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1. Introduction 25 

Traumatic Brain Injury (TBI) is one of the leading causes of death and disability in young 26 

people, affecting 10 million people worldwide every year (Humphreys et al., 2013; Hyder et al., 27 

2007). The severity of a brain injury is typically described as mild, moderate, or severe, based on 28 

time spent unconscious and/or coma rating score, the duration of post-traumatic amnesia, and 29 

neuroimaging results. Cognitive deficits (e.g., slow processing speed and poor concentration), 30 

motor control deficits (e.g., poor manual dexterity, balance deficits), and behavioural problems 31 

(e.g., impulsivity) are particularly common (Rabinowitz & Levin, 2014; Rossi & Sullivan, 1996). 32 

Approximately 15-30% of mild TBI cases (Shenton et al., 2012) and up to 65% of moderate-33 

severe cases (Rabinowitz & Levin, 2014; Selassie et al., 2008) report long-term problems. These 34 

persistent deficits cause disability and interfere with a patient’s ability to perform day-to-day 35 

tasks, for example getting dressed, planning ahead, and preparing food (Rabinowitz & Levin, 36 

2014). Isolating neurological biomarkers holds promise as a means to identify which patients are 37 

at risk of long-term disability; which has implications for patient management and development 38 

of economically sustainable treatment options.   39 

There is mounting evidence supporting diffusion MRI as a sensitive diagnostic tool in the 40 

care of patients with TBI (for reviews, see Delouche et al., 2016; Hulkower et al., 2013; 41 

Hutchinson et al., 2018; Xiong et al., 2014). First, changes in white matter organisation 42 

following TBI have been demonstrated in several important fibre bundles of the brain (Bendlin et 43 

al., 2008), including the superior longitudinal fasciculus (e .g., Farbota et al., 2012; Spitz et al., 44 

2013) and the corpus callosum (e.g., Levin et al., 2008; Mayer et al., 2010; Rutgers et al., 2008). 45 

For example, in a meta-analysis of 13 diffusion studies of TBI, significant increases in fractional 46 



anisotropy (FA) and decreases in mean diffusivity (MD) were found in the posterior parts of the 47 

corpus callosum (Aoki et al., 2012).  48 

Second, decreased white matter organization has been shown to predict poorer outcome 49 

in chronic TBI patients of all severity types (Kinnunen et al., 2011; Kraus et al., 2007), and in 50 

acute mild TBI patients with persistent symptoms (Niogi et al., 2008). Lower FA in the 51 

subregions of the corpus callosum has been associated with poorer bimanual coordination 52 

(Caeyenberghs et al., 2011a) and slower processing speed (e.g., Levin et al., 2008; Wilde et al., 53 

2006) in moderate-severe TBI patients. Similarly, lower FA in the cerebellum has been 54 

associated with poorer manual dexterity (Caeyenberghs et al., 2011b). Despite multiple reports 55 

of altered diffusion metrics, the regional analyses reported in these studies cannot identify how 56 

whole brain networks are affected by white matter damage following TBI.  57 

Because TBI may be considered a ‘disconnection syndrome’, where symptoms are 58 

accounted for by altered connectivity between regions of the brain, it is important to take global 59 

network disruption into account (Catani & Ffytche, 2005; Griffa et al., 2013). Where traditional 60 

diffusion approaches such as those outlined above examine isolated brain regions, graph 61 

theoretical analysis (GTA) can characterise the global structure of the brain network (or 62 

‘connectome’; Bullmore & Bassett, 2011; Hagmann et al., 2008; Sporns, 2013). Structural GTA 63 

represents the brain as a set of ‘edges’ (white matter pathways) that pass between ‘nodes’ (brain 64 

regions), using the reconstruction of white matter tracts as weights. This graph is then used to 65 

calculate graph metrics, which estimate network properties such as global integration and 66 

functional segregation (see Supplementary Material 1 for definitions, interpretations, and 67 

calculations for the graph metrics included in this review).  68 



Connectome analyses have rapidly found applications in the clinical neurosciences 69 

because the balance between integration and segregation necessary to support complex function 70 

may be affected by disease or injury. In their seminal review, Griffa et al. (2013) propose that 71 

graph metrics show promise as biomarkers in neurodevelopmental disorders such as ADHD 72 

(e.g., Cao et al., 2013), neurodegenerative diseases like Alzheimer’s disease (e.g., Lo et al., 73 

2010), and psychiatric disorders such as schizophrenia (e.g., Fornito et al., 2012). In one of the 74 

first structural GTA studies of TBI, Caeyenberghs et al. (2012) have revealed that young TBI 75 

patients have decreased connectivity degree within the brain, which correlated significantly with 76 

poor balance. Similarly, Kim et al. (2014) found that longer path length in adults with moderate-77 

severe TBI correlated with poorer higher-order cognitive processes like executive function and 78 

verbal learning. Since then, more research has suggested that graph metrics could be 79 

‘biomarkers’ of TBI (e.g., Hellyer et al., 2015; Yuan et al., 2015; Yuan et al., 2017b).  80 

With recent growth in the use of structural GTA in all types of TBI, there is a need to 81 

conduct a meta-analytical review to probe consistent patterns of change in graph metrics to see 82 

which hold promise as biomarkers. In the study presented here, we conduct a narrative review of 83 

diffusion MRI papers comparing healthy controls (HCs) using GTA, and the first meta-analysis 84 

to date of graph metrics in TBI. Heterogeneity in patient samples is addressed using subgroup 85 

analyses. This divides up an already small body of research, and as such the results are for 86 

hypothesis generation only. It was also our aim to draw inferences from this data about how 87 

graph metrics might be used as biomarkers in TBI, and to provide a framework for hypotheses in 88 

future GTA studies.  89 

2. Method 90 

2.1 Search and Selection Strategy 91 



A systematic literature search was conducted using Medline, CINAHL, PsycINFO, and 92 

Web of Science for all relevant articles published from 1999 until the last search date (4th of 93 

April 2018; see Figure 1 for PRISMA diagram). The search terms were [((TI OR AB) “traumatic 94 

brain injur*” OR TBI)) AND ((TI OR AB) connectom* OR “structural connect*” OR “graph 95 

theor*” OR “graph metric*” OR “graph analys*” OR “network analys*”)] (see Supplementary 96 

Material 2 for Mesh headings).  97 

Abstracts and titles of 247 unique papers were returned from this search. The reference 98 

lists of review papers were searched for additional studies (but none were found). After 99 

screening titles and abstracts, we excluded studies of functional MRI, electro-encephalography 100 

(EEG) or magneto-encephalography (MEG), animal models of TBI, and other causes of acquired 101 

brain injury (such as brain tumours or stroke). Also excluded were studies that did not employ a 102 

network analysis (for example, tract-based comparisons of FA), any publications that were not 103 

peer-reviewed (e.g., conference abstracts), and review papers.  104 

<<Figure 1. PRISMA flow diagram of the systematic literature search>> 105 

The remaining 26 articles were examined in full to assess eligibility. Studies that did not 106 

compare the structural connectomes between TBI patients and HCs, or that did not calculate 107 

graph metrics or run network-based statistics (NBS) were excluded, leaving 15 studies for 108 

inclusion in the narrative review. Of these, ten studies were included in the meta-analysis, 109 

addressing global graph metrics that directly compared the structural connectomes of TBI 110 

patients and HCs. The five studies not included in the meta-analysis were Fagerholm et al. 111 

(2015) and Mitra et al. (2016), both of which applied machine learning techniques; Dall’Acqua 112 

et al. (2016) which employed Network Based Statistics (NBS) for the group comparisons; and 113 



finally Solmaz et al. (2017) and Caeyenberghs et al. (2013), who only investigated group 114 

differences in regional graph metrics.  115 

2.2 Quality Assessment 116 

Two authors (PI, AC) assessed the methodological quality of each study independently, 117 

using a quality checklist for diffusion MRI studies adapted from Strakowski et al. (2000). This 118 

checklist has been used to measure methodological quality of papers in previous meta-analyses 119 

on schizophrenia (e.g., Baiano et al., 2007; Shepherd et al., 2012), major depressive disorder 120 

(e.g., Jiang et al., 2017), and bipolar disorder (Strakowski et al., 2000). As shown in 121 

Supplementary Material 3, the checklist included three categories: (i) subjects (items 1-4); (ii) 122 

image acquisition methodology and analysis (items 5-10); and (iii) results and conclusions (items 123 

11-13). For each item, scores of 1, 0.5, and 0 were assigned (1 = criteria fully met; 0.5 = criteria 124 

partially met; 0 = not met). Total scores vary from 0 to 13. Currently, there are no established 125 

cut-off scores for high- and low-quality studies using this tool, however, it was decided by the 126 

research team that any study with less than half the total score would be excluded from the 127 

analysis for poor methodological quality. Disagreements between reviewers were resolved by a 128 

third review from the senior author (KC). 129 

2.3 Data Extraction for Quantitative Synthesis 130 

Global graph metrics estimating global integration (global efficiency, normalised path length, 131 

and characteristic path length); functional segregation (normalised clustering coefficient, 132 

transitivity, mean local efficiency, modularity); centrality, resilience (betweenness centrality, 133 

small-worldness, assortativity); and basic measures (degree, density, and strength) were 134 

extracted across studies (see Supplementary Material 1 for comprehensive definitions of these 135 

graph metrics). To calculate effect sizes, means and standard deviations were extracted from 136 



published articles, supplementary materials, or via email correspondence with the authors 137 

(Caeyenberghs et al., 2014; Kim et al., 2014; van der Horn et al., 2016). In one study, p-values 138 

and t-scores were used to estimate the effect size (Hellyer et al., 2015). For longitudinal GTA 139 

studies (Yuan et al., 2017a; Yuan et al., 2017b), only the baseline (‘pre-training’) comparisons 140 

between TBI and HCs were included. Two papers reported TBI connectivity data in separate 141 

subgroups, one according to severity level (Königs et al., 2017), and the other by post-traumatic 142 

complaints (van der Horn et al., 2016). The latter provided pooled data for the purpose of the 143 

overall synthesis via email. For Königs et al. (2017) the averages across the TBI group were 144 

pooled for the global synthesis in Microsoft Excel (using calculations included in Supplementary 145 

Material 4). Graph metrics that were calculated at the local or nodal level were excluded (i.e., 146 

local efficiency, eigenvector centrality, and betweenness centrality of singular nodes not 147 

averaged across the network) to constrain the scope of the analysis to network-level dysfunction. 148 

2.4 Data Analysis for Quantitative Synthesis 149 

Hedge’s g, the standardised mean difference score between groups, was calculated for each 150 

outcome variable (i.e., graph metric) using the Comprehensive Meta-Analysis software, and 151 

analysed using a random-effects model (CMA; Biostat, USA, v2.2.064). In basic terms, a 152 

separate meta-analysis for each graph metric was run, as each metric should be treated as a 153 

separate outcome measure. To calculate the overall effect sizes, mean effects of each metric were 154 

pooled across studies and weighted by sample size and the 95% confidence intervals (CI). A 155 

positive effect size indicated that the TBI group had a higher mean value of the graph metric 156 

compared with the HC group, while a negative value indicated higher mean values in the HC 157 

group. Effect sizes were regarded as small if g ≥0.2, medium if g ≥0.5 and large if g ≥0.8 (Cohen, 158 

1988). Also, subgroup analyses on graph metrics were conducted for injury severity (mild, 159 



moderate-severe), chronicity (time since injury) (acute: <6 months post injury; chronic: >6 160 

months post injury), and age at injury (paediatric : <18 years old; adult: 18-65 years old).  The 161 

results of our meta-analysis should be considered as hypothesis generation only, as suggested by 162 

the Cochrane guidelines when the number of studies in the analysis is low (Sambunjak et al., 163 

2017).  164 

The I2 statistic was used to index heterogeneity in the data, i.e. the percentage of observed 165 

variability that is greater than what would be expected by chance or sampling error alone. High 166 

scores (I2 >75%) suggest heterogeneity due to differences in sample demographics (Higgins et 167 

al., 2003). Low I2 scores (I2 <50%) represent homogenous data, supporting a real effect between 168 

HC and TBI groups. Publication bias was assessed using Egger’s test for asymmetry in a funnel 169 

plot (Egger et al., 1997).  170 

Finally, false discovery rate (FDR) correction (p<0.002) was conducted for all analyses in 171 

accordance with recommendations by Wang and Ware (2013). Interdependencies between 172 

outcomes were accounted for using the Benjamini-Yekutieli procedure on the Bioinformatics 173 

toolbox in MATLAB_R2018a (Benjamini & Yekutieli, 2001).   174 

 175 

3. Results 176 

3.1 Sample characteristics 177 

The TBI patient pool included 429 participants, and the HC pool 306, with an age range of 8 178 

– 65 years old. Four studies included mTBI patients only, six studies included moderate-severe 179 

TBI patients only, and two studies included both severity types (see Table 1). Chronicity varied 180 

widely between studies, with TBI groups ranging from acute (e.g., within 96 hours post injury; 181 

Yuan et al., 2015) to chronic (e.g., 5.91 years post injury, ± 3.1 years; Yuan et al., 2017a). Six 182 



studies recruited paediatric TBI patients, two studies included both children and young adults, 183 

and four studies recruited adult TBI patients. 184 

<<Table 1. Demographics and Processing Methods for Graph Theoretical Studies of TBI>> 185 

3.2 Quality Assessment 186 

Table 2 summarises the quality of the 13 papers according to the diffusion MRI checklist 187 

categories, ranked according to overall score (maximum score 13). Most papers scored full 188 

points for describing parameters of the diffusion scanning sequences. Points were often deducted 189 

for poor description of graph metric calculations and failing to correct for multiple comparisons. 190 

The ‘subjects’ category of the checklist had the highest average score (3.6/4, 90.5%), followed 191 

by ‘methodology’ (5.4/6, 89.7%), and ‘results/conclusions’ (2.5/3, 83.3%). Overall, the total 192 

quality score was high, and varied from 9 to 12.5 points out of a possible 13 (average score: 193 

11.5/13, 88.5%). The study of Verhelst et al. (2018) had the highest methodological quality. 194 

There was no significant effect of publication bias (Egger’s regression intercept=1.81, CI: [-1.94, 195 

5.57], p=0.34), and all studies met the benchmark for inclusion in the meta-analysis, showing 196 

that the published studies are a good representation of available evidence. 197 

<<Table 2 Quality Assessment Results>> 198 

3.3 Meta-Analysis 199 

Table 3 summarises the differences in global graph metrics between TBI and HC cohorts 200 

across studies. For each graph metric, the direction of significant group differences between TBI 201 

and HCs was the same across studies, with the exception of small-worldness and normalised path 202 

length. The overall effect sizes for normalised clustering coefficient, global efficiency, density, 203 

and characteristic path length were found to be significant (p<0.05), with moderate to large 204 



Hedge’s g effect sizes (g >0.5) (see Figure 2, and Supplementary Material 5 for statistics). 205 

However, only normalised clustering coefficient and characteristic path length remained 206 

significant following FDR correction (p<0.002). The subgroup analyses revealed longer 207 

normalised path length in acute/mild patients; higher small-worldness in chronic patients; higher 208 

small-worldness in paediatric TBI patients; and higher normalised clustering coefficient in 209 

paediatric TBI patients compared to HCs (FDR corrected, p<0.001, see Table 4). In the next 210 

paragraphs, we will present the results of key overall effects and subgroup analyses for each 211 

graph metric that was significant after FDR correction. 212 

<<Table 3. Graph Metrics in Patients with TBI compared to Healthy Controls>> 213 

<<Figure 2. Inverted forest plot of the overall effect sizes for each graph metric>> 214 

<<Table 4. Results of the Subgroup Analyses>> 215 

3.3.1 Global Integration 216 

Four of the ten studies investigated characteristic path length. (Caeyenberghs et al., 2014; 217 

Hellyer et al., 2015; Kim et al., 2014; Königs et al., 2017). Of the 142 patients in this analysis, 218 

114 were moderate to severe; 63 acute patients were on average 5.5 months post-injury, while 79 219 

chronic patients were on average 3.5 years post-injury; and 101 were adults (average age: ~26.9 220 

years) and 41 were paediatric  (average age: ~10.5 years) at injury. Across this entire cohort, 221 

characteristic path length was longer in the TBI patients compared with HCs (g = 0.514, p = 222 

0.002, I2 =28.601%). The heterogeneity value of this graph metric was low, indicating that the 223 

dataset was homogenous.  224 



Six studies investigated normalized path length (Caeyenberghs et al., 2012; 225 

Caeyenberghs et al., 2014; Verhelst et al., 2018; Yuan et al., 2017a; Yuan et al., 2015; Yuan et 226 

al., 2017b) with no overall group effect (g = 0.815, p = 0.129, I2 =92.1%). Of the 112 patients in 227 

this analysis, 67 were moderate to severe; 45 acute patients were between 96 hours and 4 months 228 

post-injury, while 67 chronic patients were on average 4 years post-injury; and 21 were adults 229 

(average age: ~21.3 years) and 91 were paediatric  (average age: ~12.1 years) at injury. 230 

Subgroup analysis revealed that the acute/mild TBI group showed significantly increased 231 

normalised path length compared with HCs (g =0.965, p <0.001, I2 =0.0%), with a decreased 232 

heterogeneity value. The effect size for the chronic/moderate-severe group was not significant.  233 

3.3.2 Functional segregation 234 

Seven studies calculated normalized clustering coefficient (Caeyenberghs et al., 2012; 235 

Caeyenberghs et al., 2014; van der Horn et al., 2016; Verhelst et al., 2018; Yuan et al., 2017a; 236 

Yuan et al., 2015; Yuan et al., 2017b). Of the 165 patients in this analysis, 67 were moderate to 237 

severe; 98 acute patients were between 96 hours and 4 months post-injury, while 67 chronic 238 

patients were on average 4 years post-injury; and 74 were adults (average age: ~27.4 years) and 239 

91 were paediatric  (average age: ~12.1 years) at injury. Normalised clustering coefficient was 240 

higher in TBI patients in the overall meta-analysis (g =1.445, p =0.002, I2 =91.484). In the 241 

chronicity and severity subgroup-analysis, the effect remained significant in the 242 

chronic/moderate-severe patients only (chronic/moderate-severe: g =1.924 p=.014, I2 =92.440%). 243 

However, this effect retained a high heterogeneity value. Similarly in the age at injury subgroup 244 

analysis, normalised clustering coefficient was significantly higher in the paediatric TBI patients 245 

than HCs (g = 2.00, p = 0.001, I2 = 89.82). This effect was not observed for adult TBI patients. 246 



However, grouping by age at injury only lowered the observed heterogeneity in normalised 247 

clustering coefficient by ~2%. 248 

3.3.3 Small-Worldness 249 

 Six studies reported on small-worldness differences between TBI and HCs (Caeyenberghs et 250 

al., 2012; Caeyenberghs et al., 2014; Hellyer et al., 2015; Yuan et al., 2017a; Yuan et al., 2015; 251 

Yuan et al., 2017b), with no significant effect size overall; however, a trend was evident for 252 

larger values in TBI patients (g =0.794, p =0.06, I2 =89.736%). Of the 158 patients in this 253 

analysis, 105 were moderate to severe; 108 acute patients were between 96 hours and 5.5 months 254 

post-injury, while 50 chronic patients were on average 4.6 years post-injury; and 84 were adults 255 

(average age: ~26.6 years) and 74 were paediatric  (average age: ~11.8 years) at injury. 256 

Subgroup analysis showed a significant effect size for chronic patients only, with increased 257 

small-worldness in chronic TBI patients compared with HCs (g =0.950, p=.001, I2 =39.536%). 258 

Grouping by chronicity also greatly reduced heterogeneity in the chronic group. Subgroup 259 

analysis by severity revealed larger small worldness values for the mild group (g =1.309, p=.020, 260 

I2 =81.922%); however, heterogeneity remained high and did not survive FDR correction. 261 

Finally, small-worldness was significantly higher in the paediatric TBI patients (but not adult 262 

TBI patients) compared to HCs (g = 1.25, p < 0.001, I2 = 56.949). Grouping by age at injury 263 

reduced the heterogeneity observed in small-worldness, meaning that age at injury could be 264 

explaining some of the differences in small-worldness between TBI patients and HCs. 265 

4. Discussion 266 

Our study is the first meta-analysis to assess the consistency of recent graph theoretical 267 

studies of TBI. The overall quality of the papers was high, and all met the benchmark for 268 



inclusion in the review. Findings suggest that normalized clustering coefficient and 269 

characteristic path length may be sensitive diagnostic biomarkers to distinguish TBI patients 270 

from HCs, with the former particularly high in chronic/moderate-severe and paediatric TBI 271 

patients after subgroup analyses. Furthermore, we suggest that values of normalised path length 272 

may be increased in acute/mild patients, and small worldness may be higher in chronic and 273 

paediatric TBI patients. In the following sections we will examine the use of graph metrics from 274 

a critical view. Specifically, we will discuss the following topics: (4.1) evidence that the TBI 275 

network is closer to a regular lattice structure than HCs, and (4.2) the use of graph metrics as 276 

diagnostic and prognostic biomarkers in longitudinal studies. In (4.3) we will also point out a 277 

number of methodological issues and provide recommendations for the future study of structural 278 

connectomics in TBI. Finally, in (4.4) we will address any limitations of this pooled analysis, 279 

including heterogeneity in patient samples and parcellation schemes.  280 

4.1 Towards a regular network structure in TBI patients 281 

The hypotheses presented in the research papers reflect the exploratory nature of GTA in 282 

TBI studies. Clear rationales and a priori hypotheses regarding the specific choice of graph 283 

metrics (together with the expected direction of effect) was omitted in many of the studies 284 

analysed. For example, Yuan et al. (2017b) ambiguously predicted that metrics would be 285 

“abnormal at baseline but would normalise after training”. Only Yuan et al. (2015) and Königs 286 

et al. (2017) justified their choice of each graph metric. While exploratory research is necessary, 287 

a clear rationale concerning the selection of graph metrics will advance theoretical reasoning in 288 

the field. Furthermore, having a priori hypotheses about the expected direction of effect will 289 

minimise multiple comparisons, thereby reducing chance findings that inflate the false positive 290 



rate. The findings from our meta-analysis, outlined in the following paragraphs, can serve as a 291 

guide in the development of hypotheses for the next generation of GTA studies in TBI.  292 

Small-worldness is the ratio of normalised clustering coefficient to normalised path 293 

length, and represents the balance between segregation for local specialization and global 294 

integration (Watts & Strogatz, 1998). While all studies found that the TBI connectome is still a 295 

small-world network, there was evidence of a shift towards a regular lattice structure. Small-296 

worldness values were significantly higher for TBI patients greater than 6 months post injury, 297 

and for children with TBI. These results suggest a shift in network structure, which is probably 298 

due to a secondary process of neurodegeneration and/or is specific to those patients injured 299 

during childhood. However, further research is needed to evaluate the neurobiological 300 

mechanisms underlying increases in small-worldness. Yuan et al. (2015) and Yuan et al. (2017a) 301 

suggested that higher small-worldness is primarily driven by an increase in local clustering. Still, 302 

changes in small-worldness alone do not provide insight into the nature of the group differences. 303 

Instead, researchers could focus on more specific metrics that can differentiate between 304 

alterations in segregation and integration (Fornito et al., 2013; Papo et al., 2016), including 305 

measures of clustering and path length as described next. 306 

In line with the observed shift towards a regular network, our review revealed that 307 

normalised clustering coefficient was significantly higher in the TBI group compared to HCs. 308 

This result indicates that TBI patients have more ‘closed triangles’ in their network graph 309 

compared to the controls, denoting greater functional specialisation. We also observed that this 310 

effect remained significant in the paediatric group but not the adult group. Yuan et al. (2015) 311 

suggested that this finding in paediatric TBI patients reflected an adaptive response to the injury, 312 

whereby local connections are increased because they are less vulnerable to damage than long-313 



range connections. However, we argue that this is a costly adaptation, as it would increase the 314 

number of steps needed for information to travel between any two regions (Fornito et al., 2016; 315 

Sporns, 2011). In fact, our meta-analysis also showed that characteristic path length was 316 

significantly longer in the TBI population compared to the HCs, meaning there are a greater 317 

number of steps between any two nodes on average in the TBI network than in the HC network. 318 

Furthermore, the subgroup analysis demonstrated that normalised path length in the acute mild 319 

TBI group (but not the chronic moderate-severe group) was significantly higher than HCs. 320 

However due to the paucity of data available, it was impossible to determine whether this effect 321 

was driven by chronicity or severity. Despite the lack of data, our findings support the idea that 322 

the TBI network topology departs from the economical random-graph (Sporns, 2011). 323 

4.2 Use of graph metrics as diagnostic and prognostic biomarkers 324 

The effects described in section 4.1 support the use of normalised clustering coefficient 325 

and characteristic path length as diagnostic biomarkers to identify group differences between 326 

TBI patients and HCs. Graph metrics can also be used to detect the presence or absence of 327 

diffuse axonal injuries (DAI) within TBI patients. Two papers included in the review (Fagerholm 328 

et al., 2015; Mitra et al., 2016) employed machine learning methods on graph metrics to classify 329 

patients. Fagerholm and colleagues were able to classify the presence of DAI in TBI patients 330 

with a high accuracy rate of 93.4%, and found that betweenness centrality had the highest 331 

‘feature importance’ when differentiating between patients with microbleeds and HCs. Using a 332 

similar machine learning technique, Mitra et al. found that connectivity strength could 333 

differentiate mild TBI patients with DAI from HCs with an accuracy rate of 68.16%. These are 334 

very promising techniques that clearly demonstrate the use of graph metrics as diagnostic 335 

biomarkers. 336 



Another important aspect of evaluating a diagnostic biomarker is the association of the 337 

metric with behavioural/clinical outcomes, which was done in all studies apart from one (Hellyer 338 

et al., 2015). For example, longer characteristic path length correlated with worse performance 339 

on verbal learning task as well as executive dysfunction in moderate-severe TBI patients (Kim et 340 

al., 2014). Longer characteristic path length also coincided with lower intelligence scores and 341 

shorter working memory span in moderate-severe TBI patients (Königs et al., 2017). Lower 342 

normalised clustering coefficient was found to be associated with slower processing speed in 343 

mild TBI patients (van der Horn et al., 2016). These significant correlations highlight the 344 

potential of normalised clustering coefficient and characteristic path length as biomarkers of 345 

behavioural deficits following TBI. However, reminding us of the preliminary nature of this 346 

work, a number of studies did not correct for multiple comparisons when running correlations 347 

between graph metrics and behavioural tests (Kim et al., 2014; Yaun et al., 2017a). While 348 

uncorrected thresholds can be useful for exploratory research, correction for multiple 349 

comparisons would strengthen the validity of these findings. Finally, comparison between 350 

studies is problematic because different outcome measures were used across studies. We 351 

recommend the use of a core set of behavioural tests in the future (e.g., Wefel et al., 2011).  352 

Finally, we wanted to explore whether graph metrics can be used as prognostic 353 

biomarkers to predict treatment response. Longitudinal studies are necessary to investigate which 354 

graph metrics change in response to training. Only two GTA studies (by the same group, Yuan et 355 

al., 2017a; Yuan et al., 2017b) so far have conducted longitudinal training studies. Yuan et al. 356 

(2017a) found that normalised clustering-coefficient and small-worldness values decreased 357 

following 10 weeks of attention and executive function training in TBI patients, but remained the 358 

same in the HCs. In an aerobic training study, Yuan et al. (2017b) found that improved Post-359 



Concussion Symptom Inventory scores following 4 – 16 weeks of training correlated with 360 

increased global efficiency and lower normalised path length. However, this study did not 361 

investigate the interaction effect between group and time directly. Overall, there is some 362 

evidence that network measures can be used as prognostic biomarkers, but further longitudinal 363 

analyses are needed to investigate the predictive value of graph metrics.  364 

4.3 Methodological considerations and further recommendations 365 

As a tentative conclusion, our meta-analysis showed that normalized clustering 366 

coefficient and characteristic path length are potential diagnostic biomarkers that may be 367 

sensitive to group differences between TBI and controls. However, GTA is a mathematical 368 

framework that has only recently been applied in neuroscience (for a critical review, see Fornito 369 

et al., 2013), and the underlying biological mechanism of change (e.g., increase in axon density, 370 

diameter, myelination, sprouting of synapses) is so far unknown. Due to inherent limitations in 371 

tractography, we do not know yet whether graph metrics directly reflect white matter integrity 372 

(e.g., Jones et al., 2013). Therefore, it is important to refrain from diagnosing ‘abnormal’ graph 373 

metrics, when comparing TBI patients to HCs (e.g., Yuan et al., 2017b), until we know the 374 

biological mechanisms underpinning graph metrics. Validated neuro-psychometric testing could 375 

couple structural connectome measures such as graph metrics (and other diffusion-based 376 

measures) to multimodal data with known information processing properties. Until then, 377 

structural graph metrics represent the necessary but insufficient properties of the network to 378 

function (Sporns, 2012). However, we can get a better understanding if we first obtain reliable 379 

patterns of brain connectivity.   380 



There are methodological challenges associated with investigating graph metrics in 381 

patients with TBI. These include applying appropriate MRI acquisition and preprocessing 382 

techniques, connectome construction, and specifying edge weights (see Table 1 for a summary of 383 

the methods used in the studies in this review). Future research should (a) utilise advanced 384 

diffusion sequences (e.g., multishell, not used by any studies in the review) with accelerated 385 

acquisition speed to accommodate for non-compliance due to poor concentration (e.g., 386 

multiband/compressive sensing); (b) employ robust estimation approaches for diffusion MRI 387 

metrics (e.g., Slicewise OutLIer Detection (SOLID; Sairanen et al., 2018)); and (c) apply a 388 

model that can resolve crossing fibre orientations (e.g., constrained spherical deconvolution, only 389 

used by two papers in the current review). Furthermore, although connection density has a 390 

noticeable impact on graph metrics (van Wijk et al., 2010), only six of the thirteen studies in the 391 

quality assessment accounted for differences in network density (as suggested by Bullmore & 392 

Basset, 2011) when comparing structural networks of TBI and HCs (Caeyenberghs et al., 2012; 393 

Hellyer et al., 2015; Königs et al., 2017; Solmaz et al., 2017; van der Horn et al., 2016; Yuan et 394 

al., 2015). Similarly, researchers should consider using multiple edge weighting and parcellation 395 

schemes to examine the robustness of data (Qi et al., 2015; Sotiropoulos & Zalesky, 2017), as 396 

was done by Caeyenberghs et al. (2012, 2013, 2014), Fagerholm et al. (2015), and Königs et al. 397 

(2017). Finally, future studies should employ advanced measures of white matter such as fibre 398 

density and cross section (Raffelt et al., 2017) as edge weights, because FA (used by three 399 

studies) and number of ‘streamlines’ (used by eight studies) lack the microstructural specificity 400 

to fully characterise the integrity of the structural network. In summary, by using more advanced 401 

MRI acquisition and pre-processing techniques we can get closer to an understanding of the 402 

biological underpinnings of the TBI structural connectome.  403 



4.4 Limitations of the pooled analysis  404 

4.4.1 Heterogeneity in parcellation schemes 405 

One limitation of combining different graph analyses is that it inevitably requires pooling 406 

data obtained with different parcellation schemes. Differences in the way the cortex is 407 

parcellated can significantly impact the results of GTA (Zalesky et al., 2010). As shown in Table 408 

1, five different parcellation schemes (e.g., the Desikan atlas from Freesurfer and the Automated 409 

Anatomical Labeling atlas) were used across the papers included in the meta-analysis, each with 410 

a different number of regions of interest or ‘nodes’ (range: 82-164). Parcellation schemes with 411 

higher resolution (i.e., more nodes) will demonstrate gradual increases in normalised path length 412 

and reductions in normalised clustering coefficient (Bassett et al., 2011), while measures of 413 

network organisation (e.g., small-worldness) will remain largely the same (Qi, Meesters, 414 

Nicolay, ter Haar Romeny, & Ossenblok, 2015). However, because whole brain node templates 415 

in this current study were of similar spatial scales, impact on pooled graph metrics should be 416 

negligible (Zalesky et al., 2010), and it is therefore likely that this effect is small and does not 417 

detract from the overall findings.  418 

4.4.2 Heterogeneity in the TBI samples 419 

Patients with TBI are diverse, and several clinical and demographic factors (such as 420 

severity, chronicity, and age at injury) will impact the comparability of patient cohorts across 421 

studies. In the present meta-analysis, we attempted to address the issue of heterogeneity in our 422 

pooled TBI population by conducting subgroup analyses. However, the heterogeneity values 423 

remained above 75% for the majority of the subgroup analyses, indicating that results may still 424 

have been driven by differences in sample demographics (Higgins et al., 2003). This is not 425 



surprising given the diversity present in the structure of an injured brain, which may include 426 

focal lesions, diffuse axonal injury, or both. There were also limited studies that could be 427 

included in this review, making some subgroup analyses hard to interpret. For example, there 428 

were no studies of moderate-severe TBI patients in the acute phase, or mild TBI patients in the 429 

chronic phase that could be included in the normalised path length subgroup analyses (see Table 430 

4). Therefore it is impossible to determine whether normalised path length was increased in the 431 

acute/mild group due to the time since injury, or the severity of the injury. Overall, this meta-432 

analysis allows us to see universal trends that are present in the structural connectome of TBI 433 

patients; however more research is needed that spans across all TBI subgroups, so that future 434 

pooled analyses can better distinguish between all TBI populations.  435 

5.0 Conclusion 436 

Despite the complexity of applying GTA to the heterogeneous TBI population, our meta-437 

analysis of structural connectivity studies revealed that normalised clustering coefficient and 438 

characteristic path length can be regarded as diagnostic biomarkers of TBI. These findings 439 

provide an evidentiary framework for future research. The emerging evidence suggests that 440 

average path length and clustering is increased in TBI patients, with the overall network more 441 

closely resembling a regular lattice. Using graph metrics we are able to differentiate between 442 

TBI population and healthy controls on the one hand, and the presence/absence of DAI on the 443 

other hand. Also, there is preliminary evidence that graph metrics predict future response to 444 

training. Despite the promising results, the biological mechanisms underlying alterations in 445 

graph metrics is unclear. Future research should employ advanced diffusion MRI tools and 446 

obtain biologically-validated measures of structural connectivity in longitudinal studies. 447 
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