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Abstract 

During αβ T cell development, T cell antigen receptor (TCR) engagement transduces 

biochemical signals through a protein-protein interaction (PPI) network that dictates 

dichotomous cell fate decisions. It remains unclear how signal specificity is communicated, 

instructing either positive selection to advance cell differentiation, or death by negative selection. 

Early signal discrimination might occur by PPI signatures differing qualitatively (customized, 

unique PPI combinations for each signal), quantitatively (graded amounts of a single PPI series), 

or kinetically (speed of PPI pathway progression). Using a novel PPI network analysis, we found 

that positive versus negative selection was distinguished by early TCR-proximal signals that 

differed quantitatively, but not qualitatively or kinetically. Furthermore, the signal intensity of 

network PPI activity was used to discover an antigen dose that caused a classic negative-

selection ligand to induce positive selection of conventional αβ T cells, suggesting that the 

quantity of TCR triggering was sufficient to distinguish selection outcome. Since previous work 

had suggested that positive selection might involve a qualitatively unique signal through CD3δ, 

we re-examined the block in positive selection observed in CD3δ0 mice. We found that CD3δ0 

thymocytes were inhibited but capable of signaling positive selection, generating low numbers of 

MHC-dependent αβ T cells that expressed diverse TCR repertoires and participated in immune 

responses against infection. We conclude that, rather than qualitatively enabling positive 

selection, CD3δ quantitatively boosts the positive selection signal for maximal generation of αβ 

T cells. Together, these data indicate that a quantitative network signaling mechanism through 

the early proximal TCR signalosome distinguishes thymic selection outcome. 

  



Main text: 

Introduction 

For conventional αβ T cells, central tolerance involves positive selection of clones bearing TCRs 

with weak reactivity to self-peptide/MHC (pMHC), and negative selection by deletion of clones 

bearing TCRs with strong reactivity to self-pMHC within the thymus (1, 2). During selection, 

TCR engagement initiates biochemical signals through six associated CD3 subunits (γ, δ, 2ε, 2ζ), 

each containing 1-3 immunoreceptor tyrosine-based activation motifs (ITAM) and other 

signaling sequences (3, 4). CD3 activation initiates a PPI signaling cascade involving LCK, 

ZAP70, LAT, SLP76, and other enzymes and adaptor proteins that together form a highly 

interactive network, termed the proximal TCR signalosome (5-8). This signalosome can transmit 

more than one type of signal (3, 9-13), which may arise from the conditional interconnectivity of 

its multiprotein, modular network. Yet how these TCR/CD3-intrinsic and extrinsic proximal 

proteins form discrete network signatures that program the cellular response for positive versus 

negative selection is incompletely understood. 

 

It has been proposed that signaling proteins form complexes like letters form words, with 

specific combinations and quantities instructing cells to perform specific functions (14-16). As a 

starting theoretical framework, basic categories of network PPI patterns that could instruct 

dichotomous responses in T cell selection are those in which signatures differ qualitatively, 

quantitatively, or kinetically (Fig. S1). In general, qualitative and kinetic signaling models are 

favored in the field (2, 17-19), whereas a former quantitative model (20, 21) is now thought to 

apply to innate-like and regulatory agonist-selected T cells more than conventional αβ T cells 

(22-26), although there is some controversy over this issue (27-30).  

 



Supporting the qualitative signal model, CD3δ was shown to play a specific role in positive 

selection (31, 32). Mutation of TCR α-connecting peptide motif (αCPM) hindered association 

with CD3δ and blocked thymocyte development at the pre-selection CD4+ CD8+ (double-

positive, DP) stage, preventing positive selection but leaving negative selection intact (33, 34). 

CD3δ0 mice presented a phenotype with similarities to αCPM mutant mice, including blockade 

of T cell development at the pre-positive selection CD4+CD8+ DP stage (31, 32). All other CD3 

subunits (ε, γ, ζ) are required for γδ TCR and pre-TCR signaling, making δ the only CD3 subunit 

that is not required until αβ TCRs are first expressed to audition for selection at the DP stage 

(31). Additionally, in FTOC experiments using wild-type OT1 thymocytes, the nominal 

antigenic ligand (OVA peptide in H2-Kb) was tested over ten 10-fold dilutions, in which all 

functional signals induced negative selection, none induced positive selection of conventional αβ 

T cells, and antigen dilutions that were too low for negative selection induced no selection 

response (27, 35). These and other studies showed that positive versus negative selection signals 

led to critical kinetic differences in Ras-Raf-ERK activation and subcellular localization 

downstream of the TCR signalosome (1, 2, 32, 34-38), supporting the proposal that TCR decides 

between positive and negative selection by initiating qualitatively distinct signaling pathways. 

Thus, the current conventional model is (I) kinetic proofreading governs TCR engagement (Ref. 

(39)), which determines (II) an as-yet-undefined quality-of-signalosome network activity that 

specifies positive versus negative selection, leading to (III) differential Ras-Raf-ERK activation 

kinetics, subcellular localization, and downstream events that program selection outcome. 

 

The present work was dedicated to elucidating the TCR-proximal signaling step (II) above, to 

determine the network mechanism at play very early as protein complexes of the signalosome 

begin to specify selection outcome. To assess this protein network model of signal specificity in 



the TCR signalosome, we employed a multiplex microsphere-based approach for analysis of 20+ 

cellular proteins in a 210+ matrix measuring proteins in shared complexes detected by exposed 

surface epitopes (PiSCES), a system that was recently published (40). Based on prior knowledge 

and current interactome data (6), we assembled a panel of immunoprecipitation (IP) antibodies 

(Ab) covalently coupled to specific microsphere classes, each defined by a unique proportion of 

two dyes within the polystyrene latex material base.  Following various stimulatory or control 

conditions, cells were lysed, multiplex IP was performed, and co-associated proteins were 

probed with fluorochrome-labeled Abs and analyzed by flow cytometry (Fig. S1D; Tab. S1). In 

previous studies, PiSCES analysis identified both qualitatively and quantitatively distinct 

network PPI activity patterns when comparing human TCR versus CD28 signaling pathways, 

and antigenic signaling in skin from autoimmune alopecia areata versus control patient T cells 

(40). Therefore, PiSCES analysis appeared well suited to address how TCR signalosome activity 

responds to different functional signals in the context of thymocyte selection. 

 

Results 

Qualitative and quantitative signaling differences in human T cell lines  

To examine differences in PiSCES signatures between functionally distinct TCR signals, we 

began with the LC13 system, a human TCR whose responses to agonist and antagonist pMHC 

ligands are well characterized (41-43).  Whereas LC13 TCR responds to the Epstein-Barr Virus-

derived FLRGRAYGL (RAY) peptide loaded in HLA-B0801 as an agonist, the single-peptide-

substituted FLRGRFYGL (RFY) in HLA-B0801 possesses no agonist activity, but strong 

antagonist activity, despite both ligands binding LC13 TCR with similar half-lives (41).  A 

Jurkat-based cell line system was used, because (i) these cells represent transformed human 

thymocytes, originating from T cell acute lymphoblastic leukemia (44), and (ii) in mice, 

previously defined antagonist ligands were shown to induce positive selection in thymocytes, 



while agonists induced negative selection (27, 35, 45, 46).  Therefore, the LC13 TCR and human 

CD8 coreceptor were retrovirally expressed in JRT3 (a TCRβ-deficient derivative of Jurkat (47)) 

to create LC13ab.huCD8ab.JRT3 cells, which were stimulated with agonist peptide (RAY)-

loaded C1R.B0801 antigen-presenting cells (APCs).  After 5 minutes, T cells were lysed and 

subjected to PiSCES analysis, revealing induction of a rich network signature of multiprotein 

signaling complexes (Fig. 1A). To examine the extent to which two different strong agonist 

signals in related cell lines would produce similar PiSCES network signatures, we compared the 

LC13 RAY-induced PiSCES signature to our previously published dataset in which Jurkat T-

cells had been stimulated for 5 minutes with Staphylococcal Enterotoxin E (SEE) superantigen 

(40). We found that many of the same protein pairs joined complexes in both sets of 

experiments, and we plotted the average fold-induction for protein pairs that were hits in either 

dataset, with SEE-Jurkat stimulation on the x-axis and agonist LC13-JRT3 stimulation on the y-

axis (Fig. 1B). In a perfect correlation, all points would have fallen linearly along the 45° angle, 

which would have indicated that all signaling complexes were induced to the same degree in 

both datasets, but this was not the case. Among the differences noted, some protein pairs joined 

complexes that were almost exclusively induced in the SEE dataset only (Fig 1B, teal box), in a 

sub-network that appeared to be centered around CD28 (Fig 1C). Pursuing possible reasons for 

this difference, we found that unlike Jurkat, LC13ab.huCD8ab.JRT3 cells expressed low surface 

CD28, and thus fewer copies were available to respond to stimulation (Fig. 1D). These data 

provide an example where PiSCES analysis revealed qualitative and quantitative differences in 

cell signaling responses between two stimulatory conditions. 

 

Human LC13 TCR signalosome activity differs quantitatively in response to agonist versus 

antagonist pMHC ligands 



We next assessed how TCR-proximal signaling protein complexes would respond to antagonist 

stimulation.  Initially, PiSCES network visualization of LC13 antagonist peptide (RFY) 

stimulation (Fig. 1E) appeared to present a lower-intensity version of the agonist (RAY)-induced 

signature (Fig. 1A).  Comparing fold-change intensities between agonist (RAY) and antagonist 

(RFY) stimuli, protein complexes were induced by agonist to a quantitatively greater degree in 

an approximately linear fashion weighted toward agonist-stimulation, and antagonist did not 

appear to induce customized complexes that would indicate a qualitatively unique antagonist 

signature (Fig. 1F). The differences in response were sufficient to allow principal component 

analysis (PCA) to separate agonist (RAY)- from antagonist (RFY)-stimulated LC13 data (Fig. 

1G). Thus, in contrast to that observed relative to SEE-stimulated Jurkat cells, quantitative but 

not qualitative differences in PiSCES signatures were evident when comparing agonist versus 

antagonist pMHC stimuli of LC13ab.huCD8ab.JRT3 cells.  

 

Primary OT1 TCR signalosome activity differs quantitatively in response to stimulation by 

positive versus negative selection pMHC ligands 

To assess PiSCES signatures of the TCR-proximal signalosome in primary pre-selection DP 

thymocytes, we used a mouse genotype that had previously generated data in support of the 

qualitative signaling model for thymic selection, and for which functionally distinct pMHC 

ligands have been characterized, OT1.RAG20.β2m0 (27, 35).  Thymocytes were co-incubated for 

1 minute with C1R.Kb APCs presenting either OVA (negative selection), Q7 (positive 

selection), or FARL (null, no selection) peptides, in vitro. After cell lysis, multiplex IP and 

PiSCES analysis were performed, by normalizing both OVA (Fig. 2A) and Q7 stimulation (Fig. 

2B) to the null control condition, or alternatively by dividing the average MFI intensities in OVA 

by those of Q7 directly (Fig. 2C). With OVA stimulation, a clear network signature included 

shared protein complexes already being induced at 1-minute between TCR/CD3, LAT, SLP76, 



GADS, PI3K, PLCγ, and others (Fig. 2A), while Q7 stimulation presented a similar network 

pattern but was generally weaker in both fold-change and statistical significance (Fig. 2B). 

Dividing average MFI intensities of hits in OVA stimulation by those of Q7 showed that fold-

changes were greater in OVA-stimulation without appearance of a clear sub-network of protein 

complexes that might be balanced toward the Q7 positive selection stimulus (Fig. 2C).  

Comparing fold-change intensities between negative and positive selection stimuli, protein 

complexes were induced by OVA to a quantitatively greater degree in an apparent linear fashion, 

and Q7 did not appear to induce customized complexes that would indicate a qualitatively unique 

positive selection signature (Fig. 2D).  These differences were sufficient for PCA to separate the 

response to the two stimuli (Fig. 2E). Thus, similar to the patterns observed when comparing 

agonist and antagonist stimulations of the human LC13 TCR, primary mouse pre-selection 

thymocytes responded to positive or negative selection ligands primarily via quantitatively 

distinct PPI activities through the proximal TCR signalosome. In contrast, if non-physiologic 

stimuli, pervanadate or H2O2, were administered to OT1.RAG20.β2m0 pre-selection thymocytes, 

qualitatively distinct PiSCES signatures were produced (Figs. S2-S3 and Supplementary Results 

& Discussion), supporting the interpretation that the primarily quantitative-only network PPI 

differential occurred specifically in response to positive versus negative selection pMHC ligands.  

 

We next determined the extent to which positive and negative selection pMHC stimuli induced 

differences in the early kinetics of PiSCES responses. For OT1.RAG20.β2m0 thymocytes, 

PiSCES signatures began by 1 minute (Fig. 2), showing continued high activity and progression 

of the signature at 5 minutes (Fig. 3A-D), with waning toward early TCR-proximal signal 

dissolution by 15 minutes (Fig. 3E-H). At each time point, a quantitative trend was observed 

where the magnitude of average fold-change for induced protein pairs was greater in response to 

OVA than Q7 (Figs. 2D, 3D, 3H). Throughout the time course, PiSCES signatures appeared to 



evolve similarly in response to OVA or Q7 stimulation. For example, for OVA stimulation, 

maximal TCR:LAT appearing in shared complexes occurred at 1 minute (Fig. 2A) and was 

reducing by 5 minutes (Fig. 3A), by which time Cbl-b was maximally induced in shared 

complexes with TCR, PLCγ, and Thy1, and TCR clustering began to be observed (Fig. 3A:  the 

loop around TCR/CD3 indicates appearance of multiple copies of TCR/CD3 in shared 

complexes (40)). By comparison, in response to Q7 stimulation, the same kinetic trends were 

observed, but changes were of decreased relative magnitude (Figs. 2B, 3B). K-means cluster 

analysis of the top 15 protein pair hits revealed 3 kinetic behavior profiles in response to OVA 

stimulation; when applied to matching protein pairs from the Q7 stimulation condition, the same 

kinetic trends were preserved (Fig. 3I-J). Finally, PCA showed both types of signals expanding 

along an apparently common stimulation path in 3D analysis space, without obvious divergence 

in overall trendpath; at each kinetic time point the two stimulation conditions could be separated, 

with OVA response appearing somewhat farther from a zero-stimulation point (Fig. 3K). These 

data showed that the early kinetic PPI progression in response to a positive selection pMHC 

ligand was not delayed in comparison to the response to a negative selection pMHC ligand, 

because PiSCES signature progression evolved at a similar pace with the main difference being 

one of magnitude.  

 

Because primary thymocytes responded more weakly to stimuli than did Jurkat cells, we 

performed the same kinetic experiments and analyses in LC13ab.huCD8ab.JRT3 cells (Figs. S4-

S5), and cells transduced to express OT1 and mouse CD8 transgenes, OT1ab.muCD8ab.JRT3 

cells (Figs. S6-S7). These cells were hyper-responsive when compared with primary cells, but 

within each cell system the same general trends were observed:  quantitative differences 

predominated between agonist (negative selection) and antagonist (positive selection) stimuli, 

while substantial qualitative and early kinetic differences were not evident. Collectively, the 

greatest difference observed between positive and negative selection stimuli was the magnitude 



of change in a common set of early TCR-proximal protein complexes (signal strength), rather 

than formation of unique sets of protein complexes (signal composition) or different speeds of 

pathway progression (signal kinetic).  

 

PiSCES network activity predicts and confirms that early signal quantity is sufficient to 

distinguish thymic selection outcome 

These data led to the prediction that a classic negative selection peptide should induce positive 

selection if the dose of its signal in responding thymocytes could be placed in the range of 

positive selection. To test this prediction, we used a fetal thymic organ culture (FTOC) system 

that had previously produced data in support of the qualitative signaling model (27, 35). 

OT1.RAG20.β2m0 fetal thymi were supplied exogenous β2m to restore MHC class I antigen 

presentation in conjunction with OT1-nonspecific FARL peptide for no selection (Fig. 4A), Q7 

peptide for positive selection (Fig. 4B), or OVA peptide for negative selection (Fig. 4C). To 

directly test the quantitative hypothesis predicted by PiSCES analysis, we identified a dilute 

concentration of OVA (0.75 nM) that after 5 minutes of stimulation induced an approximately 

indistinguishable PiSCES signature from that of full-dose Q7 (10 µM). This rough equivalence 

was determined by dividing the response to dilute OVA by the response to full Q7 and observing 

that the two signals virtually canceled out (Fig. 4D), and could not be distinguished by PCA (Fig. 

4E). We found that using this concentration of OVA in FTOC induced positive selection of 

conventional CD8αβ single-positive (SP) T cells (Fig. 4F-G). Increasing that dose by four-fold 

was sufficient to induce substantial generation of unconventional CD8α+ CD8β- SP T cells (Fig. 

4H-I) correlating with preferential CD8αα homodimer expression (Fig. S8 and Supplementary 

Results and Discussion), an observation consistent with the idea that CD8αα SP T cells are 

generated by stronger signals than those that generate conventional CD8αβ SP T cells (24, 25). 



In FTOCs that favored conventional positive selection, enhanced CD8αβ SP T cell viability was 

observed (Fig. 4J).  Furthermore, when FTOC cells from positive selection conditions were 

subsequently stimulated with OVA-bearing APCs, T cell proliferation and development of CTL 

activity were observed (Fig. S9). Overall, these data support the hypothesis that quantitative 

network activity through the TCR signalosome provides an early instruction to specify positive- 

versus negative-selection in developing thymoytes. 

 

Positive selection in CD3δ0 mice 

Because previous work had suggested that positive selection might involve a qualitatively unique 

signal through CD3δ (31-34), we re-examined the block in positive selection observed in CD3δ0 

mice to determine whether CD3δ’s contribution might instead be quantitative, amplifying 

TCR/CD3 signals toward a selection threshold. As previously reported, relative to wild-type 

C57BL/6 (B6) mice, a severe block in positive selection and generation of CD4 or CD8 SP αβ T 

cells was observed upon analysis by flow cytometry of thymocytes from CD3δ0 mice (Fig. 5A-

B). To determine if some residual positive selection was occurring in CD3δ0 mice, they were 

crossed with MHC II0.β2m0 to generate MHC II0.β2m0.CD3δ0 mice. Although no consistent 

difference was observed in the percentage of CD4 or CD8 SP thymocytes between the two 

mutant genotypes (Fig. 5B-C, Fig. S10A-B), live cell counts showed that CD3δ0 mice that were 

MHC+ had more CD4 and CD8 SP thymocytes than MHC II0.β2m0.CD3δ0 mice (Fig. 5D-E). 

Consistent with the possibility that these few SP cells were being generated by positive selection, 

surface CD69 expression was observed on a greater percentage of thymocytes that were CD3δ0 

than MHC II0.β2m0.CD3δ0 at stages DP (Fig. 5F-I) and CD4 or CD8 SP (Fig. S10C-J). To isolate 

the ability of the thymus to generate SP cells, FTOC was performed, where a greater percentage 

of CD4 SP cells was generated in CD3δ0 than MHC II0.β2m0.CD3δ0 thymi (Fig. S10K-O). 

Analysis of CD4 and CD8 splenic T cells confirmed that CD3δ0 mice had low cell numbers 



relative to B6, but such cells were absent in MHC II0.β2m0.CD3δ0 mice (Fig. 5J-N). Compared 

with B6, CD3δ0 splenic T cells expressed less CD5, indicative of having undergone weaker 

selection signals (48), and most CD3δ0 T cells were CD24-low and PNA-low staining, consistent 

with the progressive differentiation expected to occur post-selection (Fig. S11). Because in 

CD3δ0 thymocytes, signaling occurred (resulting in CD69 induction) in an MHC-dependent 

manner to generate low-count SP cells in the thymus and periphery, we conclude that a low level 

of positive selection still occurred in these mice.  

 

To test the hypothesis that a specific TCR lacking CD3δ0 could mediate some amount of positive 

selection in vivo, we generated OT1.RAG20.CD3δ0 and OT1.RAG20.β2m0.CD3δ0 mice. Compared 

with OT1.RAG20 mice, OT1.RAG20.CD3δ0 mice showed a reduction in peripheral blood T cells; 

however, their low T cell number was dependent on MHC class I-mediated survival, because 

peripheral blood T cells were absent in OT1.β2m0.RAG20.CD3δ0 mice (Fig. S12). We conclude 

that a low amount of positive selection still appeared to be active when single-TCR-expressing 

cells lacked CD3δ. 

 

To directly test the hypothesis that a specific TCR lacking CD3δ0 could transduce a positive 

selection signal, we compared OT1.RAG20.β2m0 and OT1.RAG20.β2m0.CD3δ mice in FTOC. As 

expected for OT1.RAG20.β2m0 thymocytes, FARL peptide induced no selection (Fig. 6A), Q7 

peptide induced positive selection (Fig. 6B), and OVA peptide induced negative selection of 

(Fig. 6C). In contrast, OT1.RAG20.β2m0.CD3δ0 thymocytes failed selection with Q7 peptide (Fig. 

6D-E), but underwent positive selection in response to OVA peptide (Fig. 6F), producing 

conventional CD8αβ SP T cells (Fig. 6G-H). Having observed these selection outcomes, we 



examined the ability of pre-selection OT1 thymocytes to induce TCR signal transduction +/- 

CD3δ in response to positive selection pMHC ligands.  To maximize sensitivity to small 

signaling changes (by minimizing multiple-hypothesis statistical correction) in the severely low-

TCR expressing OT1.RAG20.β2m0.CD3δ0 thymocytes, these PiSCES experiments were limited to 

a small collection of strongly inducible protein pairs. We found that 5-minute stimulation of pre-

selection OT1.RAG20.β2m0 thymocytes with Q7 peptide presented by C1R.Kb APCs induced 

multiple copies of TCR/CD3 to join shared complexes, an expected consequence of receptor 

crosslinking (visualized as a loop around TCR/CD3, Fig. 6I). TCR also appeared in shared 

complexes with LAT, GADS, PI3K, Cbl-b, and others. By comparison, stimulation of pre-

selection OT1.RAG20.β2m0.CD3δ0 thymocytes with OVA peptide also induced those protein 

complexes (Fig. 6J); however, the network signature of CD3δ0 cells responding to OVA was 

mostly weaker, with fewer statistically significant hits (statistically non-significant comparator 

trends shown with dashed lines, Fig. 6J), with most heteroprotein associations being of weaker 

intensity than those seen for OT1.RAG20.β2m0 thymocytes responding to Q7 peptide. We 

conclude that the OT1 TCR was capable of transducing a positive selection signal +/- CD3δ, 

although when expression of both TCR (CD3δ0) and MHC (β2m0) were severely low in FTOC, 

positive selection required a strong pMHC ligand. 

 

Diverse αβ  TCR repertoire in peripheral CD3δ0 T cells 

Perhaps CD3δ supplied a qualitative positive selection-specific signal that, as a general rule, was 

required by the vast majority of T cell clones; in that case, in the absence of CD3δ, residual 

positive selection could be explained if it were due to a few clones with rare, unusual CD3δ-

independent TCRs. If correct, then peripheral, polyclonal CD3δ0 T cells should display a 

relatively limited TCR repertoire. Alternatively, if the main role of CD3δ was to quantitatively 



enhance positive selection signals, then peripheral CD3δ0 T cells might display a diverse TCR 

repertoire even though there were few T cells, because selection signals from all clones would be 

inhibited equally. To distinguish between these two disparate predictions, we utilized a mouse 

TCRβ repertoire diversity matrix system in which real-time PCRs were performed for 252 fully 

nested BV-BJ combinations of 21 BV primers and 12 BJ primers (49). This system allowed 

repertoire diversity of T cell populations to be assessed at a substantially deeper level than 

standard V-gene spectratyping, by comprehensively assessing all possible V-J combinations. We 

found that specific TCRβ transcripts tended to be decreased in quantity from CD3δ0 relative to 

B6, as expected due to their decreased peripheral T cell number in the mutant, but strikingly, 

both CD3δ0 and B6 were capable of expressing highly diverse repertoires (Fig. 7A-B; Fig. 13). 

Importantly, there was no evidence of a limited number of BV-BJ combinations in CD3δ0. The 

diversities of the 252 BV:BJ combinations were estimated by scaled Shannon entropy under 

conditions where B6 input RNA was decreased relative to CD3δ0 RNA so that samples would 

provide comparable T cell representation despite the lower T cell number in mutant spleens. 

Scaled Shannon entropy is a value whose range is 0-1, where 0 represents minimum diversity 

exhibited by a monoclonal T cell population, and 1 represents maximal repertoire diversity when 

all BV:BJ combinations are expressed equally (49). Entropy values for two B6 mice were 0.74 

and 0.64, while those of two CD3δ0 mice were in a similar range, 0.67 and 0.68, indicating that 

the two genotypes were both capable of generating a diverse TCRβ repertoire in the periphery.  

 

Because it is the TCRα subunit that shares a positive selection signaling axis with CD3δ (33, 

34), we also assessed peripheral TCRα diversity with a spectratype survey of 16 Vα genes using 

previously published primers and methods (50, 51), and observed similar expression patterns 

between CD3δ0 and B6 genotypes (Fig. 7C). We conclude that positive selection in the absence 

of CD3δ occurs for a population of T cells expressing substantial repertoire diversity with usage 



of numerous TCRα and TCRβ genes. These data do not provide evidence that CD3δ supplies a 

qualitatively distinctive signal that would be required as a general rule for positive selection.  

Instead, it appears that diverse TCRs can signal positive selection without CD3δ, but clones 

expressing these TCRs have a poor success rate, implying that the role of CD3δ is to 

quantitatively enhance positive selection to maximize the generation of peripheral T cells.  

 

Immune function of αβ CD3δ0 T cells 

To test the function of the diverse MHC-dependent αβ T cell pool that was positively selected in 

CD3δ0 mice, they were challenged with two infections known to require αβ T cells for survival. 

These were (i) Pneumocystis fungal pulmonary infection causing pneumonia (PCP), an infection 

that is fatal in CD4-depleted hosts such as AIDS patients (52), and (ii) Theiler’s Murine 

Encephalomyelitis Virus (TMEV), an infection whose clearance in mice normally requires CD4 

and CD8 T cells to prevent acute encephalitis and paralysis (53). 

 

Mice from the following genotypes were infected with PCP:  B6, MHC II0.β2m0 (MHC-

deficient), CD3ε0ζ0 (T cell and TCR/CD3-deficient, lacking expression of all four CD3 genes 

(54)), and CD3δ0. Both B6 and CD3δ0 genotypes were resistant to PCP with 100% survival, 

whereas MHC-deficient and other T cell-deficient mice were susceptible and succumbed (Fig. 

8A), with accompanying symptoms of pneumonia including weight loss (Fig. 8B), increased 

lung weight, indicative of fluid accumulation (Fig. 8C), and decreased blood oxygen saturation, 

indicating loss of respiratory function (Figure 8D). To test the hypothesis that CD4 T cells were 

required for PCP resistance in CD3δ0 mice, we compared PCP infection of CD3δ0 mice that were 

depleted of CD4 T cells through weekly injections of mAb GK1.5 anti-CD4, with CD3δ0 mice 

that had received control PBS injections.  We found that CD4-depleted CD3δ0 mice were 



susceptible and succumbed to PCP infection, similar to other susceptible genotypes, including T 

cell-deficient CD3ε0ζ0 mice, and OT1.RAG20 mice expressing a single PCP-irrelevant transgenic 

TCR, while PBS-injected CD3δ0 mice and B6 mice were resistant with 100% survival (Fig. S14). 

Antigen presentation was required for PCP resistance, because MHC II0.β2m0 and MHC 

II0.β2m0.CD3δ0 mice were susceptible and succumbed with symptoms of pneumonia (Fig. 8E-H). 

We conclude that the low numbers of positively selected CD4 T cells in CD3δ0 mice were able to 

express MHC-dependent immune activity. 

 

To assess CD8 T cell function, mice from the following genotypes were infected with TMEV:  

B6, CD3δ0, CD3ε0ζ0 (T cell-deficient), and OT1.RAG20 (containing a single TMEV-irrelevant 

TCR transgenic CD8 T cell population). Both B6 and CD3δ0 genotypes were resistant to TMEV 

infection with 100% survival, whereas T cell-deficient and OT1.RAG20 mice were susceptible, 

suffering functional deficit that was measured by loss of RotaRod performance (Fig. 9A-B). To 

determine which T cell subsets contributed to protection from TMEV of B6 and CD3δ0 mice, we 

compared infection of mice that were either (i) depleted of CD4 T cells through weekly 

injections of mAb GK1.5 anti-CD4, (ii) depleted of CD8 T cells through weekly injections of 

mAb 2.43 anti-CD8, (iii) both CD4 and CD8 T cell-depleted, or (iv) non-depleted, control PBS-

injected.  Whereas B6 mice only succumbed upon depletion of both CD4 and CD8 T cells, as 

expected (53), CD3δ0 mice succumbed upon depletion of either subset (Fig. 9C-H). These data 

suggest that CD3δ0 mice are immune compromised relative to wild-type B6 mice, as expected, 

but the low-count peripheral CD3δ0 CD4 and CD8 T cells participate in protective immune 

activity against infection.  

 

Discussion 



Life versus death represents a qualitative difference, which creates the expectation that a 

qualitative difference in signal transduction must specify these outcomes when they are 

programmed cellular responses. We have presented the possibility of qualitative, quantitative, or 

kinetic differences in early TCR-proximal network PPI signaling activity in a framework that 

considers them to be opposing models to be distinguished from each other. Historically, that 

original framework was useful and warranted, since the signals that decide thymic selection have 

been proposed to originate from TCR-proximal signaling elements with qualitative properties, 

including special subunits such as CD3δ (31, 32), motifs such as TCR αCPM (33, 34), patterns 

of immunoreceptor tyrosine-based activation motif (ITAM) phosphorylation (10, 55-58), and 

other possible candidates that might specify selection outcome (59, 60). The present data suggest 

that a major role in selection for players such as these may be to affect the initial quantity of 

signal transmitted through the proximal TCR signalosome, rather than to create unique 

combinations of TCR-proximal protein complex intermediates during the earliest selection 

signals. The data are compatible with a quantitative signaling model that has been proposed (61, 

62), where a single TCR signaling signature may be active at sub-threshold level in the basal 

state, and different signals are transduced as (i) CD3 subunit multiplicity and activity mostly 

provide quantitative information of ligand binding strength, (ii) the balance of signaling activity 

is perturbed away from the basal state, and (iii) a series of quantitative thresholds demarcates 

separate functional instructions.  

 

Interestingly, the present data imply that early signal translation between two kinetic parameters 

(initially TCR engagement, later Ras-Raf-ERK activity) is mediated by this quantitative network 

parameter that specifies positive versus negative selection based on the accumulation or 

frequency of a single-series (and single-kinetic) network PPI signature that propagates through 

the early proximal TCR signalosome upon productive engagement by a pMHC ligand. This 

hypothesis was generated by PiSCES analysis, which identifies signatures of targeted sub-



networks, but does not comprehensively assess all proteins, lipids, and other molecules that 

contribute to the signal (63). Therefore, it was formally possible that key qualitatively distinct 

molecular species that instruct selection early were being missed, if such key species did not 

affect the sub-network being measured. We reasoned that the only way to determine whether the 

entire signaling network responded according to the quantitative principle predicted by PiSCES 

was to test that principle functionally. Upon doing so, we identified a specific, low concentration 

of OVA, a classic negative-selection peptide in the OT1 system, which induced positive 

selection of conventional T cells. This principle was corroborated a second way, when reducing 

TCR signaling strength in the context of CD3δ0 and β2m0 allowed high-dose OVA to induce 

positive selection of conventional OT1 T cells. These data support the conclusion that a 

predominantly quantitative network signaling mechanism is sufficient to provide an early 

instruction that culminates in determination of thymic selection outcome.  

 

Previously, there was already definitive data showing that dilution of OVA peptide did not 

induce positive selection of conventional OT1 T cells across 10-fold dilutions in FTOC (27, 35), 

and this supported the idea that signaling quantity was insufficient to explain the difference 

between positive and negative selection. In the present work, the specific dilution of OVA 

peptide that induced positive selection of conventional αβ T cells in FTOC falls almost midway 

between the two closest log-dilutions that were previously published. Thus, the present data are 

compatible with the previous conclusion that peptide affinity is the master driver of selection 

outcome across a wide range of concentrations. But the new lesson learned is that a key early 

proximal network PPI signaling parameter that is controlled by peptide affinity is quantitative in 

nature.  

 



CD3δ plays a critical role in positive selection, and in absence of this subunit a poorly populated 

peripheral αβ T cell pool is generated that results in immune compromise in mice. That CD3δ 

might provide a qualitative subunit-specific distinctive signal required for positive selection was 

an attractive possibility for many reasons, including the fact that if one wished to control positive 

selection and central tolerance pharmacologically, pathways could be more easily targeted with 

specificity if qualitatively distinctive intermediates were involved. Our data began to diverge 

from this possibility when it was found that the few αβ T cells known to be present in CD3δ0 

mice (31) did not represent a secondary “leakiness” effect in the face of a strong developmental 

block, but rather these cells were products of residual signaling- and MHC-dependent positive 

selection (Figs. 5-6). Strikingly, CD3δ0 and wild-type B6 mice both exhibited high diversity in 

rearranged TCRβ and TCRα genes in the peripheral T cell pool (Fig. 7), and those T cells 

participated actively in CD4-dependent and CD8-dependent T cell responses to infection (Figs. 

8-9). These data are most easily explained if, as a general rule, CD3δ does not provide a subunit-

specific qualitatively distinctive signal required for positive selection.  

 

The model most consistent with the data is that CD3δ quantitatively boosts the positive selection 

signal to increase the number of T cells generated from a diverse repertoire of candidate 

αβ TCR-bearing clones (64). This function could be partially due to the fact that the presence of 

CD3δ improves TCR/CD3 folding and increases surface expression, which may contribute to 

quantitatively increasing signals. This possibility is consistent with the previously reported 

observation that positive selection was rescued in CD3δ0 mice by a CD3δ-mutant transgene that 

restored surface TCR/CD3 expression levels but carried a non-functional ITAM (32). Under a 

qualitative signaling model, the non-ITAM CD3δ motif that might provide the specificity for 

positive selection remained mysterious, but in a quantitative model, provision by CD3δ of 



optimal native TCR/CD3 assembly and expression could play a major role. Furthermore, models 

in which CD3δ acts in concert with αCPM and CD4 or CD8 coreceptors to mediate positive 

selection (65) are compatible with the present proposal that a main outcome of these interactions 

is to boost signal intensity. We conclude that the main functional signal for positive selection 

contributed by CD3δ is not qualitatively distinctive, but rather involves quantitative 

amplification to maximize the number of αβ T cells that populate the peripheral immune system.   

 

In light of the present data, we propose that the framework of the original question should be 

restructured. Quantitative and kinetic differences in PPI signaling networks are not mutually 

exclusive of, nor incompatible with, a qualitative signaling model, if we allow a broader 

definition. To express unique combinatorial patterns of protein associations is only one way to 

transmit a qualitatively distinctive signal, and the present study did not find evidence for this in 

the early proximal TCR signalosome in the context of selection. Instead, this work emphasizes 

that quantitative and kinetic differences are both subtypes of qualitative differences, which can 

contribute to molecular logic circuits that specify instructive signals (66). Positive versus 

negative selection appears to represent an example of this network principle, which programs a 

dichotomous cell-fate decision that is fundamental to generating a centrally tolerant adaptive T 

lymphocyte population. 

 

Materials & Methods 
 
Experimental design 

Sample size was determined by precedent observations and sample availability. All cellular 

flow cytometry was performed at least in duplicate in each experiment, which allowed for 

calculation of central values, proportions, SD, and SEM. For in vitro signaling experiments, 



inter-experimental n was decided to be at least 3 a priori, which was previously determined to be 

optimal for multiplex PiSCES experiments (40). For FTOC experiments, because the number of 

pregnancies and fetuses could not be perfectly controlled, the final decision on the number of 

cultures dedicated to any one condition occurred on the day of fetal harvest, at which time all 

fetuses judged to be macroscopically healthy were used in experiments. For experiments that 

assessed survival of infection, the minimum was three mice per experimental group, a decision 

that was based on our own unpublished data, as follows. Previous to performing the controlled 

infection experiments reported here, we observed that when natural, uncontrolled PCP infection 

killed many immune compromised mice in our colonies in our animal facility, CD3δ0 mice were 

spared. We co-housed CD3δ0 mice that had survived natural infection with new mice from 

susceptible strains such as CD3ε0ζ0, and found that susceptible-genotype cage mates died of PCP. 

These preliminary experiments caused us to hypothesize that 100% of CD3δ0 mice would survive 

controlled PCP infection, such that setting experiment longitude to at least 150 days (for PCP 

infection) would allow statistical significance to be achieved with at least 3 mice per genotype.  

We carried that choice of minimum mouse n per experiment to TMEV infection, where 100% 

survival of CD3δ0 mice would be statistically significant if experiments lasted at least 30 days. 

We routinely prepared more mice per experimental group when age/sex matching and cost 

permitted.  

Rules for stopping data collection. All assay endpoints were decided in advance, except in the 

case of infection experiments. When CD3δ0 mice survived infections, we allowed experiments to 

continue longer than is common practice for controlled PCP and TMEV acute infections, in case 

the CD3δ0 mice might succumb if given more time, although this outcome was not observed.  

Inclusion and exclusion criteria. All criteria were established prospectively. All data were 

included in the analyses, with one exception in in vivo infection experiments. If an immune 



compromised mouse died but cause of death was not experimental infection, that mouse was 

excluded from analysis. Examples of excluded mice include any that died within 3 hours of 

TMEV injection, or for PCP infection, mice that died outside the infection time course indicated 

by the controls and without symptoms of pneumonia. There was no identification or exclusion of 

outliers from any data set. 

Research objectives. Hypotheses as stated in the text were pre-specified before performing all 

experiments, with one exception. For TCR repertoire analysis, although the overall hypothesis 

was pre-specified, we did not decide how to present the analysis of the hypothesis until after data 

was acquired and underwent initial analysis. This is because we realized that we preferred not to 

analyze averages from the data of all mice tested (which would inflate Shannon entropy, and 

would appear to support our final interpretation, a point that is discussed in Supplementary 

Materials & Methods). 

Research subjects. Mice of B6 background were used in experiments. Transgenic and knockout 

mice are specified in the corresponding experiments and in the subsection “Mice” below. This 

study used controlled laboratory experiments, with specific details outlined in the corresponding 

sections of the text, in bibliographic references, and in the following sections. Individual mice 

were chosen without subjective or objective pre-characterization. There was no blinding step 

during any experiments. 

 

Cell lines   

JRT3-T3.5 (ATCC TIB-153) cells were purchased from ATCC. The LC13 system, including 

LC13ab.huCD8ab.JRT3 cells and C1R.HLA-B0801 (C1R.B08) antigen presenting cells (APC) 

were described previously (41-43, 67, 68). We generated OT1ab.muCD8ab.JRT3 cells using 

retroviral transduction of previously published OT1 sequences (69) that were provided by Dario 

Vignali (then at St. Jude Children’s Research Hospital, Memphis, TN), and mouse CD8 genes 



isolated from cDNA. All cells were grown in RPMI media (Life Technologies) with 10% 

Cosmic Calf serum (Hyclone), 2 mM L-glutamine (Life Technologies), and 100 U/mL 

Penicillin/100 µg/mL Streptomycin (Life Technologies), and maintained in a 37ºC incubator 

with 5% CO2.  

 

Mice  

All mice were B6 background. CD3δ0 mice originated from Fox Chase Cancer Center. CD3ε0ζ0 

mice, which lack expression of all four CD3 genes (54), were originally provided by Dario and 

Kate Vignali (then at St. Jude Children’s Research Hospital, Memphis, TN) with permission 

from Cox Terhorst (Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 

MA). β2m0 mice were obtained from The Jackson Laboratory, as were MHC II0 in which all 

conventional MHC class II genes are deleted (70). All genetically engineered mouse strains were 

bred and maintained at Mayo Clinic and University of Missouri-Columbia, and all animals were 

housed in specific pathogen-free facilities. In general, mice were used at 6-12 weeks of age, and 

within experiments were age and sex matched between experimental groups. Individual mice 

within 15 days of age were accepted as age-matched. Mice used in infection experiments were 

age- and sex-matched between experimental groups, and began experiments at 8-16 weeks of 

age, except for OT1.RAG20 mice, which served as infection-susceptible controls without age- 

and sex-matching. All mouse care and experimentation adhered to institutional guidelines and 

the NIH Guide for the Care and Use of Laboratory Animals. 

 

Antibodies and staining reagents 

For cellular flow cytometry, mAbs included:  Thy1.2/CD90 (30-H12, Biolegend), TCRβ (H57, 

eBioscience), Vα2 (B20.1, BD), CD3ε (145-2C11, Biolegend), CD8α (53.6.7, Biolegend), 



CD8β (53-5.8, Biolegend), CD4 (GK1.5, BD Biosciences), CD69 (H1.2F3, Biolegend), CD24 

(M1/69, Biolegend), CD5 (53-7.3, Biolegend). Other binding reagents included:  Peanut 

Agglutinin (PNA)-FITC (Sigma-Aldrich), Streptavidin-PE and -APC-Cy7 (Biolegend), H-2Kb-

SIINFEKL (OVA) tetramer, and Thymic Leukemia Antigen (TLA) tetramers (NIH tetramer core 

facility). For multiplex IP and PiSCES analysis, anti-mouse Abs are listed in Table S1, while a 

similar table for anti-human Abs used in conjunction with Jurkat and JRT3 cell lines was 

previously published (40).  

 

Organ processing and flow cytometry 

Whole thymocyte or splenocyte single-cell suspensions were prepared for analysis as previously 

described (71). Cells were analyzed by flow cytometry using either BD Biosciences LSR II or 

Accuri C6 instruments. 

 

Cell stimulation and lysis  

To prepare APCs for T cell stimulation, C1R cells were incubated with specific peptides for 2 

hours in serum-free RPMI at 37ºC. For the LC13 system, C1R.B08 cells were used as APCs, 

with agonist peptide (FLRGRAYGL), antagonist peptide (FLRGRFYGL), or no peptide. For 

OT1 systems, C1R.Kb cells were used as APCs, with peptides FARL (SSIEFARL), Q7 

(SIINFEQL), or OVA (SIINFEKL). Peptide-loaded APCs were washed once in PBS, then fixed 

by re-suspension in 0.05% gluteraldehyde in PBS, as previously described (34). After 30 

seconds, fixation was halted by the addition of 200 mM glycine/PBS, and fixed cells were 

washed three times in PBS. Responding T cells included LC13ab.huCD8ab.JRT3, 

OT1ab.muCD8ab.JRT3, or primary pre-selection DP thymocytes of OT1.β2m0.RAG20 or 

OT1.β2m0.RAG20.CD3δ0 genotypes. JRT3-based cell lines were used after having been placed in 



fresh media at 0.35 x 106 per mL in tissue culture the previous evening. The day of stimulation, 

15 x 106 T cells were resuspended in 200 µL ice-cold PBS, mixed with 20 x 106 APCs in an equal 

volume of ice-cold PBS, and centrifuged for 5 minutes at 300g at 4ºC to facilitate cell 

conjugation. Supernatant was discarded, and stimulation commenced as the T cell/APC pellet 

was placed in a 37ºC water bath for the indicated amount of time before being flash-frozen in 

liquid nitrogen. Control unstimulated T cells were mixed with non-loaded (LC13 system), or 

null-peptide-loaded (OT1 system) fixed APCs in parallel. Frozen cell pellets were either lysed 

immediately or stored briefly at -80ºC before being lysed in lysis buffer (150 mM NaCl, 50 mM 

Tris pH 7.4, 1% Digitonin (High Purity, Millipore), 1X Halt protease/phosphatase inhibitors 

(Pierce), 10 mM NaF, 2 mM Sodium Orthovanadate, 10 mM Iodoacetamide). 

 

Multiplex capture and probe of protein complexes 

In the TCR signalosome, complete analysis involved 20 signaling proteins that were targeted in a 

minimum 20 x 20 matrix of capture/probe antibodies (Tab. S1). This generated a minimum of 

400 protein co-association measurements, including 210 total unique protein co-associations:  

[((20 capture X 20 probe) – 20 homotypic combinations) / 2] + 20 homotypic combinations = 

210. In some experiments where noted, only 8 proteins were targeted, with commensurate 

reduction in the matrix. Some experiments included capture/probe combinations targeting 

additional proteins beyond the 20 described in Tab. S1, but their data are not visualized because 

they were not assessed in all experiments. Procedures followed published protocols (40). Briefly, 

a master mix containing equal numbers of each antibody-coupled Luminex bead class was 

prepared and distributed into post-nuclear lysate samples in duplicate. Protein complexes were 

immunoprecipitated from samples overnight, washed twice, and distributed into as many wells of 

a 96-well plate as there were probes. Probe antibodies were added and incubated for 1 hour, with 

gentle agitation at 500 RPM in a cold room, followed by three more washes. Biotinylated probe 

antibody wells were then incubated 30 minutes with streptavidin-PE. After three final washes, 



microbeads were resuspended in 125 µL and fluorescence data were acquired on a Bioplex-200 

instrument that was calibrated according to manufacturer recommendations, and run on the “high 

RP target” setting. Data files were exported in both Microsoft Excel and XML formats for 

further processing. 

 

Fetal Thymic Organ Culture (FTOC) 

Timed matings were performed as previously described (72). Briefly, mouse cages were divided 

in half using an acrylic divider, with adequate food and water available on each side. One male 

and one female resided on each side of a divided cage for ~72 hours, after which the divider was 

removed in late afternoon to make mating possible overnight. Fetal thymic organ culture was 

performed as previously described (35). On embryonic day (e)15, carbon dioxide was used to 

euthanize mothers and fetal thymi were harvested. Each fetal thymic lobe was placed on sterile 

mixed cellulose ester gridded filter paper (Millipore) on top of a Gelfoam sterile sponge (Pfizer), 

in Hyclone CCM1 Serum Free media (GE Life Sciences) in one well of a 48- or 96-well plate. 

Some cultures were supplemented with exogenous human β2m (5 µg/mL, Sigma) and peptides 

FARL, Q7, or OVA at the indicated concentrations. Tissue culture occurred at 37ºC for seven 

days prior to harvest and assessment of thymic selection by flow cytometry. 

 

TCR Repertoire Analysis 

TCRα spectratype analysis was performed with primer sequences and protocols as previously 

described in detail (50, 51). The diversity of TCRβ repertoires was evaluated by a previously 

described matrix that assesses all possible BV-BJ combinations (49). Briefly, TCRβ transcripts 

were reverse-transcribed from total RNA with a biotinylated BC region reverse primer and 



amplified with pools of BV-specific forward primers. The resulting amplicons were mixed with 

streptavidin-coated magnetic beads to enrich products that included the biotinylated BC region 

primer.  The bead-enriched products were delivered to microtiter wells for amplification in real-

time PCRs using 252 fully nested BV-BJ combinations of 21 BV primers and 12 BJ primers (see 

Supplementary Materials & Methods). 

 

Pneumocystis murina infection causing pneumonia (PCP) 

Mice were fed mouse chow containing Trimethoprim Sulfamethoxazone for 3 weeks to clear 

possible previous infections (73), then allowed two weeks to clear the medication (74). 

Throughout experimentation, mice were maintained on 500 mg/L antibiotic regimen in drinking 

water, alternating monthly between cephalexin and amoxicillin. Mice were intranasally infected 

with 0.5 x 106 Pneumocystis murina cysts (ATCC) intranasally on day 0 and day 7 and monitored 

for 20% weight loss and subjective moribund characteristics resulting from Pneumocystis 

pneumonia. Prior to sacrifice, blood oxygen saturation was measured to indicate compromise of 

pulmonary function and active pneumonia via the MouseOx System (Starr Life Sciences, 

Oakmont, PA). Upon sacrifice via carbon dioxide asphyxiation, lungs were weighed to assess 

general fluid influx into lung parenchyma. Mice that did not reach a terminal endpoint were 

allowed to live a minimum of 150 days. Depletion of CD4 T cells was accomplished by i.p. 

injection of 0.3 mg GK1.5 mAb (BioXcell, New Lebanon, NH; or PBS control) on days -4 and -

1 prior to infection, and weekly thereafter. Depletion status was monitored by flow cytometric 

analysis of blood periodically throughout the experiment. 

 

Theiler’s Murine Encephalomyelitis Virus (TMEV) infection 

Age- and sex-matched mice were weighed and trained on a RotaRod apparatus daily for 3 days 

before intracranial infection with two million plaque forming units of TMEV (Daniel’s strain), as 



previously described (75). Mice were regularly monitored for 20% weight loss, moribund 

characteristics, and declining neurological function via decreased RotaRod performance. 

Depletion of CD4 and/or CD8 T cells was accomplished by i.p. injection of 0.3 mg of each mAb 

(GK1.5 anti-CD4, 2.43 anti-CD8, BioXcell, New Lebanon, NH; or PBS control) on days -3 and -

1 prior to infection, and weekly thereafter. Depletion status was monitored by flow cytometry 

analysis of blood periodically throughout the experiment. 

 

PiSCES analysis 

PiSCES analysis was previously described in detail (40). XML output files were parsed to 

acquire the raw data for use in MATLAB, R statistical package, Cytoscape, and other 

analysis/visualization platforms. For each well from an experiment’s data acquisition plate, data 

were processed in order to (i) eliminate doublets based on the doublet discriminator intensity 

(>5,000 & <25,000 arbitrary units, Bioplex-200), (ii) identify specific bead classes within the 

bead regions used, and (iii) pair individual bead PE fluorescence measurements with their 

corresponding bead region. This processing generated a distribution of PE intensity values for 

each pairwise protein PiSCES measurement. Adaptive non-parametric with empirical cutoff 

(ANC) analysis was used as the primary method to determine statistical significance of PiSCES 

data, as previously described (40). Briefly, differences in specific protein-pair PiSCES 

measurements were considered hits if they were consistently identified as significant in 100% of 

experiments, with the minimum number of experiments per experimental condition set as three. 

An overall type I error of 0.05 was set as the cutoff for statistical significance, which 

incorporated a Bonferroni adjustment for multiple hypotheses. Principal component analysis 

(PCA) was performed using the built-in function in MATLAB, using as input variables the log2 

median fluorescence intensity (MFI) of each PiSCES measurements performed, where each 

stimulation condition in one experiment constituted an observation. PiSCES analysis by PCA 

used complete datasets from all experiments. In contrast, node-edge diagrams only visualized 



subsets of data, and were generated using the publicly free open network resource, Cytoscape. 

For protein pairs that had multiple measurements targeting different epitope combinations, the 

measurement with the greatest mean-log2 fold-change was selected for node-edge diagram 

visualizations. 

 

Other statistical analyses 

For kinetic analysis, the mean absolute value log2 fold change across each time point measured 

and across both stimulation conditions (OVA/FARL and Q7/FARL, or RAY/Null and RFY/Null) 

were used to select the top 15-20 protein pair hits. K-means clustering was performed in 

MATLAB using Squared Euclidean as the distance measurement on log2 fold changes expressed 

as % max change across the kinetic. The cluster number was selected to maximize the number of 

distinct kinetic patterns for a given experimental system. Clustering was performed on the 

negative selection ligand or agonist stimulation and then data from the positive selection ligand 

or antagonist stimulation were mapped onto these clusters to compare the overall signaling 

kinetics. Statistical analysis of FTOC data was performed using two-tailed Student’s t-tests with 

GraphPad Prism software. Paired data originated from single fetal thymi whose two lobes were 

separated for culture in OVA peptide or matched-dose FARL peptide. Other statistical analyses 

between groups were completed using unpaired, one- or two-tailed Student’s t-tests. Survival 

analysis was completed using the Log-Rank (Mantel-Cox) statistical test. Statistical significance 

was defined as P-value < 0.05 α-cutoff. 
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Figure Legends 

Figure 1. PiSCES signatures reveal differential qualitative and quantitative TCR-proximal 

signaling activities. A) PiSCES signature of LC13ab.huCD8ab.JRT3 cells stimulated with 

agonist peptide (FLRGRAYGL) for 5-minutes (mean-log2 fold-change, stimulated/basal; dotted 

lines indicate trend of non-significant protein pairs that appear as hits for data comparisons 

shown ahead). B) Comparison of mean-log2 fold-changes in abundance of protein pair hits 

induced by agonist pMHC in LC13ab.huCD8ab.JRT3 cells versus SEE superantigen in Jurkat 

cells.  Statistically significant hits that occurred in both stimuli are black, hits in LC13 system 

only are gray, and hits in SEE-Jurkat system are teal. C) Sub-network (from panel B, teal points 

within the teal dashed box) visualized as the difference in mean-log2 fold-change in SEE versus 

LC13. D) Surface staining with anti-CD28 or IgG negative control for Jurkat versus 

LC13ab.huCD8ab.JRT3 cells. E) PiSCES signature of LC13ab.huCD8ab.JRT3 cells stimulated 

with antagonist peptide (FLRGRFYGL) for 5-minutes (mean-log2 fold-change, stimulated/basal; 



dotted lines indicate trend of non-significant protein pairs). F) Comparison of mean-log2 fold-

changes in abundance of protein pair hits induced by LC13 agonist versus antagonist stimulation.  

Compared to B, note lack of teal “antagonist-only” hits. G) PCA of four independent 

experiments shows separation of 5-minute-agonist versus antagonist PiSCES signatures.   

 

  



 

Figure 2. Predominant quantitative difference in PiSCES signatures comparing OT1 

thymocyte response to positive and negative selection pMHC ligands. PiSCES signature of 

pre-selection OT1.β2m0.RAG20 thymocytes stimulated for 1 minute with A) a negative selection 

peptide, OVA (mean-log2 fold-change, OVA/FARL conditions), or B) a positive selection 

peptide, Q7 (mean-log2 fold-change, Q7/FARL conditions). C) PiSCES signature when response 

to OVA is directly normalized to the response to Q7 (mean-log2 fold-change, OVA/Q7 

conditions). Dotted lines in (A-C) indicate trend of non-significant protein pairs that appear as 

hits in any of the three experimental comparisons performed. D) Comparison of mean-log2 fold-

changes in abundance of protein pair hits induced by OVA versus Q7 in pre-selection 

OT1.β2m0.RAG20 thymocytes.  Data points are displayed for hits that were statistically 

significant in any of the OVA versus FARL, Q7 versus FARL, or OVA versus Q7 comparisons. 

A separate trajectory of orange points (Y-axis value > X-axis value) that would clearly indicate 



positive selection-specific protein complexes is not observed. E) PCA of three independent 

experiments shows separation of 1-minute OVA/FARL versus Q7/FARL PiSCES signatures.   

  



 

Figure 3. Kinetics of PiSCES signatures for positive and negative selection stimuli. PiSCES 

signatures of pre-selection OT1.β2m0.RAG20 thymocytes stimulated for 5 minutes (A-D) or 15 

minutes (E-H) with A,E) negative selection peptide, OVA (mean-log2 fold-change, OVA/FARL 

conditions; dotted lines indicate trend of non-significant protein pairs across a given time point), 

or B,F) positive selection peptide, Q7 (mean-log2 fold-change, Q7/FARL conditions). C,G) 

PiSCES signatures when response to OVA is directly normalized to the response to Q7 (mean-

log2 fold-change, OVA/Q7 conditions). D,H) Comparisons of mean-log2 fold-changes in 

abundance of protein pair hits induced by OVA versus Q7 in pre-selection OT1.β2m0.RAG20 

thymocytes.  Data points are displayed for hits that were statistically significant in any of the 

OVA versus FARL, Q7 versus FARL, or OVA versus Q7 comparisons. A separate trajectory of 

orange points (Y-axis value > X-axis value) that would clearly indicate positive selection-

specific protein complexes is not observed.  I,J) K-means clustering was performed using 



percent-maximum log2 fold changes to define three kinetic patterns observed among the top 15 

hits in response to OVA stimulation, categorized in groups 1-3. I) A kinetic heat map of the log2 

fold changes is shown for these hits defined by the OVA stimulation condition. The matching 

data points in response to Q7 stimulation were observed to display similar kinetic behavior, but 

lower intensity fold-changes than those induced by OVA stimulation. J) K-means clustering data 

displayed as percent-maximum log2 fold change shows that the three kinetic behavior groups 

defined by response to OVA stimulation (top) also described the overall kinetic behavior of the 

same protein pairs in response to Q7 stimulation (bottom). K) With experimental n = 3 per time 

point, data across 1, 5, and 15 minute time points were used to generate a kinetic PCA matrix. 

Subjectively, it appears that data for response to OVA versus Q7 are distinguishable but 

relatively close to each other at each time point, with the time point of stimulation playing a 

major role in data placement in 3D analysis space, and OVA data appearing farther than Q7 data 

from a zero-stimulation point (*). 

  



 



Figure 4. PiSCES signature makes quantitative signaling prediction, which passes 

functional test in FTOC. (A-I) Fetal thymi of genotype OT1.RAG20.β2m0 were cultured for 

seven days in the presence of exogenous β2m and specific peptides at the stated concentrations. 

A) 10 µM FARL peptide loads with high affinity into H-2Kb, but has no functional affinity for 

the OT1 TCR and represents the background no-selection condition. B) 10 µM Q7 induces 

positive selection of a substantial portion of CD8 SP cells. C) 10 µM OVA induces deletion and 

loss of CD8+ cells. (D,E) Lowering the dose of OVA peptide to 0.75 nM makes its PiSCES 

signature almost indistinguishable from that of 10 µM Q7. D) When PiSCES data resulting from 

5 minute stimulation of pre-selection OT1.β2m0.RAG20 thymocytes with 0.75 nM OVA was 

normalized to data from stimulation with 10 µM Q7, the signatures virtually cancel out, 

eliminating almost all hits (mean-log2 fold-change, OVA/Q7 comparison). E) PCA of PiSCES 

data in four experiments described in panel (D), where separation of the two stimulatory 

conditions is no longer observable. F) 0.75 nM OVA in FTOC induced positive selection of CD8 

SP cells (P = 0.031, paired, two-tailed Student’s t-test, where the two lobes of each of seven fetal 

thymi were separated for tissue culture, one lobe in 0.75 nM OVA and the paired lobe in 0.75 

nM FARL (low-dose FARL not shown, but similar to (A)). G) Gating the data in (F) on CD4(-) 

cells, the positively selected CD8 SP cells were largely conventional αβ T cells marked by 

CD8αβ expression. H) Raising OVA concentration to 3 nM still induced positive selection of 

CD8 SP cells. I) Gating the data in (H) on CD4(-) cells, many of the positively selected cells 

were seen to represent unconventional CD8α+ CD8β- cells. J) Live CD8αβ SP T cell counts 

from two independent experiments (including the experiment depicted in panels A-I), with each 

FTOC normalized to the mean of its corresponding FARL 0.75 nM condition and reported as 

fold-change. Number of thymus lobes per condition:  9 (FARL 0.75 nM), 9 (OVA 0.75 nM), 4 

(Q7 10 µM), 6 (OVA 3 nM). Unpaired, two-tailed Student’s t-test, P < 0.05. 



 

  



 

Figure 5. MHC-dependent signaling generates residual αβ  T cells in CD3δ0 mice. Live 

Thy1.2+ thymocytes were analyzed for CD4 and CD8 surface expression by flow cytometry 

from the following genotypes, (A) wild-type B6, (B) CD3δ0 (C) MHC II0.β2m0.CD3δ0, and 

counts were obtained for (D) CD4 SP cells, and (E) CD8 SP cells. The percentage of CD4+ 

CD8+ DP thymocytes that were Thy1.2+ and CD69+ was obtained from the same three 

genotypes (F-I). Live Thy1.2+ splenocytes were analyzed for CD4 and CD8 surface expression 

by flow cytometry from the same three genotypes (J-L), and live counts were calculated for (M) 

CD4 T cells, and (N) CD8 T cells. Mouse n for splenocyte analysis was 4 or 5 per genotype.  

Statistical significance was determined by unpaired, two-tailed t-test, P < 0.05. 



 

Figure 6. Positive selection signaling in the context of CD3δ0.  (A-G) Fetal thymi were 

cultured for seven days in the presence of exogenous β2m (5 µg/mL) and specific peptides. For 

OT1.RAG20.β2m0 thymocytes (A-C), (A) 20 µM FARL peptide loads with high affinity into H-

2Kb, but has no functional affinity for the OT1 TCR and represents the background no-selection 

condition. (B) 20 µM Q7 peptide can induce positive selection of a substantial portion of CD8 



SP cells. (C) 20 µM OVA peptide induces deletion and loss of CD8+ cells. For 

OT1.β2m0.RAG20.CD3δ0 thymocytes (D-G),  (D) 20 µM FARL peptide is inert, and (E) Q7 

peptide is inert, while (F) 20 µM OVA can induce positive selection of a substantial portion of 

CD8 SP cells (P < 0.0001, unpaired, two-tailed Student’s t-test comparing 12 thymic lobes 

cultured in 20 µM OVA or 20 µM FARL). (G) The positively selected CD8 SP cells from the 

OT1.β2m0.RAG20.CD3δ0 genotype were largely conventional αβ T cells as marked by CD8αβ 

expression. (H) Live CD8αβ SP T cell counts from two independent experiments (including the 

experiment depicted in panels A-G), with each FTOC normalized to the mean of its 

corresponding FARL 20 µM condition and reported as fold-change. Number of thymus lobes per 

condition:  7 (FARL 20 µM), 7 (OVA 20 µM). Unpaired, two-tailed Student’s t-test, P < 0.05. 

(I-J) PiSCES analysis of signaling proteins that join shared complexes in response to positive 

selection pMHC antigens. (I) Induction of protein pairs from OT1.RAG20.β2m0 thymocytes when 

assessing 5 minute stimulation with 20 µM Q7 peptide over negative-control FARL peptide. (J) 

Induction of protein pairs from OT1.β2m0.RAG20.CD3δ0 thymocytes when assessing 5 minute 

stimulation with 20 µM OVA peptide over negative-control FARL peptide. 

  



 

Figure 7. Diverse TCR repertoire in B6 and CD3δ0 mice. A qPCR matrix-based method was 

utilized to assess relative representation of all possible TCRβ V-J combinations expressed as 

transcripts in splenocytes from (A) B6 or (B) CD3δ0 mice. To approximate the maximum 

diversity generation potential per mouse for each genotype, the mean cycle threshold (Ct) value 

from the two mice with highest Shannon entropy for each genotype is displayed (top 2 of four 

B6 mice, top 2 of six CD3δ0 mice tested, when 15 ng total splenic RNA was used as input). As 



expected due to higher T cell representation among splenocytes, B6 transcripts for TCR were 

more abundant than was found in CD3δ0. Greater quantities of specific transcripts appear redder 

due to fewer PCR amplification cycles required to reach Ct, while lesser quantities of specific 

transcripts appear more yellow. All combinations that are displayed appeared at some positive 

level. (C) TCRα spectratyping was performed across a survey of V-genes expressed in 

splenocytes from B6 and CD3δ0 mice. Each panel displays data from a single mouse (not pooled, 

from two mice per genotype tested).    

  



 



Figure 8. T cells in CD3δ0 mice provide immune activity against PCP. (A-D) To assess the 

extent of T cell immune activity in a CD3δ0 setting, mice from the listed genotypes were infected 

with Pneumocystis murina (mouse n ≥ 4 per genotype). (A) Kaplan-Meier curves display 

survival defined by mice being sacrificed upon loss of 20% weight, where CD3δ0 was 

statistically different from susceptible genotypes (P = 0.004) by Log-Rank Mantel-Cox test. (B) 

Weight was monitored regularly throughout the experiment. (C) Upon sacrifice, lungs were 

harvested and weighed. (D) Just prior to sacrifice, blood oxygen saturation was measured for 

some of the mice. (E-H) To test the role of MHC in mediating protection from PCP in CD3δ0 

setting, mice from the listed genotypes were infected with PCP mouse n ≥ 4 per genotype). (E) 

Kaplan-Meier curves display survival defined by mice being sacrificed upon loss of 20% weight, 

where CD3δ0 and MHC II0.β2m0.CD3δ0 were statistically different (P = 0.014) by Log-Rank 

Mantel-Cox test. (F) Weight was monitored regularly throughout the experiment. (G) Upon 

sacrifice, lungs were harvested and weighed. (H) Just prior to sacrifice, blood oxygen saturation 

was measured for some of the mice.  Unless otherwise specified, P-values denote statistical 

significance using unpaired, two-tailed Student’s t-test, P < 0.05. 

  



 



Figure 9. T cells in CD3δ0 mice provide immune activity against TMEV. (A-B) To assess the 

extent of T cell immune activity in a CD3δ0 setting, mice from the listed genotypes were infected 

with TMEV (mouse n ≥ 4 for all genotypes, except n=3 for CD3ε0ζ0). (A) Kaplan-Meier curves 

display survival defined by mice being sacrificed upon immobilization due to functional deficit 

or loss of 20% weight, where CD3δ0 was statistically different from susceptible genotypes (P = 

0.010) by Log-Rank Mantel-Cox test. (B) Functional deficit was monitored frequently 

throughout the experiment by RotaRod performance, measured as the average time elapsed prior 

to falling off the apparatus in two trials. (C-H) To assess CD4 and CD8 T cell immune activity, 

B6 and CD3δ0 mice were either depleted of CD4 cells with GK1.5 anti-CD4 mAb injections, 

depleted of CD8 cells with 2.43 anti-CD8 mAb injections, depleted of both CD4 and CD8 cells, 

or were PBS-control injected as indicated, and were infected with TMEV (mouse n = 4 for all 

groups, except n=3 for CD3δ0+PBS). (C-D) Kaplan-Meier curves display survival defined by 

mice being sacrificed upon immobilization due to functional deficit or loss of 20% weight, where 

CD3δ0 + PBS was statistically different from any of the three subset-depleted conditions (P = 

0.008) by Log-Rank Mantel-Cox test. (E-F) Weight was monitored regularly throughout the 

experiment. (G-H) Functional deficit was monitored frequently throughout the experiment by 

RotaRod performance, measured as the average time elapsed prior to falling off the apparatus in 

two trials.  

 


