Romagnoli, Romeo, Prencipe, Filippo, Oliva, Paola, Baraldi, Stefania, Baraldi, Pier Giovanni, Schiaffino Ortega, Santiago, Chayah, Mariem, Kimatrai Salvador, Maria, Lopez-Cara, Luisa Carlotta, Brancale, Andrea ORCID: https://orcid.org/0000-0002-9728-3419, Ferla, Salvatore ORCID: https://orcid.org/0000-0002-5918-9237, Hamel, Ernest, Ronca, Roberto, Bortolozzi, Roberta, Mariotto, Elena, Mattiuzzo, Elena and Viola, Giampietro 2019. Design, synthesis, and biological evaluation of 6-Substituted Thieno[3,2-d]pyrimidine analogues as dual epidermal growth factor receptor kinase and microtubule inhibitors. Journal of Medicinal Chemistry 62 (3), pp. 1274-1290. 10.1021/acs.jmedchem.8b01391 file

Publishers page: http://dx.doi.org/10.1021/acs.jmedchem.8b01391
<http://dx.doi.org/10.1021/acs.jmedchem.8b01391>

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
Design, Synthesis and Biological Evaluation of 6-Substituted Thieno[3,2-\textit{d}]pyrimidine Analogues as Dual Epidermal Growth Factor Receptor Kinase and Microtubule Inhibitors

Romeo Romagnoli*†, Filippo Prencipe†, Paola Oliva†, Stefania Baraldi†, Pier Giovanni Baraldi†, Santiago Schiaffino Ortega*v, Mariem Chayah*v, Maria Kimatrai Salvador*v, Luisa Carlota Lopez-Cara*v, Andrea Brancale§, Salvatore Ferla§, Ernest Hamel‡, Roberto Ronca§§, Roberta Bortolozzi††, Elena Mariotto††, Elena Mattiuzzo†† and Giampietro Viola*††,vvv

†Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
vDepartamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Campus de Cartuja s/n, 18071, Granada, Spain;
§School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK;
‡Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA;
§§Dipartimento di Medicina Molecolare e Traslazionale Unità di Oncologia Sperimentale ed Immunologia, Università di Brescia, 25123 Brescia, Italy; ††Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy
vvvIstituto di Ricerca Pediatrica (IRP), Corso Stati Uniti 4, 35128 Padova, Italy
Abstract: The clinical evidence for the success of tyrosine kinase inhibitors in combination with microtubule targeting agents prompted us to design and to develop single agents which possess both epidermal growth factor receptor (EGFR) kinase and tubulin polymerization inhibitory properties. A series of 6-aryl/heteroaryl-4-(3’,4’,5’-trimethoxyanilino)thieno[3,2-d]pyrimidine derivatives were discovered as novel dual tubulin polymerization and EGFR kinase inhibitors. The 4-(3’,4’,5’-trimethoxyanilino)-6-(p-tolyl)thieno[3,2-d]pyrimidine derivative 6g was the most potent compound of the series as an antiproliferative agent, with IC\textsubscript{50} values in the single- or double-digit nanomolar range. This derivative bound to the colchicine site of tubulin and inhibited tubulin polymerization at submicromolar concentrations and inhibited EGFR activity with an IC\textsubscript{50} of 30 nM. Our data suggested that the excellent \textit{in vitro} and \textit{in vivo} profile of 6g may be derived from its dual inhibition of tubulin polymerization and EGFR kinase.
INTRODUCTION

The microtubule system of eukaryotic cells involves the non-covalent polymerization of α- and β-tubulin heterodimers and acts as an essential element of the cytoskeleton. Microtubules are crucial for a variety of fundamental cellular processes, including the formation of the mitotic spindle during mitosis, formation and maintenance of cell shape, organization of intracellular architecture, secretion, cellular transport, regulation of motility and organelle transport inside the cell. Given their significant role in these cellular functions, microtubules are an attractive molecular target for anticancer drug discovery and are still among the most reliable chemotherapeutics. Numerous chemically diverse antimitotic agents, many of which are natural products, interact specifically with tubulin and alter tubulin polymerization. Moreover, several small molecules inhibiting tubulin polymerization are able to damage the already existing vasculature in developing tumors, acting as vascular disrupting agents (VDAs).

Combretastatin A-4 (CA-4, 1a, Figure 1), isolated from the bark of the South African tree Combretum caffrum, is one of the well-known natural tubulin binding molecules affecting microtubule dynamics. CA-4 strongly inhibits the polymerization of tubulin by binding to the colchicine site. The disodium phosphate prodrug of CA-4 (CA-4P, 1b) is water-soluble, and there have been promising results with 1b as a tumor VDA in phase II clinical trials. Its structural simplicity, along with its ability to selectively damage tumor neovasculature, makes CA-4 of great interest from the medicinal chemistry point of view.

A growing body of evidence showing that antimitotic agents, and in particular microtubule destabilizing drugs, have multiple effects beyond mitosis. Several lines of evidence suggested mixed mechanisms that are not so far fully understood to explain the activities of tubulin binding agents, and these mechanisms probably extend beyond simple antimitotic effects. Moreover, there is evidence that the efficacy of microtubule targeting agents also involve interphase effects.
Figure 1. Structures of tubulin depolymerizing agents CA-4 and CA-4P and selected EGFR (2a-d) and VEGFR-2 (2e) tyrosine kinase inhibitors.

The epidermal growth factor receptor (EGFR) is a trans-membrane bound tyrosine kinase involved in cellular signal-transduction pathways, and it plays a crucial role in the regulation of essential functions that affect tumor growth and progression. These include cell proliferation, differentiation, migration, apoptosis and angiogenesis.11 The EGFR is a component of the ErbB family, which consists of four receptors: the EGFR (ErbB1, HER1), the human epidermal growth factor receptor-2 (HER2, ErbB-2), the human epidermal growth factor receptor-3 (HER3, ErbB3) and the human epidermal growth factor receptor-4 (HER4, ErbB4).12 Among the known receptor tyrosine kinases (RTKs), the ErbB family, in particular EGFR and HER2 have been extensively studied and clinically validated as targets for cancer therapies, being over-expressed in a wide number of human tumors
and associated with cancer proliferation, angiogenesis and metastasis. In the absence of ligand, EGFR exists as monomers on the cell surface, while binding of ligand to EGFR leads to the formation of receptor homo- and heterodimers, depending on whether EGFR is dimerized with another EGFR or with other ErbB family members, respectively. There are currently eight drugs approved by the FDA targeting this family: four monoclonal antibodies (trastuzumab, cetuximab, panitumumab and pertuzumab) and four small-molecule inhibitors based on a central 4-aminoarylquinazoline core [Gefitinib (2a), erlotinib (2b), lapatinib (2c) and afatinib (2d)]. These latter synthetic EGFR inhibitors have been approved by the FDA for the treatment of patients with non-small cell lung cancer (NSCLC). Unfortunately, the duration of benefit derived from tyrosine kinase inhibitor based-therapy is relatively short, due to the development of acquired resistance. The development of multi-targeted inhibitors represents a valid approach to overcome the acquired drug resistance to tyrosine kinase inhibitors. Twelve clinical trials were found on clinicaltrials.gov site (accessed in October 2018) in which the FDA approved the EGFR kinase inhibitors gefitinib, erlotinib and lapatinib being used in combination with the microtubule targeting agents docetaxel, vinorelbine, paclitaxel and other chemotherapeutic agents for the treatment of a variety of cancers including, lung cancer, head and neck cancer and hepatocellular carcinoma. A large number of thienopyrimidine derivatives have been reported to show remarkable antitumor activity against different cancer types by means of inhibiting multiple enzymes, as well as by modulating the activity of many receptors. In an effort to develop non-quinazoline EGFR inhibitors, using the strategy known as “scaffold hopping”, bioisosteric thieno[2,3-d]pyrimidine and thieno[3,2-d]pyrimidine scaffolds have been reported as interesting structural elements employed for the development of novel EGFR or EGFR and vascular growth factor receptor-2 (VEGFR-2) dual inhibitors.

Munchhof et al. reported the design and structure-activity relationship (SAR) of a series of 6-aryl substituted thieno[3,2-d]pyrimidines with general structure 3, identified as VEGFR-2 and EGFR dual inhibitors (Figure 2). Kemnitzer and colleague reported the discovery of N-methyl-4-
(methoxyanilino)thieno[3,2-d]pyrimidine 4 as a potent apoptosis inducer through inhibition of tubulin assembly, with IC₅₀<1 μM in the tubulin polymerization assay. This compound inhibited the growth of a panel of five cancer cell lines (T-47D, HT-29, H-1299, MX-1 and MDAAMB 435) with IC₅₀ values ranging from 4 to 40 nM. Much research has been conducted on the structural modification of the thieno[3,2-d]pyrimidine skeleton, with the 4-, 6- and 7-positions as the main targets for chemical modifications to increase antitumor activity.

Lin et al. have also reported a series of 2,7-diaminothiazolo[4,5-d]pyrimidines with general formula 5, with various structural modifications at the 2- and 7-positions, as potent EGFR inhibitors, with IC₅₀ values ranging from micromolar to single digit nanomolar. Compound 5a, characterized by potent and selective EGFR activity (IC₅₀: 12 nM), proved to be active in vitro as an antiproliferative agent against the human ovarian adenocarcinoma (SK-OV-3) cell line, with an IC₅₀ of 0.57 μM. Unfortunately, compound 5a showed no in vivo antitumor efficacy in a tumor xenograft model in nude mice.

![Chemical structures](image)

Figure 2. Chemical structures of representative thieno[3,2-d]pyrimidines and thiazolo[4,5-d]pyrimidines as known tubulin polymerization (4) and EGFR kinase (3 and 5) inhibitors.
These results led us to start a pharmacophore exploration and optimization effort around the thieno[3,2-d]pyrimidine skeleton, which was maintained as the key scaffold for the discovery of new antitumor agents. We replaced the 5'-aminoindole side chain at the C-4 position of 6-phenylthieno[2,3-d]pyrimidine derivatives with general structure 3 with a 3',4',5'-trimethoxyanilino moiety, to furnish a first series of 4-(3',4',5'-trimethoxyanilino)-6-aryl/heteroaryl thieno[3,2-d]pyrimidine derivatives with general structure 6 (Figure 3). By maintaining the 3',4',5'-trimethoxyanilino group at the 4-position, the first stage of our study was to evaluate the steric and electronic effects of different substituents on the benzene portion at the C-6 position of the 4-(3',4',5'-trimethoxyanilino)thieno[2,3-d]pyrimidine nucleus. Besides the hydrogen, the examined substituents included electron withdrawing groups (EWGs), such as F, Cl, Br, I and NO$_2$, and the electron releasing methyl and methoxy groups (ERGs). The bioisosteric replacement of phenyl with the thien-2-yl ring was also explored.

Because it is well known that the trimethoxyphenyl skeleton is the characteristic structural requirement to maximize the activity of a large series of inhibitors of tubulin polymerization inhibitors, such as colchicine, CA-4 and podophyllotoxin, all newly prepared compounds retain the 3',4',5'-trimethoxyanilino moiety at the common C-4 position of the thieno[2,3-d]pyrimidine and isomeric thieno[3,2-d]pyrimidine nucleus, as well as at the C-7 position of the thiazolo[4,5-d]pyrimidine system.

In the second small series of compounds, the thiophene nucleus was replaced by the bioisosteric thiazole ring, to obtain the derivatives 7a-d, characterized by the presence of an anilino moiety at its C-7 position. The electron-withdrawing chlorine atom (7b) and the electron-releasing methyl and methoxy groups (7c and 7d, respectively) were introduced at the para-position of the phenyl portion of the anilino moiety.

In a third series of compounds 8a-l, we explored the replacement of the thieno[3,2-d]pyrimidine system, which characterizes derivatives with general structure 6, by the isomeric thieno[2,3-d]pyrimidine nucleus. The SAR was investigated by the insertion of different substituents (Cl, Me or
OMe) on the phenyl at the C-5 or C-6 positions of the 4-(3’,4’,5’-trimethoxyanilino)thieno[2,3-d]pyrimidine core.

Figure 3. Design strategy for thieno[3,2-d]pyrimidines 6a-j. Target compounds containing the thiazolo[4,5-d]pyrimidine (7a-d) and thieno[2,3-d]pyrimidine (8a-l) scaffolds.
These three series of compounds, obtained by replacing the thieno[3,2-\textit{d}]pyrimidine scaffold with the isomeric thieno[2,3-\textit{d}]pyrimidine and the bioisosteric thiazolo[4,5-\textit{d}]pyrimidine skeletons, were designed to determine the potential of incorporating in a single molecule both VEGFR-2 and/or EGFR kinase inhibition and antitubulin activity.

The biososteric replacement of the thiophene ring of the structure motif of the thieno[2,3-\textit{d}]pyrimidine nucleus with a furan or pyrrole provided two series of furo[2,3-\textit{d}]pyrimidine and pyrrolo[3,2-\textit{d}]pyrimidine derivatives, respectively, identified by Gangjee et al. as multitarget receptor tyrosine kinase and microtubule inhibitors.26-28 A literature search also revealed that recent studies have yielded different series of chemically diverse small molecules acting as EGFR kinase and tubulin polymerization inhibitors derived from anthranilic acid29 or benzo[\textit{b}]furan30 or obtained by replacing the quinazoline core of compounds 2\textit{a-d} with a quinazolinone31,32 or triazolo[4,3-\textit{a}]quinoxaline33 scaffold.

RESULTS AND DISCUSSION

Chemistry. Preparation of thieno[3,2-\textit{d}] pyrimidine and thiazolo[4,5-\textit{d}]pyrimidine derivatives 6\textit{a-j} and 7\textit{a-d}, respectively, was accomplished using the general convergent synthetic route shown in Scheme 1. Cyclization of methyl 5-aryl/heteroaryl-3-aminothiophene-2-carboxylate and ethyl 2-anilino-4-aminothiazole-5-carboxylate 9\textit{a-j} and 9\textit{k-n}, respectively, with formamide (HCONH\textsubscript{2}) yielded the corresponding 6-aryl/heteroaryl-thieno[3,2-\textit{d}]pyrimidin-4(3\textit{H})-ones 10\textit{a-j} and 2-arylaminothiazolo[4,5-\textit{d}]pyrimidin-7(6\textit{H})-ones 10\textit{k-n}. The subsequent chlorination of the carbonyl group with phosphorus oxychloride (POCl\textsubscript{3}) provided 4-chlorothieno[3,2-\textit{d}]pyrimidine and 7-chlorothiazolo[4,5-\textit{d}]pyrimidine derivatives 11\textit{a-j} and 11\textit{k-n}, respectively. Finally, the nucleophilic substitution with 3,4,5-trimethoxyaniline in refluxing isopropanol furnished the final compounds 6\textit{a-j} and 7\textit{a-d}, respectively.
Scheme 1. Synthesis of thieno[3,2-\textit{d}]pyrimidines 6\textit{a-j} and thiazolo[4,5-\textit{d}]pyrimidines 7\textit{a-d}.

\[\text{Reagents and conditions. a: HCONH}_2, 180 \, ^\circ\text{C}; \text{ b: POCl}_3, 110 \, ^\circ\text{C}; \text{ c: 3,4,5-trimethoxyaniline, isopropanol, reflux.} \]

The isomeric 4-(3',4',5'-trimethoxyanilino)-thieno[2,3-\textit{d}]pyrimidine derivatives 8\textit{a-l} were synthesized following the procedure reported in Scheme 2. Thieno[2,3-\textit{d}]pyrimidin-4(3\textit{H})-one derivatives 13\textit{a-l} variously substituted at their C-5 or C-6 position were prepared by the cyclocondensation of ethyl 2-aminothiophene-3-carboxylate derivatives 12\textit{a-l} with HCONH\textsubscript{2} at 180 \, ^\circ\text{C} for 8-12 h. These intermediates were subjected to chlorination by the action of POCl\textsubscript{3} at reflux to furnish the 4-chlorothieno[2,3-\textit{d}]pyrimidine analogues 14\textit{a-l}. The final step of the synthesis involved nucleophilic displacement of the 4-chloride atom of 14\textit{a-l} with 3,4,5-trimethoxyaniline in refluxing isopropanol to obtain the 4-(3',4',5'-trimethoxyanilino)thieno[3,2-\textit{d}]pyrimidine derivatives 8\textit{a-l}.

Scheme 2. Synthesis of thieno[2,3-\textit{d}]pyrimidines (8\textit{a-l}).
Reagents and conditions. a: HCONH₂, 180 °C; b: POCl₃, 110 °C; c: 3,4,5-trimethoxyaniline, isopropanol, reflux.

In vitro antiproliferative activities. Table 1 summarizes the antiproliferative effects of 4-(3',4',5'-trimethoxyanilino)-6-substituted thieno[3,2-d]pyrimidine derivatives 6a-j against a panel of five human cancer cell lines [including EGFR wild-type (EGFRwt) NSCLC A549 cells], using CA-4 as the reference compound. The corresponding thieno[2,3-d]pyrimidine isomers 7a-d and the 2-anilino-7-(3',4',5'-trimethoxyanilino)thiazolo[4,5-d]pyrimidine 8a-l were also evaluated for their activities on the same panel of cells, but because they were all inactive (IC₅₀>10 μM), with only a few exceptions on selected cancer cell lines (derivatives 6h, 6k and 6l), these biological data are presented in the Supplementary Information section as Table 1s and Table 2s, respectively.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R⁵, R⁶</th>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6a-j</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7a-d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8a-l</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. In vitro cell growth inhibitory effects of compounds 6a-j and CA-4
<table>
<thead>
<tr>
<th>Compound</th>
<th>IC<sub>50</sub><sup>a</sup> (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A549</td>
</tr>
<tr>
<td>6a</td>
<td>2.3±0.7</td>
</tr>
<tr>
<td>6b</td>
<td>5.1±1.9</td>
</tr>
<tr>
<td>6c</td>
<td>13.5±3.0</td>
</tr>
<tr>
<td>6d</td>
<td>0.60±0.11</td>
</tr>
<tr>
<td>6e</td>
<td>0.53±0.16</td>
</tr>
<tr>
<td>6f</td>
<td>0.77±0.26</td>
</tr>
<tr>
<td>6g</td>
<td>0.019±0.008</td>
</tr>
<tr>
<td>6h</td>
<td>0.43±0.13</td>
</tr>
<tr>
<td>6i</td>
<td>8.8±1.9</td>
</tr>
<tr>
<td>6j</td>
<td>1.1±0.3</td>
</tr>
<tr>
<td>CA-4</td>
<td>0.18±0.05</td>
</tr>
</tbody>
</table>

^aIC₅₀ = compound concentration required to inhibit tumor cell proliferation by 50%. Data are expressed as the mean ± SE from the dose-response curves of at least three independent experiments.

The unsubstituted phenyl derivative 6a was weakly active (IC₅₀: 2.3 μM) against A549, moderately potent against HeLa, HT-29 and RS4;11 with IC₅₀ values of 0.17, 0.35 and 0.26 μM, respectively, but showed high activity (IC₅₀: 10 nM) against Jurkat cells. The bioisosteric 2-thienyl analogue 6b was 2-, 8- and 10-fold less active than 6a against A549, Jurkat and HeLa cells, respectively, while the difference in potency between 6a and 6b was minimal in RS4;11 cells. Only in HT29 cells 6a was less active than 6b, with IC₅₀ values of 0.35 and 0.21 μM, respectively.

The introduction of electron-releasing or electron-withdrawing substituents at the para-position of the phenyl ring at the C-6 position of the thieno[3,2-d]pyrimidine nucleus appeared to have considerable biological effects, enhancing antiproliferative activity compared with the unsubstituted phenyl analogue 6a. These compounds include the p-Cl (6d; IC₅₀: 3-600 nM), p-Me (6g; IC₅₀: 1-20 nM) and p-OMe (6h; IC₅₀: 4-430 nM) derivatives. The p-tolyl derivative 6g displayed the strongest growth inhibitory activity against A549, HeLa, HT29, Jurkat and RS4:11, with IC₅₀ values of 19, 1, 20, 1 and 2 nM, respectively.
The introduction of a fluorine atom at the para-position of the phenyl ring (compound 6c) caused a reduction of activity of 2-26-fold relative to the unsubstituted phenyl derivative 6a, while the presence of other halogen groups led to an improvement in antiproliferative activity. Increasing the size of halide from fluorine to chlorine, resulting in compound 6d, produced a 5- to 87-fold increase in antiproliferative activity in the five cell lines. Replacing chlorine with bromine (6e), reduced activity 2-38-fold against four of the five cancer cell lines, but 6d and 6e were equally potent against A549 cells. For the p-Br and p-I derivatives 6e and 6f, respectively, nearly identical activities were observed in three of the five cancer cell lines, the exception being the HT-29 and Jurkat cells, in which 6f was 2- and 10-fold more potent than 6e, respectively.

The small and weak electron-releasing methyl group at the para-position of the phenyl ring, to yield derivative 6g, improved significantly antiproliferative activity relative to 6a. Derivative 6g exhibited the greatest cell growth inhibitory effects among the tested compounds, with IC\textsubscript{50} values of 1-20 nM against all cell lines, as compared with the range 0.8-3100 nM obtained with CA-4. Compound 6g was equipotent with CA-4 against RS4;11 cells, while it was from 2- to 1.5x105 times more active against the other four cancer cell lines.

Replacement of the methyl group of 6g with a more electron-releasing methoxy group at the para-position of the phenyl ring (compound 6h) resulted in a 2-170-fold reduction in antiproliferative activity against all cancer cell lines, indicating that the methyl and methoxy groups are not bioequivalent at the para-position of the phenyl ring. The reduction in activity was more evident, 23- and 170-fold, against A549 and HeLa, respectively, while only a 2-, 3- and 5-fold reduced activity was observed against RS4;11, HT-29 and Jurkat cells.

Compound 6i, with a methoxy group at the meta-position of the phenyl ring, was one to four orders of magnitude less active than the para-methoxy isomer 6h, indicating that the position of the methoxy group was important for in vitro activity.

Among the strong electron-withdrawing groups, the small polar nitro substituent, intermediate in size between chlorine and bromine, when placed in the para-position of the phenyl ring, furnished a
compound (6j) with reduced antiproliferative activity (IC$_{50}$: 1.1-6.3 μM) relative to the unsubstituted phenyl derivative 6a.

Inhibition of tubulin polymerization and colchicine binding. To investigate whether the antiproliferative effects of these compounds were related to an interaction with tubulin, compounds 6a-b and 6d-h were evaluated for inhibition of the polymerization of tubulin (Table 2). For comparison, CA-4 was examined in contemporaneous experiments as a reference compound. The same derivatives were also examined for inhibitory effects on the binding of [³H]colchicine to tubulin.

Table 2. Inhibition of tubulin polymerization and colchicine binding by compounds 6a-b, 6d-h and CA-4 (1a)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Tubulin assemblya</th>
<th>Colchicine bindingb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC$_{50}$±SD (μM)</td>
<td>% inhibition±SD</td>
</tr>
<tr>
<td>6a</td>
<td>10±2</td>
<td>n.d.</td>
</tr>
<tr>
<td>6b</td>
<td>18±1</td>
<td>n.d</td>
</tr>
<tr>
<td>6d</td>
<td>3.3±0.3</td>
<td>36±3</td>
</tr>
<tr>
<td>6e</td>
<td>2.5±0.3</td>
<td>35±4</td>
</tr>
<tr>
<td>6f</td>
<td>2.5±0.2</td>
<td>35±2</td>
</tr>
<tr>
<td>6g</td>
<td>0.71±0.05</td>
<td>76±0.7</td>
</tr>
<tr>
<td>6h</td>
<td>2.8±0.2</td>
<td>31±3</td>
</tr>
<tr>
<td>CA-4</td>
<td>1.2±0.1</td>
<td>98±0.7</td>
</tr>
</tbody>
</table>

a Inhibition of tubulin polymerization. Tubulin was at 10 μM.

b Inhibition of [³H]colchicine binding. Tubulin, colchicine and tested compound were at 1, 5 and 5 μM, respectively. n.d.: not determined

Compounds 6e-h strongly inhibited tubulin assembly, with derivative 6g as the most active of the series, being almost 2-fold more active than CA-4 in this assay (IC$_{50}$: 0.71 and 1.2 μM for 6g and CA-4, respectively). Compounds 6e, 6f and 6h were half as active (IC$_{50}$: 2.5, 2.5 and 2.8 μM, respectively) and 6d about one-third as active (IC$_{50}$: 3.3 μM) as CA-4. Compounds 6a and 6b showed weak antitubulin polymerization activities (IC$_{50}$: 10 and 18 μM, respectively), which were consistent with their low antiproliferative activity. Thus, the order of inhibitory effects on tubulin
polymerization was 6g>CA-4>6e=6f=6h>6d>>6a>6b. This order of activity as inhibitors of tubulin assembly correlates well with their order of activity as antiproliferative agents.

Inhibitory effects on colchicine binding studies were performed on compounds with tubulin assembly IC$_{50}$ <5 µM. Derivative 6g, the agent with the greatest antiproliferative activity, proved to be the most active inhibitor of the binding of $[^3]$Hcolchicine to tubulin, since 46 and 76% inhibition occurred with this agent at 1 and 5 µM, respectively. This compound was less potent than CA-4, which in these experiments inhibited colchicine binding by 86 and 98%, respectively, at 1 and 5 µM.

For the tested compounds 6a-b and 6d-h, there was a positive correlation between inhibition of both tubulin assembly and colchicine binding and antiproliferative activity. These data are consistent with the conclusion that tubulin was an intracellular target of the tested compounds.

EGFR and VEGFR-2 kinase inhibitory activity assay. Compounds 6a-b and 6d-h were further evaluated for their EGFR and VEGFR-2 kinase inhibitory activities. The approved VEGFR-2 and EGFR inhibitory agents sunitinib and erlotinib (2b), respectively, were used as positive controls. The data compiled in Table 3 showed potent inhibition of EGFR$^\text{wt}$ kinase by compounds 6a-b and 6f-h, but no inhibition of VEGFR-2 (IC$_{50}$>1 µM) was observed. All tested molecules, with the exception of 6d and 6e, were more potent than sunitinib as EGFR kinase inhibitors, with the 2-thienyl derivative 6b as the most potent compound of the series. All evaluated molecules showed lower potency than erlotinib, with 6b about 1.7-fold less potent. Three of these compounds (6f-h) were discovered to possess dual EGFR and tubulin polymerization inhibitory activity, and a good correlation was observed between antiproliferative activities, inhibition of tubulin polymerization and inhibition of EGFR binding.

Compound 6g, with the most potent effect on tubulin polymerization, also exhibited excellent EGFR inhibitory activity, with IC$_{50}$ values of 0.71 µM and 30 nM, respectively. In contrast, compound 6b, the most active compound as an EGFR inhibitor (IC$_{50}$: 2.5 nM), was less potent as an inhibitor of tubulin polymerization (IC$_{50}$: 18 µM). As shown in Table 3, compounds 6d and 6e, showed moderate
EGFR inhibitory activities (IC$_{50}$: 273 and 326 nM, respectively) and similar potent antitubulin potency (IC$_{50}$: 3.3 and 2.5 μM), while for compound 6h a good correlation was observed between both its EGFR and antitubulin activities. The SAR analysis derived from the antiproliferative activities of compounds 6d and 6e was more consistent with their tubulin inhibition activities, probably due to their potent inhibitory activities against tubulin polymerization but moderate activities against EGFR.

Table 3. EGFR inhibitory activities by compounds 6a-b, 6e-h, sunitinib and erlotinib (2b)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Inhibition of EGFR$^{\text{wt}}$ kinasea IC$_{50}$±SD (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6a</td>
<td>23±4</td>
</tr>
<tr>
<td>6b</td>
<td>2.5±0.3</td>
</tr>
<tr>
<td>6d</td>
<td>273±35</td>
</tr>
<tr>
<td>6e</td>
<td>326±46</td>
</tr>
<tr>
<td>6f</td>
<td>10±3</td>
</tr>
<tr>
<td>6g</td>
<td>30±5</td>
</tr>
<tr>
<td>6h</td>
<td>52±6</td>
</tr>
<tr>
<td>Sunitinib (2e)</td>
<td>140±19</td>
</tr>
<tr>
<td>Erlotinib (2b)</td>
<td>1.5±2</td>
</tr>
</tbody>
</table>

aValues are expressed as the mean ± SD from the dose-response curves of at least two independent experiments.

Compound 6g induced inhibition of EGFR activation in HeLa cells. In order to test the inhibition on the phosphorylation of EGFR and the downstream signaling pathway, we evaluated by western blot analysis the inhibition of EGFR phosphorylation by 6g in HeLa cells. The cells were treated with different concentration of 6g (10-1000 nM) and then stimulated with epidermal growth factor (EGF) (50 ng/mL) for 15 min. The results (Figure 4) showed that 6g strongly inhibited the phosphorylation of EGFR in a concentration dependent manner starting at 50 nM. Erlotinib (1 μM) was taken as reference compound, and erlotinib showed similar inhibitory activity as compound 6g. These results
demonstrated that 6g, in addition to its antimitotic activity (see below), is also a potent EGFR inhibitor.

Figure 4. Effects of 6g on EGFR signaling in HeLa cells. Cells were treated with the indicated concentrations of 6g for 6 h and then stimulated by EGF (30 ng/mL) for 15 min. Cells were harvested for Western blot analysis for both EGFR and its phosphorylation at Y1068. Erlotinib (Erl) was used as the reference compound. To confirm equal protein loading, each membrane was stripped and reprobed with anti-β-actin antibody.

Molecular modeling. A series of docking simulations were conducted on the newly designed 4-(3’,4’,5’-trimethoxyanilino)-6-substituted thieno[3,2-d]pyrimidines to evaluate their potential interaction with the colchicine site of tubulin. The results showed that the compounds are placed in the active site in a similar manner as the co-crystallized N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-colchicine), and the binding mode is consistent with the one previously reported for a thieno[2,3-b]pyridine series, with the trimethoxyphenyl group in proximity of βCys241. The thieno[3,2-d]pyrimidine core overlapped with the central part of DAMA-colchicine, with the substituted phenyl ring placed in a small hydrophobic sub-pocket, potentially interacting with the surrounding amino acids βThr314, βVal181 and especially βMet259. This small sub-pocket can accommodate the different substituted phenyl rings, but only the para methyl derivative 6g has the correct combination of size/electronic properties to stably occupying and properly fit that area of the binding site (Figure 5C), suggesting a better inhibition of tubulin assembly. Replacement with a larger
methoxy group (6h) does not allow the efficient occupation of the sub-pocket, indicating a potential reduction of the inhibition of tubulin polymerization. A similar decrease in activity is seen when the methyl group is replaced by different electron withdrawing atoms (6d-f), but in this case the decrease in activity could be associated with the electronic properties of the substituent rather than its size, since they can occupy the sub-pocket very similarly to 6g (Figure 5B). Compounds where the para substituent has been removed (6a) or the phenyl ring has been replaced with a smaller 5-member thiophene ring, do not entirely fill the sub-pocket, potentially causing the 10-18 fold activity reduction found for these derivatives (Figure 5A).

Figure 5. Proposed binding modes for compounds 6b (A), 6e (B) and 6g (C) in comparison with DAMA-colchicine in the colchicine site (PDB ID: 1SA0). Carbons of the co-crystallized DAMA-colchicine are shown in green, of compound 6b in purple, of compound 6e in orange and of compound 6g in turquoise. The residues from the α-tubulin chain are shown in salmon, whereas residues from β-tubulin are colored in teal. The sub-pocket is highlighted with a red surface.
In an attempt to clarify the potential binding mode of the new derivatives in the EGFR kinase domain, docking of the new molecules was performed using the crystal structure of the EGFR kinase domain in complex with the inhibitor (R)-6-(4-((4-ethylpiperazin-1-yl)methyl)phenyl)-N-(1-phenylethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (AEE788). The 6-phenyl-thieno[3,2-d]pyrimidine core of the molecules perfectly overlaps with the phenyl pyrrolo[2,3-d]pyrimidine core of the co-crystallized inhibitor, making the same interactions with Gln791, Met793 and Leu844 that seem to anchor the molecule to the binding site (Figure 6). The trimethoxyphenyl group is placed in the same area occupied by the methyl moiety of AEE788, in proximity of Asp855.

Figure 6. Proposed binding modes for compounds 6b (A) and 6e (B) in comparison with the inhibitor AEE788 in the crystal structure of the EGFR kinase domain (PDB ID: 2J6M). The carbons of the co-crystallized AEE788 are shown in green, of compound 6b in purple and of compound 6e in orange. The phenyl ring of 6e and the thiophene of 6b are not involved in any interaction with the surrounding residues.
Overall, the binding mode proposed for these compounds is very similar to that of the co-crystallized ligand and also to another previously published thienopyrimidine EGFR inhibitor. All the new compounds occupy the active site in an identical manner. However, from these results, it is not possible to fully rationalize the role of the substitution on the phenyl ring in the anti-EGFR activity, since that part of the molecule does not seem to be involved in any specific interactions with the binding pocket.

Effects of compound 6g on the cell cycle. The effect of the most active compound (6g) on cell cycle progression was examined by flow cytometry in Hela and Jurkat cells (Figure 7). After a 24 h treatment, the compound induced a G2/M arrest in both cell lines cells even at 25 nM. A concomitant reduction of cells in both the S and G1 phases was also observed. In order to determine whether 6g was able to block cells at the mitotic phase (M), cells were stained with an immunofluorescent antibody to p-histone H3, a well-known mitotic marker, as well as propidium iodide (PI), and analyzed by flow cytometry. As shown in Figure 7 (Panel C), in which representative histograms are presented, HeLa cells arrested in M phase by treatment with 6g are readily distinguished from G2 cells by the higher level of p-histone H3. In particular, treatment with 6g induced an increase in the percentage of mitotic cells from the about 1.5% observed in untreated cells to about 38% and 50 % with 50 and 100 nM concentrations, respectively, at 24 h (Figure 7, Panel C).

Compound 6g induced apoptosis in different cell lines. To evaluate the mode of cell death induced by the test compounds, we performed a bi-parametric cytofluorimetric analysis using PI and annexin-V-FITC, which stain DNA and phosphatidylserine (PS) residues, respectively. We used two cell lines, Hela and Jurkat, in which we evaluated the effects of compound 6g after both 24 and 48 h treatments. As shown in Figure 8, in both cell lines, the compound induced apoptosis in a time and concentration dependent manner. The apoptotic effect of 6g was evident at the lowest concentration examined (50 nM), in good agreement with the cytotoxic potency shown in the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test (Table 1).
Figure 7. Percentage of cells in each phase of the cell cycle in HeLa (Panel A) and Jurkat cells (Panel B) treated with compound 6g at the indicated concentrations for 24 h. Cells were fixed and labeled with PI and analyzed by flow cytometry as described in the Experimental Section. Data are presented as mean±SEM of three independent experiments. Representative flow cytometric patterns of mitotic cells with phosphorylated histone-H3 (Panel C) and histograms showing quantitative comparisons (Panel D) after treatment with 6g at the indicated concentrations in HeLa cells. Data are presented as mean±SEM of two independent experiments.
Figure 8. Flow cytometric analysis of apoptotic cells after treatment of HeLa (Panels A and B) and Jurkat (Panels C and D) cells with 6g at the indicated concentrations after incubation for 24 (Panels A and C) or 48 h (Panels B and D). The cells were harvested and labeled with annexin-V-FITC and PI and analyzed by flow cytometry.

Compound 6g induced mitochondrial depolarization and the production of reactive oxygen species (ROS). Mitochondria play an essential role in the propagation of apoptosis.\(^{38,39}\) In fact, it is well established that, at an early stage, apoptotic stimuli alter the mitochondrial transmembrane potential (\(\Delta \psi_{\text{mt}}\)). We therefore evaluated by flow cytometry, using the fluorescent dye 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine (JC-1), the variation in \(\Delta \psi_{\text{mt}}\) upon treatment of HeLa cells with compound 6g. As shown in Figure 9 (Panel A), cells treated with different concentration of 6g (50, 100 and 250 nM) showed a concentration- and a time-dependent increase in the percentage of cells with low \(\Delta \psi_{\text{mt}}\). The depolarization of the mitochondrial membrane is already evident at early times of drug exposure (3-6 h), in good agreement with the concept that the dissipation of \(\Delta \psi_{\text{mt}}\) is an early event characteristic of apoptosis observed with many microtubule
stabilizing and destabilizing agents in different cell types.40-42 Since the mitochondrial membrane depolarization is associated with the mitochondrial production of ROS,43 we investigated whether ROS production increased after treatment with 6g. As shown in Figure 9 (Panel B) compound 6g induced significant production of ROS starting at 12-24 h of treatment at 50-250 nM, in good agreement with the mitochondrial depolarization described above.

Figure 9. Assessment of mitochondrial membrane potential ($\Delta\psi_{\text{mt}}$) (Panel A) and production of ROS (Panel B) after treatment of HeLa cells with compound 6g. Cells were treated with the indicated concentration of compound for 3, 6, 12 and 24 h and then stained with the fluorescent probe JC-1 for analysis of mitochondrial potential or with 2,7-dichlorodihydrofluorescein diacetate (H\textsubscript{2}-DCFDA)
for the evaluation of ROS levels. Cells were then analyzed by flow cytometry as described in the experimental section.

Compound 6g induced PARP activation and caused a decrease in the expression of anti-apoptotic proteins. To gain a better insight into the mechanism of action of 6g, we evaluated the cleavage of poly(ADP-ribose) polymerase (PARP) during the apoptotic process induced by this compound. As shown in Figure 10, compound 6g in HeLa cells caused a concentration and time-dependent cleavage of PARP, confirming its pro-apoptotic activity. Moreover, the expression of two anti-apoptotic proteins, Bcl-2 and Mcl-1, was also studied.44,45 Immunoblot analysis, shown in Figure 10, demonstrated that the expression of the anti-apoptotic protein Bcl-2 was decreased starting after a 24 h treatment at both 50 and 100 nM. The decrease in expression of Mcl-1 was even greater, both at the lowest concentration and after the 24 h treatment.

![Western blot analysis of PARP, Bcl-2 and Mcl-1 after treatment of HeLa cells with 6g at the indicated concentrations and for the indicated times. To confirm equal protein loading, each membrane was stripped and reprobed with anti-β-actin antibody.](image)

Figure 10. Western blot analysis of PARP, Bcl-2 and Mcl-1 after treatment of HeLa cells with 6g at the indicated concentrations and for the indicated times. To confirm equal protein loading, each membrane was stripped and reprobed with anti-β-actin antibody.
Derivative 6g had antivascular effects in vitro. Recent antitumor strategies have included the use of chemotherapeutics with antiangiogenic or antivascular drugs to increase the efficacy of the treatment, and, in this context, many tubulin binding agents show antivascular effects against tumor endothelium, including CA-4. For that reason, we evaluated 6g for its effects on endothelial cells utilizing HUVECs as a model to study angiogenesis in vitro. To evaluate the antivascular activity of 6g, we analyzed the ability of the compound to disrupt the “tubule-like” structures formed by HUVECs seeded on Matrigel. Matrigel is an extracellular matrix rich in pro-angiogenic factors that stimulate single endothelial cells to assume an extended shape and produce a reticulum similar to a capillary network. Preliminary experiments carried out on these cells, with the aim to evaluate the cytotoxicity of the test compound, indicated that 6g has a GI50 of 56 nM, after a 48 h treatment. Thus to evaluate antivascular activity, we used a concentration of 6g that did not induce cellular death.

As shown in Figure 11 (Panel A), just after a 1 h incubation, compound 6g at the noncytotoxic concentration of 10 nM, as well as the cytotoxic concentration of 100 nM, clearly disrupted the network of HUVECs, as compared with the control. Image analysis was performed to obtain a quantitative measurement of the total length of the tubules, the area and the number of meshes, the percent of area covered by HUVECs, and the number of branching points after a 1 h treatment (Figure 11, Panels B-G). The results showed for segment length and meshes area a statistically significant effect for the lowest concentration used, suggesting, the high potential vascular disrupting activity of 6g.
Figure 11. Inhibition of endothelial cell capillary-like tubules formation by 6g. Tubules formation on Matrigel was carried out as described in Materials and Methods. Panel A. Representative pictures of preformed capillary-like tubules treated with 6g for 1 h at the concentrations of 10 nM and 100 nM, respectively. Panels B-G. Quantitative analysis of the effects of 6g on the dimensional and topological parameters of the preformed capillary-like tubules network. Data are represented as mean ± S.E.M. of three independent experiments. **p<0.01; ***p<0.001
6g induced tumor growth reduction in a mouse allograft tumor model. To evaluate its antitumor effect in vivo, 6g was administered by the intraperitoneal route every other day, starting at day 9, at two different doses (3.0 and 7.5 mg/kg) in an allograft tumor model developed in mice.50,51 As reference compound, CA-4P was used at 30 mg/kg. This model consists of the use of B16 murine melanoma cells that are injected in the flank of individual mice. This melanoma cell line was selected because it expresses high levels of EGFR.52 Moreover, in preliminary experiments, we also verified the effectiveness of 6g on this murine tumor line. The compound had an IC\textsubscript{50} of 23.4 ± 3.8 nM measured by the MTT assay, indicating that its cytotoxic potency was similar to that found in the human tumor cell lines (see Table 1).

\textbf{Figure 12.} Inhibition of mouse allograft growth in vivo by compound 6g. Male C57BL/6 mice were injected subcutaneously at their dorsal region with 2.5x105 BL6-B16 murine melanoma cells. Tumor-bearing mice were administered the vehicle, as control, or 3 or 7.5 mg/kg of 6g or 30 mg/kg of CA-4P as reference compound. Injections were given intraperitoneally at the days indicated by the arrows. B) Body weight variation after treatment with compound 6g as described above. Data are presented as mean ± SEM of tumor volume at each time point for 5 animals per group. *p<0.05, ***p<0.001 vs. control.

As shown in Figure 12 (Panel A), after six days of treatment (doses administered on days 9, 11, 13 and 15), 6g was able to significantly reduce tumor burden in a dose-dependent manner, even at the lowest dose tested (3.0 mg/kg). We observed reduction of tumor mass of 28.0, and 52.5% at the doses
of 3.0 and 7.5 mg/kg, respectively. The reference compound CA-4P at 30 mg/kg induced 34.9% reduction of tumor mass. Notably, the in vivo efficacy clearly indicates an increased antitumor efficacy of 6g as compared with CA-4P. Even at the highest dose, 6g did not show any sign of toxicity and did not cause a decrease in animal body weight (Figure 12, Panel B).

Conclusions

An effective strategy to develop anticancer agents is the discovery of synergistic multi-targeting properties of new molecules. The thiophene ring has been employed as an isostere for benzene-fused pyrimidines in the design of molecules that possess tyrosine kinase inhibitory activity. In this study we report the design and synthesis of a new series 4-(3’,4’,5’-trimethoxyanilino)-6-substituted thieno[3,2-d]pyrimidines, some of which possess both tubulin polymerization and EGFR kinase inhibitory properties. Structural optimization was conducted with variation in the electron-releasing or electron-withdrawing group on the phenyl at the C-6 position of the 4-(3’,4’,5’-trimethoxyanilino)-thieno[3,2-d]pyrimidine system.

The data shown in Table 1 indicated the importance of substituents on the phenyl at the C-6 position of 4-(3’,4’,5’-trimethoxyanilino)thieno[3,2-d]pyrimidine system for activity and selectivity against different cancer cell lines. Three of the 4-(3’,4’,5’-trimethoxyanilino)-6-substituted thieno[3,2-d]pyrimidine derivatives, corresponding to p-Cl (6d), p-Me (6g) and p-OMe (6h) analogues were more active than the rest of the derivatives, with IC$_{50}$ values of, respectively, 3-600, 1-20 nM and 4-430 nM in the five cell lines. The 4-(3’,4’,5’-trimethoxyanilino)-6-(p-tolyl)thieno[3,2-d]pyrimidine derivative 6g was the most potent compound of the whole series, exhibiting an IC$_{50}$ value of 19 nM against the NSCLC A549 cell line, which harbors EGFR$^{\text{WT}}$ and K-ras mutations. Comparing the p-tolyl derivative 6g with the p-methoxy phenyl compound 6h, the latter was 2-170-fold less active than 6g, with the greatest differences in activity being 23- and 170-fold in A549 and Hela cells, respectively.
The corresponding thieno[2,3-d]pyrimidine isomers and the 2-anilino-7-(3’,4’,5’-trimethoxyanilino)thiazolo[4,5-d]pyrimidine derivatives generally had little activity, with IC_{50} values usually greater than 10 µM. There was a considerable difference in potency between 4-(3’,4’,5’-trimethoxyanilino)-6-arylthieno[3,2-d]pyrimidine derivatives 6a, 6d (p-Cl), 6g (p-Me) and 6h (p-OMe) and the regioisomeric 4-(3’,4’,5’-trimethoxyanilino)-6-arylthieno[2,3-d]pyrimidine analogues 8d, 8f, 8i and 8k, respectively, with these latter being considerably less active than the former in all cancer cell lines examined.

The inhibitory activity against EGFR and VEGFR-2 kinases of selected compounds 6a-b and 6d-h showed that these molecules were selective EGFR inhibitors. Compounds 6f-h inhibited both EGFR kinase and tubulin polymerization, while derivative 6b only inhibited EGFR kinase. Compounds 6a-b and 6d-h showed lower potency than erlotinib, with derivative 6b having the greatest inhibitory activity against EGFR kinase, being only slightly less potent than erlotinib (IC_{50}: 2.5 and 1.5 nM, respectively). Besides its potent antiproliferative activity and high competitive inhibitory activity on EGFR, compound 6g is also an inhibitor of tubulin polymerization through binding to the colchicine site of tubulin, combining EGFR inhibition with antitubulin activity. The IC_{50} of 0.7 µM obtained with 6g in the tubulin banding assay was almost half that obtained in simultaneous experiments with CA-4 (IC_{50}: 1.2 µM)

In our results with compounds 6f-h there was a high correlation between the in vitro antiproliferative activity against the cancer cell lines and inhibition of tubulin polymerization and EGFR kinase, which suggested that targeting both tubulin and EGFR kinase played major roles in the cancer cell growth inhibitory effects of these three molecules.

Experimental Section

1. Chemistry. 1.1. Materials and Methods. ^1^H and ^13^C NMR data were obtained with a Varian VXR 200 spectrometer and a Varian Mercury Plus 400 spectrometer, respectively. Peak positions are given in parts per million (δ) downfield, and J values are given in hertz. Mass spectra were recorded by an
ESI single quadrupole mass spectrometer Waters ZQ 2000 (Waters instruments UK), and the values are expressed as \([\text{M}+1]^+\). Melting points (mp) were determined on a Buchi-Tottoli apparatus and are uncorrected. The purity of tested compounds was determined by combustion elemental analyses conducted by the Microanalytical Laboratory of the Department of Chemistry and Pharmaceutical Sciences of the University of Ferrara with a Yanagimoto MT-5 CHN recorder elemental analyzer. All tested compounds yielded data consistent with a purity of at least 95% as compared with the theoretical values. TLC was carried out using glass plates coated with silica gel 60 F254 by Merck, and compounds were visualized by UV detection or with aqueous KMnO4. Flash column chromatography was performed using 230-400 mesh silica gel and the indicated solvent system. Organic solutions were dried over anhydrous Na2SO4. Solvents and reagents that are commercially available were purchased from Aldrich (Sigma-Aldrich) or Alfa Aesar (Johnson Matthey Company) and were used without further purification unless otherwise noted. Compounds 12a and 12b are commercially available. General procedures and references related to the preparation of methyl 3-aminothiophene-5-aryl/heteroaryl-2-carboxylate 9a-j, ethyl 5-amino-2-anilinothiazole-4-carboxylate 9k-n and ethyl 2-aminothiophene-3-carboxylate derivatives 12c-l are reported in the Supporting Information section. Active compounds were not recognized as PAINS according to the Free ADME-Tox Filtering Tool (FAF-Drugs4) program (http://fafdrugs4.mti.univ-paris-diderot.fr/).

1.2. General procedure A for the preparation of compounds 10a-n and 13a-l. A mixture of the appropriate methyl 3-aminothiophene-5-aryl/heteroaryl-2-carboxylate 9a-j, ethyl 5-amino-2-anilinothiazole-4-carboxylate 9k-n or ethyl 2-aminothiophene-3-carboxylate derivatives 12a-l (10 mmol) and formamide (15 mL) was heated at 180 °C for 18 h. After cooling to room temperature, cooled water (15 mL) was added to the reaction mixture. The solid was removed by filtration, washed with water and dried under vacuum for 12 h. The crude residue was suspended in ethyl ether, stirred for 30 min and filtered. The solid was used for the next reaction without further purification.
6-Phenylthieno[3,2-d]pyrimidin-4(3H)-one (10a). Following general procedure A, compound 10a was obtained as a yellow solid. Yield: 71%, mp 294 °C. 1H-NMR (d$_6$-DMSO) δ: 7.48 (m, 3H), 7.35 (m, 3H), 8.17 (s, 1H), 12.6 (bs, 1H). MS (ESI): [M+1]$^+$=229.3.

6-(Thiophen-2-yl)thieno[3,2-d]pyrimidin-4(3H)-one (10b). Following general procedure A, compound 10b was obtained as a black solid. Yield: 95%, mp 170 °C. 1H-NMR (d$_6$-DMSO) δ: 7.63 (dd, J=2.6 and 1,6 Hz, 1H), 7.74 (dd, J=2.6 and 1,6 Hz, 1H), 8.01 (s, 1H), 8.10 (m, 1H), 8.15 (s, 1H), 12.2 (bs, 1H). MS (ESI): [M+1]$^+$=235.3.

6-(4-Fluorophenyl)thieno[3,2-d]pyrimidin-4(3H)-one (10c). Following general procedure A, compound 10c was obtained as a brown solid. Yield: 81%, mp >300 °C. 1H-NMR (d$_6$-DMSO) δ: 7.34 (d, J=8.8 Hz, 2H), 7.83 (s, 1H), 7.93 (m, 2H), 8.17 (s, 1H), 12.6 (bs, 1H). MS (ESI): [M+1]$^+$=247.3.

6-(4-Chlorophenyl)thieno[3,2-d]pyrimidin-4(3H)-one (10d). Following general procedure A, compound 10d was obtained as a brown solid. Yield: 89%, mp >300 °C. 1H-NMR (d$_6$-DMSO) δ: 7.54 (d, J=8.8 Hz, 2H), 7.87 (m, 3H), 8.17 (s, 1H), 11.6 (bs, 1H). MS (ESI): [M+1]$^+$=263.7.

6-(4-Bromophenyl)thieno[3,2-d]pyrimidin-4(3H)-one (10e). Following general procedure A, compound 10e was obtained as a yellow solid. Yield: 78%, mp >300 °C. 1H-NMR (d$_6$-DMSO) δ: 7.67 (d, J=8.6 Hz, 2H), 7.80 (d, J=8.6 Hz, 2H), 7.90 (s, 1H), 8.17 (s, 1H), 12.6 (bs, 1H). MS (ESI): [M+1]$^+$=308.2.

6-(4-Iodophenyl)thieno[3,2-d]pyrimidin-4(3H)-one (10f). Following general procedure A, compound 10f was obtained as a yellow solid. Yield: 95%, mp >300 °C. 1H-NMR (d$_6$-DMSO) δ: 7.63 (d, J=8.8 Hz, 2H), 7.87 (m, 3H), 8.17 (s, 1H), 11.4 (bs, 1H). MS (ESI): [M+1]$^+$=279.7.
6-(4-Tolyl)thieno[3,2-d]pyrimidin-4(3H)-one (10g). Following general procedure A, compound 10g was obtained as a brown solid. Yield: 83%, mp >300 °C. 1H-NMR (d_6-DMSO) δ: 2.36 (s, 3H), 7.29 (d, J=7.8 Hz, 2H), 7.73 (m, 3H), 8.15 (s, 1H), 12.5 (bs, 1H). MS (ESI): [M+1]$^+$=243.3.

6-(4-Methoxyphenyl)thieno[3,2-d]pyrimidin-4(3H)-one (10h). Following general procedure A, compound 10h was obtained as a brown solid. Yield: >95%, mp >300 °C. 1H-NMR (d_6-DMSO) δ: 3.82 (s, 3H), 7.03 (d, J=8.8 Hz, 2H), 7.71 (s, 1H), 7.78 (d, J=8.8 Hz, 2H), 8.14 (s, 1H), 11.8 (bs, 1H). MS (ESI): [M+1]$^+$=259.3.

6-(3-Methoxyphenyl)thieno[3,2-d]pyrimidin-4(3H)-one (10i). Following general procedure A, compound 10i was obtained as a brown solid. Yield: >95%, mp 212 °C. 1H-NMR (d_6-DMSO) δ: 3.84 (s, 3H), 7.04 (m, 1H), 7.39 (m, 2H), 7.88 (s, 1H), 7.94 (d, J=8.6 Hz, 1H), 8.17 (s, 1H), 12.0 (bs, 1H). MS (ESI): [M+1]$^+$=259.3.

6-(4-Nitrophenyl)thieno[3,2-d]pyrimidin-4(3H)-one (10j). Following general procedure A, compound 10j was obtained as a brown solid. Yield: >95% yield, mp >300 °C. 1H-NMR (d_6-DMSO) δ: 7.18 (d, J=8.8 Hz, 2H), 7.43 (d, J=8.8 Hz, 2H), 7.94 (s, 1H), 10.5 (bs, 1H), 11.4 (bs, 1H). MS (ESI): [M+1]$^+$=274.3.

1.3. General procedure B for the preparation of compounds 11a-n and 14a-l. A mixture of the appropriate thieno[3,2-d]pyrimidin-4(3H)-one 10a-j, thiazolo[4,5-d]pyrimidin-7(6H)-one 10k-n or thieno[2,3-d]pyrimidin-4(3H)-one 13a-l (5 mmol) and POCl$_3$ (30 mL) with 2-3 drops of DMF was refluxed for 6 h. The mixture was cooled, POCl$_3$ was removed under vacuum, the residue obtained was poured into a saturated solution of NaHCO$_3$ and the suspension neutralized with solid NaHCO$_3$. The mixture was extracted with dichloromethane, the organic phase washed with water, brine, dried over Na$_2$SO$_4$ and concentrated in vacuo. The crude product was stirred for 15 min with ethyl ether (15 mL), and the desired product was obtained after removal of the ether by filtration.
4-Chloro-6-phenylthieno[3,2-d]pyrimidine (11a). Following general procedure B, compound 11a was obtained as a brown solid. Yield: 71%, mp 152 °C. 1H-NMR (d_6-DMSO) δ: 7.57 (m, 3H), 6.01 (m, 2H), 8.25 (s, 1H), 9.03 (s, 1H). MS (ESI): [M+1]$^+$=247.7.

4-Chloro-6-(thiophen-2-yl)thieno[3,2-d]pyrimidine (11b). Following general procedure B, compound 11b was obtained as an orange solid. Yield: 60%, mp 176 °C. 1H-NMR (d_6-DMSO) δ: 7.79 (m, 2H), 8.11 (s, 1H), 8.36 (dd, J=2.6 and 1.6 Hz, 1H), 9.00 (s, 1H). MS (ESI): [M+1]$^+$=252.7.

4-Chloro-6-(4-fluorophenyl)thieno[3,2-d]pyrimidine (11c). Following general procedure B, compound 11c was obtained as a brown solid. Yield: 83%, mp >300 °C. 1H-NMR (CDCl$_3$) δ: 7.37 (d, J=8.8 Hz, 2H), 8.04 (m, 2H), 8.11 (s, 1H), 9.03 (s, 1H). MS (ESI): [M+1]$^+$=265.7.

4-Chloro-6-(4-chlorophenyl)thieno[3,2-d]pyrimidine (11d). Following general procedure B, compound 11d was obtained as a yellow solid. Yield: 68%, mp 188 °C. 1H-NMR (CDCl$_3$) δ: 7.47 (d, J=8.8 Hz, 2H), 7.69 (m, 3H), 8.96 (s, 1H). MS (ESI): [M+1]$^+$=282.2.

6-(4-Bromophenyl)-4-chlorothieno[3,2-d]pyrimidine (11e). Following general procedure B, compound 11e was obtained as a yellow solid. Yield: 55%, mp 201 °C. 1H-NMR (CDCl$_3$) δ: 7.75 (d, J=9.0 Hz, 2H), 7.93 (d, J=9.0 Hz, 2H), 8.29 (s, 1H), 9.04 (s, 1H). MS (ESI): [M+1]$^+$=326.6.

4-Chloro-6-(4-iodophenyl)thieno[3,2-d]pyrimidine (11f). Following general procedure B, compound 11f was obtained as a yellow solid. Yield: 54%, mp >300 °C. 1H-NMR (CDCl$_3$) δ: 7.81 (d, J=8.4 Hz, 2H), 7.95 (d, J=8.4 Hz, 2H), 8.29 (s, 1H), 9.04 (s, 1H). MS (ESI): [M+1]$^+$=373.6.

4-Chloro-6-(p-tolyl)thieno[3,2-d]pyrimidine (11g). Following general procedure B, compound 11g was obtained as a brown solid. Yield: 84%, mp >300 °C. 1H-NMR (d_6-DMSO) δ: 2.39 (s, 3H), 7.36 (d, J=7.8 Hz, 2H), 7.87 (d, J=7.8 Hz, 2H), 8.18 (s, 1H), 9.01 (s, 1H). MS (ESI): [M+1]$^+$=261.7.
4-Chloro-6-(4-methoxyphenyl)thieno[3,2-d]pyrimidine (11h). Following general procedure B, compound 11h was obtained as a yellow solid. Yield: 72%, mp 181 °C. 1H-NMR (CDCl$_3$) δ: 3.89 (s, 3H), 7.04 (d, J=8.8 Hz, 2H), 7.69 (s, 1H), 7.71 (d, J=8.8 Hz, 2H), 8.93 (s, 1H). MS (ESI): [M+1]$^+$=277.7.

4-Chloro-6-(3-methoxyphenyl)thieno[3,2-d]pyrimidine (11i). Following general procedure B, compound 11i was obtained as a brown solid. Yield: 61%, mp 153 °C. 1H-NMR (CDCl$_3$) δ: 3.87 (s, 3H), 7.14 (m, 1H), 7.76 (m, 3H), 8.29 (s, 1H), 9.04 (s, 1H). MS (ESI): [M+1]$^+$=277.7.

4-Chloro-6-(4-nitrophenyl)thieno[3,2-d]pyrimidine (11j). Following general procedure B, compound 11j was obtained as an orange solid. Yield: >95%, mp >300 °C. 1H-NMR (d$_6$-DMSO) δ: 8.32 (d, J=8.8 Hz, 2H), 8.36 (d, J=8.8 Hz, 2H), 8.51 (s, 1H), 9.10 (s, 1H). MS (ESI): [M+1]$^+$=292.7.

1.4. General procedure C for the synthesis of compounds 6a-j, 7a-d and 8a-l. A mixture of the appropriate 4-chlorothieno[3,2-d]pyrimidine 11a-j, 7-chlorothiazolo[4,5-d]pyrimidine 11k-n or 4-chlorothieno[2,3-d]pyrimidine 14a-l (1 mmol) and 3,4,5-trimethoxyaniline (2 mmol, 366 mg, 2 equiv.) in iso-propanol (5 mL) with a drop of concentrated HCl was refluxed for 18 h and then evaporated to dryness in vacuo. The residue was dissolved with dichloromethane, and the organic solution was washed with water, followed by brine, and dried over Na$_2$SO$_4$, and the solvent was evaporated. The crude residue was purified by column chromatography on silica gel to furnish the desired compound.

6-Phenyl-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine (6a). Following general procedure C, the crude residue was purified by flash chromatography, using ethyl acetate as eluent, to furnish 6a as a yellow solid. Yield: 80%, mp 176 °C. 1H-NMR (d$_6$-DMSO) δ: 3.67 (s, 3H), 3.79 (s, 6H), 7.22 (s, 2H), 7.51 (m, 3H), 7.85 (m, 2H), 7.90 (s, 1H), 8.59 (s, 1H), 9.64 (s, 1H). 13C-NMR (d$_6$-DMSO) δ: 55.84 (2C), 60.16, 100.17 (2C), 114.74, 120.50, 126.26 (2C), 129.42 (2C), 129.73,
6-(Thiophen-2-yl)-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine (6b). Following general procedure C, the crude residue was purified by flash chromatography, using ethyl acetate:petroleum ether 9:1 (v:v) as eluent, to furnish 6b as a yellow solid. Yield: 69%, mp 211 °C.

1H-NMR (CDCl$_3$) δ: 3.67 (s, 3H), 3.79 (s, 6H), 7.21 (s, 2H), 7.62 (dd, J=5.0 and 1.2 Hz, 1H), 7.76 (m, 1H), 7.78 (s, 1H), 8.06 (dd, J=5.0 and 1.2 Hz, 1H), 8.57 (s, 1H), 9.59 (s, 1H). 13C-NMR (CDCl$_3$) δ: 55.73 (2C), 60.06, 99.97 (2C), 113.98, 120.09, 123.76, 126.04, 128.28, 133.74, 134.07, 135.00, 144.26, 152.47 (2C), 154.36, 154.67, 160.94. MS (ESI): [M+1]$^{+}$=394.5. Anal. (C$_{21}$H$_{19}$N$_{3}$O$_{3}$S) C, H, N.

6-(4-Fluorophenyl)-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine (6c). Following general procedure C, the crude residue was purified by flash chromatography, using ethyl acetate as eluent, to furnish 6c as a brown solid. Yield: 68%, mp 192 °C. 1H-NMR (d_6-DMSO) δ: 3.65 (s, 3H), 3.77 (s, 6H), 7.19 (s, 2H), 7.37 (t, J=9.2 Hz, 2H), 7.86 (s, 1H), 7.88 (m, 2H), 8.57 (s, 1H), 9.63 (bs, 1H). 13C-NMR (d_6-DMSO) δ: 56.30 (2C), 60.62, 10.67 (2C), 115.18, 116.81, 117.03, 121.13, 128.95, 129.04, 129.75, 134.38, 135.44, 148.68, 153.02, 154.97, 155.26, 161.54, 162.07, 164.53. MS (ESI): [M+1]$^{+}$=412.4. Anal. (C$_{21}$H$_{18}$FN$_{3}$O$_{3}$S) C, H, N.

6-(4-Chlorophenyl)-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine (6d). Following general procedure C, the crude residue was purified by flash chromatography, using ethyl acetate as eluent, to furnish 6d as a white solid. Yield: 65%, mp 215 °C. 1H-NMR (d_6-DMSO) δ: 3.67 (s, 3H), 3.79 (s, 6H), 7.20 (s, 2H), 7.58 (d, J=7.2 Hz, 2H), 7.86 (d, J=7.2 Hz, 2H), 7.93 (s, 1H), 8.59 (s, 1H), 9.66 (s, 1H). 13C-NMR (d_6-DMSO) δ: 55.74 (2C), 60.06, 100.14 (2C), 114.80, 121.08 (2C), 127.86 (2C), 129.34 (2C), 131.43, 133.78, 134.18, 134.84, 147.80, 152.47, 154.44, 154.74, 160.87. MS (ESI): [M+1]$^{+}$=428.9. Anal. (C$_{21}$H$_{18}$ClN$_{3}$O$_{3}$S) C, H, N.
6-(4-Bromophenyl)-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine \((6e)\). Following general procedure C, the crude residue was purified by flash chromatography, using ethyl acetate as eluent, to furnish \(6e\) as a yellow solid. Yield: 68\%, mp 219 °C. \(^1\)H-NMR \((d_6\text{-DMSO}) \delta: 3.67 \text{ (s, 3H)}, 3.79 \text{ (s, 6H)}, 7.20 \text{ (d, J=7.8 Hz, 2H)}, 7.80 \text{ (d, J=7.8 Hz, 2H)}, 7.95 \text{ (s, 1H)}, 8.59 \text{ (s, 1H)}, 9.66 \text{ (s, 1H)}. \(^{13}\)C-NMR \((d_6\text{-DMSO}) \delta: 55.75 \text{ (2C)}, 60.06, 100.14 \text{ (2C)}, 114.81, 121.08, 122.86, 128.09 \text{ (2C)}, 131.79, 132.25 \text{ (2C)}, 133.87, 134.86, 147.88, 152.47 \text{ (2C)}, 154.46, 154.75, 160.89. MS \((\text{ESI}): [M+1]^+=520.4. \) Anal. \((\text{C}_{21}\text{H}_{18}\text{BrN}_3\text{O}_3\text{S})\) C, H, N.

6-(4-Iodophenyl)-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine \((6f)\). Following general procedure C, the crude residue was purified by flash chromatography, using ethyl acetate:petroleum ether 8:2 \((\text{v:v})\) as eluent, to furnish \(6f\) as a yellow solid. Yield: 61\%, mp 199 °C. \(^1\)H-NMR \((d_6\text{-DMSO}) \delta: 3.67 \text{ (s, 3H)}, 3.79 \text{ (s, 6H)}, 7.20 \text{ (s, 2H)}, 7.84 \text{ (d, J=8.4 Hz, 2H)}, 7.94 \text{ (s, 1H)}, 8.59 \text{ (s, 1H)}, 9.65 \text{ (s, 1H)}. \(^{13}\)C-NMR \((d_6\text{-DMSO}) \delta: 55.73 \text{ (2C)}, 60.05, 100.11 \text{ (2C)}, 114.72, 120.91 \text{ (2C)}, 126.14, 127.98 \text{ (2C)}, 129.33, 132.03, 133.84, 134.85, 138.07, 148.14, 152.46, 154.43, 154.72, 160.87. MS \((\text{ESI}): [M+1]^+=520.4. \) Anal. \((\text{C}_{21}\text{H}_{18}\text{IN}_3\text{O}_3\text{S})\) C, H, N.

6-(p-Tolyl)-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine \((6g)\). Following general procedure C, the crude residue was purified by flash chromatography, using ethyl acetate as eluent, to furnish \(6g\) as a yellow solid. Yield: 75\%, mp 202 °C. \(^1\)H-NMR \((d_6\text{-DMSO}) \delta: 2.37 \text{ (s, 3H)}, 3.67 \text{ (s, 3H)}, 3.79 \text{ (s, 6H)}, 7.22 \text{ (s, 2H)}, 7.33 \text{ (d, J=8.0 Hz, 2H)}, 7.74 \text{ (d, J=8.0 Hz, 2H)}, 7.83 \text{ (s, 1H)}, 8.58 \text{ (s, 1H)}, 9.60 \text{ (s, 1H)}. \(^{13}\)C-NMR \((d_6\text{-DMSO}) \delta: 20.77, 55.73 \text{ (2C)}, 60.05, 99.99 \text{ (2C)}, 114.32, 119.63, 126.04 \text{ (2C)}, 129.78, 129.97 \text{ (2C)}, 133.75, 134.99, 139.47, 149.51, 152.46 \text{ (2C)}, 154.30, 154.64, 161.02. MS \((\text{ESI}): [M+1]^+=408.5. \) Anal. \((\text{C}_{22}\text{H}_{21}\text{N}_3\text{O}_3\text{S})\) C, H, N.

6-(4-Methoxyphenyl)-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine \((6h)\). Following general procedure C, the crude residue was purified by flash chromatography, using ethyl acetate as eluent, to furnish \(6h\) as a brown solid. Yield: 54\%, mp 182 °C. \(^1\)H-NMR \((d_6\text{-DMSO}) \delta: 3.67 \text{ (s, 3H)},
6-(3-Methoxyphenyl)-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine (6i). Following general procedure C, the crude residue was purified by flash chromatography, using ethyl acetate as eluent, to furnish 6i as a yellow solid. Yield: 62%, mp 163 °C. \(^1\)H-NMR (d\(_6\)-DMSO) \(\delta\): 3.67 (s, 3H), 3.78 (s, 6H), 3.86 (s, 3H), 7.08 (m, 1H), 7.14 (s, 2H), 7.43 (m, 3H), 7.94 (s, 1H), 8.59 (s, 1H), 9.63 (s, 1H). \(^13\)C-NMR (d\(_6\)-DMSO) \(\delta\): 55.35, 55.85 (2C), 60.16, 100.05 (2C), 111.47, 114.77, 115.56, 118.55, 120.85, 130.61, 133.86, 133.95, 135.08, 149.22, 152.57 (2C), 154.48, 154.78, 159.86, 160.95. MS (ESI): [M+1]\(^+\)=424.5. Anal. (C\(_{22}\)H\(_{21}\)N\(_3\)O\(_4\)S) C, H, N.

6-(4-Nitrophenyl)-N-(3,4,5-trimethoxyphenyl)thieno[3,2-d]pyrimidin-4-amine (6j). Following general procedure C, the crude residue was purified by flash chromatography, using ethyl acetate as eluent, to furnish 6j as a yellow solid. Yield: 79%, mp >300 °C. \(^1\)H-NMR (d\(_6\)-DMSO) \(\delta\): 3.67 (s, 3H), 3.80 (s, 6H), 7.21 (s, 3H), 8.12 (d, J=9.0 Hz, 2H), 8.17 (s, 1H), 8.35 (d, J=9.0 Hz, 2H), 8.63 (s, 1H), 9.78 (s, 1H). \(^13\)C-NMR (CDCl\(_3\)) \(\delta\): 55.77 (2C), 60.06, 78.53, 78.86, 79.19, 100.32 (2C), 123.48, 124.54 (2C), 127.27 (2C), 134.67, 138.68, 147.53, 152.50 (2C), 154.68, 154.91, 160.63. MS (ESI): [M+1]^+=439.4. Anal. (C\(_{21}\)H\(_{18}\)N\(_4\)O\(_5\)S) C, H, N.

2.1 Antiproliferative assays. Human T-cell leukemia (Jurkat) and human B-cell leukemia (RS4;11) cells were grown in RPMI-1640 medium, (Gibco, Milano, Italy). human non-small cell lung carcinoma (A549), human cervix carcinoma (HeLa) and human colon adenocarcinoma (HT-29) cells were grown in DMEM medium (Gibco, Milano, Italy). Both media were supplemented with 115 units/mL of penicillin G (Gibco, Milano, Italy), 115 \(\mu\)g/mL of streptomycin (Invitrogen, Milano,
Italy) and 10% fetal bovine serum (Invitrogen, Milano, Italy). These cell lines were purchased from ATCC. Stock solutions (10 mM) of the different compounds were obtained by dissolving them in DMSO. Individual wells of a 96-well tissue culture microtiter plate were inoculated with 100 μL of complete medium containing 8x10^3 cells. The plates were incubated at 37 °C in a humidified 5% CO_2 incubator for 18 h prior to the experiments. After medium removal, 100 μL of fresh medium containing the test compound at different concentrations was added to each well and incubated at 37 °C for 72 h. The percentage of DMSO in the medium never exceeded 0.25%. This was also the maximum DMSO concentration in all cell-based assays described below. Cell viability was assayed by the MTT test as previously described.35 The IC\textsubscript{50} was defined as the compound concentration required to inhibit cell proliferation by 50%, in comparison with cells treated with the maximum amount of DMSO (0.25%) and considered as 100% viability.

2.2. Effects on tubulin polymerization and on colchicine binding to tubulin. To evaluate the effect of the compounds on tubulin assembly \textit{in vitro},53a varying concentrations of compounds were preincubated with 10 μM bovine brain tubulin in 0.8 M monosodium glutamate (pH adjusted to 6.6 with HCl in a 2.0 M stock solution) at 30 °C and then cooled to 0 °C. After addition of 0.4 mM GTP, the mixtures were transferred to 0 °C cuvettes in a recording spectrophotometer and warmed to 30 °C. Tubulin assembly was followed turbidimetrically at 350 nm. The IC\textsubscript{50} was defined as the compound concentration that inhibited the extent of assembly by 50% after a 20 min incubation. The capacity of the test compounds to inhibit colchicine binding to tubulin was measured as described,53b except that the reaction mixtures contained 1 μM tubulin, 5 μM [3H]colchicine and 1 or 5 μM test compound.

2.3. EGFR and VEGFR kinase activity assays. Kinase assays was performed using the bioluminescent ADP-GloTM kinase assay (Promega, Milano Italy), following the manufacturer’s instructions. Assay was performed with the test compounds at different scalar concentrations.
IC$_{50}$ values reported are based on the average of at least 2 titration curves. As reference compounds erlotinib (Sigma-Aldrich) and sunitinib (Selleckchem, USA) were used.

2.4. Molecular modeling. All molecular docking studies were performed on a Viglen Genie Intel®Core™ i7-3770 vPro CPU® 3.40 GHz x 8 running Ubuntu 14.04. Molecular Operating Environment (MOE) 2015.10 and Maestro (Schrödinger Release 2017-1) were used as molecular modeling software.54,55 The tubulin structure and the EGFR kinase domain were downloaded from the PDB data bank (http://www.rcsb.org/; PDB codes 1SA0 and 2J6M, respectively). The two proteins were preprocessed using the Schrödinger Protein Preparation Wizard by assigning bond orders, adding hydrogens and performing a restrained energy minimization of the added hydrogens using the OPLS_2005 force field. Ligand structures were built with MOE and minimized using the MMFF94x force field. The ligands were then prepared using the Maestro LigPrep tool by energy minimizing the structures (OPLS_2005 force filed), generating possible ionization states at pH 7±2, generating tautomers and low-energy ring conformers. A 12 Å docking grid (inner-box 10 Å and outer-box 22 Å) was prepared using as centroid the co-crystallized DAMA-colchicine for the tubulin structure, and a 15 Å docking grid (inner-box 10 Å and outer-box 25 Å) was prepared using as centroid the co-crystallized AEE788 for the EGFR structure. Molecular docking was performed using Glide SP precision keeping the default parameters and setting 5 as the number of output poses per input ligand to include in the solution. The docking results were visually inspected on MOE for their ability to bind the active sites.

2.5. Flow cytometric analysis of cell cycle distribution. 5 × 105 HeLa or Jurkat cells were treated with different concentrations of the test compounds for 24 h. After the incubation period, the cells were collected, centrifuged, and fixed with ice-cold ethanol (70%). The cells were then treated with lysis buffer containing RNase A and 0.1% Triton X-100 and then stained with PI. Samples were analyzed on a Cytomic FC500 flow cytometer (Beckman Coulter). DNA histograms were analyzed using MultiCycle for Windows (Phoenix Flow Systems).
2.6. Apoptosis assay. Cell death was determined by flow cytometry of cells double stained with annexin V/FITC and PI. The Coulter Cytomics FC500 (Beckman Coulter) was used to measure the surface exposure of PS on apoptotic cells according to the manufacturer’s instructions (Annexin-V Fluos, Roche Diagnostics).

2.7. Western blot analysis. HeLa cells were incubated in the presence of 6g and, after different times, were collected, centrifuged, and washed two times with ice cold phosphate buffered saline (PBS). In some experiments Hela cells were treated with 6g or erlotinib (Sigma-Aldrich) and stimulated with EGF (R&D Systems, Minneapolis MN, USA) 50 ng/mL for 15 min. and then processed as described above. The pellet was then resuspended in lysis buffer. After the cells were lysed on ice for 30 min, lysates were centrifuged at 15000 x g at 4 °C for 10 min. The protein concentration in the supernatant was determined using the BCA Protein Assay (Pierce, Italy). Equal amounts of protein (10 μg) were resolved using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (Criterion Precast, BioRad, Italy) and transferred to a PVDF Hybond-P membrane (GE Healthcare). Membranes were blocked with a bovine serum albumin solution (5% in Tween PBS 1X), the membranes being gently rotated overnight at 4 °C. Membranes were then incubated with primary antibodies against, PARP, Mcl-1, Bcl-2, (all from Cell Signaling) or β-actin (Sigma-Aldrich) for 2 h at room temperature. Membranes were next incubated with peroxidase labeled secondary antibodies for 60 min. All membranes were visualized using ECL Select (GE Healthcare), and images were acquired using an Uvitec-Alliance imaging system (Uvitec, Cambridge, UK). To ensure equal protein loading, each membrane was stripped and reprobed with an anti-β-actin antibody.

2.8. Evaluation of the antivascular activity in vitro. HUVECs were prepared from human umbilical cord veins, as previously described.46,49 The adherent cells were maintained in M200 medium supplemented with Low Serum Growth Supplement, containing fetal bovine serum, hydrocortisone, hEGF, bFGF, heparin, gentamycin/amphotericin (Life Technologies, Monza, Italy). Once confluent,
the cells were detached by trypsin–EDTA solution and used in experiments from the first to sixth passages.

Matrigel matrix (Basement Membrane Matrix, BD Biosciences, Italy) was kept at 4 °C for 3 h, when 230 µL of Matrigel solution was added to each well of a 24-well plate. After gelling at 37°C for 30 min, gels were overlaid with 500 µL of medium containing 6 x 10⁴ HUVECs. The cells were incubated over Matrigel for 6 h to allow capillary tubes to form. Different concentrations of test compound were added in the cultures and incubated for different times, and the disappearance of existing vasculature was monitored and photographed (five fields for each well: the four quadrants and the center) at a 10x magnification. Phase contrast images were recorded using a digital camera and saved as TIFF files. Image analysis was carried out using ImageJ image analysis software, and the following dimensional parameters (percent area covered by HUVECs and total length of HUVECs network per field) and topological parameters (number of meshes and branching points per field) were estimated.⁴⁶,⁴⁹

2.9. In vivo animal studies. Procedures involving animals and their care conformed with institutional guidelines that comply with national and international laws and policies (EEC Council Directive 86/609, OJ L 358, 12 December 1987) and with “ARRIVE” guidelines (Animals in Research Reporting In Vivo Experiments). Six week old C57BL/6 mice (Charles River, Calco) were injected subcutaneously into the dorsolateral flank with 2.5x10⁵ BL6-B16 murine melanoma cells in 200 µL of PBS. When tumors were palpable, animals were treated intraperitoneally every other day with different doses of test compounds dissolved in 50 µL of DMSO. Tumors were measured in two dimensions, and tumor volume was calculated according to the formula V=(D x d²)/2, where D and d are the major and minor perpendicular tumor diameters, respectively.

Supporting information available. The Supporting Information is available free of charge on the ACS Publications website. Antiproliferative activities of compounds 7a-d (Table 1s) and 8a-l (Table 2s). General procedures and references related to the preparation of methyl 3-aminothiophene-5-
aryl/heteroaryl-2-carboxylate 9a-j, ethyl 5-amino-2-anilinothiazole-4-carboxylate 9k-n and ethyl 2-aminothiophene-3-carboxylate derivatives 12c-l. Spectral data for the newly synthesized compounds 7a-d, 10k-n, 11k-n, 13a-l and 14a-l. 1H-NMR and 13C-NMR spectra of compounds 6a-j. Elemental microanalyses for compounds 6a-j, 7a-d and 8a-l.

6b-6e-6g-docking-1SAO (pdb)
6b-6e-docking-2J6M (pdb)
Molecular formula strings (CSV).

Author Information

* To whom correspondence should be addressed: (R.R.): Phone: 39-(0)532-455303. Fax: 39-(0)532-455953. E-mail: rmr@unife.it. (L.C.L.C.): Phone: 34-(0)958-243849. Fax: 34-(0)958-243845. E-mail:lcarlotalopez@ugr.es. (G.V.): Phone: 39-(0)49-8215485. Fax: 39-(0)49-8211462. E-mail:giampietro.viola1@unipd.it.

ORCID

Romeo Romagnoli: 0000-0002-6374-773X
Filippo Prencipe: 0000-0001-6426-2761
Paola Oliva: 0000-0002-9148-931X
Stefania Baraldi: 0000-0003-3197-3043
Pier Giovanni Baraldi: 0000-0002-1150-7216
Santiago Schiaffino Ortega: 0000-0002-2583-1084
Mariem Chayah: 0000-0002-1367-8633
Maria Kimatrai Salvador: 0000-0002-3160-4240
Luisa Carlota Lopez-Cara: 0000-0002-6674-4825
Andrea Brancale: 0000-0002-9728-3419
Salvatore Ferla: 0000-0002-5918-9237
Acknowledgment. We wish to thank Alberto Casolari for technical assistance. We also acknowledge the support of the Life Science Research Network Wales grant n°. NRNPGSep14008, an initiative funded through the Welsh Government's Ser Cymru program. We acknowledge "Proyecto de Excelencia de la Consejería de Innovación y Ciencia de la Junta de Andalucía, Spain ref. P12-CTS-696" for its financial support.

Disclaimer. The content of this paper is solely the responsibility of the authors and does not necessarily reflect the official views of the National Institutes of Health.

Abbreviations. CA-4, combretastatin A-4; CA-4P, combretastain A-4 disodium phosphate; Δψ_{mt}, mitochondrial transmembrane potential; DAMA-colchicine, N-deacetyl-N-(2-mercaptoacetyl)-colchicine; DMEM, Dulbecco's modified Eagle's medium; DMSO, dimethyl sulfoxide; EGF, epidermal growth factor; EGFRwt, epidermal growth factor receptor wild type; ERG, electron-releasing group; ESI, electrospray ionization; EWG, electron-withdrawing group; HER, human epidermal growth factor receptor; H\textsubscript{2}DCFDA, 2,7-dichlorodihydrofluorescein diacetate; JC-1, 5,5',6,6'-tetrachloro-1,1',3,3'-tetracyanomethylenzoiccarbocyanine; MTT, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; NSCLC, nonsmall cell lung cancer; PARP, poly(ADP-ribose) polymerase; PBS, phosphate-buffered saline; PI, propidium iodide; ROS, reactive oxygen species; SAR, structure-activity relationships; VEGFR-2, vascular growth factor receptor-2.
References

18. The identification numbers in https://clinicaltrials.gov/ are: NCT02326285, NCT00720304, NCT00049283, NCT02319577, NCT00083057, NCT01405079, NCT01755923, NCT00532441, NCT01749072, NCT01050322, NCT00446225 and NCT00553358.

Table of Contents Graphic