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Abstract 

Complex multicellular organisms, such as mammals, express two complete sets of 

chromosomes per nucleus, combining the genetic material of both parents. However, 

epigenetic studies have demonstrated violations to this rule which are necessary for 

mammalian physiology; the most notable parental allele expression phenomenon is genomic 

imprinting. With the identification of endogenous imprinted genes, genomic imprinting 

became well-established as an epigenetic mechanism in which the expression pattern of a 

parental allele influences phenotypic expression. The expanding study of genomic imprinting 

is revealing a significant impact on brain functions and associated diseases. Here review key 

milestones in the field of imprinting and discuss mechanisms and systems in which imprinted 

genes exert a significant role. 
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Genomic imprinting: a historical overview  

The term “imprinting” was first used by the cytogeneticist Helen Crouse in the 1960s 

to describe the elimination of paternally derived X chromosomes in flies (Crouse, 1960). 

However, during the early 1980s, we witnessed the renaissance of genomic imprinting due to 

fundamental studies in mice. Pronuclear transfer experiments conducted in newly fertilized 

mouse eggs (McGrath and Solter, 1983a, b, 1984; Surani and Barton, 1983; Surani et al., 

1984) allowed the creation of diploid gynogenetic (two maternal copies) or androgenetic (two 

paternal copies) conceptuses (Figure 1A). The embryos were not viable, proving that the two 

parental sets of chromosomes were not functionally equivalent and that both a maternal set 

and a paternal set are required for early development. Interestingly, these experiments also 

showed that conceptuses developed from gynogenetic pronuclei failed in part due to 

compromised extra-embryonic lineages, while the androgenetic conceptuses presented 

underdeveloped embryos. This data suggested that maternal and paternal genomes contain 

indispensable components for both embryonic and extraembryonic development, and that 

they also play complementary roles in sustaining these lineages. 

While the experiments by Surani and Solter showed that the parental genomes were 

nonequivalent, whether this was a whole genome effect or whether specific genes were 

involved was not known at that time and raised considerable debate. Studies by Cattanach 

and Kirk (Cattanach and Kirk, 1985) and colleagues provided fundamental evidence for 

gene-specific imprinting. Using reciprocal and Robertsonian translocations, they took 

advantage of chromosome “non-complementation” analysis, identifying regions of the 

genome for which the presence of two maternal or two paternal chromosomal copies resulted 

in abnormalities in growth, behavior and/or viability (Figure 1B). This systematic approach 

showed that imprinting was restricted to some regions of the genome, implied that some 

genes were expressed or repressed according to their parental origin, and provided a 
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comprehensive genome-wide genetic map of imprinted regions 

(https://www.mousebook.org/mousebook-catalogs/imprinting-resource). The finding that 

mice with particular uniparental disomies and abnormal phenotypes could survive to birth 

and beyond implied that imprinting defects could also be a significant cause of human 

diseases. Consistent with findings in mouse, at the same time human syndromes were being 

described that exhibited parent-of-origin effects in their patterns of inheritance. The genomic 

regions involved shared syntenic homology with some of those identified by Cattanach and 

colleagues in mouse.  

Earlier, in 1974, Johnson (Johnson, 1974) reported the unusual phenomenon of 

parent-of-origin effects on the viability of mice with deletions within a small region of 

chromosome 17 in mice, the T-maternal effect (Tme) locus. This observation paved the way 

for the discovery of the first imprinted gene. Using the Tme deletion and systematic 

molecular genetic mapping approaches, Barlow and colleagues uncovered the imprinted 

insulin-like growth factor 2 receptor (Igf2r) locus on mouse chromosome 17, which is 

expressed from the maternally inherited chromosome but repressed on the paternally 

inherited chromosome (Barlow et al., 1991). That same year, Igf2 on mouse chromosome 7 

(DeChiara et al., 1991; Ferguson-Smith et al., 1991) was demonstrated to be expressed 

specifically from the paternally inherited chromosome. Adjacent to but downstream from 

Igf2, the non-coding RNA H19 gene was found to be reciprocally imprinted to Igf2, being 

expressed from the maternally inherited chromosome (Bartolomei et al., 1991). In normal 

embryos, co-expression of these three genes regulates growth, with the paternally expressed 

gene (Igf2) being growth promoting and the maternally expressed imprinted genes (Igf2r and 

H19) being negative regulators of growth. 

Since the parent-of-origin specific expression was not genetically determined, 

genomic imprinting was recognized to be an epigenetic phenomenon. At the simplest 
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imprinted locus, parental alleles are monoallelically expressed, with either the maternally 

inherited or paternally inherited allele being transcriptionally repressed by differential 

epigenetic modifications initiated in the male and female germlines. Shortly after the 

discovery of the first imprinted genes, parental-allele-specific DNA methylation was shown 

at imprinted loci (Bartolomei et al., 1993; Ferguson-Smith et al., 1993; Li et al., 1993; Stoger 

et al., 1993) suggesting that it may play a key role in imprinting control.  

In addition to its now well-known roles in placental biology, fetal growth and 

homeostasis (Peters, 2014; Plasschaert and Bartolomei, 2014), genomic imprinting is being 

increasingly appreciated for its role in the nervous system, and almost half of all the known 

imprinted genes show imprinted expression in the brain. The most fascinating evidence for a 

key function of genomic imprinting in the brain first came in the late 1990s. At that time, it 

was known that mouse chimeras containing gynogenetic or androgenetic cells mixed with 

wild-type (WT) cells provided a promising experimental model with reciprocal distributions 

of the androgenetic and gynogenetic cells within these chimaeras. This suggested that 

genomic imprinting was important for particular embryonic lineages, including the brain 

(Barton et al., 1991; Fundele et al., 1990). Subsequently, Keverne and colleagues (Keverne et 

al., 1996) demonstrated that gynogenetic-WT chimeras developed as abnormal embryos with 

large brains, while embryos developed from androgenetic-WT chimeras presented 

abnormally small brains (Figure 1C). Furthermore, androgenetic and gynogenetic cells 

showed biased regional distributions throughout the brain: specifically, gynogenetic cells 

were distributed throughout the cortex, striatum and hippocampus, while androgenetic cells 

were enriched in the hypothalamus, raising interest in the various physiological functions 

ascribed to such distinct brain areas and the potential functions of paternally and maternally 

expressed imprinted genes in those locations.  
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The field of genomic imprinting is continually expanding and has gradually spread to 

disciplines other than embryology, such as cell physiology, behavior, and neuroscience. In 

this review, we highlight the more recent investigations, addressing the current mechanistic 

understanding of the epigenetics governing genomic imprinting and reviewing the latest 

genomic map of imprinted genes. Moreover, we will provide an overview of the roles of  

imprinted genes in the wide-range of physiological functions throughout the life course. We 

will discuss examples of imprinted diseases and recent discoveries in the sleep and circadian 

clock field. The review will conclude with a theoretical overview of evolutionary aspects of 

imprinting, and an exploration of  new avenues on how genomic imprinting may highlight 

epigenetic regulatory mechanisms affecting genome-function more widely. 

 

Epigenetic control of imprints 

Cells with identical genes, histories and environments can display a repertoire of 

different functions that are regulated both transcriptionally and post-transcriptionally. Much 

of this transcriptional variability is governed by epigenetic mechanisms. Epigenetic 

processes, such as DNA methylation and histone modifications, are fundamental to the 

establishment, maintenance and dynamic changes in gene expression; such epigenetic states 

contribute to cell type-specific genome functions throughout the life course, providing critical 

memories of earlier decisions. Epigenetic states are most dynamic during germ cell 

specification and early embryogenesis. Some epigenetic information, including that 

determining genomic imprinting, is inherited. Therefore, genomic imprinting is an important 

paradigm for understanding non-genetic inheritance. 

To appreciate how imprinted genes are related to developmental processes, 

understanding the mechanisms underlying the imprinting cycle in development and between 

generations is important. DNA methylation -the addition of a methyl (CH3) group to 
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cytosines- is an heritable epigenetic mark that is associated with transcriptional repression 

when occurring on regulatory sequences, such as promoters . The parent-of-origin-specific 

acquisition of DNA methylation marks at imprinting control regions (ICRs) in the germline is 

essential for the monoallelic expression of imprinted genes in embryos and are retained as the 

memory of parental origin after fertilization (Kelsey and Feil, 2013). Imprinted genes reside 

mostly but not exclusively in clusters throughout the mammalian genome; a cluster typically 

contains a single ICR, which harbors germline-derived parental-allele--specific methylation 

and governs imprinted expression of multiple genes within the entire domain. In addition, 

some imprinted genes exhibit complex patterns of tissue-specific and transcript-isoform-

specific imprinted gene expression, with maternal, paternal, and biallelic expression observed 

in different cell lineages and for different splice variants.  

How are DNA methylation and other epigenetic marks patterned during 

gametogenesis and embryogenesis? DNA methylation is catalyzed by a family of DNA 

methyltransferases (DNMTs), wherein DNMT3A and DNMT3B establish DNA methylation 

patterns de novo, while DNMT1 maintains methylation after DNA replication (Smallwood 

and Kelsey, 2012a, b). Embryonic development is characterized by periods of loss and gain 

of DNA methylation. After fertilization, there is a demethylation phase in which gametic 

DNA methylation patterns are erased on both parental genomes, except for certain genomic 

regions, including ICRs that robustly retain parent-specific DNA methylation. From 

implantation, there is a phase of de novo methylation after which the overall genomic levels 

of DNA methylation remain relatively stable, except for cells allocated to the germ cell 

lineage. Indeed, primordial germ cells undergo a second wave of genome-wide 

demethylation. DNA methylation modifications at imprinted loci are also erased in the 

germline allowing removal of parental epigenetic ‘memory’ and subsequently re-established 

at ICRs in an oocyte- or sperm-specific manner as germ cell development proceeds. Germline 
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ICR methylation is mostly established by DNMT3A in combination with DNMT3L, a 

cofactor with no methyltransferase activity. These ICRs, are considered ‘primary’ or 

‘germline’ differentially methylated regions (DMRs). There are only three known paternally 

derived germline methylation imprints and these are all intergenic; in contrast, over twenty 

ICRs are generated in the maternal germline and these are all at CpG-rich promoters 

(Bartolomei and Ferguson-Smith, 2011). After fertilisation, ‘secondary’ DMRs may arise at 

imprinted gene clusters, often as a consequence of the imprinted expression of non-coding 

transcripts or passively following transcriptional repression (Nowak et al., 2011; Sasaki et al., 

1995). 

Maternal and paternal ICRs are not subject to a specific targeting process of DNA 

methylation during gametogenesis. Genome-wide, DNA methylation is preferentially 

established at intergenic sequences and transposons during spermatogenesis, while oocyte 

DNA methylation acquisition is coupled to transcriptional elongation and mostly found in 

gene bodies, including at intragenic CpG islands (ref). What distinguishes ICRs from the rest 

of gametically methylated regions is their ability to be retained during post-fertilization 

epigenetic reprogramming. This has been linked to the presence of several binding sites for 

ZFP57, which recruits of the KAP1 heterochromatic complex (Quenneville et al., 2011) (Box 

1). Hundreds of ZFP57-containing regions still exhibit parent-specific DNA methylation at 

the blastocyst stage, but very few survive post-implantation, except the canonical twenty or 

so ICRs. Interestingly, in the human placenta, there is a high retention of oocyte-derived 

methylation, and this placenta-specific imprinting is highly polymorphic among individuals 

(Hanna et al., 2016; Sanchez-Delgado et al., 2016). This suggests that epigenetic differences 

among embryonic cells that establish extra-embryonic lineages at the time of implantation 

become fixed in the placenta (Hanna et al., 2016). 
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Recent studies indicate additional complexities in the regulation of DNA methylation 

patterns in oocytes and cleavage embryos. The protein Ubiquitin-like, containing PHD and 

RING finger domains 1 (UHRF1) recruits the maintenance-type DNA methyltransferase 

DNMT1 to hemi-methylated CpG sites on newly replicated DNA to restore pre-existing CpG 

methylation patterns after replication (Sharif et al., 2007; Unoki et al., 2004). Accordingly, 

UHRF1 is required for imprint maintenance in post-implantation embryos (Sharif et al., 

2007). Paradoxically however, UHRF1, together with DNMT1, is mainly localized in the 

cytoplasm of oocytes and preimplantation embryos, with only a small fraction in the nucleus 

(Maenohara et al., 2017). Oocyte-specific ablation of Uhrf1 decreases CpG methylation in 

fully-grown oocytes (FGOs) to levels below to those of Dnmt1 knockout (KO) FGOs 

(Maenohara et al., 2017). Because no DNA replication occurs in growing oocytes and this 

stage corresponds to the de novo methylation phase, this evidence suggests that both DNMT1 

and UHRF1 have a role in de novo CpG methylation. The exclusion of UHRF1 and DNMT1 

from the nucleus is mediated by the protein Stella. In the absence of Stella, UHRF1/DNMT1 

ectopically methylates intergenic regions that ordinarily escape de novo methylation, 

indicating an unanticipated active mechanism to protect large parts of the oocyte genome 

from methylation by these factors (Li et al. 2018; PMID 30487604). Such protection may be 

important to ensure proper zygotic genome activation. CpG methylation levels in blastocysts 

derived from Uhrf1 KO oocytes (Uhrf1 maternal-KO blastocysts) are decreased throughout 

the genome, including at ICRs. This indicates that maternally derived UHRF1 plays a central 

role in maintaining CpG methylation in preimplantation embryos, perhaps by contributing to 

the recruitment of maternally derived and/or zygotically produced DNMT1 (Hirasawa et al., 

2008; Howell et al., 2001). This activity protects the ICRs against genome-wide 

demethylation occurring at this stage. Interestingly, Uhrf1 maternal-KO embryos die before 

implantation, which is a much more severe phenotype than that observed in any DNA 
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methyltransferase KO embryos (maternal KO or zygotic KO), which suggests that 

preimplantation lethality may arise independent of methylation defects (Maenohara et al., 

2017).  

 

---BOX-1--- 

The persistence of (imprinted) memory: the role of ZFP57 and ZFP445 

Many regions of the genome acquire germline differences in DNA methylation, but 

unlike imprints, these parent-specific differences become equivalent during post-fertilization 

epigenetic reprogramming. Hence, this retention of epigenetic memory during the 

preimplantation stage is the event critical for imprinting control. Therefore, how this memory 

is retained in an environment when methylation marks elsewhere are in such dynamic phases 

remains an important question.  

One mechanism potentially regulating this phenomenon acts via sequence-specific 

binding factors that can recruit epigenetic modifiers. One such binding factor is the KRAB-

zinc finger protein ZFP57 (Quenneville et al., 2011). For the correct maintenance of imprints, 

maternal ZFP57 stores must be present in the oocyte upon fertilization, and ZFP57 must also 

be expressed zygotically during the preimplantation period. Importantly, this DNA-binding 

protein binds in a sequence-specific and methylation-dependent manner. Mice that are 

maternal-zygotic mutants lose many of their imprints and die during gestation; those without 

embryonic expression have a variably penetrant phenotype and reduced viability (Li et al., 

Dev Cell 2008. Ref). In humans, recessive ZFP57 mutations result in multi-locus imprinting 

disorders, with most patients exhibiting transient neonatal diabetes alongside other 

imprinting-associated phenotypes, such as growth defects. Unlike in mice, in humans, ZFP57 

is not expressed in oocytes and is thus not a maternal factor  (Mackay et al., 2008). 
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The incomplete penetrance of ZFP57 mutations in human and mouse suggests 

additional effectors. Most recently ZFP445, which traces to the origins of mammalian 

imprinting, also has been shown to bind ICRs in mouse and human. In ZFP57/445 mouse 

double mutants, methylation at all ICRs (except one) is lost indicating that these two proteins 

together are necessary and sufficient for imprint maintenance. The earlier embryonic 

expression of ZNF445 in humans and its intolerance to loss of function mutations indicate its 

greater importance in the maintenance of human imprints (Takahashi et al., 2019).  

--- END-BOX-1--- 

 

 

While ‘canonical’ imprinting is stably maintained throughout life, a less-studied form 

of gamete-determined DNA methylation survives only for a few days after fertilization. 

Regions subjected to this ‘transient’ form of imprinting carry ZFP57 binding sites but lose 

their parental specificity at the time of embryo implantation, as they become either fully 

methylated or fully unmethylated (Kobayashi et al., 2012; Proudhon et al., 2012). Most of 

these regions are methylated from the oocyte (Duffie et al., 2014). Hundreds of germline-

derived DMRs have been described in mice and human blastocysts, although the overlap 

between the two species appears rather limited (Sanchez-Delgado et al., 2016). Whether 

transient imprinting could impact the early embryonic transcriptome and even have long-

lasting consequences is an intriguing question. However, because this is a recently described 

phenomenon, its developmental/physiological importance has not yet been fully described. 

Of the newly described transiently imprinted loci, the zinc finger, DBF-type containing 2 

(Zdbf2) locus is the most characterized so far. Importantly, this locus shares the same 

regulatory properties in mice and humans. The transcription start site (TSS) of an alternative 

transcript of Zdbf2, Liz (long isoform of Zdbf2), coincides with a maternal germline DMR, 
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which disappears at implantation by gaining DNA methylation on the paternal allele. 

Consequently, Liz expression is restricted to the pluripotent embryo and occurs in a mono-

allelic, paternal-specific manner before ceasing expression at implantation for the rest of 

somatic life (Duffie et al., 2014). Very brief Liz expression in the embryo is required for 

initiating a long-lasting epigenetic switch; it disrupts a repressive block of histone 3 lysine 27 

trimethylation (H3K27me3)-enriched chromatin via the deposition of antagonistic DNA 

methylation marks and thus consequentially allows Zdbf2 activation from the same allele 

from which Liz was expressed, i.e., the paternal allele. Importantly, the consequences of 

imprinted Liz expression are manifested at much later stages: Liz-deficient embryos develop 

normally and are healthy and fertile but show a growth defect right after birth. This 

culminates with a 20% body weight reduction at two weeks of age, and this systemic growth 

defect persists throughout life (Greenberg et al., 2017). Indeed, without Liz, Zdbf2 is not 

released from polycomb repression and fails to activate in postnatal brain derivatives, 

especially in the hypothalamus-pituitary axis. Thus, evidence exists that transient 

preimplantation imprinting can have autonomous and life-long effects on adult phenotypes 

(Greenberg et al., 2017). Zdbf2 appears to be a new paternally expressed growth-promoting 

gene, but besides the fact that this protein contains a zinc finger motif, nothing else is known 

about its molecular function. Its major sites of expression –the hypothalamus and pituitary 

gland– may imply a role in the production or secretion of endocrine hormones, including the 

growth hormone.  

Recently, Inoue and colleagues (Inoue et al., 2017a; Inoue et al., 2017b) provided 

evidence for a form of genomic imprinting independent of gametic DNA methylation-. 

Specifically, they determined that H3K27me3 marks can mediate imprinted mono-allelic 

expression in the early embryo. H3K27me3 is deposited over large genomic blocks early in 

oocyte development, and these can persist to some extent after fertilisation, at least until the 
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blastocyst stage. This form of imprinting is generally transient, however, as it disappears in 

the post-implantation embryo; nonetheless it can persist at a few genes in extra-embryonic 

lineages, including at the Xist gene. Accordingly, lack of maternally inherited H3K27me3 

affects imprinted X chromosome inactivation in extra-embryonic tissues (Erhardt et al., 2003; 

Terranova et al., 2008).The mechanisms for this very selective persistence in extra-

embryonic tissues remain to be elucidated. 

 

Genome-wide allelic expression 

Nearly three decades of classical genetic, molecular and embryological investigations 

in this field have produced a catalog of approximately two hundred confirmed imprinted 

genes (less than 1% of all genes), some of which play pivotal roles in growth, viability and 

various physiological functions. Functional screening based on genetics in mice is a costly 

and time-consuming approach but has been the most robust methodology for mapping 

imprinted transcription in mammals to date. Over the past few years, next-generation 

sequencing technologies combined with mouse strain-specific polymorphisms have offered a 

promising strategy to quantify genome-wide parental-origin specific allelic transcription. 

Although simple in its conceptual framework, this large-scale approach has been more 

insidious than expected (DeVeale et al., 2012). The basic idea underlying this approach is 

that the expression of heterozygous single-nucleotide polymorphisms (SNPs), measured in 

RNA sequencing reads, can be further divided into allele-specific expression based on the 

parental origin of the allele. Moreover, the use of reciprocal hybrids allows the discrimination 

of parent-of-origin dependent transcriptional effects from those caused by strain difference 

(Babak et al., 2008; Wang et al., 2008). This approach can narrow the investigation of 

imprinted transcription to the tissue and/or cell level and has been applied to imprinted 

studies on brain (Gregg et al., 2010a; Gregg et al., 2010b; Wang et al., 2008) and placental 
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(Okae et al., 2012) tissues. Early rounds of studies that used the transcriptomic sequencing of 

F1 mouse reciprocal hybrids extended the list of imprinted genes by only a few dozen (Fig. 2; 

Supplementary Table 1) but have suggested the presence of many genes that appear to exhibit 

parent-of-origin allelic biases in their expression. Importantly, these approaches have 

highlighted the many methodological challenges that exist when using RNA-seq datasets for 

this particular purpose (DeVeale et al., 2012; Kelsey and Bartolomei, 2012). Furthermore, 

bias leading to misinterpretation of placental imprinted gene status can also derive from 

maternal decidual contamination of placental samples (Okae et al., 2012). The solutions 

suggested to overcome issues are based on the establishment of restrictive and experimentally 

dictated thresholds to prevent false positives, and the mandatory validation of individual 

candidates using independent methods. This, along with improvements in strain-specific 

reference genomes and in bioinformatic approaches to more precisely quantify allele-specific 

transcript isoforms accompanied by higher resolution cell purifications methodologies, 

should also contribute to our understanding of the extent of parental origin specific allelic 

bias and the relationship of this with the more canonical imprinting process both functionally 

and mechanistically (Gregg, 2017). In parallel, studies in humans on the genetically well-

characterised Icelandic population are yielding new information on the genome-wide extent 

of imprinted expression and methylation (Zink et al. 2018; PMID 30349119). 

The effort of searching for imprinting-like effects across tissues has initiated an 

important debate on the definition of genomic imprinting since these more sensitive RNA-seq 

based methods identify genes exhibiting less extreme parental-origin specific allelic bias 

rather than a clear monoallelic expression pattern. In mice, several examples of established 

imprinted clusters contain genes displaying parental bias rather than the monoallelic 

expression of one allele have been shown (e.g., Gnas, Ube3a, Phlda2, Dio3), and 

furthermore, different biases are found at different developmental stages and in different 
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tissues (Perez et al., 2016). But what do parent-specific allelic biases actually mean? These 

effects may be caused by all cells in a sample exhibiting a bias in expression from one 

parental chromosome compared to another, or may represent pure monoallelic expression in a 

subset of cells within the population, with others expressing equivalently from both parental 

chromosomes. Some are found at the edges of existing imprinted expression and their ‘weak’ 

imprinting may reflect incomplete influence of the imprinting control region (Perez et al., 

2016).  

Currently, a number of novel imprinted genes, including those with isoform-specific 

parental biases, parental biases of various strengths, and temporally and spatially restricted 

biases, have been described (Andergassen et al., 2017; Perez et al., 2015) but have yet to be 

validated by independent methods. Associated imprinting control regions also remain to be 

identified. Figure 2 (and Supplementary excel file) reports the latest list (December 2018) of 

such imprinted genes in human and mice. Interestingly, many genes appear imprinted in 

multiple brain areas but not in other somatic tissues and display striking variation across 

functionally distinct brain regions. We have now begun to genetically assess the functional 

significance of this phenomenon. The genetic analysis of paternally biased genes in neurons 

supports the idea that the parental regulation of gene dosage may be required for normal brain 

development and function (Perez et al., 2016). 

 

Genomic imprinting and developmental physiology 

From the initial embryological investigations of Surani and Solter it has been clear 

that a major function for imprinted genes is in the placenta. Multiple studies have 

subsequently found that imprinted genes regulate resources to the growing fetus via their 

contributions to placental development and morphological organization as well as via 

signaling pathways that directly regulate nutrient transport. Since the classical studies of the 
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Igf2 gene (Constancia et al., 2002; DeChiara et al., 1990), numerous imprinted genes have 

been shown to directly or indirectly modulate fetal growth and these have been extensively 

reviewed elsewhere (Cleaton et al., 2014; Peters, 2014). 

Postnatal effects:  the Dlk1 gene. An excellent example of an imprinted gene with 

dynamic temporal regulation that modulates postnatal physiology is the Dlk1 gene, a 

paternally expressed imprinted gene on mouse chromosome 12 (da Rocha et al., 2008). 

DLK1 expression during development acts at multiple levels to modulate metabolic axes, 

having consequences on lifelong energy homeostasis. The region of syntenic homology on 

human chromosome 14 is the critical region for the Temple and Ogata Syndromes (Howard 

and Charalambous, 2015), characterized by intrauterine growth restriction, failure to thrive, 

and early-onset obesity. Loss of Dlk1 expression is thought to cause the phenotypes 

associated with Temple Syndrome (Briggs et al., 2016). Dlk1 encodes a single-pass 

transmembrane protein, which can also be cleaved to produce a soluble endocrine form (da 

Rocha et al., 2008). 

Deletion of Dlk1 in mice causes growth retardation with postnatal catch-up and early-

life adiposity (Cleaton et al., 2016). Conversely, overexpression of Dlk1 is associated with 

altered metabolic fuel usage in the fasted state; animals with increased DLK1 levels use 

lipids as fuel during fasting conditions more readily and consequently have reduced adipose 

tissue stores (Charalambous et al., 2014). These phenotypes are at least partially due to 

alterations of the growth hormone axis mediated by DLK1 actions in the developing pituitary 

gland (Charalambous et al., 2014; Cheung et al., 2013).  

Like most imprinted genes, Dlk1 functions after gastrulation in tissue and organ 

growth and development. Studies have shown that DLK1 can act in an autocrine, paracrine or 

endocrine manner, with prenatal functions being shown in the development of multiple organ 

systems, especially those of mesodermal origin. DLK1 notably functions as a preadipocyte 
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factor in the development of adipose tissue and in postnatal adaptations, including regulating 

non-shivering thermogenesis via brown fat development, adult neurogenesis and maternal 

metabolic partitioning during pregnancy (Cleaton et al., 2016). 

The analysis of Dlk1 in postnatal neurogenesis has provided further useful insights 

into its function. In both neurogenic and hippocampal neurogenic niches, reductions in Dlk1 

levels result in age-dependent compromised neurogenesis. Importantly, this effect is initiated 

during the early postnatal period when Dlk1 mutant neural stem cells inappropriately exit 

quiescence, thus depleting the stem cell pool. Interestingly, membrane-bound DLK1 is 

specific to neural stem cells, while secreted DLK1 is generated by the niche astrocytes, and 

both are required for postnatal neurogenesis (ref Ferron 2011, Nature 475:381-5) .  

One key aspect of Dlk1 function in the postnatal neurogenic niche is that Dlk1 shows 

a selective absence of imprinting. Both maternal and paternally inherited alleles of Dlk1 are 

expressed, and this switch from an imprinted to a non-imprinted state provides a dosage that 

appears to be important since both maternal and paternal heterozygotes have phenotypes that 

are intermediate to the homozygous mutant.  

 

Genomic imprinting in adult behavior and disease 

Although mainly studied in the context of early embryonic development, imprinted 

genes are also highly expressed in both adult and developing brains and have been implicated 

in multiple aspects of brain function including behavior (McNamara and Isles, 2014; 

Wilkinson et al., 2007). Recent RNA sequencing data focused on allelic bias in the adult 

brain (Perez et al., 2016; Perez et al., 2015) and suggested a plethora of new roles for 

imprinting in adult functions, most of which are currently unexplored. A role for imprinted 

genes in behavior after weaning, and therefore distinct from an intrinsic role in influencing 

growth and body composition, has been shown in several studies (Box 2). 
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--- BOX 2 --- 

Imprinted genes modulate reward-based and social phenotypes. Experimental 

evidence is lending increasing weight to the theory that genomic imprinting exerts a role in 

high cognitive processes in adulthood (McNamara and Isles, 2014). Genetic models 

combined with behavioral tasks implemented in mice offer a valid experimental platform to 

investigate the roles of imprinted genes in behavioral traits. The maternally expressed Nesp55 

transcript was first demonstrated to regulate novelty reactivity (Plagge et al., 2005), the 

response of a mouse to a novel stimulus or environmental condition. This phenomenon has 

recently been expanded to impulsivity, as loss of maternal Nesp55 results in a decreased 

willingness to wait for a larger reward and preference for an immediate, smaller reward in a 

delayed reinforcement task (Dent et al., 2016). A change in reward processing because of 

altered imprinted gene dosage has also been reported for the Cdkn1c gene, expressed from 

the maternally inherited chromosome (McNamara et al., 2016). In a loss-of-imprinting (LOI) 

model, increased Cdkn1c expression induced an altered hedonic state, which was associated 

with changes in hypothalamic neuron numbers (McNamara et al., 2016).  

Another example of imprinted genes modulating primitive behavioral aspects comes 

from recent studies in which the loss of Gnas imprinting affected behavioral timing and 

response to fear in mice (Lassi et al., 2012). The capability to time short intervals (e.g., 

seconds to minutes) is a primitive function that is pivotal to expressing high-level cognitive 

processes, such as attention, learning and decision making. Specifically, a certain degree of 

uncertainty in timing is necessary in some behavioral contexts, such as threatening situations. 

Mouse mutants with biallelic Gnas expression due to LOI showed sharper timed responses 

but failed to respond in a fear-conditioned setting. Therefore, in behavioral ecology terms, the 

imprinted Gnas gene leads to a more advantageous set of behaviours in mice. An impact of 
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imprinting on short-time perception has also been observed in mice that carry a deletion of 

the imprinted Snord116 gene within the PWS genomic region (Lassi et al., 2016a). However, 

how these effects of imprinted genes on specific behavioral functions relate to specific brain 

circuitries remains to be understood. 

Separate from reward-based processing, social behavior in adult animals has also 

been suggested  to be influenced by genomic imprinting (McNamara and Isles, 2014). 

Indeed, loss of paternal Grb10 expression in the brain resulted in altered social behavior, with 

Grb10-KO animals being more likely to win an encounter in a tube test task of social 

dominance (Garfield et al., 2011). The same behavioral phenotype was also observed in the 

Cdkn1c LOI model with increased expression  (McNamara et al., 2017), which suggests  the 

possibility of functional convergence. However, further studies on social behavior, 

particularly within a group setting, are likely to provide intriguing insights into the functions 

of this class of genes. A recent investigation of attachment behaviors in mice revealed 

important genetic parent-of-origin effects in the type of attachment a mouse develops in 

different developmental conditions and showed that a secure or insecure attachment style will 

impact the social adult behaviors of the mouse (Lassi and Tucci, 2017). The latter study 

advocates for a role of imprinted genes in attachment behaviors, although non-imprinted 

parental effects may also play a role. Whether this concept can be generalized to other 

imprinted genes remains to be seen. 

-------box 2 end--- 

 

More generally, the extent to which imprinted genes influence adult neurobiology and 

behavior remains unanswered. The occurrences of specific and reciprocal neurological 

defects in Prader-Willi Syndrome (PWS) and Angelman Syndrome (AS), two 

neurodevelopmental disorders with opposite imprinting profiles, called attention to the role of 
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genomic imprinting in the brain. However, it is too soon to know whether there is a 

functional pattern to the outcomes mediated by paternally expressed imprinted genes and 

another (perhaps reciprocal) one conferred by maternally expressed imprinted genes that 

might provide further insights into the evolution of imprinting.   

AS and PWS are caused by reciprocal deletion of the human chromosome interval 

15q11-q13 (Fig 3). AS, caused by the lack of maternal UBE3A gene expression, and PWS, 

caused by loss of the paternal expression of several contiguous genes, are both 

neurodevelopmental disorders, but they are characterized by very distinct phenotypes. PWS 

can arise via the paternal deletion of 15q11-q13, chromosomal maternal uniparental disomy 

(mUPD15), or ICR deletion. All of these genotypes lead to the loss of gene expression 

normally from the paternally inherited chromosome, but both mUPD15 and ICR deletion are 

expected to effectively double the expression of the maternally expressed gene UBE3A. 

These two genotypes are also far more associated with psychotic illnesses in individuals with 

PWS than individual gene deletion genotypes (~68% incidence vs. ~8% incidence) 

(McNamara and Isles, 2013). A mouse model of PWS ICR deletion was used to show that the 

lack of PWS gene expression and doubled Ube3a expression are associated with behavioral 

and cognitive changes, including abnormal sensory-motor gating and impaired attentional 

function, that are often associated with psychotic illnesses (Relkovic et al., 2010). AS is 

mainly due to paternal uniparental disomy (pUPD15) or point mutations in UBE3A. 

Recently, the imprinted gene cluster on 15q11-q13 (Prader-Willi Angelman Critical 

Region, PWACR) has attracted more general interest, as copy number variation (CNV) 

mutations that include this interval give rise to a number of neurodevelopmental disorders 

independently of AS/PWS; indeed, maternal duplications at 15q11-q13 (dup15q) resulting in 

at least one extra maternal copy of the PWACR remain the strongest known genetic 

contributors to autism. Maternal CNV duplication at 15q11-q13 can also lead to psychotic 
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illness (Ingason et al., 2011). More recently, rare paternal duplications were shown to be 

associated with more variable and sometimes different neurodevelopmental phenotypes. 

However, unlike maternal duplications, paternal duplications do not increase psychotic 

illness risks (Isles et al., 2016). This study refines the distinct roles of maternal and paternal 

duplications at 15q11-q13, underlining the critical importance of maternally active imprinted 

genes to psychotic illness incidences. Moreover, this will have tangible benefits for patients 

with 15q11-q13 duplications by aiding genetic counseling. 

 

-------------------- 

Schematic representation of the PWACR 

- Figure 3 HERE - 

 

 

An emerging role of genomic imprinting in sleep and the circadian clock 

The earth’s rotation around its axis, a nearly 24-hour cycle, brings two main 

environmental changes that influence almost all physiological processes: illumination and 

temperature. Both stimuli serve as signals to entrain our biology to daily cycles and guide 

metabolic and behavioral changes throughout the day. Different organisms have developed 

different strategies to adapt to these environmental stimuli; however, the two most important 

biological processes, shared across all species, are sleep-wake cycles, a phenomenon that is 

homeostatically regulated, and the circadian clock, which is self-sustained and mainly cell-

autonomous (Jagannath et al., 2017). Sleep is a physiological process that is regulated by 

genetic and epigenetic mechanisms, which are still largely unknown. Moreover, in 

combination with the circadian clock, sleep influences the state of multiple biological 

systems (Tucci, 2011). While we know the core molecular mechanisms that cell-
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autonomously dictate the circadian clock (Takahashi, 2017), new cell-nonautonomous 

processes have recently been discovered, which indicate DNA methylation as a novel 

epigenetic process providing phenotypic plasticity to circadian physiology (Azzi et al., 2014; 

Azzi et al., 2017). Recent findings have highlighted the importance of DNA methylation in 

circadian rhythmic processes in several species, demonstrating the dynamic regulation of 

DNA methylation throughout the 24 h circadian period (Azzi et al., 2014; Belden et al., 2011; 

Lim et al., 2014). For example, gene expression in the dorsolateral prefrontal cortex has been 

associated with a 24 h rhythmic DNA methylation profile, especially at the promoter level of 

active genes (Lim et al., 2014). Furthermore, DNA methylation and hydroxymethylation 

profiles can be reshaped by alterations of circadian-influencing phenomena, such as sleep 

deprivation, with over 4000 genomic large effects being reported, which involve pathways 

that control neuritogenesis and synaptic plasticity (Massart et al., 2014). In addition, a light 

schedule shifting from 22 h to 24 h has been shown to induce circadian behavioral changes in 

mice that are associated with changes in DNA methylation (Azzi et al., 2014). Indeed, after 

shortening the light-dark schedule, the suprachiasmatic nuclei (SCN) transcriptome and 

methylome profiles were altered, paralleled by the increased expression of methylation 

machinery enzymes, including Dnmt3l and Tet3. Interestingly, all behavioral, transcriptional 

and methylation changes were then reverted by re-entraining the mice to a classical 24 h day 

or the injection of a methyltransferase inhibitor (Azzi et al., 2014).  

Recently, imprinted genes have begun to emerge as important players in the 

regulation of both the circadian clock and sleep homeostasis (Tucci, 2016). For example, 

Gnas has been shown to play an important role in REM (rapid eye movement) sleep in mice, 

specifically due to thermoregulatory instability (Lassi et al., 2012). Moreover, a recent 

GWAS study exploring genetic associations with insomnia complaints in 113,000 individuals 

collected within the UK Biobank highlighted GNAS as the strongest candidate gene within 
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the female subnetwork (Hammerschlag et al., 2017), confirming the previous report in mice 

(Lassi et al., 2012). In addition, both Snord116 (Lassi et al., 2016b) and Ube3a (Ehlen et al., 

2015) (within the PWS-AS region) were associated with REM sleep abnormalities, which 

recapitulate the typical sleep abnormalities reported in both PWS and AS. Both genes are 

highly expressed in the SCN and in the lateral hypothalamus, which represent the main 

pacemaker of circadian rhythms and the switch mechanism between sleep and wake, 

respectively. Deletion of these genes in mice causes alterations in the circadian rhythms of 

behavior and the expression of genes (Tucci, 2016).  

Other imprinted genes associated with circadian machinery include Magel2 and Peg3, 

although the effects of these genes modify the amplitude of the activity rather than a clock-

like regulatory process. Deletion of Magel2, which is paternally expressed in SCN, alters the 

activity of mice when their internal clock is not entrained to light-dark schedules (Kozlov et 

al., 2007). Furthermore, PEG3 is also an imprinted modulator which in this context affects 

the temperature and behavioral activity of mice throughout the 24 h cycle (Curley et al., 

2005). 

Sleep is the longest state in development (Siegel, 2005), and genomic imprinting is 

crucial in developmental growth and neurogenesis (Ferron et al., 2011). The monoallelic 

expression of certain genes is a fine-regulatory mechanism during the perinatal period of an 

organism (Wilkinson et al., 2007), a time frame that is crucial for brain plasticity in 

developmental biology (Wiesel, 1999). For example, REM sleep is abundant during 

development and is characterized by intense metabolic and neuronal activity (Siegel, 2005, 

2011). REM sleep reportedly plays a role in brain plasticity, and this hypothesis has been  

tested by studying the plasticity of the visual system. Interestingly, REM sleep appears to 

provide an endogenous source of activity that has been shown to prevent the pruning of 

neuronal connections due to a lack of stimulation, in addition to other effects (Siegel, 2005). 
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Moreover, REM alterations throughout the brain are accompanied by significantly impaired 

olfactory discriminative functions in awake animals (Rodrigues et al., 2014), and imprinted 

genes are fundamental in olfactory system development. Overall, the link between imprinted 

genes and sleep promises to reveal important neurodevelopmental mechanisms in the future.  

Parent-of-origin effects are important in sleep. Indeed, parental effects in the 

homeostatic response to sleep loss have been reported (Tinarelli et al., 2014). For example, 

while AKR/J mice are known to show high rebound after 6 h of sleep deprivation, DBA/2J 

mice show only a mild response. By studying reciprocal crosses of the AKR/J and DBA/2J 

lines, differences in gene expression rebounds were reported (Tinarelli et al., 2014). 

Currently, 9 genes differentially regulated in AKR/JxDBA/2J sleep-deprived F1 mice and 7 

genes differentially regulated in DBA/2JxAKR/J sleep-deprived F1r mice have been 

annotated (Tinarelli et al., 2014). Bioinformatics prediction analyses of specific upstream 

mechanisms of regulation indicated signaling pathways, growth factors and transcriptional 

regulators that were modulated by parental effects and need further investigation.  

 

An evolutionary perspective of genomic imprinting 

The evolutionary explanation that has been most successful in accounting for the 

phylogenetic and functional distributions of imprinted genes is the kinship theory, which 

extends inclusive fitness or kin selection thinking to account for an allele’s parental origin 

(Wilkins and Haig, 2003). Inclusive fitness accounts for the fact that an allele may not only 

affect the fitness of the individual carrying that allele but also affect that of other individuals 

who may have inherited an identical copy of the allele depending on the relatedness between 

the two individuals. The fundamental insight of the kinship theory is that maternally and 

paternally inherited alleles are, in general, related to different sets of other individuals. 

Therefore, the expression pattern that maximizes the inclusive fitness of an allele when it is 



 

 

 

27 

maternally inherited may be different from the expression pattern that maximizes the 

inclusive fitness of the same allele when it is paternally inherited. 

We often discuss this concept as an intragenomic evolutionary conflict between 

maternally and paternally inherited alleles, although it is more accurate to describe it as a 

form of phenotypic plasticity. When the inclusive fitness calculations for an allele differ 

sufficiently between its “maternally inherited” and “paternally inherited” environments, 

natural selection may favor the evolution of two different conditional expression strategies, 

resulting in genomic imprinting. For a single locus considered in isolation, the evolutionarily 

stable outcome of this process is monoallelic expression, with transcription occurring from 

only the allele for which higher overall expression is favored, termed the “loudest voice 

prevails” principle (Haig, 1996). 

When two or more loci with different imprinting statuses affect the same phenotype, 

the evolutionarily stable outcome is not necessarily obvious. Alleles at a maternally 

expressed locus will be selected to maximize the matrilineal inclusive fitness, while alleles at 

a paternally expressed locus will be selected to maximize the patrilineal inclusive fitness. If 

no single organismal phenotype maximizes both, an arms race among loci will continue until 

some countervailing factor arises to oppose the selective advantage of further escalation 

(Wilkins and Haig, 2001).This countervailing factor could come in different forms, including 

the accumulation of deleterious pleiotropic effects. This suggests that, in very general terms, 

one consequence of intragenomic conflicts among imprinted loci may be to drive the 

evolution of suboptimal or maladaptive phenotypes. Several different possibilities exist for 

the specific types of deleterious effects that might accumulate depending on the molecular 

and cellular mechanisms involved.  

One class of deleterious effects is decanalization, or erosion of phenotypic robustness 

mechanisms. This effect is clearly observed in loss-of-function mutations to the expressed 
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allele at an imprinted locus as well as in “LOI” mutations or epimutations that 

inappropriately reactivate the silenced allele. The fact that evolutionary arms races drive 

increased gene expression and activity indicates that these perturbations will have a greater 

phenotypic impact than they would at an otherwise analogous biallelic, conflict-free locus. 

Evolutionary arms races can also drive increases in phenotypic variance, leading to the 

increased frequencies of extreme, maladaptive phenotypes (Wilkins, 2011). Another class of 

deleterious effects is a more generalized pleiotropy. Whereas decanalization may lead to the 

increased frequencies of deleterious phenotypes within a population, deleterious pleiotropy 

can actually drive the fixation of deleterious phenotypes, resulting in universally shared 

suboptimality (Wilkins, 2010). 

 

Conclusions and perspectives 

In addition to canonical processes that control imprinted gene expression, recent 

discoveries have enlarged the epigenetic repertoire of allelic expression especially through 

the identification of genes which have parent-of-origin biases in their expression specifically 

in the brain. These new potential imprinted genes remain to be validated, however, this 

significantly enhances the range of potential functions regulated by imprinting. Moreover, the 

epigenetic control of imprinted mechanisms appears to be richer and more dynamic than 

initially believed, with the identification of H3K27me3-dependent imprinting control in very 

early development and transient imprinting. How such transiently imprinted regions influence 

later physiology requires further investigation. Among the hundreds of candidates, 

expectations suggest a full range of possibilities; some may have no biological relevance, 

being silent byproducts of substantial DNA methylation differences inherited from the 

parental gametes perhaps acting on adjacent genes, some may exert an immediate effect on 
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embryogenesis, and some will trigger an indelible cascade with long-term phenotypic 

consequences.  

Genomic imprinting is pivotal in a range of processes during the life course. Such 

functions are controlled by their complement of genes, which are expressed in specific tissues 

or cell types and present dose-dependent expression modalities that confer various degrees of 

control to developmental and physiological systems. To understand how epigenetic 

regulatory processes, such as genomic imprinting, control developmental and physiological 

pathways is a future challenge for emerging technology development (e.g., single-cell 

epigenetic analysis combined with single-cell RNA sequencing)  

There is a growing interest in genomic imprinting, particularly in the investigation of 

brain physiology, as this promises to reveal novel insights into the organization and 

integration of neuronal functions. The brain has extraordinary compartmental organization 

(e.g., areas, nuclei and cell types), which undergo intense information processing (e.g., 

connectome) across many states (e.g., wake and sleep) and timed regulatory processes (e.g., 

synaptogenesis during development, circadian rhythms, short-interval neuronal and 

behavioral processes). With its rich cell-specific architecture and generally post-mitotic state, 

the brain offers a unique model system to investigate imprinted transcriptional regulatory 

mechanisms including at the single-cell level. 

The role of imprinted genes in developmental processes remains the largest area of 

investigation. In the long term, understanding how lifelong health is programmed during 

early life has potential to elucidate new interventions during pregnancy or lactation to 

combat human obesity and related metabolic health disorders. Furthermore, it will aid our 

fundamental understanding of epigenetics and how nature and nurture synergistically result 

in phenotype. 
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Finally, genomic imprinting provides an important avenue for investigating our daily 

rhythms and their impact on phenotype. The gene-centric approach towards understanding 

sleep and the circadian clock, has elucidated core mechanisms at the cellular level (i.e., core 

interlocking transcriptional and translational feedback loops (Takahashi, 2017)). However, 

this approach remains insufficient to explain the full complexity of phenotypic variations, 

such as in disease and phenotypic plasticity mechanisms. Such interplay between 

environmental, genetic and epigenetic factors not only determines the pathomechanisms of 

many diseases but also the natural physiological variations that allow entrainment with daily 

and seasonal environmental changes. Using imprinting as a model process to explore these 

events will not only influence our understanding of rhythm biology, but also has the potential 

to uncover novel concepts associated with genome-epigenome-environment interactions. 
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Figure legends. 

Figure 1.  Parental (genomic) imprinting expression of maternal and paternal alleles is 

pivotal in embryogenesis. A. Pronuclear transfer experiments: representation of enucleated 

experiments as evidence for genomic imprinting in mice. Gynogenetic (two maternal 

pronuclei) transplants resulted in a lack of extra-embryonic tissue development, while 

androgenetic (two paternal copies) transplants retarded embryo development but maintained 

the development of trophoblast. B. Translocation experiments:  representation of uniparental 

balanced disomy derived from intercrosses of heterozygous Robertsonian fusions showed 

that maternal disomy produced offspring with reduced size, while paternal disomy produced 

mice with the opposite (increased) phenotype. C. Chimeras experiments: representation of 

gynogenetic/androgenetic + wild-type chimeras and the effects on viable offspring. 

 

Figure 2.  Imprinted genes in mouse and humans. A. Number of imprinted genes 

annotated in the mouse and in humans. The number is update to June 2018. A complete list of 

the genes is also reported in the excel file in Supplementary information. A. For both humans 

and mice we report the distribution of imprinted genes across chromosomes. 

 

Figure 3. PWS-AS region. Schematic representation of the Prader-Willi syndrome and 

Angelman syndrome region. 

 


