intestine, as it is constantly exposed to various antigens from pathogens and the commensal 

bacteria. 

 

 

1.4 Mouse Models of CRC 
 

The use of mouse models has allowed many important breakthroughs in the 

understanding of tumorigenesis. Mice are relatively easy to genetically modify and this allows 

deeper studies from the early stages of cancer to long term studies. Here the Apcmin mouse 

model and the Lgr5CreERT2Apcfl/flFoxp3DTR will be described in more detail due to their 

relevance in this project. 

 

 

1.4.1 Apcmin mouse model  

 

In the 1990’s Moser and colleagues performed experiments where mice were treated 

with a germline mutagen called ethyl nitrosourea. Via the random mutagenesis approach, they 

identified predispose mice to develop spontaneous intestinal cancer, subsequent analysis 

demonstrated they carried a mutation in the Apc gene. The mutant gene was named Multiple 

Intestinal Neoplasia (Min) and the mouse model Apcmin. This mouse model mimicked what 

happen in FAP patients, the development of multiple polyps in the intestine.(Moser et al. 

1990), being very useful to study intestinal tumorigenesis. 
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It was well known that the loss of function of both APC alleles occurs in the earlier 

stages of about 80% of CRCs (Gryfe et al. 1997), however the requirement of a second “hit” 

to remove the WT allele limits the study of tumour initiation in this mouse model. 

 

 

1.4.2 Cre-lox technology  
 

The Cre-lox system is a tool used for the deletion, insertion, translocation and inversion 

of DNA at specific sites. This system has been extensively used in the generation of mouse 

models for disease (Sauer 1998). This system consists of two major components: the Cre 

recombinase and its targets, known as loxP sites. The Cre recombinase is an enzyme derived 

from the Bacteriophage I and it has the ability, after activation, to recognise the loxP sites in 

the same orientation and excise the DNA sequence located between them. The Cre-

expression can be linked to tissue-specific promoter allowing the control gene expression in 

specific tissues (Sauer 1998). 

 Using genetically modified mice with the Cre-lox technology it is possible to 

conditionally delete both Apc alleles within the intestinal epithelium. It was observed that, after 

Apc deletion, there was an activation of the Wnt signalling, with nuclear accumulation of β-

catenin. Apc deletion also affected the dynamics of the intestinal epithelium by perturbing cell 

proliferation, migration, differentiation and apoptosis. The Apc mutant cells maintained what 

the authors called a “crypt progenitor-like phenotype” (Sansom et al. 2004).  

 

 

1.4.3 Lgr5CreERT2 Apcfl/fl Foxp3DTR mouse model 

 

The mouse model used in this project allows the deletion of the Apc gene specifically in 

the intestinal stem cells (ISC). The Ce-recombinase is linked to a modified estrogen receptor 

(ER), forming a transgene. This transgene remains inactive until an injection of tamoxifen. The 

tamoxifen will bind to the ER and the Cre-recombinase will be activated and able to recombine 

the loxP sites and delete the Apc gene. In this particular model, the Cre-recombinase is linked 

to the Lgr5 promoter, meaning that the recombination will specifically occur in the cells that 

express Lgr5 (Barker et al. 2007). Barker and colleagues have shown that activation of Cre 

was possible with a single IP injection of tamoxifen. The authors observed accumulation of 

nuclear β-catenin in the bottom of about 6% of the crypts within 3 days after Cre induction 

(Barker et al. 2009). Overtime the number of transformed stem cells increased and 8 days 

later it was possible to observe the presence of microadenomas within the associated villus 

stroma. At day 14 the authors observed a similar number of larger adenomas (around 8 %) 
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and the mice had to be sacrificed at day 36 (Barker et al. 2009). These lesions were observed 

in the mice small intestine, however Lgr5 gene is also a marker of stem cells in the large 

intestine. Barker and colleagues detected the presence of transformed cells in the bottom of 

the colonic crypts within 8 days after Cre induction and the formation of microadenomas 3 

weeks after induction. This showed that, in this model, the formation of microadenomas occur 

more frequently in the small intestine, however colonic stem cells are also transformed but in 

a lower frequency (Barker et al. 2009). Lgr5 is not only expressed in the ISCs, but also foetal 

mammary stem cells (Trejo et al. 2017) and hair follicle stem cells (Jaks et al. 2008).  

This mouse model was crossed with the Foxp3DTR mouse model that expresses the 

human diphtheria toxin receptor (DTR) under the control of the Foxp3 promotor, allowing the 

depletion of the Tregs after diphtheria toxin injection (Kim et al. 2007). 

 

 

Hypothesis and Aims 

 

Previous studies have demonstrated that CRC patients with an increase number of 

Tregs have a poorer prognosis. These studies were done mainly in patients with advanced 

disease, however it is still unclear the role of Tregs in the early stages of CRC. In this project 

I aimed to clarify the role of Tregs in the early stages of intestinal cancer. To do this, the 

following hypothesis were tested: 

 

 Hypothesis 1: Treg numbers and frequency increase following deletion of the Apc 

gene in the ISCs.   

 
Aim: To investigate the response of Tregs upon Apc deletion in the ISCs of the 

genetically modified Lgr5CreERT2Apcfl/flFoxp3DTR mouse model. 

 

 Hypothesis 2: Treg depletion in an Apc deleted mice reduce the intestinal tumour 

burden. 

 
Aim: To assess tumour burden and immune changes following Treg depletion 

in Lgr5CreERT2Apcfl/flFoxp3DTR mouse model.  

 

 Hypothesis 3: Depletion of CD4+ and CD8+ T-cells, and IFNγ neutralization increase 

the intestinal tumour burden. 
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Aim: Identification of immune cell populations and cytokines that participate in 

the anti-tumour immune response in the Lgr5CreERT2Apcfl/flFoxp3DTR mouse 

model.  
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2 Material and Methods 

 

2.1 Experimental Animals and Husbandry 
 

All animal procedures were conducted according to the UK Animal (Scientific 

Procedures) Act 1986, under the authority of UK Home Office personal and project 

licences in accordance with the ARRIVE guidelines. 

 

2.1.1 Colony Maintenance and Breeding 

 
All animals were maintained on an outbred background. Mice of known genotype 

and, at least, 6 weeks old were bred. The breeding was done in trios (one male and two 

females) and pups were weaned and ear clipped at approximately 4 weeks old for 

identification purposes and genotyping.  

 

2.2 Transgenic Mouse Models 
 

The mouse models used within this project were Apcmin  (Moser et al. 1990) and 

Lgr5CreERT2Apcfl/flFoxp3DTR (Barker et al. 2007; Kim et al. 2007) (discussed in sections 

1.4.1 and 1.4.3). 

 

2.3 Experimental Procedures 
 
All animal procedures were carried out in designated procedure rooms. The 

animals used in these procedures were at least 10 weeks old. Administration of the 

different treatments was done via intraperitoneal injection (IP). 

 

2.3.1 Animal Identification and Genotyping 
 

The identification of the animals was done based on ear biopsies that were taken 

using a 2 mm ear punch (Harvard apparatus). The ear biopsies were kindly done by the 

staff in the animal unit (Elaine Taylor, Mike Quirk, Paul Chapman and Sarah Davies). 

 

2.3.1.1 Polymerase Chain Reaction (PCR)   

 
Genotyping was performed by PCR using genomic DNA (gDNA) allowed the 

correct choice of the experimental cohorts. Part of the genotyping was kindly performed 

by Matthew Zverev. 
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2.3.1.1.1 DNA Extraction 

 
The ear biopsies were collected by the time the mice were weaned and stored at 

-20 ºC in order to prevent degradation. Tissues were digested using 250 µl of lysis buffer 

(VWR) containing 0.4 mg/ml proteinase K (Sigma), overnight (O/N) at 42 ºC with 

agitation. After the overnight incubation, 100 µl of protein precipitation solution (VWR) 

was added and mixed by inversion to the digested tissue. Following centrifugation at 

13000 rpm for 10 min the protein and insoluble debris were pelleted. The supernatant 

was transferred to a 1.5 ml Eppendorf tube containing 250 µl of isopropanol (Thermo 

Fisher Scientific). The solution was mixed by inverting the tubes and centrifuged at 13000 

rpm for 15 min to pellet the DNA. The supernatant was discarded, the pellet was left to 

dry for an hour at 32 ºC and the DNA was resuspend in 250 µl Milli-Q water. The DNA 

was left at room temperature (RT) for short-term storage or at 4 ºC for longer-term 

storage. 

 

2.3.1.1.2 Generic PCR Protocol 

 
PCR reactions were done in 96 well semi skirted straight side plates (Alpha 

Laboratories). In each well, 3 µl of gDNA was mixed with 47 µl of PCR master-mix (see 

Table 2.1). A blank control was included, were the gDNA was replaced by dH2O. The 96 

well-plates were covered with aluminium foil seals (StarLab) and air bubbles were 

removed by spinning the plates for 5 seconds in a PCR plate spinner (VWR). The 

reactions were run in a GS4 (G-Storm) thermocycler using the conditions shown in Table 

2.1. Primer sequences are shown in Table 2.2. 

 

2.3.1.1.3 Visualization of the PCR Products 

 
PCR products were separated by agarose gel electrophoresis. The agarose gel 

was prepared by mixing 2% of agarose (Eurogentech) in 1X Tris Borate EDTA (TBE) 

buffer (National Diagnostic). The mixture was heated in a microwave until boiling. After 

cooling the solution under running tap water, 14 µl of Safe View fluorescent nucleic acid 

stain (NBS biological) was added per 400 ml. The solution was poured into moulds (Bio-

Rad) and combs were added to create the wells. Bubbles were removed using a tip. The 

gel was left to set for an hour and the combs were carefully removed. The gel was placed 

into an electrophoresis tank containing 1X TBE buffer with Safe View (10 µl Safe View 

per 100 ml 1X TBE). For the PCR products containing clear buffer, 5 µl of loading dye 

(50% glycerol (Sigma-Aldrich), 50% dH2O, 0.1% bromophenol blue (Sigma-Aldrich)) 

were added and gently mixed. 20 µl of the samples were loaded into the gel wells and 
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run at 120 V for approximately 30 min or until the loading dye had run more than half 

way across the gel. The gel was visualised under UV light using a GelDoc UV 

Transilluminator (Bio-Rad) and the images were captured using the GelDoc software 

(Bio-Rad). 
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Table 2.1 Genotyping PCR reaction mixture and conditions 

 Lgr5CreERT2 Apcfl/fl Foxp3DTR Cre Apcmin 

PCR mix      

DNA 3 µl  3 µl 3 µl 3 µl 3 

Milli-Q water 31.1 µl 31.2 µl 31.2 µl 31.2 µl 31.1 µl 

Taq PCR buffer 10 µl 10 µl 10 µl 10 µl 10 µl 

PCR buffer (type) Green Green Clear/Green (2:1) Clear Clear 

MgCl2 (5 mM) 5 µl 5 µl 5 µl 5 µl 5 µl 

dNTPs (25 mM) 0.4 µl 0.4 µl 0.4 µl 0.4 µl 0.4 µl 

Forward Primer (100 mM) 0.1 µl 0.1 µl 0.1 µl 0.1 µl 0.2 µl 

Reverse Primer (100 mM) 0.1 µl 0.1 µl 0.1 µl 0.1 µl 0.2 µl 

Taq Polymerase 0.2 µl 0.2 µl 0.2 µl 0.2 µl 0.2 µl 

Taq Polymerase Brand GoTaq GoTaq GoTaq GoTaq G2 Taq 

PCR thermal cycler conditions      

Initial denaturation 3 min, 95 ºC 3 min, 95 ºC 3 min, 95 ºC 3 min, 95 ºC 2.5 min, 94ºC 

Cycler number 40 40 40 30 35 
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Step 1: denaturation 30 sec, 94 ºC 30 sec, 95 ºC 30 sec, 94 ºC 30 sec, 94 ºC 30 sec, 94 ºC 

Step 2: annealing 30 sec, 58ºC 30 sec, 60ºC 30 sec, 58ºC 30 sec, 55ºC 30 sec, 54ºC 

Step 3: extension 30 sec, 72ºC 1 min, 72ºC 30 sec, 72ºC 1 min, 72ºC 1 min, 72ºC 

Final extension 5 min, 72ºC 5 min, 72ºC 5 min, 72ºC 5 min, 72ºC 10 min, 72ºC 

 Hold at 10ºC Hold at 10ºC Hold at 10ºC Hold at 10ºC Hold at 10ºC 
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Table 2.2 Primer sequences and band sizes 

 

 

2.4 Experimental Cohorts 
 

After the genotyping was done and ascertained by PCR, mice of appropriate age 

were selected into control and experimental groups. Whenever possible, mice were 

housed in cages with other mice. Once animals were induced, they were monitored 

closely for signs of illness such as hunched body, pale feet, piloerection or any other 

signs of loss of condition.  

 

2.4.1 Administration of Tamoxifen  

 
Powdered tamoxifen (Sigma-Aldrich) was mixed in corn oil (Sigma-Aldrich) at a 

concentration of 10 mg/ml in a 70 ºC water bath, while being stirred at intervals, until 

completely dissolved. Aliquots were stored at -20 ºC, thawed before each procedure at 

70 ºC and kept warm until administration into the mice. Each aliquot was used only for 4 

days. Mice were injected with 80 mg/Kg of tamoxifen via intraperitoneal (IP) injection for 

Gene Forward primer sequence  Reverse primer sequence  Product size 

 

Lgr5CreERT2 

 

CTG CTC TCT GCT CCC 

AGT CT 

Wildtype (WT): ATA CCC CAT 

CCC TTT TGA GC 

 

WT=298 bp;  

Mutant=174 bp 
Mutant: GAA CTT CAG GGT CAG 

CTT GC 

 

Apcfl/fl 

GTT CTG TAT CAT GGA 

AAG ATA GGT GGT C 

CAC TCA AAA CGC TTT TGA 

GGG TTG ATT C 

WT=266 bp;  

Targeted=315 bp 

 

 

Foxp3DTR 

WT: TGG ACC GTA GAT 

GAA TTT GAG TT 

WT: CCA GAT GTT GTG GGT 

GAG TG 

 

WT= 500 bp; 

HOM= 650 bp 
HOM: GGG ACC ATG AAG 

CTG CTG GCC G 

HOM: TCA GTG GGA ATT AGT 

CAT GCC 

 

Cre 

TGA CCG TAC ACC AAA 

ATT TG 

ATT GCC CCT GTT TCA CTA TC  

1000 bp 

 

 

Apcmin 

 

TTC TGA GAA AGA CAG 

AAG TTA 

WT: GCC ATC CCT TCA CGT 

TAG 

 

WT=450 bp 

Apcmin = 200 bp 
APCmin: TTC CAC TTT GGC ATA 

AGG C 
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4 consecutive days and sacrificed 15 days after the beginning of the treatment. Injections 

were done using a 1 ml syringe (BD Plastik) and a 25 G needle (BD Microlance3). 

Tamoxifen injection allowed the activation of the Cre-recombinase and deletion of the 

Apc gene in the ISCs. 

 

2.4.2 Depletion of Immune Cells or Neutralization of Cytokines 
 

2.4.2.1 Administration of Diphtheria Toxin (DT)  

 
For in vivo depletion of Foxp3+ Treg cells 15 µg/Kg DT (Sigma), diluted in sterile 

phosphate buffered saline (PBS, ThermoFisher Scientific) was IP injected every other 

day for 15 days. Injections were done using a 1 ml syringe and a 26 ½ G needle (BD 

Microlance3).  

 

2.4.2.2 Administration of CD4 Depleting Antibody 

 
The CD4 depleting antibodies (clones YTS-191 & YTS-3) were gratefully received 

from Professor Awen Gallimore. These clones were grown and purified in Professor 

Awen Gallimore lab as previously described (Jones 2002). Mice were injected with 2 mg 

of each clone at day -1 and again one week later. Injections were done using a 1 ml 

syringe and a 26 ½ G needle (BD Microlance3). 

 

2.4.2.3 Administration of CD8 Depleting Antibody 

 
CD8+ depletion was achieved by IP injection of a depleting anti-CD8 monoclonal 

antibody (InVivoMab, clone YTS-169) (Bioxcell). The antibody was diluted in the 

InVivoPure pH 7.0 Dilution Buffer (Bioxcell) and 250 µg were injected at day -1 and 100 

µg one week later. Injections were done using a 1 ml syringe and a 26 ½ G needle (BD 

Microlance3). 

 

2.4.2.4 Administration of Interferon-gamma (IFNγ) Neutralising Antibody 

 
IFNγ neutralisation was achieved by injecting the mice with 2 mg of a neutralising 

IFNγ antibody (clone XMG1.2) at day -1 and with 1mg one week later. Injections were 

done using a 1 ml syringe and a 26 ½ G needle (BD Microlance3). Similar to the CD4 

depleting antibody, the XMG1.2 clone was grown and purified in Professor Awen 

Gallimore lab as previously described (Jones 2002). 
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2.5 Tissue Harvesting and Processing 
 

All experimental animals were culled by cervical dislocation according to the Home 

Office Licence procedures (schedule 1 of Animals (Scientific Procedures) Act 1986). The 

tissues were dissected immediately after the animal sacrifice in order to avoid 

degradation of RNA (Ribonucleic Acid) and proteins. 

 

2.5.1 Dissection of Organs 

 
Mice were dissected in a designated area using a dissection kit. The abdomen 

was sprayed with 70% ethanol and it was opened longitudinally through the skin and 

smooth muscle wall. Spleen, a part of the liver and kidney were collected and fixed 

immediately as described in section 2.5.3. For flow cytometry experiments the whole 

spleen and mesenteric lymph nodes (MLN) were collected and placed in tubes 

containing RPMI 1649 medium supplemented with GlutaMAX (Life Technologies), 

penicillin/streptomycin (Thermo Fisher Scientific) and 5% Foetal Bovine Serum (FBS) 

(Thermo Fisher Scientific).   

 

2.5.2 Dissection of Intestines 

 
The stomach and caecum were dissected out and discarded. The small intestine 

and the large intestine were flushed with HBSS (phenol red, calcium and magnesium 

free (Thermo Fisher Scientific) containing HEPES buffer (Gibco) (1:100). Depending on 

the purpose, the intestines were processed in different ways that will be described below. 

For tissue fixation, the small intestine was opened longitudinally and sections with 

different sizes were rolled into a “Swiss roll-like” structures using dissection tweezers, 

pinned with a needle and fixed in 10% formalin (Sigma-Aldrich) (section 2.5.3). The 

whole large intestine was rolled into “Swiss-like rolls” and fixed (section 2.5.3). 

For gene expression analysis, a section of the small intestine (between the 5th cm 

of the small intestine and the 12th cm) was opened longitudinally and cut into small 

fragments. The intestinal fragments were brought to the main laboratory in a 50 ml tube 

with HBSS containing HEPES buffer. 

For flow cytometry analysis the whole small and large intestines were open 

longitudinally and cut into small fragments that were placed into in a 50 ml tube with 

HBSS containing HEPES buffer. 
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2.5.3 Tissue Fixation 

 
All tissues were quick-fixed in 10% neutral buffered formalin (Sigma-Aldrich) for 

24 hours at 4 ºC. After that, the formalin was replaced by 70% ethanol (EtOH) and kept 

at 4 ºC until paraffin embedding. 

 

2.5.4 Paraffin Embedding  
 

After the fixation, the tissues were transferred to an embedding cassette 

(ThermoFisher Scientific) and processed using an automated processor (Leica TP1050). 

The tissues were dehydrated by immersion into increasing alcohol gradients (70% EtOH 

for 1 h, 95% EtOH for 1 h, 2x 100% EtOH for 1.5 h and 100% EtOH for 2 h) and 2x xylene 

for 2 h. Following the dehydration, the tissues were placed in liquid paraffin 3x for 1h 

each. The samples were then removed from the cassette and embedded in paraffin wax 

by hand and allowed to harden. 

 

2.5.5 Sectioning of Paraffin Embedded Tissue  
 

In order to prepare the tissue for Haematoxylin and Eosin staining (H&E, section 

2.6.2) and immunohistochemistry (IHC, section 2.6.3), the paraffin embedded tissue was 

cut by a microtome (Leica RM2135) to 5 µm sections. The sections were placed on Poly-

L-Lysine (PLL) coated slides and baked at 58 ºC for 24 h. 

Paraffin embedding, sectioning and H&E staining were performed by Derek 

Scarborough and Mark Isaac. 

 

2.6 Histological Analysis 
 

2.6.1 Preparation of Sections for H&E and IHC 

 
Paraffin embedded tissue sections on PLL slides were dewaxed by immersion in 

xylene (Fisher Scientific) 2x for 5 min. The PLL slides were then rehydrated through 

incubations in a gradient of decreasing EtOH (VWR) (2x 3min in 100% EtOH, 1x 3min in 

95% EtOH, 1x 3min 75% EtOH). The slides were removed and placed in dH2O in 

preparation for IHC staining. 
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2.6.2 Haematoxylin and Eosin (H&E) Staining 

 
H&E was performed to allow the visualization of tissue morphology. Haematoxylin 

stains the cell nuclei, whereas Eosin marks the cytoplasm. 

PLL slides were dewaxed and rehydrated as previously described (section 2.6.1) 

and immersed in Mayer´s Haemalum (R.A. Lamb) for 45 secs, removed and briefly 

washed in running tap water. Slides were then stained with 1% Eosin (R.A. Lamb) 

solution for 5 min and washed again in running tap water to remove excess stain. Slides 

were dehydrated and mounted as described in section 2.6.3.7. 

 

2.6.3 Immunohistochemistry (IHC) 
 

IHC enabled the visualization of presence and location of specific proteins in the 

tissue PLL samples. The generic protocol will be described below, whereas the specific 

conditions for each target are described in Table 2.3. 

 

2.6.3.1 Blocking of Endogenous Peroxidise Activity 

 
The visualization of the antibodies involves an enzymatic reaction catalysed by 

horse radish peroxidase (HRP), so it is essential to block endogenous peroxidase 

activity. The slides were placed for 35 min in a peroxidase block solution (832 mg Citric 

Acid (Sigma-Aldrich), 2.2 g Sodium Dihydrogen Phosphate Dihydrate (H₂NaO₄P * 2 H₂O, 

Fluka), 10 ml of 30% Hydrogen Peroxide (H2O2, Sigma-Aldrich) in 200 ml dH2O). 

 

2.6.3.2 Antigen Retrieval 

 
During fixation of the tissue it is possible that cross-linking bonds of amino-acids 

could form, altering the biochemistry of the proteins and masking the epitope of interest. 

When this happens, the epitope is no longer able to bind to the primary antibody having 

a negative impact on the IHC. Performing antigen retrieval allowed the unmasking of the 

antigen, restoring the epitope-antibody binding. 

Slides were boiled in a pre-warmed solution of Tris Buffered EDTA (stock solution: 

12.1 g of Tris Base (Fisher Scientific) and 0.93 g of EDTA (Sigma-Aldrich) in 50 ml dH2O; 

working solution: 20 ml of the stock solution in 1 L dH2O, pH 8.0) for 50 min in a 1.5L 

beaker at approximately 225 ºC. Following the antigen retrieval, the slides were left (in 

Tris EDTA buffer) at RT for 30 min to cool down. After that, they were washed 3x for 3 

min in 1x PBS (Fisher Scientific). 

A circle around each section was draw using an ImmEdge PAP pen (Vector Labs), 

and slides were placed in a humidified chamber. 
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2.6.3.3 Blocking of Non-specific Antibody Binding 

 
Tissue sections were incubated for 30 min with normal serum that was derived 

from a different species that the primary antibody was raised in. Details of the serum for 

each antibody are indicated in Table 2.3.  

 

2.6.3.4 Primary Antibody Treatment 

 
After blocking non-specific binding of the antibody, the serum was removed and 

the primary antibody, previously diluted in 1% Bovine Serum Albumin (BSA, Sigma-

Aldrich), was applied and incubated. Slides were washed 3x 3 min in PBS. Slides were 

covered with parafilm (Sigma-Aldrich) in order to guarantee the hydration of the tissue 

and equal distribution of the antibody. Slides were washed 3x 3 min in PBS.  The 

conditions for each antibody can be found in the Table 2.3. 

 

2.6.3.5 Secondary Antibody Treatment 

 
The secondary antibody was chosen to recognise specifically the primary 

antibody species and isotype. The tissue sections were incubated with the secondary 

antibody for 30 min at RT. Slides were washed 3x 3 min in PBS.  Details of the secondary 

antibodies are in Table 2.3. 

 

2.6.3.6 Visualization of Antibody Binding 

 
To visualize the target protein antigen, its location and relative levels in the tissue 

sections an enzyme-specific, chromogenic colour development was used according to 

manufacturer’s recommendations. Slides were incubated with the appropriate 

chromogen for 3 min at RT and washed 1x 3 min in dH2O and 3x 3 min in PBS.  The 

chromogens utilised for each antibody are shown in Table 2.3. 

 

2.6.3.7 Dehydration and Mounting of Slides 

 
Slides were placed for 50 secs in Mayer’s medium for counterstain and briefly 

washed in running water until becoming clear. Sections were dehydrated in ascending 

alcohol concentrations (1x 2 min 70%, 1x 2 min 95%, and 2x 2min 100%) and 2x 5min 

in xylene. Slides were mounted using DPEX (ThermoFisher Scientific) and appropriate 

coverslips (ThermoFisher Scientific) and left to dry overnight. 

Slides were scanned in the Axio Scan.Z1 Zeiss, using a 20x magnification. 
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Table 2.3 Antibody-specific conditions used for IHC 

 

Primary 

antibody 

 

Manufacturer 

 

Serum 

Block 

Primary 

antibody 

conditions  

 

Secondary 

antibody 

 

Chromogen 

 

 

Anti-

Mouse/Rat 

Foxp3 

 

 

 

eBioscience 

 

2.5% Normal 

goat serum 

(Vector 

Labs) 

 

 

1:500, 

O/N at 4 ºC 

 

Anti-Rat 

(Mouse 

adsorbed) 

(ImmPRESS 

HPR, Vector 

Labs) 

 

DAB 

(Peroxidase 

substrate kit, 

Vector Labs) 

 

 

Rat Anti-

Mouse CD8 

 

 

 

eBioscience 

 

2.5% Normal 

goat serum 

(Vector 

Labs) 

 

 

1:200, 

O/N at 4 ºC 

 

Anti-Rat 

(Mouse 

adsorbed) 

(ImmPRESS 

HPR, Vector 

Labs) 

 

DAB 

(Peroxidase 

substrate kit, 

Vector Labs) 

 

 

Rat Anti-

Mouse CD4 

 

 

 

 

eBioscience 

 

2.5% Normal 

goat serum 

(Vector 

Labs) 

 

 

1:100, 

O/N at 4 ºC 

 

Anti-Rat 

(Mouse 

adsorbed) 

(ImmPRESS 

HPR, Vector 

Labs) 

 

DAB 

(Peroxidase 

substrate kit, 

Vector Labs) 

 

Rabbit Anti-

Human CD3 

(Polyclonal) 

 

 

 

DAKO 

 

2.5% Normal 

horse serum 

(Vector 

Labs) 

 

 

1:300, 

O/N at 4 ºC 

 

 

Anti-Rabbit 

(ImmPRESS 

HPR, Vector 

Labs) 

 

VIP 

(Peroxidase 

substrate kit, 

Vector Labs) 

 

 

Anti-Mouse 

Beta-catenin 

 

 

 

BD 

Biosciences 

 

 

1% BSA 

 

 

1:100, 

1h30 at RT 

 

Anti-Mouse 

(ImmPRESS 

HPR, Vector 

Labs) 

 

SG 

(Peroxidase 

substrate kit, 

Vector Labs) 
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2.7 Cell Counting 
 
 To quantify histological sections the images that were acquired in the Zeiss Axio 

Scan.Z1 slide scanner were analysed using the ZEN image analysis software. Analysis 

was done from areas that were not crosscut and without staining artifacts. At least four 

biological replicates per cohort were analysed. Statistical analysis was conducted as 

explained in section 2.13. 

 

2.7.1 Total Tumour Burden 
 

To analyse the total tumour burden, the whole crypts touching the basement 

membrane with positive nuclear B-catenin staining (aberrant crypts), from both small and 

large intestines, were counted. The paraffin embedded tissues were cut into three serial 

sections separated by 120 µm distance to avoid the quantification of the same aberrant 

crypts. Data was normalised by counting the total number of whole crypts touching the 

intestinal basement membrane. 

 

2.7.2 Partial Tumour Burden 
 

Partial tumour burden was analysed by assessing the number of whole crypts with 

positive nuclear B-catenin in 100 crypts of the first 5 cm of the small intestine. The 

average number of aberrant crypts was calculated and the mean across the cohorts was 

determined. 

 

2.7.3 Apoptotic Index 

 
Apoptotic index was determined from H&E sections. Apoptotic bodies were 

identified based on their appearance and their number was scored per crypt from 25 

whole crypts. The average number of mitotic cells was calculated and the mean across 

the cohorts was determined. 

 

2.7.4 Scoring of Immune Cell Types 

 
The number of Tregs was determined by Foxp3 IHC staining. Cells were quantified 

in both small and large intestines in the Lgr5CreERT2 Apcfl/fl mouse model in the 

surrounding tissue of normal and aberrant crypts of at a minimum number of 5 fields of 

view of at least 50μm2. Foxp3 scoring was performed by Dr. Lee Parry prior the start of 

my project.  
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For the Apcmin mouse model, the number of Tregs was quantified in polyps and in 

a similar area of the surrounding normal tissue of the small intestine. The area was 

determined using the ZEN image analysis. Data were normalised by the number of Tregs 

per 1000μm2. 

The number of CD4 and CD8+ T-cells was determined by CD4 and CD8 

respectively IHC staining. Cells were counted from 25 normal and 25 aberrant whole 

crypts. The average number of positive cells was calculated and the mean across the 

cohorts was determined. 

 

2.8 Intestinal Epithelial Cells Extraction for Gene Expression Analysis  
 

After dissecting the tissue (section 2.5.2), the fragments were washed gently 3x 

with HBSS containing HEPES (1:100). The supernatant was discarded, 10ml 8mM EDTA 

(Sigma-Aldrich) were added to the intestinal fragments and left incubating on ice for 30 

min. After that, falcon tubes containing the fragments were shaken vigorously, before 

being allowed to settle. Supernatant was collected into a fresh 50ml tube containing 10ml 

complete RPMI 1649 medium supplemented with GlutaMAX (Life Technologies), 

penicillin/streptomycin (Thermo Fisher Scientific) and 10% Foetal Bovine Serum (FBS) 

(Thermo Fisher Scientific). Further 10ml complete RPMI media were added to the 

fragments and re-shaken. Fragments were filtered through a 70 µm cell strainer (MACS) 

and supernatant collected. The 50ml tubes containing the supernatant were spun down 

at 1000rpm for 5 minutes. Supernatant was discarded and pellet was re-suspended in 

1ml RNA later (Sigma-Aldrich). 

 

2.9 RNA extraction 
 

The intestinal epithelial cells extracted (section 2.7) were disrupted with 500 µl RLT 

buffer (QIAGEN) and the RNA was purified with RNeasy mini kits (QIAGEN) according 

to manufacturer’s recommendations. RNA was quantified using a NanoDrop 2000 

spectrophotometer (ThermoFisher Scientific) and stored at -80 ºC. 

 

2.10 Gene Expression Analysis: Quantitative Real-Time PCR (qRT-PCR) 
 

RNA extracted (section 2.8) was reverse transcribed to generate complementary 

DNA (cDNA) using Superscript III Reverse Transcriptase (Invitrogen) according to the 

manufacturer’s instructions. Quantitative real-time PCR was performed using either 

TaqMan® (table 2.4) or SYBR® Green (Table 2.5) assays.  
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For the TaqMan® assays the reaction was performed in a final volume of 10 µl 

containing 2 µl of diluted (1:5) cDNA sample (200ng), 5µl of 2x Gene Expression 

TaqMan® Master Mix (Applied Biosystems) and 0.5µl of 20x TaqMan® Gene Expression 

Assay probes (Applied Biosystems).  

The SYBR® Green assays were performed in a final volume of 20 µl containing 1 

µl of cDNA sample (1000 ng), 10 µl of Fast SYBR® Green Master Mix (Applied 

Biosystems) and 0.5 of 10µM forward and reverse primers (Applied Biosystems). All 

samples were prepared in triplicate, including a blank for each target gene. 

Reactions were performed on an Applied Biosystems QuantStudio 7 Flex Real 

Time Machine. Relative expression of mRNA was calculated using the ΔΔCt method and 

ACT B was used as an internal control. Statistical analysis was conducted as explained 

in section 2.13.
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Table 2.4 TaqMan® qRT-PCR primers/probes 

 

 

Table 2.5 SYBR® Green qRT-PCR primers 

 

 

 

2.11 Flow Cytometry 
 

2.11.1 Preparation of Single Cells Suspensions from Tissues 
 

2.11.1.1 Spleen and Mesenteric Lymph Node (MLN) Lymphocyte Extraction 

 
Mice were harvested and spleen, MLN, small intestine (SI) and large intestine 

(LI) were collected as explained in section 1.5.1.  

Gene Identification Species Source 

ACTB (DQ) Mix 20x  Mus musculus Applied Biosystems 

Lgr5 Mm00438890_m1 Mus musculus Applied Biosystems 

Olfm4 Mm01320260_m1 Mus musculus Applied Biosystems 

Ascl2 Mm01268891_g1 Mus musculus Applied Biosystems 

Ifng Mm01168134_m1 Mus musculus Applied Biosystems 

Foxp3 Mm00475162_m1 Mus musculus Applied Biosystems 

Gene Forward sequence Reverse sequence Species Source 

ACTB TGT TAC CAA CTG 

GGA CGA CA 

GGG GTG TTG AAG 

GTC TCA AA 

Mus musculus Applied 

Biosystems 

Axin2 GCA GCT CAG CAA 

AAA GGG AAA T 

TAC ATG GGG AGC 

ACT GTC TCG T 

Mus musculus Applied 

Biosystems 

cMyc CTA GTG CTG CAT 

GAG GAG ACA C 

GTA GTT GTG CTG 

GTG AGT GGA G 

Mus musculus Applied 

Biosystems 

CIITA ACC CCC TAC ATC 

TCT ACC ACC T 

TCG CAG TTG ATG 

GTA TCT GTG T 

Mus musculus Applied 

Biosystems 
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Spleen and MLN were homogenized using the back of a 1ml syringe plunger 

through a 70 µm cell strainer (MACS) and rinsed through with 4ml complete RPMI. The 

single cell suspensions were centrifuged at 1500 rpm for 5 minutes, supernatant was 

aspirated. MLN pellet was resuspend in 0.5 ml. Spleen pellet was resuspend with 2 ml 

red blood cells lysis buffer (Sigma) for 2 min at 37°C. 10 ml of complete RPMI was then 

added in order to stop the reaction and cells were centrifuged at 1500 rpm for 5 minutes. 

Supernatant was discarded and the pellet was resuspend in 5 ml complete RPMI media.  

 

2.11.1.2 Small and Large Intestine Lymphocyte Extraction 

 
Both SI and LI were dissected and collected as explained in section 2.5.2. 

 

2.11.1.2.1 Intra epithelial lymphocyte (IEL) fraction. 

 
15 ml of pre-warmed complete RPMI media with 5mM EDTA were added to the 

tubes containing the tissue and they were placed in a thermomixer (Eppendorf) at 300 

rpm at 37°C for 20 minutes. Supernatant was collected, through a cell strainer, and 

placed to a fresh tube containing 5 ml complete RPMI media with 10 mM HEPES (Gibco). 

Another 15 ml of pre-warmed complete RPMI media with EDTA were added to the tissue 

and incubation was repeated in the thermomixer. Supernatant was collected and placed 

in the collection tube. 10 ml of complete RPMI media with HEPES were added to the 

tissue and incubation was repeated. Supernatant was collected and placed in the 

collection tube.  

 

2.11.1.2.2 Lamina propria lymphocyte (LPL) fraction 

 
In order to obtain the LPL fraction, the tissue was incubated in the thermomixer 

for 45 minutes with 10 ml complete RPMI media containing 1mg/ml collagenase VIII 

(Sigma) and 200U/ml DNAse II (Sigma). Whilst tissue was digesting, Percoll (GE Health 

Life Sciences) density gradients were prepared. Percoll solutions were prepared the day 

before using sterile PBS or RPMI in the tissue culture hood and kept overnight at 4°C.  

100% Percoll was prepared using 10X PBS (Fisher Scientific) (1:10), 75% and 30% 

Percoll were diluted in 1x PBS and the 40% Percoll in RPMI. A 15 ml tube was laid flat 

against the bench, with the head of the tube resting on its lid. Using a pipette pump, the 

40% Percoll solution (pink) was slowly layered on top of the 70% Percoll solution (clear), 

then the tube was carefully turned upright. The tubes were stored at 4°C for later use. 

Following digestion, 200 µl EDTA was added to the LPL fraction to inhibit collagenase 
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activity and the tissue was further disrupted in a gentleMACS dissociator (MACS). Cells 

from the LPL fraction were collected through a cell strainer and placed into a fresh tube.  

Tubes containing cells from SI (IEL & LPL) and LI (IEL & LPL) were centrifuged 

for 5 minutes at 1500 rpm. Supernatant was aspirated and resuspend in 3 ml 30% Percoll 

solution (clear). Carefully, it was added to the pre-prepared Percoll gradients as 

previously described. Tubes were centrifuged at 1800 rpm for 20 minutes with the brake 

off. Supernatant was aspirated until half of the 40% Percoll solution remained. 

Lymphocytes were collected and placed into a 15 ml tube containing 12 ml complete 

RPMI media, then centrifuged at 1500 rpm for 5 minutes. 

 

2.11.2 Cell Surface Staining 

 
0.2 – 1 x 106 lymphocytes from the different compartments (i.e. spleen, MLN, SI 

IEL, SI LPL, LI IEL and LI LPL) were plated out in a 96 round-bottomed well plate. Cells 

were washed twice in 200 µl PBS 1x. Dead cells were stained by adding and mixing well 

3 µl of aqua amine-reactive viability dye (LIVE/DEAD Aqua, Invitrogen), previously 

diluted in PBS 1x (1:10), to the cell pellet and incubated for 15 minutes in the dark at 

room temperature. Cold FACS buffer (PBS containing 2% FBS and 5mM EDTA) was 

used to wash twice the cells prior the incubation with 50 µl per well of Fc Receptor block 

(eBioscience) diluted (1:200) in FACS buffer. Cells were incubated at 4°C in the dark for 

10 minutes. After washing the cells twice with FACS buffer, they were stained with a 

surface stain panel (Table 2.3). A master mix of the antibodies, diluted in FACS buffer, 

was prepared and 25 µl of the mix was added to each well. Cells were incubated with 

the antibodies for 15 minutes at 4°C in the dark and washed twice in FACS buffer.  

 

2.11.3 Intracellular Antigen and Cytokine Staining 
 

To analyse intracellular cytokines, 0.2 – 1 x 106 cells were stimulated for 3 hours 

with complete RPMI media containing 50 ng/ml phorbol myristate acetate (PMA; Sigma 

– Aldrich), 1 µl/ml ionomycin (Sigma – Aldrich) and 5 µg/ml brefeldin A (Sigma – Aldrich). 

After the stimulation was completed, cells were fixed and permeabilized with 200 

µl of fixation / permeabilization solution (Foxp3 staining kit, eBioscience) overnight 

(maximum 16 hours) at 4°C in the dark. Cells were washed twice with 1x 

permeabilization buffer (eBioscience) and a master mix of the antibodies to stain 

intracellular markers/cytokines (Table 2.6) was prepared. The antibodies were diluted in 

1x permeabilization buffer and 25 µl of the master mix was added to each well. Cells 

were incubated for 30 minutes at 4°C in the dark and washed twice in 1x permeabilization 

buffer. Finally, the pellets were resuspend in 200 µl FACS/fix buffer (FACS buffer with  



51 
 

2% formaldehyde (Fisher Scientific)). Single staining and Fluorescent Minus One (FMO) 

controls were included in the analysis. FMO’s correspond to a sample that is incubated 

with the antibodies minus a specific one, helping in the choice of the correct position of 

gates during the analysis. Samples were run in a NovoCyte ® 3000 cytometer. 

 

Table 2.6 Flow Cytometry Antibodies 

 

 

Antibody 

 

 

Fluorochrome 

(Conjugate) 

 

Clone 

 

Isotype 

 

Dilution 

 

Company 

Surface Antibodies      

 

Anti-Mouse CD3 

 

 

AF488  

 

145-2C11 

Armenian 

hamster 

IgG 

 

1 in 50 

 

eBioscience 

 

Anti-Mouse CD4 

 

 

BV421  

 

GK1.5 

Lewis 

IgG2b, κ 

 

1 in 80 

 

 

BD Biosciences 

 

Rat Anti-Mouse 

CD8 

 

 

APC-H7  

 

53-6.7 

 

LOU/M 

IgG2a, κ 

 

1 in 100 

 

BD Biosciences 

Intracellular 

Antibodies 

     

 

Anti-Mouse/Rat 

Foxp3 

 

 

PeCy7 

 

FJK-16s 

 

IgG2a, 

kappa 

 

1 in 50 

 

eBioscience 

 

Anti-Human/Mouse  

Granzyme B 

 

 

APC 

 

 

QA16A02 

 

 

Mouse 

IgG1, κ 

 

1 in 50 

 

Biolegend 

 

Rat Anti-Mouse 

 IL-17A 

 

 

PE 

 

TC11-

18H10 

 

Lewis 

IgG1, κ 

 

1:100 

 

BD Pharmingen 

 

Rat Anti-Mouse 

IFN- 

 

 

PerCP-

Cy™5.5 

 

XMG1.2 

 

Rat IgG1, 

κ 

 

1 in 50 

 

BD Pharmingen 
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2.11.4 Flow Cytometry Analysis 
 

Flow cytometric data were analysed using the FlowJo version 10 and NovoExpress 

software. Gating strategy is represented in Figures 2.1 – 2.5. 
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Lymphocytes were identified based on forward (FSC) and side scatter (SSC) characteristics. Then, live cells were gated based on negative Amcyan staining. 

Single cells were gated based of forward scatter area (FSC-A) and height (FSC-H) characteristics. CD3+ cells were gated from singles cells and both CD4+ 

and CD8+ cells were gated from CD3+ cells. Fluorescence Minus One (FMO) controls were used to help the gating correctly the populations of interest. The 

same gating strategy was applied to all the markers analysed in each cell compartment. 

  

Figure 2.1  Representative flow cytometry plots showing gating strategy and examples of FMO’s in the spleen. 
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Figure 2.2 Gating strategy for flow cytometry analysis of the indicated markers in each cell 

compartment analysed (spleen, MLN, SI IEL, SI LPL, LI IEL and LI LPL). 
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Figure 2.3 (Continuation) Gating strategy for flow cytometry analysis of the indicated markers in 

each cell compartment analysed (spleen, MLN, SI IEL, SI LPL, LI IEL and LI LPL). 
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Figure 2.4 (Continuation) Gating 

strategy for flow cytometry analysis 

of the indicated markers in each cell 

compartment analysed (spleen, 

MLN, SI IEL, SI LPL, LI IEL and LI 

LPL). 
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Figure 2.5 (Continuation) Gating 

strategy for flow cytometry 

analysis of the indicated markers 

in each cell compartment 

analysed (spleen, MLN, SI IEL, 

SI LPL, LI IEL and LI LPL). 
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2.12 Lgr5 RNAscope® 
 

RNAscope allows the detection of RNA single molecules and their quantification 

in single cells. 

 

2.12.1 Preparation of Sections for RNAscope 
 

Prior to RNAscope, the PLL slides were baked in a dry oven for 1 h at 60°C. After 

that slides were dewaxed by immersion in fresh xylene 2x for 5 min and in 100% EtOH 

2x for 1 min. The slides were left to air dry for 5 min at RT. A circle around the tissue 

section was drawn using an ImmEdge PAP pen. 

 

2.12.2  Pre-treatment  
 

The pre-treatment of the tissue allows an improved accessibility to the target 

RNA. 

 

2.12.2.1 Blocking of Endogenous Peroxide Activity 

 
To block the activity of endogenous peroxides, the tissue was covered with H2O2 

(ACD Bio, pre-treatment 1) for 10 min at RT. After that, the H2O2 was removed and the 

slides were washed 2x for 5 min in dH2O. 

 

2.12.2.2 Antigen Retrieval 

 
Slides were boiled in a pre-warmed Target Retrieval (ACD Bio, pre-treatment 2) 

solution for 15 min in a 1.5 L beaker at approximately 100°C. Slides were carefully 

removed and washed 2x for 5 min in dH2O.  

 

Slides were washed briefly with 5 dips in EtOH and left to dry at RT either for 5 

min or overnight. 

 

2.12.2.3 Protease plus Treatment  

 
Together with the antigen retrieval, the protease plus treatment allow the 

RNAscope probes to access RNA by breaking cross links that could have occurred 

during the tissue fixation. 
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Slides were covered with protease plus (ACD Bio, pre-treatment 3) and incubated 

in a HybEZ oven at 40°C for 15 min. Slides were removed and washed 2x for 1 min in 

dH2O. 

 

2.12.3  Probe Hybridization 

 
The Lgr5 probe (mmLgr5, ACD Bio) was applied to the slides and placed in the 

HybEZ oven at 40°C for 2 h. A negative (dapB, ACD Bio) and a positive (mmPpib, ACD 

Bio) control were also included. Slides were removed and washed in 1x wash buffer 

(ACD Bio) 2x for 2 min.  

 

2.12.4  Probe Hybridization and Amplification 
 
The probe hybridization and amplification occur as a cascade of events. The 

probe amplification was done using the RNAscope® 2.5 HD Reagent Kit-BROWN (ACD 

Bio) kit. The conditions for the amplification steps are detailed in Table 2.7. Between 

each amplification step the slides were washed 2x for 2 min in wash buffer. 

 

Table 2.7 Amplification steps conditions 

Amplification Step Time (min) Temperature (°C) 

 #1 30  40 

 #2 15 40 

#3 30 40 

 #4 15 40 

 #5 30  RT 

 #6 15  RT 

 

2.12.5  Signal Detection 
 

To detect the signal the RNAscope® 2.5 HD Reagent Kit-BROWN (ACD Bio) kit 

was used. Equal volumes of DAB-A and DAB-B were mixed into an appropriate sized 

tube, dispensed on the tissue samples and incubated for 10 min at RT. The excess was 

disposed and the slides were washed 2x for 2 min in dH2O. 
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2.12.6  Counterstain and Slides Mounting 

 
Slides were placed in 50% haematoxylin diluted in Milli-Q H2O for 30 seconds at 

RT and briefly washed in running water until becoming clear. Slides were dehydrated in 

ascending alcohol concentrations (1x 2min 70% EtOH and 2x 2min 100% EtOH) and for 

5 min in xylene. Slides were mounted using DPEX and appropriated coverslips and left 

to dry overnight. 

 

2.12.7 RNAscope Analysis 
 

To analyse the RNAscope data, the number of punctate dots from 25 crypts and 

25 villi from the first 5 cm of the SI and LI were counted for each experimental group. 

 

 

2.13 Statistical Analysis 
 

Data presented were analysed using Graph Pad Prism 7 software. The Mann-

Whitney U test, unpaired and two-tailed was used and p values less than 0.05 were 

accepted as statistically significant different. For analysis of qRT-PCR gene expression 

Whitney U test, unpaired and one-tailed was used due to a small n number (number of 

mice per cohort) of some groups.
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3 Investigating the immune effects of Apc deficiency in the 

early stages of CRC 

3.1 Introduction 
 

The canonical Wnt pathway, a conserved signalling pathway involved in 

development, regeneration, survival and cell proliferation, is crucial to the maintenance 

of homeostasis within the intestinal epithelia. Deregulation of this pathway occurs in 80% 

of human CRCs, including the loss of function of the tumour suppressor gene APC, 

leading to aberrant stem cell differentiation (Mazzoni and Fearon 2014).  

The intestinal epithelium is a dynamic tissue where stem cells continuously 

proliferate, migrate and differentiate. Intestinal stem cells are found in the crypts and are 

generally known as Crypt Base Columnar (CBC) cells (Gerbe et al. 2011). CBC cells 

proliferate and originate the cell progenitors that migrate along the villi. Depending on 

the specific signals that are received, cell progenitors differentiate into the different cell 

types that are found in the intestine (e.g. Goblet cells, Paneth cells, and others) (Gerbe 

et al. 2011). This process of migration and differentiation is controlled by conserved 

signalling pathways such as Wnt signalling and Notch pathways. CBC cells, which are 

maintained by the Paneth cells, can be identified by the expression of markers such as 

Lgr5, Sox9 and Olfm4. It was demonstrated that, when the Apc gene is deleted, stem 

cells are transformed, do not differentiate and lead to the development of adenomas 

(Barker et al. 2009). 

Previous studies have demonstrated that CRC progression depends on the 

interaction between the tumour and the host immune environment, comprising diverse 

cell types. Some of these cells include the CD4+ T cell population, which comprises 

regulatory T (Treg) cells and conventional T helper (Th) cells. Several CD4+T cell 

subsets are found within these two broad categories (Szabo et al. 2003; Corthay 2009; 

Zhu and Paul 2010; Tripathi and Lahesmaa 2014; Kaplan et al. 2015; Vlad et al. 2015). 

Th cells activate other effector immune cells, controlling the adaptive immune 

response against foreign agents and cancer. On the other hand, Tregs are responsible 

for suppressing the activity of Th cells. Some of the specific functions of Tregs include: 

limiting inflammatory responses, the maintenance of tolerance to self-antigens tolerance 

thereby preventing the occurrence of autoimmune diseases, feto-maternal tolerance, 

suppression of allergy, and others (Corthay 2009). It is essential that a balance exist 

between the activities of these two cell populations. 
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The best Treg marker is Foxp3, a transcription factor that has an important role in 

the development, phenotype and functional maintenance of Tregs (Bennett et al. 2001; 

Fontenot et al. 2003). 

It has been demonstrated that evaluating the density of CD3+ T-cells may have a 

higher prognostic value when compared to the routinely used TMN stage (Galon et al. 

2006). While an increased tumour infiltration by some cell populations (e.g. CD8+ and 

CD45RO+) has been associated with favourable prognosis in CRC (Pages et al. 2005; 

Koch et al. 2006), the role of Tregs in this pathology is still unclear (Fontenot et al. 2003; 

Maeda et al. 2011). 

Previous studies have shown that CRC patients have an increased number of 

Tregs (Betts et al. 2012; Syed Khaja et al. 2017). As Tregs suppress the activity of 

cytotoxic T cells, they are considered to have an inhibitory effect on the anti-tumour 

immune response being associated with disease progression, thus CRC patients with 

increased levels of Tregs have a poor prognosis (Betts et al. 2012; Liu et al. 2014), 

however there are some contradictory studies which suggest that Tregs may limit 

disease progression, possibly through suppressing the activity of tumour-promoting 

inflammatory cells (Erdman et al. 2005).  

Considering that the majority of the previous studies were done in patients with 

advanced disease, I aimed to clarify the role of Tregs in the early stages of intestinal 

cancer, by analysing the immune changes in the murine intestines upon conditional Apc 

deletion in the intestinal stem cells (ISCs). 
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3.2 Results 
 

3.2.1 Characterisation of Treg cells during tumourigenesis in the Apcmin/+ 

mouse 
 
 Apcmin/+ mice develop multiple polyps that can progress to adenocarcinoma, 

mimicking what happens to patients with FAP disease (see section 1.4.1). Previous 

studies have demonstrated that Tregs accumulate in intestinal adenomas of Apcmin/+ mice 

(Akeus et al. 2014; Chae and Bothwell 2015). Akeus and colleagues have shown, in 

mice between 70 and 154 days old (d.o.), increased frequencies of Tregs in adenomas 

of Apcmin/+ mice when compared to surrounding normal tissue. 

 Here the number of Tregs in polyps present in the small intestine of Apcmin/+ mice 

and normal adjacent tissue from mice at 60 d.o. and 180 d.o was quantified. Data were 

normalised by the number of Tregs per 1000μm2. The minimum number of polyps 

present in a mouse was one and the maximum 13. 

 Intestinal sections were stained using IHC against B-catenin (grey) and Foxp3 

(brown). The polyps were identified by their aberrant position in the tissue or by the 

positive B-catenin nuclear staining in the small intestinal crypts.  

In accordance with previous reports (Akeus et al. 2014; Chae and Bothwell 2015) 

I found an increased number of Tregs in the polyps of 60 & 180 d.o. mice in comparison 

to normal surrounding tissue of the small intestine (Figure 3.1 Ai, Aii and 3.1 B). Despite 

comparable increases in total numbers of Tregs at both time points in polyps, when 

compared to normal adjacent tissue, the density and number of Tregs is reduced in the 

larger 180 d.o. polyps (Figure 3.1 B&C) when compared to 60 d.o. mice (Figure 3.1 B & 

C), indicating that Tregs accumulate in the polyps and may play a role in the early stages 

of the disease. 
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(A)Representative images of B-catenin (grey) and Foxp3 (brown) IHC staining of 60 d.o. and 180 

d.o. age matched mice in normal tissue and polyps. Tregs are identified with black arrows. (B) 

Scoring of the Foxp3 IHC stained cells revealed an increased number of Tregs in polyps (A ii) 

compared to normal tissue in 60 d.o. mice (A i). There is no significant different in the number of 

Tregs between normal tissue (A iii) and polyps (A iv) in 180 d.o. mice. (C) Quantification of the 

polyps area in 60 and 180 d.o. mice. Polyps have an increased area in older mice. (*) P value ˂ 

0.05, (****) P value ≤ 0.0001. Data represent the quantification of at least one polyp and 

surrounding normal tissue. The maximum number of polyps identified in a mouse was 13, n ≥ 4 

Figure 3.1 Tregs quantification in the small intestine of an Apcmin/+ mouse model. 
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mice. Two-tailed Mann Whitney U test. Error bars represent Standard Deviation (SD). Scale bars 

represent 50 µm.  
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3.2.2 Characterising Treg cells during initiation of intestinal tumourigenesis by 

conditional deletion of the Apc gene in the intestinal stem cells (ISCs) 
 

The Apcmin/+ mouse model is an important model for the study of intestinal 

tumorigenesis, but the requirement for a “second hit” to remove the WT allele limits 

studies of tumour initiation.   

To overcome the limitations of the Apcmin/+ model, we used the Lgr5CreERT2Apcfl/fl 

mouse model which allows temporal and conditional deletion of the tumour suppressor 

gene Apc and activation of the Wnt pathway in the Lgr5 ISCs. Detailed description of the 

mouse model can be found in section 1.4.3. Here, Treg numbers were characterized in 

the intestines by IHC, gene expression of Foxp3 in the small intestine and frequency of 

Foxp3 by flow cytometry in mice 15 days after ISC deletion of Apc. 

 

3.2.2.1 Apc deletion in ISCs increases the number and frequency of Tregs  

 
Paraffin sections of both non-induced and induced mice were stained with B-

catenin (grey), Foxp3 (brown) and CD3 (purple) antibodies. Tregs were quantified in both 

small (SI) and large (LI) intestines in at least 5 random fields of view of at least 50μm2. 

The IHC data demonstrates a significant increase in the number of Tregs, after Apc 

deletion, in both SI and LI when compared to non-induced mice (Figure 3.2).  

Relative gene expression was performed in RNA extracted from epithelial cells 

from the small intestine. Relative expression of mRNA was calculated using the ΔΔCt 

method and ACT B was used as an internal control. Relative gene expression analysis 

confirmed an increased expression of Foxp3 following Apc deletion (Figure 3.3). 

Analysis by flow cytometry demonstrated the expansion of Tregs in the small 

intestine intraepithelial lymphocytes (SI IEL), small intestine lamina propria lymphocytes 

(SI LPL) and large intestine intraepithelial lymphocytes (LI IEL) (Figure 3.4). Expansion 

of Treg cells was also demonstrated in the spleen and mesenteric lymph nodes (MLN) 

(Figure S 9.1), 

Taken together, these data show that Tregs start accumulating in the intestines 

and also other compartments (spleen and MLN), soon after the loss of function of the 

tumour suppressor Apc gene suggesting that Tregs play an important role from the early 

stages of intestinal cancer. 
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Representative images of β-catenin (grey) and Tregs (brown) IHC staining of SI (A) and LI (B) 

from non-induced mice; SI (C) and LI (D) from Apc deleted mice. Tregs are identified with yellow 

arrows. (E) Scoring of Tregs revealed an increased number of Treg. (****) P value ≤ 0.0001. Data 

represents the quantification of Tregs in at least 5 random fields of view of at least 50μm2, n ≥ 3 

mice. Two-tailed Mann Whitney U test. Scale bars represent 20 µm. This analysis was performed 

by Dr Lee Parry.

Figure 3.2 Tregs quantification in the Lgr5CreERT2Apcfl/fl mouse in small (SI) and large intestines 

(LI).   
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Apc deletion significantly upregulates the expression of Foxp3. Data represent a single 

experiment, n ≥ 3 mice per group.  (*) P value ˂ 0.05, One-tailed Mann Whitney U test. 

 

  

Figure 3.3 Relative gene expression of Foxp3 in the small intestinal epithelium.  
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Representative flow cytometry plots of the frequency of Tregs in the small and large intestines of 

non-induced and Lgr5CreERT2Apcfl/fl mice (A). Apc deletion increases significantly the frequency 

of Foxp3+ cells in SI IEL, SI LPL (B) and LI IEL (C). Data represent a single experiment, n ≥ 5 

mice per group. (*) P value ˂ 0.05, (**) P value ≤ 0.01, (***) P value ≤ 0.001, two-tailed Mann 

Whitney U test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Frequency of CD4+ cells expressing Foxp3 in the specified compartments of the small 

and large intestines.  

B C 
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3.2.2.2 Examining the effects of Apc deletion in T-cell populations  

 
Previous data showed for the first time that in the Lgr5CreERT2Apcfl/fl mouse model 

there is an increased number and frequency of Tregs following Apc deletion in the ISCs. 

To analyse further other immune changes caused by Apc deletion, it was performed flow 

cytometry for T-cell activation markers. Cells collected from the spleen, MLN, SI IEL, SI 

LPL, LI IEL and LI LPL were stained with CD3, CD4, CD8, Granzyme B, Foxp3, IL-17A 

and IFNγ antibodies.   

The gating strategy was based in the CD3, a T-cell marker, from which we further 

analysed the CD4+ and CD8+ T-cell sub-populations.  

The frequency of CD3+ cells, was not altered in the compartment examined 15 

days after ISC Apc deletion; SI (Figure 3.5 A), LI (Figure 3.5 B); spleen or MLN (Figure 

S 9.2), suggesting that Apc deletion does not impact in the total frequency of the T-cell 

population, however it might be different for each sub-population.  
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Apc deletion does not alter the frequency of CD3+ cells in any of the intestinal compartments (A, 

B). Data represent a single experiment, n ≥ 6 mice per group. Two-tailed Mann Whitney U test. 

 

 

 

 

  

Figure 3.5 Frequency of CD3+ T-cells in the specified compartments of the small and large 

intestines. 
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I next analysed the frequency of CD4+ and CD8+ cells. CD3+CD4+ cells were 

significantly increased in the SI IEL (Figure 3.6 A) and with no alterations in the SI LPL 

(Figure 3.6 A) or LI (Figure 3.6 B). There were no significant changes in the spleen 

(Figure S 9.3), but a decreased CD3+CD4+ cell frequency was observed in the MLN 

(Figure S 9.3)   

For the CD3+CD8+ cells, flow cytometry indicated no significant changes in this 

population in the SI (Figure 3.6 C), LI (Figure 3.6 D) or spleen (Figure S 9.4).  However, 

in contrast to the CD3+CD4+ cells, they were significantly increased in the MLN (Figure 

S 9.4). These data imply that ISC Apc deletion resulted in induction of a CD4+ cells 

immune response in the small intestine within 15 days. 
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Apc deletion resulted in a significantly increased frequency of CD4+ cells, but only in the SI IEL 

(A). There were no changes in the LI (B). Apc deletion didn’t alter the frequency of CD8+ cells in 

both SI and LI (C, D). Data represent a single experiment, n ≥ 5 mice per group.  (*) P value ˂ 

0.05, two-tailed Mann Whitney U test. 

 

Figure 3.6 Frequency of CD3+ T-cells expressing CD4 and CD8 in the specified compartments 

of the small and large intestines. 

D C 

B A 
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To further characterise this response, I analysed the expression of effector 

molecules Granzyme B, IL-17A and IFNγ which can be expressed by both CD3+CD4+ 

and CD3+CD8+ cell populations.   

The percentage of CD4+ cells producing Granzyme B is not affected in SI (Figure 

3.7 A), LI LPL (Figure 3.7 B) or spleen (Figure S 9.5) but significant increases are 

observed in LI IEL (Figure 3.7 B) and MLN (Figure S 9.5) as a result of Apc deletion. 

The frequency of Granzyme B produced by CD8+ T-cells is not affected in any of 

the cell compartments analysed after Apc deletion (Figure 3.7 C, D; Figure S 9.6). 

 These data suggest that Granzyme B does not have an impact in the early stages 

of intestinal cancer.   
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Apc deletion did not alter the frequency of CD4+ cells expressing Granzyme B in the SI (A) but 

increases significantly in the LI IEL (B). There are no changes in the LI LPL compartment (B). The 

frequency of CD8+ cells expressing Granzyme B is not affected after Apc deletion in both SI (C) 

and LI (D). Data represent a single experiment, n ≥ 4 mice per group. (***) P value ˂ 0.001, two-

tailed Mann Whitney U test. 

Figure 3.7 Frequency of T-cells expressing Granzyme B in the specified compartments of the 

small and large intestines. 
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IL-17A is an inflammatory cytokine that can be produced by either CD4+ or CD8+ 

cells, however the phenotype and function of CD8+ cells that are capable of producing 

IL-17A is poorly understood. There are studies showing that this cytokine plays a key 

role in the pathogenesis of autoimmune diseases and allergies, but it has been also 

demonstrated that it can have a protective role in the immunity against pathogens, 

indicating its controversial roles (Song and Qian 2013).  

Here, I show that, following Apc deletion, there are no alterations in the frequency 

of CD4+IL-17A+ cells in SI (Figure 3.8 A), LI (Figure 3.8 B) and MLN (Figure S 9.7), 

being only increased in the spleen (Figure S 9.7). It is important to note that there is a 

high variability in the frequencies of IL-17A in both SI and LI.  

The frequency of CD8+IL-17A+ cells is not altered in the SI following ISC Apc 

deletion (Figure 3.8 C), LI (Figure 3.8 D), spleen or MLN (Figure S 9.8). These data 

suggest that IL-17A does not participate the tumourigenesis in the early stages of 

intestinal cancer. 
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Apc deletion did not alter the frequency of CD4+ cells expressing IL-17A in the SI (A) and LI (B). 

The frequency of CD8+ cells expressing IL-17A is not affected in SI (C) or LI (D). Data represent 

a single experiment, n ≥ 5 mice per group. (**) P value ˂ 0.01, two-tailed Mann Whitney U test. 

Figure 3.8 Frequency of T-cells expressing IL-17A in the specified compartments of the small and 

large intestines. 
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Interferon gamma (IFNγ) is produced by a variability of immune cells including 

CD4+ T-cells (Th1), CD8+ T-cells, NK and NKT cells (Schoenborn and Wilson 2007).  

 The frequency of CD4+IFNγ+ cells is not altered in SI (Figure 3.9 A), LI (Figure 

3.9 B) and MLN (Figure S 9.9), being only increased in the spleen (Figure S 9.9) following 

Apc deletion. Again, it is observed a high variability in the frequencies of IFNγ in both SI 

and LI.  

Regarding to CD8+ IFNγ+ cells frequency, there are no significant changes in the 

SI (Figure 3.9 C), LI (3.9 D), spleen (Figure S 9.10) or MLN (Figure S 9.10). 

Similar to IL-17A, these data suggest that there are no alterations in the secretion 

of IFNγ+ following Apc deletion, indicating that it does not participate in the early stages 

tumourigenesis.   
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Apc deletion did not alter the frequency of CD4+ IFNγ+ cells (A, B) as well as CD8+ IFNγ+ cells 

(C, D) in both SI and LI. Data represent a single experiment, n ≥ 4 mice per group. Two-tailed 

Mann Whitney U test. 

  

Figure 3.9 Frequency of T-cells expressing IFNγ in the specified compartments small and large 

intestines. 
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3.3 Discussion 
 

CRC can arise by various genetic alterations, including the deletion of the Apc 

gene, which is part of the Wnt signalling pathway (Barker et al. 2009). It has been 

demonstrated that CRC progression also depends on the interaction between the tumour 

and the immune system (Corthay 2009). 

Previous studies have shown that CRC patients have an increased number of Treg 

cells (Syed Khaja et al. 2017). Some of these studies, including from our group (Clarke 

et al. 2006; Betts et al. 2012), indicate that an increased number of Tregs is associated 

with a bad prognosis. However, other studies have suggested the opposite; patients with 

increased levels of Tregs have a better prognosis (Sinicrope et al. 2009). Importantly, 

most of these studies were done in patients with advanced disease, however 

Rubinkiewicz and colleagues have demonstrated that Tregs increased in lymphocytic 

infiltrate of large intestinal polyps (Rubinkiewicz et al. 2016). Despite the fact that it is 

known that Tregs play a role in the pathology of intestinal cancer, there is still a need for 

clarification as to how Tregs actually promote malignant transformation.  

In this chapter I aimed to further study how the Tregs were affected in the early 

stages of intestinal cancer. To do this I started by analysing the number of Tregs in the 

small intestine of Apcmin/+ mice in two groups of age matched mice (60 and 180 d.o.). The 

Apcmin/+ mouse model develop multiple polyps in the intestine that can progress to 

adenocarcinoma. Mice of different ages gave information about the numbers of Tregs in 

the early (60 d.o.) and later (180 d.o.) stages of disease progression. I hypothesized that 

the number of Tregs would be higher in polyps compared to the normal surrounding 

tissue in both groups of mice. Data showed that, as expected, the number of Tregs is 

increased in the polyps of 60 d.o. mice relatively to the normal adjacent tissue. 

Surprisingly, the older mice (180 d.o.) did not have a significant increased number of 

Tregs in the polyps when compared to the normal adjacent tissue, despite the fact that 

the area of the polyps in these mice was bigger than those from the 60 d.o. mice. It is 

possible that the recruitment of Tregs occur primarily in the early stages of the disease 

and that in later stages there is a stabilization in the number of Tregs recruited. The data 

obtained is similar to those previously published by other groups, where it was reported 

an increased number of Tregs in the polyps when compared to normal adjacent tissue 

(Akeus et al. 2014; Chae and Bothwell 2015); however the data described here show 

that the significant increase in the number of Tregs occurs only in younger mice, 

indicating that Tregs may play an important role in very early stages of the disease. As 

previously described, the Apcmin/+ mouse model is a very useful tool to study early stages 

of intestinal cancer, however the requirement of a second “hit” to remove the WT allele 
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limits the study of tumour initiation. To overcome this issue, I used a genetically modified 

mouse model, the Lgr5CreERT2Apcfl/fl mouse model, where it is possible to conditionally 

delete the Apc gene in the ISCs in a temporal manner.  

It was demonstrated by IHC that, when the intestinal stem cell becomes malignant, 

there is an increased number of Tregs in both small and large intestines. This was also 

shown by an increase in the relative gene expression of Foxp3. The expression of 

Foxp3+ was examined by flow cytometry in different cell compartments including 

lymphocytes extracted from the spleen, MLN, epithelium and lamina propria from the 

whole small and large intestines (SI IEL, SI LPL, LI IEL and LI LPL respectively). Spleen 

and MLN were included in the flow cytometry analysis as they provide information about 

how the systemic response is affected in the different experimental groups. Apart from 

the LI LPL all the other cell compartments showed an increased frequency of CD4+ cells 

expressing Foxp3, confirming again the increased levels of Tregs following Apc deletion 

in the ISCs. 

To better understand the immune changes following Apc deletion, flow cytometry 

was performed in the previously indicated cell compartments for a panel of T-cell 

activation markers such as CD3, CD4, CD8, Granzyme B, IL-17A and IFNγ.  

Apc deletion did not alter the frequency of CD3+ cells in any of the compartments 

studied, suggesting that the total frequency T-cells was not altered, however changes in 

the frequencies of the CD4+ and CD8+ cells might have occurred. To further analyse 

this, I then looked at specifically CD4+ and CD8+ cells. These cells are associated with 

a good prognosis in patients with CRC (Diederichsen et al. 2003; Galon et al. 2006; 

Deschoolmeester et al. 2011; Shibutani et al. 2017). CD4+ T-cells include a range of 

different sub-populations that participate in the adaptive immune response by enhancing 

or suppressing the immune response. There were no significant changes in the 

frequency of CD3+CD4+ cells after Apc deletion in the spleen, however there was a 

significant decrease of CD4+ cells frequency in MLN. In the small intestine there was an 

increased frequency of CD4+ cells but only in the IEL compartment. There were no 

significant changes in the frequency of CD4+ cells in the large intestine. The frequency 

of CD3+CD8+ cells was not altered in most of the cell compartments as a consequence 

of Apc deletion in the ISCs.  

Salama and colleagues demonstrated that low expression of Granzyme B in CRC 

is associated with early metastatic invasion (Salama et al. 2011). Other studies have 

shown that high expression is associated with improved survival (Prizment et al. 2017) 

not only in CRC but other types of cancers such as lung and breast (Kontani et al. 2001).  

In this study, the frequency of CD4+ cells expressing Granzyme B was increased in the 
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MLN and LI IEL. There were no changes in the other cellular compartments. CD8+ cells 

expressing Granzyme B had no significant changes following Apc deletion.  

The proinflammatory IL-17A cytokine has been associated with various immune 

responses, not only in the pathogenesis of autoimmune diseases, allergic responses, 

but also tumorigenesis (Song and Qian 2013). Several studies have shown that IL-17A 

can either promote cancer or have an antitumor role in different cancer models including 

CRC (Murugaiyan and Saha 2009; Yang et al. 2016). In general, data do not show 

significant changes in the frequency of IL-17A expressed by either CD4+ or CD8+ cells. 

The only alteration observed, after Apc deletion, is in the CD4+ cells expressing IL-17A 

in the spleen, showing an increased frequency of IL-17A. It was observed a big variability 

in the frequencies of the mice that were studied making difficult the interpretation of the 

data. 

IFNγ is a critical cytokine in innate and adaptive immunity. Various studies have 

demonstrated that IFNγ plays an important antitumor role in CRC (Wang et al. 2015a; 

Katlinski et al. 2017; Liu et al. 2017). The frequency of CD4+ cells expressing IFNγ is 

only increased in the spleen. It was not observed any alteration in the frequency of 

CD8+IFNγ+ cells in any of the cell compartments. 

The numbers of Foxp3+ cells were significantly altered in the intestinal 

compartment 15 days after the initiation of tumorigenesis, implying an important role in 

the initiation of intestinal cancer. In general, however, our data show very little alterations 

in the expression of the T-cell activation markers analysed at the same time-point. It is 

possible that at this early time point, large scale changes in immune activation are not 

detectable. It is important to note that it was used the whole intestines in the flow 

cytometry analysis and thus alterations which may occur in distinct locations within the 

intestine may be missed. Performing other types of analyses, such as IHC and looking 

at the localization of the immune cells in normal tissue and lesions would most likely give 

more accurate information regarding the frequency and role of these cells in the early 

stages of intestinal cancer. The exact mechanism by which Tregs are attracted to the 

early lesions is still not clarified. Previous research showed that in the early stages of 

CRC there is the loss of the epithelial barrier, leading to the infiltration of bacteria and 

microbial products. This infiltration promotes the activation of immune cells that produce 

the cytokines IL-23 and IL-17, leading to tumour progression (Brenchley and Douek 

2012; Goldszmid and Trinchieri 2012) (Yang and Karin 2014). The integrity of the 

epithelial barrier was not accessed, however future experiments should include this 

analysis as this could explain the accumulation of Tregs in the early lesions. More 

recently, Biton and colleagues have shown that ISCs enriched with MHC-II can act as 

non-conventional antigen-presenting cells. Upon stimulation of these cells with antigens, 
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they were able to interact with Th cells. Possibly Apc deletion in ISCs would promote 

their antigen-presenting function, being able to attract Tregs to the site of the early lesion 

(Biton et al. 2018). In the future, ISCs Apc deleted cells could be sorted by Fluorescent 

–activated cell sorting (FACS) and their MHC-II expression analysed. Next, the capacity 

of ISCs Apc deleted cells to activate Tregs could be tested in vitro.  

In summary, in this chapter, it was shown that Tregs increase in number and 

frequency, following Apc deletion in the ISCs, in different cells compartments, particularly 

in the intestines, indicating a possible impact on cancer development in the intestine. To 

investigate whether Tregs play a pro- or anti-tumoral role in our mouse model, I 

considered it important to examine the consequences of their depletion on tumour 

development. This is detailed in the next chapter. 
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4 Investigating the effects of Treg depletion after loss of Apc 

gene in the ISCs 

4.1 Introduction 
 

Tregs have been associated with disease progression (Clarke et al. 2006; Betts et 

al. 2012; Syed Khaja et al. 2017). Previous studies have shown an increased frequency 

of Tregs in both CRC patients and mouse models of intestinal cancer (Akeus et al. 2014; 

Chae and Bothwell 2015), however the role of these immune cell population in the early 

stages of intestinal cancer remains unclear. In the previous chapter I showed that Tregs 

accumulate as soon as 15 days after Apc deletion. It was also showed increased 

frequency of Foxp3+ cells in the spleen, MLN, SI IEL, SI LPL and LI IEL. This correlated 

with a significant increase in the relative gene expression of Foxp3 in the epithelial cell 

compartment of the small intestine. 

Other studies have shown that depletion of Tregs in combination with other 

therapies improved the survival of patients with metastatic CRC (Scurr et al. 2017a; Scurr 

et al. 2017b). Studies performed in other mouse models have also shown reduction in 

the tumour progression by depleting Tregs (Akeus et al. 2015; Colbeck et al. 2017).  

In this chapter I sought to establish the impact of Treg depletion on the pro-

tumorigenic aberrant crypts produced by Apc deficient ISCs, by characterising the ISCs, 

target genes of the Wnt pathway and changes to the immune profiles in the early stages 

of intestinal cancer.    
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4.2 Results 
 

4.2.1 Treg cell depletion reduces tumorigenic potential in the 

Lgr5CreERT2Apcfl/flFoxp3DTR mouse model  
 

4.2.1.1 Total tumour burden 

 

I started by quantifying the number of aberrant crypts in the whole small and large 

intestines of mice with ISC Apc deletion alone or with Treg depletion as well. Mice were 

either injected with tamoxifen to delete the Apc gene (Lgr5CreERT2Apcfl/fl) or with both 

tamoxifen and diphtheria toxin (DT) to achieve Apc deletion and Treg depletion 

respectively (Lgr5CreERT2Apcfl/flFoxp3DTR). Based on previous experiments, the standard 

Cre induction regime of a single i.p. dose of tamoxifen for four consecutive days results 

in extensive Apc ISC deletion preventing analysis of single aberrant crypts. To overcome 

this, I reduced the induction regime to tamoxifen administration for two consecutive days. 

For experiments requiring concurrent depletion of Tregs, mice were administered DT the 

day before the first tamoxifen injection and then every other day for the duration of the 

experiment. Mice were dissected 15 days after the first treatment. For analysis, paraffin 

embedded tissues were cut into three serial sections of 5 µm separated by 120 µm. 

Slides were stained with a -catenin antibody (section 2.6.3) and entire crypts from both 

small and large intestines which stained positive for nuclear β-catenin staining (aberrant 

crypts), were counted (section 2.7.1). 

The number of aberrant crypts in the small intestine (SI) were reduced, although 

not significantly, in Apc deleted/Treg depleted mice (Figure 4.1 Aii; B) when compared 

to Apc deleted mice (Figure 4.1 Ai; B). In the large intestine (LI) the number of aberrant 

crypts were significantly reduced in Apc deleted/Treg depleted mice (Figure 4.1 Aiii, iv; 

C). Overall, these data suggest that Tregs may play a pro-tumoral role in the early stages 

of intestinal cancer, particularly in the LI. 
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Representative images of B-catenin (grey) IHC staining of SI (i) and LI (ii) from Apc deleted mice 

(Lgr5CreERT2Apcfl/fl), SI (iii) and LI (iv) from Apc deleted/Treg depleted mice 

(Lgr5CreERT2Apcfl/flFoxp3DTR). Black arrows indicate aberrant crypts. (B) There is a trend for a 

reduced number of aberrant crypts with Apc deletion/Treg cells depletion in the SI. (C) The 

Figure 4.1 Tumour burden analysis in the SI and LI. 

B C 
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number of aberrant crypts is significantly reduced in the LI in Apc deleted/Treg depleted mice. 

Data represent a single experiment, n=5 mice per group. (**) P value ≤ 0.01, two-tailed Mann 

Whitney U test. Error bars represent Standard Deviation (SD). Scale bars represent 50 µm. 
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4.2.1.2 Evaluating the apoptotic index following Apc deletion and Treg depletion 

 

To understand why Treg depletion in an Apc deleted mouse decreased the 

number of aberrant crypts, I analysed the apoptotic index within the crypts. Slides from 

the groups that were previously described in the tumour burden analysis were stained 

with H&E and apoptotic bodies were identified in small intestinal crypts by their 

morphology such as cell shrinkage, chromatin condensation and the presence of a 

border and their number was scored per crypt from 25 whole crypts. The average number 

of mitotic cells was calculated and the mean across the cohorts was determined. Mice 

with Apc deletion/Treg depletion had a significantly increased apoptotic index when 

compared to non-induced or Apc deleted mice. Treg depletion alone had a similar 

apoptotic index to Apc deleted/Treg depleted mice. Interestingly, Apc deleted/Treg 

depleted mice had an increased average number of apoptotic bodies in aberrant crypts 

when compared to normal crypts, indicating that Treg depletion affected aberrant but not 

normal crypts (Figure 4.2).  
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(A)Representative images of H&E from crypts of non-induced, Treg depleted, Apc deleted and 

Apc deleted/Treg depleted mice. (B) The average number of apoptotic bodies is significantly 

increased with Apc deletion. As a result of Treg depletion there was an increased number of 

apoptotic bodies. Aberrant crypts in both Apc deleted and Apc deleted/Treg depleted mice had a 

significant higher number of apoptotic bodies when compared to normal adjacent crypts. Data 

represent a single experiment, n=5 mice per group. (**) P value ≤ 0.01, two-tailed Mann Whitney 

U test. Scale bars represent 10 µm.  

  

Figure 4.2 Apoptotic index in the small intestinal crypts. 
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4.2.1.3 Evaluating the gene expression of Wnt and ISC markers following Apc deletion 

and Treg depletion 

 

Deletion of Apc leads to constitutive activation of the canonical Wnt signalling 

pathway perturbing homeostatic control of intestinal epithelia (Sansom et al. 2004). 

Previous data have shown that Treg depletion in Apc deleted mice significantly reduced 

the intestinal tumour burden. To verify whether this reduction was reflected in a reduced 

activation of the Wnt signalling, gene expression of Wnt markers was analysed in RNA 

extracted from small intestinal epithelial cells by qRT-PCR (see section 2.8). Relative 

expression of mRNA was calculated using the ΔΔCt method and ACT B was used as an 

internal control. 

As expected, deletion of the Apc gene in the mouse ISCs (Lgr5CreERT2Apcfl/fl) 

caused a significant upregulation of the Wnt markers when compared to mice that were 

not induced with tamoxifen (non-induced) (Figure 4.3). I hypothesised that depleting 

Tregs in an Apc deleted mouse would decrease the expression of Wnt and ISC markers. 

In this analysis I have included, apart from the previously described groups (Non-induced 

and Lgr5CreERT2Apcfl/fl), two more experimental groups. Foxp3DTR corresponds to the 

group of mice that were injected only with DT, every other day for 15 days to deplete 

Tregs. Looking at the effects of Treg depletion alone would clarify what responses were 

mainly due to this immune alteration and independent of Apc deletion. The other 

experimental group was the Lgr5CreERT2Apcfl/fl Foxp3DTR mice that was injected for four 

consecutive days with tamoxifen, to delete the Apc gene as well as with DT every other 

day for 15 days to deplete Tregs, allowing the analysis of the effects of Treg depletion in 

the early stages of intestinal cancer. It was observed that Treg depletion alone 

(Foxp3DTR) did not alter the expression of Wnt target gene Axin2 but significantly 

upregulated c-Myc (Figure 4.3). However, the increase in Wnt target gene expression 

associated with ISC deletion of Apc is attenuated, significantly for Axin2, in the absence 

of Treg cells (Figure 4.3).  This finding is in keeping with the reduction in the number of 

aberrant crypts observed in this model.   

The aberrant crypts are supported by ISCs. The expression of the ISCs markers 

Lgr5, Olfm4 and Ascl2 was analysed to verify whether the reduction of aberrant crypts in 

Apc deleted/Treg depleted mice was reflected in a downregulation of these markers. 

Both Lgr5 and Ascl2 have an increased gene expression after following Apc deletion 

(Figure 4.4). There is a trend for the upregulation of Olfm4 although it is not significant 

(Figure 4.4). Treg depletion alone or in combination with ISC Apc loss significantly 

decreased the expression of Lgr5, itself a Wnt target, compared to non-induced and Apc 

deleted mice.  (Figure 4.4). For the Apc deleted/Treg depleted group these changes were 
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mirrored by the other ISC markers Olfm4 and Ascl2 indicating that Tregs play a role in 

ISC numbers or activity (Figure 4.4). 

  

 

 

 

 

 

 

 

Apc deletion significantly upregulates the expression of both c-Myc and Axin2 genes. Treg 

depletion alone did not alter the expression of Axin2. The expression of Axin2 has a trend to 

decrease, however not significant, with Apc deletion and Treg depletion. Treg depletion alone, 

and together with Apc deletion, significantly increases the expression of c-Myc. Data represent a 

single experiment, n ≥ 3 mice per group. (*) P value ˂ 0.05, one-tailed Mann Whitney U test. 

 

 

 

 

 

 

 

 

 

 

Apc deletion significantly upregulates the expression of Lgr5 and Ascl2 genes. Treg depletion 

alone resulted in decreased the expression of Lgr5 when compared to non-induced and Apc 

Figure 4.3 Relative gene expression of the Wnt signalling markers Axin2 and c-Myc in the small 

intestinal epithelium. 

Figure 4.4 Relative gene expression of the ISCs markers Lgr5, Olfm4 and Ascl2 in the small 

intestinal epithelium. 
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deleted mice. The expression of Olfm4 was decreased with Treg depletion, but not Ascl2. Apc 

deletion and Treg depletion resulted in decreased the expression of the three ISC markers. Data 

represent a single experiment, n ≥ 3 mice per group. (*) P value ˂ 0.05, (**) P value ≤ 0.01, one-

tailed Mann Whitney U test. 
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4.2.1.4 Evaluating the gene expression of Foxp3 and IFNγ 

 

To begin to understand the role of the immune system cells in this phenotype I 

analysed the expression of Foxp3, a transcriptional factor expressed by Tregs, and IFNγ 

by qRT-PCR as previously explained. It was shown in the previous chapter that Apc 

deletion resulted in a significant increased gene expression of Foxp3. Contrary to what 

was expected, Treg depletion alone did not result in a downregulation of Foxp3 (Figure 

4.5). Treg depletion in Apc deleted mice, as expected, resulted in a significant 

downregulation of Foxp3 (Figure 4.5). In keeping with the ability of Tregs to prevent an 

anti-tumour immune response, the significant increase in expression IFNγ observed in 

Apc deficient mice was further up regulated in the absence of Tregs, suggesting another 

beneficial effect of Treg depletion in the early stages of intestinal cancer (Figure 4.5). 
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Apc deletion significantly upregulates the expression of Foxp3 and IFNγ. Treatment with DT alone 

did not alter significantly the expression of Foxp3, however Apc deleted/Treg depleted mice had 

a significantly reduced expression of Foxp3. Relative gene expression of IFNγ increased 

significantly after Treg depletion, alone and in combination with Apc deletion.  Foxp3 gene 

expression data for the non-induced and Lgr5CreERT2Apcfl/fl groups is repeated in figure 3.3. Data 

represent a single experiment, n ≥ 3 mice per group. (*) P value ˂ 0.05, (**) P value ≤ 0.01, one-

tailed Mann Whitney U test. 

  

Figure 4.5 Relative gene expression of Foxp3 and IFNγ in the small intestinal epithelium. 
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4.2.2 Examining the effects of Treg depletion on T-cell populations in the early 

stages of intestinal cancer 
 

In the previous chapter I have analysed the effects of ISCs Apc deletion in T-cell 

populations and cytokine markers. To understand whether the reduction in the intestinal 

tumour burden, following Treg depletion, was a result of an unleashed immune response, 

the previously described T-cell activation markers were analysed once again. 

The frequency of CD3+ cells was significantly increased in the SI IEL (Figure 4.6 

A), LI IEL (Figure 4.6 B) and spleen (Figure S 9.2) following Apc deletion/Treg cells 

depletion. There were no significant changes in the LPL compartment of both SI (Figure 

4.6 A) and LI (Figure 4.6 B) as well as MLN (Figure S 9.2). 
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In the SI IEL only Apc deletion/Treg depletion increased the frequency of CD3+ cells. There were 

no significant changes in the SI LPL (A). In the LI IEL both Treg depletion and Apc deletion/Treg 

depletion resulted in an increased frequency of CD3+ cells. A trend for an increased frequency of 

CD3+ cells in the LI LPL was observed following Treg depletion and Apc deletion/Treg depletion 

(B). Data represent a single experiment, n ≥ 4 mice per group. Data for the non-induced and 

Lgr5CreERT2Apcfl/fl groups are repeated in figure 3.5. (*) P value ˂ 0.0.5, (**) P value ≤ 0.01, (***) 

P value ≤ 0.001, (****) P value ≤ 0.0001, two-tailed Mann Whitney U test. 

  

Figure 4.6 Frequency of CD3+ T-cells in the specified compartments of SI and LI following Treg 

cells depletion. 

B A 
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Treg depletion alone or in combination with Apc deletion resulted in a significantly 

increased frequency of CD4+ cells in the SI IEL and LI (Figure 4.7). In the SI LPL, only 

Treg depletion resulted in a significantly increased frequency of CD4+ cells (Figure 4.7).  

The effect of Treg depletion on the CD4+ T-cells is lost in the Apc deleted/Treg 

depleted mice, indicating that in the presence of Apc deleted intestinal cells activation of 

CD4+ naive cells, or their accumulation within the SI LPL, due to Treg depletion, is 

inhibited (Figure 4.7 A). Within the spleen and MLN there is a significant decreased in 

the frequency of CD4+ cells in the absence of Treg cells (Figure S 9.3). These data 

suggest that only in the intestines, Treg depletion allow the expansion of other sub-

populations of CD4+ T-cells, such as Th1 cells, that may participate in the anti-tumour 

immune response. 

The frequency of CD8+ cells is not altered in the SI IEL compartment; however, 

it is significantly decreased in the SI LPL, following Treg depletion (Figure 4.7 C). In 

contrast to SI, the frequency of CD3+CD8+ is significantly increased in the LI (Figure 4.7 

D) and MLN (Figure S 9.4) in the absence of Treg cells as well as Apc deleted/Treg 

depleted mice. In the spleen the frequency of CD8+ cells is only significantly increased 

as a result of Apc deletion/Treg cells depletion (Figure S 9.4). These data suggest that 

Treg depletion unleashed an immune response by CD8+ cells, particularly in the LI 

compartment, possibly explaining the significantly reduced tumour burden observed in 

the LI.  

Treg depletion was confirmed in SI (Figure 4.8 A), LI (Figure 4.8 B), spleen and 

MLN (Figure S 9.1) by the significant decreased frequency of CD4+ cells expressing 

Foxp3. 
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(A)The frequency of CD3 expressing CD4+ cells is significantly increased with both Treg depletion 

and Apc deletion/Treg depletion in the SI IEL. In the SI LPL only Treg depletion results in an 

increase in the frequency of CD4+ cells. (B) In the LI, both Treg depletion and Apc deletion/Treg 

Figure 4.7 Frequency of CD3+ T-cells expressing CD4+ and CD8+ in the specified compartments 

of SI and LI following Treg cells depletion. 

D 
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cells depletion results in an increase in the frequency of CD4+ cells. (C) The frequency of CD3+ 

cells expressing CD8 is only altered in the SI LPL where it is decreased following Treg depletion. 

(D) In the LI Treg depletion and Apc deletion/Treg depletion result in a significant increase in the 

frequency of CD8+ cells. Data represent a single experiment, n ≥ 4 mice per group. Data for the 

non-induced and Lgr5CreERT2Apcfl/fl groups are repeated in figure 3.6. (*) P value ˂ 0.0.5, (**) P 

value ≤ 0.01, (***) P value ≤ 0.001, (****) P value ≤ 0.0001, two-tailed Mann Whitney U test.
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(A) The frequency of CD4+ cells expressing Foxp3, as expected, is significantly reduced in the SI 

following DT treatment. (B) The same is observed in the LI where a reduced frequency of Foxp3+ 

cells is observed. Data represent a single experiment, n ≥ 4 mice per group. Data for the non-

induced and Lgr5CreERT2Apcfl/fl groups are repeated in figure 3.4. (*) P value ˂ 0.0.5, (**) P value 

≤ 0.01, (***) P value ≤ 0.001, (****) P value ≤ 0.0001, two-tailed Mann Whitney U test. 

  

Figure 4.8 Frequency of CD4+ cells expressing Foxp3 in the specified compartments of SI and LI 

following Treg cells depletion. 

A B 
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No differences were observed in the frequency of CD4+Granzyme B+ cells in the 

SI following Treg depletion or Apc deletion/Treg depletion when compared to non-

induced mice (Figure 4.9 A). In the LI (Figure 4.9), spleen and MLN (Figure S 9.5) 

particularly Treg depletion alone resulted in a significantly increased frequency of 

CD4+Granzyme+ cells. This effect was significantly attenuated in Apc deleted/Treg 

depleted mice suggesting that these cells do not participate in the anti-tumour immune 

response in the early stages of intestinal cancer. 

The frequency of CD8+Granzyme B+ cells is significantly increased in the SI IEL 

following Apc deletion/Treg depletion (Figure 4.9 C). There were no significant changes 

in the SI LPL, however the large spread in the data make a definitive conclusion difficult 

(Figure 4.9 C). In the LI (Figure 4.9 D), spleen and MLN (Figure S 9.6) an increased 

frequency of CD8+Granzyme B+ cells in both Treg depleted and Apc/Treg cells depleted 

group was observed, suggesting that Granzyme B secreted by CD8+ cells may have a 

role in the anti-tumour immune response. 
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(A)The frequency of CD4+ cells expressing Granzyme B was not altered in the SI following Treg 

depletion or Apc deletion/Treg depletion when compared to non-induced mice. (B) In the LI there 

Figure 4.9 Frequency of CD4+ and CD8+ cells expressing Granzyme B in the specified 

compartments of SI and LI following Treg cells depletion. 

A B 

C D 
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was an increased frequency of CD4+ cells expressing Granzyme B, especially following Treg 

depletion, as well as Apc deletion/Treg depletion. (C) The frequency of CD8+ cells expressing 

Granzyme B was increased following Apc deletion/Treg depletion in the SI IEL. There were no 

significant changes in the SI LPL. (D) In the LI both Treg depleted and Apc deleted/Treg depleted 

mice have an increased frequency of CD8+ cells expressing Granzyme B. Data represent a single 

experiment, n ≥ 4 mice per group. Data for the non-induced and Lgr5CreERT2Apcfl/fl groups are 

repeated in figure 3.7. (*) P value ˂ 0.0.5, (**) P value ≤ 0.01, (***) P value ≤ 0.001, (****) P value 

≤ 0.0001, two-tailed Mann Whitney U test. 
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There were no significant alterations in the frequency of CD4+IL-17A+ cells in 

both SI (Figure 4.10 A) and LI (Figure 4.10 B) in any of the experimental groups. Contrary 

to the intestines, CD4+IL-17A cell frequency was significantly increased in both spleen 

and MLN (Figure S 9.7) particularly in Treg depleted and Apc deleted/Treg depleted 

mice, suggesting that a systemic immune response that is not mirrored in the intestine, 

thereby implying that this cytokine does not participate in initiation of intestinal cancer 

and/or in the anti-tumour immune response. 

 The frequency of CD8+IL-17A+ cells was significantly increased in the SI in Apc 

deleted/Treg depleted mice (Figure 4.10 C). In the LI IEL, only Treg depletion resulted in 

an increase in the frequency of IL-17A, with no alterations in the LPL compartment 

(Figure 4.10 D). Similar to CD4+IL-17A+ cells, the frequency of CD8+IL-17A+ cells was 

significantly increased in the spleen and MLN (Figure S 9.8) with both Treg depletion 

and Apc deletion/Treg depletion, however in both situations the frequency of IL-17A was 

very low, suggesting again that IL-17A does not have an important role in the early stages 

of intestinal cancer. 
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(A), (B) There were no significant changes in the frequency of CD4+ cells expressing IL-17A in 

both SI and LI. (C) The frequency of CD8+ cells expressing IL-17A was significantly increased in 

Apc deleted/Treg depleted mice. In the SI LPL, CD8+IL-17A+ cells frequency was significantly 

Figure 4.10 Frequency of CD4+ and CD8+ cells expressing IL-17A in the specified compartments 

of SI and LI following Treg depletion. 
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increased in Treg depleted and Apc deleted/Treg depleted mice. (D) The frequency of CD8+ cells 

expressing IL-17A was significantly increased in Apc deleted/Treg depleted, but particularly in 

Treg depleted mice. Data represent a single experiment done, n ≥ 4 mice per group. Data for the 

non-induced and Lgr5CreERT2Apcfl/fl groups are repeated in figure 3.8. (*) P value ˂ 0.0.5, (***) P 

value ≤ 0.001, two-tailed Mann Whitney U test. 
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Finally, I analysed the frequency of IFNγ in the different cell compartments. The 

frequency of CD4+IFNγ+ cells was significantly increased in the SI LPL (Figure 4.11 A), 

LI (4.11 B), spleen and MLN (Figure S 9.9) following Treg depletion. The effect of Treg 

depletion was attenuated in Apc deleted/Treg depleted mice, however it was still 

significantly increased in LI (4.11 B), spleen and MLN (Figure S 9.9) when compared to 

non-induced and Apc deleted mice. 

Treg depletion significantly increased the frequency of CD8+IFNγ+ cells in SI 

(Figure 4.11 C), LI (Figure 4.11 D), spleen and MLN (Figure S 9.10). Again, we observed 

an attenuation of the effect of Treg depletion in Apc deleted mice, particularly in the SI 

LPL (Figure 4.11 C) and LI (Figure 4.11 D), suggesting that CD8+IFNγ+ cells may have 

an important role in the anti-tumour immune response in the early stages of intestinal 

cancer. 
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(A) Treg depletion did not alter the frequency of CD4+ cells expressing IFNγ in the SI IEL. There 

is an increased frequency of IFNγ in the SI LPL in Treg depleted mice. (B) Both Treg depletion 

and Apc deletion/Treg cells depletion increased the frequency of CD4+ cells expressing IFNγ. (C) 

The frequency of CD8+ cells expressing IFNγ is increased particularly with Apc deletion/Treg 

Figure 4.11 Frequency of CD4+ and CD8+ cells expressing IFNγ in the specified compartments 

of SI and LI following Treg depletion. 
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depletion in the SI IEL. In the SI LPL Treg depletion showed increased frequency of IFNγ. (D) In 

the LI both Treg cells depleted and Apc deleted/Treg depleted mice had increased frequency of 

CD8+ cells expressing IFNγ. Data represent a single experiment, n ≥ 4 mice per group. Data for 

the non-induced and Lgr5CreERT2Apcfl/fl groups are repeated in figure 3.9. (*) P value ˂ 0.0.5, (**) 

P value ≤ 0.01, (***) P value ≤ 0.001, (****) P value ≤ 0.0001, two-tailed Mann Whitney U test. 
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4.3 Discussion 
 

Treg cells play an important role in maintaining peripheral tolerance and preventing 

autoimmunity. Studies have shown that Tregs are increased in cancer patients, including 

in CRC. These studies led to divergent correlations between increased Tregs and 

disease outcome, which emphasized the interest of studying the role of these cells in 

tumour initiation and progression. 

There is accumulating evidence that by depleting Tregs, an anti-tumour immune 

response is unleashed. In the recent years, studies performed in mouse models have 

shown that depletion of Tregs improved the anti-tumour immune response with a strong 

activation and amplification of CD4+ and CD8+ T-cells and the control of tumour growth 

(Chaput et al. 2007; Goudin et al. 2016).  

A few clinical trials have tested the efficacy of depleting Tregs in cancer patients. 

Dannull and colleagues have shown that depletion of these cells in patients with 

metastatic renal cancer improved the stimulation of tumour-specific T-cell responses 

(Dannull et al. 2005). Another example is a randomized study from our group where 

patients with inoperable metastatic CRC were treated with a vaccine to improve serologic 

and T-cell responses against 5T4, an oncofoetal antigen expressed in more than 90% of 

CRCs, in combination with a low dose of cyclophosphamide, to deplete Tregs. Prior 

depletion of Tregs did not increase the immune responses generated by the vaccination, 

however each treatment, independently, improved the survival outcome of the patients 

without toxic effects (Scurr et al. 2017a; Scurr et al. 2017b). 

The different approaches to deplete Tregs in clinical trials were mainly applied to 

patients with advanced disease and the studies in mouse models were done using a 

variety of cancer cell lines including ones derived from ovarian (Chen et al. 2012) and 

melanoma (Shabaneh et al. 2018). Fewer studies have been conducted, however it is 

essential in the context of colorectal cancer. There is a need to clarify the effects of Treg 

depletion in the initiation of intestinal cancer  

By deleting the Apc gene in the ISCs, it is possible to mimic the early stages of 

intestinal cancer, with the formation of aberrant crypt foci and micro-adenomas. I also 

observed increased Treg cells numbers and frequencies in the intestines, spleen and 

MLN. The effects of Treg depletion were analysed for the first time in the genetically 

modified mouse model Lgr5CreERT2Apcfl/flFoxp3DTR, giving new insights about what 

happens to the early stages of intestinal tumourigenesis in the absence of the immune 

suppressive Treg cell population. Here, it was hypothesized that by depleting the Treg 

cells the tumour burden would be reduced. Indeed, as expected, the number of aberrant 
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crypts was significantly reduced in the large intestine and there was a trend to be reduced 

in the small intestine, however not significant.  

It was showed that in the Treg depleted mice there was an increased apoptotic 

index when compared to Treg replete mice indicating that Treg depletion affects directly 

the homeostasis of the intestinal crypts. However, when the number of apoptotic bodies 

was compared between normal and aberrant crypts of Apc deleted/Treg depleted mice, 

I observed that apoptosis was significantly increased in the aberrant crypts. These data 

suggest that by depleting Tregs, in the context of cancer, there is a specific effect in pro-

tumorigenic but not in the normal tissue. A possible explanation by which Treg depletion 

increased apoptosis is that, as observed by flow cytometry analysis, Treg depletion led 

to increased secretion of IFNγ. This cytokine is known to promote apoptosis in malignant 

cells, being this one of the mechanisms responsible for the anti-tumour responses 

promoted by IFNγ (Liu et al. 2011; Kotredes and Gamero 2013; Ni and Lu 2018).The 

apoptotic index was calculated based on the identification of apoptotic bodies present in 

H&E stained sections. For this analysis other experiments were performed, such as IHC 

for cleaved caspase 3, a specific marker of apoptosis. However, because of unknown 

circumstances, the method did not work. In the future this experiment should be repeated 

and added to the analysis.  

Accordingly, we demonstrated that Treg depletion, following Apc deletion, reduced 

the relative gene expression of the Wnt markers Axin2 and cMyc, when compared to Apc 

deletion alone, indicative of reduced tumour burden. The same was observed with the 

ISCs markers Lgr5, Olfm4 and Ascl2. Gene expression data confirmed that in Treg 

depleted mice there was a significant increased frequency of IFNγ, a cytokine that, as 

previously described, participates in anti-tumour immune responses (Wang et al. 2015a; 

Katlinski et al. 2017; Liu et al. 2017). Although the gene expression of Foxp3 was 

significantly reduced in the Lgr5CreERT2Apcfl/flFoxp3DTR group, the same was not 

observed in the group treated with DT (Foxp3DTR) to achieve Treg depletion alone where 

the reduced gene expression of Foxp3 was not significant. This could have happened 

because the depletion was not efficient in this particular group. Depletion efficiency 

should be tested by flow cytometry and/or ELISA. Altogether, these data indicate that, in 

this mouse model, Treg depletion, in the early stages of intestinal cancer, had a positive 

effect in promoting an anti-tumour immune response, particularly in the large intestine. 

Future experiments should include gene expression analysis in large intestine. 

After analysing the effect of Treg depletion on tumour burden, we characterized 

the frequency of the previously described T-cell populations. In this analysis there was a 

high variability of some markers limiting the interpretation of the data. Intra-epithelial 

lymphocytes provide the first defence against infections, being essential in the regulation 
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of intestinal homeostasis (Sheridan and Lefrançois 2010). The frequency of CD3+ cells 

was significantly increased in the IEL compartment of both SI and LI, following Treg 

depletion in Apc deleted mice, with no significant alterations in the LPL compartment. 

This suggests that in the absence of Tregs, the inflammatory T-cell populations infiltrate 

particularly in the intra-epithelial compartment where they may exert an anti-tumour 

immune response.  

As expected, we observed an increased frequency of CD4+ T-cells in the 

intestines, but decreased in the spleen and MLN of Treg depleted mice, providing 

evidence, again, that in the absence of the immune suppressive Treg cells, Foxp3- CD4+ 

T-cells can expand and exert their anti-tumour immune responses supporting the data 

from other groups in different mouse models (Wing et al. 2014; Goudin et al. 2016). 

Infiltration of CD8+ T-cells has been associated with better survival in cancer 

patients, including the in early stages of CRC (Pages et al. 2009; Ziai et al. 2018). Our 

data shows that most significant changes in the frequency of CD8+ T-cells were 

observed in the LI where there was an increased frequency of this marker following Treg 

depletion and Apc deletion/Treg depletion. Surprisingly, no differences were observed in 

the SI. One possible explanation if that the whole SI and LI were analysed even though 

the highest recombination of the Apc gene and, as a consequence, the formation of 

micro-adenomas happens in the first 5 cm of the SI.  It is possible that, by analysing only 

the first 5 cm of the SI, similar differences would have been observed. 

The frequency of CD4+Granzyme B+ cells was increased in the intestines of Treg 

depleted mice, particularly in the LI. Treg depletion in Apc deleted mice attenuated the 

increased frequency of Granzyme B+ cells. Similar to CD4+Granzyme B+ cells, the 

frequency of CD8+Granzyme B+ cells was significantly increased in the LI following Treg 

depletion and, with equivalent frequency, in Apc deleted/Treg depleted mice. The fact 

that most significant changes occur in the LI may explain why, in this model, a significant 

decrease in the number of aberrant crypts observed in in the LI, whereas only a trend is 

observed in the SI it is only observed a trend for a decreased number of aberrant crypts 

as the expression of Granzyme B has been associated to improved survival in CRC 

(Prizment et al. 2017).  

As previously described, the role of IL-17A in tumorigenesis is controversial 

(Murugaiyan and Saha 2009; Yang et al. 2016).  Our data does not show significant 

changes in both SI and LI following either Treg depletion or Apc deletion/Treg depletion 

for frequencies of CD4+IL-17A+ cells, indicating that these cells may not be relevant in 

the anti-tumour immune response in the early stages of intestinal cancer.  On the other 

hand, CD8+IL-17A+ cells were significantly increase in the SI following Apc deletion/Treg 

depletion, suggesting a role of CD8+ cells. Further experiments, such as IL-17A 
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neutralization, should help understanding the role of IL-17A in the initiation of intestinal 

cancer in this mouse model. 

The frequency of CD4+IFNγ+ cells in the SI was only increased in the LPL 

compartment following Treg depletion, indicating that in the early stages of intestinal 

cancer the secretion of IFNγ by CD4+ T-cells does not play a relevant role in the anti-

tumour immune responses in the SI. There was a significantly increased frequency of 

CD4+IFNγ+ cells in the LI, and CD8+IFNγ+ cells in both SI and LI following Treg 

depletion, however this was attenuated in Apc deleted/Treg depleted mice, with the 

exception of CD8+IFNγ+ cells in the SI IEL. Our data suggest that IFNγ may play an 

important role in the anti-tumour immune responses in the early stages of intestinal 

cancer, similarly to what was previously published where it was demonstrated the anti-

tumour role of IFNγ+ in CRC (Wang et al. 2015a; Katlinski et al. 2017; Liu et al. 2017).  

In the distant compartments, in both spleen and MLN, there was an increased 

frequency of Granzyme, IL-17A and IFNγ – producing cells after Treg depletion 

demonstrating that depletion of these cells unleashes a peripheral immune response. 

The higher increased frequencies in the cytokine-producing cells were mainly observed 

in CD8+ T-cells, which indicates that, these cells may participate the anti-tumour immune 

responses in the initiation of intestinal cancer. 

In summary, it was demonstrated that Treg depletion in an Apc deleted mouse 

decreases the tumour burden in the early stages of intestinal cancer, particularly in the 

large intestine. This may be explained by the increased apoptotic index in the intestine, 

particularly in the aberrant crypts, possibly caused by the increased secretion of IFNγ by 

CD8+ cells; inactivation of Wnt signalling pathway and increased frequency of cells 

producing Granzyme B and IFNγ, particularly CD8+ cells. Future experiments, to further 

understand the immune cell populations that participate in the anti-tumour immune 

responses, will include the depletion of CD4+ and CD8+ T-cells, and neutralisation of 

IFNγ. 
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5 Cellular subsets responsible for the anti-tumour immune 

response 

5.1 Introduction 
 

The progression of tumourigenesis in CRC and other solid tumours involves 

interactions between the tumour and the host immune environment, that comprise a 

variety of cell types, including CD4+ and CD8+ cells (Szabo et al. 2003; Corthay 2009; 

Zhu and Paul 2010; Tripathi and Lahesmaa 2014; Kaplan et al. 2015; Vlad et al. 2015).  

Previously I demonstrated, using the Lgr5CreERT2Apcfl/flFoxp3DTR model, that 15 

days following ISC Apc deletion there was an expansion of Tregs in the intestine, spleen 

and MLN. Depleting the Tregs in this model, led to a reduction in intestinal 

tumourigenesis. Treg depletion led to an expansion of CD8+ and CD4+ cells that 

expressed either granzyme B or IFNγ in the intestine.  This increase in CD8+ cells, while 

indicative of an anti-tumour response, was mainly due to the absence of Tregs. 

The aim of this chapter was to identify whether the immune changes associated 

with Treg depletion play an anti-tumour role in the early stages of intestinal cancer. 

I hypothesised that depletion of CD8+ cells and neutralisation of IFNγ would 

increase the intestinal tumour burden in these mice as they have been considered 

responsible for the anti-tumour immune responses in a variability of cancers, including 

CRC (Pages et al. 2009; Ziai et al. 2018). CD4+ cells include in their population 

conventional T-cells that promote inflammation, but also Tregs, characterized by their 

immune-suppressor activity. By depleting CD4+ cells I sought to verify whether 

conventional T-cells play a key role in the early stages of intestinal tumourigenesis. I 

hypothesised that if CD4+ cell depletion increased the tumour burden, conventional T- 

cells play an important role in the anti-tumour immune responses. On the other side, if 

there was a decreased tumour burden with CD4+ cell depletion, this would suggest that 

Tregs are the sub-population of CD4+ cells with a more relevant role in the early stages 

of intestinal cancer. 

To determine the importance of the CD4+, CD8+ cells and the cytokine IFNγ in the 

reduction of tumour burden observed in the Lgr5CreERT2Apcfl/flFoxp3DTR model, these 

mice were treated with antibodies to either deplete the immune cells or neutralise the 

cytokine. For each experimental group tumour burden was analysed in the first 5 cm of 

the small intestine, as well as the relative gene expression of Wnt signalling, ISCs and 

immune markers. Relative expression of mRNA was calculated using the ΔΔCt method 

and ACT B was used as an internal control. Finally, I quantified the number of CD4+ and 

CD8+ cells and analysed their localization in the small intestinal crypts.  
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5.2 Results 
 

5.2.1 Analysing the effect of CD4+ T-cells depletion in an Apc deleted mice 
 

5.2.1.1 Examining the partial tumour burden following CD4+ cell depletion 

 

To analyse the role of CD4+ cells in the initiation of intestinal cancer, the 

Lgr5CreERT2Apcfl/flFoxp3DTR mouse model was injected with two different depleting 

antibodies (clones YTS-191 & YTS-3) (section 2.4.2.2). Here, I compared four 

experimental groups: the previously described Lgr5CreERT2Apcfl/fl and 

Lgr5CreERT2Apcfl/flFoxp3DTR groups, as well as following CD4+ cell depletion, 

(Lgr5CreERT2Apcfl/fl, Anti-CD4 and Lgr5CreERT2Apcfl/flFoxp3DTR, Anti-CD4).  

To determine the impact of CD4+ cell depletion on the intestine I analysed the 

tumour burden by quantifying number of Apc deficient aberrant crypts in the first 5 cm of 

the small intestine (section 2.7.2). Nuclear β-catenin was used as a surrogate marker of 

Apc loss to identify aberrant crypts (section 2.6.3). Depletion of CD4+ cells significantly 

reduced the tumour burden when compared to Apc deletion alone (Figure 5.1). 

Fifteen days following Apc deletion in the ISCs there was a non-significant 

decrease in the number of aberrant crypts in the Apc deleted/Treg depleted mice, as 

shown previously. This reduction in aberrant crypts became significant in the Apc 

deleted/CD4+ cells depleted animals, in which all CD4+ cells, including Tregs, would be 

depleted. This indicates that, while Tregs play a role in the tumour burden, other CD4+ 

cells are also relevant. However, this effect was lost when CD4+ cells were depleted in 

combination with Apc deletion/Treg depletion, resulting in a non-significant decrease in 

aberrant crypts (Figure 5.1). 
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(A) Representative images of β-catenin (grey) and CD8+ cells (brown) IHC staining in the small 

intestine. Black arrows indicate aberrant crypts and brown arrows indicate CD8+ cells. (B) CD4+ 

cells depletion resulted in a significantly decreased the number of aberrant crypts in the small 

intestine of the Apc deleted mice. CD4+ cells depletion in Apc deleted/Treg depleted mice 

resulted in a trend for a decreased number of aberrant crypts. Data represent a single experiment, 

n ≥ 4 mice per group. (*) P value ˂ 0.05, two-tailed Mann Whitney U test. Error bars represent 

Standard Deviation (SD). Scale bars represent 50 µm.  
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Figure 5.1  Tumour burden analysis in the small intestine of CD4+ cells depleted mice. 
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5.2.1.2 Evaluating the gene expression of Wnt, ISC and immune markers following 

CD4+ depletion 

 

While CD4+ cells and Treg depletion reduced the number of aberrant crypts in 

the proximal 5cm of the Lgr5CreERT2Apcfl/fl small intestine (based on serial sections for 

the last group) it was only significant for CD4+ cells depletion. To identify whether this 

reduction was a significant feature for the whole intestine I examined Wnt signalling 

activation by analysing the relative gene expression of Axin2 and c-Myc. A reduction in 

the expression level of these genes would support a reduction in the number of crypts 

with nuclear β-catenin. Relative gene expression was analysed in the intra-epithelial cells 

from the small intestine of Apc deleted/CD4+ cells depleted and Apc deleted/Treg and 

CD4+ cells depleted groups by qRT-PCR, and compared to the previously analysed 

experimental groups. 

 Depletion of CD4+ cells in Apc deleted mice resulted in a significantly reduced 

expression of the Wnt signalling markers Axin2 and cMyc supporting the reduction in the 

number of aberrant crypts (Figure 5.2). 

These aberrant crypts are supported by ISCs, so I looked at the expression of 

ISCs markers in mice where CD4+ cells were depleted. Depletion of CD4+ cells and 

Tregs in Apc deleted mice resulted in a significantly decreased relative gene expression 

of Lgr5, when compared to Apc deleted mice (Figure 5.3). There were no significant 

changes in the gene expression of Olfm4 and Ascl2 following CD4+ cell depletion (Figure 

5.3), indicating that CD4+ cell depletion affects particularly Lgr5, also a Wnt target, 

suggesting again that the reduction of the number of crypts is supported by a reduction 

in the Wnt activation. 

Depletion of CD4+ cells resulted in a significantly reduced relative gene 

expression of Foxp3. As previously explained, Foxp3 is a transcription factor expressed 

by Tregs, and these cells also express the CD4 marker (Figure 5.4). IFNγ gene 

expression was significantly decreased following Apc deletion/CD4+ cells depletion 

when compared to Apc deletion and the other groups where Tregs were depleted (Figure 

5.4). IFNγ can be secreted by a variety of immune cells, including CD4+ cells, which 

explains its reduction when these cells are depleted. 
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Depletion of CD4+ cells, in both Apc deleted and Apc deleted/Treg cells depleted mice resulted in a decreased relative gene expression of Axin2 and cMyc 

when compared to Apc deletion alone. Data represent a single experiment, n ≥ 3 mice per group. Data for the non-induced, Lgr5CreERT2Apcfl/fl, Foxp3DTR, 

Lgr5CreERT2Apcfl/flFoxp3DTR groups are repeated in figure 4.3. (*) P value ˂ 0.05, one-tailed Mann Whitney U test

Figure 5.2 Relative gene expression of Wnt signalling markers in the small intestinal epithelium, following CD4+ cell depletion. 



122 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depletion of CD4+ cells in both Apc deleted and Apc deleted/Treg depleted mice resulted in a decreased relative gene expression of Lgr5 when compared to 

Apc deleted mice. There were no significant changes in the relative gene expressions of Olfm4 and Ascl2 following CD4+ cells depletion. Data represent a 

single experiment, n ≥ 3 mice per group. Data for the non-induced, Lgr5CreERT2Apcfl/fl, Foxp3DTR, Lgr5CreERT2Apcfl/flFoxp3DTR groups are repeated in figure 4.4.  

(*) P value ˂ 0.05, (**) P value ≤ 0.01, one-tailed Mann Whitney U test.  

Figure 5.3 Relative gene expression of ISC markers in the small intestinal epithelium, following CD4+ cells depletion. 
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Figure 5.4 Relative gene expression of Foxp3 and IFNγ in the small intestinal epithelium, following CD4+ cells depletion. 

 

Relative gene expression of Foxp3 was significantly reduced following CD4+ cells depletion in Apc deleted and Apc deleted/Treg depleted mice. CD4+ cells 

depletion significantly decreased the gene expression of IFNγ particularly in Apc deleted mice when compared to Apc deleted, Treg depleted and Apc 

deleted/Treg depleted mice. Data represent a single experiment, n ≥ 3 mice per group. Data for the non-induced, Lgr5CreERT2Apcfl/fl, Foxp3DTR, 

Lgr5CreERT2Apcfl/flFoxp3DTR groups are repeated in figure 4.5. (*) P value ˂ 0.05, (**) P value ≤ 0.01, one-tailed Mann Whitney U test
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5.2.1.3 Evaluating the number of T-cells following CD4+ depletion 

 

The number of CD4+ and CD8+ cells was quantified in slides stained with the 

respective antibodies. The experimental groups analysed were the previously described 

Lgr5CreERT2Apcfl/fl and Lgr5CreERT2Apcfl/flFoxp3DTR groups, as well as following CD4+ cell 

depletion, (Lgr5CreERT2Apcfl/fl, Anti-CD4 and Lgr5CreERT2Apcfl/flFoxp3DTR, Anti-CD4). A 

group of non-induced mice and another with Tregs depletion alone (Foxp3DTR) were also 

included in the analysis. For each experimental group, the number of either CD4+ or 

CD8+ cells were quantified in both normal crypts (NC) and aberrant crypts (AC). Here, I 

wanted to analyse whether these immune cells would have a different localization 

between normal and aberrant tissue that is characterized by the positive β-catenin 

nuclear staining. 

Injection with the Anti-CD4 antibody nearly depleted completely the CD4+ cells 

in the mice small intestine (Figure 5.5). 

As expected, Treg depletion alone significantly increased the number of CD4+ 

cells when compared to crypts from non-induced mice (Figure 5.5), suggesting that 

without the immunosuppressive activity of Tregs the other conventional T-cells could 

expand. In both Apc deleted and Apc deleted/Treg depleted mice CD4+ cells cluster 

around the newly formed lesions, where there is a significantly higher number of CD4+ 

cells when compared to normal adjacent tissue (Figure 5.5), suggesting a role of these 

cells in the initiation of intestinal cancer, supported by the reduction in the tumour burden 

upon their depletion (Figure 5.1). 

Similar to CD4+ cells, CD8+ cells are significantly increased when Tregs are 

absent, suggesting again that upon Treg depletion the immune response is unleashed. 

Apart from Apc deleted/Treg depleted mice, that show a high number of CD8+ cells in 

both normal and aberrant crypts, in all the other experimental groups there is a 

significantly increased number of CD8+ cells in aberrant crypts (Figure 5.6). CD4+ cell 

depletion in Apc deleted mice significantly increased the number of CD8+ cells in the 

aberrant crypts. This effect might be explained by the fact that Tregs are a sub-population 

of the CD4+ cells and, as a consequence of CD4+ cell depletion, Tregs will be also 

depleted and will not exert their immune suppressive activity, explaining the increased 

number of CD8+ cells (Figure 5.6). 
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Figure 5.5 Quantification of CD4+ cells in the small intestine following CD4+ cells depletion. 

 

(A) Representative images of β-catenin (grey) and CD4+ cells (brown) IHC staining in the small 

intestine. Black arrows indicate aberrant crypts (AC) and brown arrows indicate CD4+ cells. (B) 

CD4+ cells were significantly increased in Treg depleted mice. In both Apc deleted and Apc 

deleted/Treg depleted mice CD4+ cells were increased in the aberrant crypts when compared to 

normal crypts (NC). Data represent a single experiment, n ≥ 4 mice per group. (*) P value ˂ 0.05, 

two-tailed Mann Whitney U test. Error bars represent Standard Deviation (SD). Scale bars 

represent 50 µm. 
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Figure 5.6 Quantification of CD8+ T-cells in the small intestine following CD4+ cells depletion. 

 

(A) Representative images of β-catenin (grey) and CD8+ cells (brown) IHC staining in the small 

intestine. Black arrows indicate aberrant crypts and brown arrows indicate CD8+ cells. (B) CD8+ 

cells numbers were significantly increased in Treg depleted mice. Apart from Apc deleted/Treg 

depleted mice, there was a significantly increased number of CD8+ cells in aberrant crypts (AC), 

when comparing to normal crypts (NC). Data represent a single experiment, n ≥ 4 mice per group. 

(*) P value ˂ 0.05, (**) P value ≤ 0.01. Two-tailed Mann Whitney U test. Error bars represent 

Standard Deviation (SD). Scale bars represent 50 µm. 
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5.2.2 Analysing the effect of CD8+ T-cells depletion in an Apc deleted mice 

 

5.2.2.1 Examining the partial tumour burden following CD8+ depletion 

 
To analyse the role of CD8+ cells in the initiation of intestinal cancer, mice were 

injected with a monoclonal antibody (clone YTS 169) to selectively deplete CD8+ cells 

(see section 2.4.2.3). Four experimental groups were compared: the previously 

described Lgr5CreERT2Apcfl/fl and Lgr5CreERT2Apcfl/flFoxp3DTR groups, as well as following 

CD8+ cell depletion, (Lgr5CreERT2Apcfl/fl, Anti-CD8 and Lgr5CreERT2Apcfl/flFoxp3DTR, Anti-

CD8). The tumour burden was analysed as previously described in the first 5 cm of the 

small intestine. Contradicting the proposed hypothesis, that CD8+ cell depletion would 

increase the number of aberrant crypts, it was observed that CD8+ cell depletion in Apc 

deleted mice significantly decreased the tumour burden in the small intestine (Figure 

5.7). There is a trend for a decreased tumour burden in Apc deleted mice were both 

CD8+ T-cells and Tregs were depleted (Figure 5.8), suggesting that in the early stages 

of intestinal cancer CD8+ cells play a pro-tumoral role.  
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A) Representative images of β-catenin (grey) and CD8+ cells (brown) IHC staining in the small 

intestine. Black arrows indicate aberrant crypts and brown arrows indicate CD8+ cells. (B) CD8+ 

cells depletion resulted in a significantly decreased number of aberrant crypts in the small 

intestine of the Apc deleted mice. Apc deleted/Treg and CD8+ cells depleted mice had a trend for 

a decreased number of aberrant crypts. Data for the Lgr5CreERT2Apcfl/fl and 

Lgr5CreERT2Apcfl/flFoxp3DTR groups are repeated in figure 5.1. Data represent a single experiment, 

n ≥ 4 mice. (*) P value ˂ 0.05, two-tailed Mann Whitney U test. Error bars represent Standard 

Deviation (SD). Scale bars represent 50 µm. 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Tumour burden analysis in the small intestine following CD8+ cells depletion.  
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5.2.2.2 Evaluating the gene expression of Wnt, ISC and immune markers following 

CD8+ depletion 

 

To analyse whether the effects of CD8+ depletion were a feature of the whole 

intestine, the expression of Wnt markers were analysed. It was hypothesised that the 

observed reduction in the tumour burden would be reflected in the non-activation of the 

Wnt pathway. As expected, the decreased tumour burden observed in Apc deleted/CD8+ 

cell depleted mice were reflected in the reduction of the relative gene expression of the 

Wnt signalling markers, Axin2 and c-Myc, when compared to Apc deletion alone (Figure 

5.8). Interestingly, CD8+ cell depletion alone resulted in a significantly reduced relative 

gene expression of Wnt targets (Figure 5.8), suggesting that these immune cells play a 

role in the Wnt signalling activation.  

As the aberrant crypts are supported by ISCs, next I analysed the gene 

expression of ISCs markers. CD8+ cell depletion significantly reduced the relative gene 

expression of Lgr5 in Apc deleted and Apc deleted/Treg depleted mice when compared 

to Apc deletion alone (Figure 5.9). There were no significant changes, following CD8+ 

cell depletion, in Olfm4 and Ascl2 was significantly decreased in Apc deleted mice 

(Figure 5.9). Taken together, these data show that, depletion of CD8+ cells resulted in a 

reduced gene expression of the Wnt markers Axin2 and c-Myc, as well as the ISC marker 

Lgr5, itself a Wnt marker, suggesting that the reduction in the number of aberrant crypts 

is supported by the reduced Wnt signalling, 

To verify whether depletion of CD8+ cells had an impact in the gene expression 

of Tregs and the cytokine IFNγ, the relative gene expression of Foxp3 and IFNγ were 

analysed.  CD8+ cell depletion alone significantly reduced the relative gene expression 

of Foxp3, however this effect was rescued when CD8+ cells were depleted in Apc 

deleted mice (Figure 5.10). This might be a consequence of Apc deletion that, as 

previously shown, significantly increases the expression of Foxp3. As previously 

explained, IFNγ can be secreted by a variety of immune cell populations, including CD8+ 

cells. As expected, CD8+ cell depletion, alone or in Apc deleted mice, significantly 

decreased the gene expression of IFNγ. However, this effect was rescued in Apc 

deleted/Treg depleted mice in the absence of CD8+ cells, where a significantly increased 

gene expression of IFNγ was observed that might be explained by Treg depletion (Figure 

5.10). 
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CD8+ cells depletion alone and in combination with Apc deletion and Apc deletion/Treg depletion resulted in a significantly decreased relative gene expression 

of Axin2 and c-Myc when compared to Apc deleted mice. Data represent a single experiment, n ≥ 3 mice per group. Data for the non-induced, Lgr5CreERT2Apcfl/fl, 

Foxp3DTR, Lgr5CreERT2Apcfl/flFoxp3DTR groups are repeated in figures 4.3 and 5.2. (*) P value ˂ 0.05, one-tailed Mann Whitney U test. 

 

 

Figure 5.8 Relative gene expression of Wnt signalling markers in the small intestinal epithelium, following CD8+ cells depletion. 
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Figure 5.9 Relative gene expression of ISC markers in the small intestinal epithelium, following CD8+ cells depletion. 

 

CD8+ cells depletion resulted in a decreased the relative gene expression of Lgr5, particularly in Apc deleted/Treg depleted mice. There were no changes in 

the Olfm4. Ascl2 was significantly decreased in Apc deleted/CD8+ cells depleted mice when compared to Apc deletion alone. Data represent a single experiment, 

n ≥ 3 mice per group. Data for the non-induced, Lgr5CreERT2Apcfl/fl, Foxp3DTR, Lgr5CreERT2Apcfl/flFoxp3DTR groups are repeated in figures 4.4 and 5.3. (*) P value 

˂ 0.05, (**) P value ≤ 0.01, one-tailed Mann Whitney U test. 
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CD8+ cells depletion resulted in a significantly reduced expression of Foxp3 and IFNγ, however in the last one the relative gene expression was rescued in Apc 

deleted/Treg depleted mice. Data represent a single experiment, n ≥ 3 mice per group. Data for the non-induced, Lgr5CreERT2Apcfl/fl, Foxp3DTR, 

Lgr5CreERT2Apcfl/flFoxp3DTR groups are repeated in figures 4.5 and 5.4. (*) P value ˂ 0.05, (**) P value ≤ 0.01, one-tailed Mann Whitney U test.

Figure 5.10 Relative gene expression of Foxp3 and IFNγ in the small intestinal epithelium, following CD8+ cells depletion 
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5.2.2.3 Evaluating the number of T-cells following CD8+ cell depletion 

 

The number of CD4+ and CD8+ cells was quantified in CD8+ cell depleted mice, 

as previously described, in both normal (NC) and aberrant crypts (AC). Similar to the 

analysis performed for the T-cell quantification in the CD4+ cell depleted mice, here I 

included the following groups: non-induced, Foxp3DTR, Lgr5CreERT2Apcfl/fl and 

Lgr5CreERT2Apcfl/flFoxp3DTR groups. The groups where CD8+ cells were depleted were: 

Lgr5CreERT2Apcfl/fl, Anti-CD8; Lgr5CreERT2Apcfl/flFoxp3DTR, Anti-CD8; and CD8 depletion 

alone (Anti-CD8). CD8+ cell depletion alone did not alter significantly the number of 

CD4+ cells in the small intestinal crypts, suggesting that in the absence of CD8+ cells 

there are no alterations in the infiltration of CD4+ cells (Figure 5.11). However, CD4+ 

cells were significantly increased following CD8+ cells depletion in Apc deleted and Apc 

deleted/Treg depleted mice, particularly in the aberrant crypts (Figure 5.11). There were 

no differences in the number of CD4+ cells between Apc deleted and Apc deleted/CD8+ 

cell depleted mice (Figure 5.11), suggesting that CD8+ cell depletion does not have an 

impact in the infiltration of CD4+ cells in the intestine in the early stages of intestinal 

cancer. 

As expected, mice injected with the antibody to achieve CD8+ cell depletion, had 

a significantly decreased number of CD8+ cells in the small intestinal crypts, when 

compared to non-induced mice (Figure 5.12). In Apc deleted/CD8+ cell depleted mice 

significant increase in the number of CD8+ cells around the newly formed lesions was 

observed, suggesting that in the context of Apc deletion there is a recruitment of these 

cells to the pro-tumoral tissue even when mice are injected with a depleting antibody to 

eliminate CD8+ cells. These data suggest a role of these cells in the initiation of intestinal 

cancer. CD8+ cell depletion in Apc deleted/Treg depleted mice had a significantly 

increased number of CD8+ cells, possibly due to Tregs depletion that, itself, resulted in 

a significantly increased number of CD8+ cells (Figure 5.12) 
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(A) Representative images of β-catenin (grey) and CD4+ cells (brown) IHC staining in the small 

intestine. Black arrows indicate aberrant crypts and brown arrows indicate CD4+ cells. (B) CD4+ 

cells were significantly increased in the aberrant crypts (AC) of Apc deleted/CD8+ cells depleted 

mice when compared to normal crypts (NC). CD8+ cells depletion in Apc deleted/Treg depleted 

mice significantly increased the number of CD4+ cells, but with no differences between normal 

and aberrant crypts. Data represent a single experiment, n ≥ 4 mice per group. Data for the non-

induced, Foxp3DTR, Lgr5CreERT2Apcfl/fl and Lgr5CreERT2Apcfl/flFoxp3DTR groups are repeated in 

figure 5.5. (*) P value ˂ 0.05, (**) P value ≤ 0.01. Two-tailed Mann Whitney U test. Error bars 

represent Standard Deviation (SD). Scale bars represent 50 µm. 

 

Figure 5.11 Quantification of CD4+ cells in the small intestine following CD8+ cells depletion. 
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(A) Representative images of β-catenin (grey) and CD8+ cells (brown) IHC staining in the small 

intestine. Black arrows indicate aberrant crypts and brown arrows indicate CD8+ cells. (B) CD8+ 

cells depletion resulted in a significantly decreased number of CD8+ cells in the crypts when 

compared to non-induced mice. Apc deleted and Apc deleted/Treg depleted mice, even following 

CD8+ cells depletion, had a significant increased number of CD8+ cells in the aberrant crypts. 

Data represent a single experiment, n ≥ 4 mice per group. Data for the non-induced, Foxp3DTR, 

Lgr5CreERT2Apcfl/fl and Lgr5CreERT2Apcfl/flFoxp3DTR groups are repeated in figure 5.6. (*) P value ˂ 

0.05, (**) P value ≤ 0.01, two-tailed Mann Whitney U test. Error bars represent Standard Deviation 

(SD). Scale bars represent 50 µm. 

 

B 

Figure 5.12 Quantification of CD8+ cells in the small intestine following their depletion. 
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5.2.3 Analysing the effect of IFNγ neutralisation in an Apc deleted mice 
 

5.2.3.1 Examining the partial tumour burden following IFNγ neutralisation 

 

Finally, I analysed the effects of IFNγ in the early stages of intestinal 

tumourigenesis. Mice were injected with an antibody to specifically neutralise IFNγ (clone 

XMG 1.2) (section 2.4.2.4). 

 As previously, I started by quantifying the tumour burden in the first 5 cm of the 

small intestine of mice following IFNγ neutralisation. Similar to the analysis performed 

for the CD4+ and CD8+ cell depletion experiments, I included the Lgr5CreERT2Apcfl/fl and 

Lgr5CreERT2Apcfl/flFoxp3DTR groups. The groups where IFNγ was neutralised were: 

Lgr5CreERT2Apcfl/fl, Anti-IFNγ and Lgr5CreERT2Apcfl/flFoxp3DTR, Anti-IFNγ.  Considering 

that IFNγ has been associated to play a role in the anti-tumour immune responses, I 

hypothesised that the neutralisation of this cytokine would significantly increase the 

tumour burden. Contrary to what it was expected, IFNγ neutralisation did not have a 

significant effect in the tumour burden of Apc deleted and Apc deleted/Treg depleted 

mice (Figure 5.13), suggesting that it does not play a key role in the early stages of 

intestinal cancer.
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(A) Representative images of β-catenin (grey) and CD8+ cells (brown) IHC staining in the small 

intestine. Black arrows indicate aberrant crypts and brown arrows indicate CD8+ cells. (B) IFNγ 

neutralisation did not alter the tumour burden in Apc deleted and Apc deleted/Treg depleted mice. 

Data for the Lgr5CreERT2Apcfl/fl and Lgr5CreERT2Apcfl/flFoxp3DTR groups are repeated in figures 5.1 

and 5.7. Data represent a single experiment, n ≥ 4 mice per group. Two-tailed Mann Whitney U 

test. Error bars represent Standard Deviation (SD). Scale bars represent 50 µm. 

  

Figure 5.13  Tumour burden analysis in the small intestine following IFNγ neutralisation. 
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5.2.3.2 Evaluating the gene expression of Wnt and ISC markers following IFNγ 

neutralisation 

 

 
Considering that IFNγ did not alter the tumour burden in the small intestine when 

compared to Apc deleted mice, I hypothesised that relative gene expression of Wnt 

signalling markers would be similar to the one observed in Apc deletion alone. 

Interestingly, IFNγ neutralisation attenuated the effect of Wnt targets upregulation when 

compared to Apc deletion alone or Apc deletion /Treg depletion, suggesting that there 

was less Wnt signalling in these mice (Figure 5.14).  

Next, I looked at the expression of ISCs, responsible for the support of aberrant 

crypts, and observed that Lgr5 gene expression, also known as a Wnt marker, was 

significantly reduced following IFNγ neutralisation, when compared to Apc deleted or Apc 

deleted/Treg depleted mice (Figure 5.14), suggesting again that there was a lower 

activation of the Wnt signalling pathway. Both Ascl2 and Olfm4 had a significantly 

reduced gene expression following IFNγ neutralisation in Apc deleted/Treg depleted 

mice, when compared to Apc deletion alone, suggesting a possible reduction in the 

malignant ISC population (Figure 5.15). 
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IFNγ neutralisation resulted significantly increased relative gene expression of the Wnt markers Axin2 and c-Myc when compared to non-induced mice, but it 

was significantly decreased in comparison to Apc deleted mice. IFNγ neutralisation in Apc deleted/Treg depleted mice resulted in a significantly decreased 

expression of c-Myc when compared to Apc deleted/IFNγ neutralised mice. Data represent a single experiment, n ≥ 3 mice per group. Data for the non-induced, 

Lgr5CreERT2Apcfl/fl, Foxp3DTR, Lgr5CreERT2Apcfl/flFoxp3DTR groups are repeated in figures 4.3, 5.2 and 5.8. (*) P value ˂ 0.05, (**) P value ≤ 0.01, one-tailed Mann 

Whitney U test. 

 

 

Figure 5.14 Relative gene expression of Wnt signalling markers in the small intestinal epithelium, following IFNγ neutralisation. 
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Relative gene expression of the ISC markers, following IFNγ neutralisation, was not altered when compared to non-induced mice. Lgr5 was significantly 

downregulated when compared to Apc deleted mice. Treg depletion in Apc deleted/IFNγ neutralised mice resulted in a significantly reduced relative gene 

expression of Lgr5 and Ascl2 when compared to Apc deleted/IFNγ neutralised mice. Data represent a single experiment, n ≥ 3 mice per group. Data for the 

non-induced, Lgr5CreERT2Apcfl/fl, Foxp3DTR, Lgr5CreERT2Apcfl/flFoxp3DTR groups are repeated in figures 4.4, 5.3 and 5.9. (*) P value ˂ 0.05, (**) P value ≤ 0.01, 

one-tailed Mann Whitney U test

Figure 5.15 Relative gene expression of ISC markers in the small intestinal epithelium, following IFNγ neutralisation. 
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5.2.3.3 Evaluating the number of T-cells following IFNγ neutralisation 

 

The number of T-cells was quantified as previously described for the other 

groups. Similar to the analysis performed for the T-cell quantification in the CD4+ and 

CD8+ cell depleted mice, the following groups were included: non-induced, Foxp3DTR, 

Lgr5CreERT2Apcfl/fl and Lgr5CreERT2Apcfl/flFoxp3DTR groups. The groups where IFNγ was 

neutralised were: Lgr5CreERT2Apcfl/fl, Anti-IFNγ and Lgr5CreERT2Apcfl/flFoxp3DTR, Anti-

IFNγ. 

  IFNγ neutralisation resulted in a significantly increased number of CD4+ cells in 

the aberrant crypts of Apc deleted and Apc deleted/Treg depleted mice, when compared 

to normal crypts (Figure 5.17). Interestingly, IFNγ neutralisation in Apc deleted and Apc 

deleted/Treg depleted mice significantly increased the number of CD4+ cells in both 

normal and aberrant crypts when compared to same group, but without neutralisation of 

this cytokine, possibly suggesting that a higher infiltration of CD4+ cells was happening 

so the secretion of IFNγ could be increased back to normal and that this process was 

facilitated by the absence of Tregs.  

IFNγ neutralisation significantly increased the number of CD8+ cells in the 

aberrant crypts of Apc deleted, but particularly in Apc deleted/Treg depleted mice (Figure 

5.18). There were no differences in the numbers of CD8+ cells between Apc deleted or 

Apc deleted/Treg depleted and the same groups but following IFNγ neutralisation (Figure 

5.18), suggesting that IFNγ neutralisation did not have an impact in the infiltration of 

CD8+ cells and that, possibly, CD4+ cells are the main responsible cell population for 

the secretion of IFNγ in the intestine. 
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(A) Representative images of β-catenin (grey) and CD4+ cells (brown) IHC staining in the small 

intestine. Black arrows indicate aberrant crypts and brown arrows indicate CD4+ cells. (B) IFNγ 

neutralisation resulted in a significantly increased number of CD4+ cells in the aberrant crypts in 

both Apc deleted, but particularly Apc deleted/Treg depleted mice, when compared to normal 

surrounding tissue. Data represent a single experiment, n ≥ 4 mice per group. Data for the non-

induced, Foxp3DTR, Lgr5CreERT2Apcfl/fl and Lgr5CreERT2Apcfl/flFoxp3DTR groups are repeated in 

figures 5.5 and 5.11. (*) P value ˂ 0.05, (**) P value ≤ 0.01, two-tailed Mann Whitney U test. Error 

bars represent Standard Deviation (SD). Scale bars represent 50 µm. 

 

Figure 5.16 Quantification of CD4+ cells in the small intestine following IFNγ neutralisation. 
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(A) Representative images of β-catenin (grey) and CD8+ cells (brown) IHC staining in the small 

intestine. Black arrows indicate aberrant crypts and brown arrows indicate CD8+ cells. (B) IFNγ 

neutralisation resulted in a significantly increased number of CD8+ cells in the aberrant crypts of 

Apc deleted and Apc deleted/Treg depleted mice when compared to normal crypts. Data 

represent a single experiment, n ≥ 4 mice per group. Data for the non-induced, Foxp3DTR, 

Lgr5CreERT2Apcfl/fl and Lgr5CreERT2Apcfl/flFoxp3DTR groups are repeated in figures 5.6 and 5.12. (*) 

P value ˂ 0.05, (**) P value ≤ 0.01, two-tailed Mann Whitney U test. Error bars represent Standard 

Deviation (SD). Scale bars represent 50 µm. 

  

Figure 5.17 Quantification of CD8+ cells in the small intestine following IFNγ neutralisation. 
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5.3 Discussion 
 

The immune system has a complex role in cancer as immune cells can act both 

as suppressors of tumour initiation and progression (Dunn et al. 2004), but also as 

promoters of the disease (Balkwill and Coussens 2004). Recently, infiltration of tumours 

with high numbers of lymphocytes has been associated with a better prognosis and 

improved survival of cancer patients, not only in CRC (Galon et al. 2006; Mei et al. 2014; 

Braha et al. 2016), but also other tumour types such as breast (Menegaz et al. 2008) 

and lung cancer (Al-Shibli et al. 2008; Dieu-Nosjean et al. 2008). Previously, I have 

shown that Treg depletion increased both frequency and number of CD4+ and CD8+ 

cells regardless whether Apc is deleted. The frequency of IFNγ was also increased upon 

Tregs depletion. In this chapter, I wanted to evaluate whether these alterations in the T-

cells and IFNγ play a role in reducing the number of aberrant crypts in the small intestine.  

 

5.3.1 Evaluating the role of CD4+ cells in intestinal homeostasis 

 
CD4+ cells are a very heterogeneous population that includes a variety of sub-

populations that have been described as pro- and anti-tumoral. These sub-populations 

comprise, for example Tregs, Th1 and Th17 cells. Tosolini and colleagues have 

analysed, in CRC patients, the balance between different populations of T-lymphocytes 

and how they correlate with disease-free survival. They have shown that increased 

frequencies of Th17 cells were associated with a poor prognosis, whereas increased 

numbers of Th1 cells was linked to a prolonged disease-free survival (Tosolini et al. 

2011). I have previously shown that Treg depletion results in a decreased tumour burden 

in the intestine. In this chapter, I demonstrated that depletion of CD4+ cells significantly 

reduced the small intestinal tumour burden. Taken together, these data indicate that in 

the early stages of tumour initiation, CD4+ T cells are more likely to promote than prevent 

tumour growth. A more in-depth analysis of the T cell subsets involved is now needed.   

Interestingly, CD4+ cell depletion in Apc deleted and Apc deleted/Treg cells 

depleted mice resulted in a significantly reduced gene expression of the Wnt markers 

Axin2 and c-Myc, when compared to Apc deletion alone, suggesting again that depletion 

of CD4+ cells was beneficial in the early stages of intestinal cancer. CD4+ cell depletion 

was associated with reduced the gene expression of the ISC and Wnt marker Lgr5, in 

Apc deleted mice, but had no effects in the other ISC markers Olfm4 and Ascl2, 

suggesting that the ISC population was not altered.  

 In a recently published study, it was demonstrated  that CRC suppress CD4+ T-

cells immunity through canonical Wnt signalling (Sun et al. 2017). Sun and colleagues 
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demonstrated that β-catenin was elevated in intra-tumoral T-cells, which correlated with 

decreased  IFNγ expression and increased IL-17A expression in activated CD4+ cells 

(Sun et al. 2017). Here, CD4+ cells depletion, in Apc deleted mice, significantly reduced 

the relative gene expression of IFNγ when compared to Apc deleted mice.  

 Analysis of CD8+ cells number, in CD4+ cells depleted mice, showed an 

accumulation of these cells around the newly formed lesions compared to normal 

surrounding tissue. The same was observed in Apc deleted mice, suggesting that CD8+ 

T-cells play a key role in the anti-tumour immune responses in the early stages of 

intestinal cancer.  

 

5.3.2 Evaluating the role CD8+ cells in the intestinal homeostasis 

 

CD8+ cells have long been considered a key population in anti-tumour immunity 

and infiltration by these cells has been associated to a better prognosis in a number of 

malignancies such as breast (Liu et al. 2012; Ziai et al. 2018), melanoma (van Oijen et 

al. 2004), ovarian (Hamanishi et al. 2007), pancreatic (Fukunaga et al. 2004) as well as 

CRC (Galon et al. 2006; Pages et al. 2009; Mlecnik et al. 2011; Ziai et al. 2018).  

It is therefore surprising that the data herein demonstrate that CD8+ cells depletion 

in Apc deleted mice significantly reduces the tumour burden in the small intestine. In 

accordance with this, Wnt signalling markers were significantly reduced in CD8+ cell 

depleted mice when comparing to Apc deleted mice, indicating a reduction in Wnt 

activation and supporting the decreased number of aberrant crypts. The same was 

observed for the ISC markers Lgr5 and Ascl2, possibly indicating a reduction in the ISC 

pool and, as a consequence, a reduction in the number of Apc deficient ISC, resulting in 

a decreased number of aberrant crypts. The increased gene expression of Foxp3 was 

attenuated following CD8+ cell depletion in Apc deleted mice, when compared to Apc 

deletion alone, suggesting again a beneficial effect of CD8+ cell depletion in this model. 

CD8+ cell depletion significantly reduced the gene expression of IFNγ. CD8+ cell 

depletion alone did not alter the number of CD4+ cells in the small intestinal crypts, 

however CD8+ cell depletion in Apc deleted mice significantly increased the number of 

CD4+ cells in the aberrant crypts, possibly suggesting that CD4+ cells may be having a 

beneficial effect in controlling tumour growth.  

Treatment with the depleting antibody, as expected, significantly reduced the 

number of CD8+ cells, however not completely. Interestingly, CD8+ T-cells accumulated 

in the aberrant crypts of Apc deleted, but particularly Apc deleted/Treg depleted mice, 

suggesting that these cells are attracted to the pro-tumorigenic tissue in the absence of 

Tregs even when a depleting antibody is applied. Another possible explanation is that is 
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this experimental group (Lgr5CreERT2Apcfl/flFoxp3DTR, Anti-CD8) CD8+ cell depletion was 

not efficient. In the future, a higher dose of depleting antibody or injection with another 

clone (YTS-156) together with YTS-169 could be tested in order to improve CD8+ 

depletion (Jones et al. 2002). To further understand the effects of T-cell depletion in the 

reduction of the number of aberrant crypts, other experiments should be included, such 

as cleaved caspase 3 IHC to analyse the intestinal apoptotic index, as this may be a 

possible mechanism by which there is a reduction in the tumour burden. 

 Taken together, these data suggest that CD8+ cell depletion had a beneficial 

effect in the early stages of intestinal cancer, contradicting the initial hypothesis that 

CD8+ cells depletion would promote tumourigenesis. 

 

5.3.3 Evaluating the role of IFNγ in the intestinal homeostasis 

 

Finally, I analysed the effect of IFNγ neutralisation in the initiation of intestinal 

cancer. The interaction between the tumour and the immune cells is a controlled process 

in all stages of tumour progression, in which IFNγ plays a key role. Studies have shown 

that genetic variations in IFNγ are associated with a lower survival following CRC 

diagnosis (Slattery et al. 2011; Bondurant et al. 2013; Di Franco et al. 2017; Kosmidis et 

al. 2018).  Wang and colleagues investigated the role of IFNγ deficiency in Apcmin mice. 

IFNγ deficient mice had an increased number and size of adenomas with increased Wnt 

signalling (Wang et al. 2015a). Moreover, administration of IFNγ inhibited the 

proliferation of Apc mutated colon cancer cell line but not wild-type cell lines in vitro. In 

vitro knockdown of IFNγ increased cell proliferation and colony formation, suggesting 

that IFNγ participates in the anti-tumour immune responses (Wang et al. 2015a).  

Surprisingly, IFNγ neutralisation did not increase the tumour burden in the small 

intestine of the treated mice. IFNγ neutralisation significantly increased the expression 

of the Wnt markers Axin2 and c-Myc, however this effect was attenuated when compared 

to Apc deletion alone, suggesting a beneficial effect of IFNγ neutralisation in this mouse 

model. Relative gene expression of the ISC markers were only significantly reduced 

following IFNγ neutralisation in Apc deleted/Treg depleted mice when compared to Apc 

deleted mice. This was similar to what was observed in Apc deleted/Treg depleted mice, 

possibly indicating that this effect is mainly due to Treg depletion and not IFNγ 

neutralisation. IFNγ neutralised mice had an increased number of both CD4+ and CD8+ 

cells around the newly formed lesions. A limitation in this study was the fact that IFNγ 

neutralization was not confirmed by IHC and/or flow cytometry. This is clearly necessary 

before any firm conclusions can be drawn. Importantly, for the immune cell depletion and 

cytokine neutralisation, the tumour burden was only quantified in the first 5 cm of the 
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small intestine due to experimental limitations, particularly the concentration of 

antibodies available for the injections. Further experiments should include the 

quantification of the total tumour burden in serial sections of the whole small and large 

intestines in order to confirm these findings. Considering that it was not possible to 

include a group with CD4+ depletion and IFNγ neutralisation alone, in the next 

experiments these should be included. Future experiments should also include 

confirmation of T-cell depletion and IFNγ neutralisation by IHC, flow cytometry and/or 

ELISA.  

In summary, in this chapter it was shown that both CD4+ and CD8+ cell depletion 

significantly decreased the small intestinal tumour burden. IFNγ neutralisation had no 

effect on the number of aberrant crypts. The changes in the intestine, as a consequence 

of the altered immune system in the Lgr5CreERT2Apcfl/flFoxp3DTR following T-cell depletion 

and IFNγ neutralisation, gave unexpected results, such as the decreased tumour burden 

following CD8+ cell depletion.  

One possible explanation is that CD8-depleting antibodies might impact on the ISC 

pool thereby reducing the targets for Apc deletion and, as a consequence, reducing the 

intestinal tumour burden. Further experiments should include CD8+ cell depletion 

following Apc deletion in the ISCs in order to clarify whether the reduced tumour burden 

observed is a consequence of eliminating CD8+ cells and not because ISCs number was 

altered by the antibody treatment. In addition, changes in the Lgr5 ISC stem cells could 

be analysed in situ by RNAscope. This will provide information about the changes in Lgr5 

transcripts, not only their number, but also localization in the intestine, possibly giving 

new insights into how the immune system impacts intestinal homeostasis. Part of this 

analysis will be presented in the following chapter.



156 
 

6 RNAscope analysis of Lgr5 transcripts in the early stages 

of intestinal cancer 

 

6.1 Introduction 
 

In the previous chapter it was demonstrated that depletion of CD4+ and CD8+ T-

cells significantly reduced the tumour burden in the mice small intestine. This was 

particularly surprising with CD8+ T-cells depletion, where it was expected an increased 

number of aberrant crypts, as these cells have been considered responsible for the anti-

tumour immune response in a variability of cancers (van Oijen et al. 2004; Liu et al. 2012; 

Ziai et al. 2018), including CRC, but the opposite was observed. 

Depletion of CD8+ cells was done prior to Apc deletion in the ISCs. It is possible 

that this altered the stem cell pool. If that was the case, a lower number of ISCs would 

be transformed explaining the reduced number of aberrant crypts. It was, then, 

hypothesised that depletion of T-cells would impact in the homeostasis of the ISCs and 

that it would have a direct effect in the initiation of intestinal cancer. To start testing it, 

the number of Lgr5 transcripts was analysed by RNAscope in the small intestine of the 

previously described groups. This method allows the visualization of the transcripts in 

the tissue providing quantitative data on expression of Lgr5, the number of cells which 

express it and their localisation.
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6.2 Results 
 

The previously described groups were used in the analysis of Lgr5 transcripts by 

RNAscope staining. Lgr5 transcripts were identified by the brown strained dots, 

independently of the intensity of the staining. As expected, the number of Lgr5 transcripts 

was significantly increased in the crypts of Apc deleted mice (Figure 6.1), when 

compared to non-induced mice, reflecting the increase that was previously observed in 

the gene expression analysis by qRT-PCR (Figure 4.4). Interestingly, Treg depletion in 

Apc deleted mice resulted in a reduced number of Lgr5 transcripts when compared to 

Apc deletion alone (Figure 6.1), suggesting that the reduced tumour burden in Apc 

deleted/Treg depleted mice (Figure 4.1) can be explained by a reduced number of 

transformed ISC. The same is observed in mice where CD4+ cells were depleted (Figure 

6.1), possibly explaining again the reduced tumour burden observed (Figure 5.1). 

Interestingly, Treg depletion alone did not alter significantly the number of Lgr5 

transcripts, however altered the re-distribution of the transcripts, possibly suggesting that 

Tregs play a role in the homeostasis of ISCs (Figure 6.1). 

Depletion of CD8+ T-cells did not alter the number of Lgr5 transcripts when 

compared to non-induced mice, however there was a re-distribution of the transcripts 

from the bottom to other parts of the crypts (Figure 6.2). The same was observed in Apc 

deleted/CD8+ cell depleted mice (Figure 6.2). Taken together these data suggest that 

depletion of CD8+ cells alter the homeostasis of the ISCs and that is might be the reason 

why CD8+ cell depletion in Apc deleted mice resulted in a reduced tumour burden (Figure 

5.7). 

IFNγ neutralisation resulted in a significantly decreased the number of Lgr5 

transcripts in Apc deleted mice and altered their re-distribution in the crypts (Figure 6.3), 

however, in this case, the reduced number of Lgr5 transcripts was not reflected in a 

reduced tumour burden (Figure 5.13). 
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(A) Representative images of Lgr5 (brown) RNAscope staining in the small intestine. Black arrow 

indicated an example of a brown dot representing an Lgr5 transcript. (B) Apc deletion significantly 

increased the number of Lgr5 transcripts in the crypts. Depletion of CD4+ T-cells in Apc deleted 

mice significantly reduced the number of Lgr5 transcripts. Data represent a single experiment, n 

≥ 4 mice per group. (*) P value ˂ 0.05, two-tailed Mann Whitney U test. Error bars represent 

Standard Deviation (SD). Scale bars represent 20 µm.

Figure 6.1 Lgr5 expression analysis in the small intestinal crypts following CD4+ T-cells depletion. 
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(A) Representative images of Lgr5 (brown) RNAscope staining in the small intestine. (B) Depletion 

of CD8+ T-cells did alter significantly the number of Lgr5 transcripts and, in Apc deleted mice, 

had a trend for an increased number of Lgr5 transcripts in in the crypts. CD8+ T-cells depletion 

in Apc deleted/Treg cells depleted mice significantly increased the number of Lgr5 transcripts in 

the crypts. Data represent a single experiment, n ≥ 4 mice per group. Data for the non-induced, 

Foxp3DTR, Lgr5CreERT2Apcfl/fl and Lgr5CreERT2Apcfl/flFoxp3DTR groups are repeated in figure 6.1. (*) 

P value ˂ 0.05, two-tailed Mann Whitney U test. Error bars represent Standard Deviation (SD). 

Scale bars represent 20 µm. 

 

Figure 6.2 Lgr5 expression analysis in the small intestinal crypts following CD8+ T-cells depletion. 
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(A) Representative images of Lgr5 (brown) RNAscope staining in the small intestine. (B) IFNγ 

neutralisation in Apc deleted mice significantly reduced the number of Lgr5 transcripts in the 

crypts. There were no significant changes following IFNγ neutralisation in Apc deleted/Treg cells 

depleted mice. Data represent a single experiment, n ≥ 4 mice per group. Data for the non-

induced, Foxp3DTR, Lgr5CreERT2Apcfl/fl and Lgr5CreERT2Apcfl/flFoxp3DTR groups are repeated in 

figures 6.1 and 6.2. (*) P value ˂ 0.05, two-tailed Mann Whitney U test. Error bars represent 

Standard Deviation (SD). Scale bars represent 20 µm. 

 

Figure 6.3 Lgr5 expression analysis in the small intestinal crypts following IFNγ neutralisation. 

B 



164 
 

To further evaluate the how the immune changes affected the homeostasis of the 

ISCs, the number of Lgr5 transcripts was quantified in the villi of the previously analysed 

mice.  As expected, the number of Lgr5 transcripts was significantly increased in the villi 

of Apc deleted mice (Figure 6.4). Depletion of CD4+ cells in Apc deleted mice had no 

effect in the number of Lgr5 transcripts in the villi, however increased in Apc deleted/Treg 

depleted mice, suggesting again that the immune cell populations may play a role in the 

homeostasis of ISCs (Figure 6.4). 

Interestingly, CD8+ T-cells depletion, alone and in combination with Apc deletion, 

significantly increased the number of Lgr5 transcripts in the villi, however this effect was 

significantly attenuated in Apc deleted/Treg cells depleted mice (Figure 6.5), suggesting 

once again a role of the immune system in the regulation of ISCs homeostasis. 

The number of Lgr5 transcripts was not altered following IFNγ neutralisation in 

Apc deleted mice, however it was significantly increased in Apc deleted/Treg cells 

depleted mice (Figure 6.6). 

Taken together, these data show that either depletion of T-cells or neutralization 

of IFNγ result in an altered distribution of Lgr5 transcripts from the bottom of the crypts 

to other parts, including the villi, suggesting a role of these cells in the ISCs homeostasis. 
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(A) & (B) Representative images of Lgr5 (brown) RNAscope staining in the small intestine. (C) 

Apc deletion significantly increased the number of Lgr5 transcripts in the villi. Depletion of CD4+ 

T-cells in Apc deleted did not alter the number of Lgr5 transcripts, however increased in the villi 

of Apc deleted/Treg cells depleted mice. Data represent a single experiment, n ≥ 4 mice per 

group. (*) P value ˂  0.05, two-tailed Mann Whitney U test. Error bars represent Standard Deviation 

(SD). Scale bars represent 20 µm. 

Figure 6.4 Lgr5 expression analysis in the small intestinal villi following CD4+ T-cells depletion. 
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(A) Representative images of Lgr5 (brown) RNAscope staining in the small intestine. (B) Depletion 

of CD8+ T-cells alone, and in Apc deleted mice, significantly increased the number of Lgr5 

transcripts in the villi. Data represent a single experiment, n ≥ 4 mice per group. Data for the non-

induced, Foxp3DTR, Lgr5CreERT2Apcfl/fl and Lgr5CreERT2Apcfl/flFoxp3DTR groups are repeated in 

figure 6.4. (*) P value ˂ 0.05, two-tailed Mann Whitney U test. Error bars represent Standard 

Deviation (SD). Scale bars represent 20 µm.  

Figure 6.5 Lgr5 expression analysis in the small intestinal villi following CD8+ T-cells depletion. 
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(A) Representative images of Lgr5 (brown) RNAscope staining in the small intestine. (B) IFNγ 

neutralisation in Apc deleted mice did not alter significantly the number of Lgr5 transcripts in the 

villi. IFNγ neutralisation in Apc deleted/Treg depleted mice significantly increased the number of 

Lgr5 transcripts in the small intestinal villi. Data represent a single experiment, n ≥ 4 mice per 

group. Data for the non-induced, Foxp3DTR, Lgr5CreERT2Apcfl/fl and Lgr5CreERT2Apcfl/flFoxp3DTR 

groups are repeated in figures 6.4 and 6.5. (*) P value ˂ 0.05, two-tailed Mann Whitney U test. 

Error bars represent Standard Deviation (SD). Scale bars represent 20 µm. 

  

Figure 6.6 Lgr5 expression analysis in the small intestinal villi following IFNγ neutralisation. 
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6.3 Discussion 
 

The ISCs are essential in the maintenance of the intestinal homeostasis (Peterson 

and Artis 2014), where they give rise to the progenitors that, later differentiate to specific 

intra-epithelial cells (Munoz et al. 2012; Tetteh et al. 2016). It is well established that 

canonical signal pathways, such as Wnt and Notch are essential in the ISCs dynamics 

(Tian et al. 2015), however it is less known how immune cells and the adjacent ISCs 

interact. 

I have previously demonstrated that depletion of T-cells has a direct effect in the 

number of aberrant crypts and I hypothesised that these immune cells had a direct effect 

in the ISCs homeostasis. Here, the number of Lgr5 transcripts was quantified in the small 

intestines of non-induced, Apc deleted, T-cells depleted and IFNγ neutralized mice. 

The expression of Lgr5, in normal intestinal homeostasis, is restricted to the bottom 

of the crypts in both small and large intestines and it is lost upon cell differentiation 

(Barker et al. 2007; Barker et al. 2013). As expected, Apc deletion significantly increased 

the number of Lgr5 transcripts in the small intestinal crypts and villi. Other studies have 

shown an increased expression of Lgr5 in CRC cells relative to normal adjacent tissue 

(Fan et al. 2010; Wu et al. 2012; Baker et al. 2015; Wang et al. 2015b; Morgan et al. 

2018).  

So far, the interactions between immune cells and the ISCs were not fully studied, 

and this is reflected by the lack of literature in this field. Previous studies have suggested 

a role for the immune cells in tissue homeostasis of the intestine by showing that tissue-

resident innate immune cells such as macrophages and type 3 innate lymphoid cells 

(ILC3s) rescue ISCs and promote their regeneration (Lindemans et al. 2015; Saha et al. 

2016). Treg cells have been associated to tissue regeneration within muscles, lungs and 

the central nervous system (Burzyn et al. 2013; Arpaia et al. 2015; Dombrowski et al. 

2017). Recently, Biton and colleagues have shown that CD4+ T-helper (Th) cells 

communicate with ISCs and affect their differentiation (Biton et al. 2017). The authors 

used single-cell RNA-sequencing of intestinal epithelial cells in order to identify possible 

mechanisms for interactions between ISCs and immune cells (Biton et al. 2017). They 

have shown that MHC class II (MHC II) is enriched in subsets of Lgr5 ISCs that are highly 

proliferative and that knockout of MHC II in the intestinal epithelial cells would promote 

the expansion of the ISCs pool (Biton et al. 2017). Moreover, the authors have shown 

that mice lacking T-cells had also expanded ISCs pools and that specific Treg cells 

depletion in vivo caused a reduction in the ISCs numbers (Biton et al. 2017). Contrary to 

this work, I have shown that Treg cells depleted mice had a trend for an increased 
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number of Lgr5 transcripts in both crypts and villi suggesting an alteration in the 

homeostasis of Lgr5 in the absence of Treg cells. Depletion of CD4+ T-cells in Apc 

deleted mice significantly decreased the number of Lgr5 transcripts the crypts and had 

no significant changes in the villi. It is possible that, in the context of cancer, depletion of 

the immune cells will have a different effect when compared to T-cells depleted WT mice. 

CD8+ T-cells depletion alone did not alter the number of Lgr5 transcripts in the 

crypts, but resulted in a re-distribution from the bottom of the crypt to other parts. CD8+ 

depletion resulted in a significantly increased in the villi, suggesting again that depletion 

of immune cells have a direct impact in the ISCs. On the other hand, CD8+ T-cells 

depletion in Apc deleted mice had a trend for an increased number of Lgr5 transcripts in 

crypts, but significantly increased in the villi. IFNγ neutralisation significantly decreased 

the number of Lgr5 transcripts in the crypts of Apc deleted mice and increased in the villi 

of Apc deleted/Treg cells depleted, suggesting one more time an interaction between the 

immune system and regulation of ISCs. 

The quantification of the number of transcripts does not explain itself the reduction 

of aberrant crypts following the depletion of Treg cells, CD4+ and CD8+ T-cells. An 

important study would be quantifying the localization of the stem cells in the crypts in the 

different experimental groups. Alteration in the position of the stem cells could mean that 

they would not function as they usually do and that, following induction with tamoxifen, 

less stem cells would be transformed, being a possible reason for the reduced number 

of aberrant crypts following T-cells depletion. Barker and colleagues have demonstrated 

that only the cells located in the bottom of the crypt can initiate tumours (Barker et al. 

2009).The presence of more transcripts does not exactly mean more Lgr5 stem cells as 

it is possible that the homeostasis is interrupted and that these cells do not function 

anymore as normal ISCs. To verify the capacity of the ISCs, crypt and villus cells from 

the T-cell depleted mice could be isolated and their stemness evaluated by their capacity 

of developing organoids.  

In summary, it was shown that depletion of T-cells and IFNγ neutralisation affected 

the number and distribution of Lgr5 transcripts, suggesting that there is a crosstalk 

between the immune system and the ISCs and that it must be further analysed. 
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7 General Discussion/Conclusion 

 

Foxp3+ Tregs are enriched in mouse (Akeus et al. 2014) and human tumours 

(Clarke et al. 2006; Betts et al. 2012; Syed Khaja et al. 2017), however it is still unclear 

whether these cells limit or promote the anti-tumour immune responses. Most of the 

studies were done in patients with advanced disease. There is a need to understand the 

role of these cells in the early stages of tumourigenesis.  

The first aim of this project was to understand how Tregs were affected in the early 

stages of intestinal cancer. Using the Lgr5CreERT2Apcfl/flFoxp3DTR mouse model it was 

possible to delete the Apc gene in the Lgr5 ISCs mimicking an early event of the intestinal 

tumourigenesis initiation. It was hypothesised that the number and frequency of Tregs 

would increase 15 days following Apc deletion. It was shown for the first time, in this 

model, that Tregs accumulate in both small and large intestines, but also spleen and 

MLN indicating that the suppressive immune response is also enhanced in the distant 

sites. As previously discussed in chapter 3, the mechanism responsible for the 

accumulation of Tregs upon ISCs Apc deletion is still not clarified. Possibly there is a 

disruption of the epithelial barrier, promoting infiltration of bacteria and, as a 

consequence, activation of the immune system leading to the attraction of Tregs to the 

lesions sites. Another possibility is that ISCs can function as non-conventional antigen-

presenting cells, attracting and activating Tregs (Figure 7.1).  

Little changes were detected in other immune markers following Apc deletion. One 

possible reason for this observation was that at this early time point where the analysis 

was performed, large scale changes in the immune activation were not detectable. 

Another possible explanation is that as the analysis was performed using the whole small 

and large intestines potentially local changes were masked.  

The second aim was to investigate whether Tregs play a pro- or anti-tumoral role in 

the Lgr5CreERT2Apcfl/flFoxp3DTR mouse model. Depletion of Tregs have been previously 

reported as having a beneficial effect in both mouse models (Chaput et al. 2007; Goudin 

et al. 2016) and cancer patients. This was tested in few clinical trials in patients with 

metastatic disease (Dannull et al. 2005), including patients with inoperable metastatic 

CRC (Scurr et al. 2017a; Scurr et al. 2017b), where it was observed an unleashed 

immune response and, as a consequence, an improved survival outcome. 

It was hypothesised that Treg depletion would enhance the anti-tumour immune 

responses and limit tumour initiation and progression. As expected, Treg depletion in 
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Apc deleted mice resulted in a decreased tumour burden in the mice intestines, 

particularly in the large intestine. 

The reduced tumour burden following Treg depletion was also supported by the 

reduced gene expression of Wnt and ISCs markers, considering that their high 

expression is associated with tumour progression (2012; Polakis 2012). Treg depletion 

also resulted in an increase frequency of CD8+ producing Granzyme B and IFNγ cells. 

These cells have been demonstrated to participate in the anti-tumour immune 

responses, suggesting that they play an important role since the early stages of 

tumourigenesis. Taken together, these data suggest that Tregs play key role in the early 

stages of tumour initiation. 

Controversial data about the role of Tregs can be attributed to various reasons. In 

the case where cancer development is inflammation-driven Tregs may limit cancer 

growth by suppressing inflammation (Erdman 2010). Another explanation is that the 

populations of Tregs that where analysed may be heterogeneous in terms of their 

functional state and/or stability, possibly affecting whether they would promote or limit 

tumour progression.   

It is possible that by giving to the Lgr5CreERT2Apcfl/flFoxp3DTR mice dextran sodium 

sulphate (DSS) to induce chronic inflammation, possibly Tregs would play a key role but 

in the anti-tumoral immune responses. It has also been suggested a beneficial effect of 

a high fibre diet in the prevention of CRC (Burkitt 1971). A high fibre diet is known to 

have anti-inflammatory properties (Kunzmann et al. 2015). This is due to an increase in 

the metabolite butyrate produced as a consequence of fibre fermentation by the 

microbiota present in the large intestine (Cushing et al. 2015). Studies have shown that 

butyrate promotes differentiation of naïve CD4+ cells into Tregs, limiting inflammatory 

challenges (Zeng and Chi 2015). 

Considering that the data in this project suggested that Tregs play a key role in the 

early stages of intestinal cancer by limiting the anti-tumour immune responses, the next 

aim was the identification of immune cell populations and cytokines that were possibly 

responsible for the anti-tumour immune responses following Tregs depletion. Previous 

data from this project showed increased frequency of CD4+ and CD8+ cells following 

Treg depletion in the early stages of intestinal cancer. The same was observed with the 

cytokine IFNγ. Infiltration of tumours with high numbers of lymphocytes has been 

associated with a better prognosis and improved survival in CRC cancer patients (Galon 

et al. 2006; Mei et al. 2014; Braha et al. 2016) and in other cancer types (Al-Shibli et al. 

2008; Dieu-Nosjean et al. 2008; Menegaz et al. 2008).  



176 
 
 

To analyse the role of T-cells and IFNγ in the early stages of intestinal cancer, mice 

were injected with monoclonal antibodies to selectively deplete separately CD4+ and 

CD8+ cells and neutralise IFNγ. Depletion of CD4+ cells, in Apc deleted mice, resulted 

in a decreased number of aberrant crypts in the first 5 cm of the small intestine. Further 

studies are needed to analyse the role of the different T-cell subsets involved in the early 

tumourigenesis. Depletion of Th1 or Th17 cells, or neutralisation of the cytokines 

secreted by these cells, would give new insights about the role of different CD4+ cell 

subpopulations, clarifying how which one could be targeted to stop tumour progression. 

The previous findings that suggested an important role of CD8+ cells in the anti-

tumour immune responses in the early stages of intestinal cancer were, surprisingly, 

contradicted by the reduction of the number of aberrant crypts in the first 5 cm of Apc 

deleted/CD8+ cells depleted mice. The reduction in the tumour burden was associated 

with a decreased gene expression of the Wnt markers. It was also shown a decreased 

gene expression of the ISCs markers Lgr5 and Ascl2, possibly indicating a reduction in 

the ISC pool and, as a consequence, a reduction in the number of Apc deficient ISC, 

resulting in a decreased number of aberrant crypts. Considering that in this project CD8+ 

cells were depleted prior Apc deletion, there is the possibility that the stem cell pool was 

altered, resulting in a lower number of aberrant crypts, and not as a direct consequence 

of CD8+ cell depletion. RNAscope analysis showed an increased number of Lgr5 

transcripts in the villi when comparing to non-induced mice. Depletion of CD8+ cells in 

Apc deleted mice resulted in a re-distribution of the Lgr5 transcripts from the bottom to 

the other areas of the crypt. Interestingly it was demonstrated an increased number of 

transcripts in the villi, suggesting an alteration in the homeostasis of the ISCs. This can, 

possibly explain the reduced number of lesions following CD8+ cell depletion in Apc 

deleted mice. It has been shown that stem cells are located in the bottom of the crypts 

and only these cells can initiate tumours (Barker et al. 2009). Barker and colleagues 

have shown that Apc deletion in the non-stem cell compartment led to the production of 

small lesions that were retained within the intestinal epithelium, however these lesions 

did not form tumours (Barker et al. 2009). 

A recent study published by Biton and colleagues gave new insights into the effect 

of adaptive immune cells on ISCs fate (Biton et al. 2018). The authors showed that 

intestinal organoids supplemented with Tregs or their suppressive cytokine IL-10 had an 

expansion in the ISC pool. On the other side, organoids supplemented with T-helper 

subsets showed lower numbers of ISCs associated with increased cell differentiation 

(Biton et al. 2018). Next, the authors analysed the effect of MHC-II deficiency in vivo. 

Mice deficient in MHC-II, compared to control mice, had an increased proportion of ISCs 
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and reduced numbers of CD4+ T-cells in the intestines (Biton et al. 2018). These data 

suggests that MHC-II expression is essential for the support of ISCs. Similar to these 

results, mice deficient in T-cells had an increased expansion of ISCs, indicating again 

that T-cell interactions are essential for the ISCs differentiation. Finally, the authors 

showed that Treg depletion in Foxp3DTR mice resulted in aberrant ISC differentiations 

and reduction of the ISC pool. Treg depleted mice, as expected had an increased 

frequency of Th cells that may contribute for ICs differentiation (Biton et al. 2018). 

Altogether, these data provide new insights into the response of Lgr5+ ISCs to pro- and 

anti-inflammatory signals and how important these interactions are to maintain a balance 

between stem cell renewal and differentiation. 

Further studies are needed to test the hypothesis that the different distribution of the 

Lgr5 transcripts resulted in a reduced stemness and that, as a consequence, less stem 

cells would be recombined, giving origin to a reduced number of aberrant crypts. A way 

to test this would be by the isolation of cells from the crypt and villus to examine 

stemness. Another was the induction of Apc deletion by gavage so only villi cells would 

recombine, testing whether the population of cells expressing Lgr5 in the villi could form 

tumours (Barker et al. 2009).  

Another surprising result was the fact that IFNγ neutralisation did not have an impact 

in the tumour burden as it has been demonstrated that this cytokine plays a key role in 

the anti-tumour immune responses in the early stages of intestinal cancer (Wang et al. 

2015a). It is therefore important to mention that IFNγ neutralisation was not validated by 

any other method such as IHC or flow cytometry, being possible that neutralisation was 

not successfully achieved. Importantly, the analysis of the groups where T-cell were 

depleted and IFNγ was neutralised, to access tumour burden, were only done performed 

in the first 5 cm of the small intestine. A more complete analysis would include the 

quantification of the aberrant crypts in serial sections of the whole small and large 

intestines, possibly giving new insights about the role of IFNγ in the early stages of 

intestinal cancer. 

In conclusion, it was shown that Tregs are increased 15 days following Apc deletion. 

Depletion of Tregs significantly decrease the tumour burden, particularly in the large 

intestine, suggesting a key role of Tregs in the early stages of intestinal cancer (Figure 

7.1). It is important, however, to analyse the role of Tregs in different disease contexts 

as they are a possible target for prevention of CRC impeding its progression to a more 

aggressive disease. 
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Apc deletion leads to the increased expression of Wnt and ISCs markers. Apc deleted mice have 

an increased number of Tregs that are responsible for the suppression of the anti-tumour immune 

response. Two mechanisms are proposed to explain the increased infiltration of Tregs. It is 

possible that the intestinal epithelial barrier is disrupted, leading to the infiltration of bacteria and 

activation of the immune system. Another possible mechanism is that ISCs can function as 

antigen-presenting cells, being able to interact and activate Tregs. Following Treg depletion, in 

Apc deleted mice, there is a reduction of Wnt and ISCs markers, and a reduction of the tumour 

burden, particularly in the mice’s large intestine. 

Figure 7.1 Representative model of the effects of Treg depletion in Apc deleted mice. 
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The frequency of CD4+ cells expressing Foxp3 increased after Apc deletion in both spleen and MLN. 

The treatment with diphtheria toxin (DTR) resulted in a significantly decreased frequency of the Foxp3 

marker as expected in both spleen and MLN. Data represent a single experiment, n ≥ 7 mice per group.  

(*) P value ˂ 0.05, (**) P value ≤ 0.01, (***) P value ≤ 0.001, two-tailed Mann Whitney U test. 

  

Figure S 9.1 Frequency of CD4+ cells expressing Foxp3 in the spleen and MLN. 
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Apc deletion did not alter the frequency of CD3+ cells in the spleen. The frequency of CD3+ cells 

increased with Treg depletion alone and in Apc deleted/Treg depleted mice. The frequency of CD3+ 

cells was decreased in the MLN following Treg depletion when comparing to Apc deletion alone. There 

was a trend for a decreased frequency of CD3+ cells when Tregs were depleted together with Apc 

deletion although was is not significant. Data represent a single experiment, n ≥ 7 mice per group. (*) 

P value ˂ 0.05, (**) P value ≤ 0.01, (***) P value ≤ 0.001, two-tailed Mann Whitney U test. 

  

Figure S 9.2 Frequency of CD3+ T-cells in the spleen and MLN. 
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The frequency of CD4+ cells was significantly with in Treg depleted and Apc deleted/Treg depleted 

mice. There was a trend for a decreased frequency of CD4+ cells following Apc deletion. In the MLN 

the frequency of CD4+ cells was significantly decreased with Apc deletion, Treg depletion and both 

treatments together. Data represent a single experiment, n ≥ 7 mice per group. (*) P value ˂ 0.05, (**) 

P value ≤ 0.01, (***) P value ≤ 0.001, (****) P value ≤ 0.0001, two-tailed Mann Whitney U test. 

  

Figure S 9.3 Frequency of CD3+ cells expressing CD4 in the spleen and MLN. 
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The frequency of CD8+ cells, in the spleen, was increased in Apc deleted/Treg depleted mice. The 

frequency of CD8+ cells was significantly increased with Apc deletion, Treg depletion and both 

treatments together in the MLN. Data represent a single experiment, n ≥ 7 mice per group. (*) P value 

˂ 0.05, (**) P value ≤ 0.01, (***) P value ≤ 0.001, (****) P value ≤ 0.0001, two-tailed Mann Whitney U 

test. 

  

Figure S 9.4 Frequency of CD3+ cells expressing CD8 in the spleen and MLN. 
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The frequency of CD4+ expressing Granzyme B was not changed after Apc deletion. Treg depletion 

alone and together with Apc deletion resulted in a significantly increased expression of Granzyme B. 

The frequency of Granzyme was significantly increased in the MLN with Apc deletion, Treg depletion 

and both treatments together. Data represent a single experiment, n ≥ 7 mice per group. (*) P value ˂ 

0.05, (**) P value ≤ 0.01, (***) P value ≤ 0.001, (****) P value ≤ 0.0001, two-tailed Mann Whitney U test. 

  

Figure S 9.5 Frequency of CD4+ expressing Granzyme B in the spleen and MLN. 



209 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The frequency of CD8+ cells expressing Granzyme B is significantly increased with Tregs depletion 

alone and Apc deleted/Treg depleted mice in both spleen and MLN. Data represent a single experiment, 

n ≥ 7 mice per group. (***) P value ≤ 0.001, (****) P value ≤ 0.0001, two-tailed Mann Whitney U test. 

  

Figure S 9.6 Frequency of CD8+ cells expressing Granzyme B in the spleen and MLN. 
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The frequency of CD4+ cells expressing IL-17A was significantly increased in the spleen with Apc 

deletion, Treg depletion and both treatments together. In the MLN the frequency of CD4+ expressing 

IL-17A was increased with Treg depletion alone and Apc deletion with Treg depletion together. Data 

represent a single experiment, n ≥ 7 mice per group. (**) P value ≤ 0.01, (***) P value ≤ 0.001, (****) P 

value ≤ 0.0001, two-tailed Mann Whitney U test. 

  

Figure S 9.7 Frequency of CD4+ cells expressing IL-17A in the spleen and MLN. 
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The frequency of CD8+ cells expressing IL-17A was significantly increased with Treg depletion alone 

and Apc deletion/Treg depletion in both spleen and MLN. Data represent a single experiment, n ≥ 7 

mice per group. (**) P value ≤ 0.01, (***) P value ≤ 0.001, two-tailed Mann Whitney U test. 

  

Figure S 9.8 Frequency of CD8+ cells expressing IL-17A in the spleen and MLN. 
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The frequency of CD4+ cells expressing IFNγ was significantly increased in the spleen with Apc 

deletion, Treg depletion and Apc deletion/Treg depletion. In the MLN the frequency of CD4+ cells 

expressing IFNγ was significantly increased with Treg depletion alone and Apc deletion/Treg depletion. 

Data represent a single experiment, n ≥ 7 mice per group. (*) P value ˂ 0.05, (***) P value ≤ 0.001, (****) 

P value ≤ 0.0001, two-tailed Mann Whitney U test. 

  

Figure S 9.9 Frequency of CD4+ cells expressing IFNγ in the spleen and MLN. 
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The frequency of CD8+ cells expressing IFNγ was significantly increased with Treg depletion alone and 

Apc deletion/Treg depletion in both spleen and MLN. Data represent a single experiment, n ≥ 6 mice 

per group. (**) P value ≤ 0.01, (***) P value ≤ 0.001, two-tailed Mann Whitney U test. 

 

 

Figure S 9.10 Frequency of CD8+ cells expressing IFNγ in the spleen and MLN. 


