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Abstract

Cryptococcus neoformans is one of the leading causes of invasive fungal infection in

humans worldwide. C. neoformans uses macrophages as a proliferative niche to increase

infective burden and avoid immune surveillance. However, the specific mechanisms by

which C. neoformans manipulates host immunity to promote its growth during infection

remain ill-defined. Here we demonstrate that eicosanoid lipid mediators manipulated and/or

produced by C. neoformans play a key role in regulating pathogenesis. C. neoformans is

known to secrete several eicosanoids that are highly similar to those found in vertebrate

hosts. Using eicosanoid deficient cryptococcal mutants Δplb1 and Δlac1, we demonstrate

that prostaglandin E2 is required by C. neoformans for proliferation within macrophages and

in vivo during infection. Genetic and pharmacological disruption of host PGE2 synthesis is

not required for promotion of cryptococcal growth by eicosanoid production. We find that

PGE2 must be dehydrogenated into 15-keto-PGE2 to promote fungal growth, a finding that

implicated the host nuclear receptor PPAR-γ. C. neoformans infection of macrophages acti-

vates host PPAR-γ and its inhibition is sufficient to abrogate the effect of 15-keto-PGE2 in

promoting fungal growth during infection. Thus, we describe the first mechanism of reliance

on pathogen-derived eicosanoids in fungal pathogenesis and the specific role of 15-keto-

PGE2 and host PPAR-γ in cryptococcosis.
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Author summary

Cryptococcus neoformans is an opportunistic fungal pathogen that is responsible for signif-

icant numbers of deaths in the immunocompromised population worldwide. Here we

address whether eicosanoids produced by C. neoformans manipulate host innate immune

cells during infection. Cryptococcus neoformans produces several eicosanoids that are

notable for their similarity to vertebrate eicosanoids, it is therefore possible that fungal-

derived eicosanoids may provoke physiological effects in the host. Using a combination of

in vitro and in vivo infection models we identify a specific eicosanoid species—prostaglan-

din E2 –that is required by C. neoformans for growth during infection. We subsequently

show that prostaglandin E2 must be converted to 15-keto-prostaglandin E2 within the

host before it has these effects. Furthermore, we find that prostaglandin E2/15-keto-pros-

taglandin E2 mediated virulence is via activation of host PPAR-γ –an intracellular eicosa-

noid receptor known to interact with 15-keto-PGE2.

Introduction

Cryptococcus neoformans is an opportunistic pathogen that infects individuals who have severe

immunodeficiencies such as late-stage HIV AIDS. C. neoformans is estimated to infect 278,000

individuals each year resulting in 181,000 deaths [1, 2]. C. neoformans infection begins in the

lungs where the fungus is phagocytosed by host macrophages. Macrophages must become acti-

vated by further inflammatory signals from the host immune system before they can effectively

kill C. neoformans [3, 4]. When this does not occur C. neoformans proliferates rapidly intracel-

lularly and may use the macrophage to disseminate to the central nervous system leading to

fatal cryptococcal meningitis [5–9].

Eicosanoids are an important group of lipid inflammatory mediators produced by innate

immune cells such as macrophages. Eicosanoids are a diverse group of potent signalling mole-

cules that have a short range of action and signal through autocrine and paracrine routes. Mac-

rophages produce large amounts of a particular group of eicosanoids called prostaglandins

during microbial infection [10, 11]. Prostaglandins have a number of physiological effects

throughout the body, but in the context of immunity they are known to strongly influence the

inflammatory state [12]. The prostaglandins PGE2 and PGD2 are the best-studied eicosanoid

inflammatory mediators. During infection, macrophages produce both PGE2 and PGD2 to

which, via autocrine routes, they are highly responsive [12]. In vertebrate immunity, the syn-

thesis of eicosanoids such as PGE2 is carefully regulated by feedback loops to ensure that the

potent effects of these molecules are properly constrained. Exogenous sources of eicosanoids

within the body, such as from eicosanoid-producing parasites [13] or tumours that overpro-

duce eicosanoids [14, 15], can disrupt host inflammatory signaling as they are not subject to

the same regulation.

It is well known that C. neoformans produces its own eicosanoid species. These fungal-

derived eicosanoids are indistinguishable from those produced by vertebrates [16–18]. Only

two Cryptococcus enzymes are known to be associated with cryptococcal eicosanoid synthesis

—phospholipase B1 and laccase [18, 19]. Deletion of phospholipase B1 reduces secreted levels

of all eicosanoids produced by C. neoformans suggesting that it has high level role in eicosanoid

synthesis [19], perhaps fulfilling the role of phospholipase A2 in higher organisms. Deletion of

laccase results in reduced levels of PGE2 but other eicosanoids are unaffected suggesting that

laccase has putative PGE2 synthase activity [18]. C. neoformans produces eicosanoids during

infection, these eicosanoids are indistinguishable from host eicosanoids so it is possible that C.
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neoformans is able to manipulate the host inflammatory state during infection by directly

manipulating host eicosanoid signaling.

It has previously been reported that the inhibition of prostaglandin E2 receptors EP2 and

EP4 during murine pulmonary infection leads to better host survival accompanied by a shift

towards Th1/M1 macrophage activation, however it was not determined if PGE2 was derived

from the host or the fungus [20]. Therefore, a key aspect of C. neoformans pathogenesis

remains unanswered: do eicosanoids produced by C. neoformans manipulate host innate

immune cells function during infection?

We have previously shown that the eicosanoid deficient strain Δplb1 has reduced prolifera-

tion and survival within macrophages [21]. We hypothesised that eicosanoids produced by C.

neoformans support intracellular proliferation within macrophages and subsequently promote

pathogenesis. To address this hypothesis, we combined in vitro macrophage infection assays

with our previous published in vivo zebrafish model of cryptococcosis [22]. We found that

PGE2 was sufficient to promote growth of Δplb1 and Δlac1 independent of host PGE2 produc-

tion, in vitro and in vivo. We show that the effects of PGE2 in cryptococcal infection are medi-

ated by its dehydrogenated form, 15-keto-PGE2. Finally, we determine that 15-keto-PGE2

promotes C. neoformans infection via the activation of the host nuclear transcription factor

PPAR-γ, demonstrating that 15-keto-PGE2 and PPAR-γ are new factors in cryptococcal

infection.

Results

Prostaglandin E2 is required for C. neoformans growth in macrophages

We have previously shown that the C. neoformans mutant strain Δplb1 has impaired prolifera-

tion and survival within J774 murine macrophages in vitro [21]. The Δplb1 strain has a dele-

tion in the PLB1 gene which codes for the secreted enzyme phospholipase B1 [23]. The Δplb1
strain is known to produce lower levels of fungal eicosanoids indicating that phospholipase B1

is involved in fungal eicosanoid synthesis [19]. It has been proposed that the attenuation of

this strain within macrophages could be because it cannot produce eicosanoids [19]. A previ-

ous study has identified PGE2 as an eicosanoid that promotes cryptococcal virulence and

manipulates macrophage activation, however this study did not determine if PGE2 was pro-

duced by the host or C. neoformans [20]. We hypothesised that PGE2—or other phospholipase

B1 derived eicosanoid species—are produced by C. neoformans during infection and promote

macrophage infection.

To test if PGE2 promotes the intracellular growth of C. neoformans we treated Δplb1
infected J774 macrophages with exogenous PGE2 and measured intracellular proliferation

over 18 hours. The addition of exogenous PGE2 to J774 macrophages infected with Δplb1 was

sufficient to recover the intracellular proliferation of Δplb1 compared to the H99 (parental

wild type strain) and Δplb1:PLB1 (PLB1 reconstituted ‘rescue’ strain) strains (Fig 1 p = 0.038).

These findings support our initial hypothesis and identify PGE2 as a mediator of cryptococcal

virulence during macrophage infection.

We have previously shown that Δplb1 has reduced intracellular proliferation due to a com-

bination of reduced cell division and reduced viability within the phagosome [21]. In our

intracellular proliferation assay the number of intracellular Cryptococcus cells is quantified by

lysing infected macrophage and counting the number of Cryptococcus cells with a hemocytom-

eter. Due to their structurally stable fungal cell wall, dead or dying Cryptococcus cells do not

look noticeably different on a hemocytometer from viable cells. To quantifiy the viability of

Cryptococcus cells retrieved from the phagosome we diluted the lysate to give an expected

number of CFUs (in this case 200 CFU), spread the diluted lysate on YPD agar and count the
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actual number of CFUs produced–a difference between the expected CFU count (200 CFU)

and the actual CFU count indicates a loss of Cryptococcus cell viability. In this case viability

assays showed that exogenous PGE2 produced no significant increase in the viability of Δplb1
cells within the phagosome (S1A Fig).

Exogenous prostaglandin E2 rescues in vivo growth of Δplb1-GFP

Our in vitro data showed that PGE2 promoted the intracellular proliferation of C. neoformans
within macrophages. To confirm this in vivo, we injected 2-day post fertilisation (dpf) zebra-

fish larvae with Δplb1-GFP (a constitutively expressed GFP tagged version of the Δplb1 gener-

ated for this study). One of the advantages of this model is that the fungal burden can be non-

invasively imaged within infected larvae using fluorescently tagged C. neoformans strains and

we able measure the growth of the fungus at 1-, 2- and 3-days post-infection (dpi). We found

that Δplb1-GFP infected larvae had significantly lower fungal burdens at 1-, 2- and 3-days post

infection (Fig 2D and S1B Fig) compared to the parental strain H99-GFP (Fig 2A and S1B

Fig). These data demonstrated that the Δplb1-GFP mutant had a similar growth deficiency to

our in vitro phenotype and with previous studies [21, 23, 24]. To confirm that PGE2 promotes

Fig 1. The intracellular proliferation defect of the C. neoformans mutant Δplb1, can be reversed with the addition

of exogenous prostaglandin E2. J774 murine macrophages were infected with Δplb1, the parental strain H99 or a

PLB1 reconstituted ‘rescue’ strain Δplb1:PLB1 (H99 genetic background). Infected cells were left untreated or treated

with 2 nM PGE2 or an equivalent solvent (ethanol) control. Mean IPR from 5 biological repeats shown with error bars

representing standard deviation. An unpaired two tailed Student’s t-test was performed to compare each treatment

group. H99 etoh vs H99 2 nM PGE2 ns p = 0.7212, Δplb1 etoh vs. Δplb1 2 nM PGE2
� p = 0.0376, Δplb1:PLB1 etoh vs.

Δplb1:PLB1 2 nM PGE2 ns p = 0.723.

https://doi.org/10.1371/journal.ppat.1007597.g001
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Fig 2. The prostaglandin E2 dependent growth defect of Δplb1 is also present in vivo. A i H99-GFP infected larvae imaged at 0, 1, 2 and 3 dpi. At least 50

larvae measured per time point across 3 biological repeats. Box and whiskers show median, 5th percentile and 95th percentile. Unpaired Mann-Whitney U tests

used to compare the burden between each strain for every time point, for p values see (S1Bii Fig). B i– H99-GFP Infected larvae treated with 10 μM prostaglandin

E2 or equivalent solvent (DMSO) control. At least 60 larvae measured per treatment group from 3 biological repeats. Box and whiskers show median, 5th

percentile and 95th percentile. Unpaired Mann-Whitney U tests used to compare between treatments DMSO vs. 10 μM PGE2
� p = 0.0137 (threshold for
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cryptococcal infection in vivo we infected zebrafish larvae with Δplb1-GFP or H99-GFP and

treated the larvae with exogenous PGE2. In agreement with our in vitro findings (Fig 1), exoge-

nous PGE2 increased the growth of both the parental H99 strain (Fig 2B, p = 0.0137, 1.35-fold

increase vs. DMSO) and the Δplb1-GFP mutant (Fig 2E, p = 0.0001, 2.15-fold increase vs.

DMSO) while PGD2 did not (Fig 2C and 2F). Taken together these data show that PGE2 is suf-

ficient to enhance the virulence of C. neoformans in vivo, furthermore our in vitro data suggest

that this is a result of uncontrolled intracellular proliferation within macrophages (Fig 1).

Prostaglandin E2 must be dehydrogenated into 15-keto-PGE2 to promote

C. neoformans growth

PGE2 can be enzymatically and non-enzymatically modified in cells to form a number of dis-

tinct metabolites. To distinguish the biological activity of PGE2 rather than its metabolites we

used an analogue of PGE2 called 16,16-dimethyl PGE2 that cannot be dehydrogenated but oth-

erwise has comparable activity to PGE2 [25]). We found that unlike PGE2, 16,16-dimethyl

PGE2 treatment did not increase the fungal burden of Δplb1-GFP (Fig 3C p = 0.9782) or
H99-GFP infected larvae (Fig 3A p = 0.9954). Therefore, the biological activity of PGE2 alone

did not appear to promote cryptococcal pathogenesis suggesting that dehydrogenation of

PGE2 was required. PGE2 and 16,16-dimethyl PGE2 both signal through PGE2 receptors (EP1,

EP2, EP3 and EP4) but 15-keto-PGE2 does not. In a murine model of pulmonary cryptococco-

sis the PGE2 receptors EP2 and EP4 have been identified as promoters of fungal virulence [20].

To confirm that PGE2 itself does not promote virulence in our model we treated zebrafish with

antagonists against the EP2 and EP4 receptors. In support of our previous experiment we

found that EP2 / EP4 inhibition had no effect on fungal burden in zebrafish (Fig 3E). An abun-

dant dehydrogenated form of PGE2 is 15-keto-PGE2 (that has also been isolated from C. neo-
formans [18]) and we tested if 15-keto-PGE2 was sufficient to rescue the growth defect of the

Δplb1 mutant during infection. Therefore, we treated infected zebrafish larvae with exogenous

15-keto-PGE2 and found that this was sufficient to significantly increase the fungal burden of

zebrafish larvae infected with both Δplb1-GFP (Fig 3D, p = 0.0119, 1.56-fold increase vs.

DMSO) and H99-GFP (Fig 3B, p = 0.0048, 1.36-fold increase vs. DMSO). To explore the Cryp-
tococcus eicosanoid synthesis pathway further we used a second eicosanoid deficient C. neofor-
mans mutant Δlac1. Whereas Δplb1 is unable to produce any eicosanoid species Δlac1 is

deficient only in PGE2 and 15-keto-PGE2 [18]. Using a Δlac1-GFP strain generated for this

study we found that Δlac1-GFP also produced low fungal burden during in vivo zebrafish lar-

vae infection (S2B Fig). As with Δplb1-GFP, this defect could be rescued with the addition of

exogenous PGE2 (S2C Fig), but not with 16,16-dm-PGE2 (S2D Fig) or with 15-keto-PGE2

(S2E Fig). PGE2 is known to affect haematopoietic stem cell homeostasis in zebrafish [26].

significance 0.017, corrected for multiple comparisons). C i, H99-GFP Infected larvae treated with 10 μM prostaglandin D2 or equivalent solvent (DMSO)

control. At least 60 larvae measured per treatment group from 4 biological repeats. Box and whiskers show median, 5th percentile and 95th percentile. Unpaired

Mann-Whitney U tests used to compare between treatments DMSO vs. 10 μM PGD2., ns p = 0.8 D i Δplb1-GFP infected larvae (500 cell inoculum injected at 2

dpf) imaged at 0, 1, 2 and 3 dpi. N = 3. Box and whiskers show median, 5th percentile and 95th percentile. At least 87 larvae measured for each time point from 3

biological repeats. Unpaired Mann-Whitney U tests used to compare the burden between each strain for every time point, for p values see (S1Ai and S1Aii Fig). E

i Δplb1-GFP Infected larvae treated with 10 μM prostaglandin E2 or equivalent solvent (DMSO) control. At least 35 larvae measured per treatment group from 2

biological repeats. Box and whiskers show median, 5th percentile and 95th percentile. Unpaired Mann-Whitney U tests used to compare between treatments

Δplb1-GFP DMSO vs 10 μM PGE2
��� p = 0.0001 (threshold for significance 0.017, corrected for multiple comparisons). F i Δplb1-GFP Infected larvae treated

with 10 μM prostaglandin D2 or equivalent solvent (DMSO) control. At least 45 larvae measured per treatment group from 3 biological repeats. Box and whiskers

show median, 5th percentile and 95th percentile. Unpaired Mann-Whitney U tests used to compare between treatments DMSO vs. 10 μM PGD2. Ns p = 0.1 A ii

Representative GFP images (representative = median value) H99-GFP infected larvae, untreated at 0,1,2,3 dpi. B ii, C ii Representative GFP images

(representative = median value) H99-GFP infected larvae, at 2 dpi treated with 10 μM PGE2 (B ii) or PGD2 (C ii). D ii Representative GFP images

(representative = median value) Δplb1-GFP infected larvae, untreated at 0,1,2,3 dpi. E ii, F ii Representative GFP images (representative = median value) Δplb1-
GFP infected larvae, at 2 dpi treated with 10 μM PGE2 (E ii) or PGD2 (F ii).

https://doi.org/10.1371/journal.ppat.1007597.g002
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This could affect macrophage number and subsequently fungal burden. We have previously

observed that a large depletion of macrophages can lead to increased fungal burden in zebra-

fish larvae [22]. We performed whole body macrophage counts on 2 dpf uninfected larvae

treated with PGE2 or 15-keto-PGE2 2 days post treatment (the same time points used in our

infection assay). Following PGE2 and 15-keto PGE2 treatment macrophages were still observ-

able throughout the larvae. For PGE2 treatment we saw on average a 15% reduction in macro-

phage number while 15-keto PGE2 did not cause any decrease (S1C Fig). Due to the fact that

fungal burden increased during both PGE2 and 15-keto PGE2 treatments it is highly unlikely

that this reduction could account for the increases in burden seen.

Host derived prostaglandins are not required for growth of C. neoformans
After determining that PGE2 promotes the growth of C. neoformans in vitro and in vivo via its

metabolite 15-keto-PGE2, we wanted to determine whether the source of these prostaglandins

was the host or the fungus. Our in vitro data show that the C. neoformans strain Δplb1 has a

growth deficiency in vitro and in vivo that can be rescued with the addition of PGE2, because

this phenotype is mediated by cryptococcal phospholipase B1 it indicates that pathogen-

derived rather than host-derived prostaglandins are required. A previous study reports that C.

neoformans infection can induce higher PGE2 levels in the lung during in vivo pulmonary

infection of mice [20], although it was not determined if the PGE2 was host or pathogen

derived. Therefore, we tested the hypothesis that host prostaglandin synthesis was not required

for cryptococcal virulence.

To block host prostaglandin synthesis in vitro we inhibited host cyclooxygenase activity

because it is essential for prostaglandin synthesis in vertebrates [27]. We treated H99 and

Δplb1 infected J774 macrophages with aspirin at a concentration we determined was sufficient

to block host PGE2 synthesis (S3A Fig). Aspirin is a non-reversible inhibitor of cyclooxygen-

ase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes, we therefore included a condition

where J774 cells were pretreated with aspirin only prior to infection and then at a condition

where aspirin was present throughout infection. We found that aspirin treatment did not affect

the intracellular proliferation of H99 or Δplb1 (Fig 4A), suggesting that host cyclooxygenase

activity is not required for the phospholipase B1 dependent virulence of C. neoformans during

macrophage infection. To confirm this in vivo, we pharmacologically blocked zebrafish COX-

1 and COX-2. We used separate cyclooxygenase inhibitors with zebrafish larvae instead of

Fig 3. The observed activity of PGE2 is due to its dehydrogenated derivative 15-keto-PGE2: Fungal burden measured at 2

days post infection (2 dpi) by counting GFP positive pixels in each larvae. A i H99-GFP Infected larvae treated with 10 μM

16,16-dimethyl-prostaglandin E2 or equivalent solvent (DMSO) control. At least 75 larvae measured per treatment group from 4

biological repeats. Box and whiskers show median, 5th percentile and 95th percentile. Unpaired Mann-Whitney U test used to

compare between treatments, DMSO vs. 10 μM 16, 16-dm PGE2 ns p = 0.9954. B i H99-GFP Infected larvae treated with 10 μM

15-keto-prostaglandin E2 or equivalent solvent (DMSO) control. At least 55 larvae measured per treatment group from 3

biological repeats. Unpaired Mann-Whitney U test used to compare between treatments DMSO vs. 10 μM 15-keto = PGE2
��

p = 0.0048 (threshold for significance 0.017, corrected for multiple comparisons). C i Δplb1-GFP Infected larvae treated with

10 μM 16, 16-dimethyl prostaglandin E2 or equivalent solvent (DMSO) control. At least 45 larvae per treatment group from 3

biological repeats. Unpaired Mann-Whitney U test used to compare between treatments Δplb1-GFP DMSO vs 10 μM 16, 16-dm

PGE2 ns p = 0.98. D i Δplb1-GFP Infected larvae treated with 10 μM 15-keto-prostaglandin E2 or equivalent solvent (DMSO)

control. At least 35 larvae measured per treatment group from 2 biological repeats. Unpaired Mann-Whitney U test used to

compare between treatments DMSO vs 10 μM 15-keto-PGE2
� p = 0.0119 (threshold for significance 0.017, corrected for multiple

comparisons). A ii, B ii Representative GFP images (representative = median value) H99-GFP infected larvae, at 2dpi treated with

10 μM 16,16-dm-PGE2 (A ii) or 15-keto-PGE2 (B ii). C ii, D ii Representative GFP images (representative = median value) Δplb1-
GFP infected larvae, at 2dpi treated with 10 μM 16,16-dm-PGE2 (C ii) or 15-keto-PGE2 (D ii). E H99-GFP infected larvae treated

with a combination of 3 μM AH6809 and 3 μM GW627368X or equivalent solvent (DMSO) control. Box and whiskers show

median, 5th percentile and 95th percentile. At least 64 larvae measured per treatment group from 4 biological repeats. Mann-

Whitney U test used to compare between treatments, no significance found.

https://doi.org/10.1371/journal.ppat.1007597.g003
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aspirin because we found that aspirin treatment led to lethal developmental defects in zebrafish

larvae (unpublished observation). We infected 2 dpf zebrafish larvae with H99-GFP and

Δplb1-GFP and treated with inhibitors for COX-1 (NS-398, 15 μM) and COX-2 (SC-560,

15 μM). We found that both inhibitors decreased the fungal burden of H99-GFP, but not

Δplb1-GFP infected zebrafish larvae (Fig 4Bi and 4Bii, H99-GFP—NS-398, p = 0.0002,

1.85-fold decrease vs. DMSO. SC-560 p =<0.0001, 3.14-fold decrease vs DMSO). These find-

ings were different to what we had observed in vitro but because this phenotype was phospho-

lipase B1 dependent we reasoned that these inhibitors could be having off target effects on C.

neoformans.C. neoformans does not have a homolog to cyclooxygenase however other studies

have tried to inhibit eicosanoid production in Cryptococcus using cyclooxygenase inhibitors

but their efficacy and target remain uncertain [17, 28]. To support our pharmacological evi-

dence, we used a CRISPR/Cas9-mediated knockdown of the prostaglandin E2 synthase gene

(ptges) [29]. We used a knockdown of tyrosinase (tyr)–a gene involved in the conversion of

tyrosine into melanin as a control because tyr-/- crispants are easy to identify because they do

not produce any pigment. We infected 2 dpf ptges-/- and tyr-/- zebrafish larvae with H99-GFP

or Δplb1-GFP and measured the fungal burden at 3 dpi. We found that ptges-/- zebrafish

infected with H99-GFP had a higher fungal burden at 3 dpi compared to tyr-/- zebrafish

infected with H99-GFP whereas there was no difference between ptges-/- and tyr-/- zebrafish

larvae infected with Δplb1-GFP (Fig 4C). Thus, both pharmacological and genetic inhibitions

of host prostaglandin synthesis were not determinants of C. neoformans growth.

Phospholipase B1 dependent factors are sufficient to support Δplb1 growth

in macrophages

To further evidence that C. neoformans was the source of PGE2 during macrophage infection

we used a co-infection assay which has previously been used to investigate the interaction of

different C. gattii strains within the same macrophage [30]. We hypothesised that if C. neofor-
mans derived prostaglandins promoted fungal growth, co-infection between H99 and Δplb1

Fig 4. Host derived prostaglandins are not required for growth of C. neoformans. A Intracellular proliferation quantified from timelaspe

movies of J774 macrophages infected with H99-GFP or Δplb1-GFP and treated with 1 mM Aspirin–either for 18 hours before infection

(pretreatment) or throughout the time course of infection. One-way ANOVA with Tukey post-test performed comparing all conditions.

H99-GFP DMSO vs. Δplb1-GFP DMSO ��� p = 0.0002. H99-GFP DMSO vs. Δplb1-GFP 1 mM (pretreat) ���� p =<0.0001. H99-GFP DMSO vs.

Δplb1-GFP 1 mM aspirin ��� p = 0.0001. H99-GFP + 1mM aspirin (pretreat) vs. Δplb1-GFP DMSO ���� p<0.0001. H99-GFP + 1mM aspirin

(pretreat) vs. Δplb1-GFP 1 mM aspirin (pretreat) ���� p< 0.0001. H99-GFP + 1mM aspirin (pretreat) vs. Δplb1-GFP 1 mM aspirin ���� p

<0.0001. H99-GFP+ 1mM aspirin vs. Δplb1-GFP DMSO ��� p = 0.0001. H99-GFP + 1mM aspirin vs. Δplb1-GFP 1 mM aspirin (pretreat) ���� p

<0.0001. H99-GFP+ 1mM aspirin vs. Δplb1-GFP 1 mM aspirin ���� p< 0.0001. B i H99-GFP infected larvae treated with 15 μM NS-398, 15 μM

SC-560 or equivalent solvent (DMSO) control. Box and whiskers show median, 5th percentile and 95th percentile. At least 25 larvae measured per

treatment group from 2 biological repeats. Mann-Whitney U test used to compare between treatments, DMSO vs. 15 μM ��� p = 0.0002. B ii

Δplb1-GFP infected larvae treated with 15 μM NS-398, 15 μM SC-560 or equivalent solvent (DMSO) control. Box and whiskers show median, 5th

percentile and 95th percentile. At least 34 larvae measured per treatment group from 2 biological repeats. Mann-Whitney U test used to compare

between treatments, no significance found. C 2 dpi zebrafish larvae crispants with CRISPR knockout against Prostaglandin E2 synthase (ptges) or

a Tyrosinase control (tyr) infected with H99-GFP or Δplb1-GFP, fungal burden quantified at 0 dpi (C i) and 3 dpi (C ii)–data shown is a single

experiment but is representative of N = 3 experiments. One way ANOVA with Tukey post-test performed to compare each condition C i no

significance found C ii H99-GFP + tyr -/- vs. H99-GFP + ptges -/- � p = 0.0390. H99-GFP + ptges -/- vs. Δplb1-GFP + tyr -/- � p = 0.0313. H99-GFP +

ptges -/- vs. Δplb1-GFP + ptges -/- � p = 0.0121. D i PGE2 monoclonal EIA ELISA performed on supernatants from C. neoformans infected

macrophages collected at 18 hr post infection. Mean concentration of PGE2 (pg per 1x106 cells) plotted with SD, n = 4. One-way ANOVA with

Tukey post-test performed, no significance found. D ii LC MS/MS mass spectrometry analysis performed on cell suspensions (infected J774 cells

and supernatants) collected at 18 hr post infection. Mean concentration of PGE2 (pg per 1x106 cells) plotted with SD, n = 3. One-way ANOVA

with Tukey post-test performed, no significance found. E J774 cells co-infected with a 50:50 mix of Δplb1 and H99-GFP. i Diagrammatic

representation of co-infection experiment. GFP+ (green) and GFP- (yellow) C. neoformans cells within the phagosome were quantified at 0 hr,

macrophages with a burden ratio of 1:2 or 2:1 were re-analysed at 18 hr, the IPR for Δplb1 within 2:1 and 1:2 co-infected cells were calculated by

dividing the burden at 18hr by burden at 0 hr for GFP+ (green) or GFP- (yellow) cells. ii Quantification of IPR for Δplb1 cells within Δplb1:

H99-GFP 2:1 or 1:2 co-infected macrophages. At least 35 co-infected macrophages were analysed for each condition over 4 experimental repeats.

Student’s T test performed to compare ratios– 2:1 vs 1:2 � p = 0.0137.

https://doi.org/10.1371/journal.ppat.1007597.g004
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would support mutant growth within macrophages because the parental strain H99 would

produce growth promoting prostaglandins that are lacking in Δplb1. To produce co-infection,

J774 murine macrophages were infected with a 50:50 mixture of Δplb1 and H99-GFP [30] (Fig

4Ei; as described previously for C. gattii [30]). This approach allowed us to differentiate

between Δplb1 (GFP negative) and H99 (GFP positive) Cryptococcus strains within the same

macrophage and to score their proliferation separately. The intracellular proliferation of Δplb1
was calculated by counting the change in number of GFP negative Δplb1 cells over an 18hr

period from time-lapse movies of infected cells. We found that co-infected macrophages did

not always contain an equal ratio of each strain at the start of the 18hr period so we scored the

proliferation of Δplb1 for a range of initial burdens (1:2, 1:3 and 1:4). We found that Δplb1 pro-

liferated better when accompanied by two H99-GFP yeast cells in the same macrophage (Fig

4Eii, 1:2 p = 0.014) as opposed to when two Δplb1 yeast cells were accompanied by one

H99-GFP yeast cell (Fig 4Eii, 2:1). We observed a similar effect for ratios of 1:3 and 1:4, but

these starting burden ratios are particularly rare, under powering our analysis (S3 Fig). This

effect was also recapitulated for J774 macrophages co-infected with Δlac1 and H99-GFP (S2A

Fig). These data indicate that a phospholipase B1 dependent factor found in H99 infected mac-

rophages, but absent in Δplb1 and Δlac1 infected macrophages, is required for intracellular

proliferation within macrophages.

Production of PGE2 by macrophages is not altered by C. neoformans
infection

Our data indicate that host cells are not the source of virulence promoting prostaglandins, and

that secreted factors produced by wild type—but not Δplb1 or Δlac1 Cryptococcus strains–promote

fungal growth within macrophages. We wanted to test if there were detectable differences in

PGE2 levels between infected and uninfected macrophages caused by cryptococcal prostaglandin

synthesis. To do this we performed ELISA analysis to detect PGE2 concentrations in supernatants

from C. neoformans infected J774 macrophages (Fig 4Di). We found that J774 macrophages pro-

duced detectable levels of PGE2 (mean concentration 4.10 ng/1x106 cells), however we did not see

any significant difference between infected or uninfected macrophages (infected with H99, Δplb1
or Δplb1:PLB1 strains). To confirm our ELISA results, we performed LC MS/MS analysis of lysed

J774 macrophages using a PGE2 standard for accurate quantification (Fig 4Dii). The concentra-

tions detected were similar to those measured by our ELISA (mean concentration 6.35 ng/1X106

cells) and also did not show any significant differences between conditions. Taken together these

data suggest that any Cryptococcus-derived prostaglandins present during infection were likely to

be contained within the macrophage in low, localized concentrations and that the host receptor

targeted by these eicosanoids is therefore likely to be intracellular.

15-keto-PGE2 promotes C. neoformans growth by activating host PPAR-γ
We next wanted to determine how PGE2 / 15-keto-PGE2 promotes C. neoformans infection.

We hypothesized that these prostaglandins were interfering with inhibition of fungal growth

via a host receptor. Our experiments inhibiting EP2 / EP4 suggest that 15-keto-PGE2 must sig-

nal through a different receptor to PGE2 (Fig 3E). 15-keto-PGE2 is a known agonist of the per-

oxisome proliferation associated receptor gamma (PPAR-γ) [31]; a transcription factor that

controls expression of many inflammation related genes [32–34]. We first tested if PPAR-γ
activation occurs within macrophages during C. neoformans infection by performing immu-

nofluorescent staining for PPAR-γ in macrophages infected with H99 and Δplb1. To quantify

PPAR-γ activation we measured its nuclear translocation by comparing nuclear and cyto-

plasmic fluorescence intensity in infected cells. PPAR-γ is a cytosolic receptor that translocates
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to the nucleus upon activation, therefore cells where PPAR-γ is activated should have

increased nuclear staining for PPAR-γ. We found that J774 macrophages infected with H99

had significantly higher levels of nuclear staining for PPAR-γ compared to Δplb1 infected and

uninfected cells (Fig 5Ai and S3C Fig). This confirmed that C. neoformans activates PPAR-γ
and that this phenotype is phospholipase B1 dependent.

To test the activation of PPAR-γ during infection we first wanted to confirm that exogenous

15-keto-PGE2 activates zebrafish PPAR-γ in vivo by using transgenic PPAR-γ reporter zebra-

fish larvae [35, 36]. We treated these larvae at 2 dpf with 15-keto-PGE2 and Troglitazone

(TLT) which is a specific agonist of PPAR-γ. TLT treatment was performed with a concentra-

tion (0.55 μM) previously shown to strongly activate PPAR-γ in these zebrafish larvae [35]. We

found that TLT treatment at 2 dpf strongly activated GFP reporter expression in the larvae.

We employed a receptor competition assay as a sensitive measurement of binding by simulta-

neously treating zebrafish with with 15-keto-PGE2 and TLT. We observed a reduction in GFP

expression compared to TLT treatment alone (Fig 5Aii), demonstrating competition for the

same receptor. This could mean that 15-keto-PGE2 was a partial agonist [37, 38] or an antago-

nist to PPAR-γ in this experiment. Existing studies suggest 15-keto-PGE2 is an agonist to

PPAR-γ [31] but to confirm this in our model we treated Δplb1-GFP infected zebrafish larvae

with exogenous 15-keto-PGE2 as before but at the same time treated fish with the PPAR-γ
antagonist GW9662. We found that 15-keto-PGE2 treatment significantly improved the

growth of Δplb1-GFP during infection but that inhibition of PPAR-γ was sufficient to reverse

this effect (Fig 5C). Therefore, we could demonstrate that that 15-keto-PGE2 was an agonist to

PPAR-γ, and that PPAR-γ activation was sufficient to promote a permissive environment for

C. neoformans growth during infection.

To determine if PPAR-γ activation by C. neoformans facilitates growth within macrophages

we treated H99 and Δplb1 infected J774 murine macrophages with the PPAR-γ antagonist

GW9662. GW9662 treatment significantly reduced the proliferation of H99, but not Δplb1
(Fig 5B, p = 0.026, 1.22-fold decrease vs. DMSO). Further supporting that PPAR-γ activation

is necessary for the successful intracellular parasitism of host macrophages by C. neoformans.
Finally, to confirm that PPAR-γ activation alone promoted C. neoformans infection we treated

2dpf infected zebrafish larvae with TLT at the same concentration known to activate PPAR-γ
in PPAR-γ reporter fish (Fig 5Aii and [35]). We found that TLT treatment significantly

increased the fungal burden of Δplb1-GFP (Fig 5E and, p = 0.0089, 1.68-fold increase vs.

DMSO), H99-GFP (Fig 5D, p = 0.0044, 1.46-fold increase vs. DMSO) and Δlac1-GFP (Fig 5F,

p = 0.01, 1.94-fold increase vs. DMSO) infected larvae similar to 15-keto-PGE2 treatment.

Thus, we could show that host PPAR-γ activation was sufficient to promote cryptococcal

growth during infection and was a consequence of fungal derived prostaglandins.

Discussion

We have shown for the first time that eicosanoids produced by C. neoformans promote fungal

virulence both in vitro and in vivo. In this respect we have shown that the intracellular growth

defects of two eicosanoid deficient C. neoformans strains Δplb1 and Δlac1 [21, 23] can be res-

cued with the addition of exogenous PGE2. Furthermore, our in vitro co-infection assay, in
vitro infection assays with aspirin, and in vivo infection assays provide evidence that the source

of this eicosanoid during infection is from the pathogen, rather than the host. Using an in vivo
zebrafish larvae model of cryptococcosis we find that that PGE2 must be dehydrogenated into

15-keto-PGE2 before to influence fungal growth. Finally, we provide evidence that the mecha-

nism of PGE2/15-keto-PGE2 mediated growth promotion during larval infection is via the

activation of PPAR-γ [32, 33, 39–41].
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In a previous study it was identified that the C. neoformans mutant Δplb1 (that lacks the

PLB1 gene coding for phospholipase B1) was deficient in replication and survival in macro-

phages [21], a phenotype also observed by a number of studies using different in vitro infection

assays [19, 23]. In this study we demonstrate that supplementing Δplb1 with exogenous prosta-

glandin E2 during in vitro macrophages infection is sufficient to restore the mutant’s intracel-

lular proliferation defect. A key goal of this study was to investigate how eicosanoids produced

by C. neoformans modulate pathogenesis in vivo [22]. To facilitate in vivo measurement of fun-

gal burden we created two GFP-tagged strains with constitutive GFP expression - Δplb1-GFP

and Δlac1-GFP—to use alongside the GFP-tagged H99 parental strain previously produced

[42]. These two mutants are the only C. neoformans mutants known to have a deficiency in

eicosanoid synthesis. Δplb1 cannot produce any eicosanoid species suggesting phospholipase

B1 is high in the eicosanoid synthesis pathway while Δlac1 has a specific defect in PGE2 sug-

gesting it might be a prostaglandin E2 synthase enzyme. To our knowledge these are the first

GFP expressing strains of Δplb1 and Δlac1 created. Characterisation of Δplb1-GFP and Δlac1-
GFP in vivo revealed that both strains have significantly reduced fungal burdens compared to

H99-GFP. This is the first report of Δlac1 in zebrafish but these observations do confirm a pre-

vious zebrafish study showing that non-fluorescent Δplb1 had attenuated infectious burden in

zebrafish larvae [43]. To confirm that PGE2 is also required for cryptococcal growth in vivo we

treated Δplb1-GFP and Δlac1-GFP infected zebrafish larvae with exogenous PGE2 to determine

how it would affect fungal burden. In agreement with our in vitro findings we found that PGE2

significantly improved the growth of both of these strains within larvae. Interestingly we also

found that PGE2 improved the growth of H99-GFP, perhaps representing a wider manipula-

tion of host immunity during in vivo infection.

In vertebrate cells, PGE2 is converted into 15-keto-PGE2 by the enzyme 15-prostaglandin

dehydrogenase (15PGDH), furthermore it has been reported that C. neoformans has enzymatic

activity analogous to 15PGDH [18]. To investigate how the dehydrogenation of PGE2 to

15-keto-PGE2 influenced fungal burden we treated infected larvae with 16,16-dm-PGE2 –a

synthetic variant of PGE2 which is resistant to dehydrogenation [25]. Interestingly we found

that 16,16-dm-PGE2 was unable to promote the growth of Δplb1-GFP, H99-GFP or Δlac1-GFP

Fig 5. 15-keto-PGE2 promotes fungal burden by activating host PPAR- γ. A i J774 macrophages treated with Troglitazone (TLT—0.25 μM), an

equivalent DMSO control or infected with H99 or Δplb1 fixed and stained at 18 hpi with Hoechst and antibody against PPAR-γ. Nuclear localization of

PPAR-γ quantified by measuring nuclear grey value of at least 30 cells per condition. A single experiment is shown that is representative of n = 2. One way

ANOVA with Tukey post-test used to compare all conditions. DMSO vs. TLT �� p = 0.0049. DMSO vs H99 �� p = 0.0040. TLT vs Δplb1 � p = 0.0212. H99

vs. Δplb1 � p = 0.0187. A ii Transgenic zebrafish larvae with a GFP PPAR- γ reporter treated with DMSO, 250 nM Troglitazone or 10 μM 15-keto-PGE2

+ 250 nM Troglitazone overnight and imaged. Lateral views of 2 dpf embryos, anterior to the left, are shown. B J774 murine macrophages infected with

Δplb1 or the parental strain H99. Infected cells treated with 25 μM GW9662 (a PPAR-γ antagonist) or equivalent solvent (DMSO) control. Mean IPR from

6 biological repeats shown with error bars representing standard deviation. An unpaired two tailed Student’s t-test was performed to compare each

treatment group. H99 DMSO vs. H99 25 μM GW9662 � p = 0.026. C Δplb1-GFP infected larvae treated with 10 μM 15-keto-PGE2, 500 nM GW9662,

10 μM 15-keto-PGE2 + 500 nM GW9662 or an equivalent solvent (DMSO) control. Box and whiskers show median, 5th percentile and 95th percentile. At

least 35 larvae measured per treatment group from 2 biological repeats. Mann-Whitney U test used to compare between treatments. DMSO vs. 15-keto-

PGE2
���� p<0.0001 (threshold for significance 0.025, corrected for multiple comparisons), 15-keto-PGE2 vs. 15-keto-PGE2 + 500 nm GW9662 ��

p = 0.005 (threshold for significance 0.025, corrected for multiple comparisons) D-F 2 day old (2 dpf) Nacre zebrafish larvae injected with 500 cell

inoculum. Fungal burden measured at 2 days post infection (2 dpi) by counting GFP positive pixels within each larvae. D i H99-GFP Infected larvae

treated with 0.55 μM Troglitazone (TLT) equivalent solvent (DMSO) control. Box and whiskers show median, 5th percentile and 95th percentile. At least

55 larvae measured per treatment group over 3 biological repeats. Mann-Whitney U test used to compare between treatments, DMSO vs. 0.55 μM

Troglitazone �� p = 0.0044 (threshold for significance 0.025, corrected for multiple comparisons). E i Δplb1-GFP infected larvae treated with 0.55 μM

Troglitazone (TLT) equivalent solvent (DMSO) control. Box and whiskers show median, 5th percentile and 95th percentile. At least 35 larvae measured per

treatment group from 2 biological repeats. Mann-Whitney U test used to compare between treatments, DMSO vs. 0.55 μM Troglitazone �� p = 0.0089

(threshold for significance 0.025, corrected for multiple comparisons). F i Δlac1-GFP infected larvae treated with 0.55 μM Troglitazone (TLT) equivalent

solvent (DMSO) control. At least 60 larvae measured per treatment group from 3 biological repeats. Box and whiskers show median, 5th percentile and

95th percentile, DMSO vs. 0.55 μM Troglitazone � p = 0.01 (threshold for significance 0.025, corrected for multiple comparisons). D ii, E ii and F ii,

Representative GFP images (representative = median value) C. neoformans infected larvae, at 2 dpi treated with 0.55 μM Troglitazone (TLT) D ii -

H99-GFP, E ii - Δplb1-GFP and F ii Δlac1-GFP.

https://doi.org/10.1371/journal.ppat.1007597.g005
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within infected larvae. These findings indicate that 15-keto-PGE2, rather than PGE2, promotes

cryptococcal virulence. We subsequently treated infected larvae with exogenous 15-keto-PGE2

and confirmed that 15-keto-PGE2 treatment was sufficient to promote the growth of both

Δplb1-GFP and H99-GFP, but not Δlac1-GFP (discussed below), without the need for PGE2.

We therefore propose that PGE2 produced by C. neoformans during infection must be enzy-

matically dehydrogenated into 15-keto-PGE2 to promote cryptococcal virulence. These find-

ings represent the identification of a new virulence factor (15-keto-PGE2) produced by C.

neoformans, as well as the first-time identification of an eicosanoid other than PGE2 with a

role in promoting cryptococcal growth. Furthermore, our findings suggest that previous stud-

ies which identify PGE2 as a promoter of cryptococcal virulence [19, 20, 44] may have observed

additive effects from both PGE2 and 15-keto-PGE2 activity.

Our experiments with the Δlac1-GFP strain reveals that this strain appears to respond in a

similar way to PGE2, 16,16-dm-PGE2 and troglitazone as Δplb1-GFP but appears to be unre-

sponsive to 15-keto-PGE2. At this time, we cannot fully explain this phenotype, Δlac1-GFP

was generally less responsive to PGE2 and troglitazone treatments compared to Δplb1-GFP so

it is possible that that higher concentrations of 15-keto-PGE2 would be needed to rescue its

growth defect, however experimentation with higher concentrations of 15-keto-PGE2 led to

significant host toxicity. The unresponsiveness of Δlac1 to eicosanoid treatment could be due

to unrelated virulence defects caused by laccase deficiency. Cryptococcal laccase expression is

required for the production of fungal melanin–a well characterized virulence factor produced

by C. neoformans [45, 46]. It is therefore likely that virulence defects unrelated to eicosanoid

synthesis are responsible for the differences between the two mutant phenotypes.

We have found that the phospholipase B1 dependent attenuation of Δplb1 can be rescued

with the addition of exogenous PGE2. This indicates that synthesis and secretion of PGE2 by C.

neoformans is a virulence factor. Although our data indicated that C. neoformans was the

source of PGE2 we wanted exclude the possibility that host-derived PGE2 was also contributing

to virulence. To explore this possibility, we blocked host prostaglandin synthesis—we reasoned

that if host PGE2 was not required that blocking its production would not affect the growth of

C. neoformans. To do this we first treated J774 macrophages infected with H99-GFP and

Δplb1-GFP with aspirin–a cyclooxygenase inhibitor that blocks both COX-1 and COX-2 activ-

ity–and found that this had no effect on intracellular proliferation. Subsequently we attempted

to block cyclooxygenase activity in zebrafish but found aspirin was lethal at the zebrafish lar-

vae’s currently stage of development, instead we used individual inhibitors specific for COX-1

(NS-398) and COX-2 (SC-560). We found that each inhibitor decreases fungal burden of

H99-GFP infected larvae but not Δplb1-GFP infected larvae. Due to the phospholipase B1

dependence of this phenotype we think that these inhibitors might be affecting eicosanoid pro-

duction by the C. neoformans itself. The ability of broad COX inhibitors like aspirin/indometh-

acin to inhibit eicosanoid production by C. neoformans is controversial [17, 28] however our

study is the first to use selective COX-1 and COX-2 inhibitors on C. neoformans. This experi-

ment remained inconclusive as to whether host PGE2 synthesis promotes virulence so to block

PGE2 in zebrafish larvae without potential off target effects we used CRISPR Cas9 technology

to knockdown expression of the prostaglandin E2 synthase gene ptges in zebrafish larvae.

Ablating zebrafish ptges with this approach did not affect the fungal burden of Δplb1-GFP

infected larvae but it did cause increased burden in H99-GFP infected zebrafish. This pheno-

type is interesting because it suggests host PGE2 might actually be inhibitory to cryptococcal

virulence, furthermore this phenotype was phospholipase B1 dependent which suggests host-

derived PGE2 might interact in some way with Cryptococcus-derived eicosanoids. This pheno-

type was not seen in vitro with aspirin so it is possible that the inhibitory effects of host-derived

PGE2 influence a non-macrophage cell type in zebrafish larvae.
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To confirm our observations that C. neoformans was the source of PGE2 during infection

we performed co-infection assays with H99 wild type cryptococci (eicosanoid producing) and

Δplb1 (eicosanoid deficient) within the same macrophage and found that co-infection was suf-

ficient to promote the intracellular growth of Δplb1. We also observed similar interactions dur-

ing Δlac1 co-infection (a second eicosanoid deficient C. neoformans mutant). These

observations agree with previous studies that suggest eicosanoids are virulence factors pro-

duced by C. neoformans during macrophage infection [19, 28]. To identify if the secreted fac-

tor produced by C. neoformans was PGE2, we measured the levels of PGE2 from Cryptococcus
infected macrophages to see if there was an observable increase in this eicosanoid during infec-

tion. Although PGE2 was detected, we did not see any significant difference between infected

and uninfected macrophages, an observation confirmed using two different detection tech-

niques–ELISA and LC MS/MS. These data suggest that PGE2 produced by C. neoformans dur-

ing macrophage infection is contained within the macrophage, likely in close proximity to the

fungus and that the host receptor targeted by these eicosanoids is therefore likely to be intracel-

lular. Our in vitro co-infection experiments indicate that C. neoformans secretes virulence

enhancing eicosanoids during infection.

The biological activity of 15-keto-PGE2 is far less studied than PGE2. It is known that

15-keto-PGE2 cannot bind to prostaglandin E2 EP receptors, this means it can act as a negative

regulator of PGE2 activity i.e. cells up-regulate 15PGDH activity to lower PGE2 levels [47]. Our

findings however suggested that 15-keto-PGE2 did have a biological activity independent of

PGE2 synthesis, possibly via a distinct eicosanoid receptor. It has been demonstrated that

15-keto-PGE2 can activate the intracellular eicosanoid receptor peroxisome proliferator associ-

ated receptor gamma (PPAR- γ) [31]. Activation of PPAR-γ by C. neoformans has not been

described previously but it is compatible with what we know of cryptococcal pathogenesis.

PPAR-γ is a nuclear receptor normally found within the cytosol. Upon ligand binding PPAR-γ
forms a heterodimer with Retinoid X receptor (RXR) and translocates to the nucleus where it

influences the expression of target genes which possess a peroxisome proliferation hormone

response element (PPRE) [48]. If eicosanoids are produced by C. neoformans during intracel-

lular infection, it is likely that they bind to an intracellular eicosanoid receptor. Additionally,

activation of PPAR-γ within macrophages is known to promote the expression of anti-inflam-

matory genes which could make the macrophage more amenable to parasitism by the fungus.

To investigate whether PPAR-γ activation within macrophages occurs during C. neofor-
mans infection we performed immunofluorescent staining of H99 and Δplb1 infected J774

macrophages. We found that infection with C. neoformans led to increased nuclear localization

of PPAR- γ indicating that the fungus was activating endogenous PPAR- γ during infection.

We also found that macrophages infected with H99 had higher levels of PPAR- γ activation

than Δplb1 infected macrophages. This strongly suggests that eicosanoids produced by C. neo-
formans are responsible for activating PPAR- γ.

To confirm that 15-keto-PGE2 is an agonist to PPAR-γ we performed experiments with

zebrafish larvae from PPAR-γ GFP reporter fish [35] and demonstrated that 15-keto-PGE2

binds to zebrafish PPAR- γ. To determine if 15-keto-PGE2 is an agonist to PPAR- γ we found

that treating Δplb1-GFP infected zebrafish larvae with GW9662 at the same time as 15-keto-

PGE2 blocked the virulence enhancing effects of the eicosanoid. These data indicate that

15-keto-PGE2 is a partial agonist to PPAR-γ (in zebrafish at least). Partial agonists are weak

agonists that bind to and activate receptors, but not at the same efficacy as a full agonist. Partial

agonists to PPAR-γ have been reported previously, partial PPAR agonists bind to the ligand

binding domain of PPAR-γ with a lower affinity than full PPAR agonists and as a result acti-

vate smaller subsets of PPAR-γ controlled genes [37, 38, 49–52].
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We also found that activation of PPAR-γ alone was sufficient to mediate cryptococcal viru-

lence. In this respect, we found that the in vitro intracellular proliferation of the wild type H99

cryptococcal strain within J774 macrophages could be suppressed using a PPAR-γ antagonist

GW9662. We could also block the rescuing effect of 15-keto-PGE2 on Δplb1-GFP during zeb-

rafish infection using GW9662. Finally we found that Cryptococcus infected zebrafish treated

with troglitazone at a concentration that is known to activate PPAR-γ [35] had increased fun-

gal burdens when infected with Δplb1-GFP, Δlac1-GFP and H99-GFP strains. Taken together

these experiments provide convincing evidence that a novel cryptococcal virulence factor—

15-keto-PGE2 –enhances the virulence of C. neoformans by activation of host PPAR-γ and that

macrophages are one of the key targets of this eicosanoid during infection.

In this study, we have shown for the first time that eicosanoids produced by C. neoformans
can promote virulence in an in vivo host. Furthermore, we have provided evidence that this

virulence occurs via eicosanoid mediated manipulation of host macrophages. We have identi-

fied that the eicosanoid responsible for these effects is 15-keto-PGE2 which is derived from the

dehydrogenation of PGE2 produced by C. neoformans. We have subsequently demonstrated

that 15-keto-PGE2 mediates its effects via activation of PPAR- γ, an intracellular eicosanoid

receptor known to promote anti-inflammatory immune pathways within macrophages. We

provide compelling evidence that eicosanoids produced by C. neoformans enhance virulence,

identifies a novel virulence factor– 15-keto-PGE2 –and describes a novel mechanism of host

manipulation by C. neoformans—activation of PPAR- γ. Most importantly this study provides

a potential new therapeutic pathway for treatment of cryptococcal infection, as several eicosa-

noid modulating drugs are approved for patient treatment [53].

Materials and methods

(all reagents are from Sigma-Aldrich, UK unless otherwise stated)

Ethics statement

Animal work was performed following UK law: Animal (Scientific Procedures) Act 1986,

under Project License PPL 40/3574 and P1A4A7A5E. Ethical approval was granted by the Uni-

versity of Sheffield Local Ethical Review Panel. Experiments using the PPAR-γ reporter fish

line [35] were conducted at the University of Toronto following approved animal protocols (#

00000698 “A live zebrafish-based screening system for human nuclear receptor ligand and

cofactor discovery”) under a OMAFRA certificate.

Zebrafish

The following zebrafish strains were used for this study: Nacre wild type strain, Tg(mpeg1:

mCherryCAAX)sh378) transgenic strain [22] and the double mutant casper, for PPARγ
reporter experiments [35], which lacks all melanophores and iridophores [54]. Zebrafish were

maintained according to standard protocols. Adult fish were maintained on a 14:10 –hour

light / dark cycle at 28 oC in UK Home Office approved facilities in the Bateson Centre aquaria

at the University of Sheffield.

C. neoformans

The H99-GFP strain has been previously described [42]. The Δplb1-GFP and Δlac1-GFP stains

was generated for this study by transforming existing deletion mutant strains [23, 55] with a

GFP expression construct (see below for transformation protocol). All strains used are in the

C. neoformans variety grubii H99 genetic background.
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Cryptococcus strains were grown for 18 hours at 28 oC, rotating horizontally at 20 rpm.

Cryptococcus cultures were pelleted at 3300g for 1 minute, washed twice with PBS (Oxoidm

Basingstoke, UK) and re-suspended in 1ml PBS. Washed cells were then counted with a hae-

mocytometer and used as described below.

C. neoformans transformation

C. neoformans strains Δplb1 and Δlac1 were biolistically transformed using the pAG32_GFP

transformation construct as previously described for H99-GFP [42]. Stable transformants were

identified by passaging positive GFP fluorescent colonies for at least 3 passages on YPD agar

supplemented with 250 μg/ml Hygromycin B.

Zebrafish CRISPR

CRISPR generation was performed as previously described [29]. Briefly gRNA spanning the

ATG start codon of zebrafish ptges or tyr was injected along with Cas9 protein and tracrRNA

into zebrafish embryos at the single cell stage. Crispant larvae were infected with C. neofor-
mans as described above at 2 dpf. The genotype of each larvae was confirmed post assay–geno-

mic DNA was extracted from each larvae and the ATG was PCR amplified with primers

spanning the ATG site of ptges (Forward primer gccaagtataatgaggaatggg, Reverse primer

aatgtttggattaaacgcgact) producing a 345-bp product. This product was digest with Mwol–wild-

type digests produced bands at 184, 109 and 52 bp while mutant digests produced bands at 293

and 52 bp (S4 Fig).

J774 Macrophage infection–with exogenous PGE2 treatment

J774 macrophage (J774 cells were obtained from the ATCC, American Type Culture Collec-

tion) infection was performed as previously described [21] with the following alterations. J774

murine macrophage-like cells were cultured for a minimum of 4 passages in T75 tissue culture

flasks at 37 oC 5% CO2 in DMEM (High glucose, Sigma) supplemented with 10% Fetal Bovine

Calf Serum (Invitrogen), 1% 10,000 units Penicillin / 10 mg/ml streptomycin and 1% 200 mM/

L–glutamine, fully confluent cells were used for each experiment. Macrophages were counted

by haemocytometer and diluted to a concentration of 1x105 cells per ml in DMEM supple-

mented with 1 μg/ml lipopolysaccharide (LPS from E. coli, Sigma L2630) before being plated

into 24 well microplates (Greiner) and incubated for 24 hours (37 oC 5% CO2).

Following 24-hour incubation, medium was removed and replaced with 1 ml DMEM sup-

plemented with 2 nM prostaglandin E2 (CAY14010, 1mg/ml stock in 100% ethanol). Macro-

phage wells were then infected with 100 μl 1x106 yeast/ml Cryptococcus cells (from overnight

culture, washed. See above) opsonized with anti-capsular IgG monoclonal antibody (18b7, a

kind gift from Arturo Casadevall). Cells were incubated for 2 hours (37 oC 5% CO2) and then

washed with 37 oC PBS until extracellular yeast were removed. After washing, infected cells

were treated with 1ml DMEM supplemented with PGE2.

To calculate IPR, replicate wells for each treatment/strain were counted at 0 and 18 hours.

Each well was washed once with 1ml 37 oC PBS prior to counting to remove any Cryptococcus
cells released by macrophage death or vomocytosis. Intra-macrophage Cryptococci were

released by lysis with 200 μl dH2O for 20 minutes (lysis confirmed under microscope). Lysate

was removed to a clean microcentrifuge tube and an additional 200 μl was used to wash the

well to make a total lysate volume of 400 μl. Cryptoccoccus cells within lysates were counted by

haemocytometer. IPR was calculated by dividing the total number of counted yeast at 18hr by

the total at 0hr.
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To assess the viability of C. neoformans cells recovered from macrophages we used our pre-

viously published colony forming unit (CFU) viability assay [21]. Lysates from C. neoformans
infected J774 cells were prepared from cells at 0hr and 18hr time points. The concentration of

C. neoformans cells in the lysate was calculated by haemocytomter counting, the lysates were

then diluted to give an expected concentration of 2x103 yeast cells per ml. 100 μl of this diluted

lysate was spread onto a YPD agar plate and incubated for 48 hr at 25 oC prior to colony

counting.

J774 Macrophage co-infection

J774 cells were prepared and seeded at a concentration of 1x105 per ml as above in 24 well

microplates and incubated for 24 hours (37 oC 5% CO2), 45 minutes prior to infection J774

cells were activated with 150 ng/ml phorbol 12-myristate 13-acetate in DMSO added to 1 ml

serum free DMEM. Following activation J774 cells were washed and infected with 100 μl /

1x106 yeast cells/ml 50:50 mix of Δplb1 (non-fluorescent) and H99-GFP (e.g. 5x105 Δplb1 and

5x105 H99-GFP) or Δlac1-GFP and H99 (non-fluorescent). Infected cells were incubated for 2

hours (37 oC 5% CO2) to allow for phagocytosis of Cryptococcus and then washed multiple

times with 37 oC PBS to remove unphagocytosed yeast, each well was observed between washes

to ensure that macrophages were not being washed away. After washing 1 ml DMEM was

added to each well.

Co-infected cells were imaged over 20 hours using a Nikon TE2000 microscope fitted with

a climate controlled incubation chamber (37 oC 5% CO2) using a Digital Sight DS-QiMC cam-

era and a Plan APO Ph1 20x objective lens (Nikon). GFP and bright field images were captured

every 4 minutes for 20 hours. Co-infection movies were scored manually. For example co-

infected macrophages that contained two Δplb1 (non-fluorescent) and one H99-GFP (GFP

positive) yeast cells at 0 hr were tracked for 18 hours and before the burden of each strain

within the macrophage was counted again. The IPR for Δplb1 within co-infected macrophages

was calculated by dividing the number of Δplb1 cells within a macrophage at 18 hr by the num-

ber at 0 hr.

Immunofluorescence

J774 cells were cultured to confluency as discussed above and seeded onto sterile 13 mm glass

coverslips at a density of 105 cells per ml without activation by phorbol 12-myristate 13-acetate.

H99-GFP and Δplb1-GFP were opsonised with 18B7 for one hour. 18B7 was then removed by

centrifugation and fungal cells were suspended in 1 ml of PBS with 1:200 FITC for one hour.

Supernatant was removed again, cells were resuspended in PBS, and J774 were infected with

106 of either H99-GFP or Δplb1-GFP in serum free DMEM. After two hours of infection

media was removed from J774 cells and the cells were washed three times with PBS. 10 μm

TLT or DMSO was added to uninfected cells to act as controls. Cells were then left for 18

hours at 37 oC 5% CO2.

After 18 hours supernatants were removed and J774s were fixed with cold methanol for 5

minutes at -20 oC before washing with PBS three times, leaving PBS for five minutes at room

temperature between washes. Coverslips were blocked with 5% sheep serum in 0.1% triton

(block solution) for 20 minutes before being transferred into the primary PPAR-γ antibody

(1:50, Santa Cruz Biotechnology sc-7273 lot #B1417) with 1:10 human IgG in block solution

for one hour. Coverslips were washed 3 times in PBS and incubated with 1:200 anti-mouse

TRITC, 1:40 anti-human IgG, and 0.41 μl/ml DAPI in block solution for one hour. Coverslips

were then washed three times with PBS, three times with water, and fixed to slides using

MOWIOL. Slides were left in the dark overnight and imaged the following day. Imaging was
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performed on a Nikon Eclispe Ti microscope with a x60 DIC objective. Cells were imaged

with filter sets for Cy3 (PPAR-γ, 500ms exposure) GFP (Cryptococcus, 35 ms exposure) and

DAPI (Nuclei, 5ms) dyes in addition to DIC.

The intensity of nuclear staining was analysed for at least 30 cells per coverslip, using Ima-

geJ 2.0.0 a line ROI was drawn from the outside of cell, through the nucleus measuring the

mean grey value along the line. For Cryptococcus infected conditions uninfected and infected

cells were measured separately upon the same coverslip using the GFP channel to distinguish

between infected and uninfected cells.

J774 aspirin timelapse

Macrophages were seeded at 105 per ml into 24 well plates as described above. After two hours

cells requiring aspirin were treated with 1 mM aspirin in DMSO in fresh DMEM. Cells were

then incubated overnight for 18 hours at 37 oC 5% CO2. H99-GFP and Δplb1-GFP were pre-

pared at 106 cells per ml as described above, and opsonised with 18B7 for one hour. J774s were

then infected with the fungal cells in fresh serum free DMEM for two hours before removing

the supernatant, washing three times in PBS, and adding fresh serum free DMEM. Cells were

imaged for 18 hours on a Nikon Eclispe Ti equipped with a climate controlled stage (Tempera-

ture—37 oC, Atmosphere—5% CO2 / 95% air) with a x20 Lambda Apo NA 0.75 phase contrast

objective brightfield images were taken at an interval of 2 minutes, 50 ms exposure. Analysis

was performed by manual counts of intracellular and extracellular cryptococci.

Zebrafish infection

Washed and counted Cryptococcus cells from overnight culture were pelleted at 3300g for 1

minute and re-suspended in 10% Polyvinylpyrrolidinone (PVP), 0.5% Phenol Red in PBS to

give the required inoculum in 1 nl. This injection fluid was loaded into glass capillaries shaped

with a needle puller for microinjection. Zebrafish larvae were injected at 2-days post fertilisa-

tion; the embryos were anesthetised by immersion in 0.168 mg/ml tricaine in E3 before being

transferred onto microscope slides coated with 3% methyl cellulose in E3 for injection. Pre-

pared larvae were injected with two 0.5 nl boluses of injection fluid by compressed air into the

yolk sac circulation valley. Following injection, larvae were removed from the glass slide and

transferred to E3 to recover from anaesthetic and then transferred to fresh E3 to remove resid-

ual methyl cellulose. Successfully infected larvae (displaying systemic infection throughout the

body and no visible signs of damage resulting from injection) were sorted using a fluorescent

stereomicroscope. Infected larvae were maintained at 28 oC.

Eicosanoid / Receptor agonist treatment of infected zebrafish larvae

All compounds were purchased from Cayman Chemical. Compounds were resuspended in

DMSO and stored at -20 oC until used. Prostaglandin E2 (CAY14010, 10 mg/ml stock), Prosta-

glandin D2 (CAY12010, 10 mg/ml stock), 16,16-dimethyl-PGE2 (CAY14750, 10 mg/ml stock),

15-keto-PGE2 (CAY14720, 10 mg/ml stock), troglitazone (CAY14720, 10 mg/ml stock),

GW9662 (CAY70785,1 mg/ml stock), AH6809 (CAY14050, 1 mg/ml stock), GW627368X

(CAY10009162, 10 mg/ml stock), NS-398 (CAY70590, 9.4 mg/ml stock), SC-560 (CAY70340,

5.3 mg/ml stock).

Treatment with exogenous compounds during larval infected was performed by adding

compounds (or equivalent solvent) to fish water (E3) to achieve the desired concentration.

Fish were immersed in compound supplemented E3 throughout the experiment from the time

of injection.
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Zebrafish fungal burden measurement

Individual infected zebrafish embryos were placed into single wells of a 96 well plate (VWR)

with 200 ul or E3 (unsupplemented E3, or E3 supplemented with eicosanoids / drugs depend-

ing on the assay). Infected embryos were imaged at 0-days post infection (dpi), 1 dpi, 2 dpi

and 3 dpi in their 96 well plates using a Nikon Ti-E with a CFI Plan Achromat UW 2X N.A

0.06 objective lens. Images were captured with a Neo sCMOS (Andor, Belfast, UK) and NIS

Elements (Nikon, Richmond, UK). Images were exported from NIS Elements into Image J FIJI

as monochrome tif files. Images were threshholded in FIJI using the ‘moments’ threshold pre-

set and converted to binary images to remove all pixels in the image that did not correspond to

the intensity of the fluorescently tagged C. neoformans. The outline of the embryo was traced

using the ‘polygon’ ROI tool, avoiding autofluorescence from the yolk sac. The total number

of pixels in the threshholded image were counted using the FIJI ‘analyse particles’ function, the

‘total area’ measurement from the ‘summary’ readout was used for the total number of GFP+

pixels in each embryo.

PPAR- γ GFP reporter fish treatment

PPARγ embryos [35, 36] were collected from homozygous ligand trap fish (F18). Embryos

were raised in a temperature-controlled water system under LD cycle at 28.5˚C. in 0.5× E2

media in petri-dishes till 1 dpf. Any developmentally delayed (dead or unfertilized) embryos

were removed. Chorions were removed enzymatically with Pronase (1 mg/ml) and specimens

were dispensed into 24 well plates (10 per well) in 0.5 ×E2 media. For embryos 1% DMSO was

used as a vehicle control. Chemicals were stored in DMSO, diluted appropriately and added

individually to 400 ul of 0.5×E2 media with 0.05 U/ml penicillin and 50 ng/ml streptomycin

and vortexed intensively for 1 min. 0.5×E2 media was removed from all wells with embryos

and the 400 ul chemical solutions were administered to different wells to embryos. For drug

treatment embryos were pre-incubated for 1 hour with compounds and then heat induced

(28!37˚ C.) for 30 min in a water bath. Embryos were incubated at 28˚C for 18 h and then

monitored using a fluorescent dissection scope (SteREO Lumar.V12 Carl Zeiss) at 2 dpf. For

analyzing GFP fluorescent pattern, embryos were anesthetized with Tricaine (Sigma, Cat.# A-

5040) and mounted in 2% methyl cellulose.

Whole body macrophage counts

2 dpf transgenic zebrafish larvae which have fluorescently tagged macrophages due to an

mCherry fluorescent protein driven by the macrophage specific gene marker mpeg1 [56] Tg
(mpeg1:mCherryCAAX)sh378) [22] were treated with 10 μM PGE2, 10 μM 15-keto-PGE2 or an

equivalent DMSO control for 2 days. Larvae were then anesthetized by immersion in 0.168

mg/ml tricaine in E3 and imaged using a Nikon Ti-E with a Nikon Plan APO 20x/ 0.75 DIC

N2 objective lens, taking z stacks of the entire body with 15 μM z steps. Macrophage counts

were made manually using ImageJ from maximum projections.

Eicosanoid measurement (ELISA)

J774 macrophages were seeded into 24 well plates at a concentration of 1x105 per well and

incubated for 24 hours at 37 oC 5% CO2. J774 cells were infected with C. neoformans as

described above, at the same MOI 1:10 and incubated for 18 hours with 1ml serum free

DMEM. At 18 hours post infection the supernatant was removed for ELISA analysis.

For ELISA analysis with aspirin treatment, wells requiring aspirin had supernatants

removed and replaced with fresh DMEM containing 1 mM aspirin in 1% DMSO. Cells were
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left for 24 hours total. At 24 hours all wells received fresh serum free media. Wells requiring

aspirin for the duration received 1 mM aspirin in DMSO. Aspirin treated cells requiring ara-

chidonic acid were treated with 30 μg per ml arachidonic acid in ethanol. Control wells

received the following: either 1% DMSO, 30 μg per ml arachidonic acid, or ethanol. Cells were

again left at 37 oC 5% CO2 for 18 hours.

Supernatants were then removed and frozen at -80 oC until use. Supernatants were analysed

as per the PGE2 EIA ELISA kit instructions (Cayman Chemical).

Eicosanoid measurement (mass spectrometry)

J774 macrophages were seeded into T25 tissue culture flasks at a concentration of 1.3x106 cells

per flask and incubated for 24 hours at 37 oC 5% CO2. J774 cells were infected with C. neofor-
mans as described above, at the same MOI 1:10 and incubated for 18 hours with 2 ml serum

free DMEM. At 18 hours post infection infected cells were scraped from the flask with a cell

scraper into the existing supernatant and immediately snap frozen in ethanol / dry ice slurry.

All samples were stored at -80 oC before analysis.

Lipids and lipid standards were purchased from Cayman Chemical (Ann Arbor, Michigan).

Deuterated standard Prostaglandin E2-d4 (PGE2-d4),�98% deuterated form. HPLC grade sol-

vents were from Thermo Fisher Scientific (Hemel Hempstead, Hertfordshire UK).

Lipids were extracted by adding a solvent mixture (1 mol/L acetic acid, isopropyl alcohol,

hexane (2:20:30, v/v/v)) to the sample at a ratio of 2.5–1 ml sample, vortexing, and then adding

2.5 ml of hexane [57]. Where quantitation was required, 2 ng PGE2-d4, was added to samples

before extraction, as internal standard. After vortexing and centrifugation, lipids were recov-

ered in the upper hexane layer. The samples were then re-extracted by addition of an equal vol-

ume of hexane. The combined hexane layers were dried and analyzed for Prostaglandin E2

(PGE2) using LC-MS/MS as below.

Lipid extracts were separated by reverse-phase HPLC using a ZORBAX RRHD Eclipse Plus

95Å C18, 2.1 x 150 mm, 1.8 μm column (Agilent Technologies, Cheshire, UK), kept in a col-

umn oven maintained at 45˚C. Lipids were eluted with a mobile phase consisting of A, water-

B-acetic acid of 95:5:0.01 (vol/vol/vol), and B, acetonitrile-methanol-acetic acid of 80:15:0.01

(vol/vol/vol), in a gradient starting at 30% B. After 1 min that was ramped to 35% over 3 min,

67.5% over 8.5 min and to 100% over 5 min. This was subsequently maintained at 100% B for

3.5 min and then at 30% B for 1.5 min, with a flow rate of 0.5 ml/min. Products were moni-

tored by LC/MS/MS in negative ion mode, on a 6500 Q-Trap (Sciex, Cheshire, United King-

dom) using parent-to-daughter transitions of m/z 351.2! 271.2 (PGE2), and m/z 355.2!

275.2 for PGE2-d4. ESI-MS/MS conditions were: TEM 475˚C, GS1 60, GS2 60, CUR 35, IS

-4500 V, dwell time 75 s, DP -60 V, EP -10 V, CE -25 V and CXP at -10 V. PGE2 was quantified

using standard curves generated by varying PGE2 with a fixed amount of PGE2-d4.

Supporting information

S1 Fig. A Quantification of the vialibility of C. neoformans retrieved from the phagosomes of

J774 macrophages at 2 hr and 20 hr post infection. Prior to, and during infection J774 macro-

phages were treated with 2 mM PGE2 or the equivalent amount of solvent (Ethanol) Cryptococ-
cus cells were counted with a hemocytometer / diluted and plated to give an expected number

of 200 CFU—dead Cryptococcus cells are indistinguishable from live cells when counting with

a hemocytometer however a lower than expected CFU count would indicate that there is a

decrease in viability. Data is displayed as the fold change between the CFU count at 2 hpi and

20 hpi for each condition. A one-way ANOVA with Tukey post test was performed comparing

all conditions. H99 ETOH vs. Δplb1 �� p = 0.0052, H99 ETOH vs. Δplb1 ETOH �� p = 0.0056,
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H99 ETOH vs. Δplb1 2 mM PGE2
� p = 0.029. B i Comparison of fungal burden between

H99-GFP, Δplb1-GFP and Δlac1-GFP infected larvae (Data reproduced from Fig 2Ai and 2Di

and S2Bi Fig for clarity) H99-GFP, Δplb1-GFP and Δlac1-GFP infected larvae imaged at 0, 1, 2

and 3 dpi. At least 50 larvae measured per time point from 3 biological repeats. Box and whis-

kers show median, 5th percentile and 95th percentile. Unpaired Mann-Whitney U tests used to

compare the burden between each strain for every time point. B ii Table of Mann-Whitney U

tests comparing burden for each strain between time points. C Whole body macrophage

counts of zebrafish larvae treated at 2 dpf with 10 μM PGE2, 10 μM 15-keto-PGE2 or an equiv-

alent DMSO control for 2 days. Box and whiskers show median, 5th percentile and 95th percen-

tile. At least 12 larvae quantified per treatment group per biological repeat n = 4. Mann-

Whitney U test used to treatments to DMSO control �� p = 0.0025.

(TIF)

S2 Fig. A J774 cells co-infected with a 50:50 mix of Δlac1-GFP and H99. Quantification of IPR

for Δlac1-GFP cells within Δlac1-GFP:H99 2:1 or 1:2 co-infected macrophages. At least 20 co-

infected macrophages were analysed for each condition over 4 experimental repeats. Student’s

T test performed to compare ratios– 2:1 vs 1:2 � p = 0.012. B i Δlac1-GFP infected larvae

imaged at 0, 1, 2 and 3 dpi. Fungal burden measured by counting GFP positive pixels in each

larvae. At least 78 larvae measured per time point across 3 biological repeats. Box and whiskers

show median, 5th percentile and 95th percentile. Unpaired Mann-Whitney U tests used to

compare the burden between each strain for every time point, for p values see (S2A and S2B

Fig). B ii Representative GFP images (representative = median value) of 2dpi Δlac1-GFP

infected larvae, untreated at 0,1,2,3 dpi C i Δlac1-GFP Infected larvae treated with 10 μM pros-

taglandin E2 or equivalent solvent (DMSO) control. At least 70 larvae measured per treatment

group across 4 biological repeats. Box and whiskers show median, 5th percentile and 95th per-

centile. Unpaired Mann-Whitney U test used to compare between treatments, DMSO vs.

10 μM PGE2
� p = 0.035. D i Δlac1-GFP Infected larvae treated with 10 μM 16,16-dimethyl

prostaglandin E2 or equivalent solvent (DMSO) control. At least 75 larvae measured per treat-

ment group across 4 biological repeats. Box and whiskers show median, 5th percentile and 95th

percentile. Unpaired Mann-Whitney U test used to compare between treatments, DMSO vs.

10 μM 16,16-dimethyl prostaglandin E2 ns p = 0.062. E i Δlac1-GFP Infected larvae treated

with 10 μM 15-keto-prostaglandin E2 or equivalent solvent (DMSO) control. At least 58 larvae

measured per treatment group across 3 biological repeats. Unpaired Mann-Whitney U test

used to compare between treatments DMSO vs. 10 μM 15-keto-prostaglandin E2 ns p = 0.50.

C ii, D ii, E ii Representative GFP images (representative = median value) Δlac1-GFP infected

larvae, at 2 dpi treated with 10 μM PGE2 (C ii), 16,16-dm-PGE2 (D ii) or 15-keto-PGE2 (E ii).

(TIF)

S3 Fig. A PGE2 monoclonal EIA ELISA performed on supernatants from C. neoformans
infected macrophages collected at 18 hr post infection. Mean concentration of PGE2 (pg per

1x106 cells) plotted with SD, n = 2. B Quantification of IPR for Δplb1 cells within Δplb1:

H99-GFP co-infected macrophages at initial burdens of 2:1, 3:1, 4:1 and vice versa. N = 4.

Student’s T test performed to compare ratios– 2:1 vs 1:2 � p = 0.0137. C Example images of

immunofluorescence experiments in J774 macrophages staining for PPAR-gamma nuclear

localization (for quantification see Fig 5Ai). J774 cells treated with DMSO, 0.25 μM Troglita-

zone, infected with H99-GFP or Δplb1-GFP at x60 magnification, scale bar = 10 μM. Images

provided are from the Cy3 channel (PPAR- γ) and the corresponding cell in DIC. The area of

the nuclei is marked with a white dotted line.

(TIF)
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S4 Fig. Genotyping to confirm zebrafish ptges CRISPR. Zebrafish were genotyped post

assay (5 dpf), an area of genomic DNA spanning the ptges gene ATG site (the CRISPR tar-

get) was amplified with PCR to produce a 345 bp product. This product was digested with

Mwol to produce genotype specific banding patterns A. Schematic of the banding patterns

expected for each genotype following Mwol digestion– 1. Undigested product, a single 345 bp

band 2. Wild type genotype, 184, 109 and 52 bp bands 3. Hetrozygous genotype (ptges +/-) 293,

184, 109 and 52 bp bands 4. Homozygous genotype (ptges -/-) strong bands for 293 and 52 bp,

weaker bands at 184 and 109 bp can sometimes be seen indicating a small amount of wildtype

ptges is still present (this is thought to be beneficial as low levels of ptges are required for larvae

survival. B Genotyping for H99 infected larvae, L = DNA ladder (NEB 50 bp ladder), wt =

undigested wild type control, wt dig = wild type digested control, numbers correspond to indi-

vidual larvae genotyped. H99 + tyro = tyr -/- larvae infected with H99-GFP. H99 + ptges =

ptges -/- larvae infected with H99-GFP C Genotyping for Δplb1 infected larvae, L = DNA ladder

(NEB 50 bp ladder), wt = undigested wild type control, wt dig = wild type digested control,

numbers correspond to individual larvae genotyped. Δplb1+ tyro = tyr -/- larvae infected with

Δplb1-GFP. Δplb1+ ptges = ptges -/- larvae infected with Δplb1-GFP.

(TIF)

Acknowledgments

We thank the Bateson Centre aquaria staff for their assistance with zebrafish husbandry and

the Johnston, Renshaw and Elks labs for critical discussions. We thank Arturo Casadevall

(Johns Hopkins University, Maryland USA) for providing the 18B7 antibody. We thank Ker-

stin Voelz for providing the pAG32_GFP plasmid.

Author Contributions

Conceptualization: Robert J. Evans, Stephen A. Renshaw, Simon A. Johnston.

Data curation: Robert J. Evans, Katherine Pline, Sarah Needs, Maceler Aldrovandi, Jens Tie-

fenbach, Simon A. Johnston.

Formal analysis: Robert J. Evans, Sarah Needs, Maceler Aldrovandi, Jens Tiefenbach, Simon

A. Johnston.

Funding acquisition: Robert J. Evans, Robin C. May, Simon A. Johnston.

Investigation: Robert J. Evans, Katherine Pline, Catherine A. Loynes, Sarah Needs, Maceler

Aldrovandi, Jens Tiefenbach, Simon A. Johnston.

Methodology: Robert J. Evans, Katherine Pline, Catherine A. Loynes, Maceler Aldrovandi,

Jens Tiefenbach, Ewa Bielska, Henry M. Krause, Valerie B. O’Donnell, Simon A. Johnston.

Project administration: Stephen A. Renshaw, Simon A. Johnston.

Resources: Rachel E. Rubino, Christopher J. Nicol, Henry M. Krause, Valerie B. O’Donnell,

Simon A. Johnston.

Supervision: Robin C. May, Henry M. Krause, Valerie B. O’Donnell, Stephen A. Renshaw,

Simon A. Johnston.

Validation: Robert J. Evans, Simon A. Johnston.

Visualization: Robert J. Evans.

Writing – original draft: Robert J. Evans, Katherine Pline, Simon A. Johnston.

Fungal derived 15-keto-prostaglandin E2 and PPAR-γ promotes C. neoformans infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007597 March 28, 2019 24 / 28

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007597.s004
https://doi.org/10.1371/journal.ppat.1007597


Writing – review & editing: Robert J. Evans, Katherine Pline, Catherine A. Loynes, Sarah

Needs, Maceler Aldrovandi, Jens Tiefenbach, Ewa Bielska, Rachel E. Rubino, Christopher J.

Nicol, Robin C. May, Henry M. Krause, Valerie B. O’Donnell, Stephen A. Renshaw, Simon

A. Johnston.

References
1. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infec-

tions. Science translational medicine. 2012; 4(165):165rv13. https://doi.org/10.1126/scitranslmed.

3004404 PMID: 23253612

2. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of dis-

ease of HIV-associated cryptococcal meningitis: an updated analysis. The LancetInfectious diseases.

2017. S1473-3099(17)30243-8 [pii].

3. Kawakami K, Kohno S, Kadota J, Tohyama M, Teruya K, Kudeken N, et al. T cell-dependent activation

of macrophages and enhancement of their phagocytic activity in the lungs of mice inoculated with heat-

killed Cryptococcus neoformans: involvement of IFN-gamma and its protective effect against cryptococ-

cal infection. Microbiology and immunology. 1995; 39(2):135–43. PMID: 7783686

4. Voelz K, Lammas DA, May RC. Cytokine signaling regulates the outcome of intracellular macrophage

parasitism by Cryptococcus neoformans. Infection and immunity. 2009; 77(8):3450–7. https://doi.org/

10.1128/IAI.00297-09 PMID: 19487474

5. Leopold Wager CM, Hole CR, Wozniak KL, Olszewski MA, Wormley FL Jr. STAT1 signaling is essential

for protection against Cryptococcus neoformans infection in mice. Journal of immunology (Baltimore,

Md: 1950). 2014; 193(8):4060–71. https://doi.org/10.4049/jimmunol.1400318 PMID: 25200956

6. Chrétien F, Lortholary O, Kansau I, Neuville S, Gray F, Dromer F. Pathogenesis of cerebral Cryptococ-

cus neoformans infection after fungemia. J Infect Dis. 2002; 186:522–30. JID011520 [pii] https://doi.

org/10.1086/341564 PMID: 12195380

7. Charlier C, Nielsen K, Daou S, Brigitte M, Chretien F, Dromer F. PMC2612285; Evidence of a role for

monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun. 2009;

77:120–7. IAI.01065-08 [pii] https://doi.org/10.1128/IAI.01065-08 PMID: 18936186

8. Gilbert AS, Seoane PI, Sephton-Clark P, Bojarczuk A, Hotham R, Giurisato E, et al. Vomocytosis of live

pathogens from macrophages is regulated by the atypical MAP kinase ERK5. Sci Adv. 2017; 3(8).

9. Smith LM, Dixon EF, May RC. The fungal pathogen Cryptococcus neoformans manipulates macro-

phage phagosome maturation. Cellular microbiology. 2015; 17(5):702–13. https://doi.org/10.1111/cmi.

12394 PMID: 25394938

10. Norris PC, Reichart D, Dumlao DS, Glass CK, Dennis EA. Specificity of eicosanoid production depends

on the TLR-4-stimulated macrophage phenotype. Journal of leukocyte biology. 2011; 90(3):563–74.

https://doi.org/10.1189/jlb.0311153 PMID: 21653236

11. Gupta S, Maurya MR, Stephens DL, Dennis EA, Subramaniam S. An integrated model of eicosanoid

metabolism and signaling based on lipidomics flux analysis. Biophysical journal. 2009; 96(11):4542–51.

https://doi.org/10.1016/j.bpj.2009.03.011 PMID: 19486676

12. Harizi H. The immunobiology of prostanoid receptor signaling in connecting innate and adaptive immu-

nity. BioMed research international. 2013; 2013:683405. https://doi.org/10.1155/2013/683405 PMID:

24024207

13. Angeli V, Faveeuw C, Roye O, Fontaine J, Teissier E, Capron A, et al. Role of the parasite-derived pros-

taglandin D2 in the inhibition of epidermal Langerhans cell migration during schistosomiasis infection.

The Journal of experimental medicine. 2001; 193(10):1135–47. PMID: 11369785

14. Ahmadi M, Emery DC, Morgan DJ. Prevention of both direct and cross-priming of antitumor CD8+ T-

cell responses following overproduction of prostaglandin E2 by tumor cells in vivo. Cancer research.

2008; 68(18):7520–9. https://doi.org/10.1158/0008-5472.CAN-08-1060 PMID: 18794140

15. Harizi H, Corcuff JB, Gualde N. Arachidonic-acid-derived eicosanoids: roles in biology and immunopa-

thology. Trends Mol Med. 2008; 14:461–9. S1471-4914(08)00163-9 [pii] https://doi.org/10.1016/j.

molmed.2008.08.005 PMID: 18774339

16. Noverr MC, Erb-Downward JR, Huffnagle GB. Production of eicosanoids and other oxylipins by patho-

genic eukaryotic microbes. Clinical microbiology reviews. 2003; 16(3):517–33. https://doi.org/10.1128/

CMR.16.3.517-533.2003 PMID: 12857780

17. Erb-Downward JR, Huffnagle GB. Cryptococcus neoformans produces authentic prostaglandin E2

without a cyclooxygenase. Eukaryotic cell. 2007; 6(2):346–50. EC.00336-06 [pii]. https://doi.org/10.

1128/EC.00336-06 PMID: 17158733

Fungal derived 15-keto-prostaglandin E2 and PPAR-γ promotes C. neoformans infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007597 March 28, 2019 25 / 28

https://doi.org/10.1126/scitranslmed.3004404
https://doi.org/10.1126/scitranslmed.3004404
http://www.ncbi.nlm.nih.gov/pubmed/23253612
http://www.ncbi.nlm.nih.gov/pubmed/7783686
https://doi.org/10.1128/IAI.00297-09
https://doi.org/10.1128/IAI.00297-09
http://www.ncbi.nlm.nih.gov/pubmed/19487474
https://doi.org/10.4049/jimmunol.1400318
http://www.ncbi.nlm.nih.gov/pubmed/25200956
https://doi.org/10.1086/341564
https://doi.org/10.1086/341564
http://www.ncbi.nlm.nih.gov/pubmed/12195380
https://doi.org/10.1128/IAI.01065-08
http://www.ncbi.nlm.nih.gov/pubmed/18936186
https://doi.org/10.1111/cmi.12394
https://doi.org/10.1111/cmi.12394
http://www.ncbi.nlm.nih.gov/pubmed/25394938
https://doi.org/10.1189/jlb.0311153
http://www.ncbi.nlm.nih.gov/pubmed/21653236
https://doi.org/10.1016/j.bpj.2009.03.011
http://www.ncbi.nlm.nih.gov/pubmed/19486676
https://doi.org/10.1155/2013/683405
http://www.ncbi.nlm.nih.gov/pubmed/24024207
http://www.ncbi.nlm.nih.gov/pubmed/11369785
https://doi.org/10.1158/0008-5472.CAN-08-1060
http://www.ncbi.nlm.nih.gov/pubmed/18794140
https://doi.org/10.1016/j.molmed.2008.08.005
https://doi.org/10.1016/j.molmed.2008.08.005
http://www.ncbi.nlm.nih.gov/pubmed/18774339
https://doi.org/10.1128/CMR.16.3.517-533.2003
https://doi.org/10.1128/CMR.16.3.517-533.2003
http://www.ncbi.nlm.nih.gov/pubmed/12857780
https://doi.org/10.1128/EC.00336-06
https://doi.org/10.1128/EC.00336-06
http://www.ncbi.nlm.nih.gov/pubmed/17158733
https://doi.org/10.1371/journal.ppat.1007597


18. Erb-Downward JR, Noggle RM, Williamson PR, Huffnagle GB. The role of laccase in prostaglandin pro-

duction by Cryptococcus neoformans. Molecular microbiology. 2008; 68(6):1428–37. https://doi.org/10.

1111/j.1365-2958.2008.06245.x PMID: 18410494

19. Noverr MC, Cox GM, Perfect JR, Huffnagle GB. PMC148814; Role of PLB1 in pulmonary inflammation

and cryptococcal eicosanoid production. Infect Immun. 2003; 71:1538–47. https://doi.org/10.1128/IAI.

71.3.1538-1547.2003 PMID: 12595473

20. Shen L, Liu Y. Prostaglandin E2 blockade enhances the pulmonary anti-Cryptococcus neoformans

immune reaction via the induction of TLR-4. International immunopharmacology. 2015; 28(1):376–81.

https://doi.org/10.1016/j.intimp.2015.06.026 PMID: 26122137

21. Evans RJ, Li Z, Hughes WS, Djordjevic JT, Nielsen K, May RC. Cryptococcal Phospholipase B1 (Plb1)

is required for intracellular proliferation and control of titan cell morphology during macrophage infection.

Infection and immunity. 2015; 83(4):1296–304. https://doi.org/10.1128/IAI.03104-14 [pii]. PMID:

25605772

22. Bojarczuk A, Miller KA, Hotham R, Lewis A, Ogryzko NV, Kamuyango AA, et al. Cryptococcus neofor-

mans Intracellular Proliferation and Capsule Size Determines Early Macrophage Control of Infection.

Scientific reports. 2016; 6:21489. https://doi.org/10.1038/srep21489 PMID: 26887656

23. Cox GM, McDade HC, Chen SC, Tucker SC, Gottfredsson M, Wright LC, et al. Extracellular phospholi-

pase activity is a virulence factor for Cryptococcus neoformans. Mol Microbiol. 2001; 39:166–75.

mmi2236 [pii]. PMID: 11123698

24. Chayakulkeeree M, Johnston SA, Oei JB, Lev S, Williamson PR, Wilson CF, et al. SEC14 is a specific

requirement for secretion of phospholipase B1 and pathogenicity of Cryptococcus neoformans. Mol

Microbiol. 2011; 80:1088–101. https://doi.org/10.1111/j.1365-2958.2011.07632.x PMID: 21453402

25. Ohno H, Morikawa Y, Hirata F. Studies on 15-hydroxyprostaglandin dehydrogenase with various pros-

taglandin analogues. Journal of Biochemistry. 1978; 84(6):1485–94. PMID: 216666

26. North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, et al. Prostaglandin E2 regu-

lates vertebrate haematopoietic stem cell homeostasis. Nature. 2007; 447(7147):1007–11. https://doi.

org/10.1038/nature05883 [pii]. PMID: 17581586

27. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arteriosclerosis, Thrombosis, and Vascu-

lar Biology. 2011; 31(5):986–1000. https://doi.org/10.1161/ATVBAHA.110.207449 PMID: 21508345

28. Noverr MC, Phare SM, Toews GB, Coffey MJ, Huffnagle GB. Pathogenic yeasts Cryptococcus neofor-

mans and Candida albicans produce immunomodulatory prostaglandins. Infection and immunity. 2001;

69(5):2957–63. https://doi.org/10.1128/IAI.69.5.2957-2963.2001 PMID: 11292712

29. Loynes CA, Lee JA, Robertson AL, Steel MJ, Ellett F, Feng Y, et al. PGE2 production at sites of tissue

injury promotes an anti-inflammatory neutrophil phenotype and determines the outcome of inflammation

resolution in vivo. Sci Adv. 2018; 4(9):eaar8320. Epub 2018/09/08. https://doi.org/10.1126/sciadv.

aar8320 PMID: 30191175; PubMed Central PMCID: PMCPMC6124908.

30. Voelz K, Johnston SA, Smith LM, Hall RA, Idnurm A, May RC. ’Division of labour’ in response to host

oxidative burst drives a fatal Cryptococcus gattii outbreak. Nature communications. 2014; 5:5194.

https://doi.org/10.1038/ncomms6194 PMID: 25323068

31. Chou WL, Chuang LM, Chou CC, Wang AH, Lawson JA, FitzGerald GA, et al. Identification of a novel

prostaglandin reductase reveals the involvement of prostaglandin E2 catabolism in regulation of peroxi-

some proliferator-activated receptor gamma activation. The Journal of biological chemistry. 2007; 282

(25):18162–72. https://doi.org/10.1074/jbc.M702289200 [pii]. PMID: 17449869

32. Alleva DG, Johnson EB, Lio FM, Boehme SA, Conlon PJ, Crowe PD. Regulation of murine macrophage

proinflammatory and anti-inflammatory cytokines by ligands for peroxisome proliferator-activated recep-

tor-gamma: counter-regulatory activity by IFN-gamma. Journal of leukocyte biology. 2002; 71(4):677–

85. PMID: 11927655

33. Maggi LB Jr., Sadeghi H, Weigand C, Scarim AL, Heitmeier MR, Corbett JA. Anti-inflammatory actions

of 15-deoxy-delta 12,14-prostaglandin J2 and troglitazone: evidence for heat shock-dependent and

-independent inhibition of cytokine-induced inducible nitric oxide synthase expression. Diabetes. 2000;

49(3):346–55. PMID: 10868955

34. Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cyto-

kines. Nature. 1998; 391:82–6. https://doi.org/10.1038/34184 PMID: 9422509

35. Tiefenbach J, Moll PR, Nelson MR, Hu C, Baev L, Kislinger T, et al. A live zebrafish-based screening

system for human nuclear receptor ligand and cofactor discovery. PloS one. 2010; 5(3):e9797. https://

doi.org/10.1371/journal.pone.0009797 PMID: 20339547

36. Tiefenbach J, Magomedova L, Liu J, Reunov AA, Tsai R, Eappen NS, et al. Idebenone and coenzyme

Q10 are novel PPARalpha/gamma ligands, with potential for treatment of fatty liver diseases. Dis Model

Mech. 2018; 11(9). Epub 2018/09/02. https://doi.org/10.1242/dmm.034801 PMID: 30171034; PubMed

Central PMCID: PMCPMC6177011.

Fungal derived 15-keto-prostaglandin E2 and PPAR-γ promotes C. neoformans infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007597 March 28, 2019 26 / 28

https://doi.org/10.1111/j.1365-2958.2008.06245.x
https://doi.org/10.1111/j.1365-2958.2008.06245.x
http://www.ncbi.nlm.nih.gov/pubmed/18410494
https://doi.org/10.1128/IAI.71.3.1538-1547.2003
https://doi.org/10.1128/IAI.71.3.1538-1547.2003
http://www.ncbi.nlm.nih.gov/pubmed/12595473
https://doi.org/10.1016/j.intimp.2015.06.026
http://www.ncbi.nlm.nih.gov/pubmed/26122137
https://doi.org/10.1128/IAI.03104-14
http://www.ncbi.nlm.nih.gov/pubmed/25605772
https://doi.org/10.1038/srep21489
http://www.ncbi.nlm.nih.gov/pubmed/26887656
http://www.ncbi.nlm.nih.gov/pubmed/11123698
https://doi.org/10.1111/j.1365-2958.2011.07632.x
http://www.ncbi.nlm.nih.gov/pubmed/21453402
http://www.ncbi.nlm.nih.gov/pubmed/216666
https://doi.org/10.1038/nature05883
https://doi.org/10.1038/nature05883
http://www.ncbi.nlm.nih.gov/pubmed/17581586
https://doi.org/10.1161/ATVBAHA.110.207449
http://www.ncbi.nlm.nih.gov/pubmed/21508345
https://doi.org/10.1128/IAI.69.5.2957-2963.2001
http://www.ncbi.nlm.nih.gov/pubmed/11292712
https://doi.org/10.1126/sciadv.aar8320
https://doi.org/10.1126/sciadv.aar8320
http://www.ncbi.nlm.nih.gov/pubmed/30191175
https://doi.org/10.1038/ncomms6194
http://www.ncbi.nlm.nih.gov/pubmed/25323068
https://doi.org/10.1074/jbc.M702289200
http://www.ncbi.nlm.nih.gov/pubmed/17449869
http://www.ncbi.nlm.nih.gov/pubmed/11927655
http://www.ncbi.nlm.nih.gov/pubmed/10868955
https://doi.org/10.1038/34184
http://www.ncbi.nlm.nih.gov/pubmed/9422509
https://doi.org/10.1371/journal.pone.0009797
https://doi.org/10.1371/journal.pone.0009797
http://www.ncbi.nlm.nih.gov/pubmed/20339547
https://doi.org/10.1242/dmm.034801
http://www.ncbi.nlm.nih.gov/pubmed/30171034
https://doi.org/10.1371/journal.ppat.1007597


37. Atanasov AG, Wang JN, Gu SP, Bu J, Kramer MP, Baumgartner L, et al. Honokiol: a non-adipogenic

PPARgamma agonist from nature. Biochimica et biophysica acta. 2013; 1830(10):4813–9. https://doi.

org/10.1016/j.bbagen.2013.06.021 PMID: 23811337

38. Bhalla K, Hwang BJ, Choi JH, Dewi R, Ou L, McLenithan J, et al. N-Acetylfarnesylcysteine is a novel

class of peroxisome proliferator-activated receptor gamma ligand with partial and full agonist activity in

vitro and in vivo. The Journal of biological chemistry. 2011; 286(48):41626–35. https://doi.org/10.1074/

jbc.M111.257915 PMID: 21979952

39. Bouhlel MA, Derudas B, Rigamonti E, Dievart R, Brozek J, Haulon S, et al. PPARgamma activation

primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell

metabolism. 2007; 6(2):137–43. S1550-4131(07)00166-0 [pii]. https://doi.org/10.1016/j.cmet.2007.06.

010 PMID: 17681149

40. Bonfield TL, Thomassen MJ, Farver CF, Abraham S, Koloze MT, Zhang X, et al. Peroxisome prolifera-

tor-activated receptor-gamma regulates the expression of alveolar macrophage macrophage colony-

stimulating factor. Journal of immunology (Baltimore, Md: 1950). 2008; 181(1):235–42. doi: 181/1/235

[pii]. PMID: 18566389

41. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, et al. Macro-

phage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature.

2007; 447(7148):1116–20. https://doi.org/10.1038/nature05894 [pii]. PMID: 17515919

42. Voelz K, Johnston SA, Rutherford JC, May RC. Automated analysis of cryptococcal macrophage para-

sitism using GFP-tagged cryptococci. PloS one. 2010; 5(12):e15968. https://doi.org/10.1371/journal.

pone.0015968 PMID: 21209844

43. Tenor JL, Oehlers SH, Yang JL, Tobin DM, Perfect JR. Live Imaging of Host-Parasite Interactions in a

Zebrafish Infection Model Reveals Cryptococcal Determinants of Virulence and Central Nervous Sys-

tem Invasion. mBio. 2015; 6(5):e01425–15. https://doi.org/10.1128/mBio.01425-15 PMID: 26419880

44. Valdez PA, Vithayathil PJ, Janelsins BM, Shaffer AL, Williamson PR, Datta SK. Prostaglandin E2 sup-

presses antifungal immunity by inhibiting interferon regulatory factor 4 function and interleukin-17

expression in T cells. Immunity. 2012; 36(4):668–79. https://doi.org/10.1016/j.immuni.2012.02.013

PMID: 22464170

45. Salas SD, Bennett JE, Kwon-Chung KJ, Perfect JR, Williamson PR. Effect of the laccase gene

CNLAC1, on virulence of Cryptococcus neoformans. The Journal of experimental medicine. 1996; 184

(2):377–86. PMID: 8760791

46. Qiu Y, Davis MJ, Dayrit JK, Hadd Z, Meister DL, Osterholzer JJ, et al. Immune modulation mediated by

cryptococcal laccase promotes pulmonary growth and brain dissemination of virulent Cryptococcus

neoformans in mice. PloS one. 2012; 7(10):e47853. https://doi.org/10.1371/journal.pone.0047853

PMID: 23110112

47. Coggins KG, Latour A, Nguyen MS, Audoly L, Coffman TM, Koller BH. Metabolism of PGE2 by prosta-

glandin dehydrogenase is essential for remodeling the ductus arteriosus. Nature medicine. 2002; 8

(2):91–2. https://doi.org/10.1038/nm0202-91 PMID: 11821873

48. Lemberger T, Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: a nuclear receptor

signaling pathway in lipid physiology. Annual Review of Cell and Developmental Biology. 1996; 12:335–

63. https://doi.org/10.1146/annurev.cellbio.12.1.335 PMID: 8970730

49. Pochetti G, Godio C, Mitro N, Caruso D, Galmozzi A, Scurati S, et al. Insights into the mechanism of

partial agonism: crystal structures of the peroxisome proliferator-activated receptor gamma ligand-bind-

ing domain in the complex with two enantiomeric ligands. J Biol Chem. 2007; 282(23):17314–24. Epub

2007/04/04. https://doi.org/10.1074/jbc.M702316200 PMID: 17403688.

50. Guasch L, Sala E, Castell-Auvi A, Cedo L, Liedl KR, Wolber G, et al. Identification of PPARgamma par-

tial agonists of natural origin (I): development of a virtual screening procedure and in vitro validation.

PLoS One. 2012; 7(11):e50816. Epub 2012/12/12. https://doi.org/10.1371/journal.pone.0050816

PMID: 23226391; PubMed Central PMCID: PMCPMC3511273.

51. Burgermeister E, Schnoebelen A, Flament A, Benz J, Stihle M, Gsell B, et al. A novel partial agonist of

peroxisome proliferator-activated receptor-gamma (PPARgamma) recruits PPARgamma-coactivator-

1alpha, prevents triglyceride accumulation, and potentiates insulin signaling in vitro. Mol Endocrinol.

2006; 20(4):809–30. Epub 2005/12/24. https://doi.org/10.1210/me.2005-0171 PMID: 16373399.

52. Bruning JB, Chalmers MJ, Prasad S, Busby SA, Kamenecka TM, He Y, et al. Partial agonists activate

PPARgamma using a helix 12 independent mechanism. Structure. 2007; 15(10):1258–71. Epub 2007/

10/17. https://doi.org/10.1016/j.str.2007.07.014 PMID: 17937915.

53. Day RO, Graham GG. Non-steroidal anti-inflammatory drugs (NSAIDs). BMJ (Clinical research ed).

2013; 346:f3195. https://doi.org/10.1136/bmj.f3195 PMID: 23757736

Fungal derived 15-keto-prostaglandin E2 and PPAR-γ promotes C. neoformans infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007597 March 28, 2019 27 / 28

https://doi.org/10.1016/j.bbagen.2013.06.021
https://doi.org/10.1016/j.bbagen.2013.06.021
http://www.ncbi.nlm.nih.gov/pubmed/23811337
https://doi.org/10.1074/jbc.M111.257915
https://doi.org/10.1074/jbc.M111.257915
http://www.ncbi.nlm.nih.gov/pubmed/21979952
https://doi.org/10.1016/j.cmet.2007.06.010
https://doi.org/10.1016/j.cmet.2007.06.010
http://www.ncbi.nlm.nih.gov/pubmed/17681149
http://www.ncbi.nlm.nih.gov/pubmed/18566389
https://doi.org/10.1038/nature05894
http://www.ncbi.nlm.nih.gov/pubmed/17515919
https://doi.org/10.1371/journal.pone.0015968
https://doi.org/10.1371/journal.pone.0015968
http://www.ncbi.nlm.nih.gov/pubmed/21209844
https://doi.org/10.1128/mBio.01425-15
http://www.ncbi.nlm.nih.gov/pubmed/26419880
https://doi.org/10.1016/j.immuni.2012.02.013
http://www.ncbi.nlm.nih.gov/pubmed/22464170
http://www.ncbi.nlm.nih.gov/pubmed/8760791
https://doi.org/10.1371/journal.pone.0047853
http://www.ncbi.nlm.nih.gov/pubmed/23110112
https://doi.org/10.1038/nm0202-91
http://www.ncbi.nlm.nih.gov/pubmed/11821873
https://doi.org/10.1146/annurev.cellbio.12.1.335
http://www.ncbi.nlm.nih.gov/pubmed/8970730
https://doi.org/10.1074/jbc.M702316200
http://www.ncbi.nlm.nih.gov/pubmed/17403688
https://doi.org/10.1371/journal.pone.0050816
http://www.ncbi.nlm.nih.gov/pubmed/23226391
https://doi.org/10.1210/me.2005-0171
http://www.ncbi.nlm.nih.gov/pubmed/16373399
https://doi.org/10.1016/j.str.2007.07.014
http://www.ncbi.nlm.nih.gov/pubmed/17937915
https://doi.org/10.1136/bmj.f3195
http://www.ncbi.nlm.nih.gov/pubmed/23757736
https://doi.org/10.1371/journal.ppat.1007597


54. White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, et al. Transparent adult zebrafish as a tool

for in vivo transplantation analysis. Cell stem cell. 2008; 2(2):183–9. https://doi.org/10.1016/j.stem.

2007.11.002 PMID: 18371439

55. Zhu X, Williamson PR. Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS

yeast research. 2004; 5(1):1–10. https://doi.org/10.1016/j.femsyr.2004.04.004 PMID: 15381117

56. Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ. Mpeg1 Promoter Transgenes Direct

Macrophage-Lineage Expression in Zebrafish. Blood. 2011; 117(4):e49–56. https://doi.org/10.1182/

blood-2010-10-314120 PMID: 21084707

57. Maskrey BH, Bermudez-Fajardo A, Morgan AH, Stewart-Jones E, Dioszeghy V, Taylor GW, et al. Acti-

vated platelets and monocytes generate four hydroxyphosphatidylethanolamines via lipoxygenase. The

Journal of biological chemistry. 2007; 282(28):20151–63. M611776200 [pii]. https://doi.org/10.1074/jbc.

M611776200 PMID: 17519227

Fungal derived 15-keto-prostaglandin E2 and PPAR-γ promotes C. neoformans infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007597 March 28, 2019 28 / 28

https://doi.org/10.1016/j.stem.2007.11.002
https://doi.org/10.1016/j.stem.2007.11.002
http://www.ncbi.nlm.nih.gov/pubmed/18371439
https://doi.org/10.1016/j.femsyr.2004.04.004
http://www.ncbi.nlm.nih.gov/pubmed/15381117
https://doi.org/10.1182/blood-2010-10-314120
https://doi.org/10.1182/blood-2010-10-314120
http://www.ncbi.nlm.nih.gov/pubmed/21084707
https://doi.org/10.1074/jbc.M611776200
https://doi.org/10.1074/jbc.M611776200
http://www.ncbi.nlm.nih.gov/pubmed/17519227
https://doi.org/10.1371/journal.ppat.1007597

