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	 vii	

SUMMARY	

In	this	work,	Density	Functional	based	Tight	Binding	methods	are	used	according	to	the	
Non-Equilibrium	Greens	Function	method,	 to	calculate	 the	 thermoelectric	properties	of	
phosphorus	 materials	 and	 tin	 sulfide	 phases.	 The	 effects	 of	 several	 types	 of	 phase	
transitions,	on	the	thermoelectric	properties	of	these	layered	materials,	are	considered.	

It	 is	 shown	 that,	 not	 only	 is	 consideration	 of	 structural	 and	 electronic	 rearrangements	
within	 the	 operating	 conditions	 of	 thermoelectric	 materials	 necessary,	 but	 that	 the	
presence	of	structural	phase	transitions,	in	the	absence	of	an	electronic	phase	transition,	
may	in	fact	be	a	powerful	means	of	enhancing	the	thermoelectric	properties	of	a	material.	
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1 	 – 	 INTRODUCT ION	

1.1	–	GENERAL	INTRODUCTION	

In	this	work,	Density	Functional	based	Tight	Binding	(DFTB)	methods	are	applied	to	the	modelling	of	

large	systems	of	 thousands	of	atoms.	The	Non-Equilibrium	Greens	Functions	approach	to	modelling	

electronic	 transport	 is	 used	 as	 a	 means	 to	 derive	 the	 electronic	 transmission.	 According	 to	 the	

Landauer-Büttiker	 formalism,	 the	 thermoelectric	 transport	properties	of	 several	novel	materials	are	

modelled,	with	the	aim	of	constructing	a	framework	from	which	exciting	new	thermoelectric	materials	

may	be	created.		

Thermoelectric	materials	are	a	time-honoured	means	of	generating	electricity	from	waste	heat,	 in	a	

solid-state	device.	The	search	for	new	sustainable	technologies	needs	no	introduction,	and	it	is	due	to	

the	 impact	 of	 climate	 change	 on	 society	 that	 there	 has	 been	 a	 substantial	 increase	 in	 funding	 for	

potential	green	technologies.	

2D-layered	 materials	 are	 a	 key	 research	 topic	 in	 the	 electronics	 community,	 due	 to	 their	 novel	

phenomena.	Layered	materials	have	become	especially	of	interest	to	the	thermoelectric	community,	

as	several	of	the	most	recent	advances	in	efficiencies	have	been	realised	in	layered	compounds.	

Thermoelectric	devices	tend	to	operate	at	higher	efficiencies	at	elevated	temperatures,	and	it	is	this	

subjection	 to	 extreme	 conditions	 that	 makes	 the	 concept	 of	 phase	 transitions	 in	 thermoelectric	

materials	so	intriguing.	The	notion	that	a	phase	transition	may	occur	within	the	operating	conditions	of	

a	material,	and	have	a	beneficial	impact	upon	its	figure	of	merit	is	an	exciting	concept.	

In	this	work,	the	effect	of	several	distinct,	unique	phase	transitions	on	the	electronic	thermoelectric	

transport	properties	are	investigated.	These	include	both	pressure,	and	temperature	induced	structural	

phase	 transitions,	 pressure	 induced	electronic	phase	 transitions,	 and	 the	 seemingly	 size-dependent	

transition	of	a	recently	discovered	phase	of	tin	sulfide.	

The	concept	of	utilising	the	structural	disorder	observed	during	a	phase	transition	to	enhance	these	

thermoelectric	properties	is	developed,	and	some	interesting	results	are	presented.	
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1.2	–	OVERVIEW		

The	thesis	is	structured	in	such	a	way	that	the	aforementioned	methodology	of	thermoelectric	material	

enhancement	 is	 gradually	 developed	 from	 simple	 concepts.	 The	 general	 outline	 of	 the	 thesis	 is	 as	

follows.	

The	first	chapter	is	a	general	introduction	to	the	thesis.	

The	second	chapter	forms	the	basis	for	the	theoretical	work	of	this	thesis.	In	this	section,	the	derivation	

of	 computational	 methods	 such	 as	 Density	 Functional	 Theory	 and	 Density	 Functional	 based	 Tight	

Binding	 theory	 is	 presented.	 An	 introduction	 to	 the	methods	 used	within	 computational	 chemistry	

simulations	follows,	with	a	discussion	of	the	merits	of	such	methodologies	for	specific	purposes.	The	

codes	used	within	this	thesis	are	then	explained,	and	the	theoretical	section	is	concluded.	

The	third	chapter	is	an	introduction	to	the	field	of	thermoelectrics.	The	basic	concepts	upon	which	the	

theory	of	thermoelectricity	is	built	are	introduced,	along	with	a	derivation	of	the	various	figures	of	merit	

applied	to	the	understanding	of	a	thermoelectric	materials	waste-heat	conversion	efficiency.	A	basic	

review	of	the	state-of-the-art	methods	of	thermoelectric	material	optimisation	is	presented,	followed	

by	 a	 review	 on	 the	 state-of-the-art	 in	 thermoelectric	 materials.	 Finally,	 an	 introduction	 to	 the	

methodologies	 used	 to	 derive	 the	 thermoelectric	 properties	 from	 electronic	 transport	 calculations	

concludes	the	chapter.	

The	fourth	chapter	begins	with	an	investigation	into	electronic	transport	in	thin-film	nanowires	of	black	

phosphorus.	The	impact	of	film	thickness	on	the	transport	properties	is	considered,	and	familiarity	with	

the	methodology	of	transmission	calculations	is	established.	An	investigation	into	the	effect	of	pressure	

on	the	electronic	structure	of	black	phosphorus	is	conducted,	which	suggests	that	an	electronic	phase	

transition	may	be	induced	in	black	phosphorus,	under	uniaxial	pressure.	The	concept	of	high	pressure	

phase	transitions	in	phosphorus	allotropes	is	introduced,	along	with	a	theory	of	how	the	influence	of	

pressure	may	enhance	 the	 thermoelectric	properties	of	black	phosphorus.	 The	electronic	 transport	

properties	 of	 several	 known	 phosphorus	 allotropes	 are	 calculated,	with	 the	 intention	 of	 forming	 a	

grounding	 for	 the	 methodology.	 Once	 these	 calculations	 brought	 confidence	 to	 the	 method,	 an	

approach	was	 developed	 from	which	metastable	 intermediate	 structures	 from	 along	 the	 transition	

pathway	of	black	phosphorus	under	high	pressures	were	obtained.	The	electronic	transport	properties	

were	then	calculated	for	these	materials	and	an	investigation	into	the	impact	on	the	thermoelectric	

properties	of	these	materials	was	conducted.	The	results	were	discussed,	along	with	the	conclusion	of	

the	suitability	of	the	meta-stable	phase	transition	intermediate	approach	to	layered	materials.	
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In	the	fifth	chapter,	the	various	compounds	and	phases	of	tin	sulfide	are	reviewed,	with	an	overview	of	

why	these	layered	materials	are	of	such	interest	to	the	thermoelectric	community.	A	crystallographic	

study	of	the	various	phases,	both	naturally	occurring	and	theoretical,	is	undertaken,	and	the	electronic	

structures	of	these	materials	are	explored.	The	thermoelectric	transport	properties	of	the	ground-state,	

naturally	occurring	tin	sulfides	are	calculated	and	presented	in	full.	A	discussion	as	to	the	applicability	

of	the	formalisms	applied	in	this	thesis	to	this	chemical	system	follows.	The	methods	and	techniques	

devised	during	this	work	are	then	applied	to	the	non-ambient	phases	of	tin	sulfide,	and	an	appreciation	

of	the	effect	of	the	temperature-	and	scale-induced	phase	transitions	on	the	thermoelectric	properties	

of	tin	sulfide	is	developed.	

The	thesis	is	then	concluded.	
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2 	 – 	COMPUTAT IONAL 	CHEMISTRY 	

This	chapter	concerns	the	computational	theory	and	methods	used	in	the	work	of	this	thesis.	The	first	

section	details	the	derivation	of	Density	Functional	Theory,	DFT,	from	first	principles,	followed	by	the	

derivation	of	Density	Functional	based	Tight	Binding	theory,	DFTB,	along	with	the	application	of	these	

methods	and	a	summary	of	the	codes	used.	Finally,	the	types	of	calculations	performed	in	this	work	

and	across	various	codes	are	detailed	and	some	background	theory	given.	

“The	Calculation	of	molecular	orbitals”	by	John	C.	Slater,	“Basic	Quantum	Chemistry”	by	Leon	F.	Phillips,	

“The	 Basics	 of	 Theoretical	 and	 Computational	 chemistry”	 by	 Rode,	 Hofer	 and	 Kugler,	 “Quantum	

Chemistry”	by	McQuarrie,	and	“An	 Introduction	to	Molecular	Dynamics	and	Chemical	Kinetics”	were	

used	extensively	as	the	backbone	of	the	theoretical	concepts	in	this	chapter.1-5	

	

2.1	–	INTRODUCTION	

As	models	of	the	atom	grow	more	complex,	so	have	the	associated	calculations.	In	the	early	1900s,	it	

was	not	uncommon	for	the	calculation	of	individual	orbital	energies	to	be	performed	by	hand,	and	later	

with	the	aid	of	a	pocket	calculator.1	The	advances	in	computing	in	the	last	several	decades	have	allowed	

for	 these	 calculations	 to	 be	 performed	 at	 superior	 speed,	 and	 massively	 parallelised.6	 This	 rise	 in	

computational	power	has	seen	calculations	involving	single	atoms	and	diatomic	molecules	evolve	into	

giant	systems	of	thousands	of	atoms,	multiple	phases	and	yield	a	host	of	calculable	properties.7-9	

Whilst	 the	 calculation	of	 atoms	 can,	 for	 certain	 circumstances,	 be	 reduced	 to	problems	of	 classical	

mechanics,	the	accurate	description	of	electrons	within	a	chemical	system	requires	the	application	of	

quantum	mechanics,	which	initially	made	these	calculations	impossible.	

“From	our	point	of	view	the	most	serious	assumption	of	classical	mechanics	is	that	any	dynamic	

system	can	be	regarded	as	an	assemblage	of	particles	whose	masses,	positions,	and	velocities	can	be	

determined	precisely	at	any	instant.”	

Leon	F.	Phillips	
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In	1926	Erwin	Schrödinger	published	Quantisierung	als	Eigenwertproblem,	presenting	his	now	famous	

equation	on	the	subject	of	wave	mechanics.10	

𝐻	 	Ψ = 𝐸	 	Ψ 	 (1)	

Equation	1	 is	 the	 time	 independent	Schrödinger	equation.11	Much	of	 computational	 chemistry	 is	 at	

some	 level	 dependent	 on	 solving	 the	 Schrödinger	 equation	 in	 some	 form	 to	 derive	 energies	 and	

subsequent	forces	within	a	system.		

To	 fully	describe	a	quantum	system,	a	 function	𝛹,	 is	 specified.	This	wave	 function	 is	 required	 to	be	

finite,	single-valued	and	continuous.	The	wave	function	 is	noted	to	be	complex,	though	the	physical	

properties	of	a	system	depends	on	the	real	quantity	𝛹*𝛹,	where	𝛹*	is	the	complex	conjugate	of	𝛹.	1	

	

2.2	–	ORIGINS	OF	DENSITY	FUNCTIONAL	THEORY	

The	roots	of	density	functional	theory,	DFT,	can	be	traced	back	to	D.	R.	Hartree	who,	in	1928,	introduced	

the	 term	 self-consistent	 field	 to	 the	 area	 of	 atomic	 modelling.12	 The	 concept	 was	 applied	 to	 the	

modelling	of	molecules	by	 J.	 E.	 Lennard-Jones,	 F.	Hund	and	R.	 S.	Mulliken	at	 the	 same	 time,	which	

provided	the	foundations	for	the	theories	of	electrons	in	crystals,	as	determined	by	F.	Bloch,	L.	Brillouin,	

W.	Heisenberg	and	A.H.	Wilson.3	

	

2.2.1	–	HARTREE	METHOD	

The	work	of	Hartree	began	with	the	relatively	simple	problem	of	solving	the	Schrödinger	equation	for	

an	electrical	system	within	the	vicinity	of	a	single	nucleus	or	ion.		For	a	system	of	N	electrons	about	a	

stationary	nucleus	of	atomic	number	Z,	each	electron	is	acted	upon	by	the	nucleus	and	N	–	1	electrons.	

For	Hartree,	the	logical	step	was	to	replace	the	electronic	field	with	a	single	potential	describing	the	

averaged	positions	of	the	other	electrons,	such	that	the	Schrödinger	equation	may	be	solved	for	the	

wave	 functions	 of	 singular	 electrons	 acted	 upon	 by	 singular	 nuclear	 and	 electronic	 potentials.	 This	

effectively	reduced	the	many-body	3𝑁-dimensional	problem	for	each	of	𝑁	electrons,	to	𝑁	individual	3-

dimentional	problems	–	a	massive	simplification	for	any	system	with	more	than	one	electron.3	If	we	

define	𝜓- 	as	a	wave	function,	normalised	such	that	the	integral	over	all	space	of	𝜓-∗𝜓-	is	equal	to	1	and	
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thus	finite,	the	occupied	orbitals	can	be	denoted	as	𝑁𝜓-.	The	term	𝜓-∗𝜓- 	thus	represents	the	charge	

density	of	the	𝑖th	electron,	such	that	we	can	define	the	total	electronic	charge	density	of	our	system	as		

𝜌 = 	− 𝑖 𝑛-𝜓-∗𝜓-
-

	 2 	

whereby	the	summation	over	all	orbitals	includes	those	that	are	empty.	

With	energy	in	Rydberg’s	and	radii	in	Bohr,	Hartree	defines	the	potential	of	the	nucleus	at	distance	𝓇	

as	2Z/	𝓇.	The	potential	of	a	charge	at	point	1	separated	from	point	2	by	distance	𝓇12	 in	all	volume	

elements	𝒹𝓋2	is	thus	

	 𝜌 2
2
𝑟89

𝑑𝑣9
<

=
3 	

where	𝜌(2)	is	the	charge	density	at	point	2.	Assuming	that	an	electron	could	not	act	upon	itself,	Hartree	

decided	that	𝜓-∗𝜓- 	should	not	be	included	in	the	charge	density	of	the	electron	in	the	𝑖
th	orbital	defined	

in	equation	2.	This	allows	for	the	definition	of	the	potential	acting	on	the	𝑖th	electron	at	position	1	as	

𝑉- 1 = 	𝑉? 1 +	𝑉A 1 +	𝑉B- 1 	 4 	

where	the	nuclear	potential		

𝑉? 1 =
2𝑍
𝑟8
	 5 	

and	the	averaged	electronic	potential		

𝑉A 1 = 	 𝜌 2
2
𝑟89

𝑑𝑣9 	 	 6 	

whilst	𝒱𝑋𝒾	is	the	correction	term	for	the	absence	of	an	electron	in	one	orbital	acting	upon	itself.	For	an	

electron	in	the	𝒾th	orbital,	Hartree	assumed	the	Schrödinger	equation	to	be		

−∇9𝜓- 1 − V-𝜓- 1 = 	ℇ-𝜓- 1 	 7 	

where	-𝛻2	is	the	kinetic	energy	in	atomic	units,	-V- 	is	the	potential	energy	of	the	electron	in	the	averaged	

potential	in	equation	4,	and	𝜀𝒾	is	the	one	electron	energy.1	Equation	7	is	relatively	straightforward	to	

solve	due	 to	 the	 spherical	 symmetry	of	 the	atom,	 yielding	a	 solution	 in	 spherical	polar	 coordinates	

which	 are	 the	 products	 of	 spherical	 harmonics	 of	 the	 angles	 and	 vectors	 of	 radius	 vector	𝓇.	 The	

differential	of	this	radial	function	can	be	solved	simply.	For	certain	discrete	energies,	the	eigenvalues,	

the	eigenfunctions	are	found	to	be	regular	at	the	nucleus	and	infinity.	
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For	self-consistency,	these	normalised	functions	should	be	identical	with	the	functions	𝛹𝒾	of	equation	

1.	This	is	not	automatic	however,	and	so	Hartree	stipulated	that	these	should	be	iteratively	adjusted,	

until	 this	 condition	 was	 met	 to	 a	 certain	 level	 of	 accuracy.	 More	 specifically,	 using	 the	𝛹𝒾’s	 from	

equation	 7	 and	 substituting	 them	 into	 equation	 1	 to	 begin	 the	 next	 iteration.	He	 then	 termed	 the	

resultant	 field,	potential	and	wave	 functions	self-consistent.	The	self-consistent	charge	density	 from	

equation	1	approximated	the	experimentally	determined	atomic	charge	density	rather	well.	Better	still,	

the	 differences	 between	 the	 energies	 of	 the	 occupied	 and	 unoccupied	 states	 approximated	 the	

experimentally	determined	excitation	energies.	For	the	ground	state	atom,	it	was	found	that	in	most	

cases,	the	lowest	energy	eigenfunctions	should	be	occupied,	satisfying	the	recently	stipulated	Aufbau	

Principle	of	N.	Bohr	and	W.	Pauli.	

As	previously	mentioned,	while	Hartree	was	working	on	 these	principles,	 Lennard-Jones,	Hund	and	

Mulliken	were	trying	to	apply	similar	concepts	to	simple	molecules.	13,14	The	distinction	being	that	the	

nuclear	potential,	𝒱𝒩	(equation	4)	should	be	replaced	by	a	term	equating	to	the	sum	of	such	nuclear	

potentials	within	the	molecule.	The	absence	of	spherical	symmetry	meant	Schrödinger	equations	for	

such	 systems	 were,	 initially,	 deemed	 impractically	 complex	 to	 solve	 within	 realm	 of	 calculative	

capabilities	at	the	time.	

	

2.2.2	–	EARLY	DENSITY	FUNCTIONAL	THEORY	

Initially	conceptualised	by	L.	Thomas	and	E.	Fermi	in	1927,	almost	immediately	after	the	Schrödinger	

equation	was	published,	the	principle	of	Density	Functional	Theory,	or	DFT,	is	to	use	electron	density	

instead	of	wave	functions	to	derive	the	energies	of	chemical	systems.	15,16	The	Thomas-Fermi	Model	

precedes	modern	DFT	but	due	to	its	limitations,	was	unsuccessful	in	becoming	a	standard	model	at	the	

time.		

The	approach	was	adapted	by	 J.	 C.	 Slater	 around	1950,	who	 redefined	 the	Hartree-Fock	exchange,	

defining	the	exchange	energy	as	

𝐸B =
1
2

ρ 𝑟8 ℎB 𝑟8; 𝑟9
𝑟89

	𝑑𝑟8	𝑑𝑟9	 8 	
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where	ρ(𝑟8)	is	the	electron	density	and	ℎB(𝑟8; 𝑟9)	is	the	local	exchange	operator.	Previously,	Fermi	had	

shown	that	the	hole	created	by	the	charge	deficiency	in	the	region	of	each	electron	amounts	to	the	

charge	of	1	electron.	This	hole	is	spherical	with	a	radius	defined	by	E.	Wigner	and	F.	Seitz	as		

𝑟U = 	
3
4𝜋

8
W
𝜌 𝑟8

X8W	 	 9 	

meaning	it	was	possible	to	express	the	exchange	energy	as	

𝐸B 𝜌 ≅ 𝐶B 𝜌 𝑟8
\
W𝑑𝑟8 	 	 10 	

where	𝐶B	is	a	numerical	constant.	Slater	then	introduced	an	adjustable	parameter,	a,	to	improve	the	

approximation.	This	Hartree-Fock-Slater	X	a	Method	was	now	expressed	as	

𝐸B^ 𝜌 = 	−_
`

3
𝜋

8
W
𝛼 𝜌 𝑟8

\
W	𝑑𝑟8 . 11 	

	This	method	showed	promise	in	solid-state	applications,	but	failed	to	accurately	describe	molecular	

systems.		

	

2.2.3	–	MODERN	DENSITY	FUNCTIONAL	THEORY	

In	the	1960s,	the	conceptual	use	of	electronic	densities	was	further	developed	by	P.	Hohenberg	and	W.	

Kohn,	who	devised	several	theorems.17	The	first	theorem	introduced	in	 inhomogeneous	electron	gas	

relates	the	external	potential	of	a	system	to	its	electron	density:	

“We	shall	now	show	that	conversely	𝜈 𝑟 	is	a	unique	functional	of	𝑛(𝑟),	apart	from	a	trivial	additive	

constant.”	

where	𝜈 𝑟 	is	 the	external	potential,	and	𝑛(𝑟)	is	 the	electron	density	otherwise	denoted	as	𝜌	in	this	

thesis.	 If	 the	many-particle	 ground	 state	 is	 a	 unique	 functional	 of	𝜌(𝑟),	 then	 the	external	 potential	

determining	the	Hamiltonian	is	𝜌(𝑟).	As	such,	all	components	of	the	ground	state	energy	can	also	be	

determined	by	the	electron	density:	

𝐸d 𝜌d = 	𝑇 𝜌d + 𝐸AA 𝜌d + 	𝐸?A 𝜌d 		 12 	
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The	second	theorem	was	established:17	

“We	shall	now	show	that	𝐸f 𝑛 	assumes	its	minimum	value	for	the	correct	𝑛(𝑟),	if	the	admissible	

functions	are	restricted	by	the	condition	

𝑁 𝑛 ≡ 	 𝑛 𝑟 𝑑𝑟 = 𝑁. "	 13 	

Here,	𝑁 𝑛 	is	 the	number	of	electronic	densities	considered	and	𝑛(𝑟)	is	 the	ground	state	electronic	

density.	Essentially,	the	functional	FHK	yielding	the	true	ground	state	energy	must	correspond	to	the	

correct	ground	state	density,	𝜌o.	Any	other	density	would	result	in	a	higher	energy,	for	the	case	of	a	

trial	density,	𝜌	we	get	

𝐸d 	≤ 𝐸 r = 𝑇 𝜌 +	𝐸AA 𝜌 + 𝐸?A 𝜌 	 14 	

It	is	apparent	therefore	that	we	have	a	scheme	with	which	to	optimise	the	density	functional,	for	the	

ground	state.	

2.2.4	–	KOHN	SHAM	EQUATIONS	

As	we	saw,	Hohenberg	had	been	working	with	Kohn	to	establish	a	method	of	using	electronic	density	

instead	 of	 wave	 functions	 to	 model	 chemical	 systems.18	 The	 Hohenberg	 Kohn	 theorems	 laid	 the	

foundations	for	Kohn	and	L.	J.	Sham	to	produce	a	series	of	equations,	the	Kohn-Sham	Equations,	which	

consolidated	 the	 work	 of	 Thomas,	 Fermi	 and	 Slater	 with	 the	 orbital	 theory	 of	 the	 Hartree-Fock	

method.19	Using	a	Slater	determinant	modified	for	DFT	and	atomic	orbitals,	the	Kohn-Sham	equations	

can	be	expressed	as	a	one-electron	operator,	as	with	the	Hartree-Fock	equations:	

𝑓kl 	= 	 ℰ-	|	Ψ- = 	 −	8
9
	∆ + 	𝑉l 𝑟 Ψ- 15 	

The	electron	density	is	obtained	from	the	𝛹𝒾*𝛹𝒾	values.	To	calculate	the	kinetic	energy,	which	is	not	

determined	by	the	functional	as	in	the	Hartree-Fock	formula	

𝑇l = 	−
1
2
	 	Ψ𝒾 	Δ	 	Ψ𝒾 	

?

-
16 	

we	must	split	the	functional		

𝐹 𝜌 𝑟 = 	𝑇l 𝜌 𝑟 + 	𝐽 𝜌 𝑟 + 	𝐸Bs 𝜌 𝑟 	 17 	
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into	 its	 kinetic	 energy	 and	 Coulomb	 term,	 alongside	 an	 exchange	 correlation	 term.	 This	 exchange	

correlation	incorporates	a	correction	term	for	the	kinetic	energy,	as	well	as	the	expected	exchange	and	

correlation	effects:	

𝐸Bs 𝜌 ≡ 𝑇 𝜌 −	𝑇l 𝜌 + 𝐸AA 𝜌 − 	𝐽 𝜌 = 	𝑇s 𝜌 +	𝐸tuv 𝜌 18 	

𝑇s 	is	 the	 true	 kinetic	 energy	 and	𝐸tuv 	incorporates	 all	 non-classic	 effects,	 such	 as	 self-interaction	

correction,	exchange	and	correlation.	Next	we	must	formulate	the	potential	operator	𝑉l	in	the	Kohn-

Sham	operator	𝑓kl,	by	approximating	it	as	an	effective	operator	

𝑉Aww = 	
𝜌89
𝑟89

𝑑𝑟9 − 	
𝑍x
𝑟-x

+ 	𝑉Bs	
x

	 19 	

where	𝑉Bs 	describes	the	exchange-correlation	energy	effect,	and	is	unknown,	so	must	be	defined	as	a	

derivative	of	the	exchange-correlation	energy:	

𝑉Bs ≡ 	
𝛿𝐸Bs
𝛿𝜌

	 20 	

If	𝐸Bs 	and	𝑉Bs 	could	be	derived,	the	exact	ground	state	energy	could	be	calculated.	Unfortunately,	they	

cannot,	leading	to	the	first	problems	of	density	functional	methods.	

Although	 similar	 to	 Hartree-Fock,	 Kohn-Sham	DFT	 differs	 in	 several	 key	ways,	 the	main	 being	 that	

Hartree-Fock	works	with	discrete	operators,	refining	results	by	optimising	the	probability	function.	In	

the	Kohn-Sham	method,	the	operator	is	altered	by	the	ground	state	energy	from	the	electron	density,	

without	obtaining	a	physical	probability	function.	

	

2.2.5	–	LOCAL	DENSITY	APPROXIMATION	(LDA)	

The	Local	Density	Approximation	stems	from	the	older	concept	of	a	homogenous	electron	gas.	20,21	In	

fact,	the	only	systems	that	LDA	provides	a	suitable	approximation	for	are	simple	metals.	Any	system	

with	a	more	specific	electronic	density	distribution	will	not	be	accurately	described	by	LDA.	However,	

this	flaw	is	also	the	main	reason	for	its	continued	use,	as	the	exchange	and	correlation	terms	can	be	

calculated	with	high	accuracy	from	the	inhomogeneous	electron	cloud.	

𝐸Bsz{x 𝜌 = 	 𝜌 𝑟 𝜀Bs 𝜌 𝑟 𝑑𝑟 	 21 	
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Here	𝜀Bs 𝜌 𝑟 	is	the	particle	exchange-correlation	energy	within	the	electron	gas.		

𝜀Bs 𝜌 𝑟 = 	 𝜀B 𝜌 𝑟 + 	𝜀s 𝜌 𝑟 	 22 	

The	exchange-correlation	energy	is	simply	the	sum	of	the	exchange	and	correlation	energies	for	each	

particle.	The	exchange	term	can	also	be	expressed	as	

𝜀B = 	−	
3
4
	
3𝜌 𝑟
𝜋

|

	 . 23 	

There	are	a	multitude	of	refined	expressions	for	𝜀s ,	each	named	after	its	author	e.g.	VWN5,	PW92.	For	

the	unrestricted	case,	there	is	a	further	development	termed	Local	Spin-Density	Approximation	(LSD),	

allowing	for	derivations	of	𝜀Bs 	for	spin-polarised	systems:	

𝐸Bszl{ 𝜌^,𝜌~ = 	 𝜌 𝑟 𝜀Bs 𝜌^ 𝑟 , 	𝜌~ 𝑟 𝑑𝑟 	 24 	

Both	LDA	and	LSD	are	mainly	used	 to	model	 solid	 state	materials;	 they	describe	molecular	 systems	

rather	poorly.	

	

2.2.6	–	GENERALISED	GRADIENT	APPROXIMATION	(GGA)	

The	electronic	density,	𝜌 𝑟 ,	is	the	basis	for	all	prior	methods	within	DFT,	but	the	addition	of	the	density	

gradient,	Δρ r ,	 allows	 for	 the	non-homogeneity	of	 the	electron	density	 to	be	accounted	 for.22	The	

Gradient	Expansion	Approximation:	

𝐸Bs��x 𝜌^,𝜌~ = 	 𝜌𝜀Bs 𝜌^, 	𝜌~ 	𝑑𝑟 + 	 𝐶Bs
�,�� 	 𝜌^, 	𝜌~ 	

Δρ�

𝜌�
�
|

Δρ��

𝜌��
�
|
	𝑑𝑟 + ⋯	

�,��
	 25 	

is	the	next	stage	in	the	development	of	the	LDA,	in	the	sense	that	it	includes	the	second	term	of	a	Taylor	

expansion	 as	 well	 as	 the	 first	 which	 describes	 the	 LDA.	 In	 this	 form,	 the	 functional	 yields	 little	

improvement	 due	 to	 an	 inability	 to	 describe	 the	 exchange	 term,	 but	 by	 further	 approximating	 the	

restrictions	of	 the	 ‘real’	 exchange	behaviour,	we	arrive	at	 the	Generalised	Gradient	Approximation,	

GGA:	

𝐸Bs��x 𝜌^,𝜌~ = 	 𝐹 𝜌^ 𝑟 , 	𝜌~ 𝑟 , Δρ^ r , Δρ~ r 	𝑑𝑟	 26 	
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Once	again,	𝐸Bs��x 	can	be	 split	 into	𝐸B��x 	and	𝐸s��x 	to	work	on	 the	 solutions	 to	each	of	 these	 terms	

separately.	 Function	 F	 has	 been	 obtained	 by	 many	 individual	 methods,	 usually	 by	 iterative	 fitting	

procedures,	and	the	derived	functionals	are	again	named	after	their	authors,	for	example:	PBE,	BLYP,	

etc..		

2.2.7	–	HYBRID	FUNCTIONALS	

So	far	for	DFT	methods,	we	have	seen	that	the	exchange	terms	of	the	exchange-correlation	functionals	

have	been	approximations	which	are	prone	to	errors,	such	as	issues	with	unphysical	self-interaction.	It	

was	later	determined	that	this	term	should	be	obtained	from	the	‘exact’	Hartree-Fock	formalism,	whilst	

deriving	a	functional	for	the	correlation	term	from	the	Kohn-Sham	method:	

𝐸Bs = 	𝐸BA��u� + 	𝐸skl	. 27 	

The	nomenclature	hybrid	functional	methods	stems	from	the	combination	of	DFT	methods	and	a	HF	

step	in	calculations,	occasionally	referred	to	as	HDFT.	Additionally,	both	the	LSD	and	GGA	functionals	

are	incorporated	into	adaptations	of	the	correlation	functionals,	further	supporting	the	term	hybrid.	

There	are	many	functionals	in	use	in	the	current	literature,	but	for	an	example,	the	most	popular	B3LYP	

(Becke-3,	Lee,	Yang,	Parr)	can	be	expressed:23-25	

𝐸Bs�Wz�� = 1 − 𝑎 𝐸Bzl{ + 𝑎𝐸Bs��= + 𝑏𝐸B + 𝑐𝐸sz�� + 1 − 𝑐 𝐸szl{ 28 	

with	𝜆 = 0	indicating	the	values	for	non-interacting	particles,	and	a,	b,	c,	are	coefficients	obtained	by	

fitting	 the	 functional	 to	 total	 energies,	 ionisation	 energies	 and	 proton	 affinities.	 Hybrid	 functionals	

usually	 the	 best	 suited	 to	molecular	 problems	 of	 all	 DFT	methods,	making	 them	 rather	 popular	 in	

today’s	literature.	

2.3	–	TIGHT-BINDING	APPROACH	

Also	 known	 as	 the	 LCAO	 or	 Bloch	 approximations,	 the	 tight	 binding	 approximation	 was	 originally	

proposed	by	Bloch.26	 It	consists	of	a	Linear	Combination	of	Atomic	Orbitals	 (LCAO)	representing	the	

various	atoms	within	a	crystal,	with	coefficients	determining	the	values	of	the	planes	waves	where	the	

atoms	 are	 located.27	 The	method	 was	 originally	 limited	 in	 application	 due	 to	 the	 large	 number	 of	

complex	 integrals	 that	must	be	solved,	 though	modern	computing	capabilities	have	allowed	 for	 the	

method	to	become	commonplace.	The	strength	of	the	method	lies	in	its	ability	to	provide	symmetry	

properties	of	the	energy	bands,	and	allows	for	trivial	calculation	of	band	energies	at	arbitrary	points	

within	the	Brillouin	zone.	
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2.3.1	–	DENSITY	FUNCTIONAL	BASED	TIGHT	BINDING	

In	 the	 DFTB	 approach,	 each	 one-electron	 wavefunction,	 Ψ(r) ,	 can	 be	 expressed	 as	 a	 linear	

combination,	LCAO,	of	atomic	orbitals	𝜙�(𝑟)	such	that		

Ψ r = 	 𝐶�𝜙� 𝑟
�

	 29 	

leaving	the	solution	to	the	eigenproblem	

𝐻�f�

f

𝐶f� = 𝐸�� 𝑆�f𝐶f�

f

	 30 	

where		

𝐻�f� = 	 𝜙� 𝐻� 𝜙f 	 31 	

and		

𝑆�f = 	 𝜙� 𝜙f 	 32 	

are	the	Hamiltonian	and	overlap	matrices,	and	𝜎	is	the	spin	state,	↿	or	⇂.28,29		If	𝜙�	and	𝜙f	are	located	

on	 separate	 atoms,	a	 and	b,	 the	 Hamiltonian	matrix	 element	𝐻�f� 	for	 spin-polarised	 self-consistent	

charge	(scc)	case	is	evaluated	as	

𝐻�f� 	= 	 𝜙� 𝐻� 𝜙f

+	8
9
l�� 	 	���,�����	����,����	

�����

	� ����	±
�

	
8
9
	l�� 𝑊�vv��	𝑚�vv��	

v����

+ 𝑊¤vv��	𝑚¤vv��	

v����

	 𝑊�vv��	𝑚�v��	 +
v����

𝑊¤v�v��	𝑚¤vv��	

v���¤

																					(33)	

where	 the	 first	 term	 is	 the	 non-scc	 DFTB	Hamiltonian	matrix	 element.	 The	 second	 term	 is	 the	 scc	

contribution,	summed	over	all	shells,	𝑙¦¦,	of	all	atoms,	𝐶𝑙¦¦,	in	the	system.	 	𝛾�v,sv�� + 	𝛾¤v�,sv��	 	Δ𝑞sv�� 	

is	the	scc	potential	of	sites	𝑎𝑙	and	𝑏𝑙.		

𝛾�v,uv�� = 	
1
𝑅�u

− 𝑆 𝑈�,v, 𝑈u,v�� , 𝑅�u 	 34 	

Here	the	first	term	is	a	long	range	pure	coulombic	term	and	the	second	is	a	short-range	term.	𝑅�u 	is	

the	distance	between	atoms	𝑎	and	𝑐,	and	each	𝑈v 	is	the	Hubbard	parameter	for	the	relevant	atom	and	

shell.	Δ𝑞uv�� 	is	the	charge	difference	in	Mulliken	charges	between	shell	𝑙	of	atom	𝑐	and	the	charge	of	
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the	equivalent	shell	for	an	isolated	atom.	The	last	term	in	equation	33	denotes	the	spin	contribution.	

𝑊�vv�	are	the	spin	coupling	constants	with	𝑙	and	𝑙¦	as	shells	of	the	same	atom.	

𝑚�v = 	 𝑞�v↿ − 	𝑞�v⇂	 35 	

𝑚�v 	is	 the	 spin	 polarisation	 of	 shell	𝑙 	on	 atom	𝑎 	and	 equates	 to	 the	 difference	 of	 the	 sum	 of	 the	

Mulliken	charges	on	the	spin	up	and	spin	down	orbitals	of	the	shell.		

	

2.3.2	–	ELECTRONIC	TRANSPORT	

Quantum	 transport	may	be	 calculated	 for	 large	 systems	utilising	 the	DFTB	method,	but	 in	order	 to	

realise	accurate	values	of	electrical	conductivity	for	complex	systems	with	charge	transfer	and	applied	

bias,	an	approach	must	take	into	consideration	charge	density	and	transport	in	open	systems.	One	such	

approach	is	the	use	of	Non-Equilibrium	Green’s	Function	theory,	NEGF.	9,30,31	This	method	allows	for	

the	calculation	of	tunnelling	current	between	two	contacts,	under	both	open	and	periodic	boundary	

conditions.	NEGF	theory	also	allows	for	computation	of	charge	density	in	systems	under	applied	bias,	

which	is	necessary	for	a	self-consistent	solution	to	the	Kohn-Sham	equations.32	

The	NEGF	method	has	become	popular,	despite	its	inherent	mathematical	complexity,	owed	in	part	to	

its	 versatility	 and	 in	 part	 to	 its	 numerical	 stability.	 Open	 boundary	 conditions	 may	 be	 applied	 by	

mapping	contact	leads	to	small,	finite	parts	of	the	system.	The	NEGF	approach	may	also	be	adapted	to	

include	 many-body	 quantum	 theory,	 allowing	 for	 the	 inclusion	 of	 electron-phonon	 and	 electron-

electron	interactions.	

	

Figure	1	–	Left:	a	representation	of	a	phosphorus	nanowire	in	vacuum.	Right:	The	red	and	blue	regions	

are	contacts,	the	source	and	drain	regions	respectively.	

	



	

15	

The	systems	of	interest	may	be	represented	as	in	figure	1,	divided	into	contact	and	device	regions.	The	

contacts	 are	 assumed	 to	 be	 semi-infinite,	 exhibiting	 the	 same	 properties	 as	 the	 bulk,	 and	multiple	

contacts	may	be	defined.	The	device	portion	of	the	system	consists	of	the	atoms	linking	the	contacts,	

forming	 a	molecular	 bridge,	 along	with	 the	 segments	 of	 the	 contacts	 representing	 the	 surfaces	 in	

contact	with	the	molecular	region,	ensuring	the	contacts	are	defined	as	bulk-like.	This	assumption	is	

validated	by	examining	the	charge	density	in	the	region	of	the	contact-surface	boundary,	to	check	for	

smooth	transition	between	the	regions.	By	maintaining	different	potentials	at	each	contact,	current	

fluxes	are	driven	across	the	device.	

It	 is	 not	 possible	 to	 make	 the	 assumption	 of	 thermodynamic	 equilibrium	 in	 solving	 the	 transport	

problem;	no	global	fermi	energy	can	be	defined.	As	such,	it	can	only	be	assumed	that	the	contacts	are	

reservoirs	of	defined	potential,	with	the	electrons	in	these	regions	under	maintained	equilibrium.	The	

molecular	bridge	must	offer	the	majority	of	the	resistance	for	this	assumption	to	be	valid,	such	that	the	

potential	drops	across	the	device	region.	The	density	matrix	is	computed		

𝜌 = 	
1
2𝜋𝑖

	 𝑑	𝐸𝐺® 𝐸
�<

X<
	 36 	

with	𝐺®	as	the	electron-electron	correlation	matrix,	represented	on	the	local	basis	and	proportional	to	

the	spectral	density	of	occupied	states.		𝐺¯represents	the	density	of	empty	states,	as	we	shall	see.	An	

altered	Green’s	function	can	express	the	spectral	density	of	states	as		

𝐴 𝐸 = 𝑖 𝐺± 𝐸 − 𝐺±² 𝐸 	 	 37 	

where		

𝐺± 𝐸 = 	 𝐸𝑆 − 𝐻 +	Σ± 𝐸 X8	 38 	

and	Σ±(𝐸)	is	the	retarded	self-energy,	which	accounts	for	the	contacts	and	other	perturbing	influences,	

such	 as	 phonons,	 impurities	 and	 other	 electrons.	 The	 derived	 results	 are	 only	 valid	 in	 steady-state	

conditions	such	that	the	two-time	Green’s	functions,	𝐺(𝑡, 𝑡¦),	depend	only	on	the	time	difference,	𝑡 −

𝑡¦,	and	the	energy	may	be	derived	from	Fourier	transform.31	An	advantage	of	the	approximation	is	that	

the	contacts	may	be	mapped	exactly	into	the	extended	molecule	using	appropriate	self-energies.	This	

contact	 self-energy	 can	 be	 easily	 calculated	 considering	 that	 the	 Hamiltonian	 describing	 the	

interactions	between	the	contact	and	devices	consists	of	a	finite	region	of	atoms	close	to	the	junctions.	

Thus,	the	required	Green’s	function	may	be	solved	for	the	matrix	block	corresponding	to	the	atoms	

nearest	the	extended	molecule	region,	then	used	to	calculate	Mulliken	charges:	
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Δ𝑞- = 	 𝑅𝑒 𝜌�¶𝑆¶�
f��-

− 	𝑞-
=	 39 	

Where	 𝑞-
= 	are	 the	 reference	 atomic	 charges.	 Inelastic-scattering	 processes	 affecting	 occupation	

dynamics	 are	 given	 by	 the	 Keldysh-Kadanoff-Baym	 (KKB)	 equation.	 Within	 the	 Tight-Binding	

approximation,	the	steady-state	solution	of	the	KKB	equation	is	expressed	as	matrices	terms	

𝐺®,¯ 𝐸 = 	𝐺± 𝐸 Σ®,¯ 𝐸 𝐺� 𝐸 40 	

where	𝐺� =		𝐺±²	is	the	advanced	Green’s	function,	Σ®	and	Σ¯	are	the	non-equilibrium	self-energies.	

𝐺®	can	be	practically	divided	into	three	terms	to	obtain	the	density	matrix:	

𝜌 = 	 𝑑𝐸𝑓u 𝐸 𝐺± 𝐸
�<

X<

−	 𝑑𝐸𝑓u 𝐸 𝐺� 𝐸
�<

X<

+	 𝑑𝐸 𝑓 𝐸 − 𝑓u 𝐸 𝐺± 𝐸 Γ̂ 𝐸 𝐺� 𝐸
�<

X<^¸u

																																					 41 	

where	𝑓u 	is	related	to	the	contact	at	the	lowest	potential.	The	first	term	is	calculated	on	a	contour,	the	

second	by	the	adjoint	of	the	first.	The	integration	of	the	third	term	must	be	performed	along	the	real	

axis	defining		

Γ̂ 𝐸 = 	𝑖 Σ^± 𝐸 − Σ^
±² 𝐸 	 . 42 	

	

2.4	–	CODES	USED	

The	 following	 section	 details	 the	 codes	 used	 in	 this	 work,	 along	 with	 some	 details	 as	 to	 their	

construction.	

2.4.1	–	SIESTA	

Siesta	is	both	a	method	and	its	implementation.7	It	is	a	self-consistent	density	functional	method,	that	

uses	norm-conserving	pseudopotentials	and	a	 linear	combination	of	atomic	orbitals	basis	set,	which	

allows	for	polarised	and	multiple-zeta	orbitals.	Spin	density	or	generalised	gradient	approximations	are	

used	 to	 account	 for	 exchange	 and	 correlation.	 To	 calculate	 Hartree	 and	 exchange-correlation	

potentials,	basis	functions	and	electron	density	are	projected	on	a	real	space	grid	with	a	number	of	
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operations	that	scales	 linearly	with	the	size	of	a	system.	The	use	of	 localised,	Wannier-like,	electron	

wave	 functions	 allows	 for	 computational	 time	 and	memory	 to	 also	 scale	 linearly	 with	 system	 size.	

Forces	 and	 stresses	 are	 accurately	 calculated,	 for	 structural	 relaxation	 and	 molecular	 dynamics	

simulations.	

Pseudopotentials	are	not	strictly	necessary	for	atomic	orbital	basis	sets,	however,	the	benefit	of	their	

use	in	the	siesta	method	is	twofold:	They	remove	the	need	to	calculate	properties	for	core	electrons,	

and	ensure	that	the	expansion	of	charge	density	is	smooth	on	a	uniform	spatial	grid.	

	

2.4.2	–	QUANTUM	ESPRESSO	

Quantum	ESPRESSO	is	a	suite	of	codes	for	electronic	structure	calculations	and	materials	modelling.8,33	

Based	on	Density	Functional	Theory,	it	utilises	plane	waves	and	pseudopotentials	and	aims	to	provide	

an	efficient	platform	for	parallel	architectures.	The	main	difference	between	quantum	QE	and	other	

codes	is	that	QE	is	not	a	single	code,	but	rather	a	package	of	complementary	codes	whose	inputs	and	

outputs	 are	 cross	 compatible.	 This	 modular	 distribution	 is	 intended	 to	 encourage	 innovation	 and	

flexibility	in	the	field	of	electronic	structure	calculations	and	materials	modelling,	by	being	open	source	

and	 freely	alterable.	This	has	 led	 to	an	array	of	complementary	codes	simultaneously	developed	by	

specialists	in	various	fields	to	utilise	several	core	packages	developed	by	a	small,	dedicated	quantum	

espresso	group,	with	an	extensive	online	repository	and	community.	

These	features	make	QE	a	powerful	tool	in	the	field	of	solid-state	modelling,	with	the	ability	to	calculate	

a	variety	of	properties	and	coefficients.	The	two	major	codes	within	QE	are	PWscf,	plane	wave	code,	

and	PHonon.	PWscf	is	a	self-consistent	DFT	based	plane-wave	code.	It	allows	for	accurate	electronic	

calculations	 and	 atomistic	 simulations,	 including	 structural	 optimisation	 and	 molecular	 dynamics.	

PHonon	implements	Density	Functional	Perturbation	Theory	(DFPT)	to	calculate	second	and	third	order	

energy	 derivatives	 with	 respect	 to	 atomic	 displacements	 and	 electronic	 fields.	 Symmetry	 is	 fully	

exploited	in	both	codes	for	the	reduction	of	calculation	times	due	to	energetic	redundancies.	
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2.4.3	–	DFTB+	

DFTB+	 is	 an	 implementation	of	 the	DFTB	method,	which	exploits	 the	sparsity	 of	 the	 corresponding	

equations,	for	an	efficient	application.9,34	In	section	2.3.1	we	derived	the	equations	for	the	matrices	of	

the	non-scc	Hamiltonian,	equation	33.	The	matrix	elements	for	non-scc	and	overlap	matrices	vanish	

with	increasing	interatomic	distance,	resulting	in	matrices	containing	mostly	zeros.	The	patterning	of	

the	non-zero	elements	is	defined	by	the	geometry	(and	ordering)	of	the	atoms	in	the	system	we	are	

calculating.		

The	scc	shift	contribution	contains	both	long	and	short	range	terms	as	shown	in	equation	33,	but	the	

total	scc	contribution	is	screened	by	the	overlap	matrix,	such	that	the	pattern	of	non-zero	contributions	

to	each	matrix	is	identical.	Because	the	scc	and	non-scc	Hamiltonians	are	tabulated	on	identical	grids	

to	the	same	cut-offs,	the	patterns	of	matrix	elements	are	the	same,	as	is	the	spin	contribution	matrix.	

By	determining	these	patterns	at	the	start	of	the	calculation,	and	for	each	successive	alteration	to	the	

geometry,	it	is	possible	to	store	and	calculate	only	for	the	non-zero	elements,	significantly	reducing	the	

complexity	and	time	of	the	calculation.		

This	 is	the	heart	of	the	DFTB+	code,	and	its	efficient	 implementation	allows	for	calculations	of	 large	

systems	involving	tens	of	thousands	of	orbitals	and	thus	thousands	of	atoms.	

	

2.4.4	–	DFTB+	NEGF	(OR	GDFTB+)	

The	Non-Equilibrium	Green’s	Function	method	is	established	and	here	applied	to	the	DFTB+	code.30	It	

allows	 for	 the	 self-consistent	 solution	 of	 charge	 density	 in	 biased	 systems	 to	 derive	 the	 electronic	

tunnelling	and	subsequent	conductivity	as	described	in	2.3.2.	This	code	utilises	DFTB+’s	implementation	

of	the	sparse	matrix	approach	to	efficiently	tackle	the	problem,	in	periodic	and	open	systems	

	

2.5	–	TECHNIQUES	

This	section	details	the	theory	behind	some	of	the	capabilities	of	the	above	codes.	In	some	cases,	the	

methods	are	applicable	to	several	codes,	the	use	of	which	will	be	specified.	
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2.5.1	–	GEOMETRY	OPTIMISATIONS	

The	most	stable	atomic	configuration	is	known	as	the	ground	state	of	a	system,	and	corresponds	to	the	

lowest	energy	configuration.	35-37	By	testing	various	configurations,	one	may	determine	which	 is	 the	

lowest	 energy	 and	 thus	most	 likely	 to	 be	 the	 ground	 state.	 To	 express	 this	 task,	 one	may	 create	 a	

Potential	 Energy	 Surface,	 PES,	 a	 3D	 representation	 of	 energy	 (usually	 z-axis)	 versus	 two	 collective	

variables,	such	as	bond	angles,	bond	lengths	or	coordination	numbers.	By	populating	this	PES,	a	map	

of	the	energy	vs	coordinates	may	be	created,	which	consists	of	5	distinct	types	of	points:	

i) Global	Maximum	 -	The	highest	energy	configuration	across	the	whole	PES.	

ii) Global	Minimum	–	The	lowest	energy	configuration	across	the	whole	PES.	

iii) Local	Maxima	–	The	highest	energy	point	within	a	region	of	the	PES.	

iv) Local	Minima	–	The	lowest	energy	point	within	a	region	of	the	PES.	

v) Saddle	 points	 –	 A	 point	 from	 which	 one	 direction	 leads	 to	 a	 maximum,	 and	 another	

direction	leads	to	a	minimum.	

Many	methods	exist	with	which	to	iteratively	search	the	PES,	by	recalculation	of	the	systems	energy	

along	 a	 coordination	 path.	 What	 follows	 is	 an	 introduction	 to	 each	 of	 the	 methods	 of	 geometry	

optimisation	used	within	the	work	of	this	thesis,	across	various	codes	

	

2.5.1.1	–	STEEPEST	DESCENT	(DFTB)	

The	Steepest	Descent	(SD)	method	follows	a	force	vector	from	the	initial	configuration	to	one	wherein	

the	resultant	forces	are	zero.37	With	an	initial	configuration	𝑅,	an	iteration	𝑗	and	a	force	𝐹,	each	step	of	

the	SD	method	proceeds	in	the	direction:	

𝑅º�8 = 	𝑅º + 	𝛼𝐹º	 43 	

𝛼	is	an	adjustable	parameter,	often	chosen	to	be	the	inverse	of	the	curvature	along	the	𝐹º 	direction.	

This	allows	the	SD	method	to	proceed	to	the	minimum	energy	value	in	this	direction.	Consecutive	steps	

will	further	move	the	system	towards	its	Local	Minimum.	This	makes	the	SD	method	the	simplest	with	

which	to	optimise	geometries,	though	it	is	prone	to	converge	slowly	within	shallow	regions	of	a	systems	

PES.	
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2.5.1.2	–	CONJUGATE	GRADIENT	(S)	(DFTB)	

An	 improvement	upon	 the	SD	method,	Conjugate	Gradient	 (CG)	methods	proceed	along	 the	PES	 in	

conjugate	directions,	rather	than	in	the	direction	of	force.35-37	Employing	the	Polak-Ribière	algorithm,	

the	method	proceeds	as	follows:	

1) Determine	initial	search	direction	using	force	method	

𝑑= = 	𝐹=	 44 	

2) Calculate	step	size,	𝜆,	via	line	minimisation	

𝑅º�8 = 	𝑅º + 	𝜆𝑑º	 45 	

3) Under	the	assumption	that	

𝛾 = 	𝐹º�8 ∙ 	
𝐹º�8 − 𝐹º
𝐹º

9 	 46 	

Asses	the	new	search	direction	

𝑑º�8 = 	𝐹º�8 + 	𝛾𝑑º	 47 	

For	each	iteration,	a	single	Newton’s	method	step	is	required	to	minimise	forces	along	𝑑º,	though	the	

force	must	be	evaluated	twice	for	each	iteration,	such	that	the	derivative	of	the	force	along	the	search	

direction	may	be	calculated.	The	CG	method	is	often	the	geometry	optimiser	of	choice	for	both	the	

siesta	and	dftb+	methods.		

	

2.5.1.3	–	BROYDEN	(QE)	

The	 Broyden	method,	 or	 BFGS	method,	 is	 one	 of	 the	most	 efficient	 quasi-Newton	methods	widely	

available	 in	 atomistic	 simulation	 packages.	 The	 method	 was	 in	 fact	 suggested	 by	 4	 authors	

independently:	 Broyden,	 Fletcher,	 Goldfarb,	 Shanno;	 hence	 the	 terms	 Broyden	 and	 BFGS	 are	 used	

almost	interchangeably	in	the	field.	

The	methods	gathers	information	of	the	second	derivatives	of	forces	during	optimisation,	so	as	to	step	

towards	 the	 predicted	 minimum.	 Construction	 of	 the	 inverse	 Hessian	 matrix,	 	𝐻X8 ,	 is	 performed	

iteratively	in	two	steps:	
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1) As	in	the	CG	method,	a	search	direction	is	defined	

𝑑º = 𝐹º𝐻ºX8	 48 	

2) Then	a	line	minimiser	is	used	to	proceed	to	the	energetic	minimum	along	this	direction	

𝑅º�8 = 	𝑅º + 	𝜆𝑑º	 49 	

The	similarities	between	methods	can	be	appreciated	by	noting	that	equations	45	and	49	are	identical,	

the	 difference	 lies	 in	 the	 fact	 that	 the	 BFGS	 method	 utilises	 the	 reconstructed	 Hessian	 matrix	 to	

determine	the	search	direction,	rather	than	simply	searching	conjugate	gradients.	The	Broyden	method	

is	the	default	for	the	quantum	espresso	codes.	

	

2.5.1.4	–	DAMP	–	QUICK	MINIMUM	VELOCITY	VERLET	(QE)	

This	 method	 seeks	 to	 improve	 upon	 the	 SD	 method,	 by	 implementing	 a	 more	 aggressive	 search,	

accelerating	 the	 system	 in	 the	 direction	 of	 greatest	 force	 (akin	 to	 SD).37	 This	method	 is	 a	 damping	

routine,	wherein	the	damping	parameter	is	replaced	by	a	projection	of	the	velocity	along	the	force.	It	

proceeds	as	follows:	

1) The	velocity	is	projected	along	the	direction	of	the	force	

𝑉º = 𝑉º𝐹º 𝐹º	 50 	

2) Make	velocity	zero	if	it	is	antiparallel	to	the	force	

𝑖𝑓	𝑉º𝐹º < 0,	 𝑡ℎ𝑒𝑛	𝑉º = 0	

3) The	 Velocity	 Verlet	 algorithm	 is	 used	 to	 differentiate	 Newton’s	 equations	 of	 motion	 and	

determine	the	both	the	position	and	velocity	simultaneously	

𝑅º�8 = 	𝑅º + 	∆𝑡𝑉º	 51 	

𝑉º�8 = 	𝑉º + 	∆𝑡𝐹º	 52 	

This	method	is	implemented	in	some	quantum	espresso	packages,	and	can	be	used	for	faster,	if	perhaps	

less	stable	optimisations.	
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2.5.2	–	MOLECULAR	DYNAMICS	

Molecular	 Dynamics	 (MD)	 is	 the	 simulation	 of	 atomic	 movements,	 calculated	 by	 integration	 of	

Newton’s	Equations	of	Motion	(EOM)	with	respect	to	time	for	each	of	N	interacting	particles	within	a	

system.5	

	

2.5.2.1	–	FORCES	

A	cornerstone	of	classical	Molecular	Dynamics	is	to	treat	an	atomic	system	as	a	classical	mechanical	

problem,	calculating	forces	instantaneously	from	the	atomic	positions,	ignoring	the	quantum	nature	of	

light	 species.	 This	 simplification	 is	 critical	 to	modelling	 large	 systems,	 but	 additional	 parameters	 to	

account	for	effects	such	as	spin-spin	interactions	and	Van	der	Waals	forces	can	be	added	later.	In	ab	

initio	molecular	dynamics,	by	consideration	of	the	Born-Oppenheimer	approximation,	the	many-body	

electronic	wavefunction	can	be	described	by	the	time-independent	Schrödinger	equation.	The	energy	

is	thus	a	function	of	the	positions	of	the	nuclei,	and	this	wavefunction	may	be	used	as	a	potential	to	

calculate	 the	 forces	 acting	 on	 the	 nuclei,	 again	 according	 to	 Newton’s	 Equations	 of	Motion.	 Thus,	

according	to	Newton’s	second	law	of	motion:	

𝐹- = 	𝑚-𝑎-	 	 53 	

Here,	the	resultant	force	on	a	particle	is	the	product	of	its	mass	and	acceleration,	and	its	acceleration	

is	the	second	derivative	of	its	displacement	with	respect	to	time:	

𝐹- = 	𝑚-
𝑑9 𝑟-
𝑑𝑡9

	 , 𝑖 = 1, 2, 3	 …𝑁 (54)	

Using	the	Lagrangian	function:	

𝐿 = 𝑇 − 𝑉	 55 	

which	describes	 the	difference	between	kinetic	and	potential	energy,	we	can	define	the	Lagrangian	

equation	of	motion	as	

𝑑
𝑑𝑡
	

𝜕𝐿
𝜕À ÁÀ�

− 	
𝜕𝐿
𝜕𝑞Â

= 	∅	 56 	

where	𝑞Âare	the	generalised	atomic	coordinates.	According	to	equation	54,	we	may	describe	the	force	

acting	on	an	atom	as	the	product	of	its	mass,	and	the	second	derivative	of	its	motion	with	respect	to	
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time.	With	equations	55	and	56,	we	may	also	determine	the	force	upon	an	atom	from	its	kinetic	or	

potential	energy:	

𝐹- = 	∇±Ä𝐿 = 	−∇±Ä𝑉	 57 	

To	calculate	the	trajectories	of	N	particles	within	a	system,	a	numerical	solution	to	3𝑁	second-order	

differential	equations	would	be	required.	This	would	be	impractical,	and	so	in	many	MD	simulations	

this	is	tackled	by	the	finite	differences	approach.	By	which,	the	velocities	and	positions	of	each	particle	

within	a	system	for	a	given	𝑡	are	used	to	compute	the	same	information	for	𝑡 + 	∆𝑡.	For	meaningful	

results,	∆𝑡	must	be	much	smaller	than	the	time	for	the	fastest	atomic	movement	within	a	system,	i.e.	

the	molecular	or	lattice	vibration	of	the	lightest	nuclei.			

	

2.5.2.2	–	VELOCITY	VERLET	ALGORITHM		

One	common	method	of	solving	this	problem	is	known	as	the	Velocity	Verlet	algorithm,	which	is	in	fact	

the	method	of	choice	for	the	majority	of	the	codes	used	in	this	work.38	The	Velocity	Verlet	algorithm	is	

used	to	directly	solve	equation	54,	utilising	the	positions	 𝑟� ,	 𝑟�X∆� 	and	accelerations	 𝑎� 	calculated	

in	each	previous	step.	The	positions	are	calculated	both	forward	and	backward	in	time	by	a	third-order	

Taylor	series	expansion:	

𝑟 𝑡 + 	𝛿𝑡 = 𝑟 𝑡 + 	𝛿𝑡 𝑣 𝑡 +	8
9
𝛿𝑡9 𝑎 𝑡 + ⋯	 58	𝑎 	

𝑟 𝑡 − 	𝛿𝑡 = 𝑟 𝑡 − 	𝛿𝑡 𝑣 𝑡 +	8
9
𝛿𝑡9 𝑎 𝑡 − ⋯ 58	𝑏 	

giving		

𝑟 𝑡 + 	𝛿𝑡 = 2 𝑟 𝑡 − 	 𝑟 𝑡 − 𝛿𝑡 + 𝛿𝑡9 𝑎 𝑡 	 	 59 	

Which	is	the	basic	form	of	the	Velocity	Verlet	algorithm.	As	we	are	integrating	Newton’s	equation	of	

motion,	𝑎 𝑡 	is	simply	𝐹/𝑚,	and	using	equation	57,	we	know	that	the	force	 is	 just	a	function	of	the	

atomic	positions,	giving		

𝑎 𝑡 = 	−
1
𝑚

∇𝑉 ∙ 𝑟 𝑡 	 	 60 	

We	notice	that	the	velocities	are	not	required	 in	equation	59,	as	they	have	been	neutralised	by	the	

Taylor	expansion	about	 𝑟� .	However,	whilst	they	may	not	be	needed	to	calculate	the	trajectory,	the	
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calculation	of	 several	 important	 systemic	properties	 requires	 these	 velocities,	 and	as	 such	 they	 are	

calculated	as	

𝑣 𝑡 = 	
𝑟 𝑡 + 𝛿𝑡 − 	 𝑟 𝑡 − 𝛿𝑡

2𝛿𝑡
	 . 61 	

	

2.5.2.3	–	THE	CANONICAL	ENSEMBLE	

These	algorithms	enforce	a	condition	upon	the	functions	describing	the	interactions	between	atoms:	

they	 must	 be	 differentiable.	 Additionally,	 to	 realistically	 model	 the	 reactions	 or	 phenomena	 of	

experimental	chemistry,	we	need	to	impose	a	set	of	conditions	upon	the	system.	Typically,	during	an	

experiment	a	chemical	reaction	will	take	place	within	a	reaction	vessel	which	is	of	fixed	volume,	under	

constant	pressure	and	containing	a	 finite	number	of	atoms.	To	simulate	 reactions	or	processes,	we	

must	also	impose	conditions	upon	the	system	of	study,	although	computation	allows	for	flexibility	in	

how	 these	 conditions	 are	 imposed.	 Statistical	methods	 address	ensembles	 of	molecules	 in	dynamic	

equilibrium,	and	the	definitions	of	three	common	ensembles	are	as	follows:	

i) 𝑁𝑉𝐸 	–	 the	 system	 contains	 a	 constant	 number	 of	 atoms,	 under	 constant	 volume	 and	

constant	energy.	This	is	known	as	the	microcanonical	ensemble.	

ii) 𝑁𝑉𝑇 	–	 the	 system	 contains	 a	 constant	 number	 of	 atoms,	 under	 constant	 volume	 and	

constant	temperature.	This	is	the	canonical	ensemble.	

iii) 𝜇𝑉𝑇 	–	 the	 system	 is	 under	 constant	 chemical	 potential,	 constant	 volume	 and	 constant	

temperature.	This	is	the	grand	canonical	ensemble.	

The	microcanonical	ensemble	represents	a	system	that	is	in	complete	isolation,	enforcing	conservation	

of	the	total	energy	and	number	of	atoms.	The	canonical	ensemble	represents	a	system	that	is	kept	at	

constant	 temperature	by	 coupling	with	a	heat	bath,	 in	other	words,	 the	 total	 kinetic	energy	of	 the	

system	 is	 conserved.	 The	 grand	 canonical	 ensemble	 is	 used	 to	 describe	 a	 system	 which	 is	 in	

thermodynamic	equilibrium	with	an	external	reservoir,	such	that	 it	 is	 the	total	kinetic	energy	of	the	

system	and	the	coupled	“bath”	that	is	conserved,	thus	the	temperature	of	both	the	bath	and	atomic	

system	may	fluctuate.	The	canonical	ensemble	is	most	commonly	used	for	chemical	simulation.5	
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2.5.2.4	–	KINETIC	ENERGY,	TEMPERATURE	AND	PRESSURE	

Upon	 starting	 an	 MD	 simulation,	 sufficient	 time	 and	 steps	 should	 be	 dedicated	 to	 equilibration,	

especially	 if	 starting	 from	 optimised	 geometries,	 as	 the	 system	 is	 starting	 from	 its	 lowest	 energy	

configuration.	 For	each	MD	step,	every	particle	 is	moved	 simultaneously,	 and	within	each	MD	step	

according	to	the	canonical	ensemble,	the	temperature	will	usually	need	to	be	maintained.		

Statistical	thermodynamics	defines	temperature	as	a	function	of	the	velocities	of	the	particles	within	a	

system,	and	so	allows	us	to	control	the	temperature	of	a	system	by	scaling	the	velocities	of	all	particles,	

in	a	manner	that	keeps	temperature	constant.	The	analogy	is	that	of	an	external	heat	bath	maintaining	

the	isothermal	conditions.	At	each	time	step,	the	scaling	is	applied,	a	process	known	as	the	Berendsen	

algorithm,	initiation	of	which	requires	evaluating	the	kinetic	energy:	

𝐸Â-t = 	
𝑚-𝑣-9

2
= 	
3
2
	𝑁𝐾�𝑇

?

-

	 62 	

Which	yields	the	real	temperature	of	the	system,	T.	we	then	apply	a	scaling	factor	which	is	defined	as	

𝜆 = 	 1 + 	
∆𝑡
𝜏
	
𝑇
𝑇∘
− 1 	 63 	

Where	𝜏	is	relaxation	time	and	𝑇∘	is	the	target	temperature.4,5	

	

2.5.2.5	–	NOSÉ	HOOVER	THERMOSTAT	

Within	computational	theory,	the	algorithm	or	protocol	controlling	the	temperature	is	often	referred	

to	as	a	thermostat.	Another	example	is	the	Nosé-Hoover	thermostat.	39-43	

Originally	 conceived	 by	 S.	 Nosé	 in	 1984	 and	 refined	 by	 W.	 G.	 Hoover	 in	 1985,	 the	 Nosé-Hoover	

thermostat	introduces	a	Hamiltonian	which	possesses	an	additional	degree	of	freedom:	

𝐻∗ = 	
𝑝-9

2𝑚-
+ 	Φ 𝑞 +	

𝑄
2
𝜁9 + 𝑔𝐾�𝑇 ln 𝑠

-

	 64 	

Here	𝑝- 	and	𝑞- 	are	the	virtual	momenta	and	coordinates	of	an	atom,	𝑚- 	is	the	mass	of	the	atom,	Φ 𝑞 	

is	the	potential	energy	of	an	atom,	𝑔	is	the	number	of	degrees	of	freedom	in	a	system	where	i.e.	𝑔 =

3𝑁.	KB	 is	 the	Boltzmann	constant,	T	 is	 the	 temperature	and	s	 is	a	velocity	 scaling	 factor.	The	novel	
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introduction	is	𝜁,	the	Nosé	coefficient,	which	is	essentially	a	friction	parameter	introduced	to	alter	the	

velocity	of	an	atom	based	on	 its	current	velocity.	 It	should	be	noted	that	𝜁	is	a	dynamic	variable,	of	

varying	sign	and	differing	value	for	each	atom,	derived	from:	

𝑚-
𝑑9𝑟-
𝑑𝑡9

= 	𝐹- − 	𝜁𝑚-𝑣-	 65 	

allowing	the	temperature	to	be	rescaled	to	the	desired	value.	Finally	from	equation	64,	𝑄	is	a	variable	

that	determines	the	relaxation	time	by	coupling	of	the	system	to	the	“bath”;	a	small	𝑄	and	thus	weak	

coupling	will	result	in	a	slow	equilibration.	

	

2.5.2.6	–	SOLID	STATE	SYSTEMS	

So	far,	this	chapter	has	largely	been	ambiguous	with	the	state	of	simulated	systems.	The	work	of	this	

thesis	concerns	exclusively	solid	state	systems,	and	this	creates	some	 interesting	points	 to	consider	

when	modelling	them.	To	model	extended	systems	there	are	three	major	points	to	consider:	

i) Periodicity	

ii) Molecular	orbitals	

iii) Symmetry	

Periodicity	 and	 Symmetry	 are	 interrelated,	 and	 these	 two	 concepts	 can	 be	 used	 to	 reduce	 the	

calculation	 complexity,	while	Molecular	 orbitals	 in	 crystals	 and	 amorphous	 extended	 solids	 require	

slightly	different	approaches	to	those	of	molecules	in	free	space.	

	

2.5.2.7	-	PERIODICITY	

Much	of	solid	state	modelling	starts	with	flawlessly	crystalline	materials,	that	is,	a	material	that	can	be	

considered	 to	 possess	 semi-infinite	 long-range	 order.	 Modelling	 a	 single	 crystal	 of	 just	 a	 few	

millimetres,	possessing	several	trillion	atoms	is	impractical,	however	if	this	crystal	is	larger	than	a	few	

cubic	nanometres,	one	may	model	the	bulk	properties	of	the	material	by	performing	the	calculation	on	

a	minimal,	 repeatable	 image;	 a	 crystalline	 system	may	 be	 described	 fully	 by	 its	 unit	 cell.	 For	many	

calculable	properties,	such	as	band	structures,	phonon	structures,	bulk	moduli	and	equations	of	state,	

the	unit	cell,	or	smallest	possible	descriptor	of	a	crystal,	may	contain	just	a	few	atoms,	but	is	able	to	

describe	the	entire	system.44	
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For	molecular	 dynamics,	 or	 other	 advanced	 techniques,	 to	 study	 phase	 transitions,	 lattice	 defects,	

chemical	impurities,	transport	properties	and	long	wavelength	phonons,	it	may	be	necessary	to	use	a	

larger	image	containing	several	unit	cells.	

For	the	repeat	image	describing	a	bulk	system,	the	use	of	Periodic	Boundary	Conditions	(PBC)	allows	

usto	model	the	interactions	with	the	rest	of	the	lattice.	Under	PBC	conditions,	the	velocities,	energies	

and	forces	experienced	by	each	atom	are	calculated	for	every	atom	within	range	of	a	certain	cutoff,	

including	those	of	the	repeat	images.	In	molecular	dynamics,	it	is	possible	for	an	atom	to	leave	through	

a	face	of	the	cell,	provided	another	enters	from	the	opposing	face	with	the	exact	same	velocity	and	

energy,	maintaining	the	conditions	applied	by	the	canonical	ensemble.		

The	 cell	may	 not	 necessarily	 be	 cubic	 or	 even	 orthorhombic,	 and	 can	 in	 fact	 take	 the	 form	of	 any	

parallelepiped.	 Moreover,	 under	 variable-cell	 conditions,	 for	 example	 in	 molecular	 dynamics	 or	

geometry	 optimisation,	 the	 angles	 and	 lengths	 that	 define	 the	 cell	 may	 change	 to	 reflect	 atomic	

movement,	under	the	condition	that	periodicity	is	maintained.	

	

2.5.2.8	-	MOLECULAR	ORBITALS	

Whilst	atomic	or	molecular	orbitals	are	perceived	as	being	little	larger	than	the	molecule	of	interest,	in	

an	infinite	molecule	the	molecular	orbitals	are	both	infinite	in	number	and	infinitely	large.	The	practical	

connotation	 is	 that	 the	 molecular	 orbitals	 within	 a	 system	 are	 also	 periodic,	 meaning	 that	 the	

wavefunctions	describing	them	need	not	necessarily	possess	zero	(or	infinitesimal)	value	at	the	model	

boxes	boundaries.	 	This	was	addressed	by	F.	Bloch	and	computational	methods	were	devised	by	G.	

Wannier.	45,46	
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CHAPTER 	3 	– 	THERMOELECTR IC 	

MATER IALS 	REV IEW	

This	chapter	introduces	the	concepts	and	applications	of	thermoelectric	materials,	offering	an	overview	

of	the	fundamental	phenomena	that	lead	to	observable	thermoelectricity	and	a	review	of	the	literature	

on	the	design	and	synthesis	of	current,	state-of-the-art	thermoelectric	devices.	

“Thermoelectric	 Materials	 And	 Devices”	 by	 Cadoff	 and	 Miller,	 and	 “Charge	 Density	 and	 Structural	

Characterisation	 of	 Thermoelectric	 Materials”	 by	 Saravanan	 were	 used	 extensively	 to	 build	 the	

background	of	this	chapter.1,2	

	

3.1	–	INTRODUCTION	TO	THERMOELECTRIC	MATERIALS	

Thermoelectric	Materials	(TEs)	exhibit	a	difference	in	potential	across	the	material	when	subjected	to	

a	temperature	gradient.3	The	resultant	potential	across	the	material	is	a	direct	consequence	of	charge-

carrier	 migration.	 With	 doping,	 control	 over	 the	 amount	 and	 type	 of	 charge	 carriers	 can	 be	

demonstrated,	and	solid-state	ThermoElectric	Devices	(TEDs)	may	be	constructed	from	combinations	

of	p-	and	n-type	materials,	allowing	for	the	direct	conversion	of	thermal	energy	to	electrical	energy.4	

Originally	discovered	and	utilised	in	the	1960’s,	due	to	their	unique	properties,	thermoelectrics	have	

been	used	in	a	variety	of	applications	during	the	last	several	decades.	Needless	to	say,	modern	demands	

for	sustainable	energy	have	resulted	in	a	renaissance	in	thermoelectric	research,	with	renewed	interest	

in	the	development	of	efficient,	solid-state,	waste-heat-harvesting	technologies	as	the	driving	force.5	
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3.1.1	–	THE	THERMOELECTRIC	EFFECT	

The	 thermoelectric	 effect	 is	 better	 described	 as	 the	 amalgamation	 of	 3	 distinct	 phenomenological	

observations:	the	Peltier	Effect,	the	Seebeck	Effect,	and	the	Thompson	Effect.	These	combined	with	

several	other	notable	effects	in	the	fields	of	thermal	conduction,	magnetism	and	electronic	fields	laid	

the	foundations	for	the	modern	principles	of	thermoelectricity.2	

	

3.1.2	–	THE	SEEBECK	EFFECT	

In	the	early	1820’s,	T.	Seebeck	discovered	that	a	circuit	consisting	of	two	different	metals	could	deflect	

a	compass	needle	upon	the	selective	heating	of	one	end	of	the	circuit.	Initially	believing	the	induced	

magnetic	field	to	be	a	direct	consequence	of	the	temperature	difference,	it	was	later	understood	that	

the	 field	was	 induced	 by	 the	 induced	 electrical	 currents	 according	 to	Ampere’s	 Law,	 as	 defined	 by	

Maxwell.1	

	

3.1.3	–	THE	PELTIER	EFFECT	

In	1834,	J.	Peltier	discovered	that	in	the	simple	circuit	of	a	bismuth	wire	connected	to	a	battery	at	both	

ends	by	 two	 copper	wires,	 a	difference	 in	 temperature	 is	 established	at	 each	of	 the	 junctions.	 The	

temperature	increased	at	the	junction	where	current	passed	from	copper	to	bismuth,	and	decreased	

where	the	current	passed	from	bismuth	to	copper.	The	extent	of	this	effect	is	directly	proportional	to	

the	magnitude	of	the	current.	

𝑄 = 	𝐼 ∙ Π' − 	Π) 	 2.1 	

The	 Peltier	 Effect,	𝑄 ,	 generated	 per	 unit	 time	 is	 equal	 to	 the	 respective	 Peltier	 Coefficients,	Π ,	 of	

material	a	and	b	multiplied	by	the	current.	
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3.1.4	–	THE	THOMSON	EFFECT	

In	1854,	W.	Thomson	(soon	to	be	Lord	Kelvin)	discovered	that	a	circuit	consisting	of	a	single	material	

may	evolve	or	absorb	heat	if	there	is	a	temperature	difference	across	its	length.	This	is	in	addition	to	

the	 energy	 lost	 as	 a	 thermal	 product	 of	 electrical	 resistance.	 Thomson	 also	 distinguished	 the	

interrelationship	of	the	Seebeck	and	Peltier	effects	through	thermodynamics.	He	noted	that	the	Peltier	

coefficient	is	the	product	of	the	Seebeck	coefficient	and	the	absolute	temperature.	

	

3.1.5	–	THE	HALL	EFFECT	

In	1879,	E.	Hall	observed	the	manifestation	of	a	potential	difference	in	a	material,	orthogonal	to	applied,	

orthogonal	electric	and	magnetic	fields.6	Also	known	as	the	Ordinary	Hall	Effect,	due	to	the	multiple	

extensions	of	the	observation,	this	was	the	point	of	interest	that	led	to	the	discoveries	of	W.	Nernst	

and	A.	Ettingshausen.	The	effect	is	measured	by	the	Hall	Coefficient:	

𝑅 = 	
𝐸/

𝐽1 ∙ 𝐵3
	 2.2 	

In	which,	𝐸/	is	the	electric	field	induced	in	y	by	the	effect	of	the	orthogonal	magnetic	field,	𝐵3,	on	x-

component	of	the	electric	current	density,	𝐽1.	

	

3.1.6	–	THE	NERNST	EFFECT	

W.	Nernst	discovered	that	if	a	material,	that	is	either	conducting	or	semiconducting,	is	subjected	to	an	

orthogonal	 temperature	gradient	and	magnetic	 field,	an	electric	 field	will	be	 induced	orthogonal	 to	

both.1,6	This	is	also	known	as	the	1st	Nernst-Ettingshausen	Effect.	The	effect	is	quantized	by	the	Nernst	

Coefficient:	

𝑁 = 	

𝐸/
𝐵3

𝛿𝑇
𝛿𝑥
	 2.3 	

Where	𝐸/	is	the	y-component	of	the	electric	field	induced	by	the	z-component	of	the	magnetic	field,	

𝐵3,	and	the	temperature	gradient,	𝛿𝑇 ⁄ 𝛿𝑥.	
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3.1.7	–	THE	ETTINGSHAUSEN	EFFECT	

Whilst	studying	the	Hall	Effect	with	his	student,	W.	Nernst,	A.	Ettingshausen	noticed	that	a	temperature	

gradient	may	be	induced	across	a	material	that	is	subjected	to	orthogonal	electric	and	magnetic	fields.	

Also	 known	as	 the	2nd	Nernst-Ettingshausen	 Effect,	 the	 inclusion	of	 these	 two	effects	 allow	 for	 the	

complete	 categorisation	 of	 the	 relationship	 between	 electronic,	magnetic	 and	 thermal	 fields.6	 The	

Ettingshausen	Coefficient:	

𝑃 = 	
𝛿𝑇

𝛿𝑥 ∙ 𝛿𝑧
𝐵3 	 ∙ 𝐼/

	 2.4 	

Where	𝛿𝑇 ⁄ 𝛿𝑥 	is	 the	 resultant	 temperature	 gradient	 of	 the	 effect	 of	 y-component	 of	 the	 electric	

current,	𝐼/,	and	the	z-component	of	the	magnetic	field,	𝐵3.	The	term	𝛿𝑧	incoporates	the	thickness	of	

the	material	into	the	expression,	as	the	total	heat	flow	is	dependent	on	the	cross	section	of	the	material.	

	

3.1.8	–	THE	RIGHI-LEDUC	EFFECT	

In	 1887,	 it	 was	 discovered	 separately	 by	 A.	 Righi	 and	 S.	 Leduc	 that	 for	 a	 material	 subjected	 to	

temperature	 gradient,	 upon	 the	 application	 of	 a	 perpendicular	 magnetic	 field,	 an	 additional	

temperature	gradient	was	established	orthogonal	to	both.6	The	extent	of	the	effect	is	measured	by	the	

Righi-Leduc	Coefficient:		

𝐴>? = 	

𝛿𝑇
𝛿𝑦

𝐵3
𝛿𝑇
𝛿𝑥

	 2.5 	

Whereby,	BC
B/
	is	 the	difference	 in	 temperature	 induced	by	 the	magnetic	 field,	𝐵3 ,	 applied	 across	 the	

existing	 temperature	 gradient,	BC
B1
.	 As	 we	 can	 see,	 the	 Righi-Leduc	 Effect	 is	 essentially	 the	 thermal	

analogue	to	the	Hall	effect.	
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3.2	–	MODERN	THEORY	OF	THERMOELECTRICITY	

With	the	determination	of	these	effects,	the	original	thermoelectric	devices	were	created	in	the	19th	

century,	but	the	quest	for	more	efficient	materials	was	first	impacted	by	E	Altenkirch,	who	utilised	the	

constant	property	model	to	derive	the	maximum	efficiency	of	a	thermoelectric	generator.	This	equated	

to	about	0.5%,	due	to	the	metals	in	use.	The	proposal	of	semiconductors	as	thermoelectric	materials	

in	 the	early	19th	 century	allowed	 for	 theoretical	 efficiencies	of	 the	order	of	4%.	 In	1949,	A.	 F.	 Ioffe	

developed	the	modern	theory	of	thermoelectricity,	by	defining	a	thermoelectric	Figure	of	Merit:	

𝑍 = 	𝑆F ∙
𝜎
𝜆
	 2.6 	

Where	𝑆	is	the	Seebeck	Coefficient,	𝜎	is	the	electrical	conductivity	and	𝜆	is	the	thermal	conductivity.7,8	

Later	 attempts	 to	 better	 quantify	 thermoelectric	 materials	 saw	 the	 inclusion	 of	 an	 operating	

temperature,	and	the	specification	of	a	material-specific	figure	of	merit,	zT:	

𝑧𝑇	 = 	
𝑆F𝑇
𝜌𝜅

		 2.7 	

Where	𝑆	is	the	Seebeck	Coefficient,	𝑇	the	operating	temperature,	𝜌	the	electrical	resistivity	and	𝜅	the	

thermal	conductivity.9	Since	

𝜌 = 	
1
𝜎
	 2.8 	

I.e.	the	electrical	resistivity	is	simply	the	inverse	of	the	electrical	conductivity,	it	is	common	to	see	the	

figure	of	merit	defines	as	

𝑧𝑇	 = 	
𝑆F𝜎𝑇
𝜅

	 2.9 	

Such	that	each	of	the	coefficients	in	the	numerator	should	clearly	be	increased	to	maximise	zT,	whereas	

the	 converse	 is	 true	 of	 the	 denominator.	 This	 led	 to	 the	 development	 of	 the	 criteria	 for	 an	 ideal	

thermoelectric	material,	i.e.	the	Phonon-Glass,	Electron-Crystal	(PGEC)	model	suggested	by	G.	Slack.	5,10	

The	rationalisation	of	these	criteria	can	be	observed	from	the	figure	of	merit;	to	achieve	a	higher	figure	

of	merit,	 a	higher	Seebeck	coefficient	 is	desirable,	as	 is	 a	higher	electrical	 conductivity	and	a	 lower	

thermal	conductivity.	

The	term	Electron-Crystal	is	obvious,	a	high	electrical	conductivity	is	needed	to	exploit	the	difference	in	

potential,	by	allowing	for	the	maximal	mobility	of	charge	carriers.	The	Phonon-Glass	term	suggests	that	

the	obvious	way	to	retard	thermal	transport	is	to	curb	the	crystal	lattice	vibrational	modes,	or	phonons,	
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that	are	responsible	for	the	majority	of	thermal	transport	in	semiconductors	at	low	temperatures,	and	

metals	at	high	temperatures.1	

The	reason	for	this	differentiation	is	that	there	is	another	mechanism	of	thermal	transport	that	comes	

in	 to	play	 at	 high	 temperatures	 in	 semiconductors	 and	 low	 temperatures	 in	metals,	 although	most	

notably	in	semiconductors.	Electrons	also	have	kinetic	energy,	and	though	their	masses	and	therefore	

kinetic	 energies	 are	 relatively	 low	 compared	 to	 ions,	 their	 high	 mobility	 in	 high	 temperature	

semiconducting	systems	results	in	electronic	contributions	to	thermal	energy	that	are	comparable,	if	

not	greater,	than	the	ionic	contribution.	This	established	the	need	to	further	break	down	the	equation	

for	the	figure	of	merit	to:	

𝑧𝑇 = 	
𝑆F ∙ 𝜎 ∙ 𝑇
𝜅? + 𝜅P

	 2.10 	

Where	𝜅?	and	𝜅P 	are	the	lattice	thermal	conductivity	and	electronic	thermal	conductivity	respectively.	

With	a	suitable	figure	of	merit	defined,	work	could	begin	on	the	optimisation	of	each	thermoelectric	

coefficient.	However,	these	properties	are	closely	interrelated,	and	to	improve	one	often	comes	at	the	

cost	of	another.11	For	example,	the	electronic	term	𝜅P 	is	directly	related	to	the	electrical	conductivity,	

𝜎,	by	the	Wiedemann-Franz	Law:12	

𝜅 = 	𝜅? + 𝜅P	 2.11 	

and	

𝜅P = 𝜎𝐿𝑇	 2.12 	

where	 		

𝜎 = 	𝑛TT𝑞𝜇	 2.13 	

giving	

𝜅P = 𝑛TT𝑞𝜇𝐿𝑇	 2.14 	

Here,	𝑛TT 	is	the	number	of	charge	carriers,	𝜇	is	the	mobility	and	q	is	the	charge	of	the	carrier,	usually	

the	charge	of	an	electron.	L	is	the	Lorentz	factor	which,	for	free	electrons,	equates	to	2.4x10-8	J2	K-2	C-

2.13	Substituting	Equation	2.13	into	Equation	2.9	allows	us	to	rewrite	the	figure	of	merit	as	a	product	of	

two	sets	of	unilaterally	detrimental	properties:	

𝑧𝑇 = 𝑆F𝑛TT
𝜇
𝜅
𝑞𝑇	 2.15 	
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The	 coefficients	 in	(𝜇/𝜅) 	are	 written	 as	 one	 term	 because	 defects	 and	 impurities	 that	 affect	 one	

property	usually	affect	the	other.14	It	is	generally	accepted	that	increasing	the	carrier	concentration	will	

usually	 decrease	 the	 Seebeck	 coefficient,	 such	 that	 for	 an	 ideal	 Seebeck	 coefficient,	 a	 low	 carrier	

concentration	is	desired.	However,	this	will	negatively	impact	the	electrical	conductivity	and,	in	fact,	

equation	2.9	may	also	be	written	as:	

𝑧𝑇	 = 𝑆F𝜎
𝜅
𝑇

2.16 	

Highlighting	the	interdependence	of	the	Seebeck	coefficient	and	electrical	conductivity.	The	effect	of	

carrier	concentration	on	the	Seebeck	coefficient	may	be	appreciated	from	simple	models	of	electron	

transport,	such	as:	

𝑆 = 	
8𝜋F𝑘\F

3𝑒ℎF
𝑚∗𝑇

𝜋
3𝑛

F
a 	 2.17 	

Where	𝑚∗	is	the	carriers	effective	mass.3	This	applies	to	semiconductors	and	metals,	and	represents	a	

parabolic	band	model,	with	an	energy-independent	scattering	approximation.	Clearly	an	approach	to	

improve	the	figure	of	merit	in	thermoelectric	materials	must	seek	to	optimise	several	parameters	at	

once,	while	preventing	the	degradation	of	the	others.	

	

3.3	–	METHODS	OF	IMPROVING	THERMOELECTRIC	MATERIALS	

This	section	reviews	the	methods	devised	to	optimise	the	thermoelectric	coefficients,	both	historic	and	

modern.	Thermoelectric	materials	have	been	known	for	over	a	century,	and	while	the	classic	materials	

are	relatively	well	categorised,	advanced	methods	of	materials	design	have	been	developed	over	the	

last	decade,	thanks	to	renewed	interest	in	sustainable	energy	generation.1,3,5	

3.3.1	–	DEFECT	MECHANISMS	

Defects	 in	 a	 crystal	 structure	 can	 be	 thought	 of	 as	 reductions	 in	 translational	 or	 rotational	 lattice	

symmetry.	Ideally,	the	use	of	defects	should	aim	to	tackle	multiple	adversely	interdependent	properties	

within	the	material.5,15	An	example	is	the	use	of	doping	to	affect	charge	carrier	concentrations,	while	

providing	point	defects	 to	scatter	phonons	which	should	 ideally	 increase	the	Seebeck	coefficient,	𝑆,	

while	retarding	lattice	thermal	conductivity,	𝜅?.
4	
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3.3.1.1	–	POINT	DEFECTS	

A	point	defect	 is	a	defect	 in	a	crystal	 lattice	that	perturbs	the	crystal	pattern	at	a	specific	site.	Point	

defects	can	be	intrinsic	or	extrinsic.	Intrinsic	point	defects	occur	in	pure	materials,	of	which	there	are	

two:	 atomic	 vacancies	 and	 atoms	 occupying	 interstitial	 sites	 that	 would	 usually	 be	 vacant.	 For	

compounds,	there	 is	a	third	possibility,	whereby	two	atoms	of	differing	species	may	swap	positions,	

otherwise	known	as	anti-site	defects.	Extrinsic	defects	are	foreign	atoms	present	intentionally,	solutes,	

or	 otherwise	 impurities.	 There	 are	 also	 two	 possible	 types:	 Substitutional	 solutes/impurities,	which	

occupy	what	would	be	atomic	positions,	and	interstitial	solutes/impurities.4	

The	 use	 of	 dopants	 in	 TEMs	 is	 commonplace,	 initially	 added	 to	 address	 resistivity,	modern	 doping	

paradigms	 intentionally	 alter	 the	electronic	 structure	of	 the	TEM	 to	achieve	 several	objectives	 (See	

3.6.1.2	&	 3.6.1.3).	 Doping,	 or	 the	 introduction	 of	extrinsic	 point	 defects,	 facilitate	 the	 formation	 of	

intrinsic	point	defects,	which	in	turn	alter	the	carrier	concentration,	𝑛TT.	This	is	an	example	of	intrinsic	

point	defect	manipulation;	 it	 is	 also	possible	 to	manipulate	 intrinsic	point	defects	mechanically	and	

thermally.16	

3.3.1.2	–	RESONANT	LEVELS	

Impurity	levels	that	lie	within	the	conduction	and	valence	bands	of	the	material,	Resonant	Levels,	affect	

two	TE	properties:	

i) RLs	induce	a	peak	within	the	density	of	states	centred	at	the	resonant	energy,	𝐸b,	which	

affects	𝑆	in	a	positive,	almost	temperature-independent	manner.	

ii) RLs	also	conduct	and	scatter	charge	carriers,	with	the	resonant	scattering	creating	a	strong	

electron	 energy	 filtering	 effect,	 which	 increases	 S	 at	 cryogenic	 temperatures	 where	

electron-phonon	scattering	is	weaker.	

The	effectiveness	of	RLs	is	dependent	on	the	position	of	the	DOS	peak	at	resonant	energy	with	respect	

to	the	fermi	energy,	𝜀d.
5,14,17	
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3.3.1.3	–	BAND	CONVERGENCE	

The	aim	of	the	Band	Convergence	method	is	to	increase	band	degeneracy,	with	the	aim	of	increasing	

Seebeck	Coefficient,	without	drastically	altering	resistivity.	Two	factors	contribute	to	band	degeneracy:	

i) The	 energy	 extrema	 of	 several	 bands	 occurring	 within	 a	 few	 𝑘\𝑇 	of	 𝜀d ,	 or	 Orbital	

Degeneracy.	

ii) The	presence	of	multiple	symmetry-induced	carrier	pockets	within	the	fermi	surface,	or	

Valley	Degeneracy.		The	Valley	degeneracy,	𝑁e	affects	the	DOS	effective	mass	by	𝑁ef/g.	

The	efficaciousness	of	the	Band	Convergence	method	is	confined	by	the	temperature-dependent	band	

shift,	interband	scattering	and	dopant	solubilities.	13,17	

3.3.1.4	–	TOPOLOGICAL	DEFECTS	

Defects	that	cannot	be	rectified	by	any	local	rearrangement	are	known	as	topological	defects.	One	such	

class	 of	 topological	 defects	 are	 1-dimensional	 dislocations,	 which	 can	 be	 formed	 through	 plastic	

deformation	processes,	such	as	extrusions	or	hot	forging.	It	has	been	shown	that	these	dislocation	sites	

contribute	to	phonon	scattering	over	a	wide	range	of	wavelengths,	yielding	low	𝜅?	values	and	state-of-

the-art	zT	values.3,18	

3.3.1.5	–	INTERFACIAL	PREFERENTIAL	SCATTERING	

2D	planar	defects	such	as	interfaces	and	grain	boundaries	have	been	used	in	a	three-tier	approach	to	

affect	zT:	

i) Phonons	may	be	scattered	more	effectively	than	charge	carriers,	leading	to	lower	𝜅?,	while	

maintaining	𝑆.	

ii) Low	 energy	 charge	 carriers	 are	 scattered	 more	 effectively	 than	 high	 energy	 carriers,	

increasing	S,	maintaining	s.	

iii) Minority	carriers	are	scattered	more	effectively	than	majority	charge	carriers,	Increasing	S,	

maintaining	s.	

Provided	 grain	 boundaries	 are	 at	 least	 semi-coherent,	 and	 sufficient	 intergrain	 band	 alignment	 is	

present,	 the	 mobility,	𝜇 ,	 should	 be	 retained	 while	𝜅? 	is	 suppressed.	 Approaches	 ii	 and	 iii	 seek	 to	

increase	𝑆	by	implementing	the	Carrier	Energy	Filtering	scheme	(CEF)	which	exploits	energetic	barriers	
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to	filter	out	low-energy	charge	carriers	such	that	𝑆	is	improved.	19,20	This	allows	for	improvement	of	zT	

by	increasing	𝑆	in	a	manner	that	maintains	𝜇	and	reduces	𝜅?.		

3.3.1.6	–	MODULATION	DOPING	

For	2D	materials	exhibiting	ionised	impurity	scattering	at	high	temperatures,	it	is	possible	to	separate	

charge	 carriers	 from	 zonal	 dopants	 by	 implementing	 “spacer	 layers”	 between	 specialised	 layers,	 a	

practice	termed	Modular	Doping.	Charge	carriers	are	irreversibly	donated	by	the	dopant	layers	to	the	

active	 TE	 layer,	which	 has	 high	mobility,	maintaining	mobilities	 and	 negating	 the	 effects	 of	 ionised	

impurity	scattering.21,22		

3.3.2	–	SIZE	EFFECTS	

The	 concepts	 of	 TE	 Nano-materials,	 2D	 and	 1D	 thermoelectrics	 are	 underpinned	 by	 the	 effects	 if	

reduced	 dimensionality.	 There	 are	 two	 regions	 of	 scale	 when	 discussing	 size	 effects,	 Classical	 Size	

Effects	and	Quantum	Size	Effects.5		

3.3.2.1	–	CLASSICAL	SIZE	EFFECTS	

The	size	effects	dominating	𝜅?	are	known	as	Classical	Size	Effects.	By	restricting	the	phonon	mean	free	

path,	the	contribution	to	zT	can	be	minimised,	up	to	the	amorphous	limit	whereby	the	mean	free	path	

approaches	the	scale	of	atomic	bonds.	Thus,	the	amorphous	material,	where	random-walking	Einstein	

modes	 dictate	 thermal	 transport,	 is	 the	 natural	 limit	 to	 phonon	 facilitated	 thermal	 transport.	 This	

minimal	lattice	thermal	conductivity	is	defined	as:	

𝜅hij = 	
𝜋
6

k a
𝜅\𝑛'

F a 𝑣i
𝑇
𝜃i

F

i

𝑥a𝑒1

𝑒1 − 1 F

no C

p
	𝑑𝑥	 2.18 	

Where	the	cutoff	frequency	

𝜃i = 	 𝑣i
ℏ
𝜅\

6𝜋F𝑛'
s
g	 2.19 	

𝑛'	is	the	number	density	of	atoms,	ℏ	is	the	reduced	Planck’s	constant	and	𝑣i 	is	the	sound	velocity	for	

each	polarisation	mode.	

	

	



	

41	

3.3.2.2	–	QUANTUM	SIZE	EFFECTS	

Sharp	DOS	features,	exploitable	for	increased	𝑆	if	𝜀d	is	favourably	positioned,	can	be	achieved	utilising	

the	Quantum	Size	Effect.	When	the	charge	carriers	de	Broglie	wavelength	approaches	the	dimensions	

of	the	material,	they	become	strongly	confined	in	the	relevant	directions,	reducing	mobility.23	

Both	effects	are	 likely	present	 to	 some	extent	at	 the	 small	 scales	 required	 to	observe	either	of	 the	

effects,	though	it	is	believed	that	the	Classical	Quantum	Effect	contributes	most	to	zT,	as	the	majority	

of	advances	in	nanocomposite	TEs	have	come	from	reduced	thermal	transport.	

	

3.3.3	–	CRITICAL	PHENOMENA		

C.	B.	Vining	states	that	1	+	zT	in	a	TE	process	is	the	equivalent	of:	

𝜆ti =
𝐶v
𝐶e
	 2.20 	

in	 a	 gas	 cycle	 engine,	 where	𝐶v 	is	 the	 heat	 capacity	 at	 constant	 volume.24	 It	 is	 observed	 that	𝜆ti 	

diverges	at	a	gas-liquid	phase	transition,	and	hypothesised	that	ZT	may	be	enhanced	near	an	electronic	

phase	transition.25	This	forms	part	of	the	basis	for	the	study	of	the	thermoelectric	properties	of	the	

black	phosphorus	to	grey	phosphorus	phase	transition	in	Chapter	4.		

Evidence	of	this	principle	is	observed	in	the	zT	peak	at	the	phase-transition	of	I-doped	Cu2Se	which	has	

been	suggested	to	be	the	result	critical	scattering	of	charge	and	heat	carriers.25		In	other	work	by	D.	R.	

Brown	et	 al.,	 the	 exploitation	 of	 phase	 transitions	 in	 copper	 chalcogenides	 allowed	 for	 Larger	𝑆	by	

allowing	charge	carriers	to	access	more	microstates.26	

Naturally,	 materials	 that	 readily	 undergo	 phase	 transitions	 are	 not	 expected	 to	 be	 useful	 in	

thermoelectric	 devices,	 but	 the	 work	 allows	 for	 the	 exploration	 of	 novel	 phenomena	 near	 phase	

transitions.	 The	 consensus	 is	 that	 the	exploitable	phenomena	 in	 subcritical	materials,	which	exhibit	

electronic	instability	in	the	absence	of	structural	phase	transitions,	may	yield	useful	insights.	
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3.3.4	–	ANHARMONICITY	

Another	approach	to	reduce	𝜅?	is	the	concept	of	Anharmonicity.	Where	scattering	processes	seek	to	

reduce	the	mean	free	path	i.e.	space	domain	of	phonons,	the	Anharmonicity	approach	aims	to	reduce	

the	lifetime	of	phonons,	i.e.	the	time	domain.	By	manipulation	of	phonon-phonon	interactions,	low	𝜅?	

may	be	achieved	by	means	of	a	“rattler	atom”	which	vibrates	in	an	anharmonic	manner,	resulting	in	

interactions	between	low-lying	optical	phonons	and	acoustic	phonons.4	Materials	that	exhibit	strong	

anharmonicity	tend	to	have	large,	complex	unit	cells,	heavy	elements	and	weak	or	asymmetric	bonding.	

Examples	 include	 skutterudites	 and	 clathrates,	 with	 incorporated	 guest	 atoms	within	 the	 cage-like	

structure.27-29		

The	Umklapp	process	dominates	𝜅?	at	high	temperatures,	allowing	for	the	formulation	of	the	simple	

equation:	

𝜅? = 	
𝑀𝑉k a𝜃ba

𝛾F𝑇
	 2.21 	

where	𝑀	is	the	average	atomic	mass,	𝑉	is	the	average	atomic	volume,	𝜃b	is	the	Debye	temperature,	

and	𝛾	is	the	volume	Grüneisen	parameter.	Typical	materials	have	a	Grüneisen	parameter	between	1	

and	2,	although	a	mode-specific	𝛾	can	be	much	larger.	

	

3.3.5	–	SPIN	EFFECTS	

Due	to	the	dependence	of	the	Seebeck	coefficient,	or	thermopower,	on	the	charge	carriers	within	a	

material,	 it	 is	 often	 neglected	 that	 spin	 effects	 are	 important	 in	 the	 modelling	 of	 thermoelectric	

materials.	There	are	3	main	effects	of	spin	on	thermoelectric	properties.	

The	Rashba	Effect	manifests	as	the	splitting	of	bands	in	the	electronic	structure,	due	to	the	effect	of	

Spin-Orbit	Coupling	(SOC)	in	crystals	with	no	inversion	symmetry.30-32	This	splitting	is	present	as	a	sharp	

feature	in	the	Density	of	States	(DOS),	which	has	implications	for	the	Seebeck	coefficient.33	The	Spin	

Seebeck	Effect	(SSE)	is	the	spin	analogue	of	the	Charge-based	Seebeck	Effect	(CSB),	the	major	difference	

being	that	in	the	SSE,	the	spin	voltage	is	maintained	orthogonal	to	the	temperature	gradient.	The	spin	

Seebeck	effect	is	notably	weaker	than	the	CSE,	however	it	has	gained	traction	in	the	emergent	field	of	

spin	caloritronics.34	
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The	 Final	 noteworthy	 spin	 effect	 in	 thermoelectrics	 is	 that	 of	 Topological	 Insulators	 (TI’s).35	 In	

topological	insulators,	the	bulk	material	displays	a	band	gap	which	is	strongly	dependent	on	the	spin-

orbit	coupling	of	such	systems,	whereas	at	the	surface	topologically	protected	conducting	states	are	

observed.	Materials	such	as	Bi2Se3	and	Bi2Te3,	which	are	well	known	thermoelectrics,	happen	to	also	

make	 good	 TI’s.36	 This	 is	 a	 consequence	 of	 the	 heavier	 elements	 large	 SOC,	 and	 tendency	 to	 form	

compounds	with	a	bulk	band	gap.	As	such,	some	 investigation	has	taken	place	 into	the	relationship	

between	thermoelectric	and	topological	insulator	properties.37	

	

3.3.6	–	HIERARCHICAL	ARCHITECTURES	IN	THERMOELECTRICS	

A	common	method	of	affecting	the	thermal	conductivity	in	thermoelectric	materials,	is	to	selectively	

scatter	 lattice	vibrations,	or	phonons,	at	specific	 length	scales,	by	the	inclusion	of	structural	defects.	

Such	 examples	 include	 the	 application	 of	 grain	 boundaries	 in	 polycrystalline	 systems,	 the	 use	 of	

Superlattices	 as	 1	 dimensional	 scatterers	 to	 achieve	 anisotropic	 properties,	 and	 the	 presence	 of	

secondary	phases	in	bulk	materials.15,18,22,38	Many	thermoelectrics	are	polycrystalline,	and	formed	from	

the	sintering	of	nano-powders	under	pressure.	In	the	grain	boundary	regime,	this	approach	is	taken	to	

the	extreme	by	creating	materials	that	are	100%	dense,	and	created	either	from	the	sudden	cooling	of	

melts,	 or	mechanical	 shock.	 At	 the	 atomic	 scale,	 the	materials	 are	 crystalline	 and	 thus	possess	 the	

Seebeck	coefficients	and	electronic	conductivities	associated	with	single	crystals.	However,	the	mean	

free	path	of	 large	wavelength	phonons	has	been	reduced,	and	the	scattering	at	 interfaces	has	been	

shown	to	be	an	effective	method	of	perturbing	thermal	transport.		

Superlattices	have	been	shown	to	create	a	disparity	in	the	directional	transport	properties	of	otherwise	

isotropic	 bulk-thermoelectrics.39,40	 As	 a	 result,	 these	 materials	 have	 been	 suggested	 for	 niche	

applications.	 Materials	 with	 an	 excess	 of	 certain	 species	 have	 a	 tendency	 to	 form	 nanocrystals	 of	

secondary	phases	within	the	bulk	structure.	In	Cu2SnSe3,	it	has	been	demonstrated	that	the	presence	

of	the	secondary	phase	SnSe2	may	result	in	a	significant	increase	in	the	Seebeck	coefficient	and	power	

factor.41,42	
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3.4	–	MATERIALS	OF	INTEREST	

As	we	have	seen,	the	thermoelectric	effect	has	been	known	for	over	a	century,	whilst	thermoelectric	

materials	as	we	know	them	today	have	been	around	since	the	1960’s.	However,	 in	recent	years	the	

renaissance	in	thermoelectric	research	has	led	to	the	discovery	of	several	more	families	of	materials	

with	 desirable	 and,	 more	 importantly,	 tuneable	 thermoelectric	 properties.	 This	 section	 covers	 the	

common	materials	in	the	field	of	thermoelectrics,	alongside	some	more	recent	discoveries.	

	

3.4.1	–	POST-TRANSITION	METAL	CHALCOGENIDES	

Binary	 Tellurides,	 such	 as	 Bismuth	 Telluride	 and	 Lead	 Telluride	 were	 the	 original	 state-of-the-art	

thermoelectric	materials	 in	 the	 1950’s.1,4,43	 It	was	 apparent	 that	 by	 alloying	 Bi2Te3	with	 Bi2Se3	 and	

Sb2Te3,	control	over	carrier	concentration	and	lattice	thermal	conductivity	was	possible,	and	complex	

materials	 such	 as	 p-type	 (Sb0.8Bi0.2)2Te3	 and	 n-type	 Bi2(Te0.8Se0.2)3	 were	 studied	 and	 further	

developed.3,5,18	These	materials	have	reported	zT	values	of	0.8	to	1.1	for	temperatures	up	to	500	K,	

with	p-type	materials	having	the	highest	values.	Optimal	temperature	ranges	can	be	tuned	by	altering	

carrier	concentration,	allowing	for	application	specific	compositions.	

Materials	with	peak	zT’s	in	mid-range	temperatures	(500-900	K)	are	typically	group	IV	Tellurides,	such	

as	PbTe,	SnTe	and	GeTe,	included	here	for	completeness.3	Similar	principles	are	used	to	tune	carrier	

concentration,	 the	 best-known	being	 (GeTe)0.85(AgSbTe2)0.15	 or	 ‘TAGS’	 as	 it	 is	 often	 called.	 At	 these	

temperatures,	this	family	of	compounds	has	reported	zT’s	of	slightly	larger	than	1.3,5	

	

3.4.2	–	OXYSELENIDES	

In	 2010	 it	 was	 reported	 by	 Zhao	 et	 al.	 that	 BiCuSeO	 Oxyselenides	 demonstrated	 thermoelectric	

properties.	27,44-46	BiCuSeO	is	a	mid-temperature	range	material,	with	a	zT	that	surpasses	1.0	around	

650	K.	The	materials	are	typically	stacked	layers	of	Bi2O2	and	Cu2Se2,	and	it	is	this	layered	structure	that	

is	suggested	to	be	responsible	for	their	thermoelectric	properties,	largely	due	to	their	remarkably	low	

𝜅?.	This	is	thought	to	be	due	to	the	difference	in	bond	lengths	between	Bi-O	(~2.33	Å)	and	Bi-Se	(~3.2	

Å),	which	 leads	to	anharmonic	effects	and	a	 large	Grüneisen	parameter.	 In	single	crystals,	there	are	

large	anisotropic	effects,	as	the	thermal	conductivity	within	the	plane	of	the	sheets	is	almost	twice	that	

of	the	out	of	plane	thermal	conductivity.		
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Another	aspect	of	the	structure	that	may	play	a	strong	role	in	the	thermal	conductivity	is	the	presence	

of	lone	pairs	on	Bi,	albeit	indirectly.29,44,47	The	presence	of	these	lone	pairs	results	in	a	large	valence	

shell,	 yielding	 a	 large	 Grüneisen	 parameter,	 which	 suggests	 strong	 interactions	 between	 optical	

phonons	 and	 acoustic	 phonons.	 The	 phonon-phonon	 Umklapp	 processes	 scatter	 the	 heat-carrying	

acoustic	phonons,	thus	reducing	thermal	conductivity.	

	

3.4.3	–	SILICON-GERMANIUM	COMPOUNDS	

For	high-range	temperatures	 (>	900	K),	 the	most	commonly	used	materials	are	alloys	of	silicon	and	

germanium.	A	typical	alloy	consists	of	silicon	as	a	major	component,	stoichiometric	germanium	and	a	

fractional	dopant,	such	as	Si0.795Ge0.2X0.005,	where	X	is	P	for	the	n-type	component	and	B	for	the	p-type	

component.	 The	 material	 adopts	 the	 diamond	 crystal	 structure	 which	 is	 normal	 for	 ground	 state	

silicon.48-51		

These	alloys	have	relatively	low	zT’s	compared	to	other	state-of-the-art	materials,	but	operate	over	a	

wider	 range	 of	 temperatures,	 specifically	 high	 temperatures	 (~900	 K).	 reported	 zT’s	 for	 the	 n-type	

material	are	around	1.0,	whereas	the	p-type	material	has	zT’s	of	around	0.6.	The	lower	zT	values	are,	

in	part,	due	to	the	higher	𝜅?	values	for	SiGe	compounds.	They	are	low	with	respect	to	most	materials,	

though	are	still	at	least	an	order	of	magnitude	higher	than	those	of	the	recently	discovered	complex	

materials,	such	as	TAGS.3	

	

3.4.4	–	COPPER	CHALCOGENIDES	

Since	the	1960’s	(possibly	even	as	early	as	1827),	copper	chalcogenides	have	been	known	to	exhibit	

thermoelectric	properties.	An	example	 is	Cu2Se,	which	has	an	ordered	structure	of	selenium	atoms,	

with	 a	 disordered	 arrangement	 of	 Cu	 ions	 permeating	 the	 structure.26	 Cu2Se	 undergoes	 a	 phase	

transition	 at	 ~400	 K,	 where	 𝛼 -Cu2Se	 transforms	 into	 𝛽 -Cu2Se	 in	 a	 reversible	 manner.	 At	 high	

temperatures,	the	copper	ions	behave	as	an	ionic	liquid,	which	allows	for	the	evolution	of	the	phonon-

glass	electron-crystal	(PGEC)	concept	to	that	of	a	phonon-liquid	electron	crystal	(PLEC).		

This	 behaviour	 leads	 to	 interesting	 properties,	 such	 as	 ultralow	 thermal	 conductivities	 at	 high	

temperatures,	which	is	primarily	responsible	for	the	high	zT	values	reported	for	Cu2Se,	such	as	1.5	–	1.7	

at	1000	K,	for	the	base	material,	with	ultrahigh	values	of	2.62	reported	for	doped	materials	such	as	
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Cu1.94Al0.02Se	at	1030	K.	Note	that	this	value	is	anisotropic,	and	that	a	value	of	1.4	was	reported	for	the	

perpendicular	direction	in	a	single	crystal,	much	closer	to	the	values	obtained	for	polycrystalline	bulk	

material.52	

Unfortunately,	it	is	widely	believed	that	the	phenomena	responsible	for	these	high	zT	values	make	these	

materials	unsuitable	for	device	construction,	as	the	eventual	migration	of	Cu	ions	will	lead	to	localised	

structural	rearrangements	across	a	device,	rendering	the	device	efficiency	vastly	reduced.		

3.4.5	–	HALF	HEUSLER	COMPOUNDS	

Half	Heusler	compounds	are	intermetallic	compounds	with	an	ABX	formula,	where	A	is	transition	metal,	

noble	metal	or	rare	earth	element,	B	is	a	transition	metal	or	noble	metal	and	X	is	a	main	group	element.	

They	are	known	for	their	high-temperature	efficiencies	and	thermal	stability.	For	some	time,	it	has	been	

noted	 that	 the	 zT	 of	 the	 n-type	materials,	 is	 commonly	 far	 higher	 than	 the	 equivalent	 p-type	 half	

Heusler.	For	example,	typical	n-type	zT	values	of	0.8	–	1	have	been	reported,	while	p-type	zT	values	of	

<0.5	are	common.	Recent	advances	in	half	Heusler’s	however,	have	seen	zT	values	of	~1.5,	which	is	far	

greater	than	the	industry	standard	of	0.8	for	SiGe	compounds.	

	

3.4.6	–	FILLED	SKUTTERUDITES	

Skutterudite,	CoAs3,	is	a	crystalline	mineral	with	a	cubic	structure.	The	structure	can	be	described	by	

considering	a	2x2x2	superlattice	of	simple	cobalt	cubes.	6	of	these	8	cobalt	cubes	are	filled	with	square	

planar	rings	of	4	arsenic	atoms,	which	are	arranged	such	that	the	arsenic	planes	between	neighbouring	

cubes	 are	 orthogonal.	 Isostructural	 compounds	 were	 found	 to	 exist,	 and	 to	 possess	 reasonable	

thermoelectric	figures	of	merit,	such	as	CoSb3,	doped	samples	of	which	have	are	reported	to	achieve	

zTs	of	up	to	1.	The	vacancies	in	the	structure,	i.e.	the	two	cobalt	cubes	which	remain	unfilled,	may	be	

filled	with	guest	species.	These	“filler”	atoms	serve	both	to	dope	the	electronic	structure,	as	well	as	

“rattlers”	 (see	 3.3.4),	 thus	 also	 affecting	 phonon	 transport.	 Filled	 Skutterudites,	 such	 as	

La0.8Ti0.1Ga0.1Fe3CoSb12,	have	achieved	zTs	of	up	to	1.2.	
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3.5	–	DERIVATION	OF	THERMOELECTRIC	COEFFICIENTS	FROM	

ELECTRONIC	TRANSMISSION	

Much	of	the	work	in	this	thesis	involves	the	derivation	of	the	electronic	coefficients	required	by	the	

figure	of	merit,	in	order	to	derive	theoretical	zT’s	for	novel	materials.	As	such,	the	derivation	of	these	

coefficients	is	provided	here,	and	referenced	in	subsequent	chapters.	

According	 to	 the	 Landauer-Buttiker	 Formalism,	 the	 resistivity	 of	 a	 system	 can	 be	 expressed	 as	 a	

scattering	problem.53,54	In	the	coherent	transport	limit,	where	inelastic	scattering	and	electron-phonon	

coupling	is	absent,	the	formalism	is	exact.55	The	electric	current	may	be	derived	from	the	electronic	

transmission	function,	𝑇 𝐸 ,	using	the	linear	response:	

	

𝐼 = −
2𝑞
ℎ
	 𝑑𝜀| 𝑓p 𝜀| − 	𝜇k − 𝑓p 𝜀| − 	𝜇F

~

p
= 	−

2𝑞
ℎ
	𝑇 𝐸 𝜇k − 	𝜇F 	 2.22 	

The	 electronic	 transmission	 function,	𝑇 𝐸 ,	 defines	 the	 rate	 at	which	 electrons	 of	 energy	 𝐸 ,	 are	

propagated	from	the	source	contact	to	the	drain	contact,	via	the	device	region.	This	is	output	by	the	

dftb-negf	code,	as	a	text	file	containing	data	for	a	2	dimensional	plot,	or	curve.	It	is	the	calculation	of	

the	transmission	curve,	𝑇 𝐸 ,	for	multiple	materials,	that	forms	the	basis	of	the	work	of	this	PhD	thesis.		

Subsequently,	 thermoelectric	 coefficients	may	 be	 derived	 from	 the	 integrals	 of	 the	 product	 of	 the	

transmission,	second	derivative	of	the	fermi	function	and	the	normalisation	with	respect	to	the	fermi	

energy:	

𝐾j = 	
2
ℎ

𝑑𝐸	𝑇 𝐸 −
𝛿𝑓
𝛿𝐸

𝐸 − 𝜇 j 	 2.22 	

Where	n	is	varied	to	derive	the	coefficients,	such	as	conductivity,	n	=	0:	

𝜎 = 	𝑞F𝐾p	 2.23 	

	

Seebeck	coefficient,	n	=	1:	

𝑆 = 	
𝐾k
𝑞𝑇𝐾p

	 2.24 	
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And	electronic	thermal	conductivity,	n	=	2:	

𝜅P = 	
𝐾F − 	

𝐾kF
𝐾p

𝑇
	 2.25

	

	

Using	this	formalism	and	these	derivations,	a	program	was	prepared	to	calculate	the	temperature	and	

potential	 dependent	 thermoelectric	 coefficients	 from	 the	 electronic	 transport	 calculations	 output	

electronic	transmission	spectra.	56,57	This	script	further	included	an	estimate	zT	in	the	absence	of	the	

lattice	thermal	conductivity:	

𝑧𝑇P = 	
𝜎𝑆F𝑇
𝜅P

	 2.26 	
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CHAPTER 	4 	– 	EFFECT 	OF 	PRESSURE-
INDUCED	PHASE-TRANS IT IONS 	ON	THE 	

THERMOELECTR IC 	PROPERT IES 	OF 	BLACK 	
PHOSPHORUS 	

The	 focus	 of	 this	 chapter	 is	 the	 calculation	 of	 electronic	 transport	 properties	 and	 the	 derived	

thermoelectric	properties	of	phosphorus	materials.	More	specifically,	the	properties	are	calculated	for	

nanowires	 of	 Black	 Phosphorus	 (BP),	 in	 the	 form	of	Mono-,	 Bi-	 and	 Tri-Layers.	 Subsequently,	 these	

properties	are	calculated	for	bulk	black	phosphorus.	The	methods	are	then	applied	to	the	case	of	the	

black	 phosphorus	 to	 Grey	 Phosphorus	 (GP)	 phase	 transition,	 by	 studying	 both	 black	 and	 grey	

phosphorus,	along	with	a	series	of	metastable	intermediates	from	the	transition	pathway.	

	

4.1	–	INTRODUCTION	

Thin	films	and	2D	materials	are	a	hot	topic	in	the	field	of	materials	research.	1-3	The	anisotropic	effects	

of	2D	layered	materials	are	extreme	in	some	cases,	and	so	it	was	hypothesised	that	the	thermoelectric	

properties	 of	 these	 materials	 would	 otherwise	 be	 affected	 in	 an	 interesting	 manner,	 potentially	

allowing	 for	 the	 separation	 of	 the	 intertwined	 thermoelectric	 properties.2	 By	 perturbing	 thermal	

transport	 along	 one	 direction,	 and	 maintaining	 or	 even	 improving	 the	 electronic	 transport	 in	 the	

orthogonal	plane,	it	was	hoped	that	one	may	construct	an	improved	thermoelectric	device.	A	material	

with	 weakly	 bound	 layers,	 where	 “weak”	 means	 as	 an	 inter-layer	 bonding	 scheme	 relative	 to	 the	

covalently	 bonded	 intra-layer	 scheme,	 presents	 interesting	 opportunities	 for	 methods	 such	 as	

intercalation,	and	at	the	theoretical	level,	the	opportunity	to	create	novel	“stacks”	of	planar	materials.4		

Thus,	it	was	determined	that	phosphorus	would	be	an	interesting	model	system	for	the	transition	metal	

chalcogenides,	which	have	recently	gained	traction	as	thermoelectric	materials	with	high	efficiencies.	
5-7	
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This	chapter	was	inspired	by	previous	work	on	thermoelectrics	(Selli	et	al.)	combined	with	the	work	on	

phosphorus	phase	transitions	by	Boulfelfel	et	al.8,9	The	concept	was	that	a	metastable	intermediate,	

from	the	black	phosphorus	to	grey	phosphorus	phase	transition	pathway,	could	have	reduced	thermal	

conductivity	 due	 to	 long-range	 disorder,	 while	 maintaining	 the	 electrical	 properties	 of	 black	

phosphorus.	In	order	to	model	these	large,	asymmetric	systems,	a	method	had	to	be	conceived	in	which	

the	 electronic	 properties	 of	 large	 systems	 of	 atoms	 could	 be	 calculated	 with	 near	 DFT	 accuracy.	

Assuming	 that	 the	 phases	 of	 phosphorus	 were	 stable,	 and	 that	 the	 intermediate	 phases	 were	

metastable,	one	could	ignore	the	kinetics	of	the	system	and	calculate	the	electronic	properties	for	the	

static	phonon	state.	This	naturally	meant	 that	 the	DFTB	method	became	the	method	of	choice.10,11	

Using	the	Landauer-Büttiker	formalism,	one	may	map	the	conduction	of	electrons	across	a	system	as	a	

transmission	problem,	in	which	the	conductivity	of	a	material	may	be	calculated	from	a	system	in	which	

a	“wire”	of	the	relevant	material	is	held	between	two	contacts.12,13	

	

4.1.1	–	ALLOTROPY	IN	PHOSPHORUS	

Phosphorus	 is	 a	 pnictogen	 that	 is	 known	 to	 have	 6	 allotropes	 under	 various	 conditions.	 It	 is	 highly	

reactive,	and	thus	elemental	phosphorus	does	not	occur	naturally,	though	it	is	also	essential	to	life,	as	

a	vital	component	of	both	DNA	and	ATP.14	

The	ground	state	allotrope	of	phosphorus	is	White	Phosphorus,	WP,	which	has	two	forms,	a-WP	and	b-

WP.	a-WP	has	a	cubic	structure	and	is	the	more	energetically	favourable	under	atmospheric	conditions,	

whereas	 the	b-WP	phase	 is	hexagonal	and	 forms	at	195.3	K.	Both	phases	consist	of	Van	der	Waals	

bound	P4	tetrahedra,	as	seen	in	figure	4.1.	The	phase	transition	induces	a	change	in	the	orientation	of	

these	tetrahedra	with	respect	to	each	other,	and	no	immediately	apparent	alteration	to	the	covalent	

bonding	 scheme	within	 each	 P4	molecule.	WP	 is	 highly	 reactive,	 not	 observed	 in	 nature,	 and	 thus	

obtained	by	synthetic	methods.	WP	naturally	degrades	with	time	to	Red	Phosphorus,	RP.15	

Red	phosphorus	 is	obtained	 from	white	phosphorus	under	standard	conditions,	 though	heating	and	

exposure	to	light	accelerate	the	process.	It	is	often	described	as	the	polymeric	form	of	WP,	with	each	

tetrahedron	 forming	 two	 bonds	 with	 its	 neighbours,	 weakening	 and	 even	 breaking	 one	 of	 the	

tetrahedral	bonds,	usually	between	the	two	atoms	involved	in	the	polymeric	bonding	scheme.	Several	

different	structural	polymorphs	of	RP	are	believed	to	exist,	and	the	exact	crystal	structure	is	under	some	

debate.	



	

	

55	

	

Figure	4.1	–	Representation	of	the	known	allotropes	of	phosphorus.	Each	allotrope	features	a	large	degree	

of	Van	der	Waals	bonding	between	covalently	bound	molecules.	Adapted	from	“Liquid-phase	exfoliation	of	

black	phosphorus	and	its	applications”	by	Lin	et	al.16	

Black	 Phosphorus,	 BP,	 is	 also	 obtained	 from	 white	 phosphorus,	 though	 under	 high	 pressures	 and	

temperatures.	 It	 has	 a	 likeness	 to	 graphite,	 and	 is	 often	 described	 as	 having	 a	 “puckered”	 or	

“corrugated”	 graphene	 structure.15	 The	 structure	 consists	 of	 graphene-like	 layers	 of	 corrugated	

phosphorus	rings	of	6	atoms,	which	are	bound	by	Van	der	Waals	forces,	as	in	graphite.	These	layers	

however,	are	stacked	directly	upon	one	another,	 in	an	A-B’	stacking	scheme,	as	opposed	to	the	A-B	

stacking	scheme	of	graphite,	where	in	B,	each	layer	is	offset	by	half	the	length	of	the	unit	cell	axes	in	

direction	a	and	b,	whereas	in	B’	the	offset	is	only	along	a.	This	is	due	to	the	optimum	orbital	overlap	

between	the	lone	pairs	of	each	phosphorus	atom.	Black	phosphorus	is	sometimes	known	as	b-metallic	

phosphorus,	however	BP	is	actually	a	semiconductor,	with	a	small	yet	distinct	band	gap	of	0.3	eV.6’7	

Grey	Phosphorus,	GP	is	obtained	from	black	Phosphorus	under	high	pressures,	around	5	GPa,	and	is	the	

only	 truly	metallic	 allotrope	of	 phosphorus,	 having	 no	 band	 gap.9	 GP	 is,	 however,	 an	 example	 of	 a	

“poor”	or	“bad-metal”,	in	that	it	has	a	very	low	density	of	states	about	the	Fermi	level,	and	thus	a	small	

number	of	charge	carriers	involved	in	conduction.	Grey	phosphorus	is	isostructural	with	the	a-phase	

crystal	 structure	 of	 arsenic,	 and	 consists	 of	 Van	 der	Waals	 bound	 layers	 of	 distorted	 graphene-like	

sheets,	as	in	black	phosphorus,	though	with	a	different	topology.17	
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Violet	 Phosphorus,	 VP,	 the	 final	 exotic	 phase	 of	 phosphorus,	 sometimes	 referred	 to	 as	 Hittorf’s	

Phosphorus	after	its	discoverer,	is	obtained	from	red	phosphorus	at	elevated	temperatures.	Also	known	

as	a-metallic	phosphorus,	again	due	to	its	small	band	gap.	It	has	gained	interest	in	recent	years	as	a	

potential	2D	material	with	novel	properties.18	

4.1.2	–	OBJECTIVES	

Black	 phosphorus	 is	 known	 to	 undergo	 a	 phase	 transition	 at	 around	 5	 GPa,	 resulting	 in	 the	 GP	

structure.9,16	Previous	work	by	Boulfelfel	et	al.	proved	that	this	phase	transition	could	be	modelled,	and	

highlighted	the	effect	of	lone	pairs	on	the	bonding	of	the	structural	intermediates.	A	structural	map	of	

this	phase	transition	presented	a	unique	opportunity	to	probe	several	questions:	

	

i) What	is	the	effect	of	pressure	on	the	thermoelectric	properties	of	a	2D	layered	material,	

such	as	Black	Phosphorus?	

	

ii) What	is	the	effect	of	critical	phenomena	on	the	thermoelectric	properties	of	phosphorus	

intermediates?	

	

iii) Does	 the	 structural	 phase	 transition	 occur	 simultaneously	 with	 an	 electronic	 phase	

transition?		

	

The	third	point	is	an	interesting	topic,	the	structural	phase	transition	is	known	to	occur	at	5	GPa,	and	

this	transition	is	visually	obvious	to	the	computational	chemist.	Moreover,	since	black	phosphorus	is	a	

semiconductor	and	grey	phosphorus	is	a	metal,	of	interest	to	the	theoretical	physicist	is	the	coinciding	

electronic	phase	transition.	The	hypothesis	for	this	third	point,	was	that	the	electronic	phase	transition	

occurred	at	a	lower	pressure	than	the	structural	phase	transition,	i.e.	the	two	were	not	simultaneous.	

These	three	questions	form	the	basis	for	the	work	of	this	chapter.	
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4.2	–	BLACK	PHOSPHORUS	

Black	 phosphorus	 is	 a	 small	 band	 gap	 semiconductor,	 with	 a	 band	 gap	 of	 0.3	 eV	 reported	 in	 the	

literature.7,6	 As	 an	 initial	 step,	 the	 geometry	 was	 obtained,	 and	 optimised	 using	 DFT	 Plane	 Wave	

methods,	using	a	PBE	functional,	norm-conserving	pseudopotential,	k-grid	of	4	x	4	x	4,	energy	cut	off	

of	30	Ry,	and	the	BFGS	method	of	optimisation.19-22	The	electronic	structure	was	then	calculated	using	

the	same	methods,	with	a	finer	k-grid	of	12	x	12	x	12,	and	a	K-path	chosen	to	be	compatible	with	the	

space	group	according	to	the	work	of	Curtarolo	et	al.23	Figure	4.2	contains	the	calculated	electronic	

structure,	which	has	a	direct	band	gap	of	approximately	0.3	eV,	which	nicely	 fits	with	the	 literature	

value.	

	

Figure	4.2	–	The	band	structure	of	black	phosphorus,	calculated	using	quantum	espresso	plane	wave	code,	

a	12x12x12	k-grid	and	wavefunction	cutoff	of	30	Ry.	
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4.3	–	ELECTRONIC	TRANSPORT	IN	BLACK	PHOSPHORUS	THIN	FILMS	

Before	working	with	bulk	black	phosphorus,	a	series	of	thin-film	nanowires	were	created	and	used	to	

model	 transport	 in	 single	 layered	phosphorene.	 Each	nanowire	was	built	 from	a	principle	 layer,	PL,	

which	consists	of	a	supercell	of	5	x	5	unit	cells.	These	principle	layers	are	large	enough	such	that	there	

are	no	interactions	with	identical	atoms	at	distances	larger	than	2	principle	layers.	This	section	formed	

the	initial	work	of	the	PhD,	and	was	an	opportunity	to	gain	experience	with	the	DFTB_NEGF	software,	

as	well	as	transport	calculations,	before	building	up	to	the	bulk	and	then	self-consistent	calculations	

that	would	form	the	final	stage	of	the	project,	which	would	be	computationally	expensive.	

To	build	the	wire,	a	script	is	used	to	replicate	the	principle	layer	in	the	specified	direction,	structuring	

the	coordinate	file	such	that	the	first	portion	of	the	file	contains	the	data	of	the	device	region	of	the	

wire,	 while	 the	 second	 and	 third	 portions	 contain	 the	 atoms	 located	 within	 the	 source	 and	 drain	

respectively.	

	

	

Figure	4.3	–	Principle	layer	of	mono-layer	black	phosphorus.	The	coloured	arrows	indicate	each	of	three	

directions	within	the	materials,	along	the	corrugation	within	the	plane	(a),	across	the	corrugations	within	

the	plane	(b)	and	across	the	layers	within	the	bulk	materials	(c).	

Calculations	were	then	performed	for	two	BP	nanowires	constructed	by	replication	of	the	original	PL	in	

each	of	direction	a	and	b.	Calculations	were	performed	for	a	device	consisting	of	600	atoms,	and	within	

an	 energy	 range	 of	 -20	 to	 +10	 eV,	 with	 an	 energy	 step	 of	 0.01	 eV.	 Slater-koster	 files	 describing	

phosphorus-phosphorus	interactions	were	obtained,	and	used	to	perform	the	dftb-negf	calculation.31,32	

The	resulting	transmissions	were	plotted	as	a	function	of	energy	as	in	Figure	4.5.	The	nanowires	were	

considered	 to	be	 clusters,	 that	 is,	 nanocrystals	of	 finite	 size	 in	 free	 space,	with	no	applied	periodic	

boundary	conditions.	

	

c	

a	 b	
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Figure	4.4	–	Left:	A	nanowire	of	monolayer	black	phosphorus,	replicated	along	the	a	direction.	Right:	

Construction	of	the	device	as	required	by	the	DFTB_NEGF	code,	where	the	blue	and	red	sections	are	the	

source	and	drain	of	electrons	respectively,	whilst	the	yellow	middle	section	represents	the	device	regions,	

which	may	be	several	times	larger	for	later	calculations.	

	

Figure	4.5	–	Electronic	transmission	of	a	black	phosphorus	monolayer	nanowire.	The	effect	of	anisotropy	

can	clearly	be	seen	as	a	difference	in	transmission	and	band	gap.	Calculated	using	dftb-negf,	with	a	k-grid	

of	4x4x4.	

The	 most	 apparent	 difference	 in	 the	 transmission	 of	 each	 direction	 is	 that	 for	 direction	 a,	 the	

transmission	is	consistently	almost	twice	that	of	b.	This	is	an	effect	of	the	anisotropy	within	the	crystal	

structure,	or	more	specifically	the	lack	of	rotational	symmetry	describing	the	two	directions	within	an	

extended	lattice.	This	can	be	rationalised	by	considering	the	bonding	within	the	layer,	as	there	is	clearly	

more	 directional	 overlap	 between	 atomic	 orbitals	 in	a,	 whereas	 in	b,	 the	 corrugation	 introduces	 a	

nonlinear	bonding	 scheme,	which	may	perturb	 the	 transport	of	electrons	across	 the	 structure.	 It	 is	

interesting	to	note	however,	that	for	a	given	energy	value,	the	transmission	in	a	is	not	always	exactly	

twice	that	of	b.	Moreover,	the	band	gap	of	the	material	is	actually	direction	dependent,	and	here	we	

notice	that	the	band	gap	for	the	projection	along	the	corrugation	is	actually	slightly	narrower	than	that	
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of	the	perpendicular	case,	by	approximately	0.5	eV.	Another	important	observation	for	this	material,	is	

that	 the	 band	 gap	 of	 ~5	 eV	 is	 significantly	 larger	 than	 the	 experimentally	 determined	 bulk	 black	

phosphorus	band	gap	of	0.3	eV.	The	reason	for	this	is	two-fold:	the	band	gap	of	black	phosphorus	is	

directly	affected	by	 the	 interlayer	 spacing	as	will	be	demonstrated	 in	4.6,	whilst	DFTB	methods	are	

known	to	over-estimate	band	gaps.11	

	

	

Figure	4.6–	Representations	of	the	Mono-,	Bi-	and	Tri-layer	nanowires	of	black	phosphorus,	shown	here	

replicated	along	the	a	direction.	The	images	to	the	left	show	each	respective	nanowire	in	its	entirety,	the	

images	to	the	right	show	the	profile	along	which	the	transmission	was	calculated.	6	such	wires	were	

created,	to	model	transport	along	the	a	and	b	directions.	

Progressively	larger	systems	incorporating	additional	layers	of	black	phosphorus	were	created	to	model	

the	effect	of	increasing	device	thickness,	or	more	specifically,	the	effect	of	the	contribution	of	 inter-

layer	orbitals	to	the	electronic	transport	of	black	phosphorus	thin	films.		
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It	should	be	noted,	that	for	all	calculations	of	electronic	transport	in	this	chapter,	dispersion	correction	

was	not	included.	This	is	in	part	due	to	the	calculations	being	extrapolated	from	those	defined	in	the	

tutorial	for	the	dftb-negf	code,	which	did	not	include	a	dispersion	correction.	Additionally,	DFTB	does	

not	include	Van	der	Waals	interactions,	and	so	any	attempted	correction	is	purely	empirical,	requiring	

an	additional	set	of	parameters	which	had	not	been	acquired	for	this	work.	

	

Figure	4.7	–	Calculated	transmission	across	directions	a	and	b	for	the	black	phosphorus	bilayer.	Calculated	

using	dftb-negf,	with	a	k-grid	of	4x4x4.	

Transmission	was	calculated	in	each	direction	for	a	nanowire	of	bilayer	black	phosphorus	containing	

1200	atoms.	As	for	the	monolayer,	transmission	was	largely	greater	in	a	than	for	b.	The	band	gap	was	

again	slightly	larger	in	b.	Figure	4.8a	shows	the	calculated	transport	along	a	for	both	the	monolayer	and	

bilayer.	As	 expected,	with	 twice	 the	number	of	 available	orbitals,	 the	 transmission	of	 the	bilayer	 is	

almost	twice	that	of	the	monolayer.	However,	the	difference	is	not	exactly	a	factor	of	two,	and	we	can	

see	 from	 Figure	 4.8b	 and	 4.8c	 that	 by	 plotting	 the	 transmission	 of	 the	 monolayer	 versus	 the	

transmission	of	the	bilayer	over	2,	that	the	difference	(grey	line	in	Figure	4.68c)	is	non-zero.	This	is	due	

to	the	contribution	of	inter-layer	orbitals	towards	the	intra-layer	conductivities,	and	as	can	be	observed	

at	the	top	of	the	valence	band	in	Figure	4.8c,	the	contribution	of	these	states	close	to	the	Fermi	level	is	

significant.	
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Figure	4.8	–Calculated	transmissions	across	a	for	a)	both	the	monolayer	and	bilayer,	b)	the	monolayer	and	

the	transmission	of	the	bilayer	divided	by	2,	c)	as	in	b,	with	the	plotted	difference.	Calculated	using	dftb-

negf,	with	a	k-grid	of	4x4x4.	
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Figure	4.9	–	Calculated	transmissions	across	direction	a	and	b	for	a	nanowire	of	trilayer	black	phosphorus.	

Calculated	using	dftb-negf,	with	a	k-grid	of	4x4x4.	

As	we	approach	the	bulk,	we	notice	a	softening	of	the	step-function-like	features	of	the	transmission	

curves,	notably	in	the	case	of	figure	4.9,	wherein	the	same	trends	with	regards	to	anisotropy	hold	true.	

The	 band	 gap	 is	 smaller	 still,	 though	 still	 an	 order	 of	 magnitude	 larger	 than	 the	 experimentally	

determined	value	of	0.3	eV	for	bulk	black	phosphorus.		

	

Figure	4.10	–	Partial	density	of	states	of	Black	Phosphorus.	Calculated	using	dftb+,	code,	with	a	k-grid	of		

8x8x8.	
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The	structure	of	the	transmission	curves	can	be	understood	by	comparison	to	the	Partial	Density	Of	

States	(PDOS)	of	bulk	black	phosphorus.	As	seen	in	Figure	4.10,	the	lower	energy	orbitals	are	mostly	of	

s	orbital	character,	whereas	the	higher	energy	portion	of	the	graph	consists	of	p	orbital	character,	with	

the	p	orbitals	below	the	Fermi	level,	and	the	p*	orbitals	above.	From	this	comparison,	it	is	clear	that	

the	states	about	the	Fermi	level	of	the	transition	curves	correspond	to	the	contribution	of	p-orbitals	to	

the	 transmittance,	 and	 we	 shall	 see	 that	 it	 is	 the	 p-orbitals	 that	 dominate	 the	 description	 of	 the	

thermoelectric	properties	of	black	phosphorus	and	its	intermediates.	

The	 main	 difference	 between	 the	 transmission	 function	 and	 the	 density	 of	 states,	 is	 that	 the	

transmission	function,	𝑇 𝐸 ,	corresponds	to	the	rate	at	which	electrons	travel	across	the	device	region.	

𝑇 𝐸 	is	simply	a	coefficient	from	which	an	electric	current,	I,	may	be	derived,	from	knowledge	of	the	

dimensions	 of	 the	 nanowire.	 The	 density	 of	 states	 represents	 the	 number	 of	 electronic	 states,	 per	

energy	interval,	which	may	be	occupied.	The	higher	the	density	of	states	at	each	energy	interval,	the	

higher	the	electronic	transmission	function	for	the	same	energy	interval.	The	Fermi	level	is	in	the	same	

position,	or	should	be,	for	each	of	𝑇 𝐸 	and	DOS,	as	it	represents	the	interface	between	the	occupied	

and	unoccupied	electronic	states,	i.e.	it	is	the	energy	at	which	the	relevant	states	have	a	50%	probability	

of	being	occupied	at	any	 time.	This	position	 therefore,	 is	a	 function	of	 the	electronic	structure	of	a	

material,	and	independent	of	the	transmission	or	density	of	states.		
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4.4	–	ELECTRONIC	TRANSPORT	IN	BULK	BLACK	PHOSPHORUS	

Using	similar	methods,	the	electronic	transport	of	bulk	black	phosphorus	was	then	calculated,	using	a	

nanowire	consisting	of	4	atomic	layers,	and	3840	atoms	with	applied	periodic	boundary	conditions	in	

the	x	and	y	directions,	such	that	the	transmission	can	be	considered	to	be	across	a	semi-infinite	slab.		

	

	

Figure	4.11	–	An	example	of	a	bulk	device,	the	boldly	coloured	region	is	the	constructed	device,	the	transparent	

surrounding	region	represents	the	periodic	boundary	conditions	applied	within	the	calculation	for	bulk	systems.	

The	periodicity	is	applied	in	the	x	and	y	directions,	whereas	transport	is	calculated	along	z	(the	length).	The	red,	

yellow	and	blue	regions	illustrate	the	source,	device	and	drain	respectively.	

As	 can	be	 seen	 in	 Figure	4.12,	 the	 trends	 such	as	band	gap	 reducing,	 and	anisotropic	 transmission	

continue,	with	 the	 latter	 resulting	 in	 a	 third	 and	 final	 directionality	 to	 the	 bulk	 calculations,	 as	 the	

transmission	across	the	layers	(out	of	plane	transport)	is	now	possible.	Transmission	along	this	direction	

was	considered	to	be	meaningless	for	nanowires	systems,	as	the	weak	intermolecular	forces,	such	as	

Van	der	Waals	effects,	allow	for	exfoliation	of	the	“phosphorene”	sheets	that	make	up	the	structure.	

This	is	a	proven	method	of	preparing	thin	layers	of	graphene	and	phosphorene,	and	would	allow	for	

the	 synthesis	 of	 such	 nanowires	 with	 “in	 plane”	 transport	 properties.	 However,	 this	 also	 has	

consequences	for	the	practical	synthesis	of	nanowires	with	long	range	order	in	the	c	or	across	layers	

direction,	as	any	attempt	to	create	these	nanowires	would	likely	cleave	the	weakly	bound	layers.	As	

such,	study	of	electronic	transport	along	this	direction	has	previously	been	neglected.	
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As	 predicted,	 the	 out	 of	 plane	 transport	 is	 significantly	weaker	 than	 the	 in-plane,	 and	 this	 is	 again	

rationalised	by	the	weaker	orbital	overlap	between	layers.	As	we	have	seen	previously,	the	lone	pair	

orbitals	responsible	for	the	inter-layer	bonding	also	contribute	to	the	intra-layer	transmission,	and	so	

it	is	in	the	bulk	that	these	contributions	are	at	their	maximum.	

	

Figure	4.12	–	Calculated	transmission	of	bulk	black	phosphorus.	Direction	C	is	the	previously	uncalculated	

across	layer	transmission,	and	is	notable	weaker	than	the	in-plane	transmission.	Calculated	using	dftb-

negf,	with	a	k-grid	of	4x4x4.	

One	important	observation	from	figure	4.12,	is	that	whilst	the	transmission	along	c	is	clearly	weakest	

in	general	across	the	whole	energy	range,	the	contribution	at	the	bottom	of	the	conducting	band	is	the	

largest,	which	would	 lead	to	 interesting	effects,	as	we	shall	see	 in	4.6.2.1.	Here	however,	the	Fermi	

energy	is	clearly	closer	to	the	edge	of	the	valence	band,	and	so	one	would	expect	the	transmission	of	

the	intra-layer	directions	to	dominate	the	electronic	properties	of	this	model	of	black	phosphorus.	

With	 the	 calculated	 anisotropic	 electronic	 transmission	 of	 black	 phosphorus,	 the	 thermoelectric	

properties	may	now	be	derived,	according	to	the	Landauer-Büttiker	formalism,	wherein	the	electronic	

conductivity	is	obtained	directly	from	the	transmission	and	volume	of	the	device	region.	The	Seebeck	

coefficient	is	obtained	from	the	transmission	and	conductivity,	and	is	independent	of	the	volume,	while	

the	electronic	contribution	to	the	thermal	conductivity	is	dependent	on	each	of	the	prior	coefficients	

and	is	again	derived	from	the	conductance	and	the	volume	of	the	device	region.	Figure	4.13	shows	the	

calculated	temperature	dependent	thermoelectric	properties	of	black	phosphorus.	
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Immediately	apparent,	 is	that	both	the	electronic	conductivity,	s,	and	the	electronic	contribution	to	

thermal	conductivity,	ke,	are	rather	small	compared	to	the	values	often	reported	in	the	literature	for	

the	 state-of-the-art	 in	 thermoelectric	materials.24	 This	 is	 to	 be	 expected,	 as	 black	 phosphorus	 is	 a	

semiconductor,	thus	the	conductivity	can	be	defined	as	a	function	of	the	band	gap	and	the	width	of	the	

first	derivative	of	the	Fermi	function,	which	is	temperature	dependent.	As	such,	one	would	expect	the	

conductivity	to	scale	exponentially	with	temperature,	at	least	in	the	absence	of	scattering	mechanisms	

such	as	electron-phonon	coupling,	which	was	not	accounted	for	in	this	study	and	so	would	be	a	prime	

candidate	for	further	study.		As	DFTB	methods	are	widely	known	to	overestimate	band	gaps,	the	band	

gap	 of	 black	 phosphorus	 in	 this	 model	 is	 notably	 larger	 than	 that	 expected	 from	 both	 theoretical	

calculations	 and	 experimental	 evidence.	 Therefore,	 the	 conductivity	 and	 electronic	 thermal	

conductivity	are	lower	than	expected.	

Conversely,	 due	 to	 the	 inversely	 proportional	 relationship	 between	 conductivity	 and	 Seebeck	

coefficient,	the	Seebeck	coefficient	is	an	order	of	magnitude	larger	than	that	commonly	reported	in	the	

literature	for	high-performance	systems.	This	is	attributed	to	the	reduced	carrier	mobility	in	the	large	

band	gap	model	of	black	phosphorus.	As	the	Seebeck	coefficient	 is	 large,	the	power	factor,	which	is	

proportional	 to	 the	 square	 of	 the	 Seebeck	 coefficient,	 would	 be	 expected	 to	 be	 rather	 large	 also.	

However,	since	the	electronic	conductivity	is	approximately	3	to	4	orders	of	magnitude	lower	than	for	

reported	 thermoelectric	 systems,	 the	 power	 factor	 is	 clearly	 dominated	 by	 the	 poor	 electronic	

conductivity	in	this	system,	as	can	be	seen	from	the	positive	exponential	nature	of	the	power	factor	in	

figure	4.13.		

The	 electronic	 contribution	 to	 the	 thermal	 conductivity	 is	 also	 significantly	 smaller	 than	 would	 be	

expected,	as	the	thermal	transport	phenomena	of	this	contribution	necessitate	the	flow	of	electrons	

as	carriers	of	kinetic	energy;	the	magnitude	of	which	is	clearly	weak	in	this	system.	Consequently,	the	

zTe	reported	in	figure	4.13	is	unexpectedly	large	for	black	phosphorus.		
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Figure	4.13	–	The	thermoelectric	properties	of	black	phosphorus.	Top	left:	electronic	transmission	

spectrum	of	black	phosphorus.	Each	of	the	following	thermoelectric	coefficients	is	derived	exclusively	from	

this	transmission,	in	accordance	with	the	Landauer-Büttiker	Formalism.	Top	right:	electronic	conductivity,	

middle	left:	Seebeck	coefficient,	middle	right	electronic	contribution	to	thermal	conductivity,	bottom	left:	

power	factor,	bottom	right	calculated	zTe.	Transmission	calculated	using	dftb-negf,	with	a	k-grid	of	4x4x4.	

Thermoelectric	coefficients	derived	using	program	(see	section	3.5),	each	series	contains	6000	points.	
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To	explain	this	high	zTe,	we	must	once	again	appreciate	that	in	this	model,	electronic	structure	describes	

black	phosphorus	as	a	 large	band	gap	semiconductor.	Thus,	the	thermoelectric	properties	would	be	

expected	to	reach	their	respective	optima	at	higher	temperatures.	zTe	is	the	electronic	figure	of	merit,	

and	is	therefore	highly	band	gap	sensitive;	it	does	not	consider	the	contribution	of	the	lattice	phonons,	

kl,	to	the	total	thermal	conductivity	of	the	system,	k	or	ktot.	For	a	large	band	gap	semiconductor,	the	

thermal	conductivity	of	the	electrons	is	significantly	lower	than	the	average	reported	in	the	literature,	

by	several	orders	of	magnitude,	while	the	reported	values	of	kl	are	rather	large,	of	the	order	of	102	W	

m-1	K-1.	The	predicted	zT	would	therefore	be	expected	to	be	5	orders	of	magnitude	lower	than	the	zTe	

for	pure,	undoped	bulk	black	phosphorus,	i.e.	of	the	order	of	10-3	for	this	system.	This	is	now	lower	than	

expected,	and	the	rational	is	that	the	large	band	gap	yields	such	a	poor	power	factor,	of	the	order	of	

10-6	 rather	 than	 10-4	W	m-1	 K-2.	 This	 would	 therefore	 give	 a	 zT	 of	 the	 order	 of	 10-1,	 which	 seems	

reasonable	for	black	phosphorus.	

Interesting	 to	 note	 is	 the	 effect	 of	 anisotropy	 in	 the	 transmission	 spectrum	 on	 the	 thermoelectric	

properties.	We	have	seen	that	the	transmission	along	c	is	lower	on	average	than	that	of	the	intra-layer	

transmissions,	however,	the	electronic	conductivity	of	direction	c	is	higher	than	that	of	b.	This	can	be	

explained	 by	 noting	 that	 the	 transmission	 across	 c	 is	 marginally	 higher	 than	 that	 across	 b	 in	 the	

immediate	area	of	the	valence	band	edge.	

Interestingly,	the	anisotropy	manifests	within	the	Seebeck	coefficient	at	lower	temperatures,	as	being	

distinctly	lower	for	c	than	both	a	and	b.	This	is	an	effect	of	the	gradient	of	the	transmission	about	the	

Fermi	level.	Importantly,	while	the	shape	of	the	conductivity	defines	the	shape	of	the	power	factor,	it	

is	the	Seebeck	coefficient	which	impacts	the	shape	of	the	zTe	curve,	and	this	is	due	to	the	nature	of	the	

s	 /	 ke	 term	 in	 the	 figure	 of	 merit.	 Effectively,	 the	 exponents	 cancel	 negate	 one	 another,	 and	 the	

contribution	of	this	term	is	then	the	linear	relationship	between	the	ratio	of	s	:	ke.	
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4.5	–	EFFECT	OF	PRESSURE	ON	THE	BAND	STRUCTURE	OF	BLACK	
PHOSPHORUS	

As	seen	in	the	previous	section,	the	band	gap	of	~2.5	eV	attained	for	the	bulk	black	phosphorus	was	up	

to	an	order	of	magnitude	larger	than	the	expected	band	gap	of	0.3	eV	–	1.5	eV	from	experimental	work	

and	previous	calculations	 in	 the	 literature.6,7	 It	was	determined	that	 the	parameter	set	used	by	 the	

DFTB	 code	may	 not	 properly	 describe	 the	 effect	 of	 Van	 der	Waals	 bonding	 between	 phosphorene	

layers,	thus	overestimating	the	band	gap.	This	is	justified	by	the	published	band	gap	of	1.5	–	2.5	eV	for	

atomically	thin	films	of	phosphorene	by	both	theory	and	experiment,	suggesting	that	the	layers	in	our	

black	phosphorus	system	were	not	close	enough	to	be	strongly	interacting.		

To	 investigate	whether	 this	band	gap	could	be	reduced	as	a	 function	of	 the	 inter-layer	spacing,	 the	

following	study	was	performed	on	frozen	structures	based	on	DFT	optimised	black	phosphorus,	with	

progressively	smaller	inter-layer	gaps.	As	the	DFTB	parameters	obtained	evidently	describe	the	inter-

layer	interactions	somewhat	poorly,	it	was	decided	that	since	the	geometry	had	been	optimised,	the	

covalent	bonding	within	the	layers	was	likely	described	well,	since	the	band	gap	and	band	structure	are	

comparable	to	those	for	thin	films	of	black	phosphorus.	As	such,	an	 investigation	 into	the	effects	of	

reducing	 the	 inter	 layer	 spacing	was	undertaken,	 to	 study	 the	effect	of	anisotropic	pressure	on	 the	

electronic	structure	of	the	system.	

	

Figure	4.14	–	The	effect	of	compression	in	the	c-axis	on	the	DFT	optimised	black	phosphorus	structure.	The	

“phosphorene	layers”	are	treated	as	static	sheets,	and	the	inter-layer	spacing	is	reduced	in	a	coarse	

attempt	to	account	for	the	poorly	described	molecular	forces	in	the	DFTB	parameters	for	phosphorus.	
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As	shown	in	Figure	4.15	the	band	gap	decreases	with	the	inter	layer	spacing,	until	the	gap	approaches	

that	of	the	experimental	literature,	at	a	spacing	of	2.00	Å.	The	first	reduction	of	the	band	gap	results	in	

little	change	in	the	magnitude	of	the	band	gap,	the	main	feature	of	this	step	is	the	lifted	degeneracy	of	

the	 conductance	 band	 at	 G,	 where	 the	 valence	 band	 has	 become	 partially	 degenerate.	 For	 each	

additional	decrease,	the	degeneracy	decreases	for	all	bands	within	the	vicinity	of	the	Fermi	level,	and	

eventually	the	bands	“kiss”	at	a	spacing	of	1.994	Å	resulting	in	a	metallic	system.		

Taking	the	band	spectra	and	structure	of	figure	4.15c,	we	see	that	the	band	gap	is	a	more	acceptable	

0.5	eV,	whilst	the	electronic	structure	is	arguably	comparable	to	that	of	black	phosphorus	obtained	by	

a	DFT	level	of	theory.	This	structure	was	then	termed	Compressed	Black	Phosphorus,	CBP,	and	used	in	

the	next	stage	of	study.	The	transmission	spectrum	of	compressed	black	phosphorus	is	plotted	in	figure	

4.16,	and	we	see	that	the	band	gap	of	the	electronic	structure	is	observed	in	the	transmission	in	its	

strictest	sense,	though	the	gradient	at	the	band	edges	is	rather	shallow,	which	is	likely	due	to	the	diffuse	

nature	of	the	bands	in	the	compressed	band	structure.	

The	energy	range	for	the	calculation	was	kept	deliberately	small,	so	that	only	the	window	about	the	

Fermi	 level	 is	 considered.	 As	 in	 section	 3.8,	 the	 temperature	 dependent	 equations	 for	 the	

thermoelectric	coefficients	are	heavily	restricted	by	the	first	derivative	of	the	Fermi	function,	meaning	

that	a	full	calculation	of	the	transmission	for	all	valence	orbitals	is	not	necessary	to	attain	a	meaningful	

zTe	for	the	material,	which	is	the	goal	of	this	section.	

One	immediate	observation	is	that	the	compression	in	the	c-axis	has	perturbed	the	effect	of	anisotropy	

on	the	transmission	spectrum.	While	in	Figure	4.12	the	largest	transmission	in	bulk	black	phosphorus	

is	obtained	along	the	corrugation	of	the	material,	henceforth	known	as	direction	a,	for	the	compressed	

black	phosphorus	the	distinction	is	not	so	apparent.	In	fact,	here	the	transmission	in	each	direction	is	

almost	equivalent	for	the	unoccupied	conductance	band	to	the	right	of	the	band	gap,	whereas	for	the	

valence	band	 to	 the	 left	of	 the	band	gap,	direction	a	and	b	offer	 similar	 transmittance.	Direction	c,	

formerly	 across	 the	 layers,	 has	 overtaken	 direction	 a	 as	 the	 highest	 transmitting.	 This	 obviously	

introduces	a	small	flaw	into	the	compressed	model	of	black	phosphorus,	and	steps	would	need	to	be	

taken	to	ensure	that	any	spurious	result	as	a	consequence	of	this	would	be	accounted	for.	
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Figure	4.15	–	The	effect	of	reduced	inter-layer	distance	on	the	band	gap	of	black	phosphorus.	The	band	

gap	is	demonstrably	tuneable	by	the	interlayer	distance,	and	this	methodology	was	used	to	achieve	the	

Compressed	Black	Phosphorus,	CBP.	Interlayer	spacing	is	in	Angstroms,	Å.	Calculated	using	dftb+,	with	a	

12x12x12	k-grid.	
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This	 simple	 study	 allowed	 for	 the	 investigation	 of	 the	 effects	 of	 anisotropic	 pressure	 on	 black	

phosphorus,	 and	 whilst	 it	 may	 be	 considered	 a	 rather	 coarse	 approach,	 the	 literature	 appears	 to	

support	the	notion	that	the	band	gap	of	black	phosphorus	is	tuneable	by	the	inter-layer	spacing,	and	

that	 under	 isotropic	 pressure,	 it	 is	 the	 c	 axis	 that	 experiences	 the	most	 dramatic	 alteration	 at	 low	

pressures.	This	can	be	conceptualised	by	considering	the	inter-layer	bonding	to	be	“soft”	compared	to	

the	“hard”	covalent	intra-layer	bonding	scheme,	though	it	should	be	noted	that	the	large	compression	

in	 c	 observed	 in	 this	 investigation	 is	 not	 representative	 of	 the	 forces	 involved	 in	 the	 DFT	 derived	

structure.	 This	 is	 due	 to	 the	 DFTB	 parameters	 obtained	 for	 phosphorus	 apparently	 describing	 the	

covalent	interactions	well,	and	the	Van	der	Waals	forces	poorly.	

Figure	4.16	–	Transmission	Spectrum	of	the	new	“Compressed”	Black	Phosphorus,	CBP.	Calculated	using	

dftb-negf,	with	a	k-grid	of	4x4x4.	
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4.6	–	HIGH	PRESSURE	PHASE	TRANSITIONS	–	THE	EFFECT	OF	
PRESSURE	ON	THERMOELECTRICITY	

So	 far,	we	have	 seen	 the	use	of	DFTB	methods	 and	 the	 Landauer-Büttiker	 formalism	 to	 derive	 the	

thermoelectric	 properties	 of	 black	 phosphorus,	 along	with	 a	 simple	 investigation	 into	 the	 effect	 of	

pressure	 on	 its	 electronic	 structure.	 This	 simple	 study	 indicated	 that	 in	 an	 isolated	 system,	 with	

anisotropic	 pressure	 and	 ignorance	 of	 the	 structural	 rearrangements	 and	 possible	 structural	 phase	

transitions,	one	may	observe	an	electronic	phase	transition	at	high	pressures.	We	have	seen,	that	this	

methodology	is	computationally	demanding	and	expensive.	The	work	until	now	had	been	carried	out	

with	 the	express	 intention	of	 utilising	 the	 key	 feature	of	 this	methodology,	 the	 ability	 to	 efficiently	

calculate	 transport	 properties	 for	 a	 system	of	 thousands	 of	 atoms,	 so	 as	 to	model	 the	 asymmetric	

systems	which	occur	along	the	transition	pathway	of	the	structural	phase	transition.	This	subchapter	

introduces	 the	 novel	 concepts	 used	 to	 model	 these	 properties,	 and	 investigates	 the	 impact	 of	

coinciding	structural	and	electronic	phase	transitions	on	the	thermoelectric	properties	of	phosphorus	

materials.	

	

4.6.1	–	PHASE	TRANSITIONS	IN	BLACK	PHOSPHORUS	

As	we	have	 seen,	black	phosphorus	 is	 known	 to	undergo	a	phase	 transition	at	5	GPa,	adopting	 the	

geometry	 of	 a-Arsenic,	 and	 this	 phase	 is	 referred	 to	 as	 Grey	 Phosphorus,	 GP.9,16,25	 It	 has	 been	

demonstrated	 that	 pressure	 can	 significantly	 affect	 the	 electronic	 structure	 of	 black	 phosphorus.	

Topological	 defects,	 such	 as	 grain	 boundaries	 or	 dislocations	 are	 known	 to	 be	 beneficial	 in	 many	

thermoelectric	materials,	as	a	means	of	controlling	thermal	transport	properties	by	scattering	phonons.	

During	the	phase	transition,	the	start	and	end	points,	i.e.	black	phosphorus	and	grey	phosphorus,	are	

highly	 symmetric	 crystalline	 structures.	 However,	 the	 phase	 transition	 is	 known	 to	 process	 along	 a	

pathway	that	forces	the	system	to	adopt	several	metastable,	asymmetric	intermediates.9	

The	key	concept	for	the	next	subchapter,	was	the	hypothesis	that	a	large,	asymmetric	system	may	act	

as	a	phonon	glass,	yet	if	the	electronic	structure	could	remain	semiconducting,	it	could	be	considered	

to	obey	the	phonon-glass	electron-crystal	concept	of	Slack.1,26,27		

The	concept	of	critical	phenomena,	where	the	electron-phonon	coupling	results	in	significant	increases	

in	 thermoelectric	 properties,	 is	 a	 legitimate	means	 of	 affecting	 the	 thermoelectric	 figure	 of	merit,	

zT.28,29	additionally,	the	effect	of	a	structural	phase	change	has	been	shown	to	be	beneficial	to	the	zT	

of	SnSe.30	With	this	in	mind,	the	rich	phase	space	of	the	BP	to	GP	phase	transition	began	to	unfold,	as	
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both	an	electronic	and	structural	phase	change	were	known	to	occur	simultaneously.	If	the	electronic	

and	 structural	 phase	 transitions	 could	be	uncoupled,	 is	 there	 scope	 for	 an	 asymmetric	 phosphorus	

material,	with	perturbed	thermal	transport	and	a	larger	power	factor	to	be	realised?	The	middle	image	

of	figure	4.17	illustrates	the	sought	material.	

	

	

Figure	4.17–	Graphic	representation	of	the	high-pressure	phase	transition	of	black	phosphorus.	Left:	black	

phosphorus,	middle:	highly	symmetric	intermediate,	right:	grey	phosphorus.	N.B.	this	image	is	a	purely	

illustrative,	and	is	not	to	scale.	

Initially,	to	test	the	method,	a	frame	from	an	arbitrary	point	in	the	BP	–	GP	phase	transition	was	taken,	

in	the	form	of	Cartesian	coordinates.	This	geometry	was	then	orthogonalised,	as	variable	cell	conditions	

had	been	allowed	(and	necessary)	 for	 the	Transition	Path	Sampling	 (TPS)	simulation	 in	which	 it	was	

generated.	The	Non	Equilibrium	Green’s	Functions	formalism	as	implemented	in	the	DFTB	methodology	

calculates	transport	explicitly	in	whichever	arbitrary	direction	is	set	to	z,	and	so	one	of	the	requirements	

of	a	“wire”	built	 for	 the	code	 is	 that	 it	must	be	orthonormal.	With	this	cell	symmetry	enforced,	 the	

structure	was	then	optimised	by	performing	a	CG	relaxation,	and	enforcing	symmetry.	This	resulted	in	

the	highly	symmetric	Intermediate	Phosphorus	1,	IP1,	which	is	shown	in	figure	4.18	top	middle,	and	

which	is	clearly	similar	to	the	theorised	intermediate	represented	by	Figure	4.17,	in	that	it	has	mostly	

BP	geometry,	with	several	channels	of	bonds	formed	across	the	BP	layers.		

Due	to	the	variable	cell	conditions	of	the	previous	work	that	these	structures	had	been	generated	

from,	it	was	necessary	to	“enforce”	orthogonality	on	the	phosphorus	intermediates	of	this	chapter.	

For	IP1,	this	was	achieved	by	the	aforementioned	“aggressive	optimisation”,	wherein	each	of	the	6	

minor	(<10%	of	alat)	values	in	the	cell	matrix	specifying	the	cell	vectors	were	set	to	zero,	leaving	3	

orthogonal	cell	vectors.	This	geometry	was	then	re-optimised,	using	variable-volume	but	fixed-angle	

cell	conditions,	yielding	IP1.	This	resulted	in	a	geometry	that	had	been	forcibly	achieved,	which	is	

believed	to	be	the	reason	for	the	semi-metallic	nature	of	the	transmission	of	IP1.	

	

	



	

	

76	

To	determine	the	electronic	structure	of	the	materials	of	interest	so	far,	we	had	used	band	spectra	and	

density	of	states.	Both,	calculations	are	routine	and	somewhat	trivial	for	the	case	of	unit	cells	with	less	

that	10	atoms,	however,	the	unit	cell	describing	the	IP1	structure	contained	144	atoms,	and	despite	

being	somewhat	symmetric,	it	was	deemed	too	large	to	calculate	a	full	band	spectrum	for	this	material.	

This	was	due	to	the	computational	expense	of	calculating	a	band	structure	with	a	fine	k-point	sampling	

(at	least	an	8x8x8	grid),	and	576	orbitals	(144	atoms	x	one	2s	and	three	2p	orbitals).	Therefore,	for	the	

large	systems	in	the	rest	of	this	chapter,	it	was	deemed	acceptable	to	derive	the	band	gap	from	the	

calculated	density	of	states.		

Upon	calculating	the	density	of	states,	intermediate	phosphorus	1	was	found	to	be	metallic,	with	no	

band	gap,	(see	Figure	4.19	top	right	DOS	of	IP1).	This	was	not	unexpected,	as	it	was	hypothesised	that	

the	 electronic	 phase	 transition	would	occur	 during	 the	 structural	 phase	 transition,	 however,	 it	was	

hoped	that	there	would	be	an	intermediate	which	could	be	metastable,	with	a	small	yet	distinct	band	

gap.	This	is	due	to	the	belief	by	the	thermoelectric	community	that	a	metal	makes	a	poor	thermoelectric	

material,	 as	 the	 electronic	 conductivity	 is	 high,	 though	 the	 Seebeck	 coefficient	 suffers	 as	 a	 direct	

consequence,	and	the	thermal	conductivity	would	be	expected	to	be	detrimentally	high.		

As	such,	3	more	 frames	were	taken	 from	the	transition	pathway,	at	evenly	spaced	points	along	the	

structural	phase	transition	trajectory	obtained	in	previous	work	by	Leoni	et	al.,	and	were	also	optimised	

and	orthogonalised.6	This	was	achieved	in	a	“gentle”	fashion,	by	allowing	the	atomic	positions	to	relax	

between	subsequent,	minor	alterations	to	the	angles	of	the	unit	cell,	resulting	in	3	orthorhombic	cells	

with	increasing	grey	phosphorus	character.	

For	IP2,	IP3,	and	IP4,	this	issue	caused	by	the	“aggressive	optimisation”	was	addressed	via	the	

aforementioned	“gentler	optimisation”.	This	entailed	a	series	of	consecutive	optimisations,	wherein	

each	of	the	minor	values	of	the	cell	matrix	were	reduced,	in	turn,	by	20%	and	re-optimised	under	

variable-volume,	fix-angle	conditions	before	further	reduction,	until	the	cell	was	orthorhombic.	This	is	

believed	to	be	the	cause	of	the	dissimilarity	between	the	transition	spectra	of	IP1,	and	the	set	of	IP2-

4.		
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Intermediate	2	(See	figure	4.18,	top	right)	is	unique	in	that	it	has	3	dimensional	disorder.	As	can	be	seen	

from	the	other	structures,	all	others	have	domains	of	black	and	grey	phosphorus	within	them,	along	

one	direction	(left	to	right	in	this	image).	The	domains	are	planar,	and	the	material	is	periodic	in	the	x	

and	y	directions	(here,	up	and	down,	and	through	the	plan	of	the	page).	For	IP2,	there	is	bond	formation	

and	breakage	in	each	direction,	although	each	atom	has	the	same	coordination	and	hybridisation	as	

each	atom	in	pure	black	or	grey	phosphorus.	In	fact,	this	geometry	strongly	resembles	that	predicted	

by	Wang	et	al.,	otherwise	known	as	Phosphorus	K4.33	

Figure	4.18	–	Optimised	and	orthogonalised	structures	from	the	pressure	induced	phase	transition	of	black	

phosphorus.	Top	left:	Black	Phosphorus,	top	middle:	IP1,	top	right:	IP2,	bottom	left:	IP3,	bottom	middle:	

IP4,	bottom	right:	Grey	Phosphorus.6	

Intermediate	Phosphorus	3	and	4	both	have	clear	domains	of	BP	and	GP,	with	IP3	possessing	larger	BP	

domains.	Both	structures	have	a	truly	unique	disrupted	quasi-planar	geometry	of	stacked	phosphorene	

derived	sheets,	with	IP4	having	a	largely	folded	geometry,	which	looks	to	reduce	a	degree	of	freedom	

in	the	dislocation	of	the	phosphorene	sheets.	

Density	of	states	calculations	were	performed	for	each	of	the	six	structures	using	DFTB	methods,	the	

results	 of	which	 are	 presented	 in	 Figure	 4.19.	 Each	DOS	 has	 been	 scaled	 by	 the	 number	 of	 atoms	

present	 in	the	unit	cell	of	the	calculation	to	yield	comparable	densities.	This	was	to	account	for	the	

number	of	atoms	required	to	model	the	unit	cell	of	each	phosphorus	intermediate	(576	atoms	each	for	

IP2,	3	&4),	which	was	largely	due	to	the	lack	of	symmetry.	
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As	can	be	seen,	the	Compressed	black	phosphorus	has	the	most	“black	phosphorus-like”	shape,	which	

is	 clearly	 comparable	 to	 the	 DOS	 of	 bulk	 black	 phosphorus	with	 no	 compression	 (see	 figure	 4.10).	

Intermediate	phosphorus	1	has	the	most	striking	shape,	in	that	it	appears	“noisy”,	and	that	it	is	metallic,	

with	a	minimum	DOS	off-centre	from	the	Fermi	level.	For	IP2,	IP3	and	IP4,	the	zero	density,	or	minimal	

density	occurs	at	the	Fermi	level,	as	with	grey	phosphorus.	As	the	structure	becomes	more	GP-like,	the	

DOS	flattens	and	widens,	with	less	sharp	features.	Also	of	interest,	for	IP2,	IP3	and	IP4,	the	right-hand	

lobe	of	the	3s	orbitals	has	two	distinct	maxima,	whereas	BP	and	GP	have	only	one.	

IP1	is	clearly	a	unique	case,	and	this	is	rationalised	as	being	an	artefact	of	the	methods	used	to	optimise	

the	structure.	Ignoring	IP1,	as	the	trajectory	moves	from	BP	to	IP2	through	IP4	and	then	to	GP,	the	band	

gap	visibly	reduces,	up	to	a	point	in	IP4	where	it	is	at	its	minimum:	there	is	a	node	in	the	density	at	the	

Fermi	energy,	and	the	gap	is	of	the	order	of	1x10-2	eV.	

	

	

Table	4.1	–	the	trend	data	from	the	BP	to	GP	phase	transition.	Note	the	increasing	Fermi	energy	and	

decreasing	volume	per	atom.	

	

Fermi	Energy
au pa au per	atom eV

CBP 7.07E-04 2.08E+10 4.53E+04 1.41E+02 320 -3.71E+00
IP1 1.27E-03 3.72E+10 1.76E+04 1.22E+02 144 -3.34E+00
IP2 1.42E-03 4.17E+10 6.97E+04 1.21E+02 576 -2.65E+00
IP3 8.36E-04 2.46E+10 6.97E+04 1.21E+02 576 -2.34E+00
IP4 1.41E-03 4.15E+10 6.97E+04 1.21E+02 576 -2.07E+00
GP 3.10E-03 9.11E+10 3.72E+04 1.03E+02 360 -1.57E+00

Pressure Volume Number	of	
Atoms

Structure
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Figure	4.19	–	Density	of	states	for	black	phosphorus,	grey	phosphorus,	and	each	structural	intermediate	

along	the	transition	pathway.	Each	DOS	has	been	normalised	to	account	for	the	differing	number	of	atoms	

in	each	calculation.	As	such,	the	DOS	presented	is	the	effective	DOS	for	a	single	atom.	Calculated	using	

dftb+	code,	with	a	12x12x12	k-grid	for	CBP	&	GP,	and	an	8x8x8	kgrid	for	IP1,	IP2,	IP3	&	IP4	due	to	size	

constraints.	
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Table	4.1	shows	the	data	from	each	structure	within	the	phase	transition,	and	some	interesting	trends	

are	observed.	First,	the	volume	per	atom	of	GP	with	respect	to	the	BP	geometry	is	significantly	less,	

reduced	by	almost	a	third.	The	volume	per	atom	for	each	of	the	intermediates	falls	roughly	halfway	

between	the	two,	which	is	unsurprising	considering	each	contains	approximately	half	BP	domains,	half	

GP	domains.	This	reduction	in	volume	is	likely	part	of	the	driving	force	for	the	atomic	rearrangement	at	

high	temperatures,	and	is	 largely	due	to	the	reduced	spacing	between	layers	 in	the	GP	structure.	 In	

fact,	both	BP	and	GP	geometries	may	be	thought	of	as	“distorted	rock	salt”	structures,	in	the	sense	that	

both	can	be	modelled	from	cleaving	the	rock	salt	structure	in	either	the	100	or	110	plane.	As	a	matter	

of	fact,	cubic	phosphorus	is	predicted	to	exist	at	pressures	greater	than	10	GPa.	

Another	interesting	trend	is	the	increase	in	Fermi	energy	as	the	transition	trajectory	moves	from	BP	to	

GP.	This	is	likely	due	to	the	“spreading”	of	the	density	of	states,	and	the	rise	in	energy	of	the	valence	

orbitals	associated	with	reduced	atomic	spacing.	The	pressure	has	a	similar	trend	in	that	it	increases	

along	the	trajectory,	although	that	of	IP3	appears	somewhat	anomalous.	This	pressure	was	calculated	

during	the	optimisation	of	each	geometry	by	DFT	methods.	

Figure	 4.20	 contains	 the	 electronic	 transmission	 spectra	 for	 compressed	 black	 phosphorus,	 grey	

phosphorus,	and	each	of	the	4	intermediates.	As	for	the	density	of	states,	we	see	a	clear	reduction	in	

the	band	gap	as	the	transition	progresses,	and	a	softening	of	the	gradient	of	the	transmission	at	the	

band	edges,	which	are	steep	in	the	transmission	of	black	phosphorus	and	progressively	shallower	in	the	

intermediates	 (again	 excluding	 IP1).As	 noted	 in	 sections	 4.1.1	 and	 4.2,	 the	 band	 gap	 of	 bulk	 black	

phosphorus	 is	experimentally	determined	to	be	0.3	eV.	7,6	we	have	overestimated	the	band	gap,	as	

addressed	 in	 section	 4.5,	 which	 has	 been	 compensated	 for	 by	 alteration	 of	 the	 structure	 of	 Black	

phosphorus,	yielding	compressed	black	phosphorus,	used	 in	Figure	4.20.	We	note	that	at	 the	Fermi	

level,	the	transmission	along	each	direction	is	largely	similar,	and	that	of	direction	c	is	in	fact	the	largest	

for	CBP,	IP3	and	IP4.	This	is	thought	to	be	due	to	the	compression	greatly	affecting	axis	c	and	introducing	

bonding	channels	along	this	axis,	as	observed	in	the	paper	by	Leoni	et	al.6	For	GP,	the	transmission	in	

direction	c	 is	again	the	weakest,	and	this	is	 likely	due	to	the	lack	of	bonding	between	layers	in	the	c	

direction.	The	transmission	of	IP1	is	the	odd	one	out,	and	exception	to	each	of	the	trends	previously	

described.	This	is	thought	to	be	a	result	of	the	aggressive	optimisation	used	for	this	test	structure,	which	

may	have	resulted	in	frustrated	atomic	coordination’s	as	a	result	of	the	enforced	symmetry.	

The	 concept	 of	 phase	 transitions	 and	 metastable	 intermediates	 has	 been	 introduced,	 and	 the	

anisotropic	electronic	transmission	spectra	have	been	calculated	for	each	of	our	model	systems.	The	

next	subchapter	details	the	derivation	of	the	thermoelectric	properties.	
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Figure	4.20	–	Direction	dependent	transmission	spectra	for	black	phosphorus,	grey	phosphorus,	and	each	

structural	intermediate	from	the	transition	pathway.	Calculated	using	dftb-negf,	with	a	k-grid	of	4x4x4.	
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4.6.2	–	PHASE	TRANSITIONS	AND	THERMOELECTRIC	TRANSPORT	PROPERTIES	

We	have	seen	that	black	phosphorus	undergoes	a	phase	transition	at	around	5	GPa,	and	that	previous	

work	by	the	group	has	modelled	the	transition	pathway	using	transition	path	sampling,	an	advanced	

modelling	method.	The	electronic	transmission	across	each	of	3	directions	has	been	calculated,	from	

which	the	temperature	dependent	electronic	thermoelectric	coefficients	have	been	derived	using	the	

methods	and	code	defined	in	chapter	3.	These	properties	are	presented	here,	for	each	geometry	of	

phosphorus	previously	described	in	this	chapter.		

4.6.2.1	–	COMPUTATIONAL	DETAILS	

For	each	material	in	this	section,	a	device	was	constructed	in	the	same	manner	as	for	the	original	black	

phosphorus	transmission,	that	is,	a	large,	cubic	principle	layer	was	constructed,	from	which	a	device	

was	built	possessing	two	contact	regions	of	two	principle	layers	each,	and	a	device	region	of	4	principle	

layers.	The	transmission	was	calculated	along	each	of	3	directions	in	the	orthorhombic	principle	layers,	

and	for	each	calculation	it	was	necessary	to	split	the	energy	range	under	consideration	into	two	to	four	

regions,	depending	on	the	number	of	atoms.	For	compressed	black	phosphorus,	grey	phosphorus,	and	

the	symmetrical	intermediate,	between	three	and	8	thousand	cpu	hours	were	necessary	to	calculate	

these	properties.		

For	 the	 asymmetric	 systems,	which	 required	 larger	 principle	 layers	 to	 fully	 describe	 the	 geometry,	

approximately	thirty	thousand	cpu	hours	were	required	to	calculate	the	transmission	in	each	of	three	

directions,	explicitly	within	the	region	of	the	Fermi	level	+/-	4	eV,	and	at	a	suitable	resolution	(0.01	eV)	

to	 result	 in	 smooth	 derivations	 of	 the	 thermoelectric	 properties.	 The	 calculations	 were,	 however,	

primarily	memory	intensive,	and	for	the	larger	calculations,	the	requested	cpu’s	were	mostly	necessary	

to	meet	the	memory	allocation,	which	was	restricted	to	4GB	per	thread	on	HPCW.	In	total,	for	the	final	

calculations,	 approximately	 329’000	 cpu	 hours	 were	 necessary	 to	 fully	 calculate	 the	 electronic	

transport	in	these	systems.	This	is	clearly	an	expensive	methodology,	though	the	unique	feature	is	the	

ability	to	model	large,	asymmetric	systems	such	as	metastable	intermediates,	and	potentially	the	effect	

of	non-stoichiometric	doping.	

The	full	details	of	the	calculations	and	respective	parameters	for	the	non-self-consistent	calculations	

are	summarised	in	table	4.2.	
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Table	4.2	–	Parameters	used	in	the	calculation	of	the	transmission	spectra.	Total	computational	time:	

329779	hours.	

IP4

Material Parameters
a b c

K-grid 4-4-4 4-4-4 4-4-4
Energy	Step 0.01 0.01 0.01
Processors 256 256 256
Time	(hours) 31.5 30 29.8

Cost	(CPU	hours) 8064 7680 7628.8
No.	Atoms 3840 3840 3840

K-grid 4-4-4 4-4-4 4-4-4
Energy	Step 0.01 0.01 0.01
Processors 512 512 512
Time	(hours) 5.98 4.13 4.1

Cost	(CPU	hours) 3061.76 2114.56 2099.2
No.	Atoms 2560 2560 2560

K-grid 4-4-4 4-4-4 4-4-4
Energy	Step 0.01 0.01 0.01
Processors 512 512 512
Time	(hours) 10.64 10.36 10.15

Cost	(CPU	hours) 5447.68 5304.32 5196.8
No.	Atoms 2880 2880 2880

K-grid 4-4-4 4-4-4 4-4-4
Energy	Step 0.01 0.01 0.01
Processors 256 256 256
Time	(hours) 13.99 13.24 12.16

Cost	(CPU	hours) 3581.44 3389.44 3112.96
No.	Atoms 1728 1728 1728

K-grid 4-4-4 4-4-4 4-4-4
Energy	Step 0.01 0.01 0.01
Processors 512 512 512
Time	(hours) 56.18 57.98 59.144

Cost	(CPU	hours) 28764.16 29685.76 30281.728
No.	Atoms 4608 4608 4608

K-grid 4-4-4 4-4-4 4-4-4
Energy	Step 0.01 0.01 0.01
Processors 512 512 512
Time	(hours) 59.28 58.76 58.47

Cost	(CPU	hours) 30351.36 30085.12 29936.64
No.	Atoms 4608 4608 4608

K-grid 4-4-4 4-4-4 4-4-4
Energy	Step 0.01 0.01 0.01
Processors 512 512 512
Time	(hours) 61.63 60.31 61.64

Cost	(CPU	hours) 31554.56 30878.72 31559.68
No.	Atoms 4608 4608 4608

IP2

IP3

IP4

Transmission	Calculation	Parameters

Direction

CBP

BP

GP

IP1
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4.6.2.2	-	COMPRESSED	BLACK	PHOSPHORUS,	CBP	

In	 4.5	 we	 saw	 the	 compression	 along	 axis	 c	 in	 black	 phosphorus,	 which	 was	 performed	 with	 the	

intention	 of	 reducing	 the	 band	 gap	 in	 pure	 black	 phosphorus,	 so	 that	 an	 accurate	 picture	 of	 the	

thermoelectric	properties	could	be	attained.	The	issue	faced	with	the	black	phosphorus	optimised	from	

literature	values	using	DFT	methods,	was	that	the	band	gap	predicted	by	DFTB	methods	for	the	same	

geometry	was	up	to	an	order	of	magnitude	larger	than	both	the	reported	theoretical	and	experimental	

values.		

Using	this	geometry,	and	the	consequent	transmission	calculated	in	4.6.1,	the	temperature	dependent	

thermoelectric	properties	were	calculated,	as	shown	in	figure	4.21.	The	transmission	as	a	function	of	

potential	has	been	included	once	again	for	ease	of	comparison	(top	left).	The	first	thing	we	observe,	is	

the	 curvature	 of	 the	 electronic	 conductivity,	 and	 by	 extension	 the	 electronic	 thermal	 conductivity,	

which	again	has	the	positive	exponential	curvature	expected	of	a	semiconductor,	yet	with	a	gentler	

gradient	 than	 that	 of	 the	 uncompressed	 black	 phosphorus	 seen	 in	 4.4,	 which	 will	 henceforth	 be	

referred	to	a	Literature	Value	Black	Phosphorus	(BPLV).	This	is	a	consequence	of	the	reduced	band	gap,	

which	allows	for	increased	overlap	between	the	transmission	and	the	smearing	of	the	Fermi	function	

at	lower	temperatures.	This	yields	an	average	conductivity	of	5x103	that	of	the	literature	value	black	

phosphorus,	a	substantial	increase,	which	is	in	much	better	agreement	with	the	conductivity	reported	

in	the	literature.	

For	the	Seebeck	coefficient,	the	effect	of	anisotropy	is	stark.	It	appears	that	the	sign	and	magnitude	of	

the	Seebeck	coefficient	varies	drastically	with	directionality.	An	explanation	was	sought,	and	it	is	the	

opinion	of	the	author	that	the	negative	sign	of	the	Seebeck	coefficient	for	direction	a	is	a	product	of	

the	difference	in	the	gradient	of	the	edge	of	the	valence	band,	compared	to	that	of	the	edge	of	the	

conduction	band.	For	compressed	black	phosphorus,	we	saw	earlier	that	transmission	along	direction	

a	is	reduced	compared	to	that	of	the	literature	value	black	phosphorus.	This	would	result	in	a	reduced	

mobility	of	the	positive	holes	in	the	valence	band,	with	respect	to	the	electrons	in	the	conduction	band,	

which	 are	 created	 by	 the	 thermal	 excitation	 and	 subsequent	 promotion	 of	 electrons	 into	 the	

conduction	band.	The	reduced	mobility	of	the	holes	would	result	in	a	higher	Seebeck	coefficient,	due	

to	 the	 inherent	 inverse	 proportionality	 between	 the	 two.	 Thus,	 a	 negative	 potential	 would	 be	

established	in	this	direction,	enforcing	n-type	behaviour.	This	is	reaffirmed	by	the	fact	that	at	higher	

temperatures,	the	Seebeck	coefficient	for	direction	b	is	negative,	with	a	change	of	sign	at	approximately	

400	K.	 as	 can	be	 seen	 in	 the	 transmission	of	direction	b,	 the	gradient	 at	 -1	eV	plateaus,	whilst	 the	

gradient	at	+1	eV	is	steep	and	positive.	This	would	again	result	in	increased	mobility	of	electrons	in	the	

conductance	band	with	respect	to	the	holes	in	the	valence	band.	



	

	

85	

	

Figure	4.21	–	The	calculated	thermoelectric	properties	of	Compressed	Black	Phosphorus,	CBP.	

Transmission	calculated	using	dftb-negf,	with	a	k-grid	of	4	x	4	x	4.	Thermoelectric	coefficients	derived	using	

program	(see	section	3.5),	each	series	contains	6000	points.	
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As	 for	 BPLV,	 the	 electronic	 contribution	 to	 the	 thermal	 conductivity	 maps	 onto	 the	 electronic	

conductivity,	as	it	is	the	electrons	acting	as	thermal	carriers.	The	only	marginal	difference	is	that	the	

thermal	conductivity	along	direction	c	 is	somewhat	closer	to	that	of	direction	b,	which	is	due	to	the	

slight	dependence	of	the	thermal	conductivity	on	the	Seebeck	coefficient	(see	chapter	3).		

The	Power	Factor	(PF)	of	CBP	demonstrates	the	marked	effects	of	anisotropy	in	the	material,	as	the	

values	of	direction	a	begin	to	drastically	differ	from	the	other	directions,	by	several	orders	of	magnitude	

at	higher	temperatures.	This	is	a	consequence	of	the	square	dependence	of	the	power	factor	on	the	

Seebeck	coefficient,	and	the	semiconducting	nature	of	CBP.	At	low	temperatures,	the	conductivity	is	

exceedingly	 small,	 as	 few	 electrons	 possess	 the	 energy	 to	 undergo	 thermal	 excitation	 to	 the	

conductance	band.	This	results	in	a	relatively	“flat”	conductivity	curve	at	lower	temperatures,	although	

in	actuality	the	curve	is	a	positive	exponential,	but	the	magnitude	is	infinitesimal.	As	the	power	factor	

is	the	square	of	the	Seebeck	multiplied	by	the	conductivity,	the	infinitesimal	conductivity	dominates	

this	at	lower	temperatures.	At	higher	temperatures,	the	conductivity	is	larger	and	the	power	factor	of	

direction	 a	 reflects	 this.	 However,	 whilst	 the	 Seebeck	 coefficient	 direction	 c	 is	 the	 largest	 at	 low	

temperatures,	 the	magnitude	at	high	temperatures	 is	significantly	 reduced,	 i.e.	approximately	30	at	

800	K.	However,	at	800	K,	the	Seebeck	coefficient	of	direction	a	is	much	larger,	approximately	230	µV	

K-1,	 and	 due	 to	 the	 square	 relationship	 of	 the	 Seebeck	 coefficient	 and	 power	 factor,	 the	 latter	 is	

markedly	larger	for	direction	a.	

The	electronic	figure	of	merit,	zTe,	is	the	final	stage	in	the	derivation	of	the	electronic	thermoelectric	

properties,	and	as	a	consequence	of	the	consecutive	nature	of	the	derivations	of	each	property,	the	

amplification	of	the	effects	of	anisotropy	is	exceedingly	evident.	We	note	that	the	zTe	along	c	is	large	at	

low	 temperatures,	 purely	 due	 to	 the	 large	 Seebeck	 coefficient	 at	 the	 corresponding	 temperatures,	

whilst	the	zTe	along	a	is	larger	than	that	of	direction	b,	again	due	to	its	larger	Seebeck	coefficient.	The	

sign	 of	 the	 Seebeck	 coefficient	 is	 negated	 here,	 as	 zTe	 is	 dependent	 on	 the	 square.	 At	 elevated	

temperatures,	the	zTe	of	direction	c	rapidly	decreases,	whilst	that	of	the	other	directions	remains	fairly	

consistent.	At	high	 temperatures,	zTe	 is	dominated	by	 the	magnitude	of	 the	conductivities.	The	 flat	

nature	of	zTe	then	is	therefore	explained	(as	in	chapter	4.4)	by	the	cancelling	of	the	exponents	of	the	

electronic	 and	 thermal	 conductivity.	 Compressed	 black	 phosphorus	 thus	 has	 an	 average	 zTe	 of	

approximately	 0.1.	with	 the	 contribution	of	 the	 lattice	 thermal	 conductivity,	 the	 zT	 of	 this	material	

would	be	exceedingly	small.		
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4.6.2.3	–	GREY	PHOSPHORUS	

Grey	 Phosphorus,	 GP,	 occasionally	 referred	 to	 as	 blue	 phosphorus	 or	 the	 a-Arsenic	 phase	 of	

phosphorus,	 is	a	metallic,	high	pressure	polymorph	of	phosphorus,	which	is	well	documented	in	the	

literature.	 As	 seen	 in	 the	 previously	 calculated	DOS	 (4.6.1),	 the	 grey	 phosphorus	 phase	 is	 a	 “poor-

metal”,	in	that	it	has	no	band	gap	at	the	Fermi	energy,	yet	the	density	of	states	is	low	in	this	region,	and	

thus	the	available	states	for	charge	carriers	to	occupy	is	lower	than	for	a	transition	metal	such	as	Nickel	

where	the	Fermi	energy	cuts	the	density	of	states	at	the	maxima	of	the	d-orbitals	contribution.	As	we	

shall	see,	this	results	in	metallic	behaviour	(first	order	conductivity),	and	a	poor	thermoelectric	material.	

Figure	 4.22	 illustrates	 the	 thermoelectric	 properties	 derived	 from	 the	 transmission	 of	 4.6.1.	 The	

transmission	maps	the	DOS	in	the	sense	that	there	is	no	band	gap	and	a	minimum	at	the	Fermi	level.	

At	 this	 point	 we	 reiterate	 the	 demand	 for	 orthorhombic	 systems	 in	 the	 implementation	 of	 the	

Landauer-Büttiker	method	 in	 DFTB	methods.	 To	 the	 observant	 crystallographer,	 there	 should	 be	 2	

discrete	crystallographic	directions	in	grey	phosphorus,	as	the	unit	cell	is	hexagonal	(with	2	atoms),	or	

trigonal-rhombohedral	(with	6	atoms)	depending	on	the	setting.	To	implement	orthogonality,	a	larger,	

primitive	orthorhombic	cell	was	constructed	from	the	hexagonal	setting,	with	12	atoms	and	twice	the	

volume.	 Thus,	 the	 transmission	 along	 direction	 a	 equates	 to	 the	 transmission	 along	 one	 of	 the	 3	

degenerate,	 crystallographic	 directions	 in	 the	 plane	 of	 the	 grey	 phosphorus	 “sheet”,	 whereas	 the	

transmission	along	direction	b	is	again	in	plane,	but	does	not	correspond	to	a	crystallographic	vector.	

The	transmission	along	direction	b	has	therefore	been	included	for	completeness,	as	it	is	meaningful	in	

the	bulk	paradigm.		The	key	feature	then,	is	that	the	transmission	along	direction	b	is	far	more	similar	

in	intensity	to	that	if	direction	a,	as	both	are	“in	plane”.		

The	electronic	conductivity	of	grey	phosphorus	 is	highly	anisotropic,	 significantly	 larger	 than	that	of	

both	the	aforementioned	black	phosphorus	structures	(BPLV,	CBP),	and	shows	first	order	conductivity,	

i.e.	 the	shape	of	 the	curve	 is	almost	 linear	compared	 to	 the	cubic	exponential	nature	of	both	black	

phosphorus	structures.	The	transmission	along	the	a	and	b	directions	is	almost	twice	that	of	direction	

c,	although	direction	is	c	is	by	no	means	a	poor	conductor.		

The	anisotropy	of	the	material	is	exemplified	by	the	Seebeck	coefficients,	which	determine	the	shape	

of	the	resultant	power	factor	and	zTe.	The	Seebeck	coefficient	of	direction	c	is	the	largest	in	magnitude,	

and	it	should	be	noted	that	the	respective	Seebeck	coefficients	of	grey	phosphorus	are	the	only	values	

to	be	negative	in	the	rest	of	the	materials	of	interest	in	this	chapter.	This	n-type	behaviour	is	thought	

to	be	a	direct	consequence	of	the	steeper	DOS	and	transmission	of	the	region	formally	referred	to	as	

the	“conduction	band”,	with	respect	to	that	of	the	“valence	band”.	This	would	be	expected	to	result	in	

a	higher	mobility	of	electrons	and	thus	n-type	character.	
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The	high	mobilities	of	the	electrons	in	directions	a	and	b	are	believed	to	cause	the	large	conductivities	

and	 lower	 Seebeck	 coefficients	 in	 these	 directions.	 The	 electronic	 contribution	 to	 the	 thermal	

conductivity	has	a	large,	positive	gradient,	and	is	near-linear	in	shape,	as	would	be	expected	for	a	poor	

metal.	The	magnitude	of	c’s	 contribution	 is	 smaller	as	a	direct	consequence	of	 the	 lower	electronic	

conductivity.	

The	shape	of	the	power	factor	is	governed	by	the	shape	of	the	Seebeck	coefficient,	as	the	conductivity	

is	almost	linear	with	respect	to	temperature.	The	“swapping”	of	the	order	with	direction	c	being	largest	

is	due	to	the	fact	that	the	power	factor	is	dependent	on	the	square	of	the	magnitude	of	the	Seebeck	

coefficient,	which	is	largest	for	direction	c.		

The	 zTe	 is	 largely	 reminiscent	 of	 the	 power	 factor,	 though	 the	 contribution	 of	 the	 large	 disparity	

between	the	thermal	contribution	of	c	versus	a	and	b	amplifies	the	magnitude	of	zTe	for	c.	Here	we	

note	 that	 the	 average	 zTe	 of	 grey	 phosphorus	 is	 unquestionably	 lower	 than	 for	 both	 previously	

mentioned	forms	of	black	phosphorus.	Whilst	the	electronic	conductivity	of	grey	phosphorus	is	larger	

than	that	of	black	phosphorus,	the	Seebeck	coefficient	suffers	as	a	direct	consequence,	and	is	in	fact	

several	 orders	 of	magnitude	 smaller	 that	 the	 respective	 values	 for	 BPLV	 and	 CBP.	 Since	 the	 zTe	 is	

dependent	 on	 the	 square	 of	 the	 Seebeck	 coefficient,	 there	 are	 catastrophic	 consequences	 for	 the	

thermoelectric	properties	of	grey	phosphorus.	The	final	nail	in	the	coffin	as	it	were,	is	that	the	electronic	

contribution	to	the	thermal	conductivity	of	grey	phosphorus	is	orders	of	magnitude	larger	than	in	both	

black	phosphorus	schemes,	due	to	its	metallic	behaviour.		

It	 is	 for	 this	 reason,	 that	 thermoelectric	 properties	 of	 metals	 are	 rarely	 calculated	 in	 the	 modern	

literature,	as	the	Seebeck	coefficient	–	otherwise	known	as	the	thermopower,	is	always	likely	to	be	tiny	

as	a	consequence	of	the	high	charge	carrier	mobility.	

So	far,	we	have	calculated	the	thermoelectric	properties	of	both	phases	of	phosphorus	from	the	high	

temperature	phase	transition.	The	results	are	as	expected,	both	black	and	grey	phosphorus	are	poor	

thermoelectric	materials,	though	black	phosphorus	 is	marginally	better	on	account	of	 its	small	band	

gap.		
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Figure	4.22	–	The	calculated	thermoelectric	properties	of	Grey	Phosphorus,	GP.	Transmission	calculated	

using	dftb-negf,	with	a	k-grid	of	4	x	4	x	4.	Thermoelectric	coefficients	derived	using	program	(see	section	

3.5),	each	series	contains	6000	points.	
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4.6.2.4	–	INTERMEDIATE	PHOSPHORUS	1	

The	optimisation	of	highly	symmetric	 intermediate	1	was	detailed	 in	section	4.6.1.	Using	this	frozen	

snapshot	from	the	BP	to	GP	phase	transition,	it	was	hoped	to	glean	some	insight	into	the	effect	of	the	

phase	transition	on	the	electronic	thermoelectric	properties	of	phosphorus.		

The	transmission	is	reminiscent	of	grey	phosphorus,	a	poor	metal,	yet	the	minimum	of	the	“well”	in	the	

density	of	states	and	transmission	is	offset	with	respect	to	the	Fermi	energy.	The	conductivity	is	linear	

as	 expected	 of	 a	 poor	 metal,	 though	 rather	 high,	 and	 comparable	 to	 that	 of	 grey	 phosphorus.	

Interestingly,	 the	 conductivity	 along	 direction	 c	 is	 the	 largest,	 and	 this	 is	 thought	 to	 be	 due	 to	 the	

opening	 of	 “conduction	 channels”	 formed	 by	 the	 associated	 bonding	 between	 the	 layers	 of	 black	

phosphorus.	This	scheme	is	due	to	increased	overlap	between	lone	pairs,	a	topic	further	detailed	in	the	

work	of	Leoni	et.	al.		

Once	more,	 we	 see	 the	 effect	 of	 the	 gradient	 of	 the	 transmission	 about	 the	 Fermi	 energy	 on	 the	

Seebeck	coefficient.	Here,	direction	a	has	the	largest	disparity	between	the	region	to	the	left	and	right	

of	the	Fermi	level,	and	thus	the	largest,	positive	Seebeck	coefficient.	The	curvature	is	slight,	and	this	is	

likely	due	to	the	lack	of	band	gap,	and	relatively	consistent	DOS	about	the	Fermi	energy.	

The	 electronic	 contribution	 to	 the	 thermal	 conductivity	 reflects	 the	 trends	 of	 the	 electronic	

conductivity,	as	expected.	In	a	similar	fashion,	the	power	factor	is	clearly	dominated	by	the	expression	

of	the	Seebeck	coefficient,	and	so	by	extension	is	zTe.	The	take	home	from	this,	is	that	the	magnitude	

of	zTe	for	this	phosphorus	intermediate	lies	somewhere	between	that	of	black	and	grey	phosphorus,	

leaning	towards	grey	phosphorus,	probably	due	to	its	metallicity.		

As	previously	mentioned,	it	had	been	hoped	that	the	lack	of	short	range	symmetry	in	the	phosphorus	

intermediate	would	allow	for	a	greater	zT.	This	was	based	on	two	assumptions,	first,	the	assumption	

that	the	thermal	transport	of	the	lattice	would	be	perturbed,	an	issue	not	dealt	with	here	but	based	on	

the	work	of	Selli	et.	al.	on	the	scattering	of	phonons	at	grain	boundaries	within	lead	selenides.	Secondly,	

the	scattering	of	phonons	would	likely	coincide	with	the	scattering,	albeit	to	a	lesser	extent,	of	charge	

carriers,	which	may	see	a	decrease	in	the	conductivity,	and	increase	in	the	Seebeck	coefficient.	For	this	

reason,	the	second	set	of	phosphorus	intermediates	were	obtained	from	the	trajectory	of	the	transition	

pathway,	as	discussed	in	4.6.1.	

The	investigation	hinged	on	the	belief	that	the	pressure	range	of	the	electronic	phase	transition	would	

be	smaller	than	the	range	at	which	the	structural	phase	transition	occurred.	If	this	were	the	case,	the	

intermediate	 phosphorus	 at	 lower	 pressures	 may	 be	 semiconducting.	 The	 results	 obtained	 in	 this	

investigation	form	the	remainder	of	this	chapter.	
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Figure	4.23	–	The	calculated	thermoelectric	properties	of	Intermediate	Phosphorus	1,	IP1.	Transmission	

calculated	using	dftb-negf,	with	a	k-grid	of	4	x	4	x	4.	Thermoelectric	coefficients	derived	using	program	

(see	section	3.5),	each	series	contains	6000	points.	
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4.6.2.5	–	INTERMEDIATE	PHOSPHORUS	2		

The	density	of	 states	 and	 transmission	obtained	 for	phosphorus	 intermediate	2	 showed	 that	 it	 is	 a	

semiconductor,	with	a	clear	band	gap,	and	a	transmission	spectrum	that	 indicated	the	transmission	

along	 direction	 a	 suffered	 as	 a	 consequence	 of	 the	 increased	 pressure,	 or	 better	 yet,	 that	 the	

transmission	along	direction	b	and	c	improved	as	a	consequence	of	the	applied	pressure.		

The	electronic	conductivity	displayed	the	expected	cubic	exponent	of	a	semiconductor,	with	the	size	of	

the	band	gap	determining	the	temperature	range	at	which	the	material	becomes	conducting.	The	direct	

relationship	between	transmission	and	conductivity	resulted	in	a	far	lower	conductivity	for	direction	a.		

The	magnitude	of	the	average	conductivity	was	approximately	three	orders	of	magnitude	smaller	than	

that	of	GP	and	IP1,	and	an	order	of	magnitude	smaller	than	that	of	CBP.		

The	Seebeck	coefficient	however,	was	up	to	2	orders	of	magnitude	larger	than	for	each	of	the	preceding	

structures,	and	as	in	IP1,	far	larger	along	direction	a.	The	thermal	conductivity	mirrored	the	trends	of	

the	electronic	conductivity,	which	also	defined	the	shape	of	the	power	factor,	however,	the	magnitude	

of	the	power	factor	at	high	temperatures	was	determined	by	the	magnitude	of	the	Seebeck	coefficient,	

and	was	thus	largest	for	direction	a.	

The	large	Seebeck	coefficients	defined	the	shape	of	zTe,	yet	the	reduction	in	conductivity	resulted	in	a	

magnitude	similar	to	that	of	IP1,	somewhere	between	that	of	CBP	and	GP.		
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Figure	4.24	–	The	calculated	thermoelectric	properties	of	Intermediate	Phosphorus	2,	IP2.	Transmission	

calculated	using	dftb-negf,	with	a	k-grid	of	4	x	4	x	4.	Thermoelectric	coefficients	derived	using	program	

(see	section	3.5),	each	series	contains	6000	points.	
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4.6.2.6	–	INTERMEDIATE	PHOSPHORUS	3		

As	 for	 IP2,	 intermediate	 phosphorus	 3	 is	 a	 small	 band	 gap	 semiconductor.	 	 The	 major	 difference	

between	the	transmission	spectra	of	the	two	is	the	disparity	between	the	gradient	of	the	valence	and	

conductance	 bands	 in	 IP3.	 The	 electronic	 conductivity	 reflects	 the	 anticipated	 curvature	 of	 a	

semiconductor,	and	is	similar	in	both	shape	and	magnitude	to	that	of	IP2.		

The	Seebeck	coefficient,	whilst	similar	in	shape	and	gradient,	is	twice	the	magnitude	of	that	of	IP2	on	

average	across	the	temperature	range.	Interestingly,	the	Seebeck	coefficient	of	direction	c	is	the	largest	

across	the	temperature	range,	whereas	it	does	not	possess	the	lowest	values	of	conductivity.	Whilst	

the	gradient	of	the	valence	band	edge	is	shallower	than	that	of	the	conductance	band,	we	note	that	

the	valence	band	edge	is	between	0.1	–	0.2	eV	closer	to	the	Fermi	energy	than	the	conductance	band,	

and	so	at	the	low	temperatures,	the	shape	of	the	valence	band	governs	the	Seebeck	coefficient.		

The	electronic	contribution	to	the	thermal	conductivity	maps	the	electronic	conductivity,	and	it	is	the	

large	magnitude	of	 the	Seebeck	 coefficient	 for	direction	c	 that	dominates	 the	power	 factor	at	high	

temperatures.	Whilst	the	magnitudes	of	the	electronic	and	thermal	conductivities	are	similar	to	those	

of	IP2,	the	magnitude	of	the	Seebeck	coefficient	is	almost	twice	that	of	its	counterpart,	resulting	in	a	

power	factor	an	order	of	magnitude	larger.	This	has	a	strong	impact	on	the	zTe	of	IP3,	which	is	also	an	

order	 of	 magnitude	 larger	 than	 that	 of	 IP2,	 and	 indeed	 the	 largest	 zTe	 of	 all	 the	materials	 in	 this	

subsection.	A	zTe	of	greater	than	1	at	300	K	for	in	direction	c	is	striking	result,	not	least	because	the	zT’s	

seen	so	far	in	this	work	have	been	around	0.1	or	less	at	300	K.	

The	large	zTe	is	thought	to	have	be	a	consequence	of	two	factors,	that	the	material	has	a	band	gap	and	

thus	high	Seebeck	coefficient,	and	that	the	gradients	of	the	transmission	and	density	of	states	at	the	

band	edges	are	asymmetric	with	respect	to	the	Fermi	energy.	
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Figure	4.25	–	The	calculated	thermoelectric	properties	of	Intermediate	Phosphorus	3,	IP3.	Transmission	

calculated	using	dftb-negf,	with	a	k-grid	of	4	x	4	x	4.	Thermoelectric	coefficients	derived	using	program	

(see	section	3.5),	each	series	contains	6000	points.	

	

	



	

	

96	

4.6.2.7	–	INTERMEDIATE	PHOSPHORUS	4		

The	transmission	of	Intermediate	Phosphorus	4,	IP4,	is	similar	to	that	of	IP3,	in	that	it	 is	asymmetric	

about	the	Fermi	level,	shallower	as	in	GP	in	character,	but	with	a	distinct	if	smaller	band	gap,	as	in	CBP.	

Perhaps	due	to	this	smaller	band	gap,	the	electronic	conductivity	is	ten	times	greater	than	that	of	IP3,	

with	a	gentler	gradient,	although	still	clearly	somewhat	exponential.	The	disparity	between	directions	

is	small,	though	it	is	interesting	to	note	that	at	lower	temperatures	the	two	in	plane	directions	are	closer	

in	range,	while	at	larger	temperatures	the	conductivity	of	direction	b	crosses	that	of	direction	c.	

The	Seebeck	coefficients	are	fairly	large	despite	this,	though	smaller	than	those	of	IP3.	The	electronic	

thermal	conductivity	 is	much	 larger	than	that	of	 IP2	and	IP3,	as	expected	from	the	 larger	electronic	

conductivity.	The	power	factor	is	actually	larger	in	each	direction	than	for	IP3,	especially	in	the	region	

of	400	–	700	K,	where	the	maximum	value	for	each	direction	is	found.	The	curves	of	the	maxima	are	

present	 here,	 as	 for	 the	 first	 time	 in	 the	 semiconducting	 case,	 the	exponents	 of	 both	 the	 Seebeck	

coefficient	and	electronic	conductivity	are	similar	but	opposing.		

The	zTe	of	IP4	is	again	large,	especially	below	300K,	however	it	is	not	as	large	as	that	of	IP3.	This	is	mostly	

attributed	 to	 the	 larger	 conductivity,	 and	 associated	 thermal	 conductivity,	which	 negates	 the	 large	

power	factor,	however,	a	zTe	of	approximately	1	in	direction	c	is	another	impressive	feature.		
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Figure	4.26	–	The	calculated	thermoelectric	properties	of	Intermediate	Phosphorus	4,	IP4.	Transmission	

calculated	using	dftb-negf,	with	a	k-grid	of	4	x	4	x	4.	Thermoelectric	coefficients	derived	using	program	

(see	section	3.5),	each	series	contains	6000	points.	
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4.6.2.8	–	DISCUSSION:	THE	IMPACT	OF	PHASE	TRANSITIONS	ON	THERMOELECTRIC	
PHENOMENA	

In	this	section,	we	have	seen	the	effect	of	the	pressure	induced	phase	transition	on	the	thermoelectric	

properties	 of	 black	 phosphorus	 and	 its	 analogues.	 This	 unique	 insight	 was	 achieved	 using	 several	

metastable	 intermediates	 from	the	previously	modelled	black	phosphorus	–	grey	phosphorus	phase	

transition,	by	mapping	the	thermoelectric	properties	for	each.	There	are	several	important	messages	

in	the	results,	and	these	are	interpreted	here.	

From	 this	work,	 the	 primary	 conclusion	 is	 that	 the	 largely	 asymmetric	 geometries	 achieved	 by	 the	

metastable	 intermediates	 of	 phase	 transitions	 allow	 for	 far	 higher	 electronic	 figures	 of	merit	 than	

exhibited	by	either	the	initial	or	final	crystallographic	polymorph	in	the	phase	transition.	This	is	due	to	

a	combination	of	factors,	such	as	the	drastic	increase	of	the	Seebeck	coefficient	in	these	asymmetric	

systems,	the	reduction	in	electronic	and	thus	thermal	conductivity,	and	the	reduced	band	gap,	which	

allows	for	the	simultaneous	presence	of	both	large	Seebeck	coefficients	and	electronic	conductivities	

with	respect	to	large	band	gap	insulators.	

Whilst	the	highest	observed	electronic	figure	of	merit	was	in	fact	that	of	the	literature	value	based	black	

phosphorus	geometry	with	an	overestimated	band	gap,	the	ignorance	of	the	phononic	contribution	to	

thermal	 transport	 is	 largely	 anticipated	 to	 negate	 this.	 In	 fact,	 the	 consideration	 of	 the	 phononic	

contribution	will	result	in	a	significantly	lessened	figure	of	merit	for	each	material	studied.	However,	

the	 intention	 of	 this	 work	 is	 not	 to	 suggest	 black	 phosphorus	 as	 a	 high-efficiency	 thermoelectric	

material,	but	to	imply	that	this	methodology,	when	applied	to	an	inherently	efficient	thermoelectric	

material,	may	result	in	a	noticeable	increase	in	zT.	The	critical	assumption,	is	that	the	magnitude	of	the	

phononic	contribution	 to	 the	 thermal	conductivity	will	be	of	 the	same	order	of	magnitude	 for	each	

material,	such	that	the	holistic	zT	for	each	may	display	the	same	trends	as	zTe.	That	is,	except	for	BPLV,	

which	has	an	infinitesimal	ke,	and	thus	its	zT	will	likely	be	many	orders	of	magnitude	smaller	than	its	zTe.	

This	is	rationalised	by	the	standard	practice	of	predicting	kl	from	the	Wiedemann-Franz	law	and	Lorenz	

factor,	 the	 resultant	 values	 of	 which	 will	 not	 widely	 vary	 for	 differing	 geometries	 of	 elemental	

phosphorus	 with	 similar	 densities	 and	 covalent	 bonding	 schemes.	 Indeed,	 it	 is	 believed	 that	 the	

asymmetric	intermediates	would	likely	possess	lower	lattice	conductivities,	as	a	result	of	the	distorted	

bonding	leading	to	increased	scattering	of	phonons.	This	rationale	is	based	on	the	work	of	Leoni	et.	al.	

wherein	 the	 inclusion	 of	 grain	 boundaries	 and	 asymmetric	 interfaces	 resulted	 in	 the	 perturbed	

propagation	 of	 phonons	 through	 PbSe.	 If	 this	 were	 true,	 the	 implementation	 of	 a	 transition	

intermediate	scheme	would	be	doubly	beneficial	to	the	zT	of	the	system.	
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The	highest	zTe	achieved	(excluding	that	of	BPLV)	was	in	the	Intermediate	Phosphorus	3,	although	the	

Intermediate	Phosphorus	4	was	a	close	second.	In	both	of	these	materials,	coexisting	black	phosphorus	

and	grey	phosphorus	domains	are	observed	to	coexist,	as	seen	in	Figure	4.18.	This	further	affirms	the	

likeness	of	the	work	to	the	“grain	boundary”	scheme	implemented	in	PbSe,	as	the	scattering	of	charge	

carriers	and	phonons	is	believed	to	occur	at	the	boundaries	between	the	black	and	grey	phosphorus	

domains.	Whilst	these	systems	may	at	first	appear	frustrated,	it	should	be	noted	that	each	atom	in	the	

intermediate	 phosphorus	 1	 -	 3	 geometries	 exhibits	 the	 expected	 sp3	 hybridised	 phosphorus	

coordination,	 with	 3	 covalent	 bonds	 between	 neighbouring	 phosphorus	 atoms	 and	 a	 lone	 pair	

projected	into	“ionic	voids”	within	the	structure.	This	implies	that	upon	the	subsequent	quenching	of	a	

pressure	 induced	phase	 transition	between	black	 and	 grey	phosphorus,	metastable	 semi-glasses	 of	

black-grey	hybridised	phosphorus	may	be	attainable.	The	term	“metastable”	should	not	concern	the	

reader,	indeed	diamond	is	metastable	with	respect	to	the	lifetime	of	the	earth;	it	may	be	that	as	a	low	

temperature	thermoelectric	material,	these	systems	may	be	long	lived.		

Due	 to	 the	 large	 electronic	 and	 thermal	 conductivities,	 along	 with	 the	 small	 Seebeck	 coefficients	

associated	with	metallic	systems,	the	electronic	figures	of	merit	will	always	be	small	for	such	materials.	

As	such,	care	should	be	taken	in	the	exploitation	of	any	structural	phase	transition	that	coincides	with	

an	electronic	phase	transition,	as	the	further	the	system	proceeds	along	the	transition	pathway,	the	

more	 likely	 the	 material	 will	 adopt	 the	 undesirable	 metallic	 nature.	 This	 pressure	 induced	 phase	

transition	is	somewhat	unique,	in	that	a	structural	and	electronic	phase	transition	occur	simultaneously.	

Although	 it	would	be	expected	that	most	electronic	phase	transitions	would	occur	alongside	a	 large	

structural	rearrangement,	it	is	not	necessarily	true	that	all	structural	phase	transitions	coincide	with	an	

electronic	transition.	

This	is	the	case	in	the	oxides	for	example,	as	for	Fe2O3	there	are	at	least	3	distinct,	well-documented	

phases:	a,	b	and	g,	yet	each	phase	is	a	small	band	gap	semiconductor.	A	study	of	such	a	system	would	

further	determine	if	it	is	the	asymmetry	of	the	geometry,	or	the	reduction	in	the	band	gap	that	has	the	

greatest	impact	on	thermoelectric	phenomena,	or	if	it	is	indeed	necessary	to	possess	coexisting	metallic	

and	 semiconducting	 domains.	 The	 results	 of	 which	 may	 also	 apply	 to	 state-of-the-art	 composite	

paradigms,	where	the	local	material	properties	differ	across	the	material,	reflecting	the	chemistry	at	

each	site.	
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This	methodology	is	implemented	in	the	pure	black	phosphorus	scheme,	without	the	standard	doping	

commonly	implemented	in	thermoelectric	materials	to	achieve	higher	Seebeck	coefficients,	improved	

conductivities	and	reduced	thermal	transport.	As	such,	it	would	be	interesting	to	see	the	impact	of	the	

approach	in	a	synergistic	optimisation	scheme,	where	the	material	is	engineered	at	the	chemical,	nano-	

and	meso-scale	to	achieve	high	state-of-the-art	zT’s.		

Whilst	 it	 is	 clear	 that	 this	 method	 is	 computationally	 expensive,	 the	 unique	 insight	 into	 the	

thermoelectric	 phenomena	 of	 a	 material	 undergoing	 coinciding	 structural	 and	 electronic	 phase	

transitions	is	believed	to	have	been	worth	the	computational	cost.	This	means	may	also	be	applicable	

to	 computationally	 study	 the	 effect	 of	 non-stoichiometric	 doping	 in	 such	 a	 system,	 were	 such	 a	

parameter	set	developed.	

	

4.7	–	SUMMARY	

In	this	chapter,	we	have	seen	the	calculation	of	the	electronic	transmission	spectra	of	nanowires	of	

black	phosphorus,	as	a	natural	progression	from	the	introductory	calculations	performed	for	graphene	

in	the	evaluation	of	the	DFTB	code.	We	then	built	up	to	the	calculation	of	stable,	bulk	black	phosphorus,	

and	used	the	Landauer-Büttiker	formalism	to	derive	the	electronic	thermoelectric	properties	of	black	

phosphorus.	Due	to	the	overestimation	of	the	band	gap	of	black	phosphorus	by	the	DFTB	method,	a	

simple	study	of	the	effect	of	anisotropic	pressure	was	performed	to	“tune”	the	band	gap	of	bulk	black	

phosphorus,	as	it	was	inferred	that	the	DFTB	parameters	for	phosphorus	did	not	adequately	describe	

the	 inter-layer	 interactions	 between	 phosphorene	 layers.	 The	 resultant	 “compressed”	 black	

phosphorus	(CBP)	was	then	used	in	the	study	of	the	effect	of	the	pressure-dependent	phase	transition	

of	 black	 phosphorus	 on	 the	 materials	 thermoelectric	 properties.	 The	 introduction	 of	 the	 grey	

phosphorus	material,	along	with	several	metastable	intermediates	followed.	The	intermediates	were	

obtained	from	a	previously	performed	transition	path	sampling	simulation	of	the	same	phase	transition	

at	 DFT	 level	 theory.	 The	 compressed	 black	 phosphorus	 and	 grey	 phosphorus	 were	 then	 used	 to	

determine	 the	 suitability	 of	 the	 Landauer-Büttiker	method	 implemented	 in	 the	 DFTB	 formalism	 to	

predict	 the	 thermoelectric	 properties	 of	 these	 materials.	 Once	 this	 stipulation	 was	 satisfied,	 the	

methodology	was	applied	to	the	constructed	metastable	intermediates,	and	it	was	ascertained	that	the	

methodology	 developed	 in	 this	 work	 may	 have	 meaningful	 contributions	 to	 the	 development	 of	

improved	 thermoelectric	 materials,	 when	 applied	 synergistically	 with	 existing	 methods	 of	

thermoelectric	materials	optimisation.	
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CHAPTER 	5 	– 	T IN 	SULF IDES 	AS 	

THERMOELECTR IC 	MATER IALS 	

This	 chapter	 concentrates	on	 the	 thermoelectric	properties	of	 tin	 sulfide	 compounds,	 and	 the	high	

temperature	phases	of	tin	mono-sulfide.	These	properties	are	derived	from	the	transmission	as	in	the	

previous	 chapter,	 though	 the	 inclusion	of	multiple	 species	 dictates	 the	need	 to	 account	 for	 charge	

transfer.	The	chapter	begins	with	a	crystallographic	study	of	the	ground-state	of	naturally	occurring	tin	

sulfides,	before	an	investigation	into	the	thermoelectric	properties	of	these	materials.	The	novel	high-

temperature	phases	of	tin	mono-sulfide	are	then	introduced,	and	subjected	to	the	same	investigative	

procedure.		

	

5.1	–	INTRODUCTION	

The	 transition	metal	 chalcogenides	 have	 become	 the	 subject	 of	 intensive	 research	 in	 recent	 years,	

owing	to	the	discovery	of	tin	selenide	as	a	thermoelectric	material,	with	one	of	the	highest	recorded	

zT’s	of	any	material	observed	to	date.1-4	This	high	zT	is	largely	due	to	the	ultralow	thermal	conductivity	

of	the	material,	one	of	the	lowest	observed,	at	0.23	W	m-1	K-1.1	The	ultralow	thermal	conductivity	is	a	

consequence	of	the	layered	structure	of	SnSe,	which	consists	of	stacks	of	corrugated	SnSe	sheets	bound	

weakly	by	intermolecular	forces,	as	in	graphite.	In	fact,	the	material	is	very	nearly	a	binary	analogue	of	

the	black	phosphorus	 structure	observed	 in	 the	preceding	chapter,	 the	main	dissimilarity	being	 the	

differing	bonding	angles	exhibited	by	each	species.	

As	 such,	 tin	 selenide	 has	 become	 a	 recent	 candidate	 for	 thin	 films,	 and	 similar	materials	 from	 the	

transition	metal	chalcogenides	have	become	candidates	for	thermoelectrics.5	Tin	sulfide	is	one	such	

material,	possessing	an	identical	structure	and	similar	chemistry	to	the	heavier	tin	selenide,	it	is	ideally	

placed	 as	 a	 material	 constituting	 earth-abundant,	 low-toxicity	 elements.6	 These	 criteria	 are	 a	

preference	of	the	thermoelectric	community	to	search	for	cheap,	safe	materials,	that	may	be	readily	

available	to	develop	into	thermoelectric	generators	to	aid	in	the	generation	of	sustainable	energy.	
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5.2	–	LITERATURE	

As	 previously	mentioned,	 one	 of	 the	most	 impressive	 discoveries	 in	 the	 field	 of	 thermoelectrics	 in	

recent	years	was	the	revelation	that	tin	selenide,	SnSe,	possessed	a	zT	of	2.6	+/-	0.3	at	923	K	along	b,	

2.3	+/-	0.3	along	a	and	0.8	+/-	0.2	along	c.1	This	was	found	to	be	due	to	one	of	the	lowest	observed	

thermal	conductivities	in	a	thermoelectric	material,	of	0.23	+/-	0.03	W	m-1	K-1.	The	root	of	this	ultralow	

thermal	 conductivity	 was	 determined	 to	 be	 the	 large	 degree	 of	 anharmonicity	 found	 within	 the	

material,	 along	 with	 the	 anisotropic	 nature	 of	 the	 compound.	 Due	 to	 its	 structural	 and	 chemical	

similarity,	tin	sulfide	has	also	been	investigated	as	a	thermoelectric	material.6	It	has	been	shown	that	

Tin	 sulfide	 has	 thermoelectric	 figure	 of	 merit	 of	 around	 0.8,	 which	 is	 definitively	 in	 the	 realms	 of	

thermoelectric	promise,	if	not	as	high	as	tin	selenide’s.7	

Tin	Sulfide	has	a	 rich	phase	space,	with	3	distinct	phases	of	differing	stoichiometry	occurring	under	

ambient	 conditions:	 SnS,	 SnS2	 and	 Sn2S3.8	 Additionally,	 the	mono-sulfide	 (SnS)	 has	 been	 shown	 to	

possess	at	 least	3	separate	phases	under	the	influence	of	pressure	and	temperature.	Tin	Selenide	is	

subject	to	a	similar	phase	transition,	from	the	a-phase	to	the	b-phase	at	825	K.	This	phase	transition	

has	been	shown	to	positively	affect	the	power	factor	of	SnSe,	and	the	temperature	at	which	it	occurs	

has	 been	 proven	 to	 be	 reducible	 as	 a	 function	 of	 increased	 hydrostatic	 pressure.9	 Tin	 sulfide	 is	

isostructural	with	the	a-phase	of	tin	selenide,	whilst	also	undergoing	an	identical	phase	transition	to	

the	b-phase	at	905	K,	via	a	l-transition	pathway.	10	

There	have	been	reports	in	the	literature	of	cubic	phases	of	both	SnS	and	SnSe,	though	the	structure	

has	not	been	unanimously	agreed	until	recently,	as	the	proposed	crystal	structures	did	not	match	the	

Xray	Diffraction	Data	(XRD)	of	experiment,	while	theoretical	predictions	were	unable	to	reliably	suggest	

that	these	phases	would	be	stable	under	atmospheric	conditions.11	Interestingly,	the	signature	of	this	

mystery	cubic	phase	had	been	found	only	in	thin	films	synthesised	for	use	in	the	photovoltaic	industry,	

and	 observed	 under	 atmospheric	 conditions.	 Thus,	 the	 theoretical	 predictions	 that	 the	 proposed	

Wurtzite	 (W)	 and	 Rock	 Salt	 (RS)	 phases	 would	 not	 be	 stable	 at	 low	 pressures,	 combined	with	 the	

difficulty	in	assigning	a	crystal	structure	to	the	XRD	data,	meant	that	the	exact	structure	of	this	material	

remained	under	dispute	for	several	years.	Recently,	a	novel	structure	was	proposed	by	Rabkin	et	al.	

and	later	refined	by	Abutbul	et	al.,	which	allowed	for	the	fitting	of	Precession	Electron	Diffraction	(PED)	

spectra	to	crystallographic	planes.11,12	These	findings	were	reinforced	by	the	fitting	of	XRD	data	to	the	

geometry.	 This	 unique	 non-centrosymmetric	 crystal	 structure	 has	 an	 exciting	 potential	 as	 a	

piezoelectric,	 while	 its	 large,	 cubic	 unit	 cell	 suggested	 it	 may	 hold	 promise	 for	 thermoelectric	

applications.2,3,13,14	
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5.3	–	CRYSTALLOGRAPHIC	STUDY	OF	GROUND	STATE	AND	PREDICTED	
STRUCTURES	

To	begin	the	 investigation	 into	the	thermoelectric	properties	of	tin	sulfides,	a	crystallographic	study	

was	 performed	 for	 several	 known	 tin	 sulfides,	 as	 a	 preliminary	 investigation	 into	 their	 electronic	

properties.	To	achieve	this,	the	structural	data	was	acquired	from	the	American	Mineralogist	Database,	

and	each	geometry	was	optimised	using	quantum	espresso.15-17	Subsequently,	Density	of	States	(DOS)	

and	 band	 structure	 calculations	 were	 performed	 using	 the	 optimised	 geometries.	 	 This	 data	 is	

presented	 here,	 along	 with	 insights	 into	 the	 vectors	 along	 which	 the	 transport	 properties	 will	 be	

calculated.	

Table	5.1	–	Crystallographic	information	for	the	crystal	structures	of	the	tin	sulfides	investigated	in	this	

study.	

Herzenbergite,	SnS	is	the	classic	tin	sulfide	compound	in	the	thermoelectric	literature.	It	is	isostructural	

with	SnSe,	consisting	of	folded	or	“corrugated”	sheets	of	hexagonal	Sn(II)S,	which	are	stacked	in	an	A	-	

B	 pattern.	 The	 structure	 is	 reminiscent	 of	 black	 phosphorus,	 as	 seen	 in	 the	 previous	 chapter,	 also	

possessing	 of	 a	 large	 degree	 of	 anisotropy.	 Figure	 5.1	 demonstrates	 the	 anisotropy	 present	 in	 this	

material,	with	projected	views	along	the	three	crystallographic	vectors,	which	in	this	case	happen	to	

align	with	the	transport	directions	later	in	the	chapter.	From	the	projection	along	b,	the	alternating	A	–	

B	stacking	pattern	is	not	obvious,	but	from	the	projection	along	a	one	observes	“handedness”	of	the	

layers,	that	is	the	tin	(silver)	atoms	are	present	on	only	one	side	of	the	corrugations	at	the	surface	of	

each	layer.	The	off-centre	nature	of	the	stacking	is	highlighted	by	the	projection	along	c.	
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Figure	5.1	–	The	Herzenbergite,	a-SnS,	crystal	structure.	Left	to	right:	looking	down	the	a,	b	and	c	axis.	The	

geometry	is	very	similar	to	that	of	black	phosphorus.	

Herzenbergite	is	the	ground-state	phase	of	SnS,	and	it	has	recently	been	determined	that	this	phase	is	

subject	to	two	subsequent	phase	transitions	at	elevated	temperatures.	This	fact	allows	for	a	unique	

opportunity	to	 investigate	the	effect	of	temperature	 induced	phase	transitions	 in	thermoelectrics,	a	

key	 consideration	 when	 the	 operating	 temperatures	 of	 an	 application	 are	 close	 to	 the	 critical	

temperature	of	the	phase	transition.	

Figure	5.2	–	The	Berndtite,	SnS2,	crystal	structure.	Left	to	right:	looking	down	the	a,	b,	and	c	direction.	The	

crystallographic	vectors,	a	and	b	are	at	60°	to	one	another,	but	to	model	transport,	an	orthogonal	Principle	

Layer	(PL)	was	constructed.	

Berndtite	is	the	crystal	structure	of	the	Disulfide	of	tin	(SnS2).	Another	2D,	layered	material,	Berndtite	

is	 believed	 to	 be	 a	 poor	 thermoelectric,	 owing	 to	 its	 large	 band	 gap.	 Despite	 this,	 it	 has	 received	

attention	within	other	 fields	 of	 thin	 film	 applications.	 The	 chemistry	 of	 the	 surface	of	 each	 layer	 is	

explicitly	 governed	 by	 the	 sulphur	 atoms	 which	 sandwich	 the	 layer	 of	 tin	 atoms.	 Berndtite	 has	 a	

hexagonal	 unit	 cell,	 as	 observed	 in	 figure	 5.2,	 however,	 for	 transport	 calculations	 a	 primitive	
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orthorhombic	 cell	 was	 constructed,	 the	 orthogonal	 vectors	 of	 which	 are	 demonstrated	 by	 the	

projections	in	figure	5.2.	

The	 final,	 somewhat	 rarer	 compound	 of	 tin	 and	 sulphur	 is	 Ottemannite,	 Sn2S3.	 The	 scarcity	 of	 the	

mineral	is	often	attributed	to	its	propensity	to	phase	separate	as	SnS	and	SnS2.	The	material	consists	of	

stacks	of	one	dimensional	“ribbons”	which	are	bound	by	weak	intermolecular	forces.	The	ribbons	are	

actually	layers	identical	to	those	of	Berndtite,	cleaved	either	side	of	the	tin	atoms,	leaving	a	material	

that	possess	two	charge	states	on	tin,	formally	Sn(II)	and	Sn(IV).	This	ribbon-structure	was	hoped	to	

yield	some	interesting	thermoelectric	properties	due	to	its	1-dimensional	nature.	

Figure	5.3	–	The	crystal	 structure	of	Ottemannite,	Sn2S3,	along	 transport	vectors	a,	b	 and	c.	 This	unique	

crystal	structure	consists	of	stacks	of	“1-dimensional”	nanoribbons.	

It	had	been	known	for	some	time,	that	at	elevated	temperatures,	the	ground	state	phase	of	tin	selenide	

transformed	into	a	nearly	tetragonal	phase,	b-SnSe	at	825	K.	It	has	recently	been	shown	that	due	to	it’s	

similar	chemistry	tin	sulfide,	a-SnS,	also	transforms	into	the	b-SnS	phase	at	905	K.	Upon	investigation,	

it	was	determined	that	b-SnS	is	not	a	metastable	phase	of	SnS	at	all,	but	a	superposition	of	the	two	

degenerate	structures	of	Herzenbergite,	 i.e.	a	 result	of	 the	simultaneous	breaking	and	 formation	of	

bonds	in	the	SnS	layers.	Despite	this,	b-SnS	is	widely	recognised	as	a	distinct	phase,	as	its	symmetry	

reflects	the	properties	of	the	material	above	these	temperatures.		

In	Figure	5.4,	it	can	clearly	be	seen	that	a	compression	or	“averaging”	along	b	in	Herzenbergite	(figure	

5.1)	would	result	in	a	higher	symmetry	SnS	layer.	Whilst	each	layer	is	actually	degenerate	along	a	and	

b,	the	stacking	configuration	necessary	to	minimise	atoms	overlap	between	layers	results	in	an	A	–	A’	

scheme,	where	the	 layers	are	displaced	along	a	by	0.5	of	a	unit	cell	 length.	This	 is	 the	cause	of	 the	

Orthorhombic	space	group,	Cmca.	
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Figure	5.4	–	The	crystal	structure	of	the	high	temperature	phase	of	tin	mono-sulfide,	b-SnS.	Left	to	right:	

looking	along	transport	vector	a,	b,	and	c.	

The	most	recent	addition	to	the	tin	sulfide	family	is	the	cubic	p-phase	of	SnS,	the	structure	of	which	

had	 only	 been	 recently	 determined,	 despite	 the	 knowledge	 that	 a	 cubic	 phase	was	 present	 in	 the	

deposition	of	thin	films	of	SnS	for	use	in	the	photovoltaic	industry.	The	reason	for	the	delay	in	identifying	

the	structure	was	the	misattribution	of	both	the	rock	salt	and	wurtzite	crystal	structures	to	the	Xray	

Diffraction	(XRD)	patterns	of	the	cubic	phase,	neither	of	which	was	deemed	to	be	a	perfect	explanation	

for	the	data	obtained.	This	material	has	been	detected	under	ambient	conditions,	though	only	in	thin	

films	 and	 as	 nanoparticles.	 The	 structural	 rearrangement	 required	 to	 form	a-SnS	 is	 slight,	 and	 it	 is	

believed	 that	 in	 the	 bulk,	 this	material	would	 readily	 undergo	 a	 phase	 transition	 to	Herzenbergite.	

Figure	 5.5	 shows	 the	 cubic	 geometry	 of	 this	 material,	 the	 unit	 cell	 of	 which	 is	 large	 at	 64	 atoms,	

potentially	ideal	for	thermoelectric	applications.	

Figure	5.5	–	The	recently	discovered	high	temperature	phase	of	tin	mono-sulfide,	p-SnS.	This	material	has	

cubic	symmetry	(a,	b	&	g	=	90°,	a	=	b	=	c),	and	so	there	is	only	one	possible	representation.	p-SnS	

therefore,	is	the	only	tin	sulfide	phase	to	possess	isotropic	properties.	



	
109	

5.3.1	–	DOS	

Figure	5.6	contains	the	calculated	density	of	states	of	each	of	the	ambient	tin	sulfides.	The	band	gap	of	

Herzenbergite	is	acceptably	close	to	that	of	the	literature,	at	1.6	eV,	while	that	of	Berndtite	is	somewhat	

larger	at	around	4.5	eV.	The	band	gap	of	Ottemannite	is	somewhere	between	the	others,	as	may	be	

expected	from	the	mixing	of	stoichiometries	and	coordination	spheres,	at	approximately	2.5	eV.	This	is	

rationalised	as	follows.	In	crystal	field	theory,	the	splitting	of	the	d-orbitals	is	known	to	increase	with	

increasing	oxidation	state.	For	the	case	of	Herzenbergite,	tin(II)	sulfide,	the	tin	ions	are	in	their	lowest	

(formal)	 oxidation	 state	 of	 +2,	 and	 therefore	 the	 gap	 is	 relatively	 small	 (though	 still	 present).	 In	

Berndtite,	tin(IV)	sulfide,	the	tin	atoms	are	formally	in	oxidation	state	+4.	Here	the	splitting	between	

the	bands	corresponding	to	the	d-orbitals	will	likely	be	much	greater	than	for	tin(II)	sulfide,	and	thus	

the	material	possesses	a	larger	band	gap.	In	Ottemannite,	there	are	two	crystallographically	distinct	tin	

species,	and	due	to	their	coordination,	one	is	formally	in	the	oxidation	state	+4,	whilst	the	other	is	in	

+2,	i.e.	tin(II)(IV)	sulfide.	Whilst	the	splitting	of	the	d	orbitals	at	each	site	would	likely	be	very	similar	to	

that	of	each	of	the	respective	aforementioned	species,	the	overlap	between	these	d-orbitals	in	the	solid	

state	would	result	in	bands	with	a	gap	between	these	two	extremes	in	size.	

The	majority	of	the	work	in	this	chapter	focusses	on	the	region	within	+/-	4	eV	of	the	Fermi	level	for	

each	material.	As	such,	we	can	see	 from	the	corresponding	density	of	states	 that	 this	 region	of	 the	

“Fermi	window”	for	Herzenbergite	is	predominantly	defined	by	the	p	orbitals	of	both	tin	and	sulphur,	

with	 noticeable	 contributions	 from	 the	 tin	 5s	 and	 4d.	 For	 Berndtite,	 the	 DOS	 is	 dominated	 by	 the	

sulphur	3p	orbitals	in	the	valance	band,	whilst	the	conduction	band	is	almost	equally	defined	by	the	tin	

5s,	5p	and	sulphur	3p.	For	Ottemannite,	the	scenario	is	a	similar	story,	the	tin	and	sulphur	p	orbitals	are	

the	main	contributors,	though	the	tin	5p	and	4d	orbitals	are	present.	The	DOS	therefore	allow	for	a	

consideration	of	the	orbitals	that	are	likely	contributing	to	the	transmission	spectra	significantly,	and	

thus	defining	the	thermoelectric	properties	of	the	tin	sulfides.	

The	DOS	calculations	were	performed	using	the	DFTB	formalism	and	self-consistency	as	implemented	

by	the	dftb+	code.	Using	a	k-grid	of	15-15-15,	the	partial	contributions	from	each	shell	were	calculated,	

along	with	the	total.	
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Figure	 5.6	 –	 Density	 of	 States	 for	

each	 of	 the	 ground-state	 tin	

sulfides.	Calculated	using	the	dftb+	

code,	 with	 k-grids	 of	 5x5x5	 for	

Herzenbergite	 and	 Berndtite,	 and	

4x4x4	for	Ottemannite.	
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5.3.2	–	BANDS	

Using	the	optimised	ground-state	structures,	the	geometries	were	re-optimised	and	symmetrised	using	

DFT	level	theory,	as	implemented	in	the	quantum	espresso	plane	wave	package.	The	pseudopotentials	

were	 norm	 conserving,	 and	 implemented	 the	 PBE	 functional.	 K-grids	 of	 4-4-4	 were	 used	 for	 the	

optimisation,	6-6-6	for	the	self-consistent	step	and	12-12-12	for	the	consequent	non-self-consistent	

step.	 The	 K-point	 path	 was	 explicitly	 specified	 for	 the	 final	 bands	 calculation,	 according	 to	 the	

convention	specified	by	Cortarolo.		

We	see	a	different	convention	with	band	gaps	compared	to	those	of	the	DOS,	where	the	bandgap	of	

Berndtite	is	more	than	that	of	Ottemannite,	which	is	less	than	that	of	Herzenbergite.	The	band	gap	of	

Herzenbergite	is	less	than	that	of	Berndtite.	DFT	methods	are	often	known	to	underestimate	the	band	

gap,	and	so	it	was	taken	as	a	good	sign	that	the	magnitudes	were	comparable	using	this	methodology	

to	those	obtained	by	the	DOS	using	the	DFTB	approach.	Specifically,	the	band	gap	of	Herzenbergite	is	

direct,	 and	 approximately	 1.2	 eV,	 for	 Berndtite	 it	 is	 indirect	 and	 approximately	 1.5	 eV,	 and	 for	

Ottemannite	it	is	approximately	0.9	eV.	The	band	gap	of	Herzenbergite	is	close	to	that	of	experiment,	

which	is	reportedly	1.1	eV.	The	band	gap	of	Berndtite	is	a	little	smaller	than	that	of	experiment	at	2.3	

eV.18	However,	in	this	report,	the	band	gap	of	bulk	Herzenbergite	is	expected	to	be	0.87	eV	using	DFT	

level	theory,	or	0.89	eV	using	DFTB	theory.	This	was	seen	as	reasonable	agreement	for	the	methods	

used,	and	encouraging	in	that	the	reported	DFT	and	DFTB	values	did	not	vary	greatly.	

We	note	for	all	structures,	that	the	effective	mass	of	the	valence	band	is	visually	fairly	small,	with	bands	

that	 span	 several	 electronvolts.	 For	Ottemannite,	we	 also	 note	 the	 higher	 band	 degeneracy	 of	 the	

valence	band,	which	is	a	criteria	for	higher	Seebeck	coefficients	that	do	not	necessarily	come	at	the	

cost	of	lower	conductivities.	
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Figure	5.7	–	The	band	structures	of	the	ground-state	tin	sulfide	compounds.	The	red	line	indicates	the	

Fermi	level.	Calculated	with	the	quantum	espresso	plane	wave	code,	using	wavefunction	cutoff	of	50	Ry,	

DFT-D	Van	der	Waals	correction,	and	a	12x12x12	k-grid.		
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5.3.3	–	EQUATIONS	OF	STATE	

The	equations	of	state	for	several	existing	and	predicted	tin	mono-sulfide	compounds	were	calculated.	

Figure	5.8	demonstrates	the	findings.	The	mono-sulfides	were	chosen	due	to	the	known	rich	phase-

space,	 the	 Herzenbergite	 and	b-SnS	were	 chosen	 as	 they	were	 known	 to	 exist.	 The	 Rock	 Salt	 (RS)	

Wurtzite,	Zinc	Blende	and	Cesium	Chloride	geometries	were	chosen	as	candidate	structures	 for	 the	

cubic	phase,	which	had	not	been	published	at	the	time	of	this	 initial	 investigation.	The	equations	of	

state	are	essentially	a	plot	of	total	energy	versus	volume,	and	this	data	was	calculated	using	DFT	Plane	

Wave	(PW)	methods,	using	PBE	functionals	and	norm-conserving	pseudopotentials.	The	approach	was	

as	follows.	

	

Figure	5.8	–	The	equations	of	state	the	known	and	possible	phases	of	tin	mono-sulfide.	Calculated	using	

the	quantum	espresso	plane	wave	code,	wavefunction	cutoff	of	50	Ry,	k-grid	of	4x4x4.		
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The	 crystal	 structures	were	 prepared	 for	Herzenbergite	 and	b-SnS	 from	published	 crystal	 structure	

data.	The	“theoretical	phases”	were	prepared	by	obtaining	the	relevant	crystallographic	information	

for	the	compounds	in	which	these	materials	are	known	to	occur,	before	rescaling	to	fit	the	volume	of	

the	unit	cell	to:	

𝑉" = 𝑁	 ∙ 𝑉'	

Where	𝑉"	is	the	volume	of	the	generated	unit	cell,	N	is	the	number	of	atoms	in	the	theoretical	unit	cell,	

and	𝑉'	is	the	average	volume	per	atom	in	the	Herzenbergite	unit	cell.	These	generated	geometries	were	

then	 relaxed	according	 to	 the	BFGS	 formalism,	under	 variable	 volume	–	 fixed	 cell	 angle	 conditions.	

These	relaxed	structures	were	then	scaled	incrementally	to	both	smaller	and	larger	volumes	by	varying	

cell	length	a	by	1%,	while	maintaining	the	ratios	b/a,	c/a.	These	frustrated	cells	were	then	relaxed	under	

variable	cell	–	fixed	volume	conditions.	The	total	energy	from	the	final	relaxations	were	then	divided	by	

the	total	number	of	atoms	in	the	unit	cell,	as	shown	in	figure	5.8.		

	

Figure	5.9	–	The	effect	of	increasing	volume	in	the	cell	parameters	of	Herzenbergite.	Calculated	using	

quantum	espresso,	with	a	wavefunction	cutoff	of	50	Ry,	and	a	4x4x4	k-grid.	
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The	observation	that	the	Herzenbergite	structure	is	the	lowest	in	energy	across	the	range	is	reassuring,	

as	this	is	known	to	be	the	ground	state	structure	under	ambient	conditions.	Clearly,	the	zinc	blende	and	

cesium	chloride	crystal	structures	are	rather	high	in	energy	compared	to	the	rest	of	the	structures,	and	

it	seems	unlikely	that	a	phase	transition	would	occur	towards	these	geometries,	as	at	no	point	are	they	

the	most	favourable	in	energy.	The	Wurtzite	geometry	is	a	little	lower	in	energy	than	the	zinc	blend,	

but	it	is	still	far	higher	than	the	curves	for	Herzenbergite	and	b-SnS.		

An	interesting	observation,	is	that	the	materials	which	would	possess	3-dimensional	covalent	bonding	

schemes	 exhibit	 a	 similar	 “well-like”	 curve,	 whereas	 the	 layered	 structures	 possesses	 a	 shallow	

curvature	at	greater	volumes.	This	behaviour	was	reasoned	to	be	due	to	the	ability	of	these	materials	

to	expand	in	their	respective	interlayer	directions,	in	which	they	are	bound	by	weaker	intermolecular	

forces,	whilst	maintaining	their	covalent	bonding	scheme	in	the	lateral	directions,	reducing	the	strain	

on	the	higher	energy	covalent	bonds.	This	was	confirmed	by	a	study	of	the	effect	of	volume	on	the	

lattice	parameters	of	Herzenbergite	and	Wurtzite,	where	it	was	found	that	in	Herzenbergite,	the	cell	

length	c	diverged	from	a	and	b	at	higher	volumes,	while	a	and	b	remained	fairly	constant,	as	in	figure	

5.9.	For	Wurtzite,	the	cell	remained	cubic.	
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Figure	5.10	shows	an	inflated	view	of	the	point	where	the	equations	of	state	of	Herzenbergite,	b-SnS,	

a-Arsenic	and	Rock	Salt	are	close	in	energy.	Herzenbergite	remains	the	lowest	in	energy,	but	at	lower	

volumes,	it	can	be	seen	that	the	curves	for	Herzenbergite	and	b-SnS	become	isoenergetic.	The	Rock	

Salt	phase	is	very	close	in	energy	to	Herzenbergite	at	this	volume,	however,	it	is	still	greater	in	energy	

than	the	b-SnS	phase,	thus	it	seems	unlikely	that	this	phase	may	be	adopted	over	the	lower	energy	pair.	

	

Figure	5.10	–	Inflated	view	of	equations	of	state	crossing.	Calculated	using	the	quantum	espresso	plane	

wave	code,	wavefunction	cutoff	of	50	Ry,	k-grid	of	4x4x4.	
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5.4	–	TRANSPORT	IN	TIN	SULFIDES	

In	this	section,	 the	calculation	of	transmission	spectra,	and	subsequent	derivation	of	 thermoelectric	

properties	 is	 presented	 for	 the	 naturally	 occurring	 ground-state	 tin	 sulfide	 compounds.	 The	

transmission	 was	 originally	 calculated	 in	 the	 non-self-consistent	 (NSCC)	manner	 as	 in	 the	 previous	

chapter,	though	an	appreciation	of	the	requirement	of	self-consistency	(SCC)	is	then	demonstrated.		

5.4.1	–	TRANSMISSION	OF	TIN	SULFIDES	

Nanowires	of	Herzenbergite	were	prepared	for	each	of	the	3	crystallographic	replications,	in	order	to	

fully	characterise	the	effects	of	anisotropy	 in	this	material.	The	wires	consisted	of	6	Principle	Layers	

(PLs)	of	400	atoms,	for	a	total	of	2400	atoms.	Two	PLs	were	required	for	each	of	the	contact	regions,	

the	remaining	two	formed	the	device	region.	The	inclusion	of	the	d-orbitals	and	additional	electrons	

(compared	to	phosphorus)	dramatically	increased	the	calculation	times	for	the	density	of	states,	and	

so	it	was	anticipated	to	detrimentally	effect	the	time	necessary	to	calculate	the	electronic	transport.	As	

such,	the	initial	transport	calculation	was	performed	with	a	small	K-grid	sampling	of	2-2-2	and	a	large	

energy	range	sampling	of	0.1	eV.		

All	tin	sulfide	dftb-negf	calculations	in	this	chapter	were	performed	utilising	the	Slater-Koster	(slako)	

files	provided	by	J.	Joswig	and	T.	Lorenz.18,19,20	

Figure	 5.11	 shows	 the	 original	 transport	 calculation	 for	 a	 in	 Herzenbergite.	 This	 calculation	 was	

performed	to	gain	some	insight	into	the	structure	of	the	wider	electronic	transmission	spectrum	before	

work	could	focus	on	the	window	within	+/-		4	eV	of	the	Fermi	level.	Calculation	of	transport	was	only	

necessary	in	one	direction	to	appreciate	the	structure.	The	shape	of	the	transmission	spectra	is	clearly	

reminiscent	of	the	DOS	of	Herzenbergite	(fig.	5.6)	with	a	large	peak	corresponding	to	the	sulphur	3s	

orbital	around	-15	eV,	the	distinctive	triplet	of	the	sulphur	3p	orbitals	between	-1	and	-8	eV,	the	5p	

orbitals	of	tin	at	1	to	6	eV	and	part	of	the	tin	4d	orbitals	above	5	eV.	The	tin	5s	orbitals	are	suspected	

to	be	hidden	by	the	magnitude	of	the	lowest	energy	3p	orbitals	at	around	-7	eV.	

As	for	chapter	4,	for	all	calculations	of	electronic	transport	in	this	chapter,	dispersion	correction	was	

not	included.	This	is	in	part	due	to	the	calculations	being	extrapolated	from	those	defined	in	the	tutorial	

for	 the	 dftb-negf	 code,	 which	 did	 not	 include	 a	 dispersion	 correction.	 Additionally,	 DFTB	 does	 not	

include	Van	der	Waals	interactions,	and	so	any	attempted	correction	is	purely	empirical,	requiring	an	

additional	set	of	parameters	which	had	not	been	acquired	for	this	work.	
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Figure	5.11	–	The	initial	transmission	calculation	of	Herzenbergite	along	a.	This	calculation	was	performed	

with	dftb-negf,	using	a	reduced	K-grid	of	2x2x2	and	a	large	energy	step	of	0.2	eV,	in	order	to	visualize	the	

wider	transmission	spectrum.	Subsequent	calculations	would	be	performed	utilising	a	larger	K-grid	and	

energy	sampling,	within	a	smaller	energy	range.	

Figure	5.12	details	the	transmission	in	the	8	eV	region	about	the	Fermi	level	for	Herzenbergite,	at	a	far	

higher	resolution,	and	for	each	of	the	three	transport	directions.	The	effects	of	anisotropy	are	clear	for	

the	valence	band,	though	the	gradient	of	the	conduction	band	is	similar	for	each	direction.	As	would	

be	expected	 from	 the	model	of	weak	 inter-layer	bonding	proposed	 in	 the	previous	 chapter	 for	 the	

isostructural	black	phosphorus,	the	transport	along	c	is	less	than	that	along	a	and	b	for	the	whole	energy	

range.	The	high	orbital	overlap	along	a	is	the	likely	root	of	the	high	transmission	along	this	vector.	
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Figure	5.12	–	The	high-resolution	transmission	spectrum	of	Herzenbergite.	The	energy	range	of	+/-	4	eV	

from	the	Fermi	level	was	determined	to	be	suitable	for	the	temperatures	considered.	Calculated	using	

dftb-negf	with	an	energy	step	of	0.01	eV	and	k-grid	of	4x4x4.	

Another	distinction	between	the	transmission	of	Herzenbergite	and	black	phosphorus	is	the	shape	of	

the	transmission,	i.e.	the	gradient	and	magnitude	of	the	contribution	of	the	valence	versus	the	gradient	

and	magnitude	of	the	conduction	band.	In	black	phosphorus,	the	gradient	and	magnitude	was	observed	

to	be	distinctly	similar	for	both	conduction	and	valence	bands,	and	the	bands	themselves	were	formed	

of	just	the	3p	orbitals	of	phosphorus.	Here,	the	differing	contributions	of	chemical	species	and	their	

respective	orbitals	is	likely	to	govern	the	thermoelectric	properties.	
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Figure	5.13	–	Transmission	spectrum	of	Berndtite.	The	system	appeared	to	have	a	particularly	large	band	

gap,	as	well	as	a	small	number	of	orbitals	forming	the	conduction	band	above	the	Fermi	level.	Calculated	

using	dftb-negf	with	an	energy	step	of	0.01	eV	and	k-grid	of	4x4x4.	

The	transmission	of	Berndtite	is	detailed	in	the	figure	5.13.	We	note	the	unique	shape,	with	the	large	

band	gap	separating	the	valence	band,	formed	of	mostly	sulphur	3p	orbitals,	from	the	small	conduction	

band	which	consists	of	the	sulphur	3p,	and	the		tin	5s	and	4d.	This	unique	feature	will	 likely	 lead	to	

some	 interesting	 results	 for	 the	 electronic	 thermoelectric	 properties.	 The	 Fermi	 level	 is	 noticeably	

closer	to	the	conduction	band,	and	so	it	is	likely	the	conduction	band	that	will	govern	these	properties,	

however,	of	note	is	the	large	transmission	along	c	in	the	valence	band,	which	suggests	a	strong	overlap	

between	orbitals	in	the	neighbouring	sheets	of	SnS2.	The	band	gap	is	somewhat	large,	at	approximately	

4.5	eV,	meaning	the	thermal	conductivity	of	the	electrons	is	 likely	to	be	far	smaller	than	that	of	the	

phonons.	
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Figure	5.14	–	Transmission	spectrum	of	Ottemannite.	The	band	gap	is	between	that	of	Herzenbergite	and	

Berndtite	in	size,	which	is	likely	due,	in	part,	to	the	stoichiometry.	Calculated	using	dftb-negf	with	an	

energy	step	of	0.01	eV	and	k-grid	of	4x4x4.	

The	transmission	spectrum	of	Ottemannite,	as	shown	in	figure	5.14	has	a	large	degree	of	anisotropy	in	

both	 the	 conduction	 and	 valence	 bands.	 The	 transmission	 along	 c	 is	 noticeably	 higher,	 which	

corresponds	to	the	c	axis.	It	should	be	noted	that	the	bonding	along	c	is	exclusively	covalent,	and	so	it	

would	 be	 expected	 that	 transport	 along	 this	 direction	 would	 differ	 greatly	 from	 a	 and	 b.	 The	

thermoelectric	 properties	 are	 likely	 to	 be	 governed	 by	 the	 valence	 band,	 as	 the	 fermi	 energy	 is	

noticeably	closer	to	this	side	of	the	band	gap.	As	such,	one	could	argue	it	is	the	3p	orbitals	that	govern	

the	thermoelectric	properties	of	this	material,	opening	these	crystallographic	positions	to	the	possibility	

of	doping	with	guest	species	to	tune	the	shape	of	the	DOS	and	transmission	in	this	region.	
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5.4.2	–	THERMOELECTRIC	PROPERTIES	OF	HERZENBERGITE,	SNS	

Using	 the	 transmission	 calculated	 in	 the	 previous	 section,	 the	 thermoelectric	 properties	 of	

Herzenbergite	were	derived	using	the	same	methods	as	detailed	in	the	preceding	chapter,	namely,	the	

Landauer-Büttiker	formalism	within	the	Non-Equilibrium	Green’s-Functions	(NEGF)	approach.	

	

5.4.2.1	–	TEMPERATURE	DEPENDENT	THERMOELECTRIC	PROPERTIES	

Figure	5.15	displays	the	temperature	dependent	thermoelectric	properties	of	Herzenbergite,	derived	

from	the	transmission	spectrum	calculated	in	the	previous	section,	which	is	included	in	the	top	left	of	

this	figure	for	convenience.	The	striking	feature	is	the	magnitude	of	the	zTe	 in	the	region	of	300K	to	

400K,	the	ideal	operating	range	for	room	temperature	thermoelectrics.	This	is	predominantly	due	to	

the	magnitude	of	the	Seebeck	coefficient	in	the	region.		

The	 electronic	 conductivity	 demonstrates	 the	 exponential	 curve	 typical	 of	 semiconductors	 at	 high	

temperatures.	The	ranking	of	magnitudes	for	each	direction	closely	follows	the	overall	average	ranking	

of	 the	 transmission,	with	c	 being	 the	weakest	 and	a	 the	 largest.	 The	electronic	 contribution	 to	 the	

thermal	conductivity	follows	the	same	trend,	albeit	with	less	distinction	between	a	and	b.	

The	Seebeck	coefficient	is	large	and	positive	for	each	direction	above	300	K,	though	is	rather	large	and	

negative	for	b	under	280K.	The	cause	of	this	is	not	immediately	apparent,	though	is	further	explored	in	

5.4.2.2.	It	is	this	negative	Seebeck	coefficient	that	is	responsible	for	the	large	upturn	in	the	zTe	below	

280K	for	b.	This	highlights	an	important	feature	in	the	zTe	and	zT	that	may	go	unnoticed	until	such	an	

example	is	apparent:	zT	does	not	account	for	the	“type”	of	charge	carriers	dominating	the	materials	

output	at	a	given	temperature,	 i.e.	whether	it	 is	p-	or	n-type.	This	makes	the	zTe	of	5.13	particularly	

unique,	as	it	demonstrates	that	the	presence	of	more	than	one	type	of	peak	in	the	zT	of	a	material	may	

mean	that	the	charge	carriers	operating	at	different	temperatures	possess	differing	sign.	For	example,	

at	approximately	250K,	this	material	is	likely	an	n-type	thermoelectric,	however,	at	approximately	320K,	

whilst	 the	 average	 zTe	 may	 be	 almost	 identical	 in	 magnitude,	 the	 material	 is	 now	 a	 p-type	

thermoelectric.	An	important	consideration,	were	such	a	material	to	be	incorporated	into	a	device!	

The	power	 factor	 is	clearly	dominated	by	 the	shape	of	 the	conductivity,	although	a’s	 is	 significantly	

larger	 than	b	 and	 c,	 due	 to	 the	difference	 in	 the	magnitude	of	 the	 Seebeck	 coefficient	 at	 elevated	

temperatures.	Thus,	the	ordering	of	the	zTe’s	mimics	that	of	the	Seebeck	coefficients,	as	the	electronic	

and	thermal	conductivities	effectively	cancel	one	another	in	magnitude.	
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Figure	5.15	–	Temperature	dependent	thermoelectric	properties	of	Herzenbergite.	Transmission	

calculated	using	dftb-negf	with	an	energy	step	of	0.01	eV	and	k-grid	of	4x4x4.	Thermoelectric	coefficients	

derived	using	program	(see	section	3.5),	each	series	contains	6000	points.	
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5.4.2.2	–	POTENTIAL	DEPENDENT	THERMOELECTRIC	PROPERTIES	

To	investigate	the	cause	of	the	change	of	sign	in	the	Seebeck	coefficient,	as	well	as	to	gain	a	better	

understanding	 of	 the	 effects	 on	 the	 thermoelectric	 properties	 due	 to	 temperature,	 the	 potential	

dependent	 thermoelectric	properties	of	Herzenbergite	were	 calculated	at	100,	300	and	500	K.	 The	

methodology	 implemented	in	the	work	presented	so	far	has	required	the	 iterative	derivation	of	the	

potential	dependent	thermoelectric	properties	of	a	range	of	materials,	such	that	the	value	of	each	at	µ	

=	0,	i.e.	the	value	at	the	Fermi	energy,	could	be	taken	and	compiled	across	a	range	of	temperatures,	

usually	200	K	to	800	K.		

Figure	5.16	presents	the	potential	dependent	electronic	conductivity	of	Herzenbergite	at	100,	300	and	

500	K.	The	curvature	of	this	property	as	a	function	of	potential,	clearly	maps	that	of	the	transmission	

spectrum,	 as	 in	 figure	 5.15.	 The	 obvious	 effect	 of	 increasing	 temperature	 is	 the	 smoothing	 of	 the	

curvature	of	the	transmission.	As	the	values	at	each	µ	are	dependent	on	the	first	derivative	of	the	fermi	

function,	they	are	non-zero.	Whilst	it	may	appear	that	the	conductivity	is	0	at	0	eV,	one	must	notice	

that	 the	 order	 of	 magnitude	 of	 the	 units	 of	 the	 y	 axis	 is	 huge	 compared	 to	 that	 reported	 in	 the	

temperature	 dependent	 case.	 The	 increasing	 temperature	 does	 not	 drastically	 alter	 the	maximum	

values	 present	 in	 the	 spectra,	 though	 the	 smoothing	 of	 the	 curvature	 raises	 the	 minimum	 values	

slightly,	and	this	is	responsible	for	the	increase	of	the	conductivity	at	µ	=	0	that	is	apparent	in	figure	

5.15.	
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Figure	 5.16	 –	 Potential	

dependent	 Conductivity	 of	

Herzenbergite,	 at	 differing	

temperatures.	 Transmission	

calculated	using	dftb-negf	with	an	

energy	step	of	0.01	eV	and	k-grid	

of	 4x4x4.	 Thermoelectric	

coefficients	 derived	 using	

program	 (see	 section	 3.5),	 each	

series	contains	8000	points.	
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Figure	 5.17	 demonstrates	 the	 effect	 of	 increasing	 temperature	 on	 the	 Seebeck	 coefficient	 of	

Herzenbergite.	The	Seebeck	curve	at	500	K	is	typical	of	the	data	reported	in	the	literature,	and	we	note	

that	the	effects	of	anisotropy	are	almost	non-apparent.	At	low	temperatures	however,	the	extrema	of	

the	curves	are	split,	as	a	function	of	the	size	of	the	band	gap.	The	positions	of	the	extrema	are	similar	

for	each	transport	vector,	indeed	the	main	dissimilarity	between	the	data	sets	is	the	magnitude	of	each	

direction	at	a	given	temperature.	The	unique	feature	in	the	Seebeck	curve	of	b	at	100	K	is	the	presence	

of	 several	 additional	 extrema	 about	 the	 Fermi	 level.	 It	 was	 determined	 that	 these	 peaks	 are	 a	

consequence	 of	 tiny	 atomic	 orbital	 contributions	 to	 the	 transmission	 in	 the	 band	 gap,	 which	 are	

amplified	significantly	by	the	effect	of	multiplication	by	the	first	derivative	of	the	Fermi	level	and	their	

proximity	to	the	Fermi	level,	where	the	magnitude	of	the	first	derivative	of	the	Fermi	function	is	largest.	

It	is	these	states	which	are	responsible	for	the	large,	negative	value	of	the	Seebeck	coefficient	along	b	

at	lower	temperatures	as	observed	in	5.4.2.1.	

The	“kink”	in	the	Seebeck	of	a	at	300	K	is	related	to	the	large	conductivity	of	a,	which	results	in	a	higher	

charge	carrier	mobility	and	thus	reduced	Seebeck	coefficient	at	µ	=	0.	The	interesting	consequence	of	

the	abrupt	change	of	sign	about	µ	=	0	is	that	a	slight	displacement	in	the	position	of	the	Fermi	level	

may	 result	 in	 a	 drastically	 improved	 value	 of	 the	 Seebeck	 coefficient	 at	 higher	 temperatures.	 The	

maximum	value	of	the	Seebeck	coefficient	is	apparent	in	the	lower	temperatures,	however	it	is	reduced	

at	500	K.	There	is	a	direct	correlation	between	the	size	of	the	band	gap	and	the	maximal	value	of	the	

Seebeck.	
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Figure	 5.17	 –	 Potential	

dependent	 Seebeck	

coefficients	 at	 increasing	

temperatures.	 The	 classic	

potential	 dependent	

Seebeck	curve	is	apparent	

at	 high	 temperatures,	 but	

at	 lower	 temperatures	

there	 is	 a	 splitting	 of	 the	

minima	and	maxima	that	is	

governed	by	the	band	gap.	

Transmission	 calculated	

using	 dftb-negf	 with	 an	

energy	step	of	0.01	eV	and	

k-grid	 of	 4x4x4.	

Thermoelectric	

coefficients	 derived	 using	

program	(see	section	3.5),	

each	 series	 contains	 8000	

points.	
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The	potential	dependent	thermal	conductivity,	as	shown	in	figure	5.18	again	is	representative	of	the	

shape	of	 the	 transmission,	however	 for	 this	property,	 the	magnitude	 increases	across	 the	potential	

range	with	 temperature.	The	maximum	value	of	 approximately	10	W	m-1	K-1	 at	100	K	 is	more	 than	

tripled	at	500	K.	There	is	again	a	smoothing	of	the	curvature	which	may	be	attributed	to	the	effect	of	

the	Fermi	function.	

Inspection	 of	 the	 potential	 dependent	 thermoelectric	 properties	 allows	 us	 to	 probe	 the	 causes	 of	

interesting	features	in	the	temperature	dependent	plots.	Since	the	shape	of	both	the	electronic	and	

thermal	conductivities	follows	the	typical	exponent	of	temperature	curvature,	it	is	really	the	potential	

dependent	Seebeck	coefficient	that	holds	most	information	about	the	thermoelectric	properties	of	the	

system.	
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Figure	 5.18	 –	 Potential	

dependent	 thermal	

conductance	of	the	electrons	

at	 increasing	 temperatures.	

The	amplitude	increases	with	

temperature,	 though	 the	

shape	 of	 the	 original	

transmission	 spectrum	 is	

visible.	 Transmission	

calculated	 using	 dftb-negf	

with	 an	 energy	 step	 of	 0.01	

eV	 and	 k-grid	 of	 4x4x4.	

Thermoelectric	 coefficients	

derived	 using	 program	 (see	

section	 3.5),	 each	 series	

contains	8000	points.	
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5.4.3	–	THERMOELECTRIC	PROPERTIES	OF	BERNDTITE,	SNS2	

The	material	Berndtite	is	a	large	band	gap,	layered	material,	with	highly	bound	electrons	involved	in	

bonding	with	the	tin(IV)	and	sulphur	atoms.	The	large	band	gap	is	atypical	of	a	good	thermoelectric	

material,	 and	 so	 it	 would	 be	 unexpected	 for	 Berndtite	 to	 possess	 thermoelectric	 properties.	

Nevertheless,	 for	 a	 complete	 study	 of	 the	 ground	 state	 tin	 sulfides,	 Berndtite	 was	 included	 for	

comparison.	Primarily	due	to	its	large	band	gap,	the	study	revealed	some	interesting	results.	

	

5.4.3.1	–	TEMPERATURE	DEPENDENT	THERMOELECTRIC	PROPERTIES	OF	BERNDTITE,	SNS2	

As	may	be	seen	 in	figure	5.19,	the	transmission	spectrum	of	Berndtite	 is	unusual	 in	that	there	 is	an	

“island”	of	conduction	band	close	to	the	Fermi	level.	The	transmission	along	c	is	also	far	higher	than	

expected,	and	this	is	believed	to	be	due	to	strong	overlap	of	the	lone	pairs	between	SnS2	layers.	The	

curvature	of	the	electronic	conductivity	is	the	exponent	function	expected	of	a	large	band	gap	material.	

Formally	an	 insulator,	 the	actual	 values	of	 the	conductivity	are	 infinitesimal	 in	comparison	 to	 those	

predicted	by	the	calculations	of	Herzenbergite.	The	electronic	contribution	to	the	thermal	conductivity	

mimics	this	effect,	both	in	curvature	and	magnitude.	The	Seebeck	coefficient	however,	is	exceptionally	

large,	as	may	be	expected	for	an	insulating	material.	Of	particular	interest,	is	that	the	maximal	values	

of	the	Seebeck	coefficient	occur	in	the	range	of	400	to	600	K,	although	for	a	there	is	a	significant	value	

at	lower	temperatures,	up	to	and	including	300	K.	The	values	are	negative	due	to	the	proximity	of	the	

Fermi	level	to	the	conduction	band.	

Despite	 the	 large	 values	 of	 the	 Seebeck	 coefficient,	 the	 power	 factor	 reflects	 the	 curvature	 of	 the	

conductivity,	primarily	because	the	curvature	of	the	conductivity	is	“flat”	within	the	ranges	of	the	large	

Seebeck	values.		

Due	 to	 the	 cancelling	 nature	 of	 the	 electronic	 and	 thermal	 conductivities,	 the	 zTe	 values	 are	

astonishingly	 large.	This	 is	clearly	due	to	the	infinitesimal	values	obtained	for	the	electronic	thermal	

conductivities,	which	are	of	the	order	of	1	x	1012	W	m-1	K-1	at	their	maximal	values.	This	results	in	a	zTe	

of	nearly	1000	at	500	K	for	c,	and	a	smaller	value	of	nearly	500	at	700	K.	Clearly,	with	the	introduction	

of	a	lattice	thermal	conductivity	of	the	order	of	0.3	W	m-1	K-1,	if	one	were	to	use	the	record	small	value	

for	SnSe	as	an	indication	of	the	minimal	lattice	thermal	conductivity,	the	actually	zT	would	be	far	less	

than	0.1.	It	is	apparent,	therefore,	that	when	considering	the	electronic	thermoelectric	properties	of	

large	band	gap	insulators,	one	must	be	wary	of	the	zTe	values,	and	evaluate	the	impact	of	the	phononic	

contribution	to	thermal	conductivity	on	zT.	
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Figure	5.19	–	Temperature	dependent	thermoelectric	properties	of	Berndtite.	The	Seebeck	coefficient	is	

large	and	negative,	and	this	is	believed	to	be	due	to	the	proximity	of	the	fermi	level	to	the	small	

conduction	band.	Transmission	calculated	using	dftb-negf	with	an	energy	step	of	0.01	eV	and	k-grid	of	

4x4x4.	Thermoelectric	coefficients	derived	using	program	(see	section	3.5),	each	series	contains	6000	

points.	
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5.4.3.2	–	POTENTIAL	DEPENDENT	THERMOELECTRIC	PROPERTIES	OF	BERNDTITE,	SNS2	

For	Berndtite,	the	same	trends	are	apparent	in	the	potential	dependent	thermoelectric	properties	as	

for	Herzenbergite.	Namely,	 the	smoothing	of	 the	 features	within	 the	electronic	conductivity	curves,	

with	 no	 real	 enhancement	 of	 the	maximal	 values,	 and	 the	 increasing	magnitude	 of	 the	 electronic	

thermal	conductivity,	which	increases	significantly	with	temperature,	as	seen	in	figure	5.20	and	5.22.	

The	Seebeck	curve	(Figure	5.19)	reveals	the	most	interesting	insights	into	Berndtite’s	thermoelectric	

properties.	There	are	again	additional	extrema	in	the	Seebeck	curves	of	a	and	b,	which	contribute	to	

the	 large	 Seebeck	 coefficients	 at	 low	 temperatures.	 The	 broadening	 of	 the	 peaks	 as	 a	 function	 of	

temperature	applies	to	these	additional	extrema	also,	and	this	produces	an	interesting	feature	in	the	

Seebeck	curve	of	a,	even	at	high	temperatures.	Whilst	the	Seebeck	curves	of	b	and	c	are	almost	the	

classic	shape	at	500	K,	for	a	there	is	still	a	large	additional	extremum	at	µ	=	-0.5	eV.	It	may	be	therefore,	

that	the	gradient	of	the	centre	of	the	curve	is	a	function	of	both	the	band	gap,	and	the	magnitude	of	

the	transmission	at	the	band	edges.	This	suggests	that	the	Seebeck	coefficient	is	proportional	to	the	

area	under	the	curve	of	the	transmission	within	the	range	of	the	first	derivative	of	the	Fermi	function	

at	higher	temperatures.	

The	final	interesting	feature	in	5.21	is	that	the	Seebeck	curve	is	not	centred	on	the	Fermi	energy	as	one	

may	expect,	but	on	the	centre	of	the	band	gap,	regardless	of	the	position	of	the	Fermi	level.	This	means	

the	 temperature	dependent	Seebeck	of	Berndtite	 is	able	 to	access	 the	 large	negative	values	of	 the	

minima	 about	µ	 =	 0	 eV.	 The	 clear	 consequence	 of	 this	 is	 that	 one	must	 be	 very	 thorough	 in	 the	

calculation	and	specification	of	the	Fermi	level	in	the	calculation	of	the	transmission	and	subsequent	

derivation	of	the	thermoelectric	properties	using	the	Non-Equilibrium	Greens	Functions	Approach,	as	

implemented	in	the	DFTB	formalism.	
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Figure	 5.20	 –	 Potential	

dependent	 conductivity	 of	

Berndtite.	The	same	softening	

of	 features	 is	 observed.	

Transmission	 calculated	 using	

dftb-negf	with	 an	energy	 step	

of	0.01	eV	and	k-grid	of	4x4x4.	

Thermoelectric	 coefficients	

derived	 using	 program	 (see	

section	 3.5),	 each	 series	

contains	8000	points.	
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Figure	 5.21	 –	 The	 effect	 of	

increasing	temperature	on	the	

potential	 dependent	 Seebeck	

coefficient	 of	 Berndtite.	 The	

unique	 features	 between	 the	

extrema	 are	 caused	 by	 the	

infinitesimal	 contributions	 of	

atomic	orbitals	within	the	band	

gap,	amplified	by	the	effect	of	

the	 multiplication	 by	 the	 first	

derivative	 of	 the	 Fermi	

function.	 Transmission	

calculated	using	dftb-negf	with	

an	energy	step	of	0.01	eV	and	

k-grid	of	4x4x4.	Thermoelectric	

coefficients	 derived	 using	

program	 (see	 section	 3.5),	

each	 series	 contains	 8000	

points.	
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Figure	 5.22	 –	 Increasing	

magnitude	 of	 the	 thermal	

conductance	of	electrons	with	

temperature.	 Transmission	

calculated	using	dftb-negf	with	

an	energy	step	of	0.01	eV	and	

k-grid	of	4x4x4.	Thermoelectric	

coefficients	 derived	 using	

program	 (see	 section	 3.5),	

each	 series	 contains	 8000	

points.	
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5.4.4	–	THERMOELECTRIC	PROPERTIES	OF	OTTEMANNITE,	SN2S3	

The	structure	of	the	final	naturally	occurring	tin	sulfide	compound	is	that	of	Ottemannite.	This	unique	

structure	(fig	5.3),	consists	of	“ribbons”	of	Berndtite	geometry,	held	together	by	weak	intermolecular	

forces.	The	 term	“ribbons”	 is	applied,	 in	 that	 the	molecules	of	Ottemannite	are	 thin,	 flat	and	semi-

infinite,	essentially	 forming	1-dimensional	nanowires,	similar	 to	 those	 investigated	 in	phosphorus.	 It	

was	 hoped	 that	 this	 novel	 structure	 may	 possess	 extremely	 anisotropic	 properties	 that	 may	 be	

beneficial	for	applications	in	thermoelectrics.		

	

5.4.4.1	–	TEMPERATURE	DEPENDENT	THERMOELECTRIC	PROPERTIES	OF	OTTEMANNITE,	
SN2S3	

In	 figure	 5.23	 we	 see	 the	 derived	 thermoelectric	 properties	 of	 Ottemannite	 as	 a	 function	 of	

temperature.	The	transmission	is	presented	again	for	convenience	of	comparison.	Referring	to	figure	

5.3	 for	an	appreciation	of	 the	 transport	vectors,	we	note	 that	c	 represents	 the	 transport	along	 the	

ribbons	of	Sn2S3,	while	a	and	b	are	orthogonal	to	this,	spanning	across	the	stacks	of	ribbons.	We	note	

therefore,	that	c	has	the	highest	average	transmission,	which	would	be	predicted	from	the	transmission	

observed	thus	far,	in	which	there	is	a	tendency	for	the	directions	which	exhibit	purely	covalent	bonding	

to	demonstrate	the	highest	transmission	across	the	spectrum.	It	should	be	noted	however,	that	this	

large	transmission	is	not	necessarily	explicitly	due	to	the	electrons	held	in	the	covalent	bonding	scheme,	

but	 that	 the	 electrons	 occupying	 non-bonding	 lone-pairs	 contribute	 to	 the	 transmission	 along	 the	

surface	of	the	wire,	as	seen	in	figure	4.11c.		

The	electronic	and	thermal	conductivities	of	Ottemannite	display	the	exponential	behaviour	typical	of	

a	semiconductor.	Indeed,	in	this	calculation	Ottemannite	is	observed	to	have	a	band	gap	of	around	3	

eV,	whilst	an	insulator	would	be	defined	as	a	material	with	a	band	gap	larger	that	3.5	eV,	and	so	the	

band	gap	of	this	material	 is	on	the	 large	side	of	a	semiconductor.	As	such,	the	average	value	of	the	

electronic	conductivity	is	around	3	x	10-5	S	cm-1	at	800	K,	which	is	particularly	small	compared	to	that	

of	most	thermoelectrics.	Whilst	the	transmission	of	c	is	significantly	larger	than	that	of	a	and	b	across	

the	range	of	the	spectrum,	at	the	edges	of	the	conduction	and	valence	bands	the	values	of	b	are	very	

similar	to	those	of	c.	As	such,	the	electronic	and	thermal	conductivities	of	b	and	c	are	far	closer	in	value	

across	the	whole	temperature	range	than	either	is	to	a.	
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The	Seebeck	coefficient	is	large	and	positive,	in	fact	the	Seebeck	of	b	is	appreciable	at	300	K,	whilst	the	

values	of	all	three	are	rather	large	(approximately	3000	µV	K-1)	between	350	K	and	450	K.	This	is	the	

ideal	operating	range	for	room	temperature	thermoelectrics,	so	it	 is	 interesting	to	observe	this	fact.	

Below	450	K,	the	effects	of	anisotropy	are	clear,	however	above	this	temperature	the	values	along	each	

direction	are	nearly	degenerate.	The	cause	of	this	 is	discussed	in	5.4.4.2,	and	can	be	understood	by	

consideration	of	figure	5.24.		

Despite	 the	 large	 Seebeck	 coefficients	 observed	 in	Ottemannite,	 the	 power	 factor	 is	 unfortunately	

small,	 due	 to	 the	 exceedingly	 small	 electronic	 conductivities.	 The	 shape	 is	 defined	 by	 that	 of	 the	

conductivity,	whilst	the	anisotropy	observed	in	the	higher	temperature	range	may	also	be	attributed	to	

the	conductivity,	as	the	values	are	apparently	close	to	degenerate	for	the	Seebeck	coefficients	at	these	

temperatures.	

Regardless	of	this	fact,	the	zTe	of	Ottemannite	is	large	at	an	average	of	530	at	450	K.	This	is	significantly	

higher	than	the	maximum	observed	in	Herzenbergite	(an	average	of	approximately	0.3	at	400	K),	but	

roughly	half	of	that	observed	in	Berndtite.	Indeed,	similar	to	Berndtite,	one	must	take	this	value	with	

some	scepticism,	as	the	large	band	gap	of	3	eV	has	resulted	in	a	very	small	electronic	contribution	to	

the	thermal	conductivity,	which	is	8	orders	of	magnitude	lower	than	the	remarkably	low	full	thermal	

conductivity	 observed	 in	 SnSe,	 meaning	 the	 actual	 zT	 of	 Ottemannite	 would	 be	 expected	 to	 be	

exceedingly	 low.	 Interestingly,	whilst	 there	 is	 clearly	 demonstrable	 anisotropy	present	 in	 the	 zTe	of	

Ottemannite,	 the	 values	 of	 a	 and	 c	 are	 remarkably	 close	 in	 value	 despite	 their	 perceived	

crystallographic	differences.	It	is	assumed	that	the	large		zTe	value	of	a,	which	has	the	lowest	electronic	

conductivity,	is	due	to	its	large	Seebeck	coefficient,	and	the	low	electronic	thermal	conductivity.	
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Figure	5.23	–	The	thermoelectric	properties	of	Ottemannite	as	a	function	of	temperature.	The	maximal	zTe	

around	450	K	would	make	for	a	promising	room	temperature	thermoelectric	material.	Transmission	

calculated	using	dftb-negf	with	an	energy	step	of	0.01	eV	and	k-grid	of	4x4x4.	Thermoelectric	coefficients	

derived	using	program	(see	section	3.5),	each	series	contains	6000	points.	
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5.4.4.2	–	POTENTIAL	DEPENDENT	THERMOELECTRIC	PROPERTIES	OF	OTTEMANNITE,	SN2S3	

Once	again,	plotting	the	thermoelectric	properties	as	a	function	of	potential	allows	for	insight	into	the	

cause	of	the	features	observed	above.	Most	notably	the	Seebeck	coefficient,	where	it	is	now	observed	

that	it	is	the	temperature	which	is	responsible	for	the	degeneracy	of	the	Seebeck	coefficient	at	high	

temperatures,	which	has	been	observed	in	almost	all	of	the	materials	presented	so	far.	We	note	that	

in	the	plot	of	the	Seebeck	coefficient	at	500	K	in	figure	5.24,	the	values	of	the	Seebeck	coefficient	are	

almost	 identical	at	each	potential.	 It	has	been	determined,	 that	 this	 shape	 is	essentially	 the	second	

derivative	of	the	Fermi	function,	and	therefore	that	at	high	temperatures,	or	cases	where	the	band	gap	

is	small,	the	Seebeck	coefficient	as	a	function	of	potential	is	dominated	by	the	contribution	of	the	Fermi	

function.	In	these	instances,	the	observation	is	a	lack	of	degeneracy	in	the	Seebeck	coefficients	at	higher	

temperatures,	and	the	potential	for	large	values	of	S	at	µ=0,	provided	the	Fermi	level	is	minimally	offset	

from	the	centre	of	the	gap	in	transmission.	The	effect	of	this	is	noted	in	Herzenbergite,	where	despite	

the	small	band	gap,	and	appreciable	values	of	S	at	300	K	in	the	potential	dependent	plots	(figure	5.17),	

the	Seebeck	coefficient	at	elevated	temperatures	is	smaller	at	µ=0,	as	the	Fermi	level	is	closer	to	the	

point	at	which	there	is	a	change	of	sign	in	the	Seebeck	curve.	At	low	temperatures,	where	the	smearing	

of	the	Fermi	function	is	narrow,	the	presence	of	low-density	states	in	the	band	gap	of	the	transmission	

is	once	again	amplified	yielding	non-zero	values	at	µ=0.	
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Figure	 5.24	 –	 The	 effect	 of	

temperature	 on	 the	 Seebeck	

coefficient	 of	 Ottemannite.	

Whilst	 the	 presence	 of	

anisotropy	 is	 clear	 at	 lower	

temperatures,	 at	 elevated	

temperatures	 the	 Seebeck	

coefficient	 along	 each	

direction	 is	almost	equivalent.	

Transmission	 calculated	 using	

dftb-negf	with	 an	 energy	 step	

of	0.01	eV	and	k-grid	of	4x4x4.	

Thermoelectric	 coefficients	

derived	 using	 program	 (see	

section	 3.5),	 each	 series	

contains	8000	points.	
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5.4.5	–	DISCUSSION	OF	THE	RESULTS	OF	THE	NON-SELF-CONSISTENT	DFTB	

We	have	seen	the	thermoelectric	properties	of	the	naturally	occurring	tin	sulfides,	as	derived	from	the	

electronic	transmission	according	to	the	Landauer-Büttiker	method	and	its	implementation	in	the	Non-

Equilibrium	Green’s-Functions	(NEGF)	approach	of	DFTB	theory.	One	particular	observation	to	make,	is	

that	 in	the	previous	chapter,	we	saw	materials	where	the	electronic	structure	about	the	Fermi	 level	

was	almost	exclusively	determined	by	the	3p	orbitals	of	phosphorus.	In	the	tin	selenides,	the	edges	of	

the	valence	and	conductance	bands	are	defined	by	the	presence	of	the	3p	orbitals	of	sulphur,	and	the	

5p	and	5s	orbitals	of	tin,	with	small	contributions	from	the	4d	and	5s	of	tin.	The	interesting	feature,	is	

that	it	is	the	3p	orbitals	of	sulphur	which	dominate	the	valence	band	edge,	and	so	by	substituting	small	

amounts	of	sulphur	for	a	dopant	species,	it	may	be	possible	to	tune	the	shape	of	the	valence	band,	for	

materials	where	the	valence	band	dominates	transport	properties,	like	Ottemannite.	

We	 have	 seen	 that	 the	 quirks	 found	 in	 the	 temperature	 dependent	 curves	 of	 the	 thermoelectric	

properties	may	be	explained	by	inspection	of	the	potential	dependent	curves	at	discrete	temperatures.	

This	is	especially	the	case	for	the	Seebeck	coefficient,	where	the	effect	of	temperature	on	the	shape	

and	magnitude	of	the	temperature	dependent	curve	is	non-obvious.		

We	have	also	seen	that	whilst	Berndtite	and	Ottemannite	display	large	zTe’s,	the	presence	of	large	band	

gaps	in	the	electronic	structure	result	in	a	tendency	for	this	method	to	yield	large	zTe’s	that	may	not	

reflect	upon	the	true	zT,	as	the	phononic	or	lattice	contribution	to	the	thermal	conductivity	will	likely	

be	 several	 order	 of	 magnitude	 larger	 than	 the	 electronic	 contribution.	 Indeed,	 it	 had	 not	 gone	

unnoticed	that	the	band	gaps	observed	in	the	transmission	of	Berndtite	and	Ottemannite	as	calculated	

in	the	non-self-consistent	(NSCC)	formalism,	were	significantly	larger	than	those	observed	in	the	band	

structures	as	 calculated	by	DFT	 level	 theory,	 incorporating	 self-consistency	 (SCC).	 The	values	of	 the	

band	 gap	 for	 Berndtite	 and	 Ottemannite	 from	 the	 NSCC-DFTB	 approach	 were	 5	 eV	 and	 3	 eV	

respectively,	whereas	in	the	bands	calculated	in	the	SCC-DFT	formalism,	the	gaps	were	1.5	and	0.8	eV	

for	 Berndtite	 and	 Ottemannite	 respectively.	 For	 Herzenbergite,	 the	 gap	 of	 1.5	 eV	 from	 the	 DFTB	

approach,	and	1	eV	from	the	DFT	approach	were	considered	acceptable,	as	they	were	comparable	to	

those	 found	 in	 the	 literature.	 As	 a	 matter	 of	 fact,	 the	 expectation	 had	 been	 that	 DFTB	 would	

overestimate	the	band	gap,	whereas	DFT	would	underestimate	this	value.	The	discrepancy	of	0.5	eV	

was	considered	reasonable	between	these	methods	for	Herzenbergite,	though	the	large	discrepancies	

of	3.5	eV	and	1.2	eV	for	Berndtite	and	Ottemannite	were	deemed	to	negatively	impact	the	prediction	

of	the	thermoelectric	properties.	
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For	phosphorus,	omission	of	SCC	methods	was	considered	acceptable,	as	the	resultant	transmission	

spectra	 for	 a	 comparison	 study	 in	 grey	 phosphorus	 of	 the	 NSCC	 and	 SCC	 approach	 yielded	 little	

difference	between	datasets.	This	has	been	explained	in	the	literature	of	the	DFTB	methodology,	as	a	

consequence	of	the	lack	of	charge	transfer	in	pure	elemental	systems.	However,	for	a	binary	system	

with	an	appreciable	difference	in	electronegativity’s	(1.96	for	tin	and	2.58	for	sulphur),	due	diligence	

should	be	taken	to	account	for	the	presence	of	charge	transfer.	

	

5.4.6	–	SCC	TRANSMISSION	AND	THERMOELECTRIC	PROPERTIES	OF	
HERZENBERGITE,	SNS	

As	determined	in	5.4.5,	for	binary	systems	with	large	differences	in	electronegativity’s,	a	self-consistent	

approach	should	be	taken	to	account	for	charge	transfer.	This	is	especially	important	for	materials	with	

unequal	stoichiometries,	such	as	Berndtite	(SnS2),	as	the	band	gap	of	such	a	material	is	liable	to	large	

overestimation.	 This	 is	 unfortunate	 for	 the	method	 of	 obtaining	 thermoelectric	 properties	 of	 large	

systems	under	development	here,	as	the	inclusion	of	self-consistency	results	in	a	dramatic	increase	in	

computational	cost.	For	the	systems	under	study	with	between	2000	to	3000	atoms,	this	meant	that	

calculations	of	the	same	level	of	accuracy	became	impractically	expensive.	As	such,	it	was	determined	

that	to	include	self-consistent	methods,	a	depreciation	in	the	K-grid	sampling	mesh	and	an	appreciation	

in	 the	 energy	 step	 for	which	 the	 transmission	was	 to	 be	 calculated	would	 be	 necessary,	 and	 even	

provide	acceptable	resolution	for	such	large	systems.		

Using	a	k-grid	sampling	of	2	–	2	–	2	and	an	energy	step	of	0.02	eV,	the	electronic	transmission	spectra	

were	calculated	for	the	same	materials,	using	the	same	nanowire	devices	constructed	for	5.4.1	-	4.	The	

results	of	which	are	presented	in	the	next	sections.	

In	the	NSCC	transmission	calculation,	we	observed	that	Herzenbergite	had	a	band	gap	of	slightly	larger	

than	 1.5	 eV.	 In	 the	 SCC	methodology,	 we	 observe	 a	 band	 gap	 of	 approximately	 1.25	 eV,	 which	 is	

direction	 dependent.	 This	 has	 resulted	 in	 an	 increase	 of	 the	 electronic	 conductivity	 by	 2	 orders	 of	

magnitude	and	800	K,	whilst	the	Seebeck	coefficient	has	increased	by	approximately	25%	at	200	K.	The	

electronic	contribution	to	the	thermal	conductivity	has	increased	accordingly,	though	not	by	2	orders	

of	magnitude	as	one	may	expect	from	looking	at	the	electronic	conductivity.	The	thermal	conductivity	

has	increased	by	a	factor	of	4,	which	is	partly	due	to	the	dependence	of	this	property	on	the	Seebeck	

coefficient.		
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This	yields	a	power	factor	of	3	orders	of	magnitude	greater	than	that	derived	from	the	NSCC	calculation,	

while	 the	 zTe	 is	 also	 improved	 by	 a	 factor	 of	 1	 x	 103.	 It	must	 be	 noted,	 that	 the	magnitude	 of	 the	

transmission	has	not	been	particularly	affected	by	the	inclusion	of	self-consistency,	the	magnitude	of	

the	transmission	is	at	about	30	for	the	valence	band	and	50	for	the	conduction	band.	This	comparison	

is	meaningful	for	these	two	calculations,	as	the	devices	used	are	identical.	In	fact,	the	defining	factor	

for	these	thermoelectric	properties	appears	to	be	the	size	of	the	band	gap,	which	is	now	approximately	

17%	smaller.		
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Figure	5.25	–	The	temperature	dependent	thermoelectric	properties	of	Herzenbergite	with	the	inclusion	of	

self-consistency	in	the	calculation	of	the	transmission	spectrum.	Transmission	calculated	using	dftb-negf	

with	an	energy	step	of	0.01	eV	and	k-grid	of	4x4x4.	Thermoelectric	coefficients	derived	using	program	(see	

section	3.5),	each	series	contains	6000	points.	
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The	same	trends	are	observed	in	the	

potential	 dependent	 thermoelectric	

properties	 as	 those	 calculated	 by	

NSCC	methods,	we	 see	 a	 smoothing	

of	 the	 features	 in	 the	 electronic	

conductivities,	 with	 no	 discernible	

alteration	 of	 the	magnitude	 of	 each	

region.	While	we	note	an	increase	in	

the	 magnitude	 of	 the	 electronic	

contribution	 to	 the	 thermal	

conductivity,	with	a	slight	smoothing	

of	 the	 features,	 which	 is	 not	 as	

pronounced	 as	 for	 the	 electronic	

conductivities.		

	

	

	

	

	

	

Figure	5.26	–	The	effect	of	the	inclusion	

of	self-consistency	in	the	calculation	of	

the	 transmission	 on	 the	 potential	

dependent	 conductivity	 of	

Herzenbergite.	Transmission	calculated	

using	dftb-negf	with	an	energy	step	of	

0.01	 eV	 and	 k-grid	 of	 4x4x4.	

Thermoelectric	 coefficients	 derived	

using	 program	 (see	 section	 3.5),	 each	

series	contains	8000	points.	
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The	 potential	 dependent	 Seebeck	

coefficient	again	demonstrates	the	

presence	 of	 diffuse	 states	 within	

the	band	gap,	and	a	smoothing	of	

these	 features	 at	 higher	

temperatures.	Interestingly,	curves	

of	the	Seebeck	coefficients	are	not	

degenerate	at	500	K,	as	that	for	a	is	

slightly	offset	in	energy	from	b	and	

c,	albeit	of	comparable	magnitude.	

This	 is	 perhaps	 due	 to	 the	 size	 of	

the	 gap	 in	 the	 transmission	 of	 a,	

which	 is	 noticeable	 smaller	 than	

that	of	b	and	c	 in	 figure	5.26.	This	

effect	is	amplified	in	5.26	at	500	K,	

one	may	observe	that	the	position	

of	 the	 valence	 band	 edge	 of	 a	 is	

nearly	 0.2	 eV	 closer	 to	 the	 Fermi	

level	that	those	of	b	and	c.	

	

	

	

Figure	 5.27	 –	 The	 Seebeck	

coefficient	 of	 Herzenbergite	 with	

increasing	 temperature.	

Transmission	calculated	using	dftb-

negf	with	an	energy	step	of	0.01	eV	

and	k-grid	of	4x4x4.	Thermoelectric	

coefficients	derived	using	program	

(see	 section	 3.5),	 each	 series	

contains	8000	points.	
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Figure	 5.28	 –	 The	 effect	 of	

increasing	 temperature	 on	 the	

magnitude	 of	 the	 electronic	

thermal	 conductance	 of	

Herzenbergite	 in	 the	 self-

consistent	 methodology.	

Transmission	calculated	using	dftb-

negf	with	an	energy	step	of	0.01	eV	

and	k-grid	of	4x4x4.	Thermoelectric	

coefficients	derived	using	program	

(see	 section	 3.5),	 each	 series	

contains	8000	points.	
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5.4.7	–	SCC	TRANSMISSION	AND	THERMOELECTRIC	PROPERTIES	OF	BERNDTITE	

For	the	transmission	of	Berndtite	using	the	SCC	approach,	we	notice	a	similar	effect,	with	the	band	gap	

decreasing	by	nearly	1	eV,	to	about	3.8	eV.	The	gap	is	still	rather	large	however,	as	the	DFT	calculated	

band	gap	is	about	1.5	eV.	That	is	not	to	say	that	the	DFT	calculated	band	gap	is	necessarily	correct,	as	

the	PBE	functional	as	applied	by	the	DFT	methodology	is	known	to	underestimate	the	gap,	however	it	

would	be	hoped	that	the	disparity	between	the	two	was	less	than	1	eV.	As	a	matter	of	fact,	it	seems	

that	 the	tin	sulfide	parameters	supplied	were	optimised	 for	 the	Herzenbergite	crystal	structure	and	

chemistry,	 and	were	 not	 extensively	 optimised	 for	 the	 remaining	 tin	 sulfides.	Despite	 this,	 the	 SCC	

calculations	were	performed,	and	insight	into	the	effect	of	the	size	of	the	band	gap	on	the	electronic	

properties	could	be	gathered.	

The	same	“shape”	was	observed	in	the	transmission,	with	a	large	valence	band,	and	a	smaller	“island”	

of	a	conductance	band,	which	is	1	eV	closer	to	the	Fermi	level	than	the	valence	band	edge.	This	has	

resulted	in	an	increase	of	the	electronic	conductivity	by	nearly	4	orders	of	magnitude,	while	the	thermal	

conductivity	of	the	electrons	has	increased	by	2	orders	of	magnitude.	There	was	no	apparent	change	

in	 the	 magnitude	 of	 the	 Seebeck	 coefficient,	 however,	 the	 position	 of	 the	 optimal	 operating	

temperature	has	reduced,	from	about	500	K	to	about	380	K.	In	fact,	the	Seebeck	curve	is	largely	the	

same	shape	as	that	observed	for	the	NSCC	calculations	of	Berndtite,	the	notable	difference	being	the	

positive	values	along	a	at	 lower	 temperatures.	This	artefact	has	 little	apparent	effect	on	 the	power	

factor,	but	a	large	effect	on	the	zTe,	where	there	is	a	large	maximal	value	for	a	at	300	K,	7	times	larger	

than	that	of	b	or	c.	Additionally,	we	observe	a	second,	smaller	peak	in	the	value	of	zTe	for	a	above	600	

K,	another	example	of	a	material	where	the	sign	of	the	dominating	charge	carrier	changes	as	a	function	

of	temperature.	This	was	previously	observed	in	the	NSCC	calculation	of	Herzenbergite,	where	the	sign	

of	the	Seebeck	for	respective	b	was	negative	at	lower	temperatures,	but	large	and	positive	at	higher	

temperatures.	

In	Figure	5.30	we	see	a	very	similar	situation	for	the	Seebeck	coefficient	as	in	that	of	the	NSCC	derived	

Seebeck	in	figure	2.19.	The	presence	of	weak	states	within	the	perceived	band	gap	of	Berndtite	makes	

for	large	fluctuations	in	the	value	of	the	Seebeck	near	the	Fermi	level.	These	states	are	even	present	at	

elevated	temperatures	along	a,	such	as	500	K,	similar	to	that	observed	in	2.21.	The	fact	that	the	nature	

of	 the	 Seebeck	 coefficient	 is	 not	 dissimilar	 between	 the	 NSCC	 and	 SCC	 approaches,	 for	 both	 the	

temperature	dependent	and	potential	dependent	plots,	suggests	that	the	Seebeck	coefficient	is	more	

dependent	upon	the	actual	“shape”	of	the	transmission,	rather	than	the	band	gap	of	the	material.	This	

is	distinct	from	the	electronic	and	thermal	conductivities,	which	appear	to	be	directly	correlated	to	the	

magnitude	of	the	band	gap.	
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Figure	5.29	–	The	temperature	depended	thermoelectric	properties	of	Berndtite,	derived	from	the	

implementation	of	self-consistency	in	the	calculation	of	the	electronic	transmission.	Transmission	

calculated	using	dftb-negf	with	an	energy	step	of	0.01	eV	and	k-grid	of	4x4x4.	Thermoelectric	coefficients	

derived	using	program	(see	section	3.5),	each	series	contains	6000	points.	
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Again,	 despite	 this	 marked	

improvement	 in	 zTe,	 it	 cannot	

be	 overstated	 that	 the	 zTe	 of	

large	 band	 gap	 materials	 will	

not	 be	 representative	 of	 the	

overall	zT,	due	to	the	absence	

of	 the	 expectedly	 larger	

phonon	 contribution	 to	

thermal	 conductivity.	 Aside	

from	 this,	 it	 has	 been	 shown	

that	 the	 inclusion	 of	 self-

consistent	methods	 allows	 for	

the	 more	 accurate	 prediction	

of	 the	 electronic	

thermoelectric	 properties	 of	

non-elemental	systems,	where	

charge	transfer	effects	need	to	

be	accounted	for.	

	

	

	

Figure	 5.30	 –	 The	 effect	 of	

temperature	 on	 the	 potential	

dependent	 Seebeck	 coefficient	

of	 Berndtite.	 Transmission	

calculated	 using	 dftb-negf	 with	

an	energy	step	of	0.01	eV	and	k-

grid	 of	 4x4x4.	 Thermoelectric	

coefficients	 derived	 using	

program	(see	section	3.5),	each	

series	contains	8000	points.	
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5.5	–	NOVEL	MATERIALS	

It	 has	 recently	 been	 proven	 that	 the	 tin	mono-sulfide	 system	 has	 a	 rich	 chemistry	with	 respect	 to	

temperature,	by	the	discovery	of	two	novel	phases	of	SnS.	The	b-SnS	phase	is	closely	related	to	the	a-
SnS	phase,	and	is	obtained	by	heating	a-SnS	to	905	K.	Nota	bene,	Herzenbergite	will	be	referred	to	as	

a-SnS	 for	 the	duration	of	 this	 subsection	 to	enable	 the	distinction	between	 these	polymorphs.	The	

presence	of	this	b-phase	may	have	interesting	effects	on	the	thermoelectric	properties	of	tin	sulfide	

thermoelectrics	operating	above	this	temperature.	The	p-phase	SnS	is	a	unique	tin	sulfide	in	that	it	has	

a	3-dimensional	covalent	bonding	scheme,	with	internal	lone	pairs	on	sp3	hybridised	tin	and	sulphur	

atoms.	All	other	tin	sulfides	discovered	to	date	have	displayed	highly	anisotropic	symmetry,	with	stacks	

of	weakly	bound	2D	layers.	The	truly	exciting	feature	about	this	p-SnS,	 is	that	 it	 is	apparently	stable	

under	atmospheric	conditions,	though	it	has	only	been	observed	in	thin	films	and	as	nano-crystals,	most	

notably	in	the	photovoltaic	industry.	This	fact	allows	for	the	consideration	as	a	near	room	temperature	

thermoelectric,	potentially	for	the	field	of	thin	film	thermoelectric	devices.	Another	exciting	feature	of	

p-SnS,	is	that	it	has	a	large,	cubic	unit	cell,	which	is	a	criterion	stipulated	by	Zhang	et	al.	and	Snyder	et	

al.1,3	for	ideal	thermoelectrics,	as	the	cubic	symmetry	implies	the	presence	of	degenerate	valleys	in	the	

band	structures	of	such	materials,	which	is	believed	to	allow	for	large	electronic	conductivities	that	are	

not	present	at	the	expense	of	a	large	Seebeck	coefficient,	which	is	maintained	by	the	low	effective	mass	

of	such	bands.	

For	these	reasons,	the	thermoelectric	properties	of	these	materials	were	investigated	as	a	continuation	

of	the	wider-reaching	consideration	of	the	effect	of	phase	transitions	on	the	thermoelectricity.	

	

5.5.1	–	STRUCTURES,	SYMMETRY	

An	introduction	to	these	materials	was	given	in	5.3,	and	so	will	not	be	covered	in	depth	here,	however	

the	 key	 points	 will	 be	 summarised.	 Both	a-SnS	 and	 b-SnS	 are	 2D	 layered	 materials,	 consisting	 of	

covalently	bonded	SnS	layers,	bound	together	by	weak	intermolecular	(Van	der	Waals)	forces.	b-SnS	is	

obtained	via	the	compression	along	the	b	axis	of	a-SnS.	The	naming	convention	of	the	crystallographic	

vectors	used	for	the	transport	calculations	of	a-SnS	and	b-SnS	are	explained	by	figures	5.1	and	5.4.	For	

p-SnS,	which	has	cubic	symmetry,	the	crystallographic	vectors	are	related	by	symmetry,	and	since	a	=	

b	 =	 c,	 only	 one	 transport	 direction	was	 necessary	 to	 quantify	 the	 thermoelectric	 properties.	More	

explicitly,	p-SnS	shows	no	anisotropy.	Figure	5.29	shows	the	notable	geometries	of	these	3	phases.	
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Figure	5.31	–	The	3	known	phases	of	tin	mono-sulfide,	SnS.	Left	to	right:	Herzenbergite	or	a-SnS,	b-SnS	

and	p-SnS.	

5.5.2	–	DOS	

In	 the	 same	manner	 as	 for	 5.2.1,	 the	DOS	 of	b-SnS	 and	p-SnS	were	 calculated	 using	 SCC	methods	

implemented	by	DFTB	theory,	with	the	standard	SnS	parameter	set,	a	15	-15	-15	K-grid	for	b-SnS,	and	

a	10	-	10	-	10	K-grid	for	p-SnS	due	to	its	size.	The	results	are	shown	in	figure	5.32,	accompanied	by	the	

previously	calculated	DOS	of	a-SnS	(formerly	Herzenbergite).	The	stoichiometry	is	identical	for	these	3	

systems,	as	they	are	polymorphs,	and	therefore	a	meaningful	comparison	can	be	made	between	the	

DOS,	as	the	differences	between	these	plots	are	exclusively	due	to	the	geometry	of	the	system,	not	the	

stoichiometry,	 indeed	within	 each	of	 the	phases,	 tin	 is	 formally	 in	 the	 +2	oxidation	 state.	 The	DOS	

calculations	 of	a-,	 b-	 and	 p-SnS	 were	 performed	 on	 unit	 cells	 that	 contained	 8,	 8	 and	 64	 atoms	

respectively.	To	allow	for	ease	of	comparison,	 the	relative	 intensities	were	“normalised”	by	division	

across	the	energy	range	of	the	intensities	by	the	number	of	atoms	in	the	unit	cell,	such	that	the	DOS’	

presented	are	effectively	for	single	atoms.	

For	 b-SnS	 it	 is	 notable	 that	 there	 is	 less	 “fine	 structure”	 than	 for	a-SnS.	 This	 is	 attributed	 to	 the	

coordination	spheres	of	the	atoms	within	each	structure.	While	each	tin	atom	in	a-SnS	is	related	by	

symmetry	 and	 thus	 chemically	 equivalent,	 the	 polyhedron	 formed	 by	 the	 bonds	 within	 the	 first	

coordination	 sphere	 is	 a	 highly	 distorted	 octahedron.	 This	 asymmetry	 results	 in	 distinct	 bonding	

between	each	atom	in	the	coordination	sphere.	For	b-SnS,	each	tin	atom	within	the	structure	is	again	

symmetrically	and	chemically	equivalent,	however	in	this	case,	the	bonds	formed	with	neighbouring	

atoms	(within	the	first	coordination	sphere)	are	equivalent	in	the	x-	and	y-	(a	and	b)	axes,	resulting	in	a	

more	symmetric,	though	still	distorted	octahedron.	Hence,	the	DOS	of	b-SnS	is	“smoother”	than	that	

of	a-SnS,	as	there	are	fewer	“types	of	bond”.	
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For	p-SnS,	the	peaks	of	the	DOS	

are	broader	 for	 the	5p	and	4d	

orbitals,	 suggesting	 that	 there	

are	 a	 range	 of	 similar	 but	

distinct	bonds	in	this	geometry.	

However,	the	same	trends	hold	

true	 across	 the	 orbital	

contributions	 to	 each	 part	 of	

energy	range	for	each	phase	of	

SnS.	

	

	

	

	

	

	

	

	

	

	

	

Figure	 5.32	 –	 the	 Density	 of	

States	 of	 each	 of	 the	 tin	mono-

sulfide	 polymorph’s.	 Calculated	

using	the	dftb+	code,	with	k-grids	

of	5x5x5	for	a-SnS	and	b-SnS	and	

4x4x4	for	p-SnS.	
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5.5.3	–	BANDS	

The	bands	of	 the	b	and	p	phases	were	calculated,	with	 the	geometries	optimised	and	symmetrised	

using	 DFT	 level	 theory,	 as	 implemented	 in	 the	 quantum	 espresso	 plane	 wave	 package.	 The	

pseudopotentials	were	norm	conserving,	and	implemented	the	PBE	functional.	K-grids	of	4-4-4	were	

used	for	the	optimisation,	6-6-6	for	the	self-consistent	step	and	12-12-12	for	the	consequent	non-self-

consistent	step.	The	K-point	path	was	explicitly	specified	for	the	final	bands	calculation,	according	to	

the	convention	specified	by	Cortarolo.	These	are	the	same	parameters	used	for	the	bands	in	5.2.2,	such	

that	comparison	could	reasonably	be	made	to	the	a	phase,	as	demonstrated	in	figure	5.33.	

Ignoring	the	effect	of	the	large	number	of	atoms	in	the	unit	cell	of	p-SnS,	we	can	see	that	the	effective	

band	masses	for	p-SnS	are	far	greater	than	those	of	a-SnS	and	b-SnS,	whilst	those	of	b-SnS	appear	the	

lightest.	A	curious	observation,	is	that	in	the	structural	rearrangement	of	a-	to	b-SnS,	we	see	a	change	

from	a	direct	to	an	indirect	band	gap,	and	a	decrease	in	the	size	of	the	band	gap,	to	0.45	eV.	The	band	

gap	in	p-SnS	is	again	indirect,	at	1.2	eV.		

The	band	spectra	of	p-SnS	did	not	display	the	desired	 low	effective	mass,	though	they	did	display	a	

large	degeneracy	(defined	as	several	bands	possessing	the	same	energy,	within	a	few	KBT).	
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Figure	 5.33	 –	 The	 band	 spectra	

of	 the	 3	 phases	 of	 tin	 mono-

sulfide,	SnS.	.	Calculated	with	the	

quantum	 espresso	 plane	 wave	

code,	using	wavefunction	cutoff	

of	 50	 Ry,	 DFT-D	 Van	 der	Waals	

correction,	 and	 a	 12x12x12	 k-

grid.	



	
156	

5.5.4	–	TRANSPORT	AND	THERMOELECTRIC	PROPERTIES	OF	b-SNS	

The	 electronic	 transport	 of	 b-SnS	 was	 calculated	 as	 for	 5.4.1	 –	 5.4.4	 using	 NSCC	 methods	 as	

implemented	 within	 the	 NEGF-DFTB	 formalism.	 The	 thermoelectric	 transport	 coefficients	 were	

subsequently	derived,	as	presented	in	figure	5.34.	The	transmission	was	comparable	to	that	of	a-SnS	

(fig.	5.12),	in	that	it	was	asymmetric	with	respect	to	the	transmission	intensity	about	the	Fermi	level,	

and	that	the	relative	magnitudes	were	ordered:	a	>	b	>	c.	The	electronic	conductivity	displayed	the	

expected	semiconducting	 shape,	however,	was	2	orders	of	magnitude	greater	 than	 that	of	a-SnS	–	

likely	due	to	the	reduction	in	band	gap.	

The	 shape	 and	magnitude	 of	 the	 Seebeck	 coefficient	 was	 largely	 comparable	 to	 that	 of	a-SnS,	 as	

obtained	 by	 NSCC	 methods,	 yet	 differing	 in	 sign	 to	 that	 of	 the	 NSCC	 a-SnS.	 This	 is	 somewhat	

remarkable,	 and	believed	 to	 be	 entirely	 due	 to	 the	proximity	 of	 the	 conduction	band	 to	 the	 Fermi	

energy	in	the	NSCC	b-SnS.	The	electronic	contribution	to	the	thermal	conductivity	was	a	single	order	of	

magnitude	greater	than	that	obtained	from	NSCC	a-SnS,	largely	due	to	the	reduction	in	band	gap.	The	

power	 factor	was	 found	 to	 be	 2	 orders	 of	magnitude	 larger	 than	 that	 of	 the	 alpha	phase,	 and	 the	

average	maximal	zTe	of	150	at	around	300	K	was	found	to	be	3	order	of	magnitude	larger	than	the	alpha	

phase.	

Considering	that	the	contribution	of	the	lattice	thermal	conductivity	would	likely	be	of	the	same	order	

of	magnitude	for	the	a	and	b	phases,	it	seems	that	the	phase	transition	from	the	a	to	the	b	would	likely	

result	in	an	improved	zT	for	SnS,	as	recently	determined	for	SnSe.	This	appears	to	be	primarily	due	to	

the	band	gap,	which	has	seen	a	decrease	of	approximately	25%	in	the	NSCC	Transmission.		
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Figure	5.34	–	The	temperature	dependent	thermoelectric	properties	of	b-SnS.	Transmission	calculated	

using	dftb-negf	with	an	energy	step	of	0.01	eV	and	k-grid	of	4x4x4.	Thermoelectric	coefficients	derived	

using	program	(see	section	3.5),	each	series	contains	6000	points.	
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5.5.5	–	TRANSPORT	AND	THERMOELECTRIC	PROPERTIES	OF	p-SNS	

The	transport	for	p-SnS	was	calculated,	also	in	the	NSCC	methodology	and	the	NEGF-DFTB	approach.	

The	 thermoelectric	 properties	 calculated	 as	 a	 function	 of	 temperature	 according	 to	 the	 Landauer-

Büttiker	 formalism.	Transport	was	calculated	 in	a	single	direction,	as	 the	3	crystallographic	axes	are	

symmetrically	equivalent.	This	gave	a	transmission	spectrum	with	a	larger	band	gap	than	that	predicted	

by	the	bands	calculated	by	DFT	means,	as	would	be	expected	from	the	DFTB	approach.	Due	to	its	large	

unit	cell	size,	a	single	replication	in	each	crystallographic	vector	to	create	a	larger	principle	layer	would	

result	in	a	nanowire	of	minimum	size	with	4128	atoms,	which	resulted	in	a	memory	requirement	slightly	

larger	than	available	on	the	HPC	Wales	architecture.	As	such,	it	was	necessary	to	calculate	the	transport	

with	a	nanowire	consisting	of	6	unit	cells,	384	atoms.	This	resulted	in	a	very	low	resolution	transmission	

spectrum,	as	seen	in	figure	5.35.	

The	electronic	conductivity	was,	remarkably,	larger	than	that	of	a-SnS	despite	the	larger	band	gap.	A	

possible	cause	of	this	 is	the	steepness	of	the	transmission	at	the	band	edges,	which	may	result	 in	a	

larger	overlap	between	transmission	and	the	first	derivative	of	the	fermi	function	in	the	derivation	of	

the	thermoelectric	coefficients	in	accordance	with	the	Landauer-Büttiker	formalism.	This	may	be	a	fault	

of	 the	 poor	 resolution.	 Irrespective	 of	 this,	 the	 actual	 values	 of	 the	 conductivity	 are	 rather	 small,	

compared	to	those	of	most	“good”	thermoelectrics.	

The	 Seebeck	 coefficient	 was	 found	 to	 be	 rather	 large,	 and	 positive,	 as	may	 be	 expected	 from	 the	

proximity	of	the	calculated	Fermi	level	to	the	valence	band.	The	thermal	conductivity	of	the	electrons	

was	found	to	be	an	order	of	magnitude	lower	than	that	of	b-SnS.	This	was	anticipated	as	a	result	of	the	

large	(~3	eV)	band	gap.	

The	power	 factor	 is	of	 the	same	order	as	 that	calculated	 for	a-SnS	under	SCC	conditions,	 though	3	

orders	of	magnitude	larger	that	that	of	a-SnS	under	NSCC	conditions.	These	effects	could	be	due	to	the	

covalent	nature	of	the	3D	structure,	though	it	seems	likely	that	the	poor	resolution	is	responsible.	If	

this	were	not	the	case,	the	high	zTe	of	over	600	at	275	K	could	be	considered	promising.	
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Figure	5.35	–	The	temperature	dependent	thermoelectric	properties	of	cubic	p-SnS.	Due	to	the	cubic	

symmetry,	the	transmission	would	be	equivalent	in	each	axis.	Transmission	calculated	using	dftb-negf	with	

an	energy	step	of	0.01	eV	and	k-grid	of	4x4x4.	Thermoelectric	coefficients	derived	using	program	(see	

section	3.5),	each	series	contains	6000	points.	
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5.5.6	–	DISCUSSION	

It	 is	 clear	 that	 the	 occurrence	 of	 a	 phase	 transition	 within	 the	 operating	 temperatures	 of	 a	

thermoelectric	material	could	have	a	large	impact	in	the	thermoelectric	properties.	For	the	pure	phases	

of	tin	mono-sulfide,	the	a	to	b	phase	transition	appears	to	offer	a	promising	route	to	a	higher	efficiency	

material.	 This	 appears	 to	 be	 primarily	 due	 to	 the	 band	 gap,	 although	 additional	 study	 would	 be	

necessary	to	fully	characterise	the	impact	this	has	on	bonding	and	lattice	thermal	conductivity.	We	have	

seen	 that	 the	 Seebeck	 coefficient	 appears	 to	 be	 dependent	 on	 the	 shape	 of	 transmission,	 i.e.	 the	

relative	magnitudes	and	the	position	of	the	valence	and	conduction	band	edges	in	relation	to	the	Fermi	

level.	Alternatively,	the	electronic	conductivity	seems	to	bear	stronger	correlation	to	the	band	gap.	The	

implications	 of	 this	 suggest	 that	 a	 small	 band	 gap	 is	 necessary	 for	 large	 conductivities,	 and	 that	 a	

disparity	between	proximity	and	magnitude	of	the	transmission,	at	each	band	edge,	with	respect	to	the	

Fermi	energy	is	an	approach	that	may	achieve	a	large	Seebeck	coefficient.		

It	appears	that	even	a	small	change	in	the	band	gap	of	a	material	can	drastically	alter	the	magnitude	of	

the	electronic	conductivity	and	Seebeck	coefficient,	along	with	the	products	of	these	properties,	such	

as	 zTe.	 The	 next	 stage	 would	 be	 the	 inclusion	 of	 self-consistent	methods	 in	 the	 calculation	 of	 the	

electronic	 transmission,	 to	 try	 to	 tune	 the	 band	 gap	 of	 the	p-phase	 to	 that	 observed	 in	 the	 band	

structure	calculated	using	DFT	methods.	
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5.6	–	CONCLUSIONS	

In	 this	chapter,	a	crystallographic	study	of	existing	and	theoretical	 tin	sulfides	was	undertaken.	This	

included	 calculation	 of	 the	 band	 spectra	 and	 DOS	 for	 each	 material,	 as	 well	 as	 calculation	 of	 the	

equations	of	state	for	each	material.	The	effect	of	the	volume	on	the	total	energy	was	seen	as	a	way	in	

which	to	determine	the	likely	phases	that	may	exist	under	higher	pressures	or	temperatures.		

The	thermoelectric	transport	properties	have	been	derived	for	the	naturally	occurring,	ground	state	tin	

sulfide	 compounds,	 directly	 from	 the	 electronic	 transmission	 calculated	 by	 application	 of	 the	Non-

Equilibrium	Green’s	 Functions	 approach,	 as	 implemented	 in	Density	 Functional	 based	Tight	Binding	

theory	in	accordance	with	the	Landauer-Büttiker	formalism	of	electronic	transport.	We	have	observed	

that	the	zTe	of	the	complex	stoichiometry	Ottemannite	compound	(Sn2S3)	has	promising	characteristics,	

though	concede	that	the	large	band	gap	may	result	in	a	significantly	lower	zT	when	accounting	for	the	

phononic	contribution	to	thermal	conductivity.	

	

It	 has	 been	 demonstrated	 that	 for	 non-elemental	 systems,	 especially	 those	 which	 exhibit	 a	 large	

difference	in	electronegativity	between	chemical	species,	consideration	of	charge	transfer	effects	is	a	

necessary	task,	the	application	of	which	may	be	preferential	over	the	high	resolution	and	sampling	of	

the	transmission	spectra.		

It	has	also	been	suggested	that	whilst	the	use	of	this	method	is	necessary	for	the	modelling	of	large,	

asymmetric	 systems,	 conversely,	 it	 may	 be	 necessary	 that	 to	 use	 this	 method,	 large	 systems	 are	

necessary	to	obtain	a	smooth	sampling	and	better	resolved	transmission	spectrum.		

At	the	higher	level,	the	phase	transitions	observed	in	this	section	are	examples	of	both	temperature	

and	 size	 induced	phase	 transitions.	 These	phase	 transitions	are	purely	 structural,	 and	do	not	occur	

alongside	a	 simultaneous	electronic	phase	 transition.	Along	with	 the	work	on	 the	pressure	 induced	

phase	transitions	in	chapter	4,	this	presents	a	case	for	the	study	of	phase	transitions	in	thermoelectric	

materials.	Many	of	the	calculations	within	the	literature	offer	thermoelectric	properties	calculated	over	

a	range	of	 temperatures,	without	accounting	 for	 the	structural	 rearrangements	that	occur	with	this	

increase	 in	 kinetic	 energy,	 even	 if	 an	 alteration	 of	 symmetry	 is	 not	 necessarily	 present.	 This	 is	 an	

important	consideration,	as	it	has	been	demonstrated	that	even	the	slightest	change	in	the	ionic	and	

electronic	structure	can	have	vast	implications	for	the	thermoelectric	properties.	
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6 	– 	 F INAL 	NOTES 	

6.1	–	COMPUTATIONAL	METHODS	

In	 this	work,	computational	methods	have	been	used	 to	model	a	 range	of	electronic	and	structural	

properties.	 It	 is	clear	that	these	methods	allow	some	unique	 insights	for	the	chemist,	who	so	rarely	

witnesses	the	interactions	of	chemical	species	at	the	atomic	level.	The	approaches	used	and	developed	

here	allow	for	the	modelling	of	electronic	properties	of	large	systems,	along	with	the	derived	influence	

on	 thermoelectric	 properties.	 As	 such,	 these	 approaches	may	 be	 used	 to	 investigate	 the	 effect	 of	

macroscopic	phenomena	on	the	electronic	properties	of	a	material.	

6.2	–	THERMOELECTRIC	MATERIALS	

Thermoelectric	materials	have	been	known	for	a	long	time,	and	yet	it	is	in	recent	years	that	a	so	called	

“revolution”	 has	 occurred,	 due	 to	 the	 renewed	 interest	 in	 sustainable	 energy	 generation,	 and	 an	

improved	understanding	of	the	fundamental	properties	of	these	materials.	The	goal	of	a	zT	greater	than	

3	 is	 closer	 than	 ever,	 and	 it	 will	 be	 exciting	 to	 observe	 over	 the	 next	 decade,	 to	 see	 how	 these	

efficiencies	 are	 realised.	 It	 is	 widely	 the	 belief	 that	 a	 synergistic	 approach	 to	 the	 optimisation	 of	

thermoelectric	materials	is	required	to	meet	this	target,	however,	we	are	still	in	an	age	of	discovery,	

new	 or	 existing	 materials	 with	 astounding	 thermoelectric	 properties	 are	 constantly	 appearing.	

Therefore,	 an	understanding	of	 the	 fundamental	 phenomena	of	 thermoelectric	materials	 is	 vital	 to	

ensure	that	no	known	material	is	overlooked,	and	that	any	new	material	is	thoroughly	understood.	

6.3	–	ON	PHOSPHORUS	AS	A	MODEL	THERMOELECTRIC	MATERIAL	

Phosphorus	will	unlikely	be	a	commercial	thermoelectric	material.	However,	its	rich	phase	space	and	

the	 distinct	 structures	 it	 adopts	 allow	 for	 the	 consideration	 of	 the	 material	 as	 a	 model	 for	 the	

development	of	 thermoelectric	understanding.	The	expectation	had	always	been	that	 the	principles	

developed	using	phosphorus	would	be	applied	to	the	more	exotic	layered	compounds	in	an	effort	to	

drastically	 enhance	 the	 respective	 thermoelectric	 figures	 of	 merit.	 The	 effect	 of	 the	 coinciding	

structural	and	electronic	phase	transitions	 is	striking,	and	 it	stands	to	reason	that	there	 is	a	 level	of	

exploitability	to	this	approach.	
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It	has	been	shown	that	the	electronic	thermoelectric	figure	of	merit	may	be	substantially	improved	by	

the	selective	introduction	of	asymmetry	to	the	structure	of	black	phosphorus,	meanwhile	ensuring	that	

the	electronic	phase	 transition	does	not	occur.	This	 is	an	exciting	 result,	 that	holds	promise	 for	 the	

remaining	layered	materials	in	the	thermoelectric	family.	

The	presence	of	defect-rich	phosphorene	layers	in	the	structures	of	the	intermediate	phosphorus’	calls	

for	 an	 investigation	 into	 the	 effects	 of	 such	 defects	 on	 the	 electronic	 properties	 of	 thin	 films	 of	

phosphorene.	Such	boundaries	between	domains	may	allow	for	the	tuning	of	scattering	properties	in	

the	single	layer.	

	

6.4	–	ON	TIN	SULFIDES	AS	THERMOELECTRIC	MATERIALS	

Tin	Sulfide	is	a	known	thermoelectric,	and	there	is	a	flurry	of	activity	to	understand	and	enhance	the	

properties	of	 this	non-toxic,	earth-abundant	compound.	The	 flexibility	of	 this	 compound	 to	adapt	a	

wide	set	of	phases	encourages	hope	for	new	novel	phases	under	potentially	extreme	conditions,	which	

may	have	exciting	properties.	The	impact	of	the	high	temperature	phase	transition	is	clear,	the	same	

improvement	as	observed	in	the	isostructural	tin	selenides	is	present.	

The	next	stage	in	this	investigation	would	be	to	study	the	transition	pathway	between	the	a-phase	and	

b-phase,	 such	 that	 the	asymmetric,	metastable	 intermediate	approach	may	be	 taken,	 to	 selectively	

introduce	both	disorder	and	domain	interfaces	with	the	hopes	of	improving	the	power	factor	by	the	

scattering	of	low	energy	charge	carriers.	

The	p-phase	shows	promise	as	a	thermoelectric,	however	the	unfortunate	dissimilarity	between	the	

electronic	 structure	 as	 calculated	 by	Density	 Functional	 Theory	 and	Density	 Functional	 based	 Tight	

Binding	methods	 casts	 some	 suspicion	over	 the	 result.	 The	next	 step	 for	 this	material	would	be	 to	

improve	the	parameters	of	the	calculation	to	better	model	the	electronic	structure,	before	remodelling	

the	effects	of	thermoelectricity.	
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6.5	–	CLOSING	REMARKS	

There	is	significant	evidence	that	the	presence	of	phase	transitions	within	the	operating	conditions	of	

thermoelectric	devices	will	have	a	critical	effect	on	the	thermoelectric	properties	of	such	materials.	

should	there	be	a	semiconductor	to	metal	electronic	phase	transition,	the	results	may	be	disastrous.	

Should	there	be	a	structural	transition	that	alters	the	symmetry	of	a	system,	there	is	significant	scope	

for	an	improvement	in	the	thermoelectric	properties.	Were	it	possible	to	“freeze”	out	a	meta-stable	

intermediate	structure	from	the	transition	pathway,	either	by	the	effect	of	temperature	or	pressure,	

there	may	be	real	benefit	to	the	figure	of	merit	of	such	a	material,	and	this	may	be	a	legitimate	way	of	

enhancing	room	temperature	thermoelectrics,	where	the	low	operating	temperatures	may	preserve	

the	frustrated	geometry.	
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