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Abstract 

Non-destructive testing methods have gained popularity as they become more widely available. Although there are several techniques that 
could be used for this purpose, this paper focuses on acoustic emission sensors for detecting surface fractures and the use of the Bees 
Algorithm, a swarm-based technique, for optimizing the number of sensors required to reliably detect surface fractures. The paper describes the 
approach that has been used in this study where the dimension of the surface is specified by the user. The results show that, in theory and 
through simulation, that the Bees Algorithm is capable of determining the minimum number of sensors needed to locate the surface fracture 
with an acceptable level of accuracy. The method described could be used for the purpose of optimization in other engineering as well as non-
engineering applications. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing 
Engineering. 
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1. Introduction 

The concept of Structural Health Monitoring (SHM) lies 
behind the need to ensure reliability and smooth operation of a 
product. In some cases the price for abnormalities in the 
operation of the product is just monetary. In other cases 
however, the price could be human lives, injuries, 
environmental damage, or other examples of socially 
unacceptable losses. In SHM, there are various methods for 
real-time damage detection and evaluation. Many forms of 
alarms are invented so that we, the operators/the users/the 
passengers/the by-standers can be alerted to the condition of 
an engineered system that we are dealing with. Usually SHM 
is achieved by placing various forms of sensors on the product 
of interest. These sensors work in one way or another in order 
to provide us with output information regarding the current 
real-time state of that product. These sensors work under the 
principle of necessity to achieve full coverage of the 
part/product, and to ensure reliable detection of any faults 
occurring in real-time. The engineer is the person who makes 

sure that these and other additional principles are satisfied in 
order to achieve reliable SHM. This is a general description of 
the aims of SHM. It fits however to the specific case with 
which this paper is dealing with, i.e., the technique of 
Acoustic Emission [1]. The optimization of parameters 
involved in acoustic emission and in SHM in general is a task 
that is performed on site by the human inspector. There is 
however a very big dependence on the inspector’s skill, 
expertise and knowledge in order to achieve the best results. 
Therefore, it is attempted nowadays by many researchers and 
optimizers to create computational algorithms that employ 
various mathematical, heuristic as well as artificial 
intelligence techniques in order to bring standardization and 
total optimization to the processes like Acoustic Emission, and 
obtain thus the best results of SHM every time [2, 3, 4, 5]. 
This paper aims to thoroughly investigate the feasibility of 
attempting to tackle the optimization problem of acoustic 
emission sensor placement and sensor number minimization 
with the use of various standard algorithms as well as with the 
artificial intelligence and nature inspired Bees Algorithm. The 
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paper is organized as follows. The basic Acoustic Emission 
algorithm is described in section 2. The problem of finding the 
optimum position and number of acoustic emission sensors 
necessary to get full coverage for a given area is explained in 
section 3. Then finding the solution using the Random search 
approach and Bess Algorithm search approach are presented 
in sections 4 and 5. Finally the conclusion is given in section 
6.   

2. The initial acoustic emission Algorithm   

A basic Acoustic Emission software that was created with 
MATLAB served as an initial platform which was later 
adapted and improved. Initially the program attempts to 
visualize an orthogonal rectangular metallic (Aluminum) plate 
by asking the user for certain parameters such as the plate 
length, width as well as thickness (the length of the z 
dimension). The metallic plate is then created in the form of a 
graph as shown in Figure 1. 

 

Fig. 1. The metallic plate is ‘created’ in the form of a graph. 

The program then asks the user details about the acoustic 
emission event (the ‘hit’) that is going to occur on the plate. 
These details are the magnitude of the hit expressed in 
decibels (dB) and the minimum detection threshold bellow 
which any acoustic emission is disregarded as non-relevant 
with the testing procedure, or is considered as background 
noise. The attenuation curve for the acoustic emission signal 
is then created as shown in Figure 2. 

The attenuation curve shown in red is calculated using the 
simple exponential decay function given in Equation 1. 

     (1) 

Where: 
•  is the initial ‘source’ amplitude of the hit in dB 
•  is the attenuation coefficient which is set to 1. 

•  is the value of the amplitude of the acoustic 
emission signal at a distance (x) away from its 
source. 

The straight line shown in blue is plotted in order to show 
on the graph the point below which the acoustic emission 
signal is disregarded as non-relevant with the testing 
procedure, or is considered as background noise, i.e., the 
minimum detection threshold that was input earlier. It is 
immediately noticed that the intersection of the two curves is 
shown by a circle. At this distance the signal’s amplitude 
drops below the threshold indicated by the user and it is 
therefore taken as the maximum distance up to which the 
signal travels. This is in fact not true because in reality the 
signal travels around the plate many times and bounces off the 
edges (edge effect) and depending on the thickness of the 
plate it does not attenuate easily. However, this distance is 
very useful because it can be considered to be the radius for 
the range of the sensors to be used later. This is because the 
sensors will act as an exponentially decaying source but only 
the other way around. They receive any signal starting from 
that distance away from them. In other words, they receive the 
lowest amplitude of the signal set by the user, provided that it 
is within the indicated distance/radius. The acoustic emission 
software will calculate and output this distance. For example, 
when the dimension of the plate is 15x10x1, the magnitude of 
the hit is 100dB and the threshold is 10dB then the 
distance/radius of the sensor was calculated to be 2.3232 
units. 

 

Fig. 2. The Attenuation of the signal with distance. 
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The algorithm in the software then begins the task of trying 
to position the sensors on the plate. It asks the user with a 
dialog box whether the sensor placement should take place 
manually or automatically. In manual sensor placement, the 
user inputs the exact locations where the sensors are to be 
mounted on the plate. In the case of the automatic sensor 
placement, the software calculates the number of sensors and 
positions needed in order to achieve full coverage of the plate 
area with the use of the sensor radius found earlier. 

In the case of manual placement, the software takes the 
user inputs and does some calculations in order to show the 
Metallic Plate graph that was presented earlier with the 
sensors (dark blue) on the plate along with their radii (light 
blue). The source (red star) along with the radius (in red) 
indicated earlier by the exponential decay function (which is 
said to be the sensor radius) is illustrated in Figure 3. 

If it is done automatically, so that full coverage of the 
whole plate is the goal and not just coverage of a specific 
area, the following sequence of events occurs. Initially, the 
software creates an invisible grid on the surface of the plate. 
The target is to create a sensor grid that provides full coverage 
to the whole area of the plate. The spacing between the lines 
both vertically as well as horizontally is equal to the sensor 
radius ‘R’. At the intersections of the lines lie the sensor 
coordinates. The spacing between the sensors is obviously 
equal to ‘R’ as well. The spacing distance of ‘R’ was 
preferred over the ‘1.5R’ due to the simple fact that a spacing 
of ‘1.5R’ would provide insufficient coverage in some cases 
and would therefore leave uncovered areas on the plate. The 
thinking process behind this is schematically represented in 
Figure 4. 

The software then asks the user to indicate the coordinates 
of the acoustic emission event (the damage source). The 
source coordinates are more or less irrelevant in terms of 
whether the source is covered or not because through 
automatic sensor placement the program would achieve full 

 

Fig. 3. The metallic plate along with the sensors which were manually placed 
by the user. 

plate coverage as shown in Figure 5. Additionally, the 
program calculated the distance of the source from each 
sensor, as well as the time that was required for the acoustic 
emission signal to travel and arrive at each particular sensor. 
Although this gives full coverage, the focus of this paper is to 
investigate if the same could be achieved by placing a fewer 
number of sensors at some selected positions as discussed in 
the following section. 

3. Optimizing the acoustic emission algorithm in terms of 
sensor positions and sensor numbers 

The goal of full coverage was achieved with the basic 
Acoustic Emission software. However, lots of sensors were 
needed and they were located away from the plate’s edges. 
Although the results computationally fulfilled the purpose of 
covering the plate, in practice, the signal detection that they 
offer will suffer from edge effects or low detectability due to 
the specific spatial configuration in actual conditions. The 
number of required sensors calculated by the algorithm in this 
example for a plate of 15x10x1 units was 35. This number 
was later compared with the number of sensors calculated by 
other optimization algorithms. Usually these sensors can be 
expensive and minimization of the number of sensors required 
to achieve full coverage will lead to great savings. It was 
assumed that with the use of artificial intelligence techniques 
such as the Bees Algorithm, and by placing the sensors at 
random positions on the plate while still aiming to achieve 
100% coverage of the plate (by satisfying a certain cost 
function), the result would have an advantage over placing the 
sensors in a well-defined ordered manner. In particular, the 
assumption was that such an approach could achieve a 
reduction of the number of sensors used whilst still 
maintaining 100% coverage of the area of the plate. 

 

Fig. 4. Schematic illustration of why the sensor spacing should not be equal 
to any distance other than ‘R’. 



365 Michael S. Packianather et al.  /  Procedia CIRP   67  ( 2018 )  362 – 367 

 

Fig. 5. The metallic plate along with the sensors which were automatically 
placed by the software. 

4. The Random Search Approach 

This search performed random placement of the sensors on 
the plate where the sensors were randomly mounted on 
various positions on the plate and then the coverage that they 
provide on the plate area was calculated. The final result is a 
percentage of the plate area that is covered by an adequate 
amount of sensors such that complete signal detection is 
achieved. The inputs required are plate dimension (length and 
width), the number of sensors available and their range.  

After the required input by the user i.e. 15x10, 30 and 
2.3232, the algorithm randomly places the number of sensors 
specified on the plate’s area. It then calculates the percentage 
of the area that sensors cover w.r.t the plate area. It does that 
by creating a grid of points on the plate with a spacing of 0.5 
units of sensor range (this depends on the resolution that is 
required) between them and looping through all of these 
points (thus looping throughout the whole plate) in order to 
count how many points are being covered by the sensors. A 
point is covered if it lies within the range of 3 sensors. The 
algorithm produces the graph shown in Figure 6 where the 
plate’s boundaries are enclosed by the red lines. The blue 
shaded circles are the areas covered by each sensor. The 
algorithm counts the number of grid points that are within the 
range of three or more sensors (and are thus considered to be 
fully covered) and divides this number over the total grid 
points of the whole plate area. This is the percentage of the 
plate where full detection is achieved (in terms of coverage 
only). This method based on a random approach achieves 
higher coverage with higher number of sensors. Hence, what 
is needed is an intelligent algorithm which can mix heuristic 
and random search to find the optimum number of sensors 
and positions as described in the following section.     

5. The Bees Algorithm Search Approach 

The Bees Algorithm [6, 7] is an intelligent swarm based 
optimization algorithm which mimics the foraging behavior of 

honey bees found in nature. The algorithm maintains the 
search through the space by carrying out local search based on 
heuristics but at the same time allowing random search to take 
place with a small probability in order to avoid premature 
convergence. This approach presented in the form of a 
flowchart is Figure 7 can be used in order to search various 
search spaces and offer the best solutions from all the 
available options, depending on the problem at hand. The 
Bees Algorithm has been applied in areas like optimization of 
classifiers or clustering [8], manufacturing [9] and logistics 
[10, 11]. 

In this case, the Bees Algorithm was modified and sorted 
accordingly so that it could offer a solution for the problem of 
optimal sensor placement whilst reducing the sensor number 
to a minimum. The Bees Algorithm code consists of two 
parts. The search algorithm itself and an objective function. 

The operation of the objective/fitness function inside the 
Bees Algorithm was substituted by another algorithm. The 
purpose of this algorithm is to accept some certain parameters 
as inputs and give back a specific sensor 
position/configuration as output that corresponds to the values 
given to these parameters. The initial idea was to randomly 
place a specified number of sensors with a specified radius on 
a metallic plate area of specified dimension. For example, the 
dimensions were set to 20x20, 5, and 2 units. Figure 8 shows 
the algorithm placing the 5 sensors randomly on the area of 
the plate. 

 

Fig. 6. Graph showing the plate and the areas on the plate covered by the 
randomly placed sensors. 
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Fig. 7. Bees Algorithm Flowchart (The Bees Algorithm Webpage 2016). 

The search begins by calling the function named “Fittest 
distances" by finding the distance of each sensor plotted in the 
plate-graph of Figure 8 with every other sensor on the plate as 
shown in Figure 9. 

The order of the sensors is incremental. Starting from 
reference sensor 1 and presenting its distance from each 
consecutive sensor. The second set of distances shown are the 
distances of the reference sensor (sensor number 2 this time) 
from all the other sensors. It continues in this way for sensor 
number 3, 4 and 5 making them the reference sensors each 
time. The algorithm then chooses for each reference sensor 
the distance between it and another sensor that is closest to the 
optimum distance value of ‘R’ i.e. closest to the sensor radius 
specified. 

 

Fig. 8. The sensors are randomly placed on the metallic plate. 

 

Fig. 9. Distances between sensor pairs.  

 

Fig. 10. Starting from sensor 1, the fittest distance of the reference sensor 
with its sensor pair. 

For each sensor (starting from sensor 1 and continuing 
incrementally) the distance from a pair of sensors that is 
closest to the value ‘R’ (i.e. its fitness criterion) from all its 
other pairs of distances is recorded as shown in Figure 10. 

It then outputs a message box that shows for each reference 
sensor starting from sensor 1 and finishing at sensor 5 the 
index of the other sensor that makes a pair with it whose 
distance is the closest to the value of R (i.e. the fittest). This is 
shown in Figure 11. 

The sensor radius was chosen as the optimum distance 
between a pair of sensors. It is then displayed how close to the 
value ‘R’ is each distance value that occurs between the 
reference sensor and other sensors. This is the deviation of a 
pair’s distance from the optimum value i.e. a fitness 
criterion/value given in Figure 12. 

 

Fig. 11. For each reference sensor, the index of the matching sensor that 
allows the distance between them to be closest to the optimum distance R 
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Fig. 12. The proximity of each sensor distance from the reference sensor 
(denoted each time as a zero) to the optimum value of ‘R’. 

 

Fig. 13. The distances of the sensors on the plate relative to each other. 

The algorithm outputs the graph shown in Figure 13 where 
the distance of each sensor from every other sensor is plotted 
against the sensor numbers (essentially the distances of the 
sensors relative to each other). 

For each sensor its fittest pair is then chosen and presented 
in a matrix along with the fitness value that corresponds to 
that pair of sensors. In the end, a big ‘field’ of sensor pairs is 
produced along with their individual distances. Note that this 
whole procedure would happen for a vast amount of random 
sensor locations so that the resulting number of pairs would 
be big enough so that it qualifies for being used for Bees 
Algorithm. This field can then serve as the search space on 
which the Bees Algorithm search mechanisms can operate 
and find the global maxima (fittest distances).  This was the 
philosophy behind the algorithm that served as the 
objective/fitness function for the Bees Algorithm search 
procedure.  

6. Conclusion 

In this paper a method of optimizing the position and 
number of Acoustic Emission sensors required to achieve full 
coverage in order to detect surface fractures have been 

presented. The method described is an intelligent optimization 
method based on swarm intelligence which is referred to as 
the Bees Algorithm. The study has shown that the proposed 
Bees Algorithm is capable of searching through a vast search 
space in an intelligent way in order to find the optimum 
solution by way of following both heuristic and random 
approach.  
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